
Dybalova, Daniela (2017) Flexible autonomy and
context in human-agent collectives. PhD thesis,
University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/43397/1/Thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Flexible Autonomy and Context
in Human-Agent Collectives

DANIELA DYBALOVA

THESIS SUBMITTED TO THE UNIVERSITY OF NOTTINGHAM

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

JUNE, 2017

-ii-

ubi lex, ibi poena

-iii-

-iv-

Abstract

Human-agent collectives (HACs) are collaborative relationships between
humans and software agents that are formed to meet the individual and
collective goals of their members. In general, different members of a HAC
should have differing degrees of autonomy in determining how a goal is
to be achieved, and the degree of autonomy that should be enjoyed by
each member of the collective varies with context. This thesis explores
how norms can be used to achieve context sensitive flexible autonomy in
HACs. Norms can be viewed as defining standards of ideal behaviour.
In the form of rules and codes, they are widely used to coordinate and
regulate activity in human organisations, and more recently they have
also been proposed as a coordination mechanism for multi-agent systems
(MAS). Norms therefore have the potential to form a common frame-
work for coordination and control in HACs. The thesis develops a novel
framework in which group and individual norms are used to specify both
the goal to be achieved by a HAC and the degree of autonomy of the
HAC and/or of its members in achieving a goal. The framework allows
members of a collective to create norms specifying how a goal should
(or should not) be achieved, together with sanctions for non-compliance.
These norms form part of the decision making context of both the hu-
mans and agents in the collective. A prototype implementation of the
framework was evaluated using the Colored Trails test-bed in a scenario
involving mixed human-agent teams. The experiments confirmed that
norms can be used for coordination of HACs and to facilitate context
related flexible autonomy.

-v-

-vi-

Acknowledgements

My first and greatest debt of gratitude must go to my advisors, Brian Lo-
gan and Tom Rodden. Who patiently guided me through the challenges
and difficulties that I faced. In particular Brian’s way of thinking he kept
my ideas on track, and his enthusiasm and feedback were a big part of
making it through.

I would like thank Wenchao Jiang for making the code of the Geo-
Sense game available and for assistance in developing the gameserver
middleware. Special credit goes to Bas Testerink for this help with the
integration of 2OPL.

This work was funded by EPSRC grant EP/I011587/1.

-vii-

-viii-

Contents

1 Introduction 1
1.1 Problem Definition and Objectives 2
1.2 Approach . 3
1.3 Contribution . 4
1.4 Structure of the Thesis . 5

2 Literature Review 7
2.1 Agents . 7

2.1.1 Autonomy . 8
2.1.2 Flexible Autonomy 11

2.2 Human-Agent Interaction 15
2.3 Norms . 17

2.3.1 Normative Multi-Agent Systems 18
2.3.2 Normative Programming Frameworks 20

2.3.2.1 Applying Norms to Games 22
2.3.2.2 Norms in

Operational Multi-Agent Systems 23
2.3.2.3 Norm Monitoring and Enforcement 24

2.4 Programming Norm-Aware Agents 25
2.4.1 Norm-Aware Deliberation 31
2.4.2 Norm Representation 33
2.4.3 From Norms to Flexible Autonomy 35

2.5 Towards Group Norms . 36
2.5.1 Team work:

Joint intentions and SharedPlans theory 37
2.5.2 Agency theory . 40
2.5.3 Collective responsibility 40
2.5.4 Sanctioning in a group 42

2.6 Summary . 43

3 NormHACing Framework 45
3.1 Introduction . 47

3.1.1 Contributions . 48
3.2 2APL . 48

-ix-

CONTENTS

3.2.1 Beliefs and Goals . 49
3.2.2 Basic actions . 50
3.2.3 Plans . 52
3.2.4 Practical reasoning rules 52
3.2.5 External environments 55
3.2.6 Events and exceptions 56
3.2.7 2APL files . 56

3.3 N-2APL . 57
3.3.1 Beliefs, Goals and Events 57
3.3.2 Actions & Plans . 58
3.3.3 Implementation . 61

3.4 2OPL . 64
3.5 Middle-ware . 68
3.6 Application . 70

3.6.1 Game Play . 71
3.6.2 Encoding Game Rules as Norms 73
3.6.3 Agent Programs . 74
3.6.4 Gameserver Integration 75
3.6.5 Evaluation . 76

3.7 Summary . 76

4 Group Norms and Human-Agent Collectives 79
4.1 Introducing Group Norms 80
4.2 Taxonomy of Group Norms 81
4.3 Extensions of Aldewereld et al 85
4.4 Formalising Group Norms 88
4.5 Team Plan . 89

4.5.1 Sanctioning Policy 90
4.6 Responsible Agent . 91
4.7 Hierarchical Group Norms 92
4.8 Implications for Agents . 93

4.8.1 Human Agents . 93
4.8.2 Software Agents . 95
4.8.3 Flexible Autonomy with Group Norm 96

4.9 Examples . 96
4.9.1 Birthday Example 96
4.9.2 Location based game example 97

4.10 Summary . 98

5 NormHACing+ 101
5.1 Motivation . 102
5.2 G-2OPL . 102

5.2.1 Syntax . 103
5.2.2 Groups . 104
5.2.3 Sanctions . 106
5.2.4 Execution . 106

5.2.4.1 Fact Base Updates 107
5.2.4.2 Norm Processing 107

-x-

CONTENTS

5.2.4.3 Application of Sanctions 108
5.2.5 Simplification of the Hierarchical Norms 109

5.3 GN-2APL . 109
5.3.1 Limitations . 110

5.4 Middle-ware . 111
5.5 Human Agents . 112
5.6 Applying the Framework

to a Location Based Game 112
5.7 Summary . 113

6 Evaluation 115
6.1 Evaluation Questions . 116
6.2 Methodology of The Evaluation 118

6.2.1 Colored Trails . 118
6.2.1.1 Game Play 120
6.2.1.2 Interface . 120

6.2.2 Norms for Human Players 121
6.2.3 Game Set-Up . 122

6.2.3.1 Standard Game 123
6.2.3.2 Flexible Game 126

6.3 Study I. Norms as Coordination Mechanism 128
6.3.1 Results . 129

6.3.1.1 Question 1: Norms as Coordination Mech-
anism . 129

6.3.1.2 Question 2: Flexible Autonomy 136
6.3.1.3 Comments Summary 137

6.4 Study II. Focus on
Extended Flexible Autonomy 141
6.4.1 Results . 142

6.4.1.1 Question 1: Norms as Coordination Mech-
anism . 143

6.4.1.2 Question 2: Flexible Autonomy 147
6.4.1.3 Comments Summary 148

6.5 Additional Findings . 149
6.6 Reflections on Norms in HACs 150
6.7 Summary . 151

7 Conclusions 153
7.1 Contributions . 155
7.2 Future Work . 156

7.2.1 Human-Agent Interaction 157
7.2.2 Norm-Aware Agents 158

7.3 Publications of the Author 161

Appendices

A Appendix 165

B Appendix 169

-xi-

CONTENTS

C Appendix 177

D Appendix 183

E Appendix 185

References 210

-xii-

List of Figures

2.1 Example of obligation . 34
2.2 Example of prohibition . 35
2.3 Literature review topics . 44

3.1 Overall system architecture 49
3.2 Example of agent’s beliefs 50
3.3 Example of agent’s goals . 50
3.4 EBNF syntax of N-2APL . 61
3.5 N-2APL: Scheduling Algorithm 65
3.6 EBNF of a 2OPL norm . 66
3.7 Example GeoSense game norms 66
3.8 Example GeoSense game norms 67
3.9 JavaSpace application example 69
3.10 Entry objects for obligations and prohibitions 70
3.11 GeoSense web interface . 71
3.12 An example of a HTTP request and a response in JSON

format . 72
3.13 Example GeoSense game norms 73
3.14 N-2APL program for the Truck agent 74
3.15 Overall system architecture 75

4.1 Example of group obligation. 88
4.2 Example of group prohibition. 89
4.3 Birthday surprise as a group norm 97
4.4 Group obligation example in the GeoSeose game 98
4.5 Surround coin as a group norm 99

5.1 Example of group obligation. 104
5.2 Example of group prohibition. 104
5.3 Example of group listing. 105
5.4 Example of specific responsible agent assignment. 105
5.5 Team plan assignment. 105
5.6 Sanctioning policy assignment. 106
5.7 EBNF syntax of G-2OPL. 106

-xiii-

LIST OF FIGURES

5.8 Example of effects in G-2OPL 107
5.9 Sanction rules in G-2OPL 108
5.10 Example of group obligation for surround coin. 113
5.11 Example of coordinating agent code 114

6.1 Evaluation questions . 117
6.2 Color Trails web interface 119
6.3 Study I.: The collection of game norms 123
6.4 Study I.: The structure of the teams 123
6.5 Feedback form questionnaire 128
6.6 Study I.: Development of games (Questions 1 - 5) 130
6.7 Study I.: Development of games (Questions 6 - 10) 131
6.8 Study I.: Development of games from perspective of a

human coordinator . 132
6.9 Study I.: Development of games with human coordinators 134
6.10 Study I.: Development of games with agent coordinators . 135
6.11 Study I.: Development of games with human coordinators 136
6.12 Study I.: Development of games with flexible coordinator . 138
6.13 Study II. The structure of the teams 141
6.14 Study II. The collection of game norms 142
6.15 Study II.: The development of games 143
6.16 Study I. and Study II. compared 145
6.17 Study II.: Development of games with human coordinators 146
6.18 Study II.: Development of game with agent coordinators . 146

C.1 Information Sheet . 178
C.2 Game Instructions . 179
C.3 Game Interface . 180
C.4 Consent Sheet . 181

D.1 Feedback form . 184

-xiv-

List of Tables

4.1 Taxonomy of group norms, based on responsibility and
fulfilment . 82

6.1 Study I.: Overall results from all games 130
6.2 Study I.: Results from games from perspective of a human

coordinator . 132
6.3 Study I.: Results from games with human coordinators . . 133
6.4 Study I.: Results from games with agent coordinators . . . 134
6.5 Study I.: Results from team member with human coordin-

ation . 135
6.6 Study I.: Results from all games with flexible coordinator . 136
6.7 Study II.: Overall results from all games 143
6.8 Study II.: Results from games with human coordinators . . 145
6.9 Study II.: Results from games with agent coordinators . . . 145

-xv-

LIST OF TABLES

-xvi-

1
Introduction

Human-agent collectives (HACs) are collaborative relationships between
humans and software agents that are formed to meet the individual and
collective goals of their members [Jennings et al., 2014]. Norms can be
viewed as defining standards of ideal behaviour. In the form of rules and
codes, they are widely used to coordinate and regulate activity in human
organisations, and more recently they have also been proposed as a
coordination mechanism for multi-agent systems (MAS). Norms therefore
have the potential to form a common framework for coordination and
control in HACs. The thesis develops a novel framework in which group
and individual norms are used to specify both the goal to be achieved by
a HAC and the degree of autonomy of the HAC and/or of its members
in achieving a goal.

-1-

Introduction

1.1 Problem Definition and Objectives

The main question this thesis aims to answer is whether norms can
be used to achieve context sensitive flexible autonomy in HAC? We
believe that different members of HACs should have different degrees
of autonomy depending on the context. One way to realize flexible
autonomy in multi-agent systems (MAS) is with norms.

“Can norms be used to achieve context sensitive flexible autonomy
in HAC?”

We are looking into new ways of how to achieve flexible autonomy
in the coordination of HAC. Coordination is an art of managing inter-
dependencies among activities. Agents need to coordinate their actions
where there are dependencies between agents’ actions; there are needs to
meet collective constraints and the entire problem cannot be solved by an
agent alone.

This work is inspired by the ORCHID project 1 [Jennings et al., 2014],
which seeks to establish the science of HAC. Specifically, the aim of the
ORCHID project is to explore the formation of collaborative relationships
between human and software agents. With the increase in use of the
computing technology in the world around us, the vision of people and
computational agents operating together at a large scale needs to be
explored. Due to the scope of the intended application areas it is desirable
that human and agent system can cooperate in a flexible manner. To
achieve this vision various research questions need to be addressed and
we will see how flexible autonomy is one of the main ones.

One of the application areas used to explore these issues is a disaster
response situation. In a disaster response emergency services are re-
quired to make critical decisions in conditions that are highly uncertain
and swiftly changing. To make the response most effective a system in
which human and agent roles interleave in a flexible way is required.
Specifically, there is a need for new methodologies that prescribe how to
handle continuously changing flexible autonomy in human-agent collect-
ives. Due to obvious difficulties with a realistic simulation of a disaster

1http://www.orchid.ac.uk

-2-

Introduction

response scenario, such as the scale and destructive character, new ways
of exploring these questions must be found. One such a way to design
and investigate human behaviour and the formation of HAC is by the
use of Mixed Reality Games (MRGs) [Flintham et al., 2003; Benford et al.,
2006]. However, another way is to explore new ways of how HAC can
interact might by employing existing human-agent interaction research
test beds like the Colored Trails [Gal et al., 2005] which used computer
based game like scenario.

1.2 Approach

We employ a multi-agent system to study the interaction in HAC. Multi-
agent systems (MAS) are used to study various aspects of agent interac-
tion in a given environment. There is no universally accepted definition
of the term agent. One of the definitions is given by Wooldridge and
Jennings [1995]: “An agent is a computer system that is situated in some
environment, and that is capable of autonomous action in this environ-
ment in order to meet its delegated objectives.” A crucial part of agency
is the notion of autonomy. Unfortunately, autonomy is again a word of
many different meanings. One of the ways to support autonomy of agents
is with the use of norms. In this thesis we define autonomy as: “free-
dom to select a course of action.” We adopt this definition to implement
flexible autonomy in HACs. We develop the normHACing framework,
in which software and human agents work together to achieve a joint
objective where the autonomy of each actor varies according to a context.
We define flexible autonomy as autonomy, but where the degree of which
varies according to context. By context we mean any relevant features
of the environment. We give the group an autonomy to decide how a
joint goal is achieved. Norm-aware agents are able to reason about norms
that are in a form of obligations and prohibitions with assigned fixed
numerical priorities and corresponding sanctions. Such a coordination
mechanism of multi-agent systems allows the autonomy of agents to be
dynamically adjusted with the use of norms created by the organization.
Since the autonomy is seen in this system as an ability of an agent to
select a course of action in the current context, the norms need to con-
tain information about the state of environment to which they apply.
Group norm-aware agents are able to reason about group norms and

-3-

Introduction

work together to achieve the joint goal. This thesis describes a system in
which humans and agents may be regulated not only with norms aimed
at them individually but also norms that are issued to them as a mixed
human-agent team.

1.3 Contribution

The contribution of this thesis to computer science is as follows: un-
derstanding the use of norms in HAC, introducing group norms as a
team coordination mechanism, evaluation of the concept in real settings,
implementation of N-2APL and building a framework for norm-aware
agents.

1. Norms in HAC We show how norms may be used in HAC to
achieve flexible autonomy. Norms are widely used to regulate
multi-agent systems. Human society is accustomed to being gov-
erned with norms in the form of laws, rules or guidelines. However,
to the best of our knowledge norms have not previously been used
to coordinate human-agent collectives.

2. Hierarchical group norms We have designed a system of hierarch-
ical group norms, which may be used for coordination in mixed
human-agent teams. Group norms are addressed to a group of
agents. The team receives a group obligation, which is then split
into individual obligations, the fulfilment of which leads to the ful-
filment of the parent group norm and therefore the achievement of
the group team goal. These norms may be stacked hierarchically —
a group norm can split into a combination of individual and group
norms.

3. Proof of concept evaluation The application of the framework was
illustrated on two examples GeoSense and Colored Trail. Colored
Trails was then used in the evaluation. It was experimentally
demonstrated that norms may be used as a coordination mechanism
in human-agent collectives and to facilitate flexible autonomy in
human-agent collectives.

4. Implementation of framework for norm-aware agents We imple-
mented N-2APL and developed a framework for programming

-4-

Introduction

norm-aware multi-agent systems which integrates the N-2APL
norm-aware agent programming language with the 2OPL language
for programming normative organisations. To the best of our know-
ledge, this is the first implementation of an integrated framework
for norm-aware multi-agent systems in which autonomous agents
deliberate about whether to conform to the norms imposed by a
normative organisation.

1.4 Structure of the Thesis

This introduction is followed by a literature review in Chapter 2, where
we discuss the state of the art in all relevant topics: Agents’ autonomy,
flexible autonomy, norms and human-agent interaction.

In Chapter 3 we describe the development of normHACing frame-
work. We show how a norm is represented and follow with the design of
norm-aware agents: agents that are able to deliberate about norms. The
framework consist of normative MAS implemented in N-2APL, normat-
ive organisation 2OPL and a tuple space used as a coordination mechan-
ism. We illustrate the use of the framework by connecting it to a MRG
game GeoSense.

In Chapter 4 we design a system of hierarchical group norms. We first
explain the problem of translating the abstract group into a concrete form
and introduce a taxonomy of group norms. Then we explain how we
achieve flexible autonomy in HACs with group norms.

In Chapter 5 we describe a development of an extension of norm-
HACing framework that implements a prototype of hierarchical group
norms. The framework consists on groupnorm-aware agents GN-2APL
and normative organisation G-2OPL, which is an extension of 2OPL.

In Chapter 6 we describe the evaluation of the framework. We de-
signed an experiment with a research test bed Colored Trails where teams
of human and agents players were coordinated with group norms.

In Chapter 7 we conclude this thesis with a summary of contributions
and identify future work.

-5-

Introduction

-6-

2
Literature Review

In this chapter we present the related literature to give background about
the theory of autonomous agents (Section 2.1), their autonomy (Section
2.1.1) and the problem of flexible autonomy (Section 2.1.2). We follow
with the overview of the state of the art of human-agent interaction
(Section 2.2). We present norms as a way to regulate a multi-agent system
(Section 2.3), we describe the normative multi-agent systems (Section
2.3.1) and continue with an overview of existing normative programming
frameworks (Section 2.3.2). In Section 2.4 we present the current state of
the art of norm-aware agents. In Section 2.5 we look into the background
of the theory of group norms.

2.1 Agents

The notion of an agent is central to the field of Artificial Intelligence.
Various authors [Franklin and Graesser, 1997] offer a range of agent

-7-

Literature Review

definitions. Franklin and Graesser [1997] propose a formal definition of
an autonomous agent with the aim to clearly distinguish an agent from
just any program.

“An autonomous agent is a system situated within and a part
of an environment that senses that environment and acts on
it, over time, in pursuit of its own agenda and so as to effect
what it senses in the future.”

The word autonomy is derived from a combination of Greek terms
signifying self-government where auto stands for self and nomos for
law. It is used either to denote self-sufficiency as a capability of an
entity to take care of itself or self-directedness as a freedom from outside
control. Despite the fact that autonomy is a central notion in most agent’s
definitions and it is by itself a subject of research in the multi-agent field,
there is not yet a commonly agreed definition of it.

2.1.1 Autonomy

Castelfranchi and Falcone [2003] define autonomy as a relational notion,
which is derived from relationships among three classes of entities. An
entity, the main subject, whose autonomy is considered. A function,
action or goal on which the autonomy is evaluated. And a secondary
entity, or a plurality of subjects, that are considered autonomous with
respect to the main entity in regard of the particular function / action
/ goal. Given this complex relational nature authors Castelfranchi and
Falcone [2003] conclude that the dimensions of an agent’s autonomy
derive from its architecture and from the theory of action.

Bradshaw et al. [2004] believes that there are two basic dimensions of
autonomy:

• a descriptive dimension is seen as self-sufficiency and describes
actions an agent is is capable of performing

• a prescriptive dimension describes actions an agent is allowed to
perform in a given context

-8-

Literature Review

Barber and Martin [1999] link the agent’s autonomy to its ability to
influence the decision-making process for a given problem. In their view,
an agent acting alone has a complete autonomy because it holds all the
decision-making power. Similarly, an agent making all decisions for
other agents, as well as itself, has complete autonomy and power over
itself and its subjects. On the other hand an agent that shares decision-
making with others is in a consensus relation with them, and thus its
autonomy is limited in proportion to the number of agents involved in
making those decisions. Finally, an agent that has no involvement in the
decision-making process consequently has no autonomy and is command
driven. Different dimensions of autonomy are suggested by Braynov and
Hexmoor [2003] such as simple autonomy from the user. Autonomy with
the respect to the environment, which changes in a response to the degree
of predictability of the environment and a group autonomy, which refers
to how free is the agent from the interference by other agents.

According to Wooldridge and Jennings [1995] the term autonomy
means that agents have a control over both their internal state and their
behaviour. The agent determines its beliefs and it decides by itself upon
its actions. Beavers and Hexmoor [2004] put emphasis on the degree of
autonomy as a relative measure of the independence between an agent
and the physical environment, and within and among social groups.
d’Inverno and Luck [2012]; Luck et al. [2003] are unsatisfied with defin-
ing autonomy as a wholly relative concept and according to them the
defining characteristic of autonomy should be the self-generation of goals,
thus allowing it to be regarded in absolute terms that more clearly reflect
the priority of the aspect of self-sufficiency. They argue that autonom-
ous systems must be motivated. The motivations can be of different
types and strengths and also vary according to the internal state of the
agents. The adoption of a motivated goal was also used in an extension
of AgentSpeak(L) [Meneguzzi, 2008].

In an agent architecture oriented view Dastani et al. [2004] believe that
the deliberation cycle of an agent determines the autonomy of an agent
as well. Autonomy levels can be looked at as an agent’s commitment to
its own decisions. For example, in one deliberation an agent commits
to and proceeds towards its goal until it has been reached, whereas in
another cycle the agent might reconsider its goals due to retrieval of
new information. The methods used in the deliberation cycle, as well

-9-

Literature Review

as their actual implementation, are relevant for the agent autonomy.
Therefore different levels of autonomy can be achieved by changing of
the deliberation cycle.

Carabelea et al. [2004] attempts to classify different types of autonomy
using the Vowels approach. In this way they have identified five forms of
autonomy. The first A-Autonomy (Self-Autonomy) is implicitly present in
all agent architectures and can be interpreted as a property that allows
an agent to choose between several possible behaviours. Without this
type of autonomy the agent would not be able to have any other more
specific types of autonomy described below. E-Autonomy (Environment-
Autonomy) refers to the agents’ relation to the environment. Similarly as
the self-autonomy described above this form of autonomy is present in all
agent architectures. In the work of Falcone [2001] these types of autonomy
are called Realization and Meta-level autonomy. It is possible to say if an
agent is either strongly or weakly autonomous based on how strongly
is the agent influenced by the environment. Other forms of autonomy
[Carabelea et al., 2004] identified are user, social and organization (norm).

Social or also called interaction autonomy is believed to be one of
the most important aspects of the interactions between the agents in a
multi-agent system. The social autonomy is in most of the cases related
to the adoption of goals. However the object of social autonomy can vary.
Castelfranchi and Falcone [2003] believes that user and norm related
forms of autonomy are special cases of social autonomy. They identify
two different notions of social autonomy as independence (self-sufficiency)
and collaboration. According to Castelfranchi and Falcone autonomy in
collaboration relates to how much an agent is autonomous when working
for another agent. The autonomy as independence is then defined as a
state when:

“An agent is completely autonomous (relatively to a given
goal or action) when does not need the help or the resources
of other agents to achieve its goal or to execute its action.”

While Castelfranchi and Falcone [2003] think that all forms of social
autonomy should be defined in terms of different forms of social inde-
pendence, Beavers and Hexmoor [2004] provide arguments for the need
to distinguish between being autonomous and acting autonomous. Both

-10-

Literature Review

internal and external conditions affect autonomy therefore autonomy is
more than independence.

A utilization of organizational structures is commonly seen as a way
to restrain the autonomy of agents. The agents are able to recognize the
organizational contracts - norms, and reason about them. An agent is
then norm autonomous if it can violate a norm. Castelfranchi and Falcone
[2003] describe this as deontic autonomy, which corresponds to the range
of permissions and obligations that regulate the agent’s choice amongst
possible actions. Norms in a form of obligations and permissions are also
seen in Bradshaw et al. [2004] model. Permitted actions specify actions
that an agent is allowed to perform and obligated actions then are actions
that an agent is required to perform. Meneguzzi [2008] utilizes norms to
prevent undesirable behaviour of an agent. The topic of norms is covered
in Section 2.3.

A special case of social autonomy is the agent’s autonomy with respect
to a user. The most common definition is that an agent is user autonomous
when choosing what action to perform if it can make the choice without
user’s intervention [Bradshaw et al., 2012].

Autonomy is a central aspect of agent’s entity yet there are many
different perspectives and definitions. In our work we focus on an agent’s
deliberation cycle and its commitment to goals. Therefore in this thesis
we define agent’s autonomy as:

“Freedom to select a course of actions”.

2.1.2 Flexible Autonomy

The term flexible autonomy, also called adjustable autonomy in literature,
relates to a setting where the level of autonomy of an agent varies depend-
ing on the situation. One of the main problems of this area is determining
when to adjust the autonomy. Multi-agent systems with agent-based
flexible autonomy are the ones in which agents are provided with the
ability to reason about adjusting their autonomy level depending on the
situation [Wooldridge and Jennings, 1995]. Different research directions
provide different motivations why there is need for flexible autonomy.
Most often the need arises when agents are interacting with humans and

-11-

Literature Review

their interdependence [Johnson et al., 2011]. The autonomy adjustment is
then driven either from the agent or the user [Ball and Callaghan, 2012].
In the area of human-agent interaction the autonomy may be restricted
for both parts of the system - human or user. The topic of Human-agent
interaction is covered in Section 2.2.

Reed [2006] tries to identify the key problem, which needs to e ad-
dressed when designing flexible autonomy. According to the author the
process of changing the autonomy can be broken into three phases. It
begins with the collection of the information relevant to the decision
making. It is followed by reasoning about what autonomy changes can
or should be made. The cycle is then complete with a realization of the
decisions made.

In the research towards establishment of flexible autonomy [Parasura-
man et al., 2000] first proposed a classification for operational autonomy
based on a ten-level scale. This model remains rather abstract as it fails
to take into account neither the environment complexity or the context.
However, it provides an interesting insight into the interactions between
the operator and the agent entities. The model has later been extended
applying the original ten-level scale to a four-stage cognitive information
processing model of perception, analysis, decision-making and action. In
the work of Ball and Callaghan [2012] the high level forms of operation
can be altered by sensing, decision making or acting. While Bradshaw
et al. [2004] describe a general method for adjusting the autonomy of
agents that operates by:

• Adjusting permissions: allowing and disallowing certain actions in
the environment.

• Changing obligations: assigning and withholding tasks to and from
the agent.

• Restricting possible actions: restricting resources to the agent and
adjusting the capabilities of the agent thus changing the functional-
ity of the agent.

Other researchers like Falcone [2001] believe there is a need for ad-
justable autonomy because it allows the gradual adjustment of the de-
pendent agent’s autonomy as it becomes more competent and because it

-12-

Literature Review

also allows the dependant to change its own autonomy on the basis of
its needs. Falcone describes this notion of flexible autonomy as bilateral
since both sides can adjust the autonomy in both ways and therefore
the process is bidirectional. The main causes for autonomy adjustments
are: meta-autonomy adjustment (dependant’s entitlement changes at
the meta-level); adjustment of realization autonomy (a new task dif-
fers in the level of details); control-dependent autonomy adjustment;
interaction-dependent autonomy adjustment (which adjust to change of
in the strength of the commitment).

Electric Elves (E-Elves) introduced by Tambe et al. [2002] use a notion
of a transfer of control strategy. The important aspect of the transfer of
control strategies is the ability for the agent to change team coordination
in order to buy more time for a decision to be made. Transfer of control
strategies are operationalized via MDPs, which creates a policy for the
agent to follow. Cheng and Cohen [2005] then extend this work with a
domain-independent decision-theoretic adjustable autonomy model that
enables an agent to reason about the trade-offs between three different
levels of autonomy:

• Full autonomy, where the agent just decides by itself.

• No autonomy, where the agent transfers decision-making control to
another entity.

• Partial autonomy, where the agent queries another entity for inform-
ation that determines how the decision should be made.

They also allow agents to initiate interaction in order to determine the
best transfers of decision-making control.

One major challenge in the research of flexible autonomy is to recog-
nize the right moment when an alteration should happen. Cohen and
Cheng [2005] discuss the value of proxy agents in facilitating the exchange
of information about the level of nuisance incurred by users, towards the
selection of more effective interaction strategies by agents. This provides
a more productive mechanism for agents to solicit user feedback as part
of their processing. In another work Scerri et al. [2004] identify three
phenomena showing poor coordination that should be brought to the
attention of humans - unfilled task allocation, un-tasked team members
and unusual plan performance characteristic.

-13-

Literature Review

According to Dorais et al. [1999] the system’s level of autonomy can
be categorized based on how complex the commands it executes are, how
many of its sub-systems are being autonomously controlled, under what
circumstances will the system override manual control, the duration of
autonomous operation. Similarly to Mostafa et al. [2015] who introduce
Layered Adjustable Autonomy (LAA) model that limits agents’ decision
making process with the set of intervention rules. Also in Barber et al.
[2000] work the agents are dynamically adapting their decision-making
framework. Authors experimented with three discrete autonomy categor-
ies of autonomy spectrum. In Command-Driven form the agent does not
make decisions and must obey orders given by a master agent. On the
opposite side of the spectrum is a Consensus category where an agent
works as a team member and is sharing decision-making equally with
other agents. A hybrid form is then Locally Autonomous/Master where the
agent makes decisions alone and may or may not give orders to other
agents.

Falcone and Castelfranchi [2000] focus attention to the issue of delega-
tion and identify three main dimensions as interaction-based,
specification-based and delegation of the control. The first dimension
relates to the various levels at which the behaviour of the delegated agent
is influenced by the delegating agent in the delegation relationship. The
second dimension relates to the various levels at which the delegated task
is specified in the delegation relationship and delegation of the control,
and the various possibilities of its realization. In the work of Mercier et al.
[2008] the resources represent the ground on which authority sharing
considerations can be built on. Conflicts can be detected and classified
depending on the entities that disrupt the current plan. Amongst the
resources agent’s and operator’s have are key items to build a consistent
plan to reach the goal and also to determine consequences of unexpected
events as a change in the environment or an operator’s intervention.

Vecht et al. [2007a,b] implemented a dynamic coordination mechanism
by providing the actors with adjustable autonomy. An agent’s level of
autonomy depends on the influence of others on the reasoning process.
The actors have reasoning rules that control the external influences they
experience. This way they have defined situations at the individual level
in which the actor can change its autonomy level.

Various approaches to tackle the problem were taken also in the field

-14-

Literature Review

of robotics. Adjustable autonomy in human–machine cooperation de-
scribed by Zieba et al. [2009] are considered as the ground for resilience of
the system. There are three indicators to assess different meanings of resi-
lience of the system: foresight and avoidance of events, reaction to events
and recovery from occurrence of events. The third of these metrics takes
into consideration the concept of affordances that allows a common rep-
resentation for the opportunities of action between the automated system
and its environment. The efficiency of adjustable autonomy was tested
by Valero-Gomez et al. [2011] who experimented with robot teams. They
have compared flexible and static operational models and concluded
that the operator achieves better results when controlling team of robots
with flexible autonomy adjustments. Other areas that the concept of
flexible autonomy appears in are mobile tele-operation [Schwarz et al.,
2014; Goodrich et al., 2001].

As we see in the description of related work there is not a single
definition of flexible autonomy. Sometimes flexible autonomy is viewed
in the context group decision making, whereas other work looks at single
agent decision making where we can furthermore different perspectives,
such as looking at various levels of abstraction or decision making control.
The flexible autonomy is used as a mechanism to facilitate human-agent
interaction in autonomous systems [Valero-Gomez et al., 2011; Mostafa
et al., 2015, 2016]. Such an autonomous system where human and agents
can share control benefits from greater reliability [Jennings et al., 2014;
Parasuraman et al., 2000; Beer et al., 2014]. In our approach we define
flexible autonomy as:

“Flexible autonomy that varies depending on the context.”

Depending on the current state of the environment we restrict the autonomy
of members of human-agent collectives.

2.2 Human-Agent Interaction

The key idea of Human-agent interaction (HAI) is to complement the
abilities of software agents and humans, where software agents posses
stronger computational abilities and humans have better cognitive abilit-
ies. HAI [Lewis, 1998; Sycara, 1998; Bradshaw et al., 2012] is a relatively

-15-

Literature Review

novel research area. Authors take a number of approaches when studying
and defining the relationship. Sukthankar et al. [2012] highlights the im-
portance of a notion of symbiosis in human agent interaction. In his view
both human and agents are symmetrically important team players and
their mutual interaction should strengthen their capabilities. The aim of
the automation is not seen as need to replace the human but its symbiosis
with the system.Human-agent coordination requires complex design of
interactions. Apart from the technical issues some researchers believe
that the social perspective of the automation is equally as important as
the technical one [Bradshaw et al., 2012].

Mixed-initiative interactions refers to systems with a flexible interac-
tion strategy. The roles of the agents are not predetermined in advance
[Allen et al., 1999] but assigned as the problem is being solved. Each agent
contributes to the interaction as required [Horvitz, 1999]. Mixed-initiative
interaction planning and control has been used in various interfaces and
applications [Ferguson et al., 1996; Burstein et al., 2000; Zimmerman
et al., 2007; Yang and Lee, 2012; Hardin and Goodrich, 2009]. Kamar
et al. [2013] presents a methodology for effective exchange of information
between humans and agents. The authors introduce a concept of ‘nearly
decomposable’ decision-making problems and algorithms that computes
efficient strategies for enhanced human-agent cooperation.

Another area of HAI are interface agents (assistants) [Lieberman, 1997]
that actively assist users operating an interactive interface [Lieberman and
Selker, 2003]. Agents assistants behave similarly to personal assistants
and can learn the user’s habits and suggest appropriate actions or directly
guide to the specific interface [Maes et al., 1994]. Such agents were used
in several different areas of application like email assistants [Metral and
Maes, 1998], a meeting scheduler [Kozierok and Maes, 1993] and smart
home control [Costanza et al., 2014]

The ORCHID project 1 investigates the potential of human-agent
collectives (HACs) [Jennings et al., 2014] in a disaster response (DR)
scenario, where groups of humans and computational or embodied agents
collaborate to achieve a common task. This is due to the extreme nature
of DR simulation where not only is almost impossible to stage the same
conditions, but also difficult to verify experiment result. Fischer et al.
[2012a] argue for serious mixed reality games as an approach to study and

1http://www.orchid.ac.uk

-16-

Literature Review

design for challenging real-word scenarios. They outline an approach
and give an example of a serious mixed reality game, which allows
the study and analysis of human-agent interaction in a DR scenario
on the ground. AtomicOrchid [Fischer et al., 2012b; Jiang et al., 2014;
Ramchurn et al., 2014] is a real-time location-based game utilized to
explore the coordination and agile teaming under temporal and spatial
constraints. The use of software agents in mixed reality environments is
not a new approach. Holz et al. [2011] provides a taxonomy of Mixed
Reality Agents (MiRAs), which are defined as agents embodied in a Mixed
Reality environment. The taxonomy classifies MiRAs along three axes:
agency, based on the weak and strong notions outlined by Wooldridge
and Jennings [1995]; corporeal presence, which describes the degree
of virtual or physical representation body of a MiRA and interactive
capacity, which characterises its ability to sense and act on the virtual
and physical environment. The need for intelligent agents also arises in
orchestration of participatory experiences where human expertise is a
scarce and expensive resource [Benford et al., 2006].

Tha principle challenge of the HAI remains managing human-agent
decision making. As we see in the literature there are different suggested
scenarios [Jennings et al., 2014; Mostafa et al., 2016]. Flexible autonomy in
their interaction is seen as one the key features to achieve interdependence
The aim of the HAI research is to complement the abilities of human and
software counterparts. In some situations, they are likely to achieve better
results when acting jointly than separately.

2.3 Norms

In this section we will introduce norms as a means to regulate multi-agent
systems. Norms are one of the ways of regulating a multi-agent systems
(MAS) [Jones and Sergot, 1993; Dignum, 1999; Gelati et al., 2004; Boella
and van der Torre, 2008; Luck et al., 2013].

“Norms prescribe how the agents ought to behave, and specify
how they are permitted to behave and what their rights are.”

-17-

Literature Review

2.3.1 Normative Multi-Agent Systems

Agent-based systems have been increasingly used in the past decades in
wide range of scientific fields. Also the study of norms has been one of the
most active areas in MAS [Neumann, 2010]. The definition of normative
multi-agent systems given by the researchers involved in the NorMAS
2007 workshop is as follows [Boella et al., 2008].

“A multi-agent system organized by means of mechan-
isms to represent, communicate, distribute, detect, create,
modify, and enforce norms, and mechanisms to deliberate
about norms and detect norm violation and fulfilment.”

There are two different approaches to the use of norms within multi-agent
systems. The first one focuses on the emergence of norms as a property
of evolutionary game theory [Savarimuthu et al., 2011]. Researchers have
worked on both prescriptive (top-down) and emergent (bottom-up) ap-
proaches to norms [Boella et al., 2008]. The second approach is to study
the inclusion of norms in the agents’ design. This research branch also
includes normative system architectures, norm representations, norm ad-
herence and the associated punitive or incentive measures. Deontic logic
is used to define and represent norms. Norms as a built-in property of
the agent’s architecture is still a challenge with the number of conceptual
designs far exceeding the number of existing models [Hollander and Wu,
2011].

A novel way of using norms can be seen in [Garbay and Badeig, 2012]
where they are used to situate the activity rather than to constrain an
action. These traces are then stored as tuples. There are number of ap-
proaches how to situate agents in context [Hong et al., 2009] offers review
and classification of context aware systems. Linda model is commonly
adopted as coordination middle-ware. Lime (Linda in a Mobile Environ-
ment) [Murphy et al., 2006] is a supporting development of applications
with physical or logical mobility of the agents. ReSpecT [Omicini and
Denti, 2001] is a logic based tuple centre. MARS [Cabri et al., 2003] is a
programmable tuple space and Intelligent Tuple Space (ITS) [Hong, 2009]
is capable of reasoning and learning.

The span of normative research includes deontic logic, legal theory,

-18-

Literature Review

sociology, decision making, and game theory [Verhagen, 2000]. In the
area of deontic logic, a norm is seen as an obligation towards a social
institution. In legal theory a norm is posed by a ruling organisation and
is enforced with sanctions. In social sciences norms are rules that are
viewed as normal by the majority, where the majority is a subjective
term. Although the term norm is very intuitive it can gain different
meanings in different domains. Even researchers in the area of multi-
agent systems have different approaches to the conceptual design. In
classification of normative architectures by Neumann [2010] we can see a
striking variability in how different architectures differ in their view on
the various aspects of norms.

1. The concept of norms can be seen as either deontic or consequential.
In the deontic notion the norm is in itself a reason to action and is
followed regardless of consequences and it is the reasons of actions
that can be evaluated. In the consequential notion the norms are
judged by the consequences, agents obey only if they are punished
otherwise. In both cases the character of the norms ranges from a
simple constraints, through obligations to more abstract concepts.
The latter are more computationally challenging however such
systems appear to be more stable.

2. Theoretical background of norms can be based on deontic logic, de-
cision theory or BDI approach, where the BDI architectures provide
the best possible imitation of human cognitive processes.

3. The conflicts in the contradicting norms are either not considered or
arise between the agents, between the goals and norms or amongst
norms themselves. It is desirable the all kinds of normative conflicts
are handled in the architecture.

4. The social span of norms varies from a individual agent, through
complex mental models to society centric. The most realistic repres-
entations here are socially embedded agents.

5. The evolution of the norms can be either static or dynamic. The
dynamic norms then are either spreading or immergent, similar as
in the real societies.

Some researchers believe that the social span and evolution of the
norms is the most important feature in the new NMAS [Boella et al.,

-19-

Literature Review

2008], and they argue for an interactionist viewpoint as opposed to the
more common legalistic one. As already proposed by Castelfranchi [1998]
the new development should focus more on agent interaction and social
aspects. Boella et al. [2008] identifies 10 challenges of the interactionist
viewpoint that should be considered by any new system.

2.3.2 Normative Programming Frameworks

There has been considerable work on normative programming frame-
works and middleware to support the development of normative multi-
agent organisations, and such frameworks are often designed to inter-
operate with existing BDI-based agent programming languages. How-
ever in these frameworks, the agents do not deliberate about whether to
comply with norms.

For example, J -MOISE+ [Hübner et al., 2007] is designed to inter-
operate with the S-MOISE+ [Hübner et al., 2006] middleware and allows
Jason [Bordini et al., 2007] agents to access and update the state of an
S-MOISE+ organization.

Similarly, the JaCaMo programming framework combines the Jason,
Cartago [Ricci et al., 2007], and S-MOISE+ platforms. In JaCaMo, the
organisational infrastructure of a multiagent system consists of organ-
isational artefacts and agents that together are responsible for the man-
agement and enactment of the organisation. An organisational artefact
employs a normative program which in turn implements aMOISE+ spe-
cification. A programming language for the implementation of normative
programs as well as a translation ofMOISE+ specifications into norm-
ative programs is described in Hübner et al. [2010]. JaCaMo provides
similar functionality to J -MOISE+ in allowing Jason agents to interact
with organisational artefacts, e.g., to take on a certain role. However
while these approaches allow a developer to program e.g., when an agent
should adopt a role, the Jason agents have no explicit mechanisms to
reason about norms and their deadlines and sanctions in order to adapt
their behaviour at run time.

Another approach that integrates norms in a BDI-based agent pro-
gramming architecture is proposed in Meneguzzi and Luck [2009a]. This
extends the AgentSpeak(L) architecture with a mechanism that allows

-20-

Literature Review

agents to behave in accordance with a set of non-conflicting norms. The
agents can adopt obligations and prohibitions with deadlines, after which
plans are selected to fulfil the obligations or existing plans are suppressed
to avoid violating prohibitions. However, Meneguzzi and Luck [2009b]
does not consider scheduling of plans with respect to their deadlines or
possible sanctions.

AMELI Esteva et al. [2004] uses ISLANDER formal framework allows
only regimentation of norms, which relate to actions agents can make
not the state of the environment. The S-MOISE+[Hübner et al., 2006]
middleware allows both regimentation and enforcement of norms, but
lacks monitoring and sanctioning mechanisms.

A number of normative programming languages have recently been
proposed that are similar in spirit. NPL/NOPL [Hübner et al., 2011]
allows the expression of norms with conditions, obligations and dead-
lines, and norms may be regimented or enforced. However sanctions
are represented as an obligation that an agent apply the sanction to the
agent that violated the norm, whereas in our framework sanctions are
applied by the organization. The norm-oriented language proposed in
García-Camino et al. [2009] is rule based and represents norms as implic-
ation rules. However, their norms relate to actions the agents should or
should not perform as opposed to a state of the environment that should
(or should not) be brought about.

The normative language of the THOMAS multi-agent architecture
Criado et al. [2010] supports conditional norms with deadlines, sanctions
and rewards. Conditions refer to actions (and optionally states). Norms
are enforced rather than regulated, and sanctions may be applied by
agents rather than the organization. The normative infrastructure does
not restrict interactions between agents.

In a recent work [Balke, 2009] proposes a taxonomy of different tech-
niques for effective implementation of norms. Three major approaches
can be seen in the way norms are controlled: regimentation, norm-
enforcement and hybrid approach. Most system use regimentation while
only some allow norms to be violated [da Silva Figueiredo et al., 2011].
Sanctioning or reputation mechanism is used in this case. Finally, there
are works which employ a mixed approach for controlling norms. In this
sense, they propose the usage of regimentation mechanisms for ensuring

-21-

Literature Review

compliance with norms crucial for the integrity of the application. En-
forcement is proposed to control norms that cannot be regimented due
to the fact that they are not verifiable or their violation may be desirable.
[Criado et al., 2012] identified four major issues in norm enforcement
as automation, ability to control general norms, act dynamically and be
efficient and robust.

Fornara and Colombetti [2009] extend metamodel of artificial institu-
tions called OCeAN (Ontology, CommitmEnts, Authorizations, Norms)
with active and passive types of sanctions. da Silva Figueiredo et al.
[2011] introduces NormML, which is a UML-based modeling language
for the specification of norms supporting both reward and punishment. A
rule-based system implemented in Jess maintains a fact base representing
the organizational state, detects norm activation and monitors violations.

2.3.2.1 Applying Norms to Games

There has been relatively little work on applying norms to games. The
use of norms as rules of the game was first mentioned in Hurwicz [1996],
who establishes norms mechanism design. According to Grossi et al.
[2013] this theory assumes that players play by the rules. This strong
assumption is later discussed in Hurwicz [2008]. Grossi et al. [2013] also
make a clear distinction between using norms as rules of the game or as
game equilibria in a form of soft constraints.

In Ranathunga et al. [2012] the authors describe the use of of expect-
ation monitoring by agents in the Second Life virtual environment. An
expectation monitoring component integrated into the Jason interpreter
allows agents to detect fulfilment and violation of their expectations.
Expectations have some similarities to norms in specifying conditional
constraints on future states. However, they are local to an agent rather
than generated by a normative organisation and there is no centralized
monitoring or sanctioning of agents that violate expectations. Moreover,
while the approach described in Ranathunga et al. [2012] allows agents
to detect violations of expectations without recourse to a normative or-
ganization, the issues of how expectations are generated and what to
do when they are fulfilled or violated are left to the agent developer.
Perhaps the work that is most similar to ours is Gateau et al. [2007], in
which theMOISEinst normative organisation meta-model is used to con-

-22-

Literature Review

trol an interactive TV game show in which the avatars are implemented
as agents. The purpose of the norms is to constrain players and their
avatars to adopt team behaviour and to respect rules, while allowing
some autonomy.

2.3.2.2 Norms in
Operational Multi-Agent Systems

For software agents norms must be transformed from an abstract norm
into an operational form and this requires the definition of the norm
control process and the definition of a normative representation. The im-
plementation of the norm control process consists of three different parts
[Vazquez-Salceda et al., 2004]: detection of norm activation, violation
detection and violation management.

However, the representation of norms in this way is too abstract to be
implemented in a multi-agent system. Thus, norms must be interpreted
or translated into operational norms that are meaningful for the agents
[Grossi et al., 2007]. Aspects that are related to the development of agent
platforms, should be taken into consideration in order to facilitate the
implementation of norms. When thinking about how to operationalise the
norm for the use in a multi-agent system we must consider the following
components [Vazquez-Salceda et al., 2004]:

1. The norm target, which is also called norm addressee, refers to
the agent or agents affected by the norm. Their actions can be
observed by visible actions they commit in the environment or
public messages.

2. The controlled situation, which is defined over a state or an action.
In the case of the state it refers to a state of the environment that
can be quantifiably measured by the software agent. In the case of
the action it is an observable action that the agent performs in the
environment.

3. The activation conditions of the norm, which needs to be verified
for the norm to become active. Temporal constraints of the norms,
which refers to temporal expression defining time

-23-

Literature Review

4. The deactivating condition of the norms. The deadline can be either
relative or absolute time. The use of the temporal constraints (before,
after) is also possible.

There are two main categories of implementation mechanisms of
norms into agent systems [Grossi et al., 2007; Fornara and Colombetti,
2009]. The first is called regimentation where violation of norms is made
impossible and second is called enforcement, which consist of detection
violation and then a penalization. The regimentation of norms can be
achieved using two techniques [Balke, 2009]: (i) mediation, in which the
agents are prevented from deviating from what they are allowed by a
trusted entity that controls the communication channel; (ii) hard-wiring,
in which agents’ programs are not capable of norm violations.

intuitively, enforced norms preserve greater autonomy of the agents
and in a multi-agent system including humans this desirable. The next
section will consider how norms can be monitored and enforced for such
a collection of autonomous agents.

2.3.2.3 Norm Monitoring and Enforcement

Coordination is realized at run time by creating obligations and prohibi-
tions (norms) for individual agents. If an agent cannot meet an obligation
or violates a prohibition, the norms require that a sanction is imposed on
the agent. Norms that can be violated by agents are called non regulative,
as they preserve autonomy and also support the development of flexible
autonomy.

Norm enforcement distinguishes different kinds of observer entities
and the enforcer entities [Balke, 2009].

• Self-enforced norms occur when agents observe their own behaviour
and sanction themselves. The agents act as both the observer and
the enforcer. The problem with this set-up is the need to rely on
the agent themselves. Such an arrangement is not suitable for open
systems where the level of trust between the entities is unknown
and variable.

• Second-party enforced norms are observed by those agents who are
involved in the interaction. The second-party then has a choice

-24-

Literature Review

to either retaliate, which means to apply reward or sanction; or
reciprocate, where the agents behave in the same way as the ob-
served agent. This kind of system is often seen in game theoretic
approaches and is suitable for situations where agents learn from
the past interactions and are able to adapt their future responses /
behaviour.

• Third-party enforcement is the most flexible and can be used for all
types of observers (self-observed, second-party observed and third-
party observed). The third-party acts as an arbiter in the resolution
process and can be enforcing the norms either socially with the
help of the society or institutionally, where the enforcing entity is in
charge of applying institutional sanctions and rewards. Both kinds
of retribution can be seen as an application of a sanction, which
either damages an agent’s reputation in the society and can prevent
the agent from future interaction or the sanction is something more
tangible that negatively affects the agent.

An approach is for norm-aware agents to be monitored by a third-
party entity, which we call the normative organisation. The organisation is
also responsible for the enforcement of the norms and the establishment of
them. Traditionally there are different approaches for norm establishment
in agent societies:

• Bottom-up approach is also called norm emergence where norms
emerge as a result of the interaction between the agents.

• Top-down perspective sees the norms being defined at the institu-
tional level. It can be done either off-line by the system designer or
on-line by a legislative agent that is empowered to do so.

If we wish to use norms to support flexible autonomy in agents then
the norms must be established in a top down manner in order to provide
the framework within which agents can make meaningful decisions.

2.4 Programming Norm-Aware Agents

There are many ways to design an agent architecture and many paradigms
are used when programming agents — imperative, declarative, BDI, hy-

-25-

Literature Review

brid [Bădică et al., 2011]. Bordini et al. [2006] also propose a classification
of agent programming languages based on a lightweight interpretation
of the programming paradigm as imperative, declarative and hybrid. Bal-
doni et al. [2010] argue for declarative approaches to agent programming
because they are particularly suitable to handle the complexity of agent
systems [Mascardi et al., 2005] discusses and compares all well known
BDI-style languages.

Castelfranchi et al. [2000] define a Norm Autonomous Agent (also
called Deliberative Normative Agent) as an agent that is:

• Able to know that a norm exists in the society and that it is not
simply a diffuse habit, or a personal request, command or expecta-
tion of one or more agents.

• Able to adopt this norm impinging on its own decisions and beha-
viour.

• Able to deliberately follow that norm in the agent’s behaviour.

• Able to deliberately violate a norm in case of conflicts with other
norms or, for example, with more important personal goals; of
course, such an agent can also accidentally violate a norm (either
because it ignores or does not recognise it, or because its behaviour
does not correspond to its intentions).

Dignum [1999] explains how agents reason about violating a norm.
It should be noted that his proposal states that norms should not be
imposed, they should only serve as a guidance of behaviour for agents, or
agents will lose their autonomy. With this idea in mind, Dignum further
presents an agent architecture where social norms are incorporated in the
BDI cycle of the agent. In that architecture, norms are explicitly expressed
in deontic logic by means of the obligation operator O and are divided in
three levels:

• Convention level: norms modelling the social conventions

• Contract level: norms regarding the obligations that arise when
an agent Ai commits to either perform an action α or to achieve a
situation p requested by agent Aj

-26-

Literature Review

• Private level: the intentions of the agent are seen as commitments
towards itself to perform a certain action or plan

Nevertheless, despite the large amount of theoretical work on norm-
ative agents, there are still very few implementations offering practical
reasoning within an environment where norms act as guidelines for the
agents. Programming norm-aware agents in conventional agent-oriented
programming languages is difficult, as they lack support for deliberating
about goals, norms, sanctions and deadlines. In Alechina et al. [2012]
an agent programming language 2APL, for programming norm-aware
agents was introduced. Norm-aware 2APL agents are able to deliberate
on their goals, norms and sanctions before deciding which plan to select
and execute, and are able to violate norms if it is in their overall interest
to do so, e.g., if meeting an obligation would result in an important goal
of the agent becoming unachievable.

In the early work by Dignum et al. [2000] propose a theoretic modi-
fication of the BDI architecture where the deliberation process takes into
account the influence of norms and obligations. The authors use the term
norms for social aspects needed for cooperation and coordination, and the
agents are motivated to follow them with social benefit. The obligations
are strict restrictions and violations of them trigger penalties. The agents
have preference ordering of penalties. In the deliberation cycle the agent
processes events and generate a plan through a selected event.

BOID Broersen et al. [2002] is one of the first BDI architectures with
an explicit notion of obligation. The BOID agents are formed by four
components, which are Beliefs, Obligations, Intentions and Desires. Ob-
ligations are treated here as external motivations. The agents need to
have a ordering function, which resolves conflicts between and within
the components. The ordering function is static and the agents are pre-
defined to prioritise one part over another. This limits the agents to act
only in foreseeable situations and they cannot dynamically adapt to the
environment and reason about the norm compliance.

One of the first practical architectures for a norm-driven agent was
NoA [Kollingbaum and Norman, 2004; Kollingbaum, 2005], which is an
extension of a traditional BDI agent. It changes the focus of agent beha-
viour from achieving desires to fulfilling norms. As in NoA, Meneguzzi
and Luck [2009a] use an explicit representation of the effects of an agent’s

-27-

Literature Review

plans to detect potential norm violations, as well as deciding which plans
are more suitable for achieving an obligation, but their agents are still
driven by their desires like traditional BDI agents. Meneguzzi et al. [2011]
later introduce the notion of prognostic normative reasoning so that the
agent can reason about norm-compliant planning in advance. In order for
that, they use probabilistic plan recognition to predict the user’s future
plan steps based on the user’s current behaviour and it’s change.

n-BDI [Criado et al., 2010; Criado, 2013] is a norm autonomous ex-
tension of graded BDI agents, which helps the agents decide which ob-
ligations (they do not consider prohibitions) to adopt as desires. The
graded BDI architecture sees an agent as a set of interconnected contexts.
Each context (mental, functional and normative) has its own artefacts like
language, axioms and rules. Additionally, bridges are used for transfer-
ring information from one context to another. In the extension by Criado
[2013] they use rules to detect and resolve inconsistencies between norms
and desires, while focusing on the adoption of the norms and ensuring
the agent’s mental state remains coherent. The agent acquires abstract
norms and transform them itself. The model also includes degree of
certainty. Their multi-context BDI agent is extended with Recognition
Context (RC), which is responsible for the norm identification process
and the Normative Context (NC), which allows agents to consider norms
in their decision making processes. They do not consider the fulfilment
of norms in the theory.

Another multi-context BDI architecture is proposed by Gaertner [2008].
In this norm-oriented extension the obligations and prohibitions are
blindly followed by the agents. The norms are translated into intentions
and it the case of a conflict arising it is resolved with an argumentation
based approach and preference function. The norms are not considered
explicitly therefore the agents cannot deliberate about the norm compli-
ance.

Oren et al. [2011] describe a technique for taking norms into consider-
ation when deciding how to execute a plan. Their norms are constraint
based, allowing for fine-grained control over actions. This technique
allows for reasoning about the interactions between norms and also re-
solves conflict by selecting actions where the cost of violating one set of
norms is outweighed by the reward obtained in complying with another.

-28-

Literature Review

In the field of goal-oriented agents F. Lopez y Lopez and dInverno
[2006] proposes one the first norm autonomous architecture. The agents
are motivated by sanctions and rewards to follow the norms. However
they are autonomous to violate the norms while pursuing their own
goal. Another example of norm-oriented agent is Normative KGP agents,
which is described in F. Sadri and Toni [2006]. In the EMIL architecture
[G. Andrighetto and Paolucci, 2007] the agents are able to learn new
norms by observing other agents located in the environment. Agents in
the architecture by S. Joseph and Dellunde [2010] are able to reason about
unconditional obligations. The agents use argumentation dialogues to
propose, accept or reject the obligations. The coherence of the proposal is
used as a criterion for acceptance.

We begin by considering how norms can be defined and internalised
by both human and software agents. We suggest that autonomy arises
from selective obedience to or violation of norms. We show how norms
are represented and operationalised in multi-agent systems, and then
consider the requirements for system architecture. We will consider how
software agent and human agent can both be thought of as norm-aware
agent is such a system.

Normative organisations provide a means to coordinate the activities
of individual agents in multi-agent systems, where an individual agent
can be a human or a software agent. Multi-agent systems that use norms
to regulate agent behaviour are called normative multi-agent systems
[NMAS, 2013]. Norms can be viewed as defining standards of behaviour.
They have been widely proposed as a means of coordinating and regu-
lating the behaviours of individual agents to ensure global properties of
a multi-agent system. To have the desirable effect on agents’ behaviour,
the norms need to have deadlines and their violations have to incur a
sanction.

Norms can be defined either in terms of the agents’ actions or the state
of the agents’ environment. In the first case, norms indicate which actions
(agent-agent or agent-environment actions) are obliged or prohibited
while in the second case norms indicate which states of the environment
have to be brought about or not to be brought about by the agents. The
norms that are defined in terms of actions need to be enforced/regimen-
ted by monitoring the agents’ actions while state-based norms can be
enforced/regimented by monitoring the state of the environment with

-29-

Literature Review

which agents interact.

In thinking about how to structure norms in normative multi-agent
systems, norms can be implemented either endogenously by integrat-
ing them into the programs of individual agents (e.g., an agent may
be programmed not to exceed the speed limit) or exogenously by addi-
tional components that observe and evaluate the agents’ behaviours in
order to check compliance or violation of norms (e.g., the agents’ speed
is monitored and the identities of agents that violate speed limitations
are registered). However the nature of a human-agent collective means
that some norms will be more appropriate for human agents and some
software agents.

In exogenous normative multi-agent systems, norms can regulate the
behaviour of agents by means of regimentation or enforcement. Norm
regimentation prevents agents from violating norms (e.g., prevent them
from moving into a restricted area) while norm enforcement allows agents
to violate norms but imposes sanctions on violating agents to compensate
for their violations (e.g., violating the speed limit incurs a sanction in the
form of a fine) Boella et al. [2006]. In multi-agent systems where norms
are implemented exogenously, regulation is realized by processing norms
at run time. The processing of norms in such systems requires creating
and eliminating norms based on their conditions and deadlines, mon-
itoring the activities of participating agents, evaluating their behaviour
with respect to the specified norms and finally determining appropriate
consequences for the participating agents.

In multi-agent systems where norms are implemented endogenously,
individual agents have internalized norms in the sense that their decision
procedures are defined in terms of the norms. Although the agents’
decisions in such systems do not necessarily need to be norm compliant,
it is not clear how to cope with norm violations by self interested agents.
An external entity that detects norm violations and compensates them by
means of sanctions.

Broersen et al. [2004] When using norms in coordination of HACs
we need to consider three aspects: sanctions, capabilities and deadlines.
Sanctions can have different forms and can affect the agents in direct or
indirect way. Their effect will vary for software and human agents. Each
member of the HAC has different capabilities, which needs to considered

-30-

Literature Review

within the context. Specifically, norm deadlines highlight the differences
in human in agent capabilities. While software agents compute the time
left naturally and can handle very large amount of norms at the time. We
might imagine that deadlines pose additional stress for human agents,
which might not be able to cope with a very large amount of norms at a
time without help.

2.4.1 Norm-Aware Deliberation

From the agent’s perspective, norms that are imposed on an agent by
a normative organisation might conflict with the agent’s existing goals.
In the literature this is type of autonomy is called Norm-Autonomy
[Carabelea et al., 2004]. Castelfranchi et al. [2000] then define a Norm
Autonomous Agent (also called Deliberative Normative Agent) as an
agent that is

• Able to know that a norm exists in the society and that it is not
simply a diffuse habit, or a personal request, command or expecta-
tion of one or more agents.

• Able to adopt this norm affecting agent’s own decisions and beha-
viour.

• Able to deliberatively follow that norm in the agent’s behaviour.

• Able to deliberatively violate a norm in case of conflicts with other
norms or, for example, with more important personal goals.

A similar definition, which adds the need for the agents to be able to take
an initiative in re-issuing the norm and monitoring other’s behaviour
appears in Conte et al. [1999].

Regarding norm violations Dignum [1999] explains how agents reason
about violating a norm. In his approach, norms should not be regimented
but enforced. They should serve only as a guidance of agents’ behaviour.
Otherwise the agents would lose their autonomy. Dignum [1999] pro-
poses an agent architecture with norms incorporated in the BDI cycle.
The reasoning about norms is then split into three levels:

• Convention level: norms modelling the social conventions

-31-

Literature Review

• Contract level: norms regarding the obligations that arise when
an agent Ai commits to either perform an action α or to achieve a
situation p requested by agent Aj

• Private level: the intentions of the agent are seen as commitments
towards itself to perform a certain action or plan

In our view and following the approach of Alechina et al. [2012] an
agent is norm-aware if it can deliberate on its goals, norms and sanctions
before deciding which plan to select and execute. In case of a conflict,
a rational agent must choose between its existing goals and the norms
imposed by the organisation. A norm-aware agent is able to violate
norms and accept the associated sanction if it is in the agent’s overall
interest to do so. For example, if complying with a norm would cause a
more important goal becoming unachievable. In this way the agent stays
autonomous on all four levels of autonomy that take part in the decision
making process and are generally accepted in MAS as summarised in
Verhagen [2000]:

• the level of actions

• the level of plans

• the level of goals

• the level of norms

The obligations or prohibitions from a normative organisation may
conflict with an agent’s goals or with other obligations or prohibitions it
has already received. Alechina et al. [2012] propose to solve the conflict
with preference ordering. Both goals and norms are given priorities. It
is assumed that the agent has a preference ordering function to compare
the severity of sanctions. It should also be taken into account which goals
can be attended concurrently and their deadlines. In this manner the
agent stays norm-aware by committing to a maximum feasible amount
of norms (goals).

-32-

Literature Review

2.4.2 Norm Representation

In the previous section we described what norms are and how they might
regulate behaviour. However, if are to build a system that embodies
norms for a human-agent collective then we should consider how they
can be systematically represented.

To represent a norm we need to specify its constituent parts, and
under what conditions it would be considered obeyed or violated. In
order to determine whether a norm has been violated, the controlled
situation must be detected. This can be defined over a state condition or
an action. In case of obligation it is a state the an agent needs to bring
about or which action to execute. In case of prohibition it is a state the an
agent needs to refrain from bringing about or which action to avoid. In
the following definition we assume the norms are state based.

We would like to represent a norm that only becomes valid in a par-
ticular context. We can do that by defining a conditional obligation as a
tuple

〈l, c, O(ι, o, d, s)〉

with the intuitive reading “norm with a label l states: if condition c1
holds in the current state of the environment then there is an obligation
for agent ι to establish an environment state satisfying o before deadline
d, otherwise agent ι will be sanctioned by updating the environment with
s”. In the treasure hunt example, an obligation to collect treasure would
be represented as shown in Figure 2.1, which indicates that when there
is gold object(Gold) hunter Agent is obliged to collect the gold in 5 mins.
Violating this norm results in the treasure hunter Alice being sanctioned
with 100points, damaging their game score.

When the precondition becomes true the obligation is detached. A
detached obligation is sent to agent ι in the form:

obligation(ι, o, s)

with the intuitive reading “agent ι is obliged to establish an environment
state satisfying o before deadline d, otherwise it will be sanctioned by
updating the environment with s”. For example, when an agent is obliged
to collect a gold, the organisation generates and sends the following

-33-

Literature Review

<
collectGold, //label
(hunter(Agent), //precondition
object(Gold),
at(X,Y,Gold)),
O(//deontic part

Agent, //addressee
collect(Gold,X,Y), //list of states
now + 20, //relative deadline, only in obligation
reduce(100) //sanction

)
>

Figure 2.1: Example of obligation

obligation to the corresponding agent ι:

obligation(ι, collectGold(X, Y), 20, reduce(100))

We assume that deadlines associated with detached obligations are re-
lative and can be mapped to real time values when processed by the
agents.

Similarly, a conditional prohibition is expressed as a tuple

〈l, c, F(ι, p, s)〉

with the intuitive reading “norm with a label l states: if condition c holds
in the current state of the environment, then it is forbidden for agent ι to
establish an environment state satisfying p, otherwise sanction s will be
imposed.” Unlike obligations, where a sanction is incurred once if the
obligation is not discharged by the deadline, in the case of prohibitions,
the agent incurs a sanction each time the prohibition is violated. In the
treasure hunt example a prohibition to enter water would be represented
as shown in Figure 2.2, which indicates that hunter Agent is prohibited
from entering water. Violating this norm results in the treasure hunters
being sanctioned with 500 points, damaging their game score.

When the precondition c is met the prohibition is detached and event
broadcast to agent ι has a form

prohibition(ι, p, d, s)

-34-

Literature Review

<
enterWater, //label
(hunter(Agent)), //precondition
F(//deontic part

Agent, //addressee
enterWater, //list of states
reduce(500) //sanction

)
>

Figure 2.2: Example of prohibition

where p is the prohibited list of states and s is the sanction the will be
imposed if the norm is violated. For example, when an agent is prohib-
ited to enter water, the organisation generates and sends the following
prohibition to the corresponding agent ι:

prohibition(ι, enterWater, reduce(500))

.

2.4.3 From Norms to Flexible Autonomy

The previous section explained how we can articulate the rules of a game
as norms and how the norms can be represented as a set of conditional
obligations and prohibitions. Now let us consider how an agent operating
under multiple norms can make decisions and adapt to changing environ-
ment. The agents may not be able to fulfil all norms at any given time. In
order to achieve a desired outcome the agents must autonomously decide
which norms should be obeyed and which should be violated. In our
view this flexible autonomy can be achieved with such a norm regulated
goal generation system. The idea of flexible autonomy in goal generation
already appeared in Castelfranchi [1995b]; Luck et al. [2003] who see the
issue of exercising free will in the meaning of choosing goal as a core of
agents’ autonomy.

The norm-aware agents as defined in Alechina et al. [2012] have sup-
port for normative concepts including obligations, prohibitions, sanctions,
deadlines and durations. Returning to our treasure hunt in the instance of
only one applicable norm, an agent ι receives an obligation to collectGold

-35-

Literature Review

in 5 minutes, otherwise it will be sanctioned by reduceScore(100). The
agent believes that sanction of reducing 100 points has priority 10 (on
the scale from 1 to 10, where 1 is the highest) and that the travel to the
location of the gold takes 3 minutes. Agent proceeds to collect the gold in
order to fulfil the obligation.

obligation(ι, collectGold, 5mins, reduceScore(100))

Now lets consider that agent ι also receives a prohibition from the organ-
ization prohibiting the agent from entering any water enterWater with a
sanction of reduceScore(500). The only gold the agent can locate at the
moment is in the water.

prohibition(ι, enterWater, reduceScore(500))

The agent believes that the sanction of reducing 500 points has priority 5.
In this case the believes that is more important to obey the prohibition
goal than is to obey the obligation goal. The agent therefore decides not
to comply with the obligation to collect the gold.

These two scenarios show how the changing context in which multiple
norms apply is used by the agent to autonomously determine the most
appropriate action. The advantage of this system is that the norms are
processed at the run time and the agent can therefore dynamically adapt
changes in the context. For example, if later on there was lack of collected
gold, the priority of collecting gold will be increased and the agent will
this time go into the water for the gold. Note, that agents will react
differently to the norms because of their own internal beliefs and goals.

2.5 Towards Group Norms

In this section we will introduce the problem of group norms by reviewing
the literature concerning joint intentions and the SharedPlans models,
logical background and philosophical motivation. The problem is split
into three parts: interpretation of a collective obligation, planning and
coordination of the a joint activity and norm enforcement together with
sanctioning mechanism.

Group norms are a new research topic and have not been yet used

-36-

Literature Review

in coordination of multi-agent systems or in human-agent coordination.
Although there is a wide body of research on norms, research has ignored
a formal treatment of norms aimed at groups of individuals [Aldewereld
et al., 2013, 2015].

2.5.1 Team work:

Joint intentions and SharedPlans theory

Philosophers seem to agree that joint actions involve shared intentions
and that a shared intention does not reduce to a simple summation
of individual intentions. There is disagreement, however, how to best
analyse shared intentions.Bratman [1992] first identifies three features
of joint actions as shared cooperative activities (SCA) that an analysis of
shared intentions would have to account for:

1. Mutual responsiveness — each participating agent attempts to be
responsive to the intentions and actions of the other, knowing that
the other is attempting to be similarly responsive.

2. Commitment to the joint activity — participants each have an appro-
priate commitment to the joint activity, though perhaps for different
reasons. Their mutual responsiveness is in the pursuit of this com-
mitment.

3. Commitment to mutual support — each agent is committed to
supporting the efforts of the other to play their role in the joint
activity. These commitments to support each other put them in a
position to perform the joint activity successfully even if they each
need help in certain ways.

Probably one the best known formalisms is Cohen and Levesque
[1990] theory of intention where they examine several properties for
intentions, and define intentions as chosen desires. Cohen and Levesque’s
theory has later influenced the research in Belief, Desire, Intention (BDI)
frameworks that focus on multi-agent coordination and cooperation.
Following the above philosophical background one of the earliest work
on collaborative plans for teams consisting of humans and computer
systems was the SharedPlans model by Grosz and Kraus [1993, 1996]

-37-

Literature Review

based on shared beliefs and intentions, which are refined over the time by
multiple collaborating agents. The SharedPlans model is defined using
first-order logic. There are four different intention operators ranging from
potential proposition to intentions adopted by an agent:

• Int.To(A, x, T1, T2, C) agent A at time T1 under context C intends to
do x at time T2

• Int.Th(A, y, T1, T2, C) agent A at time T1 under context C intends
that y holds at time T2

• Pot.Int.To(A, x, T1, T2, C) agent A at time T1 under context C
potentially-intends to do x at time T2

• Pot.Int.Th(A, y, T1, T2, C) agent A at time T1 under context C
potentially-intends that y holds at time T2

An intention in this model is then formally defined as a tuple consisting
of an agent, intention, time of intention, planned time, and context. GTD
(get to do) and CBA (can bring about) operators, and Done operator.
A recipe contains a group of actions, initialized variables required to
perform an intention. Recipes are stored in the agents’ library and agents
are supposed to be able to share these libraries. If an agent knows a
full recipe to perform an action it can form a full individual plan. In
particular it must either know how to do every action from the recipe
or believe that it can get someone else to perform the action. Partial
individual plans are then used when an agent has only a partial recipe.
The agent has to either to research the unknown part or contract someone
else to do it. Agents engaged in the SharedPlans can enlist the aid of their
collaborators in such situations. In a partial SharedPlan a group of agents
must mutually believe there is a recipe or an intention that they have
a full SharedPlan. To obtain that recipe and that every member of the
group have an individual intention to elaborate upon the recipe.

Fan and Yen [2012] further extended Grozs and Kraus SharedPlans
framework [Grosz and Kraus, 1993]. They argue that there is still lack of
adequate semantics for the notion of potential intentions. They present
formal semantics for intentions and potential intentions, drawing upon
both the representational and accessibility based approach. The model
captures the dynamic relationship among intentions and potential inten-
tions by providing semantic rules and conditions. In their model, norms

-38-

Literature Review

are treated as a special class of intentional context, and it is shown that
norms play a critical role in the dynamics of intentions in multi-agent sys-
tems. Specifically when upgrading potential intentions into full-fledged
intentions, which is regulated with norms. With the use of formal se-
mantics for the four intentional operators of the SharedPlans theory they
also validate some properties of the relationship among intentions that
are widely accepted for intention attitudes in the literature. In their model,
however, time no longer plays a role.

Dunin-Keplicz et al. [2011] introduced a novel approach to modeling
deliberation dialogues in teamwork. They argue that although dialogues
and speech acts have been frequently used to model communication in
multi-agent systems the TEAMLOG (a framework for modelling team-
work) solution is unique. Their proposed scenario consists of four stages
during which agents submit their proposals, vote on preferred ones and
challenge or concede the choice of the selected one. During plan form-
ation a team deliberates together how to proceed. Collective planning
consists of three phases: task division, means-end analysis and action
allocation.

Jonker et al. [2010] consider components of an agent’s mental model
and how to measure the sharedness of the model across agents. An agent
has along with its mental model a physical model, goals, a team, a mind,
an extension of the mind, and the actual system of concern. They offer
an initial analysis of how shared mental models apply to human-agent
teams, and conclude that agent designers can use the idea of mental
models to improve teamwork.

In an early work on collective activity Castelfranchi [1995a] defines
that if an agent is socially committed to another agent to bring about
a state of affairs, then the former has an obligation towards the latter.
They illustrated as follows: if agent i commits to deliver a piece of work
to agent j, this social commitment implies, among other things, the cre-
ation of a relativised obligation of i towards j. This is another approach
how to coordinate group dynamics when an obligation triggers another
obligation.

Diggelen and Bradshaw [2010] implemented collective obligations in
human-agent teams using KAoS policies. In this framework there is a
notion of coactivity in a sense that there is collective obligation for all

-39-

Literature Review

players that are participating in a task, even if not currently assigned
to the task. For example, if there is a collective obligation to stay safe
not every agent will be assigned a specific individual task but will have
certain duties and obligations that correlate with good teamwork.

2.5.2 Agency theory

Pettit [2007] claims that in order to make a collective of agents responsible
for something there needs be a sense that they form a group agency
together. List and Pettit [2011] provide an argument that group agents
exist and can be treated as an entity. They make an interesting point
regarding the autonomy of a group agent. The ’personification’ of such
an entity is complex as it cannot be simplified to a merging of individual
attitudes.

List and Pettit [2011] believe that when the system satisfies certain
conditions it can be seen as an agent. These conditions which are motiv-
ated by a small robotic device are that the agent has a representation of
the environment, it has motivational states and lastly it has a capability
to act in the environment. These three conditions can be mapped to BDI
architecture. Group agency is then divided into types where group in
joint intentions is the one that is closest to our understanding. Such a
group needs to have a shared goal, group members to contribute indi-
vidually and interdependently towards the joint intention, and a common
awareness [List and Pettit, 2011, chapter 1].

Their notion of group agency was analysed by Porello et al. [2014]
who provided an ontology with the use of judgement aggregation while
distinguishing between a mere collection of individuals and a group
agent as a new social concept.

2.5.3 Collective responsibility

Collective responsibility involves both causal responsibility and blame-
worthiness of agents for harm [Smiley, 2011]. As such it causes a number
of controversies in the philosophy field. The first is mentioned earlier
which is the problem of ascribing moral values to a collective. Namely
whether is possible for a group to have intentions, which are generally

-40-

Literature Review

assumed prerequisite for a moral responsibility.

The second controversy relates to a decomposition of the blame
amongst the individuals. Mellema [1997] argues that there are six differ-
ent ways for individuals to cause harm and according these there may
be different levels of contribution. These aspects are that agents can com-
mand or influence others to cause harm, praise them for causing harm,
give fail to stop or consent to wrong-doing by others. Crawford [2007]
on the contrary assumes that is possible to blame and punish group itself
and suggests that appropriate punishment can range from an apology
to making changes in the group structure if such would prevent a pro-
duction of harm in the future. Similarly, Shockley [2007] believes that is
possible to assign blame to a collective because it plays a coordination
role in the production of harm. Particularly, the author argues that when
the collective has a inexplicable role in the event, the existence of the
collective enables the individuals to participate in the event, and the
members of the collective have individually created harm which may be
aggregated into the collective harm. Björnsson [2011, 2014] is concerned
with cases when agents are not aware they are part of a collective and as
such together are causing any harm.

The third controversy is about the practicability of ascribing a col-
lective responsibility. Tännsjö [2007] believes that it is possible to hold
morally responsible and punish the whole group including innocent
agents. On the contrary Braham and Van Hees [2012] argue that to hold
an agent responsible for a harm it needs to have a reasonable option to
have acted otherwise. Ferreira et al. [2013] developed a model for agent
appraisal based on their in and out group interactions.

Fitness to be held responsible [List and Pettit, 2011, chapter 7],[Pettit,
2007] is defined by satisfying three conditions. The agent has a normat-
ively significant choice between doing something good or bad. The agent
has an ability to normatively judge options it has and also the agent has
an ability to make an choice between the options. While the first two
requirements are relatively simple to satisfy the third one causes an issue
because the group agent does not act by itself by through its members.
The authors, however, believe that a group agent can be held responsible
for its actions, because it has control over its members, who perform the
actions.

-41-

Literature Review

Singh [1999] captures ontology of social normative concepts in multi-
agent system and later [Singh, 2014] builds a sociotechnical system which
is self governed with norms.

2.5.4 Sanctioning in a group

A mechanism for sanctioning was inspired by a work done in the field of
logic. It is interesting to consider how to decide who is to blame and to
what extent.

An extended formal framework of deontic logic, which includes a
notion of collective agency, is introduced in Grossi et al [Grossi et al., 2004].
They provide a framework for the notion of distributed plans and the
issue of coordination, seen as a process of managing interdependencies
between activities.

Cholvy and Garion [2007] address the question of the translation of
a collective obligation into individual obligations in the rather general
case when the collective obligations are conditional ones. They propose a
model in which there is a group that has neither a particular hierarchical
structure nor an institutionalised representative agent. The derivation of
individual commitment depends on the ability of the agents (what they
can do) and their own personal commitments (what they are planning to
do).

Carmo [2009] describes how to model the notion of collective agency
in the stit semantic framework. In the joint action concept a group of
agents jointly ‘sees to it’ (brings it about) in a meaning that they jointly
cooperate to bring about a state versus collective agency where the group
acts through a direct act of one or more members, but not all of them. In
his review of the stit semantic framework and the main stit operators he
specifies how to model the notion of collective agency, both in the sense of
a joint action of a group of agents and as organisations. In his framework
it is possible to define the direct and immediate effects of agents’ actions
both in the achievement sense and in the deliberative sense using a kind
of dynamic logic operator.

A similar approach is taken by Sergot [2008] who presents a frame-
work for describing and analysing norm-governed multi-agent systems,

-42-

Literature Review

where a distinction is made between system norms and agent-specific
norms, and where it is possible to identify and characterize several dif-
ferent categories of non-compliant behaviour. The formal modal logic
language includes operators for expressing that a particular agent brings
about that such-and-such a state of affairs exists. The semantics is based
on so-called agent-stranded labeled transition system (agent-stranded
LTS).

Coalition Epistemic Dynamic Logic (CEDL)de Lima et al. [2010] is
logic for reasoning about responsibility and an extension of propositional
dynamic logic (PDL). Formalization of the two kinds of responsibility
is discussed: forward-looking and backward-looking responsibility. Re-
sponsibility is introduced to better guide agents’ decisions seen as ‘oblige
to ensure’.

Dignum and Dignum [2011] tries to specify and relate main aspects
of organisations (e.g. power, delegation, agent actions or normative
issues) and describe a formal model for organizational concepts including
roles and role enacting agents. Logic of agent organization (LAO) is an
extension of branching-time temporal logic CTL* added the set of agent,
role tuples to the state transitions to indicate which role enacting agents
are influencing the changes through this transition. Such formalizations
allow representing and reasoning about strategic powers of agents and
coalitions in terms of agent abilities and capabilities in a game-theoretic
setting.

2.6 Summary

In this chapter we have seen that autonomy is a crucial part of agency and
also that flexible is a relatively new a largely unexplored area. We also
have seen that human-agent interaction is increasingly important in real
world scenarios. Norms have been described as a useful way of regulat-
ing multi-agent systems and it is potentially interesting to consider how
norms might be used. This gives us a good working understanding of
the key principles around norms, multi-agent systems and human-agent
interaction (Figure 2.3). We have seen the roles that norms can play in
human agent systems, we have also proposed a way to represent norms
in terms of conditional obligations and conditional prohibitions, and how

-43-

Literature Review

a system regulated by norms facilitate flexible autonomy. We have seen
how intuitively norms might be engaged with by humans, but when op-
erationalising norms in a multi-agent system, autonomy can be preserved
by introducing third party enforcing organisation and specific software
agent characteristics. In the next chapter we present a framework that
implements a multi-agent system based on these conclusions. The use
of norms in multi-agent systems is relatively well understood area and
human-agent interaction is a growing field of research. Therefore it is
important to investigate the intersection of these common but currently
disconnected areas. Furthermore, specific work regarding group norms
would appear to be especially relevant when considering groups of entit-
ies working together.

Figure 2.3: Literature review topics

-44-

3
NormHACing Framework

In this chapter we explore how to enable flexible autonomy in human-
agent collectives (HACs) with normative multi-agent systems. In Chapter
2, autonomy was defined as ‘freedom to select course of action’ and norms
prescribe how the agents ideally should and should not behave. Norms
can therefore be seen as limiting the autonomy of agents to choose what
to do and how to do it. For example, an agent’s goal can be to go to a shop
and buy sweets, and a norm is prohibiting agent to step on grass or be
penalized by a sanction. The agent will still go to a shop it will however
choose to walk on a pavement to prevent incurring a sanction. Norms can
therefore be used to (partially) control the autonomy of agents. We define
flexible autonomy as autonomy that varies depending on the context.
In our approach flexible autonomy is achieved through the creation of
norms. For example, agent is prohibited from walking on grass when
it is wet. The context condition in this example is grass being wet and
agent will not be violating a norm by stepping on dry grass. Context in
our approach is a set of facts (propositions), where different valuations of

-45-

NormHACing Framework

the facts give different overall context in general.

We begin by considering how norms can be defined and internalised
by both software and human agents. We show how norms are represented
and operationalised in multi-agent systems, how norms are understood
and followed by human agents, and then consider the requirements for
the system architecture. We explore how software agents and human
agents can both be thought of as norm-aware agents is such a system.
Our solution combines exogenous and endogenous use of norms in the
sense that norms are created and enforced and exogenously, while in-
dividual agents who are informed about created norms process norms
endogenously by deciding whether to obey or violate them.

In our proposed combined framework, we use 2OPL for the exogenous
creation, enforcement of norms, and use N-2APL for the endogenous
processing of norms by individual software agents. Norm-aware N-2APL
agents are able to deliberate on their goals, norms and sanctions before
deciding which plan to select and execute, and are able to violate norms if
it is in their overall interest to do so, e.g., if meeting an obligation would
result in an important goal of the agent becoming unachievable. Human
agents are notified of detached norms in the system interface, weigh
goal importance against sanction values and proceed with their preferred
course of actions.

In this chapter we focus on the software agents. Human agents are
addressed later in Section 4.8.1. The integration of N-2APL and 2OPL
is achieved using a tuple space which represents both the (brute) state
of the multi-agent environment and the detached norms and sanctions
comprising its normative state. The integration provides a framework for
norm-aware multi-agent systems in which autonomous agents deliberate
about whether to conform to the norms imposed by a normative organ-
isation. The use of a tuple space makes it straightforward to integrate
other system components.

While norms have been used to represent desirable behaviours that
agents should exhibit, existing research was mostly focused on the study
of norms that affect a single individual. A research area that refers to
group norms which are norms that are addressed groups of agents re-
mains still as an open problem. To begin we have to analyse how different
interpretations of the group affect norms. Depending on the situation

-46-

NormHACing Framework

norm may affect the group as a whole, each member of the group or
some members of the group. Each of these interpretations then may
require different coordination and enforcement mechanisms. As we see
HACs as not just human-agent couples but groups with variable number
of members we have proposed solution for group norm taxonomy and
coordination in Chapter 4. We have developed a reasoning mechanism
which enables groups of agents (HACs) to coordinate themselves with
variable degree of autonomy when deciding on possible courses of action.

3.1 Introduction

The normHACing framework connects together the N-2APL and 2OPL
with a Linda communication and coordination model Carriero and Gel-
ernter [1989] which represents both the state of the multi-agent environ-
ment and the detached norms and sanctions comprising its normative
state. While there are approaches that offer similar functionality to 2OPL
and the tuple space in our framework, they have not been integrated
with a norm-aware agent programming language such as N-2APL. In
contrast to existing frameworks such as S-MOISE+ [Hübner et al., 2006]
which regulate behaviour by norm regimentation, our approach is based
on norm enforcement and sanctions. Frameworks such as ORA4MAS
[Hübner et al., 2010] provide support for both norm regimentation and
enforcement, however monitoring must be explicitly coded in organiza-
tional artifacts.

An advantage of using a tuple space to represent both the brute and
normative state of the agent’s environment is monitoring of norm com-
pliance and violation by the 2OPL interpreter is greatly simplified. On
the other hand, approaches such as ORA4MAS allow decentralized (and
arguably more flexible) decision making about the appropriate sanction
for a violation. As in N-2APL, the agents can adopt obligations and
prohibitions with deadlines, after which plans are selected to fulfil the
obligations or existing plans are suppressed to avoid violating prohibi-
tions. However, unlike N-2APL, Meneguzzi and Luck [2009b] does not
consider scheduling of plans with respect to their deadlines or possible
sanctions.

-47-

NormHACing Framework

3.1.1 Contributions

The development of the framework consisted of the following steps:

1. Design and implementation of N-2APL interpreter. N-2APL lan-
guage existed only as a formal specification and its interpreter
needed to be developed as an extension of 2APL as specified by
Alechina et al. [2012]. Details about the implementation can be
found in Section 3.3.

2. Connecting N-2APL and 2OPL. 2OPL was developed by Adal
[2010] and was chosen as the normative programming language
of the system. A middleware in Java is transforming prolog-like
formulas from N-2APL and 2OPL languages to simple objects and
inserts them into the JavaSpace. 2OPL was selected thanks to an
existing collaboration between our research group and its creators.
For more details please refer to Section 3.4.

3. JavaSpace installation. Amongst the number of available tuple
space implementations Jini JavaSpace (Apache River) was used
because of its simplicity and versatility [Edwards and Rodden, 2001].
Tuples are stored as serialized objects. JavaSpace was used as a
coordination mechanism between all parts of the system and store
the state of the game. Refer to Section 3.5 for detailed description.

4. Connecting a third party application (external environment). A
middleware in Java is sending HTTP requests to the game server
and parsing its response in JSon format. GeoSense game is described
in Section 3.6.

3.2 2APL

2APL [Dastani, 2008] is a BDI-based agent programming language that
allows the implementation of multi-agent system. The 2APL language is
based on cognitive concepts such as beliefs, goals and plans and brings
together declarative (beliefs and goals) and imperative (plans and in-
teraction with the external environment) style of programming. 2APL
supports both individual and multi-agent concepts. The multi-agent

-48-

NormHACing Framework

Figure 3.1: Overall system architecture

programming constructs are: (1) design of individual agents as separ-
ate modules with names; (2) access to an external environment; and
(3) specification of the relations to the environment. Each agent can be
connected to multiple environments (Java objects). The programming
construct designed for individual agents are beliefs, goals, actions, plans,
events and rules.

A 2APL agent program specifies an agent’s initial beliefs, goals, plans,
and the reasoning rules it uses to select plans (PG-rules), to respond to
messages and events (PC-rules), and to repair plans whose executions
have failed (PR-rules). The initial beliefs of an agent include the agent’s
information about itself and its surrounding environment. The initial
goals of an agent consist of formulas each of which denotes a situation
the agent wants to realize (not necessarily all at once). The initial plans of
an agent consist of tasks that an agent should initially perform.

3.2.1 Beliefs and Goals

A 2APL agent program’s beliefs are specified in the belief base and include
agent’s internal and external beliefs that are Prolog Bratko [2001] facts or
rules, and where facts are assumed to be ground, which means without
unbound variables. Example is shown in example in Figure 3.2. In this
example agent believes that it has 1000 points, its initial position in the
environment is (8,19) and it can lower or raise its position coordinate by
subtracting resp. adding 1.

-49-

NormHACing Framework

Beliefs:
points(0).
position(8, 19).
raise(X,NewX):− NewX is X + 1.
lower(X,NewX):− NewX is X − 1.

Figure 3.2: Example of agent’s beliefs

Goals:
points(5) and position(5,5) , points(10)

Figure 3.3: Example of agent’s goals

The goals of a 2APL agent are implemented in its goal base. The
goal (state of the environment that the agents aspires to establish) is a
conjunction of ground atoms. In the example in Figure 3.3 are two goals.
In the first one the agents seek to establish a situation where it has 5

points and also reached position (5,5). In the second goal the desire of
the agent is to have 10 points. The agent is rational and if it believes a
certain fact it does not pursue the formula as a goal.

3.2.2 Basic actions

The agent has certain capabilities to achieve a desired situation that are
specified by basic actions. 2APL distinguishes six types of basic actions
which together form an agent’s plan.

• Actions to update the belief base are used to modify agent’s beliefs.
A belief update action consists of pre- and post-condition terms. An
agent can execute the action if the pre-condition is entailed from its
belief base.

BeliefUpdates:

{clock(Old)} UpdateClock(New) {not clock(Old),clock(New)}

{points(A)} UpdatePoints(B) {not points(A),points(B)}

In the example specification above we see that update of the clock
UpdateClock(New) is executed when agent entails clock(Old) from
its belief base. The post-condition then is a list of positive and

-50-

NormHACing Framework

negative literals. not clock(Old) removes old clock value from the
belief base and then clock(New) is added. The belief updates do
not change during the execution.

• Actions to test the belief base have the form B(φ) and are true if φ

is entailed from the belief base. φ literals can include conjunction
and disjunction operators. Similarly the action to test the goal
base has the form G(φ) where φ consists of atoms with conjunction
and disjunction operators. It is a goal query expression testing an
individual goal in the goal base. During the (Prolog) execution the
substitutions performed from left to the right.

• Actions to manage goals have two forms adopt goal and drop goal.
When adopting a goal the agent can either add the new goal to
the beginning of the goal base adopta(φ) or to its end adoptz(φ).
When dropping a goal the agent can use three different forms:
dropgoal(φ), dropsubgoals(φ) and dropsupergoals(φ) .

• Abstract actions are constructs similar to procedures in imperat-
ive languages. In 2APL these procedures are defined as PC-rules,
which is an abbreviation for procedure call rules and will be de-
scribed in a later section.

• Communication actions are used by the agents to pass messages
to other agents. The send action has either three or five parameters.

send(Receiver,Performative,Content)

send(Receiver,Performative,Language,Ontology,Content)

Receiver is the receiving agent, Performative is used to describe
the type of the message (e.g., inform, request) and the actual mes-
sage is placed in the Content. The optional Language and Ontology

are used to give a context to the content where required. 2APL is
built on FIPA compliant JADE platform therefore the the name of
the receiving agent also supports a JADE name together with the
local agent names. The format of a full JADE name has the form
localname@host:port/JADE.

• External actions are used by the agents to interact with external
environments. The agents are not able to determine the effect of ex-
ternal actions they execute beforehand because these are determined
by the external environment. However, a programmer can supple-
ment a sense action to mitigate this limitation. external action has

-51-

NormHACing Framework

the form env(ActionName,Return) where env is the agent’s envir-
onment implemented as a Java class, ActionName a method call
(of the Java class) and Return the resulting list of values possibly
empty.

3.2.3 Plans

Plans are the tools of 2APL agents used to reach their goals. In 2APL
agents’ plan can be defined in advance however they may be changed
during the execution of agents’ programs with the use of planning goal
rules, which will be described later in the section. A conditional oper-
ator has the form if φ then π1 else π2 where π1 and π2 are arbitrary
plans. The condition is evaluated based on the agent’s belief and goal
bases. A while plan has the form while φ do π where π is an arbitrary
plan and the condition is also evaluated in respect to the agent’s belief
and goal bases. The plan π is then performed while the condition holds.
2APL also supports a non interleaving operator that has the form [π] and
denotes that the execution of the arbitrary plan π, which is called atomic
should not be interleaved with the execution of actions of any other plans.

Plans:[
@environment(enter(green), L); updatePos(L)

]
,

send(admin,request,register(me))

The 2APL agent plans are stored in a plan base. The above example
illustrates the initial plan base, which consists of two plans. The first is an
atomic plan interacting with the external environment. At first the agent
enters the environment as a green entity and immediately after updates
its belief base with the position that was returned by the environment.
The second plan consists of an a communication action, which sends a
request to register to the administrating entity.

3.2.4 Practical reasoning rules

Practical reasoning rules are a programming language construct that are
used to implement agents’ ability to generate new plans. 2APL supports
three types of rules: planning goal rules, procedure call rules, and plan repair

-52-

NormHACing Framework

rules, which are all explained in this section.

• Planning goal rules (PG-rules) are used for generation of plans
when an agent has certain beliefs. The specification of the rule con-
sist of three components: the head, the condition, and the body of
the rule. The head of the rule (left side of the expression) represent a
goal, which the planning rule relates to. The condition is evaluated
in respect to the agent’s belief base — considering agent’s current
beliefs. The planning rule is applied if the head and the condition
can be entailed from the belief base and goal base, respectively. The
application of the rule generates a substitution of variables that
occur in the head and condition. The substitution is then applied to
the body of the rule. In the example below is a planning goal rule
with a plan to go to a position (X2,Y2) from a position (X1,Y1) and
to remove trash. This plan can be generated if the agent has a goal
to clean a space R, it believes it is currently at the position (X1,Y1)

and that there is a trash at the position (X2,Y2).

PG-rules:

clean(R) <- pos(X1,Y1) and trash(X2,Y2) |

{
[
goTo(X1,Y1,X2,Y2);

RemoveTrash()
]
}

• Procedure call rules (PC-rules) can be used for two different pur-
poses. Apart from the form of procedure definition the procedure
call rule is also utilized to handle messages and external events. In
this manner the rule is used to generate a plan as a response to a
reception of a message from other agents, as a response to an event
that was triggered by an external environment, and the execution
of abstract actions. Similarly to the planning goal rules described
above the rule consists of three elements. The head of the rule can be
a message, an event or an abstract action. message/3 (message/5)

and event/2 are represented by special predicates while the abstract
action is a standard predicate starting with a lower case letter. Like a
planning goal rule the procedure call rule has a condition that needs
to be entailed from agent’s belief base for the plan to be generate
from the rule.

PC-rules:

-53-

NormHACing Framework

message(A,request,whereIsG) <- manager(A) and gold(X,Y) |

{send(A, inform, gold(X,Y))}

event(gold(X2,Y2), blockworld) <- not carry(gold) |

{getAndStoreGold(X2,Y2)}

getAndStoreGold(X,Y) <- pos(X1,Y1) |

{
[
goTo(X1,Y1,X,Y);@blockworld(pickup(),_);PickUp();

goTo(X,Y,3,3);@blockworld(drop(),_);StoreGold()
]
}

In the example above the first rules handle the receipt of a mes-
sage that the type of request from an agent A. The plan containing
response message is generated (and executed) if the agent A is a
manager and the agent knows the position of gold. The second rule
is activated when the external environment blockworld triggers an
event with a position of gold. In this example the plan is generated
if the agent does not carry gold at the moment. The plan contains
an abstract action getAndStoreGold that represents a procedure call
rule. The abstract action contains an atomic plan composed of a
sequence abstract actions, external actions and belief updates, exe-
cution of which should not be interleaved with any other plans to
prevent unfortunate undesired effects.

• Plan repair rules (PR-rules) are used for occasions when the execu-
tion of a plan fails. Like the previous rules the plan repair rule con-
tains a head, a condition and a body. The rule can be applied if a plan
that unifies the head abstract plan expression fails (the meaning of
plan failure will be explained later) and the condition can be entailed
from the agent’s belief base. The following is an example of a plan
repair rule, which indicates that if plan that contains a plan sequence
@blockworld(south(),_);@blockworld(south(),_) fails
while being executed it should be replaced with a plan to move
to the east first, do two steps to the south and return a step to the
west. When the execution of a plan is considered failed depends on
the type of action.

PR-rules:

@blockworld(south(),_);@blockworld(south(),_) <- true |

{ @blockworld(east(),_); @blockworld(south(),_)

-54-

NormHACing Framework

@blockworld(south(),_); @blockworld(west(),_) }

In the case of abstract action a plan fails when there is no applicable
procedure call rule, in the case of belief update it is when the pre-
condition of the update can not be entailed by the belief base, and in
the case of external action is it either when the agent does not have
access to the environment or the environment throws an exception
ExternalActionFailedException. When the execution of a action
fails the execution of the whole plan is blocked. The failed action
is not removed from the sequence but left in place in order to be
repaired.

3.2.5 External environments

2APL supports multiple external environment, which are made access-
ible to the agents as Java class. The class is required to implement the
environment interface, which contains two basic methods addAgent(String
name) to add an agent to the environment and removeAgent(String name)
to remove an agent. The listener of external events ExternalEventListerner
is passed to the constructor of the environment. The agent programs
interface with the environment by executing an action that has the form
@env(m(a1,...,an), R). Execution of the action calls a method m with
arguments a1,...,an in the environment env. In the first argument a1 the
method expects the identifier of the calling agent, which is used to pass
back information the agent by the means of events. The return value R is
passed back to the executing plan. The execution of the plan is blocked
until this value is accessible to the agent program. The method can throw
the ExternalActionFailedException which causes the corresponding
external action to fail. In the following code snippet is the implementa-
tion of the move method.

public Term move(String agent, String direction)

throws ExternalActionFailedException

{

if (direction.equals("north") moveNorth();

else if (direction.equals("east") moveEast();

else if (direction.equals("south") moveSouth();

else if (direction.equals("west") moveWest();

else throw

-55-

NormHACing Framework

new ExternalActionFailedException("Unknown direction");

return getPositionTerm();

}

3.2.6 Events and exceptions

There are two different ways to pass information between the environ-
ment and the agents via events and exceptions. The main use of events is
to pass information from the environments to the agents. 2APL events
are triggered by calling the method notifyEvent(AF event, String...

agents) in the ExternalEventListener provided originally as an argu-
ment of the constructor. The method takes an atomic formula as the first
argument and a list of agents affected in the second argument. When the
event is received by an agent it is unified with a head of a procedure call
rule. It is possible to implement the agents’ perceptual mechanism by
not supplying any agent names in which case the event is received by all
agents. The exceptions are used to notify the agent that the execution of
the external event was unsuccessful. However, there is no mechanism in
place to pass exceptions from 2APL to the external environment.

3.2.7 2APL files

The agent programs are loaded from a file with .mas extension, which
specifies the external environments and agent .2apl files.

<apaplmas>

<environment name="blockworld" file="blockworld.jar">

</environment>

<agent name="harry" file="harry.2apl"/>

<agent name="sally" file="sally.2apl"/>

</apaplmas>

2APL agents can share some of their initial beliefs, goals, plans, belief
updates, and practical reasoning rules. This functionality is supported by
the construct Include: filename.

-56-

NormHACing Framework

3.3 N-2APL

N-2APL is a normative extension of 2APL introduced in Alechina et al.
[2012], which enriches some of the programming constructs while it
also limits or changes the semantics of others. This section will describe
extensions made to 2APL. For the operational semantics of N-2APL please
refer to Appendix E.

3.3.1 Beliefs, Goals and Events

Beliefs in N-2APL are the same as in 2APL and consist of Horn clause
expressions. Goals in 2APL may be conjunctions of positive literals. In
N-2APL goals are restricted to single atoms and their syntax is extended
to include optional deadlines. A deadline is a real time value (expressed in
milliseconds) that specifies the time by which the goal should be achieved.
If no deadline is specified for a goal as part of the agent’s program, we
assume a deadline of infinity.

As described earlier norms are communicated to the agent in the
form of events. An obligation event, represented as obligation(ι, o, d, s),
specifies the time d by which the obligation o must be discharged, i.e.,
its deadline, and the sanction, s, that will be applied if the obligation
is not discharged by the deadline. A prohibition event, represented as
prohibition(ι, p, d, s), specifies a prohibition p that should not be violated
and the sanction s that will be applied if execution of the agent’s plans
violates the prohibition.

Obligations are adopted as goals with a deadline corresponding to
the deadline of the obligation. In N-2APL it is assumed that prohibitions
have a deadline of infinity. In addition we extend the state of the agent
to include prohibitions, which are represented by single atoms, and the
agent’s initial state is extended to include its initial prohibitions and
obligations.

We assume the the programmer provides function pref (x) where x is
a goal or prohibition that returns the priority of the goal or prohibition
x. For non-normative goals, the priority corresponds to the importance
of achieving the goal state. In the case of prohibitions and goals derived

-57-

NormHACing Framework

from obligations, the priority corresponds to the importance of avoiding
the sanction that would be incurred if the corresponding norm is violated.

3.3.2 Actions & Plans

The syntax of external actions is extended to list the expected postcon-
ditions of the action, to allow the prohibitions violated by a plan to be
determined.

In order to achieve its goals, an N-2APL agent adopts plans. A plan
consists of basic actions composed by sequence, conditional choice, con-
ditional iteration and non interleaving operators. The non interleaving
operator, [π] where π is a plan, indicates that π is an atomic plan, i.e.,
the execution of π should not be interleaved with the execution of any
other plan. Basic actions include external actions (which change the
state of the agent’s environment); belief update and goal adopt actions
(which change the agent’s beliefs and goals), and abstract actions (which
provide an abstraction mechanism similar to procedures in imperative
programming).

In N-2APL, non-atomic plans are the same as in 2APL. However in
N-2APL we change the interpretation of the non interleaving operator:
[π] indicates that the execution of π should not be interleaved with the
execution of other atomic plans (rather than not interleaved with the
execution of any other plan as in 2APL). In N-2APL, atomic plans are
assumed to contain basic actions that may interfere only with the basic
actions in other atomic plans. For example, a plan that involves moving
to a new location should not be interleaved with other plans that change
the agent’s location. However, external actions in different non-atomic
plans are executed in parallel, rather than being interleaved as in 2APL.
Lastly, we restrict the scope of the non interleaving operator such that non-
atomic plans cannot contain atomic sub-plans, either directly or through
the expansion of an abstract action, i.e., plans to achieve top-level goals
are either wholly atomic or non-atomic.

We extend the syntax of plans in the body of a PG rule to include an
optional field specifying the time required to execute the plan proposed
by the PG rule. For simplicity, we assume that the time required to execute
each plan π is fixed and known in advance.

-58-

NormHACing Framework

The syntax of N-2APL is shown in Figure 3.4 in EBNF notation. For
the EBNF of 2APL, please see Dastani [2008].

〈Agent_Prog〉 = "Include:" 〈includes〉
| "BeliefUpdates:" 〈beliefupdates〉
| "Beliefs:" 〈beliefs〉
| "Goals:" 〈goals〉
| "Obligations:" 〈obligations〉
| "Prohibitions:" 〈prohibitions〉
| "Plans:" 〈plans〉
| "PG-rules:" 〈pgrules〉
| "PC-rules:" 〈pcrules〉
| "PR-rules:" 〈prrules〉
| "Preferences:" 〈prefs〉;

〈includes〉 = 〈include〉+;
〈include〉 = 〈ident〉 .2apl;
〈beliefupdates〉 = 〈beliefupdate〉+;
〈beliefupdate〉 = ("{" 〈belquery〉 "}" 〈beliefupdatename〉 "{" [〈literals〉] "}") ;
〈beliefupdatename〉= 〈upperatom〉;
〈beliefs〉 = 〈belief 〉+;
〈belief 〉 = 〈groundatom〉 "."

| 〈atom〉 ":-" 〈literals〉 ".");
〈goals〉 = 〈goal〉 { ","〈goal〉 } ;
〈goal〉 = 〈atom〉 ":" 〈deadline〉 ;
〈baction〉 = "skip"

| 〈beliefupdate〉
| 〈sendaction〉
| 〈externalaction〉
| 〈abstractaction〉
| 〈test〉
| 〈adoptgoal〉
| 〈dropgoal〉
| 〈createaction〉
| 〈releaseaction〉
| 〈moduleaction〉;

〈plans〉 = 〈plan〉 { "," 〈plan〉 };
〈plan〉 = 〈baction〉

| 〈sequenceplan〉
| 〈ifplan〉
| 〈whileplan〉
| 〈atomicplan〉
| 〈scopeplan〉;

〈sendaction〉 = "send(" 〈iv〉 "," 〈iv〉 "," 〈atom〉 ")"
"send(" 〈iv〉 "," 〈iv〉 "," 〈iv〉 "," 〈iv〉 "," 〈atom〉 ")";

〈externalaction〉 = "@" 〈ident〉 "(" 〈atom〉 "," 〈var〉 ")"
〈test〉 = "B(" 〈belquery〉 ")"

| "G(" 〈goalquery〉 ")"
| 〈test〉 "&" 〈test〉
| "(" 〈test〉 ")";

-59-

NormHACing Framework

〈abstractaction〉 = 〈atom〉;
〈adoptgoal〉 = "adopta(" 〈goalvar〉 ")"

| "adoptz(" 〈goalvar〉 ")";
〈dropgoal〉 = "dropgoal(" 〈goalvar〉 ")"

| "dropsubgoals(" 〈goalvar〉 ")"
| "dropsupergoal(" 〈goalvar〉 ")";

〈createaction〉 = "create(" 〈ident〉 "," 〈ident〉 ")";
〈releaseaction〉 = "release(" 〈ident〉 ")";
〈moduleaction〉 = 〈ident〉 "." 〈maction〉;
〈maction〉 = "execute(" 〈test〉 ")"

| "updateBB(" 〈literal〉 ")"
| 〈test〉 "&" 〈test〉
| 〈adoptgoal〉
| 〈dropgoal〉
| "B(" 〈literal〉 ")"
| "G(" 〈literal〉 ")";

〈sequenceplan〉 = 〈plan〉 ";"〈plan〉;
〈ifplan〉 = "if" 〈test〉 "then" 〈scopeplane〉 ["else" 〈scopeplan〉];
〈whileplan〉 = "while" 〈test〉 "do" 〈scopeplane〉;
〈atomicplan〉 = "[" 〈plan〉 "]";
〈scopeplan〉 = "{" 〈plan〉 "}";
〈pgrules〉 = 〈pgrule〉+;
〈pgrule〉 = [〈goalquery〉] "<-" 〈belquery〉 "|" 〈plan〉 ":" 〈duration〉;
〈pcrules〉 = 〈pcrule〉+;
〈pcrule〉 = 〈atom〉 "<-" 〈belquery〉 "|" 〈plan〉;
〈prrules〉 = 〈prrule〉+;
〈prrule〉 = 〈planvar〉 "<-" 〈belquery〉 "|" 〈planvar〉;
〈goalvar〉 = 〈atom〉 { "and" 〈atom〉 };
〈planvar〉 = 〈plan〉

| 〈var〉
| "if" 〈test〉 "then" 〈scopeplanvar〉
["else" 〈scopeplanvar〉]
| "while" 〈test〉 "do" 〈scopeplanvar〉
| 〈planvar〉 ";" 〈planvar〉;

〈scopeplanvar〉 = "{" 〈planvar〉 "}";
〈literals〉 = 〈literal〉 { "," 〈literal〉 };
〈literal〉 = 〈atom〉

| 〈infixatom〉
| "not" 〈atom〉
| "not" 〈infixatom〉;

〈belquery〉 = "true"
|〈belquery〉 "and" 〈belquery〉
|〈belquery〉 "or" 〈belquery〉
| "(" 〈belquery〉 ")"
| 〈literal〉;

〈groundatom〉 = 〈ident〉 "(" 〈groundpars〉 } ")";
〈groundpars〉 = 〈groundpar〉 { "," 〈groundpar〉 } };

-60-

NormHACing Framework

〈iv〉 = 〈ident〉 | 〈var〉;
〈goalquery〉 = "true"

|〈goalquery〉 "and" 〈goalquery〉
|〈goalquery〉 "or" 〈goalquery〉
| "(" 〈goalquery〉 ")"
| 〈atom〉;

〈groundpar〉 = 〈ident〉 | 〈num〉 | "_" 〈atom〉
|"[" 〈groundpars〉 "]"
|"[" 〈groundpars〉 "|" 〈var〉 "]";

〈upperatom〉 = 〈var〉 "(" [〈pars〉 }]")";
〈atom〉 = 〈ident〉 "(" [〈pars〉 }]")";
〈infixatom〉 = 〈par〉 ("=" | ">" | "<" | "<="

| ">=" | "=>" | "=<") 〈par〉;
〈pars〉 = 〈par〉 { "," 〈par〉 };
〈par〉 = 〈var〉 | 〈num〉 | "_" 〈atom〉

| 〈par〉 ("+" | "-" | "*" | "/") 〈par〉
| "[" [〈pars〉] "]"
|"[" (〈artexps〉 "|" 〈pars〉) "|"〈var〉 "]";

〈artexps〉 = 〈artexp〉 { "," [〈artexp〉 };
〈artexp〉 = 〈var〉 | 〈num〉

| 〈artexp〉 ("+" | "-" | "*" | "/") 〈artexp〉
| "(" [〈artexp〉] ")" ;

〈var〉 = "A".."Z"
{"a".."z" | "A".."Z" | "0".."9" | "_" };

〈ident〉 = "a".."z"
{"a".."z" | "A".."Z" | "0".."9" | "_" };

〈num〉 = ("0".."9")+;
〈obligations〉 = 〈atom〉 { ","〈atom〉 } ;
〈prohibitions〉 = 〈atom〉 { ","〈atom〉 } ;
〈plan〉 = 〈atomic-plan〉 | 〈non-atomic-plan〉;
〈atomic-plan〉 = "["〈non-atomic-plan〉"]";
〈prefs〉 = 〈pref 〉 { ","〈pref 〉 } ;
〈pref 〉 = (〈atom〉 | 〈sanction〉) "->" 〈priority〉;
〈sanction〉 = 〈atom〉;
〈deadline〉 = 〈num〉;
〈duration〉 = 〈num〉;
〈priority〉 = 〈num〉;

Figure 3.4: EBNF syntax of N-2APL

3.3.3 Implementation

Our implementation of 2APL was based on the implementation of 2APL
developed at the University of Utrecht.1 The extensions to the 2APL inter-
preter can be split into three main parts: modification of parser, extension

1The 2APL platform is available from apapl.sourceforge.net.

-61-

apapl.sourceforge.net

NormHACing Framework

of the agent’s state to include obligations and prohibitions, and changes
to agent’s deliberation strategy. The 2APL parser is implemented using
JavaCC, and the modifications necessary to accommodate the extended
2APL syntax required a modification of the grammar specification. Ob-
ligation goals are stored in the existing 2APL goal base, and the original
2APLGoal class was extended to incorporate a deadline and a priority.
Obligation deadlines are treated as relative times in milliseconds and
transformed to goal deadlines (clock times) when the program is parsed
(in the case of initial obligations) or when the obligation event is received
from the normative organization. Prohibitions do not map to existing
2APL intentional attitudes. A prohibition base (set of states) was therefore
added to record the agent’s active prohibitions. The prohibition base is
accessed by the N-2APL during the deliberation steps to assess whether
the execution of an intention would violate a prohibition.

Significant changes to the 2APL deliberation strategy were required
to take the priorities and deadlines of goals and prohibitions into account
when deliberating about which plan to adopt for a goal and when to ex-
ecute the plans to which it currently committed. The N-2APL deliberation
strategy returns a schedule. A schedule is an assignment of a start or next
execution time to a set of plans which ensures that: all plans complete by
their deadlines, at most one atomic plan executes at any given time, and
where the goals achieved and the prohibitions avoided are of the highest
priority. Scheduling in N-2APL is pre-emptive in that the adoption of a
new plan π may prevent previously scheduled plans with priority lower
than π (including currently executing plans) being added to the new
schedule. Plans that would exceed their deadline are dropped. In the
case of obligations, a sanction will necessarily be incurred, so it is not
rational for the agent to continue to attempt to discharge the obligation.
In the case of goals, it is assumed that the deadline is hard, and there is no
value in attempting to achieve the goal after the deadline. A plan which
violates a prohibition of higher priority than the intention of the plan is
dropped.

The deliberation strategy was modified so that after application of
PG-rules the set of previously scheduled and newly generated plans are
scheduled, and plans with a scheduled next execution time of ‘now’ are
then executed.

Changes were also required to the execution of atomic plans. To allow

-62-

NormHACing Framework

the interleaved execution of an atomic plan with non-atomic plans (rather
than executing all the steps of an atomic plan in a single step as in 2APL),
atomic plans are transformed into sequence plans during parsing of the
agent’s program code and flagged as being atomic. The plan execution
module was also changed so that external actions in non-atomic plans are
executed in parallel.

The initial step in the development was to modify an existing inter-
preter of 2APL agent programming language so that it supports delibera-
tion about norms that are in a form of obligations and prohibitions. We
built upon suggested semantics for N-2APL by Alechina et al. [2012] and
Figure 3.4 shows the newly modified agent programming language.

The parser of 2APL was developed with the JavaCC tool and therefore
changes consisted of modifying the existing 2apl.jj file. Even though
norm-aware agents are supposed to obtain obligations and prohibitions
from the organization it is also possible to specify the norm straight away
in the agent program. This was enabled for easier testing. Obligations
are defined in the same format as goals, but include also a sanction.
Prohibitions then consist of the forbidden state and an associated sanction.
All possible sanctions need to be defined beforehand in the agent program
even if the norms are provided by an organization later. Sanctions are
also assigned numerical priorities where a lower number means a higher
priority, also a goal can have an assigned priority. When none is specified
it is assumed that the goal has the highest priority. Deadlines are treated
as relative durations in milliseconds and transformed to real times at
the time of parsing or event execution in the case that the obligation is
received as an event from an organization.

Alechina et al. [2012] suggested that prohibitions would be added to
the event base of agent module to minimize required changes. However
this was not possible as events are treated as one off actions in N-2APL
whereas prohibitions are required to remain active for the full time of their
validity. Therefore a specific prohibition base was created. Obligations
are added to the existing goal base as an extension of the Goal class.
Sanctions are stored in the sanction base and for simplicity only the
numerical priority values are used in Obligation and Prohibition objects
as opposed to the linking of the whole sanction. The usage of prohibiting
norms is limited now because all prohibited states need to be matched
with specified belief updates. Also an agent is not able to recognize such

-63-

NormHACing Framework

a state when scheduling a plan, but only its during execution.

A major change was required to change the agent deliberation process
to consider priorities and deadlines, and to schedule atomic and non-
atomic plans separately. According to the scheduling algorithm which
is detailed in Figure 3.5 an agent is allowed to execute only one atomic
plan at a time but its execution is interleaved with execution of non
atomic plans. Atomic plans are transformed into sequence plans when
being parsed from agent’s program code and flagged as atomic. The
deliberation library was modified in a way that after application of PG
rules all temporarily scheduled plans were sorted with the scheduling
algorithm and then the executing module was modified so that atomic
plans are no longer executed at once as in 2APL.

3.4 2OPL

As we explained earlier regulate the multi-agent systems with a normat-
ive institution. 2OPL [Dastani et al., 2009; Tinnemeier, 2011] is a program-
ming language designed to support the implementation of normative
multi-agent systems. 2OPL programs contain three types of data: facts,
fact update rules, and norms. The facts and fact update rules are used to
represent the state of the agents’ environment and the effect of the agents’
actions in the environment. For example, in a location based game, a fact
may represent the current location of an agent, while a fact update rule
represents how the agent’s location changes as a result of performing a
‘move’ action.

We use norms that are state-based norms and are defined in terms
of a unique label, an activation condition, and a deontic element. In
what follows, we adopt the version of 2OPL described by Tinnemeier
Tinnemeier [2011], which includes conditional norms with deadlines. The
label functions as a name that can be used to refer to the norm and the
precondition specifies when (i.e., in which states of the environment) the
norm can be activated (detached). The deontic element of the norm is
either an obligation or a prohibition. An obligation is defined by a subject
(the agent to which incurs the obligation), a deadline, a state formula
indicating the state of the environment that has to be brought about
before the deadline, and a sanction formula indicating how the state is

-64-

NormHACing Framework

Figure 3.5: N-2APL: Scheduling Algorithm

Algorithm 1 Scheduling Algorithm
1: function SCHEDULE(Π, ∆)
2: Γs = ∅, Γp = ∅,
3: for all π ∈ Π in descending order of priority do
4: V := effects(π) ∩ ∆
5: if ¬atomic(π) then
6: if now + rt(π) ≤ dl(π) ∧
7: pr(π) ≥ argmax pr(p), p ∈ V then
8: ne(π) := now
9: Γp := Γp ∪ {π}

10: end if
11: else
12: if executing(π) then
13: ne(π) := now
14: Γ′s := Γs
15: else
16: t := now
17: Γ′s := ∅
18: for all π′ ∈ Γs do
19: if dl(π′) ≤ dl(π) then
20: Γ′s := Γ′s ∪ {π′}
21: t := max(ne(π′) + rt(π′), t)
22: else
23: ne(π′) := ne(π′) + rt(π)
24: Γ′s := Γ′s ∪ {π′}
25: end if
26: end for
27: ne(π) := t
28: end if
29: if ∀πi ∈ Γ′s ∪ {π} : now + ∑

ne(j)≤ne(i)
rt(πj) ≤ dl(πi) ∧

30: pr(π) ≥ argmax pr(p), p ∈ V then
31: Γs = Γ′s ∪ {π}
32: end if
33: end if
34: end for
35: return Γp ∪ Γs
36: end function

-65-

NormHACing Framework

〈norm〉 = “norm("〈label〉, 〈subject〉, 〈policy〉, 〈precond〉, 〈deontic〉“)"
〈label〉 = 〈atom〉
〈subject〉 = 〈atom〉
〈policy〉 = 〈atom〉
〈precond〉 = “("〈literal〉(“," 〈literal〉)*““)"
〈deontic〉 = “obligation("〈state〉, 〈deadline〉, 〈sanction〉“)" |

“prohibition("〈state〉, 〈sanction〉“)"
〈state〉 = “["〈atom〉(“," 〈atom〉)* “]"
〈deadline〉 = 〈atom〉
〈sanction〉 = “["〈atom〉(“," 〈atom〉)* “]"
〈literal〉 = 〈atom〉 | “not("〈atom〉“)"

Figure 3.6: EBNF of a 2OPL norm
norm(forbidden_area(Agent),

(truck(Agent), forbidden(X,Y)),
prohibition(Agent, [at(X,Y,Agent)],

[reduce_score(Agent,500)])
).

Figure 3.7: Example GeoSense game norms

updated if the obligation is not discharged by the deadline. A prohibition
is defined by a state formula indicating the state of the environment
that must be avoided, and a sanction formula indicating how the state is
updated if the prohibition is violated before the deadline. The subject and
deadline are represented by atoms, and the state and sanction formulas
are represented as conjunctions (lists) of atomic facts. For example, in
the GeoSense game, a norm may prohibit a truck from entering a specific
area, with violation of the norm resulting in a sanction of the truck’s score
being reduced by 500 points.

When a agent receives the tuple it adopts it as a new goal which
gets the priority associated with the sanction. The relative deadline is
translated into real time. If the agent’s scheduling algorithm schedules
this a plan associated with the goal the agent executes the plan and
brings about the obliged state. Once the agent achieves the goal the state
of the environment is updated in the tuple space and the changes are
propagated to the normative organisation. When the deadline is due the
organisation performs compliance check. In the event of the obligation
being violated the organisation applies the defined sanction to the agent
by modifying the state of the environment.

The syntax of 2OPL norms is shown in Figure 3.8 where the 〈atom〉
follows the Prolog syntax for atomic facts. All components of the norm

-66-

NormHACing Framework

norm(forbidden_area(Agent),
(truck(Agent), forbidden(X,Y)),
prohibition(Agent, [at(X,Y,Agent)],

[reduce_score(Agent,500)])
).

Figure 3.8: Example GeoSense game norms

must be ground when a norm instance is detached.

For integration with N-2APL agents, we require that 2OPL norms
conform to a more restrictive syntax than that shown in Figure 3.8. In
particular, we assume a global clock and require that deadlines are atoms
denoting relative times after the time at which a norm is detached. We also
require that prohibitions have a deadline of infinity. These restrictions
are necessary to ensure that the normative reasoning of N-2APL agents
remains tractable [Alechina et al., 2012]. In addition, to simplify the
mapping from sanctions to the priorities N-2APL agents assign to goals
(see below), we assume that sanctions are single atoms.

2OPL programs are executed by means of an interpreter that consists
of a loop in which agents’ actions are observed, the effects of the actions
are realized by means of the fact update rules, and norms are processed.
Norms are processed as follows. If the precondition of a norm holds, then
an instance of the corresponding obligation or prohibition is detached
(comes into effect). For all obligations that are already in effect, the 2OPL
interpreter checks if the deadline is reached while the obliged state of the
environment is not realized. Moreover, for all prohibitions that are already
in effect it is checked if the prohibited state is realized. In such a case a
violation has occurred and the state of the environment is updated with
the corresponding sanction. For example, in the GeoSense game sanctions
affect the game score. If an agent is sanctioned by reduce_score(500) the
environment is updated with the agent’s deducted score.

To support the integration of 2OPL with the framework, the 2OPL
interpreter was extended to interact via a tuple space as described in
Section 3.5. Facts describing the current state of the environment and
agent actions are read from the tuple space, and when the precondition
of a norm becomes true in the current environment, a norm instance (an
obligation or a prohibition with a specified subject, deadline and sanction)

-67-

NormHACing Framework

is written into the tuple space. The subject agent receives a notification
from the tuple space and retrieves the new norm.

3.5 Middle-ware

Interaction between the 2OPL normative organization and the N-2APL
agents is via a tuple space Carriero and Gelernter [1989]. We choose
a tuple space rather than message-based interaction primarily to facil-
itate the integration of non-agent-based components such as the Geo-
Sense game server. Our primary aim was to support programming with
norm-aware agents with the stress on interoperability and preservation
of history of the state space, therefore tuple space paradigm has been
chosen despite its possible performance factors such as implicit indeterm-
inism and lacking search capabilities. The facts recording the current
(brute) state of the multi-agent environment and the detached norms
and sanctions comprising its normative state are represented as tuples.
The agents are connected to the tuple space through an extension of the
N-2APLEnvironment class and in an agent program the tuple space is
accessed in the same way as any other external environment.2 The norm-
ative organisation accesses the tuple space through Prolog queries that
wrap native Java method calls to the ‘Prolog to Java’ middleware used by
both the N-2APL Environment class and 2OPL (see Figure 3.15).

Both the normative organization and the multi-agent system synchron-
ize with the tuple space. Using the notify method, the organization and
the agents register to be notified when a new tuple matching a template
is inserted into the tuple space. For example, agents register to receive
notifications about all new obligation and prohibition entries assigned to
them, and the normative organization registers to receive notifications
when a new agent location tuple is created in the tuple space. As the
agents and the normative organisation receive only those updates that
are relevant to them, the overhead of the tuple space relative to a message
passing implementation is minimal.

Tuples are stored as serialized Java Entry objects. Each type of tuple

2To simplify the implementation, in the current prototype the effects (postcondition)
of agent actions are written directly to the tuplespace, and 2OPL fact update rules are
not used. However it would be straightforward to delegate action execution to 2OPL.

-68-

NormHACing Framework

is defined as a class that implements the Entry interface, and we defined
a simple mapping from the Prolog terms used by 2OPL and N-2APL to
Entry objects. JavaSpaces are non-deterministic and therefore all tuples
need to be timestamped. Timestamps are implemented using a clock
process which writes the current system time as a clock tuple in the tuple
space. (In the example application described in the next section, the clock
process is provided by the gameserver middleware, which writes a new
clock tuple once a second.)

Figure 3.9: JavaSpace application example

Tuple space was picked as a coordination mechanism between the
multi-agent system, normative organization and mixed reality game.
JavaSpaces (JINI River Apache implementation) runs as a service and
its schema is shown in Figure 3.9. Based on Linda communication and
coordination model the system supports following actions:

• write - write a new entry into the space.

• read - read any matching entry from the space, blocking until one
exists. Return null if the timeout expires.

• readIfExists - read any matching entry from the space, returning
null if there is currently is none. Matching and timeouts are done as
in read, except that blocking in this call is done only if necessary to
wait for transactional state to settle.

• notify - when entries are written that match this template notify

-69-

NormHACing Framework

the given listener with a RemoteEvent that includes the handback
object.

• take - take a matching entry from the space, waiting until one
exists. The also corresponding takeIfExists method is not being
used, because no tuples are removed from the space at any time.

Figure 3.10: Entry objects for obligations and prohibitions

Entry is any serializable object that implements entry interface. Each
type of tuple is implemented as a separate object. Limitations of the
system lie in non-determinism - all tuples need to be timestamped and the
latest one is found only by comparing all that are matching the template
with a use of transactions. Also JINI does not support matching of regular
expressions. Example of tuples is shown in Figure 3.10.

3.6 Application

We chose to illustrate the capabilities of the framework by an applica-
tion motivated by the ORCHID disaster response scenario3 in which we
situate agents with flexible autonomy in a mixed reality game. A mixed
reality game is considered a suitable example application because it is a
shared environment requiring real time performance and is easily scal-
able. Its rules provide a variety of obligations and prohibitions to assess
the expressiveness of the normative representative language and may be
overridden. The norms do not constitute the game board (as in chess) but
rather they define expected behaviour within the environment.

3http://www.orchid.ac.uk/disaster-response-2/

-70-

http://www.orchid.ac.uk/disaster-response-2/

NormHACing Framework

A scenario chosen for the initial prototype work was one of the early
versions of AtomicOrchid called GeoSense Fischer et al. [2012a,b]. Geo-
sense is developed on a base of location-based game MapAttack!4, which
is using GPS in mobile phones to sense location of players and displays
the state of game on a map in a web browser. In a version of the game
which was used in this prototype there were three kinds of players: a
radioactive truck, pursuers and a coordinator. The goal of the truck was
to avoid pursuers while pursuers were aiming to capture it.

Figure 3.11: GeoSense web interface

3.6.1 Game Play

The GeoSense game is played on a map of a physical location (typically
part of a city such as a park) and has three kinds of players: a truck, pur-
suers and coordinators. The truck carries a load of radioactive waste, and
attempts to avoid detection. The pursuers, assisted by the coordinator(s),
attempt to determine the location of the truck. The physical (GPS) loca-
tions of the pursuers are shown on the map and updated as the players
move in the real environment.

The pursuers’ locations are visible to each other and to the coordin-
ator(s). The truck is a virtual player, and its location is not visible on the
map. However its radioactive load leaves a virtual ‘trace’ that can be

4http://mapattack.org

-71-

http://mapattack.org

NormHACing Framework

measured by by taking a ‘reading’ at a pursuer’s current physical loca-
tion. The reading ranges from 0 to 100, with higher readings indicating
a smaller distance to the truck. In an attempt to avoid detection, the
truck may drop some of its load as it moves through the game area. Such
dropped waste also gives a positive reading, making it more difficult for
the pursuers to determine the location of truck.

The coordinator(s) have a global view of the positions of all the pur-
suers and of all recent readings. The role of the coordinator is to aid
the pursuers by directing them to promising areas of the map. The co-
ordinator can request that a pursuer takes reading at a particular physical
location by placing a virtual ‘coin’ at the location on the map. The pur-
suer must then go the physical location indicated by the coin and take a
reading. In the original game scenario all users were human actors. The
initial step in the implementation was to develop a normative multi-agent
system, connect it to the game and replace human players with agents.

The location based game GeoSense is developed in Ruby and runs as a
web server. Clients can connect to the server through HTTP or Socket.IO
interfaces. Clients are either a mobile device for a pursuer or a web
browser for a coordinator. In our system HTTP requests were more
convenient. Java middle-ware connecting the game server and the tuple
space is in charge of the system clock, which ticks every 500 millisecond.
The speed is set as a constant and can be easily changed to suit needs.

Figure 3.12: An example of a HTTP request and a response in JSON
format

On every tick the whole server state (see Figure 3.12.) is synchronized
with the tuple space. As with the organization and agents, the game
server is registered to be notified about updates in the tuple space for

-72-

NormHACing Framework

norm(forbidden_area(Agent),
(truck(Agent), forbidden(X,Y)),
prohibition(Agent, [at(X,Y,Agent)],

[reduce_score(Agent,500)])
).

norm(take_reading(Agent),
(pursuer(Agent), coin(X,Y,Agent), clock(Now)),
obligation(Agent, [reading(X,Y,Agent)],

Now + 15000, [reduce_score(Agent,300)])
).

Figure 3.13: Example GeoSense game norms

example locations. Locations of the players are transformed to a grid
form geographic latitudes and longitudes used in the game. The web
interface of the game is illustrated in Figure 3.11.

3.6.2 Encoding Game Rules as Norms

The rules of the GeoSense game are encoded in the gameserver code and
are not accessible to agents. To allow agents to participate in the game, we
re-expressed the GeoSense game rules as a set of 2OPL obligations and
prohibitions. The norms specify which game states the agents should try
to bring about (and by when) or are prohibited from bringing about, and
any sanction incurred if the norm is violated, e.g., a deduction in points.
For example, a norm may specify that the truck is prohibited from enter-
ing a particular area of the map, and that violation of the norm results
in the loss of 500 points. (Note that a norm-aware agent may still choose
to violate a norm e.g., the agent may enter a prohibited area if doing so
allows it to win the game.) Updates to the game state resulting from
agent actions may trigger norms that apply to the agent that performed
the action or another agent. For example, when a coordinator places
a coin for a pursuer, the normative organisation creates an obligation
that the pursuer must take a reading at the location of the coin within a
specified time, and a prohibition specifying that the coordinator cannot
place another coin at the same location. Example 2OPL game norms are
illustrated in Figure 3.13.

-73-

NormHACing Framework

Beliefs:
points(1000).
position(19,19).
clock(0).

Goals:
at(2,2) : 120000,
dropLoad : 60000

Preferences:
at(2,2) -> 3,
reduce_score(truck, 500) -> 4,
dropLoad -> 5

PG-rules:

at(X,Y) <- true | { moveTo(X,Y); } : 60000
dropLoad <- position(10,10) | { drop(X,Y); } : 1000

Figure 3.14: N-2APL program for the Truck agent

3.6.3 Agent Programs

We also developed 2APL programs to allow the agents to play the game
and achieve the goals resulting from the game norms. As an example, a
program for a simple truck agent is shown in Figure 3.14. The truck has
two goals. The first goal at(2,2) : 120000 is to reach position (2,2) in
2 minutes (120,000 msecs) from the start of the game and has a priority of
3. The second goal dropLoad : 60000 is to drop (part of) its load within
one minute of the start of the game, and has a priority of 5. When the
agent adopts a goal it executes the matching PG-rule. For example, the
rule to achieve the at(X,Y) goal specifies a plan that involves moving to
the required position. The PG-rule also includes an estimate of the time
required to execute the plan (one minute in this case).

The obligations and prohibitions the agent receives as a result of the
game rules may conflict with its own goals in the game. For example, the
agent’s goals to be at(2,2) or to drop part of its load when at position
(10,10) may require visiting a prohibited area of the map. In such a
situation, a norm-aware agent must choose between its existing goals and
the norms imposed by the game. Critically, a 2APL agent is able to violate
norms (accepting the resulting sanctions) if it is in the agent’s overall
interests to do so. For example, the truck agent assigns a higher priority

-74-

NormHACing Framework

to achieving the goal at(2,2) than to the sanction resulting from entering
the prohibited area (losing 500 points), which in turn has a higher priority
than the dropLoad goal. The agent will therefore enter the prohibited area
if it is necessary to reach (2,2) but would not violate the norm to drop
part of its load.

3.6.4 Gameserver Integration

To maintain the game state (and allow future participation by human
players), we integrated the GeoSense gameserver with our normative
programming framework consisting of 2OPL, 2APL and JavaSpaces. Geo-
Sense is connected to the framework through the tuple space as shown in
Figure 3.15. Updates to the tuple space corresponding to player actions
are converted to HTTP POST requests to the game server. For example
when a pursuer agent updates its location, the move action adds a new
tuple to the tuple space, which is sent as a POST request to the gameserver.
Similarly, the JSON updates generated by the gameserver used by the
smart phone mobile clients are converted into tuples in the tuple space.

Figure 3.15: Overall system architecture

To simplify development of the agent programs, the tuple space to
HTTP middle-ware makes some the aspects of the game state discrete.
For example, the locations of the players are represented as longitude and
latitude pairs by the gameserver, while the agents see the game environ-
ment as a grid and move one cell at a time. Similarly, the real-time clock
used by the gameserver to record the progress of the game is seen as a
series of one second ticks by the agents. However these simplifications do
not affect game play and are not inherent in the normative programming
framework itself.

-75-

NormHACing Framework

The agents’ beliefs and actions are synchronized with the game state
via the tuple space, allowing them to participate in the game. Moreover
the actions of the agents are coordinated and regulated through the norms
that implement the game rules.

3.6.5 Evaluation

In this developmental stage of the framework we achieved to describe
rules of GeoSense game as norms and seen software agents play a virtual
game.

After the initial development we decided not to proceed with Geo-
Sense application in our framework due to unreliability of used tech-
nologies particularly GPS. The long term objective of integrating our
normative programming framework with the game is to investigate the
use of norms as means of coordinating human-agent interaction in hu-
man agent collectives — systems which involve both human and agent
participants. However the version of the application described in the
chapter involves only software agents. During experimental studies with
GeoSense and later Atomic Orchid ran by Wenchao Jiang we observed
high occurrence of GPS location errors which would make coordination
with agents very challenging as it would add another layer of confusion
for both human and agent players. Location based game relies on correct
locations, which provide context for the rules described as norms.

3.7 Summary

We described a framework for programming norm-aware multi-agent
systems which integrates the N-2APL norm-aware agent programming
language with the 2OPL language for programming normative organisa-
tions. To the best of our knowledge, this is the first implementation of
an integrated framework for norm-aware multi-agent systems in which
autonomous agents deliberate about whether to conform to the norms
imposed by a normative organisation. We first described the syntax of the
N-2APL agent programming language which is a normative extension
of 2APL and together with 2OPL forms a normative multi-agent system.
This has allowed us to describe a real world example as a normative

-76-

NormHACing Framework

environment. Next, we have described the implementation of the middle-
ware that allows us to practically introduce flexibly autonomous agents
into the existing game system. The application of our framework in the
location-based mixed reality game GeoSense illustrates its flexibility. Fur-
thermore, game rules can be expressed conditional norms with deadlines
and sanctions, and agents can deliberate about their individual goals and
the norms imposed by the game.

-77-

NormHACing Framework

-78-

4
Group Norms and

Human-Agent Collectives

In this chapter we introduce the notion of a group norm as a tool to aid
flexible coordination in human-agent collectives (HACs). In the previous
chapter, we discussed the implementation of norm-aware agents that are
able to deliberate about norms, which took a step closer to the flexible
autonomy in HACs by adjusting the level of autonomy depending on
context. The next challenge lies in team coordination, where there is a
need for a flexible autonomy. Situations arise when either human or
agent autonomy need to be restricted while the autonomy of other team
members is increased. For example, in a disaster scenario where first
responders need to react to quickly changing situation, the norms can
be used to enable flexible autonomy in the team by trade offs between
going to locations or rescuing people. While HACs could be formed and
disbanded in a flexible manner, our proposed solution is not effective in
an open system where agents can leave to prevent being sanctioned.

-79-

Group Norms and Human-Agent Collectives

4.1 Introducing Group Norms

In this chapter we address some of the limitations of the implementation
presented in Chapter 3. For example, our approach there assumes that the
normative organisation assigns norms and sanctions to individual agents.
While this is appropriate for many applications, there are situations where
it would be more natural to address norms and sanctions to a group
of agents. For example, a coordinator agent may create an obligation
that some pursuer agent take a reading at a particular location without
specifying which agent should do so; if none of the agents discharge the
obligation by the deadline, the normative organisation applies a sanction
to the pursuers as a group. In the following we look at extending our
framework to incorporate group norms and sanctions.

We propose hierarchical group norms that are able to capture complex
situations where a number of agents have to cooperate together to accom-
plish series of tasks. Such norms may be used, for example, to describe
the rules of a mixed reality location based game. In this game the players,
who are a mix of humans and software agents need to work together
in groups, which are formed dynamically. The normative organisation
issues a norm to the representative agent of the group. We call this agent
the responsible agent. This agent has a policy that specifies how this
group norm is treated, and according to this policy it creates individual
norms for agents, who are involved in the fulfilment of the obligation.
The responsible agent is responsible for the discharge of the group ob-
ligation. If the obligation is violated it receives a sanction to apply to
others. According to its policy the agent then sanctions disobeying agents
who contributed to the violation of the norm. For example, lets assume
that an object can be collected only when a group of players carry the
object together. The responsible agent of the group receives an obligation
to collect the object. Its policy contains a team plan for a group object
collection, which is a set of individual norms for the group members.
Each member receives an obligation to move to the location, pick up the
object and carry it with the group to the drop off location.

As we have already seen, in the form of rules and codes, norms are
widely used to coordinate and regulate activity in human organisations,
and more recently they have also been proposed as a coordination mech-
anism for multi-agent systems (MAS). Norms therefore have the potential

-80-

Group Norms and Human-Agent Collectives

to form a common framework for coordination and control in HACs.
As with individual norms, to implement a group norm we need to syn-
chronise the languages of obligations and prohibitions as they are used
in human and agent environments, which is described in Section 4.2 and
define the concept of the group norm, which is described in Section 4.7.
The chapter conclude with illustrative examples in Section 4.9.

4.2 Taxonomy of Group Norms

Group, or collective, norms are a relatively new area of research and we
have already seen some of this in Section 2.5. Although there is a wide
body of research on norms, research has rarely paid attention to a formal
treatment of norms aimed at groups of individuals [Aldewereld et al.,
2013, 2015]. We build upon Aldewereld et al. proposed formal repres-
entation with the aim of understanding the meaning of norms as they
appear in human society. The group norms are categorisable and may be
intended to affect all, each or some members of the group[Aldewereld
et al., 2013, 2015]:

• Addressees describe to whom the normative statement is addressed.

• Actors describe who should achieve or avoid the state that the norm
refers to.

Actorship then can be viewed on three levels in respect to group
norms:

– Individual actorship - individuals are each enacting their part in
fulfilment of the norm.

– Collective actorship - the whole group is fulfilling the norm.
We additionally see the difference between individual and
collective actorship in the level of coordination that is required
from the group members.

– Representative actorship – a previously appointed member or a
subgroup is responsible for the enactment of the norm.

• Responsibles describe who takes care that the norm is upheld, and
will be sanctioned if the norm is violated.

-81-

Group Norms and Human-Agent Collectives

Responsibility then can be viewed on three levels in respect to group
norms:

– Individual responsibility - individuals are each responsible for
their part in fulfilling the norm.

– Collective responsibility - the whole group is held accountable
for violations of the norm.

– Representative responsibility – a previously appointed member
or a subgroup is responsible for violations of the norm.

Responsibility
Actorship Individual Representative Collective
Individual (1,1) Individual action spe-

cified in a generic (role-
based) way: “When a
coin is placed the pur-
suers should surround the
location from north, east,
south and west.”

(1,2) Individual action, ap-
pointed blame: “The co-
ordinator is responsible
for coordinating agents to
surround a coin.”

(1,3) Individual action, col-
lective blame: “To cap-
ture the truck the pursuers
should surround the truck
from at least three direc-
tions.”

Representative (2,1) Appointed action, in-
dividual blame: “Read-
ings are only valid if the
agent who reached the loc-
ation made the first read-
ing.”

(2,2) Appointed action, ap-
pointed blame: “A read-
ing needs to be taken by
an agent at a request of the
coordinating agent.”

(2,3) Appointed action,
collective blame: “The
truck can be captured only
by the agent with the most
points.”

Collective (3,1) Collective action, in-
dividual blame: “Agents
need to carry a radioactive
load together to dispose of
it.”

(3,2) Collective action, ap-
pointed blame: “Coordin-
ator should coordinate
agents not to be further
apart than 5 grid tiles
from the closest agent.”

(3,3) Group action, group
blame: “Agents in the
group should not be fur-
ther apart than 5 grid tiles
from the closest agent.”

Table 4.1: Taxonomy of group norms, based on responsibility and
fulfilment

Using the above specified dimensions of actorship and responsibility
there are 9 types of group norms [Aldewereld et al., 2013, 2015]. These
are defined below with an overview in Table 4.1 with examples. We have
omitted the notion of addressees and assume that a norm is addressed
to the agents that are responsible. The cases are illustrated on examples
from the mixed-reality game GeoSense, which the reader became familiar
in Section 3.6.

• Individual actorship

The straightforward case is the case (1,1) with individual actorship
and responsibility. An example from the game can be that pursuing
agents need to move to a certain location. Each agent will move
to the specified position by itself and would violate the norm if it
failed to comply.

-82-

Group Norms and Human-Agent Collectives

Case (1,2) with individual actorship and representative respons-
ibility is where a selected agent (or subgroup) is to blame. In the
example of agents travelling to a location, a representative agent
will be blamed if they fail to arrive at the position.

Case (1,3) with individual actorship and collective responsibility
where the whole group is accountable for a violation. For example,
the agents have to travel to a location similarly as in the previous
case. If they fail, they will be blamed as the whole group. Where as
we have seen in case (1,2) the representative agents was to blame.

• Representative actorship Representative actorship requires a se-
lected agent (or subgroup) to fulfil the obligation. For example,
the group of agents consists of explorers and carriers and only the
explorers have to travel from a location A to a location B.

Case (2,1) combines representative actorship with individual re-
sponsibility. If the pursuers failed to move from the location A to
the location B together each of them would be individually respons-
ible.

In the case (2,2) with representative actorship and representative
responsibility a selected agent (or subgroup) is responsible for the
violation.

Case (2,3) involves representative actorship and collective respons-
ibility. In this case if the agents violated the norm, the whole group
would be blamed.

• Collective actorship Collective actorship requires agents to coordin-
ate their actions while fulfilling the norm. For example, agents have
to move from location A to a location B together.

Case (3,1) combines collective actorship with individual responsib-
ility. If the agents failed to move from the location A to the location
B together each of them would be individually responsible.

In the case (3,2) with collective actorship and representative re-
sponsibility a selected agent (or subgroup) is responsible for the
violation.

Case (3,3) involves collective actorship collective responsibility. In
this case if the group violated the norm, they would be blamed as
the whole group.

-83-

Group Norms and Human-Agent Collectives

Authors of the original taxonomy [Aldewereld et al., 2013] do not
explicitly consider the concept of group sanctions. In the following we
explain how the group sanction looks and how it is applied. We discuss
this sanctioning in detail in Section 4.3. In the following example we
illustrate the above taxonomy on an example from the GeoSense game. In
the game the pursuing agents are trying to locate a invisible radioactive
truck. Agents make a reading to find out how close the truck is. The
coordinating agent directs agents to a location by placing a coin on the
map. To confuse the players the truck can drop a radioactive load to
mislead the pursuing agents.

1. Individual Actorship: individual, representative and collective re-
sponsibility differs in how the sanction is distributed. In the first
case the sanction is individual for each agent. In the second case the
representative agent is sanctioned and in the last case the sanction
will be applied to the group.

• Case (1,1) Individual Actorship, Individual Responsibility.
When a coin is placed the pursuers should surround the location
from north, east, south and west.

• Case (1,2) Individual Actorship, Representative Responsibility.
The coordinator is responsible for coordinating agents to surround a
coin.

• Case (1,3) Individual Actorship, Collective Responsibility. To
capture the truck the pursuers should surround the truck from at
least three directions.

2. Collective actorship: collective actorship differs from individual
actorship in the form the task needs to be performed. Collective
actorship requires higher coordination of actions amongst the team.

• Case (3,1) Collective Actorship, Individual Responsibility.
Agents need to carry a radioactive load together to dispose of it.

• Case (3,2) Collective Actorship, Representative Responsibility.
Coordinator should coordinate agents not to be further apart than 5
grid tiles from the closest agent.

• Case (3,3) Collective Actorship, Collective Responsibility.
Agents in the group should not be further apart than 5 grid tiles
from the closest agent.

-84-

Group Norms and Human-Agent Collectives

3. Representative actorship: representative actorship can be seen as a
special case of collective actorship, where only a agent (or subgroup)
of the agents is fulfilling the norm.

• Case (2,1) Representative Actorship, Individual Responsibility.
Readings are only valid if the agent who reached the location made
the first reading.

• Case (2,2) Representative Actorship, Representative Respons-
ibility. A reading needs to be taken by an agent at a request of the
coordinating agent.

• Case (2,3) Representative Actorship, Collective Responsibility.
The truck can be captured only by the agent with the most points.

The taxonomy described above is helpful guide when considering
monitoring and enforcement of the norms, which is not taken into ac-
count in [Aldewereld et al., 2013]. Cases (1,1), (1,2) and (1,3) that have
individual actorship can be monitored by the same entity that is capable
of monitoring individual norms. Similarly, cases (1,1), (2,1) and (3,1)
that have individual responsibility can be enforced by the same entity
that is capable of enforcing individual norms. The remaining cases have
more complex requirements. The enforcement and monitoring can be
performed by different parts of the system. In Section 4.3 we discuss the
requirements for both.

4.3 Extensions of Aldewereld et al

Aldewereld et al. [2013] provide a conceptualization of group norms. We
have extended this into a taxonomy that is helpful when considering
monitoring and enforcement of the norms. Aldewereld et al., however,
do not consider the issues of sanctions and deadlines, which are core
parts of norms as identified in Chapter ??. In this section we discuss
approaches that address these limitations.

Following the taxonomy described in the Section ??, we might con-
sider how different types of blame can be applied to the different types
of responsibility based on the type of the norm.

In the specific case where the team shares the responsibility (collective

-85-

Group Norms and Human-Agent Collectives

responsibility) the sanction should be divided in a fair manner [Cholvy
and Garion, 2007; Sergot, 2008; Grossi et al., 2007]. There are a number
of alternative approaches to the problem of fair division of the sanction,
which differs on the level of observability in the system. Observability
relates to ability of the norm enforcing mechanism to view the actions of
agents that preceded to fulfilment or violation of a norm.

• No observability In an environment with no observability of the
actions of the agents the group sanction is applied to the group
evenly because it is not possible to judge which agents contributed
to the violation. The proposed system of group norms assumes that
there is a possibility to enforce individual norms, which implies that
there is at least a partial observability.

• Partial observability In an environment with a partial or limited ob-
servability, it is possible to decide which agents directly contributed
to the violation. For example, they did not fulfil their individual ob-
ligation associated with the group norm. Such a system can manage
cases with individual actorship (cases (1,1), (1,2) and (1,3)) and some
cases of representative actorship where the representative is a single
agent or the activity performed is not joint (cases (2,1) and (2,2)).
The group sanction is then either applied whole or split evenly
amongst the agents who are partly responsible for the violation.
In the case of collective actorship only the norm with representat-
ive responsibility (case (3,2)) can be managed in this environment.
Cases (3,1) and (3,3) when the sanction is applied on the individual
and group levels respectively, the system does not have enough
information about the cause of the violation. Collective actorship
assumes joint coordinated activity towards fulfilment of the goal.

• Full observability In the case of an environment with full observ-
ability of agents’ actions, it is possible to determine weights of each
agents responsibility of the norm violation. Such a system can
capture even situations when an agent contributed to a violation
indirectly or credit agents who were prevented from fulfilling their
part due to external circumstances. In the environment with partial
observability the norm monitoring entity cannot track all events that
might have influenced the outcome. For example, when a group
is obliged to carry a dangerous object out of the field and one of
the carriers suddenly leaves the followed path and proceeds in the

-86-

Group Norms and Human-Agent Collectives

opposite direction. In this case the norm enforcer can blame the one
agent for the failure of the whole group and punish him with the
full value of the sanction.

We propose two types of sanctions (penalties), which are numerical
and non-numerical.

• Numerical sanctions are the simplest kind of penalties. They are im-
plicitly splittable amongst the group and the agents (and therefore
the agent programmers) can directly associate the sanctions with
their priorities. This type of sanction is possible to apply in all cases
of the norms.

• Non-numerical sanctions can be classified as splittable and unsplit-
table.

– Splittable sanctions are either formed of several parts (i.e. con-
sist of a list of sanctions each of which can be applied separ-
ately) or can be divided into individual sanctions. Similarly as
for the numerical sanction, this type of sanction is possible to
apply in all cases of the norms.

– Unsplittable sanctions can be applied as a whole to either each
of the agents, a subgroup or only one the group members
depending on the type of the sanction. These sanctions are suit-
able for norms with collective responsibility (cases (1,3), (2,3)
and (3,3)) where sanction is applied to the whole group and for
the norms with representative responsibility (cases (1,2), (2,2)
and (3,2)) where the sanction is applied either representative
agent or a subgroup. In the cases with individual responsibility
(cases (1,1), (1,2) and (1,3)) unsplittable sanction is unsuitable.

When considering deadlines in group norms we need to take into
account how the deadline of the group norm transforms into individual
deadlines affecting agents. In cases with individual actorship and some
cases of representative actorship (cases (1,1), (1,2), (1,3), (2,1) and (2,2)) we
need to consider whether all individual norms will have have the same
deadline or will there be a sequence of norms. In cases with collective
actorship (cases ((3,1), (3,2), (3,3) and (2,3)) we assume that the individual
deadlines are interlinked to a higher degree.

-87-

Group Norms and Human-Agent Collectives

4.4 Formalising Group Norms

We define a conditional group obligation as a tuple

〈l, C(n, b), O(γ, o, d, s)〉

with the intuitive reading “norm with a label l states: if condition C(n, b)
where n represents normative facts and b represents brute facts holds
in the current state of the environment then there is an obligation for
agents in the group γ to establish an environment state satisfying o before
deadline d, otherwise agents belonging to group γ will be sanctioned
by updating the environment with s. This definition covers all cases
of the group norm taxonomy described in Table 4.1. Compared to the
individual obligations introduced in Section 2.4.2 there are the following
differences: (1) the condition C(n, b) has been split into a normative and
brute part; (2) γ stands for a group or individual; (3) Obligation o can
be addressed to a group or individual. The brute element represents the
original pre-condition that relates to the state of the environment. The
normative element relates to a parental norm. It is utilised to specify this
example group norm is itself part of a higher-level group norm. We will
explain the group norm dependencies below. In the location based game
example an obligation to surround a coin would be represented as seen
in Figure 4.1, which indicates that when there is gold object(Coin) group
Pursuers is obliged to surround the coin in 3 minutes. Violating this norm
results in the pursuers being sanctioned with 300 points, damaging their
game score.

<surroundCoin, //label
C(none,group(Pursuers) and object(Coin)), //precondition
O(//deontic part

Pursuers, //addressee
surround(Coin), //environmental state
3 minutes, //relative deadline
loosePoints(300) //sanction

)>

Figure 4.1: Example of group obligation.

Similarly, a conditional prohibition is expressed as a tuple

〈l, C(n, b), F(γ, p, s)〉

-88-

Group Norms and Human-Agent Collectives

with the intuitive reading “norm with a label l states: if condition C(n, b)
where n represents normative facts and b represents brute facts holds in
the current state of the environment, then it is forbidden for agents in
group γ to establish an environment state satisfying p, otherwise sanction
s will be imposed.” Unlike obligations, where a sanction is incurred
once if the obligation is not discharged by the deadline, in the case of
prohibitions, the agent incurs a sanction each time the prohibition is
violated. In Figure 4.2, which indicates that group Pursuers is prohibited
from entering water together. Violating this norm results in the group
pursuers being sanctioned with 500 points.

<enterWaterTogether, //label
C(none,group(Pursuers)), //precondition
F(//deontic part

Pursuers, //addressee
inWaterTogether, //environmental state
loosePoints(500) //sanction

)>

Figure 4.2: Example of group prohibition.

4.5 Team Plan

Group norms can be fulfilled by a sequence of individual actions. These
individual actions can be mapped to individual norms. We call the
sequence of individual norms, which entails the fulfilment of the group
norm, a team plan. While there possibly are many options how to translate
the group norm in to a sequence of individual norms, the team plan has
to satisfy the minimum (or weakest) requirement for the fulfilment of
the group norm. This means that when individual agents fulfil their
individual norms they are contributing to the fulfilment of the group
norm. If all agents fulfil their individual norms the group obligation will
be fulfilled. Team plan is defined as

teamPlan(group, norm, 〈individual_norms〉)

where group stands for the group the norm is addressed to. norm is a
label of the group norm and 〈individual_norms〉 is a set of individual
norms.

-89-

Group Norms and Human-Agent Collectives

Translation of a group norm into a team plan should be done in a way
such that each agent is capable of fulfilling their individual norm. To form
a team plan the membership of the group to which the norm is addressed
must be known. We may also need to consider what must be agreed
upon beforehand, for example whether agents should specify what kind
of capabilities they posses and what kind of sanctions are applicable to
them.

Deadline of a group norm needs to be respected and deadlines of all
individual norms have to be scheduled on or before the group deadline. In
some cases a deadline of individual norm can precede another individual
norm if its fulfilment is necessary for satisfaction of precondition of the
subsequent norm.

The team plan is hierarchical tree like structure formed from norms.
We assume that every group norm is divided into a finite set of individual
and group norms, which fulfilment will lead to the fulfilment of the
original group norm. It is the responsibility of the responsible agent to
create a team plan and assign individual members (or subgroups) of the
group to each new norm.

4.5.1 Sanctioning Policy

Together with the division of group norm we have to divide a group sanc-
tion into a set of individual sanctions. We call this division a sanctioning
policy. The policy has the form

policy(norm, sanction_policy)

where norm stands for the label for the group norm the policy relates to
and
sanction_policy stands for the policy that will be applied in case of norm
violation. The complexity of the policy depends on observational pos-
sibilities in the environment. For example, the policy specifies that the
sanction will be split evenly between the agents who violate the norm.

There are a number of issues to consider regarding the division of the
sanction.

-90-

Group Norms and Human-Agent Collectives

How to divide the sanction fairly? We have previously discussed how
different levels of observability in the environment affect the amount
of fairness that is achievable. By fairness we mean that is desirable to
punish agents with a sanction that is proportionate to their actions.

What is the relationship between the sanctions? What is the relation-
ship between the group sanction and the set of individual sanctions
— do they have to be equal or greater in total?

In our proposal we assume that individual sanctions are equal to a
group sanction.

What are the constraints when creating individual sanctions for agents?
The sanctioning policy is created by a responsible agent (Section
4.6). Therefore it needs to be ensured that the responsible agent
creates the policy in the interest of the cooperation of the whole
group and does not disadvantage or favour individual agents.

4.6 Responsible Agent

Fulfilment of a group norm by a group of agents implies that the norm
may be divided into individual norms for each member of the group (or
a subgroup). We propose the concept of a responsible agent in the group,
which will have the responsibility to split the group norm into individual
norms that are directed to the group members or a subgroup.

The responsible agent is responsible for the coordination of the group
activity. The agent has two means of doing this: a team plan and a
sanctioning policy. The team plan specifies a set of norms into which the
group norm will be divided. The sanctioning policy specifies how the
sanction will be applied in the case of violation of the group norm. It is a
responsibility of the responsible agent to select the policy. The members of
the group are informed of the sanctioning policy together with the norm
itself. The policy scheme specifies how much each individual obligation
contributes to the potential violation. The group is defined as tuple
group(group, agent) where agent relates to a default responsible agent of
the group. Each group of agents has to have an agent that is responsible
for coordinating the group activity. This responsible agent may however
be different for different types of obligations. The relationship is defined
as responsibleAgent(agent, norm_label).

-91-

Group Norms and Human-Agent Collectives

The responsible agent is granted a power to create norms (and im-
plicitly sanctions for other agents). This agent therefore needs to be
constrained by a higher set of individual norms to limit their activities
and we can think of these a maximum (or strongest) set of individual
norms. Ideal team plan is then found in the set of plans that satisfy both
the minimal and maximal requirements conditions.

The responsible agent may be both human and software agent. There
are a number of issues arising from that fact that a software agent may be
in charge of coordinating human players.

How will human agents react to software responsible agents? In the
proposed system both human and agent agents can become respons-
ible agents. We would like to establish if human players behave
differently when receiving norms from agent and human players.
We will address this question in the evaluation (Chapter 6). Another
question is if it is necessary for human players to be aware who in
fact is a responsible agent in a concrete instance.

Do we need additional protective measures for human players? What
additional constraints or protective measures do we have put in
place to ensure well-being of human players? We need to consider
that human agents have different capabilities and endurance than
software agents and need to be protected from coming to harm.
Responsible agents need to be limited in what they can ask human
agents to do.

4.7 Hierarchical Group Norms

Our team plan solution may be used recursively in a way that a team
plan may contain a hierarchy of group and individual norms. When a
responsible agent chooses to address a subnorm to a group there are two
options regarding the potential group members. The subnorm can be
addressed to a subgroup formed of the members of the original group,
or a subgroup where members do not belong to the original subgroup.
Should the subgroup be an arbitrary group of members we need to con-
sider what additional measures are required to be in place to prevent
agents from misusing the power. Where the agents are limited to address-

-92-

Group Norms and Human-Agent Collectives

ing subnorms to members of the original group no additional precautions
are necessary.

The position of the norms within the hierarchy needs to be traceable,
for example by considering the relationship between the norms. We
define a parental norm in each subnorm. This way the evaluation of
norms is carried using a bottom up approach. We also need to consider
implications for deadlines. A deadline of each subnorm needs to be set
earlier or equal to the parental norm.

4.8 Implications for Agents

The introduction of group norms into human-agent collectives brings
specific issues we need to consider. In this section we discuss challenges
that arise for human and software agents.

4.8.1 Human Agents

The way the previous sections have described norms and representations
of norms is applicable to both humans and software agents.

Human society is naturally used to follow norms in form of law,
guidelines or moral rules. In human society norms are present in a
number of different forms e.g. legal, social or cultural. Driving on the
left is required by the law while walking on the left side of pavement
can be seen as a cultural norm. Nearly every organisation has rules
and principles its members have to follow. It can be in a form of a
quality manual, which describes internal procedures and processes. For
example a process of ordering new equipment is described as a sequence
of obligations. An employee first obliged to ask line his/her manager
if they can order a new printer, the line manager approves the request,
the employee then makes an order, once the printer arrives a technical
personal is obliged to install it.

It also natural for people to acquire and assimilate new norms quickly.
We commonly infer social and cultural norms. An example of a rapid as-
similation of previously unknown norms can be a team building exercise.

-93-

Group Norms and Human-Agent Collectives

A group is invited to participate in an activity aiming to enhance team
cooperation of a team. They are often faced with a task that requires to
follow a set of norms and coordinate themselves on the go. An example
can be when a blindfolded subteam is retrieving a bomb while being
coordinated and helped by the not visually impaired members of the
team. Human participants quickly learn and reason about the rules they
face. Usually there are no specific requirements needed to be in place to
help people follow norms.

While we assume that human naturally follow norms there are still
factors to consider when coordinating human agents with norms, for
example presentation and readability, the effect of sanctions and differing
capabilities between human and software agents.

When we talk about group settings there are new issues to consider.
One of the problems to consider is reaction of human agents to software
agents. When being coordinated with a group norm human agent will
have software agent team members and/or group coordinator (respons-
ible agent). In the evaluation (Chapter 6) we will explore how different
settings affect human agents.

Another problem to consider is awareness of actions of others. For
example, if we consider a norm “no more than three people should be
on a bridge at time”. If this norm is violated depends on the state of
the environment. In one case stepping on a bridge would be punished
while in another case it would not. A person who is about make decision
whether to step on the bridge needs to be aware how many people are
already on bridge. Does any other person intend to step on the bridge
at the same time? Does anyone intend to leave the bridge at the same
time? In the event of a violation of such a norm another question arises
— who is to blame and should be sanctioned? Are all people present
on the bridge equally responsible for the violation? Where there any
other rules that were violated? For example, a person verbally agreed to
leave the bridge but failed to do so. Another issue arises if we modify
the prohibition to “the bridge can carry only 300 kilograms”. We then
assume that all people interested in crossing the bridge are able to make
an informed judgement whether or not the prohibition will be violated.

To address human needs in our system we have translated 2OPL
norms into English sentences, limited the amount of norms at one moment

-94-

Group Norms and Human-Agent Collectives

and created supportive interface and communication protocol. Human
interface is described in more detail in Chapter 6.

4.8.2 Software Agents

Norm-aware agents deliberate about their obligations and prohibitions
considering the sanction, which is applied if the norm is violated. The
severity of sanctions needs to be comparable. In the case of a group
norm the agent may not be aware the effect of the sanction on the group
members. Norm-aware deliberation is based on the sanction associated
with the violation of the norm and its deadline. In the case of the group
norm the severity of the sanction can vary during the execution of agents’
programs. The capability of agents to make the best decision to avoid the
highest penalty is affected by their ability to perceive the environment
and the actions of the other agents. For example, consider a norm of
the type (1,1) in a partially observable environment, when four agents
have a group obligation to surround a coin. The penalty they incur for
non-complying as a group is 1000 points. The agents view this sanction
as priority 1. If none of the agents oblige all of them will be punished
with a penalty of 250 points deduction, which they regard as priority 5
(priority 5 is lower than priority 1). If, however, only one agent does not
comply it will be sanctioned with the full penalty of 1000 points.

Depending on the observational possibilities of the environment
agents can utilise different strategies in norm-aware deliberation. In
the following we give examples of types of agents.

• A fully-aware agent has an ability to observe actions of the other
agents in the group. The agent can then dynamically adjust the
priority of the norm according to the current situation. For example,
if the agent notices that all of the other agents are close to fulfilment
of their part (norm) and it would be therefore sanctioned with the
full penalty it priorities the norm accordingly. On the other side,
if it is apparent that none of the agents will fulfil the norm it will
lower the priority accordingly.

• A rational agent has limited knowledge about the environment. It is
informed when the other agents in the group fulfil their part or miss
a deadline. It re-calculates the priorities accordingly and proceeds

-95-

Group Norms and Human-Agent Collectives

with the most rational choice to minimize the effect of the potential
sanction.

• A socially altruistic agent always prioritises group norms over its
individual goals. This behaviour is enabled by having the agent
assumed it would be penalized with the full value of the sanction,
and this always has a higher priority than just a part of the sanction.

• An optimistic agent assumes that none of the agents in the group will
do their part and therefore it would only be penalized with fraction
of the penalty. Even in this case the agent can still decide to comply
with this norm.

4.8.3 Flexible Autonomy with Group Norm

The proposed design of hierarchical group norms enhanced the support of
flexible autonomy in multi-agent systems and HACs. Norm-aware agents
can already be seen as flexibly autonomous as explained in Chapter ??.
One of the features of this design is the added ability for the group (or
responsible agent) to decide how to divide the group norms amongst the
agents, which further enhances the flexible autonomy of the system. In
this manner the group coordinator is given capacity to split up the group
task considering the current situation (context).

4.9 Examples

This section helps the reader understand the dynamics of group norms
with the help of concrete examples.

4.9.1 Birthday Example

A simple example of a collective obligation can be cooking a surprise
birthday breakfast for Mum. The obligation in this case is to work to-
gether and prepare a breakfast. Someone has to go shopping for food
ingredients, a birthday gift and someone has to cook the breakfast. The
individual tasks will be coordinated by dad who will assume the role of

-96-

Group Norms and Human-Agent Collectives

the coordinator (responsible agent). Dad can decide who will do food
shopping, who will buy a gift and also which sanctions would be applied
if the tasks are not fulfilled, for example, the son being prohibited from
watching TV or the dad being prohibited from having a beer. The pseudo
code of the scenario is shown in Figure 4.3.

(
mums_birthday,
C(−,birthday(date(Date,Month)),
O(family,birthday_surprise(Date,Month),2 days,restrictions)

).

(
food_shopping,
C(mum_birthday,son(money)),
O(son,[food_shopping(flour,milk),2 days,no_TV)

).

(
buy_gift,
C(mums_birthday,daughter(money)),
O(daughter,[buy_gift(flowers),2 days,no_TV)

).

(
cook_breakfast,
C(mums_birthday,shopping(milk,flour)),
O(dad,cook_breakfast(pancakes), 2 days,no_beer)

).

group(family,dad).
teamPlan(dad,mums_birthday,[food_shopping,buy_gift,cook_breakfast]).
policy(mums_birthday,blame_dad).

Figure 4.3: Birthday surprise as a group norm

4.9.2 Location based game example

Another example of the use of the group norms can be a location based
game, which highlights formation of HAC. Location based game similar
to a treasure hunt is played by human players by moving from a place
to a place while agent players are visible only on the map. Human and
software players need to cooperate together to successfully complete
tasks.

Tasks in the game are handled as obligations aimed at a group of

-97-

Group Norms and Human-Agent Collectives

players. A designated player is then responsible for the completion
of the tasks. The coordinator creates new obligations for individual
players or even new group obligations. In the event of the obligation
not being fulfilled the designated player is also responsible for splitting
of the sanction that incurs on the group. Consider the scenario from
above where a group of pursuers is chasing down an virtual radioactive
truck. To aid the navigation the team has a player in the role of controller.
The controller has access to a complete map where they can spot traces
of the truck and help the pursuers locate and capture the truck. The
controller cannot directly communicate with the players but can place
hint objects on the map that act as guides for players. For example when
the controller places a coin in the play field the pursuers know that they
should surround the coin as illustrated in Figure 4.4 and pseudo code in
Figure 4.5, where agents are assuming positions around the coin. In the
case that some of the agents fail to participate in the surrounding task
they should be sanctioned by loosing points, but not the agents that did
contribute with their part.

Figure 4.4: Group obligation example in the GeoSeose game

4.10 Summary

We have designed a system of hierarchical group norms, which can be
used for coordination in mixed human-agent teams. We have introduced

-98-

Group Norms and Human-Agent Collectives

%group surround
(

surroundCoin,
C(−,coin(X,Y)),
O(pursuers, surround(X,Y), 3 minutes, loosePoints(800))

).

%individual group norm
(

surround(Direction,Agent),
C(surroundCoin, coin(X,Y)),
O(Agent, at(X,Y,Direction,Agent), 3 minutes, splitEvenly(800))

).

%responsible agent assignment, team plan and sanctioning policy
group(pursuers,controller).
teamPlan(controller,

surroundCoin,
surround(east,a1),
surround(north,a2),
surround(south,a3))
).

policy(surroundCoin,splitEvenly).

Figure 4.5: Surround coin as a group norm

the concept of group norms and provided its taxonomy that builds upon
an existing conceptualization. We further extended it to consider mon-
itoring and enforcement of the norms particularly with sanctions and
deadlines. We have defined a way of representing group norms. Next we
have seen how group norms can be applied to the human-agent collective
by considering details such as team plans, sanctioning policies, respons-
ible agents and hierarchical norms. Finally we considered the differing
implications of group norms on both human agents and software agents.
In the next chapter we will see how this framework can be implemented
in practice.

-99-

Group Norms and Human-Agent Collectives

-100-

5
NormHACing+

In the previous chapter we described the concept of group norms and how
it relates to flexible autonomy. In this chapter we show how a working
subset of group norms was implemented as an extension of normHACing
framework (described in Chapter 3). We have seen that hierarchical group
norms are able to capture complex situations where number of agents
or agents and humans have to cooperate together to accomplish series
of tasks. To illustrate possible application we use the group norms to
describe rules of a mixed reality location based game, which was first
introduced in the Section 3.6. In this game the players who are a mix of
humans and software agents need to work together as a team.

This chapter is structured as follows. In Section 5.2 we introduce
G-2OPL, which is an extension of 2OPL. G-2OPL supports the hierarch-
ical group norms and their enforcement. It is followed by Section 5.3
which describes how N-2APL was adapted to work with the new norm
scheme. The connecting middle-ware that allows the system components
to communicate to each other is outlined in Section 5.4 and then how

-101-

NormHACing+

the whole system is put to use in an illustrative application in Section ??.
Finally the achievements and corresponding advantages and drawbacks
are discussed in Section 5.7.

5.1 Motivation

In order to evaluate group norms we have implemented a representative
subset. To be able to test the team coordination we need a group obliga-
tion, which could be fulfilled by a coordinated team action. The system
needs to be able to observe if the group obligation was fulfilled and
which agents contributed to the violation if it occurs. The team coordin-
ator needs to have an ability to let the team know how he/she decided
on the team plan and to specify how the group would be sanctioned in a
case of a violation. As with individual norms it is important to look into
the involvement of human players. Both human and software parts of
the team need to have access to the same information and understand it
appropriately; and need to be able to communicate with each other.

In the following it is described how 2OPL was extended to G-2OPL
to support the handling of hierarchical group norms. In order to process
a group norm we need a system that will (1) recognise the group and
the responsible agent of the group (2) support the notion of hierarchical
norms and be able to enforce them (3) support group sanctioning policies.

We describe the implementation of a system that embodies the frame-
work described in Chapter 4 using 2OPL, N-2APL and a tuple space to
support coordination between components. We discuss the limitations of
the technical approach, but also how this prototype system can provide a
realistic mechanism for evaluating the framework.

5.2 G-2OPL

G-2OPL is built on 2OPL [Dastani et al., 2009; Tinnemeier, 2011; Testerink
and Dastani, 2012] which is an organisation programming language de-
signed to support the implementation of normative multi-agent systems
where norms are implemented exogenously. G-2OPL supports two types
of norms. The first type is an individual norm as introduced in 2OPL

-102-

NormHACing+

Dastani et al. [2009]; Tinnemeier [2011] that applies to an agent. The
second type is a group norm which is addressed to a group of agents and
its syntax was described in Section 4.4. The syntax of G-2OPL consist
of facts, norm schemes, groups and sanctions and is described in the
following.

5.2.1 Syntax

As we wish to extend 2OPL we first need to understand its syntax. Facts
represents organisational initial beliefs (brute facts) and are placed in
a section labelled f acts. They have the form of prolog facts. The fact
base is updated with fact update rules during the execution. Fact update
rules are defined in a language section e f f ects. These rules are based on
Hoare triples [Hoare, 1969]. An update has a head, a precondition and
a consequence. The consequence of the update is formed of lists of fact
assertions and retractions. If the precondition is not used it is set to true
in these cases. Otherwise the previous value is required, for example, an
old clock value is replaced with the new time.

Norms are represented in G-2OPL as norm schemes from which norms
are detached. An example of a scheme of group obligation is shown in
Figure 5.1 and in Figure 5.2 is a group prohibition. The label identifies the
scheme. The normative precondition part is used to specify institutional
states that need to be true. These can be for example a different norm
that needs to be detached for the precondition to hold. When a norm
is instantiated we create an unique label which is a combination of the
label and the substitutions made when matching the precondition to the
fact base. Brute fact preconditions consist of states of the environment.
The deontic part of the norm scheme may be either an obligation or a
prohibition. It is composed of four elements in case of the obligation and
of three in case of the prohibition. The first one is an addressee of the
norm, which can be either and agent or a group. The second part is a
list of environmental states, which are the propositions that need to be
brought about, resp. avoided. In the third part is a deadline (only for
obligations) and the last forth element is a set of sanctions that would
be applied in case when the violation occurs. The sanctions in 2OPL are
implemented as a list of states, our extension also implements sanctions
as a list, and this approach also enables future extensions.

-103-

NormHACing+

norm(
surroundCoin, //label
(group(Pursuers), //precondition
object(Coin),
at(X,Y,Coin)),
obligation(//deontic part

Pursuers, //addressee
[surround(Pursuers,Coin,X,Y)], //list of states
now + 5, //relative deadline
[reduce(300)]) //sanction

).

Figure 5.1: Example of group obligation.

norm(
enterWaterTogether, //label
(group(Pursuers)), //precondition
prohibition(//deontic part

Pursuers, //addressee
[inWaterTogether(Pursuers)], //list of states
[reduce(500)]) //sanction

).

Figure 5.2: Example of group prohibition.

5.2.2 Groups

Group obligations are addressed to groups of agents. Monitoring and
enforcement of group norms are delegated to the normative organisation
in the same way as individual norms are. In order for the organisation
to be able to enforce these norms it needs to be aware that such a group
exists and also who is the default responsible agent of the group as shown
in Figure 5.3.

When a group obligation is detached the responsible agent then creates
individual obligations according to a team plan. As described in Chapter
4 we represent the team plan as a structure of norms. In essence, the
group team plan is already specified within the organisation as shown
in the Figure 5.5. The responsible agent activates the norm through the
tuple space and the effect updates.

Together with the team plan the responsible agent also has a sanc-
tioning policy scheme that specifies how the group sanction will be split

-104-

NormHACing+

in case the obligation is violated policy(normlabel, policyname). The policy
scheme specifies how much each individual obligation contributes to
the potential violation. By default all derived obligations have the same
weight. If a violation of the group norm occurs, the normative organisa-
tion acting as the enforcer applies the sanctions according to the policy
scheme to the agents that belongs to the group involved. If the respons-
ible agent fails to detach the individual obligations the agent itself is
sanctioned with the group sanction.

group(
pursuers, . //group name
agent1 . //responsible agent

).

Figure 5.3: Example of group listing.

It is also possible to specify a designated responsible agent for each
norm scheme as seen in Figure 5.4.

responsibleAgent(
agent1, . //agent name
surroundCoin . //group norms scheme

).

Figure 5.4: Example of specific responsible agent assignment.

norm(
group_surround(G),G,
([],[group(G), goal(X,Y,Z))],
obligation([surround(X,Y)],now + 18,[reduce_group(G,700)])
).

norm(
group_task(group_surround(G)), Agent,
([detached(group_surround(G, Deadline)), agentSTask(Agent,X,Y,goal(GX,GY),S,

Policy))],[pursuer(Agent), goal(GX,GY,Z)],
obligation([at(X,Y,Agent)], Deadline, [reduce(Agent, S, Policy)])
).

hierachical(group_task(_)).

Figure 5.5: Team plan assignment.

-105-

NormHACing+

5.2.3 Sanctions

While a sanction is part of the norm scheme, the way it is applied to the
agents is specified in the sanction rules construct shown in Figure 5.6.
For example, the sanctioning procedure splitEvenly(Agent, S) calculates
appropriate sanctions to be applied to each agents.

policy(
surroundCoin, . //group norms scheme
splitEvenly . //sanctioning policy

).

Figure 5.6: Sanctioning policy assignment.

The EBNF of G-2OPL is defined in the Figure 5.7.

GOPL_program ::= “facts: " (〈literal|norm〉)+ |
“effects: " 〈e f f ects〉+ |
“sanction rules: " 〈sanctionRules〉+

〈e f f ects〉 ::= “{”〈literal〉“}〈literal〉{" 〈literal〉 “}"
〈sanctionRules〉 ::= 〈literal〉“=>" 〈literal〉
〈norm〉 ::= “norm("〈label〉, 〈precond〉, 〈deontic〉“)"
〈label〉 ::= 〈atom〉
〈precond〉 ::= “("〈nc〉, 〈bc〉“)"
〈nc〉 ::= “["〈atom〉(“," 〈atom〉)*“]"
〈bc〉 ::= “["〈atom〉(“," 〈atom〉)*“]"
〈deontic〉 ::= “obligation("〈subject〉, 〈state〉,

〈deadline〉, 〈sanction〉“)" |
“prohibition("〈subject〉, 〈state〉,
〈sanction〉“)"

〈subject〉 ::= 〈atom〉
〈state〉 ::= “["〈atom〉(“," 〈atom〉)* “]"
〈deadline〉 ::= 〈atom〉
〈sanction〉 ::= “["〈atom〉(“," 〈atom〉)* “]"
〈group〉 ::= “group("〈atom〉“,"〈atom〉 “)"
〈responsibleAgent〉 ::= “responsibleAgent("〈atom〉“,"〈atom〉“)"
〈policy〉 ::= “policy("〈atom〉“,"〈atom〉 “)"

Figure 5.7: EBNF syntax of G-2OPL.

5.2.4 Execution

2OPL programs are executed by means of an interpreter. There is an
execution loop which consists of the following steps: agents’ actions are

-106-

NormHACing+

observed (the fact base is synchronised with the state of the environment),
norms are processed and sanctions are applied.

5.2.4.1 Fact Base Updates

In contrast to 2OPL we now logically split facts into brute and normative
sets. The organisational fact base contains the state of agents’ envir-
onment. This is important because the fact base is used to determine
whether a norm precondition was satisfied and whether any norm was
violated. The organisation keeps a history of the updates. These two sets
are both held by the organisational fact base. In Figure 5.8 we see an ex-
ample of fact updates implementation. For example, on the first two row
we see handling of internal time. If no clock is set yet then the first row
will not be triggered as the precondition clock(Old) cannot be satisfied.
The second row {true} time(X) {clock(X)} will set internal clock to time
New. When in the next few seconds new time(New) is received from the
tuple space the old time fact will be removed not clock(Old) and new
time saved as fact clock(New).

Effects:

{clock(Old)} time(New) {not clock(Old), clock(New)}
{true} time(X) {clock(X)}

{true} position(Agent, cell(X,Y), Clock) {at(X,Y,Agent,Clock)}

{not goal(A,B,C)} goal(cell(X,Y), null, Clock) {goal(X,Y,Clock)}
{true} goal(cell(X,Y), Agent, Clock) {goal(X,Y, Agent,Clock)}

{true} proposal(Id,A1,A2,Clock) {proposal(Id,A1,A2,Clock)}
{true} response(Id,X,Clock) {response(Id,X,Clock)}

{true} setGoal(Agent,X,Y,GX,GY,S,Clock) {agentSTask(Agent,X,Y,goal(GX,GY),S)}
{true} group(Name,Agent,Type,C) {group(Name), ra(Name,Agent,Type)}
{true} groupObl(Obl,Sanction,C) {groupObl(Obl,Sanction)}

Figure 5.8: Example of effects in G-2OPL

5.2.4.2 Norm Processing

The norm processing phase consists of creation of new instances (us-
ing query @instantiate_norms/2) and clearing of expired ones (in query

-107-

NormHACing+

@clear_norms/1). Norm instances are notated as @ni/2 are instantiated
from norm schemes where the precondition can be entailed from the
fact base. Only one instance derived from one norm scheme with one
particular substitution is allowed at a time. Addressees of the norms are
notified upon the instantiation of the norm. The clearing procedure first
checks if the norm can be cleared, which means it either expired or was
violated. And then modifies the institutional fact base appropriately.

Sanction rules:
reduce(Agent,Points) and do_reduce_health(Agent,Points) and notifyAgent(Agent,

changed(status)) => not reduce(Agent,Points).
reduce_group(Group,Points,Policy) and do_reduce_health(Group,Points,Policy) =>

not reduce_group(Group,Points,Policy).

viol(agent_directed(Label,Agent,prohibition(State,Sanction))), do_sanction(Sanction),
hierachical(Label) =>

not viol(agent_directed(Label,Agent,prohibition(State,Sanction))).
viol(agent_directed(Label,Agent,obligations(State,Sanction,Deadline))), do_sanction(

Sanction), hierachical(Label) =>
not viol(agent_directed(Label,Agent,prohibition(State,Sanction,Deadline))).

viol(agent_directed(Label,Agent,prohibition(State,Sanction))), do_sanction(Sanction)
=>

not viol(agent_directed(Label,Agent,prohibition(State,Sanction))).
viol(agent_directed(Label,Agent,obligations(State,Sanction,Deadline))), do_sanction(

Sanction) =>
not viol(agent_directed(Label,Agent,prohibition(State,Sanction,Deadline))).

Figure 5.9: Sanction rules in G-2OPL

5.2.4.3 Application of Sanctions

Sanctions are applied in the last phase of the execution loop (in query
@rule_closure(@sanction)). Due to the hierarchical structure of the group
norms the sanctions need to be processed from the child to the parent
following the norm scheme hierarchy as specified in the policy scheme.
This is to ensure that agents get sanctioned with the appropriate portion
of the group sanction according to their performance while enacting
their individual norm part. Group sanction cannot be applied until all
associated individual norms are resolved, which means that they are
either satisfied or violated. Sanction rules implementation is shown in
Figure 5.9.

-108-

NormHACing+

5.2.5 Simplification of the Hierarchical Norms

This prototype supports simplified version of hierarchical norms intro-
duced in Chapter 4. List of practical implementation limitations includes:

• There is a difficulty in the synchronisation of deadlines between
the group and derivative obligations. Due to the delay between the
detachment of the group obligation and the derivative obligations
created by the responsible agent and due to the fact that obligations
are programmed with relative deadlines, in the current system
design it is impossible to synchronise them appropriately. This was
fixed with specifically adjusted relative times.

• Only obligations can be made subnorms from a group obligation.
This is due to absence of deadlines in the prohibitions (which was
omitted due to tractability of N-2APL [Alechina et al., 2012]).

5.3 GN-2APL

Agents have individual plans to enact their part in a group obligation
either as a responsible agent or a team member. For example in a case
of the obligation to surround a coin agent a1 is required to required
to coordinate group members. Procedurally this consist of publishing
an update to the tuple space with a command @ctenv which is then
reacted to by the organisation. The organisation itself then publishes
new individual norms in the tuple space which then notifies the agents.
Members of the group receive these new norms and then follow their
own internal procedures accordingly.

When an agent receives an obligation with a split sanction it deliber-
ates about the actual value of the sanction, which is directly translated
to a priority. For example if all agents involved in the task violate the
obligation the sanction will be split evenly. If on the other hand, only the
agent failed to bring about the obliged state, it will be sanctioned with the
full value of the sanction. The agents can deliberate about the expected
value in a number of ways for example be of optimistic or pessimistic
nature, as described in Chapter 4.

-109-

NormHACing+

Agents know the maximum and minimum sanction they can incur.
To be precise again agents take into account the priority of the sanction
which as we know has a numeric value. It is still assumed that there is
a linear dependency between priorities and sanctions. The minimum
sanction an agent can incur is a fraction of the full sanction depending on
the number of agents responsible for the violation.

PG− rules are sufficiently generalisable to the group scenario, that
agents can adopt an appropriate plan in reaction to being notified of a
new obligation. For example in a case of an obligation to surround a coin,
agents enact a plan that involves moving to the specified position. If an
agent cannot reach the position because it is fulfilling a conflicting goal of
a higher priority it will be then sanctioned with either the whole sanction
or its portion depending on how many of the other agents also violated
the norm proportionally to how it is specified in the sanctioning policy.

When an agent deliberates about which plan to adopt or which goal
to achieve in case of atomic plans, it takes into account the maximum
possible sanction it can incur. At the moment agents do not take into
account actions of the other agents in the group when deciding whether
to take part in fulfilling a group obligation.

5.3.1 Limitations

This prototype supports only a necessary subset of hierarchical norms
introduced in Chapter 4. Other limitations include:

• Difficulty in the programming of norm-aware agents in a way that
they “respect" the prohibitions. The procedural nature of the way
norm-aware agents operate means that at the beginning of the
procedure the agent may not be aware that at the end a prohibition
may have been violated. Therefore implementing norm-aware agent
in a way that respects prohibitions does not fit ideally with this
procedural model. This complication was not introduced in the
group norm-aware version of the agents but it is carried over from
the N-2APL.

• Group norm-aware deliberation was partially implemented in the
prototype. The model was designed for the agents to deliberate

-110-

NormHACing+

with a variable value of the priority of the sanctions associated
with the norm violation. In the current system however agents
do only count with the maximum value. Fully group norm-aware
deliberation that would involve the priority of the sanction being
changed dynamically according to the actions of the other group
members was out of the scope of this thesis. Considering the time
available there was an option to implement agents that are optimistic,
realistic or pessimistic with regard to the expected sanction. Optimistic
agent would always count with the minimum sanction, which is
when all the group members violate their part. Realistic agent would
count with a sanction that accounts to half of the agents not fulfilling
their obligations. Pessimistic agent would always plan for the worst,
which in this case means that all other agents would discharge their
obligations and the agent would be penalised with the full value,
however this leads to reliable team spirited agents. In the prototype
all agents are of the pessimistic type, this is because of the interaction
with human players, and to not confuse them about the agent’s
intentions.

5.4 Middle-ware

There were numerous problems with the first tuple space of choice Jini
JavaSpaces, which was used in the previous version of normHACing
framework discussed in Section 3.5. To be more specific it was not user
friendly to install and maintain, which made the deployment of the
framework difficult. Also the notification mechanism was not reliable
to the extent that it significantly affected the gameplay. The components
of the architecture are dependent on the tuple space as coordination
mechanism and therefore where relatively high number of new tuples
inserted did not trigger a notification event it was a major problem. A
solution seemed to be either to change the design so that notifications
are not the driving mechanism, modify JavaSpaces or replace JavaSpaces
with a different implementation of a tuple space. The last option was the
most viable and the framework is now coordinated by Gigaspaces 1. This
instance supports, on top of Jini functionalities, regular expression search
and its notifications are reliable and also include the newly inserted tuple

1http://www.gigaspaces.com/

-111-

NormHACing+

in the notification event.

The fact base of the organisation is synchronised with the tuple space
via the update rules described earlier.

5.5 Human Agents

To address the needs of human agents in the framework we created a
graphical interface where the current state of the environment is observ-
able. The interface provides human agents with the same information as
is available to the software agents through the tuple space. For example,
they can see positions of other players and a game clock. Further features
such as translation of GN-2APL into English language and interface for
responsible agents were developed for an evaluation with the application
Color Trails and are detailed in the next chapter (Chapter 6).

5.6 Applying the Framework

to a Location Based Game

To understand how the implementation works in practice, lets return to
the example we used in Section 4.9.2, the location based game. Tasks
in the game are handled as obligations aimed to the group of players.
A designated player is then responsible for the completion of the tasks.
For example when the coordinator places a coin in the play field the
pursuers know that they should surround the coin as illustrated in Figure
4.4, where agents are assuming positions around the coin. In case that
some the agents fail to participate in the surrounding task they should be
sanctioned, but not the agents that did contributed with their part. The
representation of this group norm in G-2OPL is shown in Figure 5.10.

The group norm with label group_surround(G) is directed to a group
G. Group G needs to satisfy preconditions that G is group and there
needs to be goal Z at a location X, Y. The group G is then obliged to
surround location X, Y by the time now + 18. If the the group fails to
satisfy the surround(X, Y) goal in the specified time it will be sanctioned
with reduce_group(G, 700) which will deduct 700 from the group score.

-112-

NormHACing+

norm(
group_surround(G),G,
(group(G), goal(X,Y,Z)),
obligation([surround(X,Y)],now + 18,[reduce_group(G,700)])
).

norm(
agent_surround(Agent), Agent,
(pursuer(Agent), detached(group_surround(W, Deadline)), goal(GX,GY,Z),

agentSTask(Agent,X,Y,goal(GX,GY),S)),
obligation([at(X,Y,Agent)], Deadline, [splitEvenly(Agent, S)])
).

Figure 5.10: Example of group obligation for surround coin.

The agent code in Figure 5.11 shows that if the coordinating agent
is obliged by the norm to surround the coin it subsequently carries out
its responsibilities by obliging the other members of the group to sur-
round the coin by obeying child individual norms relevant to this group
norm. The agent first activates its procedural rule (PG− rule) with head
surround(X, Y) where location (X, Y) will correspond to the actual loc-
ation. The procedural rule is activated only if agent’s role is ra which
stands for responsible agent. If the condition is satisfied the procedure is
run step by step (row by row) and agents a10, a20, a30, a40 are sent South,
West, East and North positions. Each new obligation is assigned sanction
of 100 points reduction.

5.7 Summary

We described an extension of normHACing framework for programming
group norm-aware multi-agent systems which integrates the GN-2APL
norm-aware agent programming language with the G-2OPL language
for programming normative organisations, which are able to work with
collective norms. We showed how the group norm is implemented and
how group norm-aware agents deliberate about group norms. We have
illustrated the use of the system on an example from a location based
game GeoSense. Group norms were tested with the original GeoSense
application while working with agent teams only. Mixed human-agent
teams were investigated in the Colored Trails testbed. For the results of
experiments refer to Chapter 6.

-113-

NormHACing+

Include: agent.2apl

Beliefs:
raise(X,NewX):− NewX is X + 1.
lower(X,NewX):− NewX is X − 1.

BeliefsUpdates:
{true} Surround(X,Y) {gsurround(X,Y)}

PG−rules:

surround(X,Y) <− role(ID,ra) | {
[
Surround(X,Y);
sendSouth(a10,X,Y,100);
sendWest(a20,X,Y,100);
sendEast(a30,X,Y,100);
sendNorth(a40,X,Y,100);
dropgoal(surround(X,Y))
]

} : 100

PC−rules:

sendNorth(Agent,X,Y,S) <− raise(Y,Y1) and gsurround(GX,GY) | {
@ctenv(setObligation(Agent,X,Y1,GX,GY,S),L)

}
sendSouth(Agent,X,Y,S) <− lower(Y,Y1) and gsurround(GX,GY) | {

@ctenv(setObligation(Agent,X,Y1,GX,GY,S),L)
}
sendEast(Agent,X,Y,S) <− raise(X,X1) and gsurround(GX,GY) | {

@ctenv(setObligation(Agent,X1,Y,GX,GY,S),L)
}
sendWest(Agent,X,Y,S) <− lower(X,X1) and gsurround(GX,GY) | {

@ctenv(setObligation(Agent,X1,Y,GX,GY,S),L)
}

Figure 5.11: Example of coordinating agent code

-114-

6
Evaluation

In this chapter we describe how the prototype of the hierarchical group
norms, which was introduced in Chapter 4 was evaluated. To evaluate
norms as a coordination mechanism in HACs we recruited volunteers
to interact with agents. The hypothesis is that norms are a good tool to
coordinate human-agent cooperation. The structure of the norms together
with complexity is expected to be challenging for the participants to
follow initially but become natural in time. The evaluation shows that
this system works and HACs are able to cooperate in the aim to achieve a
common goal.

The techniques used in our experimental evaluation were observation,
questionnaires, interviews and data collection. During the controlled
experiments the actions of players were closely observed and human
participants were also asked to fill brief questionnaires to capture their
immediate thoughts from each game and they were interviewed at the
end of the experiment. The reminder of this chapter is structured as
follows. We start with the definition of the research questions in Section

-115-

Evaluation

6.1, which is followed with the description of the methodology we used
to carry out the studies 6.2. The evaluation consisted of two studies,
which are presented in Sections 6.3 and 6.4. The results of the studies are
analysed is Sections 6.3.1 and 6.4.1.

6.1 Evaluation Questions

The evaluation was set up to answer the following research questions:

1. Are norms usable as a coordination mechanism?

To evaluate this broad question the problem was broken down into
three parts and the results were assessed from the perspective of
the coordinator, a team member or both.

(a) From the perspective of all the team members

i. Is it possible to facilitate human agent coordination with
norms?
We see coordination as the ability of the group to coordin-
ate themselves to achieve a group goal, which is set with a
group norm.

ii. Do human players understand what is being described
with the norms?
We are interested to find out how the participant perceives
the norms and if they understand their meaning fully.

(b) From the perspective of the coordinating agent

i. Are human coordinators able to direct the group with the
norms to do what is required to achieve the group interest?
We want to establish if norms are usable as a tool for hu-
man participants to use to set rules how to achieve the
collective goal.

(c) From the perspective of the team member

i. How does same team member performance compare when
under human or agent leadership?
We are interested to find out if team performance differs
under human and agent leadership, and if so what are the
major differences that can be established.

-116-

Evaluation

ii. Do human participants behave differently when the team
leader is human or agent?
We are interested in their subjective feelings about teaming
up with agents and following norms; whether they knew
if they were playing with agents or humans, if so did it
influence their behaviour.

2. Is it possible to achieve flexible autonomy with norms?

Flexible autonomy is understood as an autonomy to make decisions,
extent of which can change depending on the context. In particular,
the autonomy in which way to pursue a goal is restricted by the
coordinating player.

(a) Are norms usable for supporting flexible autonomy in HAC?

We want to establish if flexible autonomy can be achieved with
norms.

(b) Do human participants behave differently following norms
from the organisation or agents/players that are acting as co-
ordinators?

With this question we try to find out whether participants are
able to distinguish between norms that originated from the
normative organisation or from the coordinator. And if so what
are the major differences in their behaviour and feelings.

1.a1 Is it possible to facilitate human agent coordination with norms?
1.a2 Do human players understand what is being described with the norms?
1.b Are coordinators able to direct the group with the norms to do what is required to

achieve the group interest?
1.c1 How does same team member performance compare when under human or

agent leadership?
1.c2 Do human participants behave differently when the team leader is human or

agent?
2.a Are norms usable for supporting flexible autonomy in HAC?
2.b Do human participants behave differently following norms from the organisation

or agents/players that are acting as coordinators?

Figure 6.1: Evaluation questions

-117-

Evaluation

6.2 Methodology of The Evaluation

The concept of the evaluation is based on a relatively simple but demon-
strative game, which involves making decision about the distribution of
resources to achieve individual or team goals. The game also has visible
correlation to real-world scenarios so that the results obtained can be
transferable into any scenario, which together with the other features
made the game good fit for the normHACing framework.

6.2.1 Colored Trails

Colored trails (CT) [Gal et al., 2005, 2010] is a research test bed designed
for investigation of the decision making of individuals or groups, which
may consist of human and agents members. Even though this tool was
created to research primarily in the areas of negotiation [Haim et al., 2012]
or trust and fairness [van Wissen et al., 2012] its flexible settings makes it
highly suitable for our evaluation.

CT settings are suitable because they provide the following charac-
teristics: (1) the support for both human and software agents, the en-
vironment is relatively simple for the software agents while accessible
and engaging for the human players; (2) there is a notion of dependency
between the players in a way that their decision-making is interlaced; (3)
the involvement of resources in the experiment so that the players need to
exchange their assets or information; (4) the possibility to engage players
in different roles in the scenario.

CT is a highly configurable game. The common characteristics are
that it is played on a rectangular board of coloured tiles. At the beginning
each player is given a starting position, a goal position on the board, and a
set of chips in colours taken from the same palette as the squares. Players
can advance towards their goals by moving to an adjacent board square.
Such a move is allowed only if the player has a chip of the same colour
as the square. Players may negotiate with their peers to exchange chips,
players may use a controlled messaging protocol defined upfront. Final
score is calculated based on proximity of the goal, number of chips or any
other added metrics.

-118-

Evaluation

The classic implementation of CT is as a Java application. There are
a number of branches available for download on GitHub 1. One of the
versions available was designed to work with 2APL agents [Kamphorst
et al., 2009]. This implementation however was not finished and lacked
one of the main features of the system — agents being able to respond to
messages. Due to the type of the architecture of the software this was not
possible to add without some substantial code refactorisation. Therefore
we have chosen to use another partially implemented branch — WebCT
version. The implementation did not support full CT functionality but
the interface was more modern and accessible to the human players.
During the customization for the use with the framework we had to add
some fundamental attributes like the movement on the board from users’
initiative and add a whole new normative interface, which includes the
list of active norms and tools for responsible agents to handle group
norms. WebCT was then connected to the framework via the tuple space.

Figure 6.2: Color Trails web interface

1https://coloredtrails.atlassian.net/wiki/display/coloredtrailshome

-119-

Evaluation

6.2.1.1 Game Play

The purpose of our evaluation was to examine norms and group norms
in a cooperative game. In a disaster response scenario, which we see as
one the potential applications of the framework, members of the rescue
team do not compete against each other but aim to rescue as many people
as possible as a team. Similarly, in our game we focus on team work. The
team either achieves its goal together, or fails together.

To better fit purposes of our evaluation the CT rules were modified
to the following. The players act as a team (group) and their task (group
norm) is to surround a selected tile. They ask other players for chips,
who may accept or reject. The desired positions of the players around the
goal is set by a team coordinator, who can have also additional option
how to regulate the actions of the team members players which adds
flexible autonomy. The winning criteria of the game is to reach the desired
position as a team. When that is achieved the team has won. Players can
also loose score points by violating the norms which serves as sufficient
deterrent.

6.2.1.2 Interface

The player interface is shown in the Figure 6.2. In the left column (A)
there is the game clock counter, the current phase of the game which
is either a setting up phase or a movement phase; and a list of players
with their score and number of chips of each colour they hold. In the
middle panel (C) is the board and avatars of the players indicating their
positions. Below the board (D) is the interactive interface where players
can exchange chips with other players and coordinators can define norms.
The norms that a player received are displayed in the right column (B).
The interface for coordinators is at the bottom of the screen (E).

To exchange chips the player selects a receiving player and then se-
lects the number chips of each color that they request from the player
and optionally can select chips to send to the player. The coordinator’s
interface provides tools to set additional norms. Any coordinator can
assign goals the team members. Flexible coordinator can also order or
prohibit players from using tiles of a specific color or make accepting
of exchange requests obligatory. To set individual goals for each team

-120-

Evaluation

member the coordinator selects one of the populated goal positions and
one of the team members. To set an obligation or prohibition for a player
to use a tile of a color the coordinator selects the color, the intended player
and the value of the associated sanction. The flexible coordinator can
also send an obligation to all players to accept requests for chips from
other players and set a sanction, which is applied in case of a violation.
Coordinators can only select norms that are offered in the interface and
cannot write new norms.

The study was run twice, after the first study adjustments were made
in response to initial observations as to its efficacy. The use of norms was
therefore evaluated in two studies, which are described in Sections 6.3
and 6.4.

6.2.2 Norms for Human Players

So far we have been focusing mainly on presenting norms to software
agents. Now we need to ask how to translate the machine readable norms
into an anthropologically pleasant language? The clearness and concise-
ness of G-2OPL language might not be perceived well by the human
players. However, the framework was built to analyse whether norms
are usable in human-agent coordination and therefore it is important
that when transcribed they convey exactly the same message. To ensure
that norms were manually translated from programming language into
English. We will look at the norms in the next section (Section 6.2.3).

In the cooperation with agents they however need to speak in the
same language. Introducing human participants into the system brings
following issues. The limitation of the current design is the lack of re-
wards. While software agents are able to deliberate in such a system
without being negatively affected it has been observed that human par-
ticipants do not seem to enjoy interacting with an environment where
they can get only penalized. Another aspect that needs to be considered
is the different capabilities of humans and agents, which are likely to
affect the processing through a set of norms with different priorities and
deadlines. The computational agents are able to sort a large amount
of partially conflicting obligations and prohibitions while being under
pressing deadline. Human players, however, are expected to act less
effectively under intense pressure [Eysenck and Calvo, 1992].

-121-

Evaluation

Trust in co-workers is important in the social context of human-human
interaction [Balliet and Van Lange, 2013]. Trust is an important factor
influencing whether the experienced stress levels and anxiety are within
healthy limits. Moreover, low or high levels of trust can lead to individu-
als either unnecessary checking or not checking the progress of task at
all, both options leading to errors in the process and more time needed to
finish the task [Klein et al., 2004; Hoffman et al., 2013].

6.2.3 Game Set-Up

The studies were conducted in a computer laboratory of the university.
We have recruited 20 participants with various degrees of experience with
technology. Half of the participants held/worked towards obtaining a
degree in computer science or a related discipline. The other half had
only common knowledge of computer technologies. The participants
were paired randomly and seated at two adjacent computers in the labor-
atory. They were handed the experiment information sheet and game
instructions, which are available in Appendix C. We have used a screen
capture software to record their actions. Also, we had the opportunity
to observe both players and make notes or intervene in case of a system
error. The framework also logged details about the progress of the games
into log files. All parts of the framework (N-2APL, 2OPL, Gigaspaces,
Colored Trails) were executed from researcher’s laptop.

The first two participants were asked to take part in a pilot study. The
aim of the pilot study was to dry test the system with players who had
never seen the interface before and to remove small bugs. As the result of
the pilot study the norms were slightly reworded in a more descriptive
and kind manner, the lengths of the phases were adjusted so that players
have sufficient time to finish their tasks, the game schedule was changed
from completely random to gradual progress from simple (team member
role) to more complex (coordinator and flexible coordinator) and penalties
were lowered. Unfortunately there were also discovered some errors,
such as norms being despatched with a delay, that were not possible to
rectify in time for the trial.

The experiments consist of two types of games, which differ by a type
of coordinator and corresponding sets of norms: Standard and Flexible
game.

-122-

Evaluation

6.2.3.1 Standard Game

In the Standard game the board and the chips are set randomly. The
players are obliged to make at least one move in the game, but prohibited
to move more than once per clock tick. They will have an obligation to
respond to requests and a prohibition to reject requests. The coordinator
chooses goal positions for the team members around the team goal. All
the norms are shown in the Figure 6.3. In this game settings norms 1-6
are active and the games are played in the team structures 1 and 3 as
described in Figure 6.4.

N1 − Group surround obligation
N2 − Obligation to make a move at least once
N3 − Prohibition to move faster than a square per clock tick
N4 − Obligation to respond to requests
N5 − Prohibition to reject requests
N6 − Individual surround obligation

N7 − Individual color obligation
N8 − Individual color prohibition
N9 − Flexible coordinator restriction
N10 − Obligation to accept requests

Figure 6.3: Study I.: The collection of game norms

T1 − Human coordination and 1 human team member, 2 agent team members
T2 − Human flexible coordinator and 1 human team member, 2 agent team members
T3 − Agent coordinator and 2 human team members, 1 agent team member
T4 − Agent flexible coordinator and 2 human team members, 1 agent team member

Figure 6.4: Study I.: The structure of the teams

In the following text we show how we translate software agent norms
into norms suitable for humans. In the text we use symbol $ to notate a
variable. For example, $X stands for a coordinate X which is directly de-
rived from the original norm. However, some variables like for example
$clock are not explicitly present in the original and are derived during the
execution. The rules of the game as encoded in G-2OPL are presented in
Appendix A in Listing A.1. The sanctioning rules can be seen in Listing
A.2.

Norms of the game (N):

-123-

Evaluation

N1 - Group surround obligation This is the core obligation of the game.
The group surround obliges the players to surround a game goal from
four different sides. This obligation is directed to the coordinator.
The coordinating player is obliged to make a plan how to surround
the goal and inform the team. The coordinator has tools to issue
individual obligations.

norm(

group_surround(G), G,

(group(G), goal(X,Y,Z)),

obligation([surround(X,Y)],now + 18,[reduce(G,700)])

).
Equivalent for human players is rewritten as: You should coordinate
other players (with the use of norms) to surround a goal [$X,$Y] from left,
right, top and bottom before the clock: $clock. Penalty: $sanction points.

N2 - Obligation to make a move at least once Each player is obliged to
make a move on the board during the game at least once to prevent
strategic non-playing.

norm(

makeMove(Thing),Thing,

(pursuer(Thing), at(X,Y,Thing),group(Z),

not detached(makeMove(Thing))),

obligation([makeMove(X,Y,Thing)],now+10,[reduce(Thing,300)])

).
Equivalent for human players is rewritten as: You should make a
movement on the board before the clock: $clock. Penalty: $sanction points.

N3 - Prohibition to move fast Prohibition to move at most one square
per the clock tick was put in the place to make the players being
aware of the time constraints when planning their path to the goal.

norm(

moveTooFast(Thing),Thing,

(pursuer(Thing),group(Z)),

prohibition([moveTooFast(Thing)],[reduce(Thing,300)])

).
Equivalent for human players is rewritten as: You shouldn’t move
more than 1 square per clock tick. Penalty: $sanction points.

-124-

Evaluation

N4 - Obligation to respond to requests All players were obliged to re-
spond to requests. This was chosen in the support of the following
prohibition to reject requests. As the system was designed if there
was not a deadline for the response to the player’s request, the
receiving player can simply avoid punishment by not responding.

norm(

respondToRequest(Thing),Thing,

(pursuer(Thing), proposal(Id,_,Thing,_),group(Z)),

obligation([respondToRequest(Id)],now+3,[reduce(Thing,300)])

).

Equivalent for human players is rewritten as: You should respond to re-
quest before the clock: $clock. Penalty: $sanction points.

N5 - Prohibition to reject requests To encourage cooperative altruistic
behaviour of the players they were prohibited from rejecting any
requests. However, the sanction for a violation was kept relatively
low.
norm(

rejectRequests(Thing), Thing,

(pursuer(Thing),group(Z)),

prohibition([rejectRequests(Thing)],[reduce(Thing,200)])

).

Equivalent for human players is rewritten as: You shouldn’t reject
requests for chips from the other players. Penalty: $sanction points.

N6 - Individual surround obligation Obligation to surround the goal
for each player is created by the coordinator. The coordinator de-
cides on the goal positions for each player.

norm(

group_task(group_surround(g)), Agent,

(pursuer(Agent), detached(group_surround(W)),

goal(GX,GY,Z),agentSTask(Agent,X,Y,goal(GX,GY),S)),

obligation([at(X,Y,Agent)],now + 14,[reduce(Agent, 700)])

).

Equivalent for human players is rewritten as: You should be at the
grid tile [$X,$Y] before the clock: $clock to achieve a team goal. Penalty:
up to $sanction points.

-125-

Evaluation

6.2.3.2 Flexible Game

Similarly as in the Standard game in the Flexible game the board and the
chips are set randomly. The players are obliged to make at least one move
in the game, but prohibited to move more than once per clock tick. They
have an obligation to respond to requests from other players. Prohibition
to reject requests as seen in the standard game was replaced with an
optional obligation to accept requests. The flexible coordinator decides
whether team players are obliged to accept requests for chips. Other
responsibilities of the flexible coordinator is to choose goal positions for
the team members around the team goal. The flexible coordinator can
also prohibit or oblige them from using squares with a specific colour.
The Flexible game is played with norms N1-4 & N6-10 and teams T2 &
T4.

The norms of the game also include these additional norms / tools for
the coordinating agent with flexible autonomy:

N7 - Individual color obligation The flexible coordinator has a choice
to oblige a player to go through a specific coloured tile. There is no
system limit how many of this norms the coordinator creates.
norm(

enter_tile(Thing),Thing,

(pursuer(Thing), color(Thing,Color,yes,S),group(Z)),

obligation([color(Color,Thing)],now+15,[reduce(Thing,S)])

).
Equivalent for human players is rewritten as: You should use a tile
with color $color before the clock: $clock. Penalty: $sanction points.

N8 - Individual color prohibitions The flexible coordinator has also a
choice to prohibit a player from going through a tile of a specific
color. There is no system limit how many of this norms the coordin-
ator creates.
norm(

not_enter_tile(Thing),Thing,

(pursuer(Thing), color(Thing,Color,no,S),group(Z)),

prohibition([color(Color,Thing)],[reduce(Thing,S)])

).
Equivalent for human players is rewritten as: You shouldn’t use a tile
with color $color. Penalty: $sanction points.

-126-

Evaluation

N9 - Prohibition to restrict players In order to limit the powers of the
flexible coordinator, the player is prohibited from issuing more than
one color prohibition or obligation per player.
norm(

restrictPlayer(Thing),Thing,

(ra(_,Thing,raaa)),

prohibition([restrictPlayer(Thing)],[reduce(Thing,300)])

).
Equivalent for human players is rewritten as: You shouldn’t cre-
ate more than one color norm per player. Penalty: $sanction points.

N10 - Obligation to accept requests The flexible coordinator can oblige
all players at once to accept any requests for chips from other play-
ers.
norm(

acceptRequests(Thing),Thing,

(pursuer(Thing), groupObl(acceptRequests,Sanction)),

obligation([acceptRequests(Thing)],now+15,

[reduce(Thing,Sanction)])

).
Equivalent for human players is rewritten as: You should accept
exchange request before the clock: $clock. Penalty: $sanction points.

The results from the observation during the game play and question-
naires after each game and the final interview were analysed thematically.

After each game the participants were asked to rate statements on the
scale from one to four with descriptions strongly agree, slightly agree,
slightly disagree, and strongly disagree. The statements are shown in
Figure 6.5 where in bold we empathised statements that were shown to all
participants regardless on role they played. In Appendix D we then show
the form as it was presented to the players after a game. The statements
were chosen to reflect on the user experience from the particular game
play as opposed to the overall interview at the end of the experiment.

Questions 1 to 6 are the same for all type of players and are about
the enjoyment of the game play itself, the understanding of the rules
of the game being described as norms, understanding of the goals and
penalization, the fairness of the penalization, and how they perceived

-127-

Evaluation

the teamwork went. Question 4 varies depending on the score of the
player. If the player managed to keep the full score then the question is
about their understanding how the score was calculated. If the player
was penalized then they are asked if they thought that the penalization
was fair.

Questions 8 and 9 are different for different team roles. For team
members the form asks about the reasonableness of the obligations and
prohibitions they have received. The game coordinator is asked if they
were able to instruct the team members to reach the goal and flexible
coordinator is further asked if they were able to ensure that the team goal
is reached.

1. I have enjoyed the game.
2. I have understood the rules of the game.
3. I have understood the goals of the game.

Depending whether the player was penalized they were asked either:
4.a I understand why I was penalized.
Or if not:
4.b I understand how my score was calculated.

5. The penalization seemed fair.
6. The team worked well together.

The team member was asked:
7. The prohibitions I received were reasonable.
8. The obligations I received were reasonable.

Coordinator and flexible coordinator were asked:
9. I was able to instruct the team members about how to reach the group goal.

Flexible coordinator was asked:
10. As a game coordinator I felt I was able to ensure the goal is reached.

All players had the ability to leave a comment in a provided text area
11. Any comments?

Figure 6.5: Feedback form questionnaire

6.3 Study I. Norms as Coordination Mechanism

The study was designed to provide answers to the research questions
that were set up in Section 6.1. The set of norms that was available and
active in the scenario is shown in the Figure 6.3. Beside norms being used

-128-

Evaluation

to describe the rules of the game the first experiment was designed to
explore the use of norm in team coordination. The mixed teams consist
always of two human players and two agent players. We have created
four types of teams (Figure 6.4) to explore team dynamics in situations
when the team has human or agent coordinator and if the coordinator is
flexible or not.

The whole experiment consists of 10 trials with 20 participants pre-
ceded by a pilot study with 2 additional participants. Each study is made
up of 8 short games (up to 5 minutes per game), each recruited participant
will play 2 games in each T1-4 set up (Figure 6.4). The order of the games
is random. After the each game they were asked to fill a short feedback
form reprinted in the Figure 6.5. The actual design of the form can be
seen in Appendix D.

6.3.1 Results

In Table 6.1 are the overall results from the experiments. The questions
are presented in Figure 6.5. In the table we present average ratings
from the eight games that were played. The first four games were in
majority of cases coordinated by software agents and last four games
were coordinated by the participants. The users were evaluating the
statements with strongly agree to strongly disagree options. The results
were then mapped to values from 1 to 4. From the overall data it is visible
that the players were becoming more familiar with the system in time
and also understood the game more. Another aspect we recorded was the
number of goals that were accomplished. Please see Figures 6.6 and 6.7
for visual representation of the game development. Also, the percentage
of games where players achieved their group goal improved in time. The
overall percentage of games where the team achieved goal is 42.5%.

6.3.1.1 Question 1: Norms as Coordination Mechanism

The first research question was whether norms are usable as a coordina-
tion mechanism in human-agent collectives. The analysis of this objective
was split in to three parts: general perspective, the perspective of the
coordinator and the perspective of the team member to evaluate whether
players acting in different roles perceived the system differently.

-129-

Evaluation

Game 1 2 3 4 5 6 7 8 Avg.
Question 1 2.05 1.55 1.45 1.59 1.41 1.43 1.44 1.75 1.58
Question 2 1.95 1.36 1.36 1.45 1.18 1.29 1.31 1.00 1.36
Question 3 1.82 1.36 1.36 1.32 1.27 1.29 1.31 1.00 1.34
Question 4 2.09 1.68 1.55 1.68 1.18 1.14 1.38 1.00 1.46
Question 5 2.27 1.86 2.00 2.32 1.82 1.57 1.94 1.25 1.88
Question 6 2.55 2.00 1.86 2.14 1.73 1.62 1.81 2.50 2.03
Question 7 2.18 1.82 1.74 2.44 1.67 1.55 1.63 1.50 1.81
Question 8 2.14 1.77 1.63 1.88 1.42 1.60 1.38 1.50 1.66
Question 9 2.00 2.83 1.50 1.64 2.00 1.00 1.83
Question 10 2.25 1.75 2.00 3.00 2.25

Goal achieved 30% 50% 40% 60% 30% 40% 40% 50% 42.5%

Table 6.1: Study I.: Overall results from all games

Figure 6.6: Study I.: Development of games (Questions 1 - 5)

All players At first we are going to look into the questions from a
general perspective — not related to which role the participant took in
the game.

1. Is it possible to facilitate human-agent coordination with norms?
Can human-agent collectives achieve some coordinated behaviour?

This is the core question of the experiment. The results shown in
Table 6.1 indicate that on average the participants scored the team
work with 2.03 (Question 6) and enjoyment of the games was rated
on average as 1.58 (Question 1). These values were supported by
the interviews where participants found the system engaging and
able to be to used for the coordination when achieving a group goal.

2. Do human players understand the game being described with the
norms?

The participants on average rated that they understood the rules of

-130-

Evaluation

Figure 6.7: Study I.: Development of games (Questions 6 - 10)

the game with 1.36 (Question 2 in Table 6.1) and that they under-
stood the goals of the game with 1.34 (Question 3). We see lower
rating for a team work, which was on average 2.03 (Question 6).
On average the players understood why they were penalised with
rating 1.46 (Question 4) and thought that the penalization was fair
with 1.88 (Question 5).

The players thought both that they understood the games and they
also did what was required from them. All participants had diffi-
culties in the first couple of game when they were becoming familiar
with the system. Overall they found the wording of the norms ma-
chine like, felt pressured by the deadlines and specifically found
difficult to abide to one move per clock tick. The participants did
not like to be punished when violating a norm because of normative
conflict. This was often complained about in the comments after
games. Summary from comment is available in Section 6.3.1.3 and
complete transcript in Appendix A.

Coordinating agent From the perspective of the coordinators study
was focused on whether the norms are usable in achieving coordinated
behaviour, whether the participants were able coordinate the group to
achieve the set group goal and how does team performance compare
under human and agent coordination. The results are discussed below.

1. Are human coordinators able to direct the group to do what is
required for the interest of the group with the norms?

The human coordinators were able to coordinate both agent and
human team members with the norms. The interface was, however,

-131-

Evaluation

complex and confusing for them and it took some time for them to
fully understand their task. This was not accounted for during the
experiment set up and was one of the reasons for the scheduling
of the secondary study. The results from coordinators are visible in
Table 6.8, which show how the players felt after they coordinated
a game. Each participant played maximum of two games in this
settings. In the graph in Figure 6.8 we can see that all aspects of the
game play improved in the second game. On average the coordin-
ators rated the team work with 1.82 (Question 6), the coordination
with 1.84 (Question 9) and flexible coordination with 2.31 (Question
10). In the interviews then players confirmed that that they felt
that they can coordinate the team with the norms. The participants
also often noted that they did not feel a need to use the flexible
coordinator interface.

Game 1 Game 2 Average
Question 1 1.38 1.32 1.35
Question 2 1.43 1.26 1.35
Question 3 1.43 1.26 1.35
Question 4 1.52 1.21 1.37
Question 5 1.81 1.58 1.69
Question 6 1.90 1.74 1.82
Question 9 2.05 1.63 1.84
Question 10 2.67 1.95 2.31

Table 6.2: Study I.: Results from games from perspective of a human
coordinator

Figure 6.8: Study I.: Development of games from perspective of a human
coordinator

2. How does the team performance compare when under human or
agent leadership?

-132-

Evaluation

Here we compare four games played with human coordinators
(Table 6.3 and Figure 6.9) with four game play with agent coordinat-
ors (Table 6.4 and Figure 6.10). The data show that on this occasion
the team performed slightly better under human leadership. How-
ever, there are number of factors that make impossible to draw a
strong conclusion. In order to train human coordinators their games
were scheduled after the agent games. The average satisfaction
with the team work is 2.08 (Question 6) for agent coordinators and
1.86 for human coordinators. The reasonableness of obligations and
prohibitions from coordinators averages at 1.57 and 1.45 (Questions
7 and 8) for the human and 2.15 and 1.87 for the agent coordinator.
The steady progress of human led games is visible in Figure 6.9,
which may be accounted to the fact that participants grew more
accustomed to the game and understood it more as the experiment
progressed, however with the exception of the game 2 with values
2.20 for perception of obligations (Question 7) and 2.10 for prohibi-
tions (Question 8) which may be accounted to unreachable goal due
to badly generated game and synchronisation error. It was appar-
ent from the observation that the games with agent coordinators
were smoother because the agents were quicker when assigning
individual obligations and the participants did not have to wait.
The players otherwise did not distinguished between agent and
human coordinator.

Game 1 Game 2 Game 3 Game 4 Average
Question 1 1.70 1.45 1.48 1.47 1.52
Question 2 1.52 1.23 1.24 1.06 1.26
Question 3 1.48 1.27 1.24 1.12 1.28
Question 4 1.61 1.23 1.10 1.24 1.29
Question 5 1.91 1.68 1.76 1.47 1.71
Question 6 2.00 1.95 1.90 1.59 1.86
Question 7 1.36 2.20 1.45 1.25 1.57
Question 8 1.36 2.10 1.20 1.13 1.45
Question 9 2.42 1.92 1.73 1.44 1.88
Question 10 3.50 2.50 2.00 1.89 2.47

Table 6.3: Study I.: Results from games with human coordinators

Team member Questions from the team member perspective were
about their understanding of the norms, team performance of all agent
and mixed teams and the difference in agent and human coordination.

-133-

Evaluation

Figure 6.9: Study I.: Development of games with human coordinators

Game 1 Game 2 Game 3 Game 4 Average
Question 1 2.00 1.57 1.31 1.30 1.54
Question 2 1.91 1.35 1.31 1.40 1.49
Question 3 1.78 1.35 1.31 1.20 1.41
Question 4 2.04 1.70 1.50 1.70 1.73
Question 5 2.30 1.87 2.25 2.70 2.28
Question 6 2.48 2.04 1.81 2.00 2.08
Question 7 2.22 1.83 1.88 2.70 2.15
Question 8 2.09 1.83 1.75 1.80 1.87

Table 6.4: Study I.: Results from games with agent coordinators

1. How does the team member performance compare when under
human or agent leadership?

Here we compare two games played with human coordinators
(Table 6.5 and Figure 6.11) with four games played with agent co-
ordinators (Table 6.4 and Figure 6.10). The data show that on this
occasion the results are not conclusive. On average the players
enjoyed more game that were coordinated by an agent with a rating
1.54 (Question 1) and 1.74 for human coordinated games. The aver-
age satisfaction with the team work is 2.06 (Question 6) for agent
coordinators and 1.89 for human coordinators. The reasonableness
of obligations and prohibitions from coordinators averages at 2.15
and 1.87 for the agent and 1.59 and 1.46 for the human coordinator.
This may be accounted to agent coordinators giving conflicting
norms whereas human coordinator would hesitate.

It was possible to observe during the game play that games coordin-
ated by agents had a smoother flow. This may be explained by the
fact that agents were quicker in deploying additional norms and
did not make mistakes like human players in assigning individual

-134-

Evaluation

Figure 6.10: Study I.: Development of games with agent coordinators

Game 1 Game 2 Average
Question 1 1.80 1.68 1.74
Question 2 1.30 1.16 1.23
Question 3 1.30 1.21 1.26
Question 4 1.30 1.21 1.26
Question 5 1.80 1.79 1.79
Question 6 1.95 1.79 1.87
Question 7 1.70 1.47 1.59
Question 8 1.65 1.26 1.46

Table 6.5: Study I.: Results from team member with human coordination

goals to players, when they sometimes missed a player or selected
the same goal twice. During the interview all participants agreed
that they did not notice the agents until there was an error. It was
not made obvious to the participants that the first games were co-
ordinated by agents. Most of the players noticed when the other
player became a coordinator because they had to wait considerably
for the individual goal to be delivered.

2. Do human participants behave differently when the team leader is
human or agent? What were their feelings about teaming up with
agents and following norms; did they know whether they are play-
ing with agents or humans, if so did it influence their behaviour?

The participants did not pay any attention to the agent players up
to the point when the agents stopped responding due to a system
error and none of the participants mentioned they felt differently to-
wards the agent coordinators. All players were almost surprisingly
altruistic and were voluntarily sending their chips to the agents so
they can move to the goal. Even though it was a cooperative game
it was still visible that players wanted to win and felt competitive

-135-

Evaluation

Figure 6.11: Study I.: Development of games with human coordinators

towards the other human player.

6.3.1.2 Question 2: Flexible Autonomy

The second problem that was analysed is to whether flexible autonomy
can be achieved with the use of the norms. The data from the first study
show that norms can be used as a medium in coordination with limited
resources and not complete information.

Game 1 Game 2 Game 3 Game 4 Average
Question 1 1.31 1.40 1.43 1.45 1.40
Question 2 1.31 1.60 1.29 1.23 1.36
Question 3 1.31 1.40 1.29 1.27 1.32
Question 4 1.50 1.80 1.05 1.32 1.42
Question 5 2.25 2.40 1.76 1.45 1.97
Question 6 1.81 2.20 1.86 1.59 1.87
Question 7 1.88 2.22 1.83 1.36 1.82
Question 8 1.75 1.89 1.73 1.27 1.66
Question 9 4.00 1.80 1.64 2.48
Question 10 4.00 1.78 2.09 2.62

Table 6.6: Study I.: Results from all games with flexible coordinator

1. Are norms usable for supporting flexible autonomy in HACs?

According to the data gathered during the experiment when games
were coordinated by a flexible coordinator (Table 6.6) flexible autonomy
is possible with the norms. These games include all game where
either an agent or a participant played in the role of the flexible
coordinator. The average ratings of the team coordination are 2.48

-136-

Evaluation

for being to coordinate the team to achieve a goal (Question 9) and
2.62 for being able to ensure that the goal is reached (Question 10).
Overall team work was rated on average 1.87 (Question 6).

However, due to numerous system faults where even when the hu-
man flexible coordinator set everything right so that the group goal
can be achieved some of the agents became stuck and did not to pro-
ceed to the goal. The coordinators were understandably frustrated
by this and the rating of the system reflects on that. During the
interviews after the games the participants were asked whether they
felt they can achieve the goal with the norms and it was confirmed
they did. However, some of the participants found the interface
awkward to work with.

2. Do human players behave differently following norms from the
organisation or agents/players that are acting as team leaders?

Here we compare two games played with human coordinators
(Table 6.5 and Figure 6.11) with four game play with agent coordin-
ators (Table 6.4 and Figure 6.10). On average the players enjoyed
more games that were coordinated by an agent with a rating 1.54
(Question 1) and 1.74 for human coordinated games. The average
satisfaction with the team work is 2.06 (Question 6) for agent co-
ordinators and 1.89 for human coordinators. The reasonableness of
obligations and prohibitions from coordinators averages at 2.15 and
1.87 for the agent and 1.59 and 1.46 for the human coordinator. This
can be accounted to agent coordinators giving conflicting norms
whereas human coordinator would often hesitate. The players did
not distinguish between a norm originating from the organisation
and from the coordinator. The only issue, which they repeatedly
reported was a conflict in these norms.

6.3.1.3 Comments Summary

Another valuable subjective data captured were the comments gathered
from the feedback questionnaires. Not all participants however took
the opportunity to express their immediate feelings into the comment
field. The comments are transcribed in Appendix B. We have used the
abbreviation TM for a role of team member, C for a coordinator and
FC for a flexible coordinator. For example 5 C: I liked telling them

-137-

Evaluation

Figure 6.12: Study I.: Development of games with flexible coordinator

what to do. They did it. is a comment received after game 5 from
participant playing as a coordinator. The order of the games per player
is preserved. Unfortunately not all participants voluntarily shared their
immediate thoughts after each trial. However, their input was extracted
from the interviews afterwards.

The verbal feedback was important for the qualitative analysis due to
relatively low number of participants and experiment runs. Also due to
the system design relying on 6 stand alone components working together,
3 of which were completely 3rd party software and 2 were extended 3rd
party software, there were times when system bugs appeared.

The players in general found it difficult to violate norms even if it was
for greater good. This was partially because they did not pay attention to
the severity of penalties and partially because any violation was seen very
negatively by them. This contrasts with the agents’ decision making who
feel no regret in violating a lower priority goal. In the case of system error
most players tried to excuse agents or even took the blame themselves.
The transcribed comments are presented in Appendix B.

From the comments of the participant 3 we can see that at the begin-
ning it took some time to understand the goals and the interface. The
player enjoyed the game once it became clear, but they did not like con-
flicting norms. Looking at the value of penalty associated with both did
not seem obvious or a solution. The conflict in the case was an obligation
to go on a blue square and a prohibition to go on a blue square (this inten-
tionally staged conflict was helpful in programming agents). In the last
two games unfortunately the agent players failed to move as instructed.

-138-

Evaluation

Participant 4 mentions a synchronisation issue in the second game,
where the deadline was already passed before the game started. In the
fourth game the player notes it was impossible to meet a goal without a
violation. In the last two games there was an error with the agents.

Participant 5 suggests to include a team score instead of individual
scores if it is a team game. It would make sense if there were more teams.
The player gained good understanding of the interface and tried to give
a best possible goals to each member according to their position and
resources. As the game was set up there was not enough time for a novice
player to quickly analyse the whole situation. The players were supposed
to exchange chips when needed.

Participant 6 mentions that it took them two games to get to know
the rules and the interface of the team member. Playing the role of the
coordinator then helped to understand the game even more. When in
a role of coordinator the player notices that they did not make the best
choice in setting the individual goals considering their positions and
resources.

Participant 7 complains about not receiving a goal from a coordinator.
In this case it was not a system error but a fault of the human coordinator.
The participant 9 mentions the game being fast paced and comments
about the capabilities of identified human coordinator. Participant 10
found the first game fast paced, mentions a conflict in norms in the game
3 and system error in the game 4.

Participant 11 found the first game too fast for the amount of norms
they had to consider. The player complains about conflict in norms in
the game 4. As a coordinator the player admits they can set the goals for
each member better. The game 8 was affected by a fault of the system.

Participant 12 did not realize they were penalized in the second game.
In the game 3 they mention a conflict in norms. As a coordinator the
player found it difficult in the time given to set all individual goals. The
last game was affected by a system error.

Participant 13 is confused that the order of players in the left column
is not fixed, which made him misunderstood about the the number of
chips. As a coordinator the player notes that they did not have power
over the player to request chips they need. In this game there was an

-139-

Evaluation

error with agents who did not move or requested chips.

Participant 14 suggest a stronger error feedback would be helpful. The
player 15 sees the game competitively and enjoys easy wins. The player
16 admits the first game was not clear. The participant 19 complains about
an error in the synchronisation when the deadline was unachievable. The
participant 20 mentions that as a coordinator they did not make use all
norms they had available. The participant 21 complains about too many
norms appearing the right column and did not have enough time to go
through them all. The participant 22 is little confused by the rules in the
first game. The player found the coordinator not performing well in the
last two games. In fact this was caused by a system error.

To summarise what we learned from the comments the participants
mostly commented about the interface, the speed, their understanding
and penalties.

• Interface Participants found the the interface confusing in the be-
ginning but learned how to use it in time “Took a while to get the rules,
and the interface was a little slow to update.”, “If it’s a team game, maybe
a good motivation would be to see the global team score rather than the
individual score.Also, because you don’t carry the points and chips over
to the next game, there’s not much motivation in trying to improve the
score” and “I found it difficult to follow all the elements reflected in the
rules (time, task, penalization). Interesting idea though and I can relate to
other ’established’ games, such as checkers.”

• Understanding Similarly to the learning to use the interface parti-
cipants grew accustomed to the rules in time and understood the
game getter “In comparison with the previous two rounds of the game, I
think I got a better grasp of the penalties and means of requesting chips.
So there is a progression in my understanding of the rules and enjoyment
of the game, even though this is not reflected in the score. The idea of
reciprocating someone’s request for help is interesting and can be traced
from one round to the other. ”

• Speed Nearly all participant found the game too fast paced and the
ticking clock highly distressing “It was a teeny weeney bit too fast :(”,

“Game was too fast paced”, “the obligations keep changing in short period
of time. Don’t have much time to read it carefully” and “I forgot that I
would be penalized for moving too fast - I made two moves within one

-140-

Evaluation

tick, but I understand why I was penalized. It’s difficult to remember all of
the prohibitions at the same time. Unfortunately the AI players stopped.”
“I did not consider the relative positions as a coordinator. We ran out of
yellow chips. my fault. I randomly assign goal positions.”

• Penalties All participant were uncomfortable with conflicting norms
and did not like to be penalised “Goal was impossible to meet without
violating a prohibition.” “Some goals clash” “The prohibition was not to
go on a brown square, I started surrounded by brown squares.”

In the next section we will discuss how results were interpreted in
relation to each sub-question specified in the Section 6.1.

6.4 Study II. Focus on

Extended Flexible Autonomy

In the first study there were only a few situations where the coordinators
would be necessitated to use the additional tools (norms). In order to
investigate this Study II. is therefore focused on the extended flexible
autonomy .

The set of norms and the structure of the teams are different compared
to the first study. In this case there are two types of teams (Figure 6.13)
both consisting of one human player and three agent players. In the first
team T1 an agent acted as the flexible coordinator and in T2 the human
participant was the flexible coordinator. The set of norms active in this
study was smaller (Figure 6.14) based on the experience from the first
study where the participant found the amount of norms overwhelming.

T1: 1 agent flexible coordinator, 1 human team member, 2 agent team members
T2: 1 human flexible coordinator team member, 3 agent team members

Figure 6.13: Study II. The structure of the teams

In this study the board and the chips are set in a specific way and
the players have more time to set up the norms at the beginning. The
game scenario is as follows: there is a shortage of certain chips or certain
player(s) has most of the chips. The flexible coordinator then has an

-141-

Evaluation

N1 − Group surround obligation
N2 − Obligation to make a move at least once
N4 − Obligation to respond to requests
N6 − Individual surround obligation

N7 − Individual color obligation
N8 − Individual color prohibition
N9 − Flexible coordinator restriction
N10 − Obligation to accept requests

Figure 6.14: Study II. The collection of game norms

incentive to use the norms to ensure the all players are able to reach their
goal and the group norm is achieved.

The players are obliged to make at least one move in the game. The
prohibition to move more than once per clock tick was omitted. They
will have an obligation to respond to requests. The prohibition to reject
requests was omitted in this study because the flexible coordinator can
order the players to accept requests. The flexible coordinator chooses
goal positions for the team members around the team goal. The leader
can also oblige players to accept chips requests and prohibit or oblige
them from using tiles with a specific colour.

For this study the participants were recruited from the volunteers who
had interacted with the game before. This way they were already familiar
with the game objective and it was assumed it would be easier for them to
handle the advanced game scenario. We ran 5 trials with one participant
per trial. The experiment consists of 3 short games (5 minutes per game).
The initial 3 games are played in team T1 with an agent coordinator to
ease the participants to the game and the next 3 games are coordinated
by the human players. There are 4 types of games designed all with more
of less obvious shortage of chips of a particular color (aimed at the norms
N7 and N8) and some of the games have uneven distribution of chips
amongst the players to encourage the use the obligation N10.

6.4.1 Results

In the Table 6.7 are results collected from the Study II. specifically set
up to investigate flexible autonomy. The results are overall positive and

-142-

Evaluation

specifically the participants felt better about the team coordination where
Questions 9 and 10 about the team coordination, which are averaging
1.60 respectively 1.67. Compared to the Study I. where the values are 1.83
and 2.25. The teams were also better in goal achievement with overall
average of 53.33% compared to 42.5% achieved in the Study I.

Game 1 2 3 4 5 6 Avg.
Question 1 1.00 1.20 2.00 2.00 1.40 1.00 1.40
Question 2 1.00 1.00 1.00 1.20 1.00 1.60 1.13
Question 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Question 4 1.00 1.20 1.25 1.00 1.00 1.00 1.07
Question 5 2.60 2.20 2.00 1.20 1.00 1.60 1.73
Question 6 1.80 1.40 2.50 2.80 2.60 1.60 2.10
Question 7 3.00 2.20 1.50 2.27
Question 8 1.00 1.40 1.75 1.40
Question 9 1.80 1.60 1.40 1.60

Question 10 2.00 1.80 1.20 1.67
Goal achieved 40% 60% 40% 40% 60% 80% 53.33%

Table 6.7: Study II.: Overall results from all games

Figure 6.15: Study II.: The development of games

6.4.1.1 Question 1: Norms as Coordination Mechanism

The first research question was whether norms are usable as a coordina-
tion mechanism in human-agent collectives. The analysis of this objective
was split in to two parts: the perspective of the coordinator and the
perspective of the team member to evaluate whether players acting in
different roles perceived the system differently.

-143-

Evaluation

All players At first we are going to look into the questions from a
general perspective — not related to which role the participant took in
the game.

1. Is it possible to facilitate human-agent coordination with norms?
Can human-agent collectives achieve some coordinated behaviour?

The results shown in Table 6.7 indicate that on average the parti-
cipants scored the team work with 2.10 (Question 6) and enjoyment
of the games was rated on average as 1.40 (Question 1). These val-
ues where supported by the interviews were participants found the
system engaging and capable to be to used for coordination when
achieving a group goal.

2. Do human players understand the game being described with the
norms?

The participants on average rated that they understood the rules of
the game with 1.13 (Question 2 in Table 6.7) and that they under-
stood the goals of the game with 1.00 (Question 3). This is a very
good result. However the team work average (Question 6) was 2.10,
which indicates that the participants were satisfied slightly less (In
the Study I. the average was 2.03). The interviews confirmed that
the players thought both that they understood the games and they
also did what was required from them. Compared to the Study I.
the players understood the rules and goals of the game better (val-
ues 1.36 resp. 1.34). Also the penalization was understood better
in the Study II. where players on average understood why they
were penalized with rating 1.07 (Question 4) and thought that the
penalization was fair with 1.73 (Question 5). In the Study I. the
average values were 1.46 and 1.88. Study II. was rated on average
better than Study II. in all aspects apart from team work (Question
6) and reasonableness of obligations (Question 7), which can be
seen in Figure 6.16 where the two studies are compared. There was
a higher amount of conflicting obligations in the Study II., which
explains the worse rating.

3. How does the team performance compare when under human or
agent leadership?

Here we compare two games played with human coordinators
(Table 6.8 and Figure 6.17) with four games played with agent co-

-144-

Evaluation

Figure 6.16: Study I. and Study II. compared

ordinators (Table 6.9 and Figure 6.18). The data show that on this
occasion the team performed better under human leadership. How-
ever, there are a number of factors that make it impossible to draw a
strong conclusion. In order to train human coordinators their games
were scheduled after the agent games. The average satisfaction with
the team work is 2.33 (Question 6) for agent coordinators and 1.90
for human coordinators.

Game 1 Game 2 Game 3 Average
Question 1 2.00 1.40 1.00 1.47
Question 2 1.20 1.00 1.60 1.27
Question 3 1.00 1.00 1.00 1.00
Question 4 1.00 1.00 1.00 1.00
Question 5 1.20 1.00 1.60 1.27
Question 6 2.80 2.60 1.60 2.33
Question 9 1.80 1.60 1.40 1.60
Question 10 2.00 1.80 1.20 1.67

Table 6.8: Study II.: Results from games with human coordinators

Game 1 Game 2 Game 3 Average
Question 1 1.00 1.20 2.00 1.40
Question 2 1.00 1.00 1.00 1.00
Question 3 1.00 1.00 1.00 1.00
Question 4 1.00 1.20 1.25 1.15
Question 5 2.60 2.20 2.00 2.27
Question 6 1.80 1.40 2.50 1.90
Question 7 3.00 2.20 1.50 2.23
Question 8 1.00 1.40 1.75 1.38

Table 6.9: Study II.: Results from games with agent coordinators

-145-

Evaluation

Figure 6.17: Study II.: Development of games with human coordinators

Figure 6.18: Study II.: Development of game with agent coordinators

Coordinating agent From the perspective of the coordinators, this study
was focused on whether the norms are usable in achieving coordinated
behaviour, whether the participants were able coordinate the group to
achieve the set group goal. The results are discussed below.

1. Are human coordinators able to direct the group to do what is
required for the interest of the group with the norms?

In this study the human coordinator coordinated a team of agents.
The results from three games with human coordinators are shown in
Table 6.17, which show how the players felt after they coordinated
a game. In the graph in Figure 6.17 we can see that all aspects of the
game play improved in the second game. On average the coordin-
ators rated the team work with 2.33 (Question 6), the coordination
with 1.60 (Question 9) and flexible coordination with 1.67 (Question
10). These are better results than in Study I. were coordinator rated
Question 9 on average with 1.83 and Question 10 with 2.25. In the
interviews then players confirmed that now they understood better

-146-

Evaluation

the use of additional norms for the team coordination. However,
they still found the interface confusing and were not always suc-
cessful in setting all goals and additional obligations / prohibitions.
Similarly as in the Study I. the result were affected by system faults
where agents did not move. During the interviews after the games
the participants were asked whether they felt they can achieve the
goal with the norms and it was confirmed they did. However, some
of the participants found the interface awkward to work with.

6.4.1.2 Question 2: Flexible Autonomy

The second problem that was analysed is to whether flexible autonomy
can be achieved with the use of the norms. The data from the first study
show that norms can be used as a medium in coordination with limited
resources and not complete information.

1. Are norms usable for supporting flexible autonomy in HACs?

In this study all games were coordinated by a flexible coordinator.
These games include all games where either an agent or a participant
played in the role of the flexible coordinator. Data in Table 6.7 shows
that the participants on average rated that they understood the rules
of the game with 1.13 (Question 2) and that they understood the
goals of the game with 1.00 (Question 3). However the team work
average (Question 6) was 2.10, which indicates that the participants
were satisfied slightly less (In the Study I. the average was 2.03).
The interviews confirmed that the players thought both that they
understood the games and they also did what was required from
them. Compared to the Study I. the players understood the rules
and goals of the game with only a slight difference (values 1.36 resp.
1.34). Also the penalization was understood better in the Study II.
where players on average understood why they were penalized
with rating 1.07 (Question 4) and thought that the penalization was
fair with 1.73 (Question 5). In the Study I. the average values were
1.46 and 1.88 . Study II. was rated on average better than Study II. in
all aspects apart from team work (Question 6) and reasonableness of
obligations (Question 7), which can be seen in Figure 6.16 where the
two studies are compared. There was a higher amount of conflicting
obligations in the Study II., which explains the worse rating. The

-147-

Evaluation

coordination was rated by the coordinators with 1.60 (Question 9)
and flexible coordination with 1.67 (Question 10), which are better
results than in Study I. where the coordinator rated Question 9 on
average with 1.83 and Question 10 with 2.25.

From the values, comments and interviews it can be concluded in
the Study II. participants better understood how to use the obliga-
tions and prohibitions to ensure the group goal is reached. However,
similarly as in the Study I. the experiments were affected with sys-
tem errors.

2. Do human players behave differently following norms from the
organisation or agents/players that are acting as team leaders?

Here we compare three games played with human coordinators
(Table 6.8 and Figure 6.17) with three game play with agent coordin-
ators (Table 6.9 and Figure 6.18). From the observations it was clear
that games coordinated by agents were smoother and error free
which is supported with average score 1.00 for both understanding
of the rules of the game (Question 2) and understanding of the
goals of the game (Question 3). This was due to the fact that agents
never failed to assign a goal or plan the group coordination well,
which was sometimes difficult for inexperienced players. Same as
in the Study I. the players did not distinguished between a norm
originating from the organisation and from the coordinator. The
only issue, which they repeatedly reported was a conflict in these
norms.

6.4.1.3 Comments Summary

The players in general found it difficult to violate norms even it was for
greater good. This was partially because they did not pay attention to the
severity of penalties and partially because any violation was seen very
negatively by them. This contrasts with the agents’ decision making who
feel no regret in violating a lower priority goal. In the case of system error
most players tried to excuse agents or even took the blame themselves.
The transcribed comments are presented in Appendix B.

Participants were making comments on accountability of the players
when they tried to justify their actions:“The agents didn’t seem to like the
fine for going on white tiles and so they didn’t move.”, “Player 2 didn’t seem to

-148-

Evaluation

want to move or give away his blue chips. The others worked together well to
get close but couldn’t make it as 2 was hogging all the blues!” and “I failed the
team through rejection.”.

Same as in the previous study the participants found it difficult to
violate norms when faced with conflicting norms: “My goal was to move to
a white square but the prohibition said that I should not move to white squares.”
and “Penalty for white, required to be on white at end. Halved final score. :(”.

Another topic that appeared in the comments was the coordination
where the participants were rating their own performance as coordinators
such as “My bad” and “I was the coordinator - However the agents didn’t seem
to move this time. They did trade nicely so I managed to get there :)”.

6.5 Additional Findings

There were a number of findings in addition to the originally proposed
research questions that are worth mentioning.

The ticking clock caused a lot of stress to the human players when
coupled with the deadlines. The stress was then even increased with the
prohibition to move more than one square per clock tick. It took several
games for each player until they were able to avoid violation of this norm,
if ever. This is an example of when players were aware of the norms but
found it difficult to obey them.

During the game play and the interviews it became apparent that the
majority of the players did not pay attention to the value of the penalties,
which is quite contrary to the agents’ design. Many participants sugges-
ted that they would appreciate some colour indication of the severity
and looming deadline. There was also a stark contrast between agents’
rational decision making and human decision making. In the games
where chips distributed randomly and some unfortunate players star-
ted surrounded by tiles with prohibited color the players were deeply
affected by this unfairness, which affected their game play. Even though
the negative effect of the penalization on the participants was not entirely
surprising the extent of that was.

A positive finding then was that the participants did not notice the

-149-

Evaluation

agents until they did something wrong. On the side note they where
programmed to be cooperative and work towards the common goal
at the highest priority therefore all wrongdoings were system errors.
The participants felt generally altruistic towards the agents while being
generally competitive towards the other human participant.

6.6 Reflections on Norms in HACs

Reflecting back on our research question whether norms can be used
to achieve flexible autonomy in human-agent collectives. We have seen
that norms can be used as a regulatory mechanism in the Colored Trails
research test bed. With the use of norms both software and human agents
were able to achieve a team objective. Coordinators employed norms
as a tool to set individual goals and regulate how they are achieved in
response to current context. For example, when there was a shortage of
blue chips coordinator prohibited players from stepping on blue tiles in
unnecessary cases such as if there was an alternative route to the goal.

This online game is necessarily a simplification of a complex scenario
human-agent collective would face for example in a disaster response.
We assume that in such high level stress situations people may react
differently to obligations and prohibitions, however Colored Trails still
allowed us to test the underlying fundamentals of group norms that
appear both in the game and the real world. We tested the ability of
responsible agents to coordinate group to achieve a collective goal while
adapting to dynamically changing conditions.

If we want to use the framework in real world scenarios we will have
to deal with the difficulty of simplifying context information into a form
that is understandable to agents and build resilience to errors that occur.
For example, in our Colored Trails game the position of players was
clearly defined, however in a real world scenario such as GeoSense we
had to interpret positions as discreet locations and this means allowing
for GPS errors and inaccuracies. Also in our game human players were
able to oversee the complete situation while the environment state of
the software agents was very limited. In a real world environment this
situation is likely to be reversed.

-150-

Evaluation

6.7 Summary

To conclude the evaluation chapter the framework / norms can be used as
a coordination mechanism in mixed human-agent teams and to facilitate
flexible autonomy in human-agent collectives. It was received well by
the participants who found the cooperation with the agents interesting
and understood the norms and their purpose. We have achieved flex-
ible autonomy in human-agent collectives with norms. The participants
usually did not distinguish between human and agent players. If they
did they tend to treat agent players kinder than human players who they
saw as a competition. The penalties with priorities did not work in the
same manner for human players as for the agents and the system can
be improved to support human players better and to achieve greater
reliability. We mention possible future work and extensions in Section
7.2.

-151-

Evaluation

-152-

7
Conclusions

In Section 1.1 the top level question to tackle in this thesis was presented:

“How norms can be used to achieve context sensitive flexible autonomy
in HACs?”

During the evaluation we found out that even though both human
and software members of human-agent collective follow norms in their
separate environments when we coordinate HAC with the same set of
norms we need to accommodate their differences. Specifically, human
agents paid attention to the language of norms and their tone; in general
did not like being forced to obey an increasing amount of norms; did
not perform best under time pressure; were not assigning same the same
priorities to tasks as software agents did; and mainly did non appreciate
being sanctioned especially when it was impossible to avoid a violation
of a norm.

We have seen that autonomy is a crucial part of agency and also that

-153-

Conclusions

flexible autonomy is a relatively new a largely unexplored area. We also
have seen that human-agent interaction is increasingly important in real
world scenarios. Norms have been described as a useful way of regulat-
ing multi-agent systems and it is potentially interesting to consider how
norms might be used. This gives us a good working understanding of
the key principles around norms, multi-agent systems and human-agent
interaction. The use of norms in multi-agent systems is relatively well un-
derstood area and human-agent interaction is a growing field of research.
Therefore it is important to investigate the intersection of these common
but currently disconnected areas. Furthermore, specific work regarding
group norms would appear to be especially relevant when considering
groups of entities working together. We have showed the roles that
norms can play in human agent systems, we have also proposed a way
to represent norms in terms of conditional obligations and conditional
prohibitions, and how a system regulated by norms facilitates flexible
autonomy. We have seen how intuitively norms might be engaged with
by humans, but when operationalising norms in a multi-agent system,
autonomy can be preserved by introducing third party enforcing organ-
isation and specific software agent characteristics. Then in chapter 3 we
have presented the implementation of the normHACing framework. We
first described the syntax of the N-2APL agent programming language
which is a normative extension of 2APL and together with 2OPL forms
a normative multi-agent system. This has allowed us to describe a real
world example as a normative environment. Next, we have described the
implementation of the middle-ware that allows us to practically introduce
flexibly autonomous agents into the existing game system.

In chapter 4 we have designed a system of hierarchical group norms,
which can be used for coordination in mixed human-agent teams. We
have introduced the concept of group norms and provided its taxonomy
that builds upon an existing conceptualization. We further extended
it to consider monitoring and enforcement of the norms particularly
with sanctions and deadlines and have defined a way of representing
group norms. Next we have seen how group norms can be applied to
the human-agent collective by considering details such as team plans,
sanctioning policies, responsible agents and hierarchical norms. Finally
we considered the differing implications of group norms on both human
agents and software agents.

-154-

Conclusions

In chapter 5 we described an extension of normHACing framework
for programming group norm-aware multi-agent systems which integ-
rates the GN-2APL norm-aware agent programming language with the
G-2OPL language for programming normative organisations, which are
able to work with collective norms. We showed how the group norm is
implemented and how group norm-aware agents deliberate about group
norms. We have illustrated the use of the system on an example from a
location based game GeoSense. Group norms were tested with the ori-
ginal GeoSense application while working with agent teams only. Mixed
human-agent teams were investigated in the Colored Trails testbed.

Finally the evaluation in chapter 6 concluded the framework / norms
can be used as a coordination mechanism in mixed human-agent teams
and to facilitate flexible autonomy in human-agent collectives. It was
received well by the participants who found the cooperation with the
agents interesting and understood the norms and their purpose. We
have achieved flexible autonomy in human-agent collectives with norms.
The participants usually did not distinguish between human and agent
players. If they did they tend to treat agent players kinder than human
players who they saw as a competition. The penalties with priorities did
not work in the same manner for human players as for the agents and the
system can be improved to support human players better. The system is
not mature enough to facilitate as a reliable tool that can be used widely.

7.1 Contributions

This thesis makes the following contributions to the field of computer
science:

1. Norms in HAC

We show how norms may be used in HAC to achieve flexible
autonomy. Norms are widely used to regulate multi-agent sys-
tems. Human society is accustomed to being governed with norms
in the form of laws, rules or guidelines. However, to the best of
our knowledge norms have not previously been used to coordinate
human-agent collectives. We presented a representation of norm
that can be used coordinate a human-agent collective. Such a norm
can be used a real world scenario like a disaster response.

-155-

Conclusions

2. Hierarchical group norms

We have designed a system of hierarchical group norms, which
may be used for coordination in mixed human-agent teams. Group
norms are addressed to a group of agents. The team receives a
team goal (group obligation), which is then split into individual
goals (individual obligations) the fulfilment of which leads to the
fulfilment of the parent group norm and therefore the achievement
of the group team goal. These norms may be stacked hierarchically
— a group norm can split into a combination of individual and
group norms. The developer of agents can therefore think in terms
of groups and not individual agents.

3. Demonstration of the normHACing framework in practice

The application of the framework was illustrated on two examples
and one of which Colored Trails was used in the evaluation. It
was experimentally demonstrated that norms may be used as a
coordination mechanism in human-agent collectives and to facilitate
flexible autonomy in human-agent collectives.

4. Implementation of framework for norm-aware agents

We implemented N-2APL and developed a framework for pro-
gramming norm-aware multi-agent systems which integrates the
N-2APL norm-aware agent programming language with the 2OPL
language for programming normative organisations. To the best
of our knowledge, this is the first implementation of an integrated
framework for norm-aware multi-agent systems in which autonom-
ous agents deliberate about whether to conform to the norms im-
posed by a normative organisation. This modular framework can
be used with different applications.

7.2 Future Work

In this section, we outline some of the most interesting possible future dir-
ections in the fields of human-agent interaction and norm-aware agents.
These possible directions are open challenges identified during the realiz-
ation of this thesis.

-156-

Conclusions

7.2.1 Human-Agent Interaction

Human-agent team dynamics During the evaluation we have

Physiological context

Our flexible autonomy changed depending on the context. One of the
aims of flexible autonomy is to ensure human-agent interaction maxim-
izes the team performance. As we are aware, human cognitive abilities
are impaired when facing great pressure. Reading the level of stress of
humam members of HACs and giving greater autonomy to agents at that
point may prevent some human errors.

Human friendly norms

Although the framework was received well by the participants who
found the cooperation with the agents interesting and understood the
norms and their purpose. However, the system is not mature enough to
facilitate as a reliable tool that can be used widely. The penalties with
priorities did not work in the same manner for human players as for the
agents and the system can be improved to support human players better.

While human agents naturally understand rules specified by norms
their motivation to comply is different to the motivation of software
agents. Therefore human players cannot be regulated in the same way
in order to achieve best results. Experimental results gathered in this
thesis suggest more sensitive approach such as accompanying goals with
explanations and sparse sanctions will yield better outcome.

Human-robot interaction

In our system we presented software agents as embodied agents in
the form of avatars. When we consider an aftermath of a major natural
disaster as one of the potential applications the framework, we have
to evaluate the system with robotic agents such as UAVs with a vision
system or UGVs with a manipulator arms.

The research area of Human-Robot Interaction (HRI) or Human-Robot
Collaboration (HRC) is growing flexible autonomy is seen as one the
ways to achieve smooth and safe collaboration. Conditional norms can
be used define safe operating modes depending on the nature of environ-

-157-

Conclusions

ment and constantly changing conditions. Further more, norms can be
used to create personalised interaction regimes to maximize comfort of
individuals and productivity.

7.2.2 Norm-Aware Agents

Development of agent personalities

Fully-aware agents

Fully as defined in Section 4.8.2 are able to observe actions of the
other agents in the group. As such they can then dynamically adjust the
priority of the norm according to the current situation. For example, when
an agent becomes aware that a particular group goal cannot be achieve
because other team members are working towards different goal (with
higher priorities in their configuration) it will downgrade the priority of
it current goal (which is part of unachievable group goal) and use its time
and resources towards an achievable goal with a lower priority initially.
Fully-aware agents will be able to better adapt to their continuously
changing environment. The formal model of the framework will need
to extended accordingly to ensure agent’s set of plans always remains
optimal with maximum utility.

From implementation point of view it can be explored if a fully group-
aware agents’ deliberation can be achieved with a modification of the
preference ordering function, which agents use to assign priorities to
sanctions. This static function can be modified to include rules and the
resulting value would change dynamically. It will need to be explored
how this alteration affects tractability of the deliberation algorithm.

Interface for norm encoding suitable for non-developers

One of the weaknesses of the current system is that norms need to be
predefined by a developer a-priory. In the next generation of the frame-
work encoding of norms should be made easier, for example, with use of
visual programming tools. In such a system human-agent coordinators
will be able to construct a suitable rules themselves. Enabling such a
creation will bring a new challenge in preventing agents from creating
arbitrary norms.

-158-

Conclusions

Distributed monitoring

At the moment the deliberation mechanism of the agents is based
solely on the priorities of the norms (the priorities of the sanctions associ-
ated with their violation to be precise). Agents do not take into account
any further information or progress of the plan completion. There are
at least two approaches that can be taken. The first one is to let agents
monitor the actions of the other agents in the environment themselves
while the second option would be to engage the normative organization.

G-2OPL organization is capable of monitoring the actions (states)
that are shared in tuple space. It would however require some complex
changes to the design of the organization to enable more specific compli-
ance checking. For example, if G-2OPL was to decide which agents from
the group are to blame for a violated obligation it would have to have
access to the agent plans to find out at which point the agent stopped
executing its plan and if it was agent’s fault or not.

It would be desirable that the system penalizes agents that made a
choice not to follow the plan as opposed to agents that attempted to
complete the task but one of the steps was not successful and it was
beyond the control of the agent. The organization would therefore need
to be informed, which steps an agent needs to take to fulfil an obligation
and which of them he attempted to make. The second and the preferred
option is to implement the capability of monitoring the progress of the
execution of a joint plan in the MAS. The idea is to let agents observe
others agents’ action. In this approach agents as a group are responsible
for establishing who is to blame for a violated norm.

Deadlines

In our system we consider only time specific deadlines. For example,
If we want an agent to go to a shop today we can say that an agent is
obliged to go to a shop before 5pm. With fact based deadlines we will be
able to say an agent is obliged to go to a shop while it is opened.

Prohibitions with an unlimited validity are another limitation of the
system. For example, we cannot define prohibition to walk on grass while
it is raining.

Fact based deadlines and deadlines in prohibitions were not con-

-159-

Conclusions

sidered due to tractability of N-2APL. The plausibility and implications
of such an extension were not explored in this thesis.

-160-

Conclusions

7.3 Publications of the Author

Dybalova, D., Testerink, B., Dastani, M., and Logan, B. (2014). A frame-
work for programming norm-aware multi-agent systems. In Coordination,
Organizations, Institutions, and Norms in Agent Systems IX, 2014, pages
364–380. Springer.

Lee, J., Padget, J., Logan, B., Dybalova, D., and Alechina, N. (2014).
Run-time norm compliance in BDI agents. In Proceedings of International
conference on Autonomous agents and multi-agent systems, 2014, pages 1581–
1582. International Foundation for Autonomous Agents and Multiagent
Systems.

Lee, J., Padget, J., Logan, B., Dybalova, D., and Alechina, N. (2014).
N-Jason: Run-Time Norm Compliance in AgentSpeak (L). In Engineering
Multi-Agent Systems, pages 367–387. Springer International Publishing.

-161-

Conclusions

-162-

Appendices

-163-

-164-

A
Appendix

%group surround
norm(

group_surround(G),
G,
(group(G), goal(X,Y,Z)),
obligation([surround(X,Y)],now + 18,[reduce(G,700)])
).

%agents group norms from RA
norm(

group_task(group_surround(g)),
Agent,
(pursuer(Agent), detached(group_surround(W)),goal(GX,GY,Z),agentSTask(Agent,

X,Y,goal(GX,GY),S)),
obligation([at(X,Y,Agent)],now + 14,[reduce(Agent, 700)])
).

%individual obligations to respond to requests per each
norm(

respondToRequest(Thing),

-165-

Appendix

Thing,
(pursuer(Thing), proposal(Id,_,Thing,_),group(Z)),

obligation([respondToRequest(Id)],now + 3,[reduce(Thing,300)])
).

%individual obligation to make a move during move phase
norm(

makeMove(Thing),
Thing,

(pursuer(Thing), at(X,Y,Thing),group(Z), not detached(makeMove(Thing))),
obligation([makeMove(X,Y,Thing)],now + 10,[reduce(Thing,300)])
).

%individual prohibition to move more than one field per turn
norm(

moveTooFast(Thing),
Thing,

(pursuer(Thing),group(Z)),
prohibition([moveTooFast(Thing)],[reduce(Thing,300)])

).

RAAA:
%group surround
norm(

group_surround(G),
G,
(group(G), goal(X,Y,Z)),
obligation([surround(X,Y)],now + 18,[reduce(G,700)])
).

%agents group norms from RAAA
norm(

group_task(group_surround(g)),
Agent,
(pursuer(Agent), detached(group_surround(W)),goal(GX,GY,Z),agentSTask(Agent,

X,Y,goal(GX,GY),S)),
obligation([at(X,Y,Agent)],now + 14,[reduce(Agent, 700)])
).

%prohibition for RAAA to excessively restrict a players
norm(

restrictPlayer(Thing),
Thing, // the subject agent
(ra(_,Thing,raaa)),
prohibition([restrictPlayer(Thing)],[reduce(Thing,300)]) // prohibition format

).
%individual prohibitions to use colored tiles RAAA

-166-

Appendix

norm(
not_enter_tile(Thing),

Thing,
(pursuer(Thing), color(Thing,Color,no,S),group(Z)),
prohibition([color(Color,Thing)],[reduce(Thing,S)])

).

%individual obligations to use colored tiles raaa
norm(

enter_tile(Thing),
Thing,

(pursuer(Thing), color(Thing,Color,yes,S),group(Z)),
obligation([color(Color,Thing)],now + 15,[reduce(Thing,S)])

).

%individual obligations to accept requests raaa
norm(

acceptRequests(Thing),
Thing,

(pursuer(Thing), groupObl(acceptRequests,Sanction)),
obligation([acceptRequests(Thing)],now + 15,[reduce(Thing,Sanction)])

).

%individual obligations to respond to requests per each
norm(

respondToRequest(Thing),
Thing,

(pursuer(Thing), proposal(Id,_,Thing,_),group(Z)),
obligation([respondToRequest(Id)],now + 3,[reduce(Thing,300)])

).

%individual obligation to make a move during move phase
norm(

makeMove(Thing),
Thing,

(pursuer(Thing), at(X,Y,Thing),group(Z), not detached(makeMove(Thing))),
obligation([makeMove(X,Y,Thing)],now + 10,[reduce(Thing,300)])

).

%individual prohibition to move more than one field per turn
norm(

moveTooFast(Thing),
Thing,

(pursuer(Thing),group(Z)),
prohibition([moveTooFast(Thing)],[reduce(Thing,300)])

).

-167-

Appendix

Listing A.1: group norms G-2OPL

sanction(Agent,P) :−
pursuer(Agent),
points(Agent, Health),
NewHealth is Health − P,
clock(Now),
retract(points(Agent, Health)),
assert(points(Agent, NewHealth)),
@external(ctMW,write(points(Agent,Now,NewHealth),−1),_).

sanction([reduce(Group,P)],viol(agent_directed(Label,Agent,obligation(State,D,
Sanction)))) :−

group(Group),
sanction_group(g,Sanction).

do_sanction([],P,Group,0,S):−
ra(Group,RA,_),
sanction(S,RA).

do_sanction([H|T],A,Group,L,X):−
sanction(H,A),
do_sanction(T,A,Group,L,X).

do_sanction([],_,Group,L,X).

policy(Group,P,Label):−
findall(M,(violated(group_task(Label),M),group_member(Group,M)),Vs),
length(Vs,L),
S is P / L,
do_sanction(Vs,S,Group,L,P).

sanction_group([reduce(Group,P)],Label):−
policy(Group,P,Label).

Listing A.2: Sanctions G-2OPL

-168-

B
Appendix

Study I. Comments

Participant 3:

1 TM: Took a while to get the rules, and the interface was a little

slow to update.

3 TM: I didn’t understand the value of being at a certain place

by a certain time. Also some of the rules seemed contradictory

- go to blue / do not go on a blue square

5 C: I liked telling them what to do. They did it.

6 TM: The goal made more sense now that I have been coordinator

in a previous game

7 FC: I assumed that the other players would do what they were

supposed to, but they didn’t. I wanted more time to coordinate

before the moving phase began - there wasn’t time to think about

what colour restrictions or obligations should be put in place.

-169-

Appendix

8 TM: Some of the team are not performing to the best of their

abilities. :(

Participant 4:

1 TM: I did not receive a goal or requests for chips from other

players, so couldn’t do much apart from move when I was required

by obligations.

2 TM: The obligation to respond before a certain clock tick was

very difficult to do (possibly impossible) because by the time

I saw the obligation its deadline had already passed. The "move

before tick 16" obligation was impossible to meat since the move

phase started well after that.

3 TM: Finally a game configuration that doesn’t hate me too much.

4 TM: Goal was impossible to meet without violating a prohibition.

6 C: I was unable to receive white chips even when the other team

members were accepting my proposition to give them to me.

7 TM: Worst coordinator ever!

8 FC: I could not force 2 of the agents to move. So they just

stayed there, taking penalties and failing to meet their goals.

Participant 5:

1 TM: It was really hard to move, I had to try it about 10 times

2 TM: If it’s a team game, maybe a good motivation would be to

see the global team score rather than the individual score.Also,

because you don’t carry the points and chips over to the next game,

there’s not much motivation in trying to improve the score

3 C: I tried to make it so that players have to reach the goal

that’s easier for them, but I was a bit slow.This task is much

more stressful than just moving. It took me a lot of time to notice

that I had a chip request from another player and I’m sorry that

I impaired their move.

4 TM: I was missing a chip and requested it. The request was accepted

but I didn’t actually see the chip. How frustrating! Also, I’d

be interested in knowing the other player’s goals as I wouldn’t

request chips from players who I know need them. It also seems

that sometimes, player numbers disappear from the screen, and I

lose track of them.

-170-

Appendix

5 FC: I tried to give team members a goal that I felt was realistic

given their positions and their chips. As a coordinator, I also

could give some of my chips to the players who needed them the

most. I didn’t see the point of adding norms and also felt like

I ran out of time, so I skipped that part.

6 TM: It’s a bit frustrating that, when the coordinator has set

up your goal but not the others, you still can’t move.

Participant 6:

1 TM: I found it difficult to follow all the elements reflected

in the rules (time, task, penalization). Interesting idea though

and I could relate to other ’established’ games, such as checkers.

2 TM: I am still unsure about penalization, but the rules make

more sense after the second game.

3 TM: In comparison with the previous two rounds of the game, I

think I got a better grasp of the penalties and means of requesting

chips. So there is a progression in my understanding of the rules

and enjoyment of the game, even though this is not reflected in

the score. The idea of reciprocating someone’s request for help

is interesting and can be traced from one round to the other.

4 C: This round I had to coordinate the other players by indicated

their desired position; this was initially confusing, as I did

assign a desired position to all players in the required time. Also,

since the board showed everyone’s resources, this could have been

better used in setting the goals.

5 TM: The more familiar the game is the more easy I find it to

follow rules, points and requests. With the rules, there seems

to be a maximum number of 4 beyond which there might be some overload.

6 FC: As a coordinator I was able to instruct everyone to aim for

a goal, but I should have paid more attention to people’s positions

and resources. It’s good it works to host two players on the same

chip/ position.

Participant 7:

6 TM: no goal established.

Participant 9:

-171-

Appendix

1 TM: It was a teeny weeney bit too fast :(

6 TM: Ben is an idiot

Participant 10:

1 TM: Game was too fast paced

3 TM: Some goals clash

4 TM: I couldnt move due to a bug

Participant 11:

1 TM: time constrained, do not even read through all obligation/prohibitions

4 TM: I am asked to move to a white without using white chip!

6 FC: I did not consider the relative positions as a coordinator.

We ran out of yellow chips. my fault. I randomly assign goal

positions.

8 FC: Some Agents are not moving.

Participant 12:

1 TM: I think everyone ran out of the final square colour so I

didn’t make it.

2 TM: I don’t think I was penalized

4 TM: The prohibition was not to go on a brown square, I started

surrounded by brown squares.

5 FC: I think I took too long deciding on where people should go.

I didn’t realise I had to set a position for every player - so

I lead the team to fail!

6 TM: I think everyone was short of yellow chips and so it was

difficult for us to complete our obligations. Perhaps with better

teamwork we could have had one of the players make it.

7 FC: We achieved our goal, everyone seemed to have roughly the

chips they needed - I don’t think players needed to make many requests.

8 TM: I forgot that I would be penalized for moving too fast - I

made two moves within one tick, but I understand why I was penalized.

It’s difficult to remember all of the prohibitions at the same

time. Unfortunately the AI players stopped.

Participant 13:

-172-

Appendix

2 TM: The order of the players on the left changes with each game

that is run. This means that I was confused by which player I

was on the left. Not checking resulted in me misuderstanding the

number of chips I had. A message of chip gained would be useful.

6 FC: I only slightly agree with the last statement as it I have

no control of the players requesting their chips in time

Participant 14:

2 TM: i think that stronger error feedback would make life easier

Participant 15:

1 TM: Did not see the penalisation? Did not partake in team work.

2 TM: Clock tick is 10 seconds. I got a nice gift

3 TM: Too many chips given to me. I did not need them. Easy to

finish (one move)

4 C: Woops.

5 TM: No comment.

6 FC: I am the best coordinator.

7 TM: One move win again.

Participant 16:

1 TM: im curious about what was wil

2 TM: im more cleared about this round

3 TM: so excited to give away my chips!

4 TM: seems too easy to reach the goal for the 4th game? :)

6 TM: fun fun fun

7 FC: how about super big board and massive player like mmo?

Participant 19:

5 TM: It said to complete a task before time 34 but said game ended

at 23

Participant 20:

7 FC: I didn’t restrict colour squares for everyone

-173-

Appendix

Participant 21:

1 TM: I don’t understand what the variety of color purpose in this

game.Overall, it was nice if i’d be given more time.

2 TM: More understand than previous game.

5 TM: the obligations at the top right corner keep changing every

time.

7 TM: the obligations keep changing in short period of time. Don’have

much time to read it carefully

Participant 22:

1 TM: first time try. still a little bit confused about the rules.

Maybe can do it better next time

2 TM: If i can request a chip fast, it can be better.

3 TM: i stay the target at the end. nice round

4 TM: nice round

5 C: the first time to be team leader, try to manage it well. it’s

a nice round anyway

6 TM: the director of this game can manage the team goal better

7 TM: bad round without achieving the target final goal

Study II. Comments

Participant 23:

1 TM: My goal was to move to a white square but the prohibition

said that I should not move to white squares.

2 TM: I don’t think it was possible for me to get to where the

goal was.

3 FC: I was the coordinator - However the agents didn’t seem to

move this time. They did trade nicely so I managed to get there

:)

4 FC: The agents didn’t seem to like the fine for going on white

tiles and so they didn’t move.

5 FC: Player 2 didn’t seem to want to move or give away his blue

chips. The others worked together well to get close but couldn’t

make it as 2 was hogging all the blues!

-174-

Appendix

Participant 26:

1 TM: Standard easy win. No trading.

2 TM: Penalty for white, required to be on white at end. Halved

final score. :(

3 TM: I failed the team through rejection.

4 FC: My bad.

5 FC: Stupid agents not asking for help. Not my fault this time

around.

6 FC: \o/

-175-

Appendix

-176-

C
Appendix

Information For Participants

-177-

Appendix

Playing	with	agents	according	to	norms	

This	is	a	short	lab	based	study	to	evaluate	human-agent	coordination	while	playing	a	simple	
web	based	game.	The	task	involves	playing	a	Color	Trails	game,	which	requires	cooperation	
with	other	team	members	(through	the	web	interface)	who	could	be	either	other	players	or	
software	 agents.	 The	 Color	 Trails	 is	 played	 on	 colored	 board	 and	 the	 gameplay	 includes:	
finding	 a	path,	 obtaining	missing	 chips	needed	 for	 the	moves	 form	 the	other	players	 and	
potentially	coordinating	the	team	play.	This	will	take	no	longer	than	30	minutes.		After	the	
task	you	will	be	asked	to	 fill	 in	a	 feedback	 form	and	there	will	be	a	short	 interview	about	
your	experience.	The	whole	experiment	will	not	 take	 longer	 than	an	hour	and	you	will	be	
reimbursed	with	a	£10	Amazon	voucher.	

There	will	be	several	methods	of	 recording	during	 the	 task:	you	will	be	video	recorded	as	
the	task	is	completed,	also	your	game	play	will	be	recorded	by	the	system	during	the	task.	
You	will	 be	asked	 to	 fill	 in	a	 short	 feedback	 form	and	 there	will	 also	be	a	 short	 interview	
after	the	task	is	completed,	which	will	be	recorded	(audio	only).		The	data	collected	will	be	
used	 to	 analyse	 how	 effective	 the	 system	 is	 at	 helping	 you	 complete	 the	 task.	 Only	
anonymised	parts	of	 the	 recordings	will	be	published	 (anonymised	quotes	 from	the	audio	
records	and	anonymised	still	 images	from	the	video	records).	 	You	may	contact	me	at	any	
time	for	 information	about	the	research	or	 in	relation	to	your	consent.	My	address	details	
are:	

Daniela	Dybalova,	
Mixed	Reality	Lab	(MRL),	
School	of	Computer	Science,	
University	of	Nottingham,	
Jubilee	Campus,	
Wollaton	Road,	
Nottingham,	
NG8	1BB	
dxd@cs.nott.ac.uk	
	
Your	 data	 will	 be	 stored	 in	 accordance	 with	 the	 Data	 Protection	 Act	 1998,	 namely	 on	 a	
password	 protected	 drive	 in	 a	 secure	 facility	 and	 only	 for	 the	 duration	 for	 which	 it	 is	
required.	 	 It	will	 only	 be	 accessible	 by	 those	 directly	 involved	 in	 the	 research,	 unless	 you	
have	given	consent	for	it	to	be	published.	

You	have	been	chosen	to	participate	in	this	study	as	someone	who	might	be	representative	
of	using	this	type	of	system.		You	may	withdraw	consent	from	the	experiment	at	any	time	
during	 or	 after	 the	 task	 for	 any	 reason	without	 penalty	 by	 contacting	me	 at	 the	 address	
above.	In	this	event	all	audio,	video,	gameplay	and	interview	data	that	features	or	relates	to	
you	will	be	erased.	However	it	may	have	a	limited	effect	after	the	publication	of	the	results	
of	the	study.	

Figure C.1: Information Sheet

-178-

Appendix

Playing with agents according to norms

CT is a game in which you must move from a starting position on the board to a goal

position. At each turn, you can move one square up down left right. You can drag and

drop your player icon or double-click on the desired square. Each move costs one chip of

the colour of the square you are moving to. For example, if you are at position x,y you

can move right towards the goal position at u,v if the square is blue and you have a blue

chip. At the beginning of the game you are given a set of chips of various colours which

may or may not be sufficient for you to reach the goal. If you don’t have a chip of the

appropriate colour, you can request the chips you need from other players.

In addition to the basic movement rules explained above, the ‘game coordinator’ can

issue norms which ask you to take a particular route to the goal. Norms are things that

you should do (obligations), e.g, ‘Your should go through a blue square’ or should not do

(prohibitions), e.g., ‘Your should not faster than one square per clock tick’. The norms

can be broken (you don’t have to do what they say), but if you violate a norm, you will

incur a points penalty. If a group obligation is violated, the penalty is split between the

players that did not achieve their part. You will be allocated points at the beginning of

the game and you win the game if you lose less points than the other players.

The game is split into two phases. The first phase is for setting up the norms of the

game. You will see all rules in the right panel. The second phase is for moving towards

the goal.

At the beginning you’ll be allocated one of two roles:

1. Team Player

○ As a Team Player you will receive instructions about where the goal is,

and potentially other obligations/prohibitions

2. Game Coordinator

○ As a Game Coordinator you will decide on the goals for the members of

the team. Additionally you might be given an option to issue additional

restrictions for the players:

i. Obligation/Prohibition to use a square of a set color (one per

player)

ii. Obligation to accept requests for other players (all players)

The experiment involves 8 games and after each game there will be a quick feedback

questionnaire to fill in.

Figure C.2: Game Instructions

-179-

Appendix

Figure C.3: Game Interface

-180-

Appendix

Playing	with	agents	according	to	norms	
Consent	Form		

	
This	 is	 a	 short	 lab	 based	 study	 to	 evaluate	 human-agent	 coordination	 while	
playing	 a	 simple	web	 based	 game.	 	 You	will	 be	 asked	 to	 perform	 a	 short	 task	
working	with	another	participant	or	two	and	recorded	as	you	complete	 it.	This	
will	 take	 no	 longer	 than	 30	minutes.	 The	 task	 involves	 playing	 a	 Color	 Trails	
game,	which	requires	cooperation	with	other	team	members	who	could	be	either	
other	players	or	software	agents.	 	After	the	task	there	will	be	a	short	interview	
about	your	experience.	
	
	
I	 have	 read	 and	 understand	 the	 attached	 information	 sheet,	 which	 includes	
information	about	the	data	to	be	recorded.	
	
	I	understand	that	I	can	withdraw	at	any	time	by	contacting	the	researcher	at	the	
address	provided	in	the	information	sheet,	and	my	personal	data	will	be	erased	
from	the	records.			
	
	
This	is	to	confirm	that	I	have	agreed	to	take	part	in	a	research	trial	on	date:	

………………..………………...	

	
Full	name:	…………………………….………………………………….	

I	confirm	that	I	am	over	the	age	of	18.	 	 							□
	
In	addition	to	the	data	analysis,	I	give	permission	for	data	that	could	identify	me	
(e.g.	photos,	video)	to	be	published:									Yes	□								No	□
	

Signed	……………………………………….…..….	

Figure C.4: Consent Sheet

-181-

Appendix

-182-

D
Appendix

Feedback Form

-183-

Appendix

Figure D.1: Feedback form

-184-

E
Appendix

N-2APL Operational semantics

In this section, we present the operational semantics of N-2APL in terms
of a transition system. The definitions and transition rules were presented
by Alechina et al. [2012] and are based on operational semantics of 2APL
[Dastani, 2008].

N-2APL Configuration

The configuration of an individual agent consists of its identifier, beliefs,
goals, plans, substitutions that result from queries to the belief and goal
bases, and events.

Definition 1 (agent configuration). The configuration of a N-2APL agent is
defined as Aι = 〈ι, σ, γ, Π, ξ,�, PG, PC, PR〉 where ι is the agent’s identifier, σ

-185-

Appendix

is a set of belief expressions 〈belief 〉 representing the agent’s belief base, γ is a list
of goal expressions 〈goal〉representing the agent’s goal base, Π is the agent’s plan
base consisting of a set of plan entries (〈plan〉, 〈goal〉, 〈pgrule〉) representing
the agent’s plans together with their next execution times, ξ is the agent’s event
base containing also elements of the form prohibition(p, s), � is the preference
ordering, PG is the set of planning goal rules, PC is a set procedure call rules,
and PR is a set of plan repair rules.

Definition 2 (multiagent system configuration). Let Aι be the configuration
of agent ι and let χ be the state of the agents’ organisation. The configuration of
a N-2APL multiagent system is defined as 〈A1, . . . , An, χ〉.

Definition 3 (initial configuration). Let ι be the identifier of an agent that
is implemented by a N-2APL program. Let σ be the set of 〈belief 〉-expressions
specified in the N-2APL program and γ be the list of 〈goal〉-expressions from
the same program. Then, the initial configuration of agent ι is defined as tuple
〈ι, σ, γ, ∅, ∅〉. Let also χ be a set of facts and A1, . . . , An be the initial con-
figurations of agents 1, . . . , n that are specified in the multiagent system pro-
gram. The initial configuration of the multiagent systems is defined as tuple
〈A1, . . . , An, χ〉.

Transition Rules for Basic Actions

The following transition rules specify transitions for basic actions.

Skip Action

γ |=g G(r)
〈ι, σ, γ, {(skip, r, id)}, θ, ξ〉 −→ 〈ι, σ, γ, {}, θ, ξ〉 (E.1)

Belief Update Action

A successful execution of a belief update action α is defined as follows.

T(αθ, σ) = σ′ & γ |=g G(r)
〈ι, σ, γ, {(α, r, id)}, θ, ξ〉 −→ 〈ι, σ′, γ′, {}, θ, ξ〉 (E.2)

-186-

Appendix

An unsuccessful execution of a belief update action α is defined as follows.

T(αθ, σ) = ⊥ & γ |=g G(r)
〈ι, σ, γ, {(α, r, id)}, θ, 〈E, I, M〉〉 −→ 〈ι, σ, γ, {(α, r, id)}, θ, 〈E, I ∪ {id}, M〉〉

(E.3)

Test Actions

Definition 4. Let ϕ and ϕ′ be 〈test〉 expressions, φ be a 〈belquery〉 expression,
ψ be a 〈goalquery〉 expression, and τ, τ1 and τ2 be substitutions. The entailment
relation |=t, which evaluates test expressions with respect to an agent’s belief
and goal bases (σ, γ), is defined as follows:

• (σ, γ) |=t B(φ)τ ⇔ σ |= φτ

• (σ, γ) |=t G(ψ)τ ⇔ γ |=g ψτ

• (σ, γ) |=t (ϕ & ϕ′)τ1τ2 ⇔ (σ, γ) |=t ϕτ1 and (σ, γ) |=t ϕ′τ1τ2

A test action ϕ can be executed successfully if ϕ is entailed by the
agent’s belief and goal bases.

(σ, γ) |=t ϕθτ & γ |=g G(r)
〈ι, σ, γ, {(ϕ, r, id)}, θ, ξ〉 −→ 〈ι, σ, γ, {}, θ ∪ {τ}, ξ〉 (E.4)

A test action can fail if one or more of its involved query expressions
are not entailed by the belief or goal bases.

¬∃τ : (σ, γ) |=t ϕθτ & γ |=g G(r)
〈ι, σ, γ, {(ϕ, r, id)}, θ, 〈E, I, M〉〉 −→ 〈ι, σ, γ, {(ϕ, r, id)}, θ, 〈E, I ∪ {id}, M〉〉

(E.5)

Receiving Detached Norms

A normative organisation can broadcast an obligation or a prohibition
event to a specific agent.

χ
n-event−−−−→ χ′

〈A0, . . . , Aι, . . . , An〉 −→ 〈A0, . . . , A′ι, . . . , An〉
(E.6)

-187-

Appendix

where
Aι = 〈ι, σ, γ, Π, ξ〉,
A′ι = 〈ι, σ, γ ∪ {o : d}, Π, ξ,�′〉 if n-event = obligation(ι, o, d, s),
A′ι = 〈ι, σ, γ, Π, ξ ∪{prohibition(p, s)},�′〉 if n-event = prohibition(ι, p, s).

Goal Dynamics Actions

A successful adoption of goal is defined as follows.

σ 6|= Œθ & ground(Œ`) & γ |=g G(r)
〈ι, σ, γ, {(adoptX(Œ), r, id)}, θ, ξ〉 −→ 〈ι, σ, γ′, {}, θ, ξ〉 (E.7)

An unsuccessful adoption of goal is defined as follows.

(σ |= φθ ∨ ¬ground(φθ)) & γ |=g G(r)
〈ι, σ, γ, {(adoptX(Œ), r, id)}, θ, 〈E, I, M〉〉 −→
〈ι, σ, γ, {(adoptX(Œ), r, id)}, θ, 〈E, I ∪ {id}, M〉〉

(E.8)

Goals can be dropped and removed from the goal base by means of
dropgoal(φ), dropsubgoals(φ), and dropsupergoals(φ) actions.

γ |=g G(r)
〈ι, σ, γ, {(dropX(Œ), r, id)}, θ, ξ〉 −→ 〈ι, σ, γ′, {}, θ, ξ〉 (E.9)

where
- γ′ = γ− { f | f ≡ φθ & ground(φθ)} if dropX(φ) is dropgoal(φ)

- γ′ = γ−{ f | φθ |= f & ground(φθ)} if dropX(φ) is dropsubgoals(φ)

- γ′ = γ−{ f | f |= Œ` & ground(Œ`)} if dropX(φ) is dropsupergoals(φ)

Abstract Action

A successful execution of an abstract action will replace it with a plan.

Uni f y(αθ, ϕ) = τ1 & σ |= βτ1τ2 & γ |=g G(r)
〈ι, σ, γ, {(α, r, id)}, θ, ξ〉 −→ 〈ι, σ, γ, {(πτ1τ2 , r, id)}, θ, ξ〉 (E.10)

-188-

Appendix

An unsuccessful execution of an abstract action is defined as follows.

∀r′ ∈ PC : (Uni f y(αθ, G(r′)) = ⊥ ∨ σ 6|= B(r′)) & γ |=g G(r)
〈ι, σ, γ, {(α, r, id)}, θ, 〈E, I, M〉〉 −→ 〈ι, σ, γ, {(α, r, id)}, θ, 〈E, I ∪ {id}, M〉〉

(E.11)

External Action

A successful execution of an external action is defined as follows.

t 6= ⊥ & γ |=g G(r)

〈ι, σ, γ, {(@env(α(t1, . . . , tn), V), r, id)}, θ, ξ〉 env(ι,α(t1θ,...,tnθ),t)−→ 〈ι, σ, γ, {}, θ ∪ {V/t}, ξ〉
(E.12)

An unsuccessful execution of an external action is defined as follows.

t = ⊥ & γ |=g G(r)

〈ι, σ, γ, {(@env(α(t1, . . . , tn), V), r, id)}, θ, 〈E, I, M〉〉 env(ι,α(t1θ,...,tnθ),t)−→
〈ι, σ, γ, {(@env(α(t1, . . . , tn), V), r, id)}, θ, 〈E, I ∪ {id}, M〉〉

(E.13)

Transition Rules for Plans

In this section, we present the transition rules that capture the execution
of plans consisting of basic actions composed by sequence, conditional
choice, conditional iteration, and non-interleaving operators.

Sequence Plan

The execution of a sequence plan α; π consists of the execution of the
basic action α followed by the execution of plan π.

〈ι, σ, γ, {(α, r, id)}, θ, ξ〉 −→ 〈ι, σ′, γ′, {}, θ′, ξ ′〉
〈ι, σ, γ, {(α; π, r, id)}, θ, ξ〉 −→ 〈ι, σ′, γ′, {(π, r, id)}, θ′, ξ ′〉 (E.14)

-189-

Appendix

Conditional Plan

The execution of a conditional plan if ϕ then π1 else π2 consists of a
choice between plans π1 and π2.

(σ, γ) |=t ϕθτ & γ |=g G(r)
〈ι, σ, γ, {(if ϕ then π1 else π2, r, id)}, θ, ξ〉 −→ 〈ι, σ, γ, {(π1τ, r, id)}, θ, ξ〉

(E.15)

¬∃τ : (σ, γ) |=t ϕθτ & γ |=g G(r)
〈ι, σ, γ, {(if ϕ then π1 else π2, r, id)}, θ, ξ〉 −→ 〈ι, σ, γ, {(π2, r, id)}, θ, ξ〉

(E.16)

While Plan

(σ, γ) |=t ϕθτ & γ |=g G(r)
〈ι, σ, γ, {(while ϕ do π, r, id)}, θ, ξ〉 −→ 〈ι, σ, γ, {(πτ; while ϕ do π, r, id)}, θ, ξ〉

(E.17)

¬∃τ : (σ, γ) |=t ϕθτ & γ |=g G(r)
〈ι, σ, γ, {(While ϕ do π, r, id)}, θ, ξ〉 −→ 〈ι, σ, γ, {}, θ, ξ〉 (E.18)

Concurrent Plans

An agent executes its plans concurrently by interleaving the execution of
the next action of all executable plans whose next execution time is now.

〈ι, σ, γ, ρ, ξ〉 −→ 〈ι, σ′, γ′, ρ′, ξ ′〉
〈ι, σ, γ, Π, ξ〉 −→ 〈ι, σ′, γ′, Π′, ξ ′〉 (E.19)

where ρ is executable and Π′ = (Π \ ρ) ∪ ρ′.

-190-

Appendix

Practical Reasoning Rules

In this section, we present the transition rules that captures the application
of the three types of practical reasoning rules.

Planning Goal Rules

A N-2APL agent generates plans by applying PG-rules of the form κ ←
β | π : t.

∃ (g : d) ∈ γ : g |=g κ τ1 & σ |= β τ1τ2

& ¬∃π′ ∈ P : (π′, g : d, (κ τ1 ← β | π : t)) ∈ Π
〈ι, σ, γ, Π, ξ〉 −→ 〈ι, σ, γ, Π′, ξ〉 (E.20)

where τ1, τ2 are substitutions, P is the set of all possible plans and Π′ =
SCHEDULE(Π ∪ {(π τ1τ2, g : d, (κ τ1 ← β | π : t))}, prohibitions(ξ)).

Procedure Call Rules

The transition rule for applying PC-rules to the events from E or M is
defined as follows:

ψ ∈ E ∪M & Uni f y(ψ, ϕ) = τ1 & σ |= βτ1τ2

〈ι, σ, γ, Π, θ, ξ〉 −→ 〈ι, σ, γ, Π′, θ, ξ ′〉 (E.21)

ψ ∈ E ∪M & ∀r ∈ PC : Uni f y(ψ,G(r)) = ⊥
〈ι, σ, γ, Π, θ, ξ〉 −→ 〈ι, σ, γ, Π, θ, ξ ′〉 (E.22)

where PC is the set of PC-rules of agent ι, ξ ′ = 〈E \ {ψ}, I, M〉 if ψ =

event(φ, env) or ξ ′ = 〈E, I, M \ {ψ}〉 if ψ = message(s, p, l, o, e).

Property 1. An event ψ for which there exists a rule r such that Uni f y(ψ,G(r)) 6=
⊥ remains in the event base until it is processed.

-191-

Appendix

Plan Repair Rules

The following transition rules specify the application of a PR-rule to a
failed plan.

PlanUni f y(π, π1) = (τd, τp, π∗) & σ |= βτdτ & id ∈ I

〈ι, σ, γ, {(π, r, id)}, θ, 〈E, I, M〉〉 −→ 〈ι, σ, γ, {(π2τdττp; π∗, r, id)}, θ, 〈E, I \ {id}, M〉〉
(E.23)

id ∈ I & (π, r, id) ∈ Π & ∀(π1<-β|π2) ∈ PR : (PlanUni f y(π, π1) = ⊥ or σ 6|= β)

〈ι, σ, γ, Π, θ, 〈E, I, M〉〉 −→ 〈ι, σ, γ, Π, θ, 〈E, I \ {id}, M〉〉
(E.24)

Multi-Agent Transition Rules

The execution of a N-2APL multi-agent system is the interleaved execu-
tions of the involved individual agents and the environments.

Interleaved Executions of Individual Agents

Ai → A′i
〈A1, . . . , Ai, . . . , An, χ〉 → 〈A1, . . . , A′i, . . . , An, χ〉 (E.25)

Execution of Environment by External Actions

Fenv
ι,α (t1, . . . , tn, χ) = (t, χ′)

χ
env(ι,α(t1,...,tn),t)−→ χ′

(E.26)

Ai
env(ι,α(t1,...,tn),t)−→ A′i & χ

env(ι,α(t1,...,tn),t)−→ χ′

〈A1, . . . , Ai, . . . , An, χ〉 −→ 〈A1, . . . , A′i, . . . , An, χ′〉 (E.27)

-192-

Appendix

Execution of Environment by Internal Dynamics

env ∈ χ & env
(φ,{k,...,l})!

=⇒ env′

〈A1, . . . , An, χ〉 −→ 〈A′1, . . . , A′n, χ′〉 (E.28)

where
χ′ = (χ \ {env}) ∪ {env′}
Aι = 〈ι, σ, γ, Π, θ, 〈E, I, M〉〉
A′ι = 〈ι, σ, γ, Π, θ, 〈E ∪ {event(φ, env)}, I, M〉〉 if ι ∈ {k, . . . , l}
A′ι = Aι otherwise.

Executing Multi-Agent Systems

The execution of a N-2APL multi-agent system is determined by the N-
2APL transition system that is specified by the transition rules presented
above. It consists of a set of so called computation runs.

Definition 5 (computation run). Given a transition system and an initial
configuration s0, a computation run CR(s0) is a finite or infinite sequence
s0, . . . , sn or s0, . . . where si is a configuration, and ∀i>0 : si−1 → si is a
transition in the transition system.

Definition 6 (execution of N-2APL multi-agent systems). The execution of
a N-2APL multi-agent system with initial configuration 〈A1, . . . , An, χ〉 is the
set of computation runs CR(〈A1, . . . , An, χ〉) of the N-2APL transition system.

N-2APL Deliberation Process

In order to execute an individual agent, the N-2APL interpreter follows a
certain order of deliberation steps repeatedly and indefinitely.

Property 2. If the execution of a plan fails, then the plan will either be repaired
in the same deliberation cycle or get re-executed in the next deliberation cycle.

Property 3. If the first action of a failed plan is a test action, an adopt goal
action, or an external action, and there is no plan repair rule to repair it, then
the failed plan may be successfully executed in the next deliberation cycle.

-193-

Appendix

-194-

References

Adal, A. (2010). An Interperter for Organization Oriented Programming
Language (2OPL). Masters’ thesis computer science, Utrecht University.

Aldewereld, H., Dignum, V., and Vasconcelos, W. (2013). We ought
to; They do; Blame the management! In Coordination Organizations
Institutions and Norms in Agent Systems.

Aldewereld, H., Dignum, V., and Vasconcelos, W. (2015). Reasoning
with group norms in software agent organisations. In Proceedings of
the International Workshop on Coordination, Organisation, Institutions and
Norms in Multi-Agent Systems (COIN).

Alechina, N., Dastani, M., and Logan, B. (2012). Programming norm-
aware agents. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2, pages 1057–1064.
International Foundation for Autonomous Agents and Multiagent Sys-
tems.

Allen, J. E., Guinn, C., et al. (1999). Mixed-initiative interaction. Intelligent
Systems and their Applications, IEEE, 14(5):14–23.

Baldoni, M., Baroglio, C., Mascardi, V., Omicini, A., and Torroni, P. (2010).
Agents , Multi-Agent Systems and Declarative Programming : What ,
When , Where , Why , Who , How ? In Dovier, Agostino and Pontelli,
E., editor, A 25-year perspective on logic programming, chapter Agents , M,
pages 204–230. Springer-Verlag.

Balke, T. (2009). A taxonomy for ensuring institutional compliance in
utility computing. In Boella, G., Noriega, P., Pigozzi, G., and Verhagen,

-195-

REFERENCES

H., editors, Normative Multi-Agent Systems, number 09121 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany.

Ball, M. and Callaghan, V. (2012). Managing Control , Convenience and
Autonomy A Study of Agent Autonomy in Intelligent Environments.
In Special Issue on Agent-Based Approaches to Ambient Intelligence.

Balliet, D. and Van Lange, P. A. (2013). Trust, conflict, and cooperation: a
meta-analysis. Psychological Bulletin, 139(5):1090.

Barber, K., Goel, A., and Martin, C. E. (2000). Dynamic adaptive autonomy
in multi-agent systems. Journal of Experimental \& Theoretical Artificial
Intelligence, 12(2):129–147.

Barber, K. and Martin, C. (1999). Agent autonomy: Specification, meas-
urement, and dynamic adjustment. In Proceedings of the Autonomy
Control Software Workshop at Autonomous Agents, volume 1999, pages
8–15. Citeseer.

Beavers, G. and Hexmoor, H. (2004). Types and limits of agent autonomy.
Agents and Computational Autonomy, pages 95–102.

Beer, J. M., Fisk, A. D., and Rogers, W. A. (2014). Toward a Framework
for Levels of Robot Autonomy in Human-Robot Interaction. Journal of
Human-Robot Interaction, 3(2):74.

Benford, S., Drozd, A., Greenhalgh, C., Fraser, M., Schnädelbach, H.,
Koleva, B., Anastasi, R., Flintham, M., Hemmings, T., Crabtree, A., et al.
(2006). Orchestrating real-time participatory experiences.

Björnsson, G. (2011). Joint responsibility without individual control:
Applying the explanation hypothesis. In Moral Responsibility, pages
181–199. Springer.

Björnsson, G. (2014). Essentially shared obligations. Midwest studies in
philosophy, 38(1):103–120.

Boella, G., Torre, L., and Verhagen, H. (2008). Introduction to the special
issue on normative multiagent systems. Autonomous Agents and Multi-
Agent Systems, 17(1):1–10.

Boella, G., Torre, L. V. D., and Verhagen, H. (2006). Introduction to norm-
ative multiagent systems. Computational & Mathematical Organization
Theory, 12(2):71–79.

-196-

REFERENCES

Boella, G. and van der Torre, L. (2008). Substantive and procedural norms
in normative multiagent systems. Journal of Applied Logic, 6(2):152–171.

Bordini, R., Braubach, L., Dastani, M., El FSeghrouchni, A., Gomez-Sanz,
J., Leite, J., O Hare, G., Pokahr, A., and Ricci, A. (2006). A survey
of programming languages and platforms for multi-agent systems.
INFORMATICA-LJUBLJANA-, 30(1):33.

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007). Programming
multi-agent systems in AgentSpeak using Jason. Wiley.

Bradshaw, J. M., Feltovich, P., and Johnson, M. (2012). Human-agent
interaction. Handbook of Human-Machine Interaction, pages 283–302.

Bradshaw, J. M., Feltovich, P. J., Jung, H., Kulkarni, S., Taysom, W., and
Uszok, A. (2004). Dimensions of Adjustable Autonomy and Mixed-
Initiative Interaction. Agents and Computational Autonomy, pages 235–
268.

Braham, M. and Van Hees, M. (2012). An anatomy of moral responsibility.
Mind, 121(483):601–634.

Bratko, I. (2001). Prolog programming for artificial intelligence. Pearson
education.

Bratman, M. (1992). Shared cooperative activity. The philosophical review,
101(2):327–341.

Braynov, S. and Hexmoor, H. (2003). Quantifying relative autonomy in
multiagent interaction. Agent Autonomy, pages 55–73.

Broersen, J., Dastani, M., Hulstijn, J., and van der Torre, L. (2002). Goal
generation in the BOID architecture. Cognitive Science Quarterly, 2(3-
4):428–447.

Broersen, J., Dignum, F., Dignum, V., and Meyer, J.-J. C. (2004). Designing
a deontic logic of deadlines. In Deontic Logic in Computer Science, pages
43–56. Springer.

Burstein, M., Ferguson, G., and Allen, J. (2000). Integrating agent-based
mixed-initiative control with an existing multi-agent planning system.
In MultiAgent Systems, 2000. Proceedings. Fourth International Conference
on, pages 389–390. IEEE.

-197-

REFERENCES

Bădică, C., Budimac, Z., Burkhard, H.-D., and Ivanovic, M. (2011). Soft-
ware agents: Languages, tools, platforms. Computer Science and Informa-
tion Systems, 8(2):255–298.

Cabri, G., Leonardi, L., Mamei, M., and Zambonelli, F. (2003). Location-
Dependent Services for Mobile Users. Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, 33(6):667–681.

Carabelea, C., Boissier, O., and Florea, A. (2004). Autonomy in multi-agent
systems: A classification attempt. Agents and Computational Autonomy,
pages 59–70.

Carmo, J. (2009). Collective agency, direct action and dynamic operators.
Logic Journal of IGPL, 18(1):66–98.

Carriero, N. and Gelernter, D. (1989). Linda in context. Communications of
the ACM, 32(4):444–458.

Castelfranchi, C. (1995a). Commitments : From Individual Intentions to
Groups and Organizations Introductive remarks. In Proceedings of the
First International Conference on Multi-Agent Systems, pages 41–48.

Castelfranchi, C. (1995b). Guarantees for autonomy in cognitive agent
architecture. In Intelligent agents, pages 56–70. Springer.

Castelfranchi, C. (1998). Modelling social action for ai agents. Artificial
Intelligence, 103(1):157–182.

Castelfranchi, C., Dignum, F., Jonker, C. M., and Treur, J. (2000). Deliberat-
ive Normative Agents : Principles and Architecture. Intelligent Agents
VI. Agent Theories, Architectures, and Languages Lecture Notes in Computer
Science, pages 364–378.

Castelfranchi, C. and Falcone, R. (2003). From Automaticity to Autonomy
: The Frontier of Artificial Agents 1. Agent Autonomy, pages 103–136.

Cheng, M. Y. K. and Cohen, R. (2005). A Hybrid Transfer of Control Model
for Adjustable Autonomy Multiagent Systems. In Proceedings of the
fourth international joint conference on Autonomous agents and multiagent
systems, pages 1149–1150. ACM.

Cholvy, L. and Garion, C. (2007). Deriving individual obligations from
collective obligations. Proceedings of the Dagstuhl Seminar on Normative
Multi-agent Systems, pages 1–16.

-198-

REFERENCES

Cohen, P. R. and Levesque, H. J. (1990). Intention is choice with commit-
ment. Artificial intelligence, 42(2):213–261.

Cohen, R. and Cheng, M. (2005). Why bother about bother: Is it worth it
to ask the user? In Proceedings of AAAI Fall Symposium.

Conte, R., Castelfranchi, C., and Dignum, F. (1999). Autonomous Norm-
acceptance. Intelligent Agents V: Agents Theories, Architectures, and Lan-
guages, pages 99–112.

Costanza, E., Fischer, J. E., Colley, J. A., Rodden, T., Ramchurn, S. D.,
and Jennings, N. R. (2014). Doing the laundry with agents: a field
trial of a future smart energy system in the home. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages
813–822. ACM.

Crawford, N. C. (2007). Individual and collective moral responsibility for
systemic military atrocity*. Journal of Political Philosophy, 15(2):187–212.

Criado, N. (2013). Using norms to control open multi-agent systems. AI
Communications, 26(3):317–318.

Criado, N., Argente, E., and Botti, V. (2010). A BDI Architecture for Norm-
ative Decision Making. Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, pages 1383–1384.

Criado, N., Argente, E., Noriega, P., and Botti, V. (2012). A Distributed
Architecture for Enforcing Norms. In Proceedings of the 10th international
conference on Advanced Agent Technology, pages 457–471.

da Silva Figueiredo, K., Torres da Silva, V., and de Oliveira Braga, C.
(2011). Modeling norms in multi-agent systems with normml. Coordin-
ation, Organizations, Institutions, and Norms in Agent Systems VI, pages
39–57.

Dastani, M. (2008). 2apl: a practical agent programming language.
Autonomous Agents and Multi-Agent Systems, 16(3):214–248.

Dastani, M., Dignum, F., and Meyer, J.-j. (2004). Autonomy and Agent
Deliberation. Agents and Computational Autonomy, pages 1–20.

Dastani, M., Grossi, D., and Meyer, J. (2009). Normative multi-agent
programs and their logics. Knowledge Representation for Agents and
Multi-Agent Systems, pages 16–31.

-199-

REFERENCES

Dastani, M. and Tinnemeier, N. (2009). A programming language for
normative multi-agent systems. Handbook of research on multi-agent
systems: semantics and dynamics of organizational models, page 397.

de Lima, T., Royakkers, L., and Dignum, F. (2010). A logic for reasoning
about responsibility. Logic Journal of IGPL, 18(1):99–117.

Diggelen, J. V. and Bradshaw, J. M. (2010). Implementing collective
obligations in human-agent teams using KAoS policies. In Coordination
Organizations Institutions and Norms in Agent Systems.

Dignum, F. (1999). Autonomous agents with norms. Artificial Intelligence
and Law, 7(1):69–79.

Dignum, F., Morley, D., Sonenberg, E. A., and Cavedon, L. (2000). To-
wards socially sophisticated bdi agents. In Proceedings of the 4th Interna-
tional Conference on MultiAgent Systems (ICMAS’00), pages 111–118.

Dignum, V. and Dignum, F. (2011). A logic of agent organizations. Logic
Journal of IGPL, 20(1):283–316.

Dorais, G., Bonasso, R., and Kortenkamp, D. (1999). Adjustable autonomy
for human-centered autonomous systems. In Working notes of the Six-
teenth International Joint Conference on Artificial Intelligence Workshop on
Adjustable Autonomy Systems, pages 16–35.

Dunin-Keplicz, B., Strachocka, A., and Verbrugge, R. (2011). Modeling
Deliberation in Teamwork. In AAAI Spring Symposium, pages 114–118.

d’Inverno, M. and Luck, M. (2012). Creativity through autonomy and
interaction. Cognitive Computation, pages 1–15.

Edwards, K. and Rodden, T. (2001). Jini Example by Example. Prentice Hall
PTR, Upper Saddle River, NJ, USA.

Esteva, M., Rosell, B., Rodriguez-Aguilar, J. A., and Arcos, J. L. (2004).
AMELI: An agent-based middleware for electronic institutions. In Pro-
ceedings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems - Volume 1, AAMAS ’04, pages 236–243, Wash-
ington, DC, USA. IEEE Computer Society.

Eysenck, M. W. and Calvo, M. G. (1992). Anxiety and performance: The
processing efficiency theory. Cognition & Emotion, 6(6):409–434.

-200-

REFERENCES

F. Lopez y Lopez, M. L. and dInverno, M. (2006). A normative framework
for agentbased systems. Computational and Mathematical Organization
Theory, pages 227–250.

F. Sadri, K. S. and Toni, F. (2006). Normative KGP agents. Computational
and Mathematical Organization Theory, pages 101–126.

Falcone, R. (2001). Autonomy : Theory , Dimensions , and Regulation.
Intelligent Agents VII Agent Theories Architectures and Languages, pages
258–263.

Falcone, R. and Castelfranchi, C. (2000). Levels of Delegation and Levels
of Adoption as the basis for Adjustable Autonomy. AI* IA 99: Advances
in Artificial Intelligence, pages 273–284.

Fan, X. and Yen, J. (2012). Intentions and potential intentions revisited.
Journal of Applied Non-Classical Logics, (April 2013):37–41.

Ferguson, G., Allen, J. F., Miller, B. W., et al. (1996). Trains-95: Towards a
mixed-initiative planning assistant. In AIPS, pages 70–77.

Ferreira, N., Mascarenhas, S., Paiva, A., Di Tosto, G., Dignum, F., McBreen,
J., Degens, N., Hofstede, G. J., Andrighetto, G., and Conte, R. (2013). An
agent model for the appraisal of normative events based in in-group
and out-group relations. In AAAI.

Fischer, J., Flintham, M., Price, D., Goulding, J., Pantidi, N., and Rodden,
T. (2012a). Serious mixed reality games. In Mixed reality games. Workshop
at ACM CSCW.

Fischer, J. E., Jiang, W., and Moran, S. (2012b). Atomicorchid: a mixed
reality game to investigate coordination in disaster response. In Enter-
tainment Computing-ICEC 2012, pages 572–577. Springer.

Flintham, M., Benford, S., Anastasi, R., Hemmings, T., Crabtree, A., Green-
halgh, C., Tandavanitj, N., Adams, M., and Row-Farr, J. (2003). Where
on-line meets on the streets: experiences with mobile mixed reality
games. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 569–576. ACM.

Fornara, N. and Colombetti, M. (2009). Specifying and Enforcing Norms
in Artificial Institutions. Declarative Agent Languages and Technologies
VI, pages 1–17.

-201-

REFERENCES

Franklin, S. and Graesser, A. (1997). Is it an agent, or just a program?: A
taxonomy for autonomous agents. In Intelligent agents III agent theories,
architectures, and languages, pages 21–35. Springer.

G. Andrighetto, M. Campenni, R. C. and Paolucci, M. (2007). On the
immergence of norms: a normative agent architecture. In Proc. of AAAI
Symposium, Social and Organizational Aspects of Intelligence.

Gaertner, D. (2008). Argumentation and Normative Reasoning. PhD thesis,
University of London.

Gal, Y., Grosz, B., Kraus, S., Pfeffer, A., and Shieber, S. (2010). Agent
decision-making in open mixed networks. Artificial Intelligence,
174(18):1460–1480.

Gal, Y., Grosz, B. J., Kraus, S., Pfeffer, A., and Shieber, S. (2005). Colored
trails: a formalism for investigating decision-making in strategic en-
vironments. In Proceedings of the 2005 IJCAI workshop on reasoning,
representation, and learning in computer games, pages 25–30.

Garbay, C. and Badeig, F. (2012). Normative multi-agent approach to sup-
port collaborative work in distributed tangible environments. Computer
Supported Cooperative Work, pages 83–86.

García-Camino, A., Rodríguez-Aguilar, J., Sierra, C., and Vasconcelos,
W. (2009). Constraint rule-based programming of norms for electronic
institutions. Autonomous Agents and Multi-Agent Systems, 18:186–217.

Gateau, B., Boissier, O., Khadraoui, D., and Dubois, E. (2007). Controlling
an interactive game with a multi-agent based normative organisational
model. Coordination, Organizations, Institutions, and Norms in Agent
Systems II, pages 86–100.

Gelati, J., Rotolo, A., Sartor, G., and Governatori, G. (2004). Normative
autonomy and normative co-ordination: Declarative power, represent-
ation, and mandate. Artificial Intelligence and Law, 12(1-2):53–81.

Goodrich, M. A., Olsen, D. R., Crandall, J. W., and Palmer, T. J. (2001).
Experiments in adjustable autonomy. In Proceedings of IJCAI Workshop
on Autonomy, Delegation and Control: Interacting with Intelligent Agents,
pages 1624–1629.

-202-

REFERENCES

Grossi, D., Aldewereld, H., and Dignum, F. (2007). Ubi lex, ibi poena:
Designing norm enforcement in e-institutions. In Coordination, organiza-
tions, institutions, and norms in agent systems II, pages 101–114. Springer.

Grossi, D., Dignum, F., Royakkers, L., and Meyer, J.-j. C. (2004). Collective
obligations and agents: Who gets the blame? Deontic Logic in Computer
Science, pages 129–145.

Grossi, D., Tummolini, L., and Turrini, P. (2013). Norms in game theory.
In Agreement Technologies, pages 191–197. Springer.

Grosz, B. and Kraus, S. (1993). Collaborative plans for group activities. In
IJCAI, volume 93, pages 367–373.

Grosz, B. and Kraus, S. (1996). Collaborative plans for complex group
action. Artificial Intelligence, 93(6288).

Haim, G., Gal, Y. K., Gelfand, M., and Kraus, S. (2012). A cultural sensitive
agent for human-computer negotiation. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems-Volume
1, pages 451–458. International Foundation for Autonomous Agents
and Multiagent Systems.

Hardin, B. and Goodrich, M. A. (2009). On using mixed-initiative control:
a perspective for managing large-scale robotic teams. In Proceedings
of the 4th ACM/IEEE international conference on Human robot interaction,
pages 165–172. ACM.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580.

Hoffman, R. R., Johnson, M., Bradshaw, J. M., and Underbrink, A. (2013).
Trust in automation. IEEE Intelligent Systems, 28(1):84–88.

Hollander, C. and Wu, A. (2011). The Current State of Normative Agent-
Based Systems. Journal of Artificial Societies and Social Simulation, 14(2):6.

Holz, T., Campbell, A. G., O’Hare, G. M., Stafford, J. W., Martin, A., and
Dragone, M. (2011). MiRA—Mixed Reality Agents. International Journal
of Human-Computer Studies, 69(4):251–268.

Hong, J.-y., Suh, E.-h., and Kim, S.-J. (2009). Context-aware systems: A
literature review and classification. Expert Systems with Applications,
36(4):8509–8522.

-203-

REFERENCES

Hong, L. I. U. (2009). An Intelligent Tuple Space for Agent Interaction in
Mobile Agent System. In IT in Medicine & Education, 2009. ITIME’09.
IEEE International Symposium on, pages 617–622.

Horvitz, E. (1999). Principles of mixed-initiative user interfaces. In
Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, pages 159–166. ACM.

Hübner, J. F., Boissier, O., and Bordini, R. H. (2010). From organisation
specification to normative programming in multi-agent organisations.
In Dix, J., Leite, J., Governatori, G., and Jamroga, W., editors, Computa-
tional Logic in Multi-Agent Systems, 11th International Workshop, CLIMA
XI, Lisbon, Portugal, August 16-17, 2010. Proceedings, volume 6245 of
Lecture Notes in Computer Science, pages 117–134. Springer.

Hübner, J. F., Boissier, O., and Bordini, R. H. (2011). A normative program-
ming language for multi-agent organisations. Annals of Mathematics
and Artificial Intelligence, 62(1-2):27–53.

Hübner, J. F., Bordini, R. H., and Wooldridge, M. (2006). Programming
declarative goals using plan patterns. In Baldoni, M. and Endriss, U.,
editors, Declarative Agent Languages and Technologies IV, (DALT 2006),
volume 4327 of LNCS, pages 123–140.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2007). Developing organised
multi-agent systems using theMOISE+ model: Programming issues
at the system and agent levels. International Journal of Agent-Oriented
Software Engineering, 1(3/4):370–395.

Hurwicz, L. (1996). Institutions as families of game forms*. Japanese
Economic Review, 47(2):113–132.

Hurwicz, L. (2008). But who will guard the guardians? The American
Economic Review, pages 577–585.

Jennings, N. R., Moreau, L., Nicholson, D., Ramchurn, S., Roberts, S.,
Rodden, T., and Rogers, A. (2014). Human-agent collectives. Commu-
nications of the ACM, 57(12):80–88.

Jiang, W., Fischer, J. E., Greenhalgh, C., Ramchurn, S. D., Wu, F., Jennings,
N. R., and Rodden, T. (2014). Social implications of agent-based plan-
ning support for human teams. In Collaboration Technologies and Systems
(CTS), 2014 International Conference on, pages 310–317. IEEE.

-204-

REFERENCES

Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C. M., Van Riems-
dijk, B., and Sierhuis, M. (2011). The fundamental principle of coactive
design: Interdependence must shape autonomy. In Coordination, or-
ganizations, institutions, and norms in agent systems VI, pages 172–191.
Springer.

Jones, A. J. and Sergot, M. (1993). On the characterisation of law and
computer systems: The normative systems perspective. In Deontic Logic
in Computer Science: Normative System Specification.

Jonker, C. M., Riemsdijk, M. B. V., and Vermeulen, B. (2010). Shared
Mental Models. In Coordination Organizations Institutions and Norms in
Agent Systems, number Section 2, pages 132–151.

Kamar, E., Gal, Y. K., and Grosz, B. J. (2013). Modeling information
exchange opportunities for effective human computer teamwork. Arti-
ficial Intelligence, 195:528–550.

Kamphorst, B., van Wissen, A., and Dignum, V. (2009). Incorporating
bdi agents into human-agent decision making research. In Engineering
Societies in the Agents World X, pages 84–97. Springer.

Klein, G., Woods, D. D., Bradshaw, J. M., Hoffman, R. R., and Feltovich,
P. J. (2004). Ten challenges for making automation a" team player" in
joint human-agent activity. IEEE Intelligent Systems, 19(6):91–95.

Kollingbaum, M. (2005). Norm-governed practical reasoning agents. PhD
thesis, University of Aberdeen.

Kollingbaum, M. and Norman, T. (2004). Norm adoption and consistency
in the noa agent architecture. Programming Multi-Agent Systems, pages
169–186.

Kozierok, R. and Maes, P. (1993). A learning interface agent for scheduling
meetings. In Proceedings of the 1st international conference on Intelligent
user interfaces, pages 81–88. ACM.

Lewis, M. (1998). Designing for human-agent interaction. AI Magazine,
19(2):67.

Lieberman, H. (1997). Autonomous interface agents. In Proceedings of the
ACM SIGCHI Conference on Human factors in computing systems, pages
67–74. ACM.

-205-

REFERENCES

Lieberman, H. and Selker, T. (2003). Agents for the user interface.

List, C. and Pettit, P. (2011). Group agency: The possibility, design, and status
of corporate agents. Oxford University Press Oxford.

Luck, M., Inverno, M. D., and Munroe, S. (2003). Autonomy : Variable
and Generative. Agent Autonomy, pages 11–28.

Luck, M., Mahmoud, S., Meneguzzi, F., Kollingbaum, M., Norman, T. J.,
Criado, N., and Fagundes, M. S. (2013). Normative agents. In Agreement
Technologies, pages 209–220. Springer.

Maes, P. et al. (1994). Agents that reduce work and information overload.
Communications of the ACM, 37(7):30–40.

Mascardi, V., Demergasso, D., and Ancona, D. (2005). Languages for
programming bdi-style agents: an overview. In WOA, pages 9–15.

Mellema, G. (1997). Collective responsibility, volume 50. Rodopi.

Meneguzzi, F. and Luck, M. (2009a). Norm-based behaviour modification
in BDI agents. In Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1, pages 177–184.

Meneguzzi, F. R. (2008). Extending Agent Languages for Autonomy.
In Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 1744–1745.

Meneguzzi, F. R. and Luck, M. (2009b). Norm-based behaviour modifica-
tion in BDI agents. In Sierra, C., Castelfranchi, C., Decker, K. S., and
Sichman, J. S., editors, 8th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), pages 177–184. IFAA-
MAS.

Meneguzzi, J. O., Sycara, K., and Norman, T. J. (2011). Prognostic normat-
ive reasoning in coalition planning. In The 10th International Conference
on Autonomous Agents and Multiagent Systems-Volume 3, number 1, pages
1233–1234.

Mercier, S., Dehais, F., Lesire, C., and Tessier, C. (2008). Resources as basic
concepts for authority sharing. In Humans Operating Unmanned Systems
(HUMOUS’08).

Metral, Y. L. M. and Maes, P. (1998). Collaborative interface agents.
Readings in agents, page 111.

-206-

REFERENCES

Mostafa, S. A., Ahmad, M. S., Annamalai, M., Ahmad, A., and Gun-
asekaran, S. S. (2015). Formulating dynamic agents operational state
via situation awareness assessment. In Advances in Intelligent Informatics,
pages 545–556. Springer.

Mostafa, S. A., Ahmad, M. S., and Mara, U. T. (2016). A Flexible
Human-Agent Interaction Model for Supervised Autonomous Systems.
(August):23–24.

Murphy, A. M. Y. L., Picco, G. P., and Roman, G.-c. (2006). Lime : A
Coordination Model and Middleware Supporting Mobility of Hosts
and Agents. ACM Transactions on Software Engineering and Methodology
(TOSEM), 15(3):279–328.

Neumann, M. (2010). A classification of normative architectures. Simulat-
ing Interacting Agents and Social Phenomena, pages 3–18.

NMAS (2013). Normative multi-agent systems. In Andrighetto, G., Gov-
ernatori, G., Noriega, P., and van der Torre, L. W. N., editors, Normative
Multi-Agent Systems, volume 4 of Dagstuhl Follow-Ups. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik.

Omicini, A. and Denti, E. (2001). Formal ReSpecT. Electronic Notes in
Theoretical Computer Science, 48:179–196.

Oren, N., Vasconcelos, W., Meneguzzi, F., and Luck, M. (2011). Acting on
norm constrained plans. In Proceedings of the 12th international conference
on Computational logic in multi-agent systems, pages 347–363, Barcelona.
Springer-Verlag.

Parasuraman, R., Sheridan, T. B., and Wickens, C. D. (2000). A model
for types and levels of human interaction with automation. IEEE
transactions on systems, man, and cybernetics. Part A, Systems and humans :
a publication of the IEEE Systems, Man, and Cybernetics Society, 30(3):286–
97.

Pettit, P. (2007). Responsibility incorporated*. Ethics, 117(2):171–201.

Porello, D., Bottazzi, E., and Ferrario, R. (2014). The ontology of group
agency. In Proceedings of the 8th International Conference on Formal Onto-
logy in Information Systems. FOIS.

Ramchurn, S. D., Wu, F., Jiang, W., Fischer, J. E., Reece, S., Greenhalgh,
C., Rodden, T., Jennings, N. R., and Roberts, S. (2014). Atomicorchid:

-207-

REFERENCES

human-agent collectives to the rescue. In Proceedings of the 2014 inter-
national conference on Autonomous agents and multi-agent systems, pages
1693–1694. International Foundation for Autonomous Agents and Mul-
tiagent Systems.

Ranathunga, S., Cranefield, S., and Purvis, M. (2012). Integrating expecta-
tion monitoring into bdi agents. In Dennis, L., Boissier, O., and Bordini,
R., editors, Programming Multi-Agent Systems, volume 7217 of Lecture
Notes in Computer Science, pages 74–91. Springer Berlin Heidelberg.

Reed, N. E. (2006). Supporting adjustable autonomy in agent sys-
tems. In Ward, P., Crosby, M., and Schultz, J., editors, Symposium
on Integrating Humans with Intelligent Technologies: Merging Theor-
ies of Collaborative Intelligence and Expert Cognition at the 39th Hawaii
International Conference on System Sciences (HICSS-06), pages 1–4.
http://www.itl.nist.gov/iaui/vvrg/hicss39/.

Ricci, A., Viroli, M., and Omicini, A. (2007). Give agents their artifacts:
the A&A approach for engineering working environments in MAS. In
Durfee, E. H., Yokoo, M., Huhns, M. N., and Shehory, O., editors, Pro-
ceedings of the Sixth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2007), pages 601–603. IFAAMAS.

S. Joseph, c. Sierra, M. S. and Dellunde, P. (2010). Deductive coherence
and norm adoption. Logic Journal of the IGPL.

Savarimuthu, B., Cranefield, S., Purvis, M., and Purvis, M. (2011). Identi-
fying conditional norms in multi-agent societies. Coordination, Organiz-
ations, Institutions, and Norms in Agent Systems VI, pages 285–302.

Scerri, P., Sycara, K., and Tambe, M. (2004). Adjustable autonomy in
the context of coordination. AIAA 3rd" Unmanned Unlimited" Technical
Conference, Workshop and Exhibit, pages 1–13.

Schwarz, M., Stückler, J., and Behnke, S. (2014). Mobile teleoperation
interfaces with adjustable autonomy for personal service robots. In
Proceedings of the 2014 ACM/IEEE international conference on Human-robot
interaction, pages 288–289. ACM.

Sergot, M. (2008). Action and agency in norm-governed multi-agent
systems. Engineering Societies in the Agents World VIII, pages 1–54.

Shockley, K. (2007). Programming collective control. Journal of social
philosophy, 38(3):442–455.

-208-

REFERENCES

Singh, M. P. (1999). An ontology for commitments in multiagent systems.
Artificial intelligence and law, 7(1):97–113.

Singh, M. P. (2014). Norms as a basis for governing sociotechnical systems.
ACM Trans. Intell. Syst. Technol., 5(1):21:1–21:23.

Smiley, M. (2011). Collective responsibility. In Zalta, E. N., editor, The
Stanford Encyclopedia of Philosophy. Fall 2011 edition.

Sukthankar, G., Shumaker, R., and Lewis, M. (2012). Intelligent agents as
teammates. Theories of Team Cognition: Cross-Disciplinary Perspectives,
pages 313–343.

Sycara, K. P. (1998). The many faces of agents. AI magazine, 19(2):11–12.

Tambe, M., Scerri, P., and Pynadath, D. V. (2002). Adjustable Autonomy
for the Real World. Journal of Artificial Intelligence Research, 17:171–228.

Tännsjö, T. (2007). The myth of innocence: On collective responsibility
and collective punishment. Philosophical Papers, 36(2):295–314.

Testerink, B. and Dastani, M. (2012). A norm language for distributed
organizations. Master’s thesis.

Tinnemeier, N. (2011). Organizing agent organizations: syntax and operational
semantics of an organization-oriented programming language. PhD thesis.

Valero-Gomez, A., de la Puente, P., and Hernando, M. (2011). Impact
of Two Adjustable-Autonomy Models on the Scalability of Single-
Human/Multiple-Robot Teams for Exploration Missions. Human
Factors: The Journal of the Human Factors and Ergonomics Society.

van Wissen, A., Gal, Y., Kamphorst, B., and Dignum, M. (2012). Human–
agent teamwork in dynamic environments. Computers in Human Beha-
vior, 28(1):23–33.

Vazquez-Salceda, J., Aldewereld, H., and Dignum, F. (2004). Implement-
ing Norms in Multiagent Systems. In Proc. of the German Conference
on Multiagent System Technologies (MATES), Lecture Notes in Computer
Science, pages 313–327.

Vecht, B. V. D., Dignum, F., Meyer, J., and Neef, M. (2007a). A dynamic
coordination mechanism using adjustable autonomy. Proceedings of the
2007 international conference on Coordination, organizations, institutions,
and norms in agent systems III, pages 83–96.

-209-

REFERENCES

Vecht, B. V. D., Meyer, J.-j. C., Neef, M., Dignum, F., and Meyer, A. P.
(2007b). Influence-Based Autonomy Levels in Agent. In Coordination,
Organizations, Institutions, and Norms in Agent Systems II, pages 322–337.
Springer Berlin Heidelberg.

Verhagen, H. (2000). Norm autonomous agents. PhD thesis, Citeseer.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: theory and
practice. The Knowledge Engineering Review, 10(02):115–152.

Yang, S.-Y. and Lee, D.-L. (2012). Developing a cloud intelligent and
energy-saving information interface agent with web services. In Ad-
vanced Information Networking and Applications Workshops (WAINA), 2012
26th International Conference on, pages 1310–1315. IEEE.

Zieba, S., Polet, P., Vanderhaegen, F., and Debernard, S. (2009). Principles
of adjustable autonomy: a framework for resilient human–machine
cooperation. Cognition, Technology & Work, 12(3):193–203.

Zimmerman, J., Tomasic, A., Simmons, I., Hargraves, I., Mohnkern, K.,
Cornwell, J., and McGuire, R. M. (2007). Vio: a mixed-initiative ap-
proach to learning and automating procedural update tasks. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems,
pages 1445–1454. ACM.

-210-

	Title Page
	Dedication
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Problem Definition and Objectives
	Approach
	Contribution
	Structure of the Thesis

	Literature Review
	Agents
	Autonomy
	Flexible Autonomy

	Human-Agent Interaction
	Norms
	Normative Multi-Agent Systems
	Normative Programming Frameworks
	Applying Norms to Games
	Norms in Operational Multi-Agent Systems
	Norm Monitoring and Enforcement

	Programming Norm-Aware Agents
	Norm-Aware Deliberation
	Norm Representation
	From Norms to Flexible Autonomy

	Towards Group Norms
	Team work: Joint intentions and SharedPlans theory
	Agency theory
	Collective responsibility
	Sanctioning in a group

	Summary

	NormHACing Framework
	Introduction
	Contributions

	2APL
	Beliefs and Goals
	Basic actions
	Plans
	Practical reasoning rules
	External environments
	Events and exceptions
	2APL files

	N-2APL
	Beliefs, Goals and Events
	Actions & Plans
	Implementation

	2OPL
	Middle-ware
	Application
	Game Play
	Encoding Game Rules as Norms
	Agent Programs
	Gameserver Integration
	Evaluation

	Summary

	Group Norms and Human-Agent Collectives
	Introducing Group Norms
	Taxonomy of Group Norms
	Extensions of Aldewereld et al
	Formalising Group Norms
	Team Plan
	Sanctioning Policy

	Responsible Agent
	Hierarchical Group Norms
	Implications for Agents
	Human Agents
	Software Agents
	Flexible Autonomy with Group Norm

	Examples
	Birthday Example
	Location based game example

	Summary

	NormHACing+
	Motivation
	G-2OPL
	Syntax
	Groups
	Sanctions
	Execution
	Fact Base Updates
	Norm Processing
	Application of Sanctions

	Simplification of the Hierarchical Norms

	GN-2APL
	Limitations

	Middle-ware
	Human Agents
	Applying the Framework to a Location Based Game
	Summary

	Evaluation
	Evaluation Questions
	Methodology of The Evaluation
	Colored Trails
	Game Play
	Interface

	Norms for Human Players
	Game Set-Up
	Standard Game
	Flexible Game

	Study I. Norms as Coordination Mechanism
	Results
	Question 1: Norms as Coordination Mechanism
	Question 2: Flexible Autonomy
	Comments Summary

	Study II. Focus on Extended Flexible Autonomy
	Results
	Question 1: Norms as Coordination Mechanism
	Question 2: Flexible Autonomy
	Comments Summary

	Additional Findings
	Reflections on Norms in HACs
	Summary

	Conclusions
	Contributions
	Future Work
	Human-Agent Interaction
	Norm-Aware Agents

	Publications of the Author

	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	References

