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Abstract—We report on the adaptation of an immune-inspired
instance selection technique to solve a real-world big data
problem of determining vehicle incident hot spots. The technique,
which is inspired by the Immune System self-regulation mech-
anism, was originally conceptualised to eliminate very similar
instances in data classification tasks. We adapt the method to
detect hot spots from a telematics data set containing hundreds
of thousands of data points indicating incident locations involving
heavy goods vehicles (HGVs) across the United Kingdom. The
objective is to provide HGV drivers with information regarding
areas of high likelihood of incidents in order to continuously
improve road safety and vehicle economy. The problem presents
several challenges and constraints. An accurate view of the hot
spots produced in a timely manner is necessary. In addition, the
solution is required to be adaptable and dynamic, as thousands of
new incidents are included in the database daily. Furthermore, the
impact on hot spots after informing drivers about their existence
has to be considered. Our solution successfully addresses these
constraints. It is fast, robust, and applicable to all different
incidents investigated. The method is also self-adjustable, which
means that if the hot spots configuration changes with time,
the algorithm automatically evolves to present the most current
topology. Our solution has been implemented by a telematics
company to improve HGV safety in the United Kingdom.

Keywords—Hot Spots, Road incidents, Instance selection, Telem-
atics, Big Data, Artificial Immune Systems

I. INTRODUCTION

Despite govern, industrial and societal efforts to improve
road safety indicators, traffic incidents still reach unaccept-
able levels across the globe. The Road Safety Foundation
reported that the total cost of road accident in 2014 in the
UK was estimated to be 14.7 billion, with 67 people being
killed or seriously injured on the roads every day [1]. In
particular, a high frequency of heavy goods vehicles (HGVs)
incidents is observed, with many implications beyond the
financial burden [2]. These incidents are aggravated by the
fast growth of motorisation, and they occur mostly due to
human error, mechatronics faults, as well as bad weather and
road conditions. For HGVs, the emergence of complex logis-
tics and transportation networks has required the widespread
use of sensors, tracking devices, and mobile communication

equipment to improve performance, economy and safety. These
devices constantly gather information of vehicles and their
journeys, including safety hazards and driving behaviour. As
data availability increases, opportunities and challenges to
extract useful information that benefit industry and society
take place. In this work we present our immune-inspired
instance selection solution applied to a real-world big data
problem of determining HGV incident hot spots across the
United Kingdom (UK) roads. The problem addressed is de-
fined by Microlise [3] — a UK-based company that provides
telematics solutions to help fleet operators to reduce their
costs and environmental impacts. Currently, Microlise controls
over 25% of the UK HGV fleet. Telematics have traditionally
been used to track the position of vehicles via their Global
Positioning System (GPS). However, with the increasing power
of cloud data storage and computing, telecommunication and
data analytics, various other services, such as fuel saving,
fleet performance management, driving behaviour monitoring,
dynamic routing, diagnostics and prognostics are being offered
by telematics providers [4]. Nowadays, telematics is perceived
as a wireless communication system encompassing a range
of different tracking and management features, options and
devices that generate data and enable the vehicles’ internet of
things. Microlise’s telematics solutions allow the capture and
processing in real-time of a whole range of HGV safety inci-
dents (such as over speed, harsh braking and harsh cornering)
with their date, time and location of occurrence. The company
is faced with the challenge of transforming millions of data
records into actionable knowledge to enhance their business.
Part of this enhancement involves providing clients with be-
spoke software products and analytics that detect and manage
risks of danger to vehicles tracked. Current literature does not
effectively address the problem for big data and therefore an
alternative solution has to be defined. It is determined thereby
that the creation of a product to warn drivers about areas
of high likelihood of incidents, based on historical records,
is necessary and timely. In order accomplish this product,
knowledge regarding incidents must be extracted, interpreted
and summarised in a visual manner. We are assigned with the
task of performing this analysis and determining the roads hot
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spots. In addition, the following requirements regarding the
solution are specified:
• Accuracy: hot spots should represent incidents that occur

in the same road, in the same direction, within a certain
mileage limit.

• Generality: all types of incidents considered (harsh cor-
nering, harsh braking, speeding) have to be addressed in
a similar manner to facilitate the implementation of the
solution.

• Coverage: the hot spots should be defined for the entire
United Kingdom (UK) map and therefore all data points
collected are considered.

• Robustness: the results produced should be easily adapt-
able/modifiable to future incident data collected.

• Performance: although millions of instances are consid-
ered, a low-complexity, fast-running algorithm is desir-
able.

We successfully address the above requirements by adapting
an immune-inspired instance selection mechanism [5] to our
problem. The mechanism is derived from the Immune System
self-regulation features, where redundancies as well as extra
elements that are no longer necessary in the system are
eliminated; therefore, only valuable elements are kept. We
employ this principle to remove noise and repeated or similar
values in the data. In addition, we extract the relevant points
that characterise hazardous areas. Results are verified and
validated through several interactions with transport experts;
and the solution has been adopted by Microlise. In the next
sections we introduce the problem (Section II), the related
work (Section III), the solution provided (Section IV), fol-
lowed by experiments and results (Section V), conclusions
and opportunities for extension of the method to other areas
(Section VI).

II. PROBLEM DESCRIPTION

Given a large telematics data set of HGV incidents con-
taining incident type, date, time and location, those areas
of high likelihood of incidents should be determined. As
mentioned previously, the indication of the hot spot location
has to be accurate and encompass all types of incidents for
all locations. In addition, it is desirable that the method runs
fast and adapts to changes in roads and driving behaviour
over time. For the development of our method, we investigate
a large data set containing 1,000,612 incidents collected for
three HGV companies over a three-month period in 2015,
across the UK. The data is distributed between incidents,
as follows: (i) 773,323 speeding incidents; (ii) 213,697
harsh braking incidents; and (iii) 13,592 harsh cornering
incidents. Intuitively, the solution should provide the means to
somehow “cluster” the incident points to determine dangerous
areas in the UK road map. In addition, a distance measure
calculation between each incident point should be employed,
as the clusters are defined based on proximity. Furthermore, in
situations such as those illustrated in Figure 1, several different
cluster configurations could be determined; however, not all
of them provide satisfactory solutions. Traditional clustering

methods, Bayesian and spacial clustering (such as density-
based spatial clustering [6] and other techniques [7]) are not
effective for our problem, as they require either a pre-definition
of the number of clusters (which limits the number of hot
spots and compromises accuracy), produce elliptical clusters
as those indicated by the green circles in Figure 1, require
parameters to be adjusted or require an adaptation for big data
problems [8]. Furthermore, as discussed in the next section,
current literature on the identification of hot spots presents
limitations with regards to our researched scenarios. Observing
the smaller clusters in the figure below, the idea of adapting
an existing instance selection (IS) method as an alternative to
solve the problem comes therefore from the assumption that,
given the size and character of the information collected for
our study, there is a high likelihood of noise and redundancy
in the data set. We hypothesise therefore that once reduction is
performed, the hot spots are uncovered – they are represented
by the remaining data points. In addition, it is required an IS
approach with low complexity for timely results.

Fig. 1. Examples of data clusters. Clusters indicated in blue represent good
candidate solutions. Clusters inside pink (with one instance) and green lines
(bigger ellipsis) represent invalid solutions.

III. RELATED WORK

According to Cheng and Washington [9], the objective
of hot spot identification (HSID) is to detect transportation
system locations with underlying correctable safety problems.
These areas are characterised by elevated incident (or accident)
frequencies relative to similar sites. Detecting hot spots is
the first step of road safety management processes. Effective
solutions therefore assist in optimal resource deployment. The
literature on accident HSID is vast and the problem is mostly
addressed by statistical methods assisted by historical data,
as discussed next. In certain cases, government and public
participation [10] also contribute to the knowledge regarding
hot spots, although the information is inaccurate at times [11].
For accidents, hot spots are defined as sites at which local risk
factors are related to road design and/or traffic control [12].
We are interested in HGV driving incident hot spots, which
also include human error as an important factor. And from
the HGV industry point of view, it is preferable to identify all
current areas of potential danger/driving errors than to work



3

on historical assumptions or estimates. The literature regarding
incident hot spots for big data sets and safety policies for HGV
drivers, however, is still scarce. In this section we therefore
present a review of the well-known methods for HSID, mostly
involving accidents, and their main conjectures and constraints.
It is not our objective to provide a complete review, but rather
to point out the main methods and their limitations regarding
big data that led to the development of our algorithm.

Montella [12] reviews and compares seven HSID meth-
ods using quantitative evaluation: crash frequency, equivalent
property damage only crash frequency (EPDO), crash rate,
proportion method, Empirical Bayes (EB) [13], EB estimate
of severe-crash frequency (EBS) and the potential for im-
provement (PFI) method. In crash rate, locations are sorted
in descending order of accident frequency (simple ranking);
to compare areas, the total number of accidents is divided
by the length of the road segments. EDPO categorises and
ranks accidents according to their severity in terms of damage,
costs and injuries. The crash rate normalises crash frequency
according to traffic volume. The proportion method, less fre-
quently employed to HSID, prioritises sites depending on their
crash probabilities being higher than the threshold proportion,
which is calculated from a comparison group. In the empirical
Bayesian method, the estimation of the long term safety of
a spot is obtained using the history of crashes of the entity
and the expected number of crashes from safety performance
functions for similar sites. In the EBS, the expected frequency
of severe accidents is employed instead. PFI is calculated as
the difference between the EB expected accident frequency
and a crash prediction model, which is developed to predict
accident frequency at locations similar to that being analysed.
Montella’s case study for comparison employs geometric,
traffic and crash records from 2001-2005 for a motorway in
Italy. 646 homogeneous segments (343 for each direction) are
considered, with a mean length of 395 meters. In the analysis
period, 2245 crashes occurred. The author’s comparison tests
led to the conclusion that the EB method is more suitable to
detect priority investigation locations.

Similarly, Cheng and Washington [9] employ simulation
data to evaluate three HSID methods based on peer com-
parison: simple ranking, confidence interval and EB. These
methods identify hot spots by establishing a measure of com-
parison with similar sites. For confidence intervals, a location l
is classified as unsafe if the observed crash count of l exceeds
the average count of comparable locations. The authors justify
the choice for simulated data rather than employing empirical
values as it enables prior knowledge regarding safe and danger-
ous areas. The criteria for evaluation was the number of false
positives, false negatives, false identifications and diminishing
returns of crash history duration. The authors also conclude
that EB in general performs better. However, in low crash count
heterogeneity situations, EB is not significantly better. Their
analysis also suggests that optimum crash history comprises of
three years worth of data, which drastically improves bayesian
results when compared to a 1-year period employing simple
ranking and confidence interval. The methods investigated
however are not directly applicable to our problem, as there
is the need of a prior identification of comparable locations

and historical data. As our objective is to define all incident
hot spots for most roads in the UK, the determination of com-
parable sites regarding characteristics such as infrastructure,
demand, traffic flow and weather conditions would incur in a
significant amount of work prior to the HSID.

Anderson [14] introduces a kernel density estimation (KDE)
for HSID coupled with a clustering technique determining
classes of hot spots and their casual indicators. The author
assumes that road accidents are influenced by the density of
their occurrences in a specific area. The KDE is therefore
employed to establish those areas of high risk of incidents
and their spread, which are further classified through cluster
analysis. Traffic accident data from London during 1999-2003
is employed. The author provides further knowledge regarding
the nature and patterns found within the hot spots by dividing
them into categories. The main limitation of the KDE, as
pointed out by the author is that it treats discrete events as
a continuous surface. From a HGV incident perspective, this
generalisation might incur in inaccuracies, as not all adjacent
events necessarily belong to the same hot spots. In addition,
the authors state that the inability to properly determine the
statistical significance of the resulting clusters (i.e., whether
they are relevant) is still a drawback of the methodology.

Bı́l et al. [15] improves the KDE cluster detection to
overcome the lack of confidence in the results accuracy.
Data consists of 7121 traffic incidents collected via GPS by
the police in Czech Republic. The analysis is performed on
primary roads, excluding highways and urban areas. Roads
are separated in 713 sections of around 200m, without inter-
sections. The improved version of cluster significance testing
incorporates Monte Carlo to create variations in the incident
locations. This allows for better statistical testing and to assess
cluster significance. In addition, the authors indicate that to
determine the cluster strength, the number of accidents should
be contrasted with the length of the cluster and the length of
a section. The work is limited, however, as areas in the map
are excluded and the roads investigated have been previously
segmented. This technique would therefore require further
investigation in order to assess its applicability to big data.

Effati et al. [16] introduces a geospatial neuro-fuzzy ap-
proach for HSIS zones on regional transportation corridors.
Historical crash data along with roadway information is used
to calibrate and validate the model. Their methodology em-
ploys roadway geometry and environmental factors, which are
processed through an adaptive neuro-fuzzy inference system.
Their case study considers layers of data regarding a highway
in the North of Tehran. The correlation between calculated
hazardous zones and hot spots obtained using statistical ap-
proaches is verified; however, additional hazardous zones
are spotted. The method also determines the most important
hazardous factors in which crash prevention strategies should
be employed. As a final contribution, the authors demonstrate
how variations in one or more input factors affect the danger
level of the road zones. Although successfully applied to the
case study, to the best of our knowledge the method has not
yet been exploited for larger data sets. In addition, it requires
several layers of information regarding topography, elevation,
geometry, weather, accidents and excising hazardous zones.
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This data is provided by different stakeholders, which makes
the generalisation of the method more difficult.

El-Basyouny and Sayed [17] proposes a depth-based multi-
variate method to identify and rank hot spots using a full Bayes
approach. The authors use 236 signalized intersections from
Vancouver, with collision and traffic volume data from 2001-
2008. This data is split into two periods: 2001-2005 for ranking
and 2006-2008 for evaluation. Markov Chains and Monte
Carlo are employed to obtain a set of full Bayes posterior esti-
mators on each multivariate Poisson log-normal model (linear
trend, time varying intercept and time varying coefficients).
The proposed method identifies dangerous intersections after
applying a depth threshold, which is based on the amount of
funding available for safety improvement. The performance of
their model is compared to analogous methods that are based
on depths of accident frequency (AF). Sensitivity, specificity
and sum of norms of Poisson means show that the proposed
method with full Bayes estimators has better results when
compared to the depth-based AF method. This work was
limited however to a single data set and this technique requires
further research in order to assess its applicability to HSID.

From the literature it is possible to identify the following
gaps in current research: (i) the number of instances (accidents)
investigated is very limited regarding its size and locations
across the studies; (ii) the experiments are mostly conducted
within a small number of routes and journeys and/or considers
simulated data; (iii) there is disregard for road bearing (di-
rection); and (iv) to the best of our knowledge, there is very
little literature regarding HGV incidents for the UK. Our work
therefore aims at contributing in filling these research gaps by
employing a immune-inspired IS, as further discussed next.

IV. THE INSTANCE SELECTION MECHANISM

In data mining, IS [18] aims at determining optimal subsets
of data with two fundamental properties: (i) The new obtained
set is smaller than the original data set; and (ii) a set containing
the most significant instances must be selected in order to build
accurate machine learning (classifier, regression, clustering,
etc.) models. Furthermore, IS plays an important role in knowl-
edge discovery tasks, as it is supposed to determine the most
significant samples in the data set; it accelerates the process of
training machine learning methods; it reduces costs associated
with data processing; and it is capable of removing noise and
redundancy from the original data. In addition, IS is employed
in big data sampling, as they choose instances in a more
effective manner when compared to random selection [19].
It is not our objective in this work to provide an extensive
review on the IS field. Instead, we focus on the technique
chosen for our problem. Further information regarding IS
approaches is given in [20], [18] and [21]. In Wilson and
Martinez [20], a large study with the issues that may be
encountered when tackling IS is introduced. In addition, the
authors suggest a framework for the analysis and discussion of
existing algorithms. Cano et al. [18] conduct another important
review in the area. The authors list some of the main IS
algorithms and categorise them into four sets: (1) techniques
based on Nearest Neighbour rules, (2) methods based on

ordered removal, (3) methods based on random sampling and
(4) evolutionary-based approaches. An updated review in the
area with further modern techniques is found in Lopez et
al. [21].

For our work with road incident hot spots we adapt an exist-
ing immune-inspired IS technique [5], [19], namely, SeleSup.
This technique has been successfully applied to select instances
in data classification tasks [5], [22] (tested in data sets with up
to 45,222 instances), data sampling [19] and text classification
[23] (datasets with up to 18,300 instances). The SeleSup
algorithm is chosen as its features seem to better match
the requirements of the problem, when compared to other
knowledge discovery techniques. Initially, solutions such as
alternative IS methods, common techniques for HSID, spatial
clustering and the distance calculation between all data set
points were considered (sections II and III). These techniques
were discarded, however, as they are mostly not suitable for the
large amounts of data considered and require a considerable
amount of processing time. Furthermore, they generally loose
accuracy as the data increases. SeleSup, on the other hand,
performs accurately in large data sets with low complexity
(see Section IV-D). Experiments show that overall it requires
less computational resources than other data reduction methods
[5], [24]. In addition, SeleSup reduces the instances based
on a measurement of proximity. This characteristic makes
this approach particularly suitable for our problem, as the
determination of clusters of hot spots is based mainly on
spacial proximity of incidents. Further details regarding the
adapted version of SeleSup are given next.

A. The Biological Inspiration

The biological process of mounting an immune response and
restoring the homeostasis of the body, namely self-regulation
mechanism, has served as inspiration to the development of
the SeleSup algorithm. This process is rather complex and
involves the interplay between different types of immune cells
and molecules [25, Chapter 1], which details are out of the
scope of this paper. For simplification, rather than an in-depth
description of the biological phenomena, we present an overall
view of the concepts that have led to the creation of the
method. Whenever there is danger present in the human body,
the Immune System recruits numerous cells to assess the risks
to the organism, followed by the activation and execution of
an appropriate response [26, Chapters 1,2 and 7],[27, Sections
I and II]. The most successful set of cells in mounting the
immune response receive stimulus to survive (and proliferate)
to accelerate danger elimination. The least effective cells, on
the other hand, are removed from the organism. Within this
mechanism, the majority of successful immune cells that are no
longer needed in the body after the immune response receive
signals to die [25, Parts I and II]. Only a small proportion of
those types of cells is kept to form a immune memory, so that
fronts of defense are prepared whenever there is recurrence of
similar danger. Existing suppressive signals also balance the
numbers of different types of danger-specific cells, based on
the risks inside the organism. This favours the proliferation
of those immune cells mostly needed for defense at a certain
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point. Once the danger is controlled, the excessive specific
cells are eliminated. Groups of cells that are slightly different
but perform the same function are overtaken by clones of those
most fitted cells, in some sort of natural selection process [28].
Our method is inspired by the suppression aspect of this
phenomena, where what is no longer useful is eliminated.

B. The Adapted Method
The SeleSup algorithm was originally conceptualised to

eliminate very similar instances in data classification tasks.
The objectives were to select a smaller set of significant
samples and reduce the number of examples processed to build
a classifier model, with low detriment to the classification
accuracy [5]. For hot spots, however, the same process is
modified to establish groupings of similar instances and select
those to be identifiable as the cluster centres. Once the centres
are defined, the other remaining data points are removed. From
an immune perspective, a cluster centre can be interpreted as
a cell that receives surviving signals and stays in the organism
to fight a specific danger. This cell is supposed to encompass
the immune capacities of similar clones eliminated. In our
problem, the cluster centres (or surviving cells) represent a
summary of where dangerous areas in the road for HGV
drivers are located. A hot spot is therefore the location of
one instance, which is the centre of a group of data points
with similar characteristics (similar/same values for latitude,
longitude, direction, address, etc.), within a certain distance in
a road. A schematic representation of a hot spot is shown in
Figure 2.

Fig. 2. Hot spot example (represented in the figure by the red balloon). For the
example displayed in the map, the hot spot indicates an area of incidents within
half a mile range. The small red circles are instances of incident points that
occurred within that hot spot area. These points become redundant information
to the system once the hot spot is defined; therefore, they should be eliminated.

C. The Algorithm
The SeleSup algorithm starts with the idea that the system’s

model must identify the best group of “surviving cells”. For
IS problems, the set of instances selected has to be the most
representative (i.e., the most effective for building classification
models). The search for these instances therefore has to be
informed. For our problem, however, we are only interested in
removing similarities. This means that all data records have the

same potential of being centres of hot spots (cluster centres)
and therefore they can be determined randomly. To establish
the cluster centres, the mechanism divides the original data in
two subsets, suppressor set and set to be reduced. The first
group represents those instances of the data set (or immune
cells) that are meant to be kept in the system. The second
subset contains the elements to be suppressed. The suppressor
group is considerably smaller than the set to be reduced.
Initially, the instances for the first group are chosen randomly.
As the algorithm progresses, to ensure that all clusters (hot
spots) are contained in the smaller subset, instances from the
bigger set being reduced can be transferred to the suppressor
group. The cells (instances) are represented by an array of
attributes; those to be eliminated are associated to the closest
cell from the suppressive group. This proximity is determined
by a measure of distance. In our case, we consider attributes
such as latitude, longitude, vehicle course or bearing (angle of
the heading direction of the road), address, day of the week
and time of the day. The distance calculation is shown in
Algorithm 1.

Algorithm 1: Distance Calculation
inputs : Latitudes, Longitudes and angles in the road of

suppressor instance s and candidate instance to be
reduced r; Address, Weekday, Time of s and r if
considered;and MileageRange;

output: Determine if r is within range of s

1 if Addresss = Addressr then
2 Delta ← AngleDifference(Angles, Angler);
3 if Delta ≤ 60 then
4 H ← HaversineDistance(Latitudes, Longitudes,

Latituder , Longituder);
5 if H ≤ MileageRange then
6 if Weekdayr = Weekdays OR

WeekdayNotApplicable then
7 if T imer is within T imes interval OR

TimeNotApplicable then
8 r is within s range;

In Algorithm 1, for latitude and longitude we employ the
Haversine distance [29], [30]. Angles of similar points need
to be within a sixty degree range. Nominal variables, such as
full address (or just partial address) and weekday must have
the same value. Time of the day is separated according to
peak and off peak hours for HGV traffic, which are defined
by Microlise. No data normalisation is necessary. The pseudo-
code for our new version of SeleSup, i.e, SeleSup HSID can
be seen in Algorithm 2.

The method applied to the hot spot problem (SeleSup
HSID) is shown in figures 3 to 8. Figure 3 shows the first
step, where the centres of the clusters are chosen randomly.
Figure 4 exemplifies how similar values within these centres
are removed, for increased performance. Figure 5 displays the
process of identifying points belonging to a cluster by their
proximity to a centre. Figure 6 shows the elimination of points
belonging to a centre, as they are not necessary to identify the
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Algorithm 2: The Adapted SeleSup for HSID
inputs : The entire data set D; a fraction f of Suppressor Cells

(default f = 0.1); and the maximum distance range of a
cluster;

// If constraints such as address, weekday,
time are to be considered, they should
also be inputs.

output: A reduced set D′

1 Assign df · |D|e randomly selected samples as SupressorCells
(suppressor set);

2 The remaining samples are CellsToBeEliminated (set of
redundancies, to be reduced);

3 forall the SuppressorCells do fitness = 0;

// Suppressor set redundancy removal
4 foreach Suppressor cell si from SuppressorCells do
5 SetOfRedundantSupressors ← suppressor cells within the

similarity range (Algorithm 1) of si;
6 SuppressorCells ← SuppressorCells -

SetOfRedundantSuppressors;
7 si’s fitness ← size(SetOfRedundantSuppressors);

// Finding closest suppressor cell to cells
to be removed (redundant)

8 foreach rj from CellsToBeEliminated do
9 Nearest suppressor sk ← Find the SuppressorCell within

the similarity range of rj ;
10 if NearestSuppressor 6= ∅ then

// Cell is redundant
11 CellsToBeEliminated ← CellsToBeEliminated -

rj ;
12 increase sK fitness;

// Adding instances not yet represented in
SuppressorSet

13 forall the CellsToBeEliminated do fitness = 0;

14 if CellsToBeEliminated 6= ∅ then
15 foreach rl from CellsToBeEliminated do
16 RedundantSet ← other cells from

CellsToBeEliminated within the mileage (and
constraints) of rl);

17 CellsToBeEliminated ← CellsToBeEliminated -
RedundantSet;

18 rl’s fitness ← size(RedundantSet);

19 SuppressorCells ← SuppressorCells +
CellsToBeEliminated;

// Output phase
20 Eliminate those SuppressorCells with fitness = 0;
21 Output the set of surviving SuppressorCellss as the reduced set

T′ containing the hot spots locations and their fitness.

hot spots. Figure 7 introduces how incident points that were
not in the range of a cluster centre are converted into new
centres. Figure 8 presents the final outcome of the method,
where the hot spots (cluster centres) are established. At each
elimination stage, the remaining hot spots are associated with
a score (fitness value). This value indicates the number of
incidents that occurred in a certain hot spot cluster. This allows

for hot spot ranking and comparison and supports decisions.
In addition, the the hot spot stores the date in which the last
incident took place. This is because once policies are adopted
to avoid incidents, it is expected that hot spots disappear
with time, and the date log assists in determining those areas
that should no longer be regarded as hazardous, because, for
instance, no incident occurred in the past 6 months.

Fig. 3. Step 1. A percentage of random points is selected to form the
suppressor set (line 1 in Algorithm 2).

Fig. 4. Step 2. In this step, the distance between points from the suppressor set
is calculated in order to remove any redundancies (points representing the same
cluster). If two points are close, the deletion of one of them occurs randomly.
This corresponds to the first for-each loop (lines 4 to 7) in Algorithm 2.

Fig. 5. Step 3. The distance between the set of points to be reduced and the
centres of the clusters is calculated. This corresponds to line 9 of the second
for-each loop in Algorithm 2.

Steps 2 (Figure 4) and 6 (Figure 8) overcome a limitation of
the original SeleSup, which is having a fixed parameter for the
data reduction percentage (which also defines the size of the
reduction set). For our case study, the cluster centre represents
all other points within its range; therefore, we can remove all
redundancies rather than just a fraction of them. Moreover, if
there is data left with no centre, the suppression set increases
to encompass this data. The reduction percentage therefore
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Fig. 6. Step 4. If the distance between a point from the set to be reduced
and a centre is smaller than a certain limit, then this point is suppressed (lines
10 to 12 in Algorithm 2). At this stage, distance as well as other constraints
can be adopted. For instance, apart from belonging within a distance range of
a cluster centre, the point must also have the same information about time of
the day, day of the week, direction of the road, road address, etc.

Fig. 7. Step 5. After step 4 (Figure 6), there is the possibility that some
areas of where incidents occur, as displayed in the map, are not covered by
the centres. To overcome this issue, the points from the set to be reduced
with no cluster assigned need to be turned into cluster centres. If they are
within a close range, they can be merged into one hot spot, similarly to step
2 (Figure 4). This step corresponds to lines 13 to 19 of Algorithm 2.

Fig. 8. Step 6. The hot spots are determined as the centres of the clusters of
similar points. In addition, a score (fitness) measure is associated with each
hot spot. The fitness is equal to the number of incidents that occurred around
the hot spot (lines 20 and 21 of Algorithm 2).

changes with time, which makes this variable less relevant
to this problem. The suppression approach also provides an
effective way of determining clusters of incidents. When
compared to most existing clustering techniques such as K-
means [31], Partition Around Medoids (PAM) [32], etc., it has
the advantage of not requiring the number of clusters as input.
The final number of cluster centres (hot spots) is an emerging
effect of the elimination process. Furthermore, the method
covers all areas in the map and the minimum number of hot
spots necessary to cover the entire search space is obtained.

D. Complexity Analysis

Let n be the size of the the entire data set D of incidents
(n = |D|), s the number of suppressor instances (s = df ·|D|e),
and r the instances to be reduced, r = D − (df · |D|e)
(see Algorithm 2). Since the time consuming operation in the
algorithm is the computation of distance between elements of
these sets, the time complexity analysis is focused on that op-
eration. The time complexity, therefore, is expressed in terms
of number of distance calculations for a given input size. From
Algorithm 2 it is possible to notice that the time consuming
code is performed in the suppression phase on the for-each
loops. Reducing the suppressor (first for-each loop), finding the
nearest suppressor for an instance from the set to be reduced
(second for-each loop) and removing redundancies from the set
to be reduced (third for-each loop) mean that, in the worst case
scenario, when there is no possible reduction, the whole sets
need to be searched. Consequently, there are (1+s)·s

2 distance
calculations per suppressor cell; s ·r calculations for the set to
be reduced; and (1+(r))·(r)

2 . Hence, the maximum total number
of distance operations O carried out on those loops is: O =
(1+s)·s

2 +(s·r)+ (1+r)·r
2 ; but s = f ·n; r = n−f ·n. Therefore,

O = f ·n+f2·n2

2 +(f ·n2−f2 ·n2)+ +n+f ·n+n2−2·f ·n2+f2·n2

2 .
As the parameter f belongs to the interval [0, 1], the expression
2 · f · n achieves its maximum at f = 1. With f = 1 the O
expression is: O = 3·n2+n

2 . Finally, considering the asymptotic
case where n, the number of input instances, goes to infinity,
the complexity of Algorithm 2 is given by O(n2). As for
our problem, we know that there is redundancy in the data
and the processing time of the algorithm is always smaller
than the worst case scenario. The benefit of SeleSup HSID
to our problem lies therefore on the fact that it considerably
reduces complexity by splitting the data, constantly removing
instances and thereby decreasing the size of the data to be
processed. Rather than comparing all instances against each
other, they are compared against a subgroup, which has its
size reduced in every iteration. Different types of incidents
as well as mileage and other constraints, however, affect the
method’s performance. In those cases where less constraints
are considered, more data reduction is expected. Next section
presents a study on the impact of constraints and parameters,
such as the initial suppressor set size and mileage range on
SeleSup HSID performance.

V. EXPERIMENTS AND RESULTS

In order to assess the correctness and performance of the
proposed method for HSID, we employ our method to four
real-world data sets of speeding, harsh cornering, harsh braking
and contextual speeding incidents. The data refers to three
months of incidents collected by Microlise telematics. All data
sets contain the same attributes (latitude, longitude, course,
address). The mileage limit ranges for the clusters definition
are set to 0.5, 2 and 5 miles for speeding and contextual
speeding incidents; and 0.1, 0.2 and 0.5 mileage limit for
harsh braking and harsh cornering incidents. We consider the
following constraints: mileage limit, course and address, under
two different scenarios: (a) considering mileage and course as



8

TABLE I. HOT SPOTS IDENTIFIED WITH SELESUP HSID CONSIDERING f = 0.1 FOR INITIAL SUPPRESSOR CELLS

Dataset Incidents Constraint Mileage Raw Hot Spots Fitness > 0 Fitness > 10 Runtime (s)
Avg. Std. Avg. Std. Avg. Std. Avg. Std.

speeding 3139

mileage 0.5 1403.31 19.11 612.58 13.76 20.84 2.75 3.05 0.05
and course (a) 2 785.28 18.52 514.33 26.94 35.30 5.67 2.79 0.02

5 491.06 17.60 365.13 17.23 62.59 7.54 2.70 0.01
mileage, course 0.5 1413.19 25.43 610.38 13.52 21.29 2.37 2.79 0.01
and address (b) 2 811.34 22.14 521.82 25.71 34.32 5.12 2.67 0.00

5 547.51 13.57 391.07 16.57 61.86 5.68 2.61 0.00

harsh cornering 13568

0.1 3906.76 47.58 1863.86 44.78 195.70 8.99 4.80 0.01
(a) 0.2 3446.74 29.49 1827.00 33.82 214.68 9.34 4.42 0.01

0.5 3102.20 37.56 1733.89 35.02 220.20 9.24 4.20 0.01
0.1 4208.92 57.35 1944.51 26.11 186.18 7.75 3.71 0.01

(b) 0.2 3815.58 24.44 1940.43 19.01 202.89 6.52 3.59 0.01
0.5 3585.39 35.22 1903.78 32.11 208.38 5.44 3.52 0.01

harsh braking 213697

0.1 62455.73 1013.56 29163.82 759.91 3030.10 204.81 430.01 17.35
(a) 0.2 50219.04 913.52 27393.08 896.55 3382.61 174.12 304.20 50.93

0.5 34769.19 749.77 22859.59 1083.46 3830.10 305.27 174.40 11.32
0.1 65350.23 749.88 30505.43 812.17 2891.27 182.88 151.67 4.22

(b) 0.2 54152.23 616.18 29455.06 619.90 3237.08 174.93 105.06 1.34
0.5 40684.22 776.83 26504.14 640.32 3669.06 228.96 61.08 1.42

contextual speeding 770184

0.5 58026.77 1801.40 45690.93 1992.43 14813.30 1525.27 874.88 281.88
(a) 2 21623.59 1289.80 19316.79 1461.09 9510.91 873.70 279.63 55.53

5 10234.10 834.35 9430.69 708.59 5915.69 638.91 127.16 7.45
0.5 59933.59 2884.44 46932.68 2609.04 14836.40 1672.42 182.10 16.60

(b) 2 26066.29 1299.13 23236.41 1162.06 9991.40 603.90 68.07 4.35
5 18251.47 693.25 16714.45 713.61 7531.22 342.15 49.58 4.13

constraints and (b) considering mileage, course and address.
We want to investigate: (i) the impact on the results across
multiple independent runs; (ii) the influence of the initial
size of the suppressor set; and (iii) how the mileage range
affects the final number of hot spots. In our experiments, we
employ a parallel implementation1 of SeleSup HSID based on
Apache Spark (see more details in [33]) to deal efficiently with
the size of the selected data sets. The experiments are carried
out in a single node with an Intel(R) Xeon(R) CPU E5-1650
v4 processor (12 cores) at 3.60GHz, and 64 GB of RAM. We
use the Cloudera’s open-source Apache Hadoop distribution
(Hadoop 2.6.0-cdh5.4.2) and Spark 1.6.2, with a total number
of 8 concurrent tasks.

A. Results for Multiple Independent Runs: Table I shows
the results of SeleSup HSID applied to the data sets using
f = 0.1. As the initial selection of the suppressor set is
random, the number of hot spots and their location vary
slightly. Thus, we run the method 100 times, obtaining average
(Avg.) and standard deviation (Std.) values for the number
of hot spots found. The table reports the number of original
incidents for each data set, the number of raw hot spots
(fitness > 0), hot spots with fitness > 0 and those with
fitness > 10. In addition, for illustration on the complexity
of the method, we also include the average runtime to process
the data sets from our parallel implementation. Results for the
numbers of hot spots and their small percentage of standard
deviation (less than 0.5% in average) show how the method
is consistent and robust across multiple runs. Furthermore,
there appears to be a general standard deviation decline as
fitness increases; this indicates that those hot spots of high
incidence are detected consistently in the experiments. Results
for runtime also confirm how quickly large amounts of data
are processed. The impact of the constraint is observed by the

1Source code available at: https://github.com/triguero/Immune-HotSpot

increased number of hot spots and processing time. Figure 9
shows an example of the resulting hot spots (with fitness > 10)
determined in two different runs for harsh braking incidents
around Cambridgeshire, UK. In the figure it is possible to ob-
serve that the hot spots detected in Figure 9(a) and Figure 9(b)
represent the same location, with slight variations, as indicated
by the areas circled in red in the map. It is also possible to
observe that the coverage provided by the outcomes remains
unchanged and that is what was of interest for Microlise.

B. Mileage Range Impact: From Table I we can observe
that the number of identified hot spots decreases when the
mileage radius considered is increased. We conduct further
tests to assess the impact of the mileage range in the final
number of hot spots for the largest data set (contextual
speeding), also considering fitness > 0, fitness > 0 and
fitness > 10. Figure 10 shows the number of hot spots
identified as the mileage radius increases. We can observe that
the number of raw hot spots tend to decrease drastically as we
consider a distance greater than one mile radius. However, the
number of hot spots with fitness > 10 (i.e. more relevant
ones) seems to have far less variation. Our experiments show
therefore that those hot spots with high fitness appear to be
the same within multiple replicates, variations in mileage and
some constraint values (Table I). This coincides with current
literature that employs frequency calculations to determine hot
spots. However, no prior information is necessary in our case
to identify those areas. And although our goal is to determine
all areas of high likelihood of incidents, results suggest that we
can assess how significant to road safety the hot spots are not
only by their fitness values, but also by how stable hot spots are
under different experimental set ups. This steady state reached
by hot spots numbers allows for the identification of hazardous
areas proportional to HGV traffic volume in certain areas, with
no need for prior traffic volume information. This is another
advantage when compared to current methods that require this
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Fig. 9. Results for harsh braking for two runs. The areas surrounded by
red circles show variations in the outcomes, with no detriment to coverage.
Differences observed in the top circle in (b) compared to (a) are due to the
fact that in (b) the three hot spots are more spread apart. However, for both
runs, three hot spots are detected.

extra layer of information.
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on Contextual Speeding data set.

C. Impact of the Initial Size of the Suppressor Set: We
assess the SeleSup HSID consistency in detecting hot spots
regardless of its parameter value. The only parameter asso-
ciated to SeleSup is the initial number of randomly selected
suppressors (suppressor set size = df · |D|e). In Figure 11,
we plot the number of identified hot spots (fitness>10) for all
data sets studied according to different percentages of initial

suppressors (f ∈ [0.05, 0.1, 0.1, 0.3, 0.4]). We can observe
that the algorithm is stable regarding the number of resulting
identified hot spots, independently of the initial number of
selected data points.
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Fig. 11. Number of Hot Spots identified (Fitness¿10) with regards to the
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VI. CONCLUSIONS

Transportation research mostly aims at improving driving
performance, economy and safety. Our work contributes to
this area by introducing a big data IS method to identify HGV
road incident hot spots. We were provided with a large data set
containing three months of incidents collected via telematics.
Hundreds of thousands of incidents including speeding, harsh
braking, harsh cornering and contextual speeding were inves-
tigated. Our challenges were to create an accurate, general,
adaptable and robust solution, which had to be employed to
all kinds of incidents considered. Preferably, due to the large
volumes of data and the industrial application, it was requested
that the solution was relatively low in complexity and fast
to run. The method provided is an adaptation of an immune
inspired instance selection mechanism, namely SeleSup. The
SeleSup algorithm was chosen as its features better match
the requirements of the problem when compared to other
knowledge discovery and HSID techniques. Unlike existing
traditional HSID approaches, SeleSup is suitable to tackle large
data. Furthermore, it does not require road segmentation or
public data as input. SeleSup is inspired by the Immune System
self-regulation mechanism, where only the fittest immune cells
remain in the organism. The method works by establishing a
set of data points (suppressor set), which is meant to have
the most significant information in the data (in our case it
is the set of hot spots). This set size and its data points are
initially defined randomly; however, the self-adjustable, self-
adapting character of the method allows for the establishment
of the optimal number of hot spots, even when new data is
logged to the system. The remaining incidents not contained
in the suppressor set constitute the set to be reduced, as they
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represent redundant information. In our approach, the hot spots
are not explicitly ranked, as for our industrial partner it is
important to determine all areas of frequent incidents. Instead,
a score (fitness) value for each hot spot coupled with the last
incident date are determined. This allows for stakeholders in
industry to decide which dangerous areas should be tackled
(or informed to HGV drivers, depending on the location, HGV
traffic, etc.). However, our experiments suggest that hot spot
stability over different experiment scenarios might indicate
those areas of more relevance for safety measures. In addition,
it is possible to determine how long a hot spot should ‘survive’
the system, based on the last incident logged. Our approach
was successfully applied to the problem and further verification
and validation was conducted by experts in the HGV industry.
Given the data set with incidents and their locations, SeleSup
HSID determined all hot spots in the UK map in a timely
manner; and our solution has been adopted by Microlise on
its HGV fleet. The method developed can be adapted to other
problems and presents several opportunities for improvements.
For instance, it can be employed to determine areas of high
incidences of crime involving HVGs. In addition, hot spots
of HGV accidents can also be determined. In unrelated areas,
SeleSup HSID can determine hot spots of diseases outbreaks.
In addition, it can be applied to mobile phones and fitness
trackers data to identify places most frequented for business
purposes. As future directions for transport research we intend
to aggregate value to hot spots. For instance, the overlaying of
hot spots with statistics regarding weather conditions, traffic,
types of HGVs (size, age, weight), driver profiles, etc. allows
for more accurate reports regarding the causes of incidents in
certain locations. In addition, the establishment of how hot
spots of accidents correlate to those of incidents is necessary.
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