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meus irmãos..., são muitos! De cima para baixo: Miguel, o mais velho,
Breno, Lucas, Andrea, Milena, Paola, Tácio e Luisa, a caçula. Agradeço a
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turriet, muito obrigado. Especialmente agradeço Juan Liber, Ricardo Bor-
soi, Renata Borges, Daniel Montezano e Marcos Maruo (vulgo, Chen)
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RESUMO ESTENDIDO

Imagem hiperespectral (HI) é uma imagem em que cada pixel contém
centenas (ou até milhares) de bandas estreitas e contı́guas amostradas num
amplo domı́nio do espectro eletromagnético. Sensores hiperespectrais
normalmente trocam resolução espacial por resolução espectral devido
principalmente a fatores como a distância entre o instrumento e a cena
alvo, e limitada capacidade de processamento, transmissão e armazena-
mento históricas, mas que se tornam cada vez menos problemáticas. Este
tipo de imagem encontra ampla utilização em uma gama de aplicações em
astronomia, agricultura, imagens biomédicas, geociências, fı́sica, vigilância
e sensoriamento remoto. A usual baixa resolução espacial de sensores es-
pectrais implica que o que se observa em cada pixel é normalmente uma
mistura das assinaturas espectrais dos materiais presentes na cena corres-
pondente (normalmente denominados de endmembers). Assim um pixel
em uma imagem hiperespectral não pode mais ser determinado por um
tom ou cor mas sim por uma assinatura espectral do material, ou materi-
ais, que se encontram na região analisada.

O modelo mais simples e amplamente utilizado em aplicações com
imagens hiperespectrais é o modelo linear, no qual o pixel observado é
modelado como uma combinação linear dos endmembers. No entanto,
fortes evidências de múltiplas reflexões da radiação solar e/ou materiais
intimamente misturados, i.e., misturados em nı́vel microscópico, resul-
tam em diversos modelos não-lineares dos quais destacam-se os modelos
bilineares, modelos de pós não-linearidade, modelos de mistura ı́ntima e
modelos não-paramétricos.

Define-se então o problema de desmistura espectral (ou em inglês
spectral unmixing – SU), que consiste em determinar as assinaturas es-
pectrais dos endmembers puros presentes em uma cena e suas proporções
(denominadas de abundâncias) para cada pixel da imagem. SU é um pro-
blema inverso e por natureza cego uma vez que raramente estão disponı́veis
informações confiáveis sobre o número de endmembers, suas assinat-
uras espectrais e suas distribuições em uma dada cena. Este problema
possui forte conexão com o problema de separação cega de fontes mas
difere no fato de que no problema de SU a independência de fontes não
pode ser considerada já que as abundâncias são de fato proporções e
por isso dependentes (abundâncias são positivas e devem somar 1). A
determinação dos endmembers é conhecida como extração de endmem-



bers e a literatura apresenta uma gama de algoritmos com esse propósito.
Esses algoritmos normalmente exploram a geometria convexa resultante
do modelo linear e da restrições sobre as abundâncias. Quando os end-
members são considerados conhecidos, ou estimados em um passo ante-
rior, o problema de SU torna-se um problema supervisionado, com pares
de entrada (endmembers) e saı́da (pixels), reduzindo-se a uma etapa de
inversão, ou regressão, para determinar as proporções dos endmembers
em cada pixel. Quando modelos não-lineares são considerados, a li-
teratura apresenta diversas técnicas que podem ser empregadas depen-
dendo da disponibilidade de informações sobre os endmembers e sobre
os modelos que regem a interação entre a luz e os materiais numa dada
cena. No entanto, informações sobre o tipo de mistura presente em cenas
reais são raramente disponı́veis. Nesse contexto, métodos kernelizados,
que assumem modelos não-paramétricos, têm sido especialmente bem
sucedidos quando aplicados ao problema de SU. Dentre esses métodos
destaca-se o SK-Hype, que emprega a teoria de mı́nimos quadrados–
máquinas de vetores de suporte (LS-SVM), numa abordagem que con-
sidera um modelo linear com uma flutuação não-linear representada por
uma função pertencente a um espaço de Hilbert de kernel reprodutivos
(RKHS). Nesta tese de doutoramento diferentes problemas foram abor-
dados dentro do processo de SU de imagens hiperespectrais não-lineares
como um todo. Contribuições foram dadas para a detecção de misturas
não-lineares, estimação de endmembers quando uma parte considerável
da imagem possui misturas não-lineares, e seleção de bandas no espaço
de Hilbert de kernels reprodutivos (RKHS). Todos os métodos foram tes-
tados através de simulações com dados sintéticos e reais, e considerando
unmixing supervisionado e não-supervisionado.

No Capı́tulo 4, um método semi-paramétrico de detecção de mis-
turas não-lineares é apresentado para imagens hiperespectrais. Esse de-
tector compara a performance de dois modelos: um linear paramétrico,
usando mı́nimos-quadrados (LS), e um não-linear não-paramétrico usando
processos Gaussianos. A idéia da utilização de modelos não-paramétricos
se conecta com o fato de que na prática pouco se sabe sobre a real natureza
da não-linearidade presente na cena. Os erros de ajuste desses modelos
são então comparados em uma estatı́stica de teste para a qual é possı́vel
aproximar a distribuição na hipótese de misturas lineares e, assim, estimar
um limiar de detecção para uma dada probabilidade de falso-alarme. A
performance do detector proposto foi estudada considerando problemas
supervisionados e não-supervisionados, sendo mostrado que a melhoria
obtida no desempenho SU utilizando o detector proposto é estatistica-



mente consistente. Além disso, um grau de não-linearidade baseado nas
energias relativas das contribuições lineares e não-lineares do processo
de mistura foi definido para quantificar a importância das parcelas linear
e não-linear dos modelos. Tal definição é importante para uma correta
avaliação dos desempenhos relativos de diferentes estratégias de detecção
de misturas não-lineares.

No Capı́tulo 5 um algoritmo iterativo foi proposto para a estimação
de endmembers como uma etapa de pré-processamento para problemas
SU não supervisionados. Esse algoritmo intercala etapas de detecção de
misturas não-lineares e estimação de endmembers de forma iterativa, na
qual uma etapa de estimação de endmembers é seguida por uma etapa de
detecção, na qual uma parcela dos pixels “mais não-lineares” é descar-
tada. Esse processo é repetido por um número máximo de execuções ou
até um critério de parada ser atingido. Demonstra-se que o uso combi-
nado do detector proposto com um algoritmo de estimação de endmem-
bers leva a melhores resultados de SU quando comparado com soluções
do estado da arte. Simulações utilizando diferentes cenários corroboram
as conclusões.

No Capı́tulo 6 dois métodos para SU não-linear de imagens hiper-
espectrais, que empregam seleção de bandas (BS) diretamente no espaço
de Hilbert de kernels reprodutivos (RKHS), são apresentados. O primeiro
método utiliza o algoritmo Kernel K-Means (KKM) para encontrar clus-
ters diretamente no RKHS onde cada centroide é então associada ao ve-
tor espectral mais próximo. O segundo método é centralizado e baseado
no critério de coerência, que incorpora uma medida da qualidade do di-
cionário no RKHS para a SU não-linear. Essa abordagem centralizada
é equivalente a resolver um problema de máximo clique (MCP). Con-
trariamente a outros métodos concorrentes que não incluem uma escolha
eficiente dos parâmetros do modelo, o método proposto requer apenas
uma estimativa inicial do número de bandas selecionadas. Os resultados
das simulações empregando dados, tanto sintéticos como reais, ilustram
a qualidade dos resultados de unmixing obtidos com os métodos de BS
propostos. Ao utilizar o SK-Hype, para um número reduzido de bandas,
são obtidas estimativas de abundância tão precisas quanto aquelas obtidas
utilizando o método SK-Hype com todo o espectro disponı́vel, mas com
uma pequena fração do custo computacional.

Palavras-chave: Imagem hiperespectral. Otimização. Detecção. Processo
Gaussiano. Kernel. RKHS. Seleção de bandas.





ABSTRACT

Mixing phenomena in hyperspectral images depend on a variety of fac-
tors such as the resolution of observation devices, the properties of ma-
terials, and how these materials interact with incident light in the scene.
Different parametric and nonparametric models have been considered to
address hyperspectral unmixing problems. The simplest one is the lin-
ear mixing model. Nevertheless, it has been recognized that mixing phe-
nomena can also be nonlinear. Kernel-based nonlinear mixing models
have been applied to unmix spectral information of hyperspectral images
when the type of mixing occurring in the scene is too complex or un-
known. However, the corresponding nonlinear analysis techniques are
necessarily more challenging and complex than those employed for lin-
ear unmixing. Within this context, it makes sense to search for different
strategies to produce simpler and/or more accurate results. In this the-
sis, we tackle three distinct parts of the complete spectral unmixing (SU)
problem. First, we propose a technique for detecting nonlinearly mixed
pixels. The detection approach is based on the comparison of the recon-
struction errors using both a Gaussian process regression model and a
linear regression model. The two errors are combined into a detection
test statistics for which a probability density function can be reasonably
approximated. Second, we propose an iterative endmember extraction al-
gorithm to be employed in combination with the detection algorithm. The
proposed detect-then-unmix strategy, which consists of extracting end-
members, detecting nonlinearly mixed pixels and unmixing, is tested with
synthetic and real images. Finally, we propose two methods for band se-
lection (BS) in the reproducing kernel Hilbert space (RKHS), which lead
to a significant reduction of the processing time required by nonlinear un-
mixing techniques. The first method employs the kernel k-means (KKM)
algorithm to find clusters in the RKHS. Each cluster centroid is then as-
sociated to the closest mapped spectral vector. The second method is
centralized, and it is based upon the coherence criterion, which sets the
largest value allowed for correlations between the basis kernel functions
characterizing the unmixing model. We show that the proposed BS ap-
proach is equivalent to solving a maximum clique problem (MCP), that
is, to searching for the largest complete subgraph in a graph. Furthermore,
we devise a strategy for selecting the coherence threshold and the Gaus-
sian kernel bandwidth using coherence bounds for linearly independent



bases. Simulation results illustrate the efficiency of the proposed method.

Keywords: Hyperspectral Images. Optimization. Detection. Gaussian Pro-
cess. Kernel. RKHS. Band Selection.
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1 INTRODUCTION

Emerged in the 1960s with the first multispectral scanners, the spectral
unmixing problem (SU) [4, 5] consists of identifying target materials and es-
timating their proportions in a given scene. Instruments capable of sampling
contiguously a wide range of the solar radiation produce two-dimensional im-
ages called hyperspectral images (HIs). Due to historic downlink and com-
puter processing limitations, specially in the early 1970s [4], hyperspectral
images often trade spatial for spectral resolution [5]. Such trade-off is es-
pecially evident in remote sensing applications, and are caused by the large
distance between sensors and target scenes. The observed reflectances then
result from spectral mixtures of several pure material signatures. As a conse-
quence, spectral unmixing has become an important issue for hyperspectral
data processing [6], and is still a hot topic today, see [7, 8] and references
there in.

Modern instruments produce HIs with tens to hundreds of narrow con-
tiguous bands, in an increasingly wide portion of the spectrum, ranging from
the visible light to the far-infrared [7]. Clearly, increasing the number of
bands, i.e., using higher spectral resolution, results in a linear increase of the
amount of data and, consequently, a proportional increase in the complexity
of processing algorithms. This contrasts with the polynomial data growth that
would result from increasing the spatial resolution of a given image. In HIs,
a pixel cannot be identified by its color or tone, but by its spectral signature
containing several (usually hundreds) of samples in different wavelengths.
The low spatial resolution implies that the spectrum observed in a given pixel
is often a mixture of the spectral signatures of the materials present in the
scene. Figure 1 illustrates the acquisition process of HIs in which the solar
radiation is reflected by the materials in the Earth’s surface and is measured
by the hyperspectral sensor in a satellite (spaceborne sensor). Figure 2 shows
how an observed pixel can be seen as a mixture of spectral signatures.

Table 1, replicated from [7], presents characteristics of 8 hyperspectral
instruments that are airborne (HYDICE and AVIRIS) and spaceborne (HY-
PERION EnMAP, PRISMA, CHRIS, HyspIRI, and IASI). These instruments
differ in their operation altitude, spatial and spectral resolutions, number of
pixels, number of bands, and spectral range. The spectral range for HYDICE,
AVIRIS, HYPERION, EnMAP, PRISMA, and HyspIRI covers the visible,
near-infrared, and the short-wave infrared spectra, while CHRIS covers only
the visible and the IASI covers the mid- and far-infrared spectral regions.

Hyperspectral images represent a target scene with n1 × n2 pixels,
where each pixel has L contiguous narrow bands. Thus, a hyperspectral im-
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Figure 1: Remote sensing.
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Figure 2: An observed pixel is in fact a mixture of spectral signatures.

age (HI) can be seen as L grayscale images of the same target, that is, one
image for each of the L spectral bands. These images are usually stacked
and presented in a three-dimensional hypercube R ∈ Rn1×n2×L. Figure 3 left
shows a graphical representation of a hypercube captured by the AVIRIS hy-
perspectral sensor from the Cuprite mining district in Nevada-USA. Each of
the 512× 614 pixels collected in this scene has 224 spectral bands ranging
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from 0.7 to 2.5 micrometers. Figure 3 right plots the spectral signature of the
pixel indicated with a black square.
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Figure 3: Graphical representation of the hypercube collected by the
AVIRIS instrument from the Cuprite mining district [1].

In the specific parlance of the field, the materials in a given scene are
called endmembers, and their proportions are named abundances. Now, we
can divide the spectral unmixing problem in three basic problems:

1) define a mathematical model to govern the interactions between the light
beams and the endmembers (mixture) present in a scene;

2) determine the endmembers (i.e., the spectral signature of the pure materi-
als) in this scene;

3) estimate the abundances of each endmember for all pixels.

Several mathematical models were proposed in the literature in the past few
years concerning different forms of endmember interaction, single or multi-
ple reflections of solar light beams, size of endmembers, land relief, etc. Such
models are usually classified into linear and nonlinear mixing models [6, 8]
and the most relevant ones will be discussed in Section 2.2. The second prob-
lem is usually addressed by endmember extraction techniques, which are dis-
cussed in Section 2.3.1. The third problem is often called inversion since it
falls in the category of inverse problems, and a more formal definition is given
in Section 2.3.

The solution of the problems (1-3) presented above is greatly ham-
pered by factors such as spectral variability [9, 10] (which can be seasonal or
along the same image where the spectrum of an endmember slightly varies
in different parts of the scene), illumination effects and solar incidence angle,
atmospheric interference, and instrument calibration. Hyperspectral sensors
usually measure the incident radiance of the scene being analyzed. Such in-
formation is then converted to surface apparent reflectance as a prior step to
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unmixing [11], since SU algorithms are concerned with unveiling spectral
and abundance information in the ground. The hampering factors mentioned
above and the radiance-to-reflectance conversion are out of the scope of the
present work. Nevertheless, we invite the interested reader to refer to [7] and
references there in for more details.

This work focuses in nonlinear spectral unmixing, targeting three spe-
cific problems: nonlinear mixture detection, endmember estimation in non-
linearly mixed HIs, and band selection for nonparametric kernel based SU of
nonlinearly mixed HIs.

1.1 CONTRIBUTION

In this thesis we deal with the problem of nonlinear spectral unmixing
of hyperspectral images. We propose new approaches for detecting nonlin-
early mixed pixels, endmember estimation for HIs with nonlinearly mixing,
and band selection for kernelized unmixing methods.

The detector of nonlinearly mixed pixels discussed in this work was
initially proposed in [12], and [3]. We use both least-squares and Gaussian
processes (GP) to model the unknown mixing process occurring in Nature.
The reconstruction errors for both methods are then combined into a novel
test statistics for which a probability density function can be reasonably ap-
proximated. The proposed detector, namely GP detector for short, is nonpara-
metric, and little is assumed regarding the type of nonlinearity occurring in
the mixing process. Simulations show that the GP detector outperforms other
parametric and nonparametric detectors found in the literature. However, it
is verified that poorly estimated endmembers lead to degraded detection and
unmixing performance.

The problems of extracting endmembers, detecting nonlinearly mixed
pixels and unmixing are interlaced, and addressing them jointly is not a trivial
task. For instance, most nonlinear unmixing techniques assume the endmem-
bers to be known or to be estimated by an endmember extraction algorithm
(EEA) [13, 14, 15, 16, 17, 18, 19, 20, 21]. However, most endmember ex-
traction algorithms rely on the convex geometry associated with the linear
mixing model [22, 23, 24, 25, 26], which obviously does not apply to nonlin-
early mixed pixels. Endmember extraction techniques designed for situations
where a significant part of the image is composed of nonlinear mixtures are
rarely addressed in the literature. In fact, most of the techniques consider-
ing nonlinearly mixed pixels are part of a completely unsupervised unmixing
strategy [27, 28]. Thus, we propose an (Minimum Volume Enclosing Sim-
plex) MVES-based iterative endmember extraction algorithm to be employed
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in combination with the GP detection algorithm to jointly detect nonlinearly
mixed pixels and extract the image endmembers from the linearly mixed pix-
els. Simulations demonstrate the effectiveness of the method for improving
detection and endmember estimation performances. This jointly iterative ap-
proach was also published in [3].

One of the problems in practical implementation of nonlinear unmix-
ing algorithms is the profusion of spectral bands generated in the acquisition
process, leading to high computational costs. Such inherent complexity, as-
sociated with the high redundancy within the complete set of bands, make the
search of band selection techniques natural and relevant [29]. When consid-
ering kernel methods, the data is mapped to a high-dimensional reproducing
kernel Hilbert space (RKHS) where the problem is solved linearly. Thus, se-
lecting bands directly in the RKHS has shown to be quite effective in both
reducing the complexity and preserving the accuracy. We propose two dif-
ferent approaches for selecting bands in the RKHS. The first [30], applies a
kernel k-means algorithm to identify nonlinearly separable clusters of spec-
tral bands in the corresponding RKHS. The second [31], formulates the band
selection (BS) problem as a maximal clique problem (MCP) [32, 33], using
the coherence criterion as a similarity measure among the mapped samples.

Briefly, the main contributions of this work are the following:

a) a model-free detector of nonlinearly mixed pixels. The novel test statistics
compares reconstruction errors of the observations modeled by a Gaussian
Process and a linear regression;

b) a novel recursive endmember estimation algorithm for scenes that are
partly nonlinear;

c) the definition of a degree of nonlinearity ηd which allows a meaningful
comparison of detection results for images obtained using different mixing
models;

d) a kernel k-means based BS strategy;

e) an MCP centralized strategy to perform BS using the coherence criterion;

f) a meaningful methodology to select the coherence threshold and kernel
parameter when considering the MCP for BS and unmixing.

For replicability, Matlab source codes (and datasets) which replicate
the simulations presented in this work are available at https://github.
com/talesim/NP_NL_Det_EE_HI/archive/master.zip (Chapters 4 and 5)
and https://github.com/talesim/clique_BS/archive/master.zip

(Chapter 6).
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1.2 ORGANIZATION OF THE DOCUMENT

Chapter 2 presents a more detailed description of the hyperspectral
unminxing problem, and reviews the state of the art models and methods. In
Chapter 3 preliminary theoretical concepts needed in Chapters 4–6 are pre-
sented. In Chapter 4 the proposed detection strategy is presented, while the
joint endmember extraction and detection approach is discussed in Chapter 5.
Both band selection strategies are presented in Chapter 6, and the work is
concluded in Chapter 7. All chapters include detailed simulations to test and
illustrate the application of the proposed methods to synthetic and real hy-
perspectral images. We also present two appendices to complement needed
mathematical background. In Appendix A, the convex optimization in RKHS
is discussed, and relevant theorems and definitions are presented. Finally,
Appendix B is dedicated to a more in-depth Gaussian process application to
nonlinear regression. Both appendices present simple examples to motivate
the reader.
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2 STATE-OF-THE-ART

This introductory chapter reviews the state of the art for the hyperspec-
tral unmixing problem, and is organized as follows: in Section 2.1 the basic
mathematical notation used is presented. In Section 2.2 the most relevant
mixing models are discussed, while SU is defined in Section 2.3. In Sec-
tion 2.4 the nonlinear mixture detector problem is presented and discussed.

2.1 NOTATION

In this work column vectors are represented as small bold letters such
as xxx, for which the i-th component is represented by xi. Bold capital letters
such as XXX represent matrices with components XXX i, j, unless defined otherwise
locally. Functions with scalar output are represented by letters in Latin or
Greek alphabets, e.g., f (·) or ψ(·). Functions with vectorial output are rep-
resented by bold letters such as fff (·) or ΨΨΨ(·). The endmember matrix, i.e. the
matrix containing the spectral signature of all endmembers, is represented by
MMM. The i-th column of MMM is represented by a vector mmmi (one for each end-
member) and is the spectral signature of the i-th endmember. An alternative
notation considers the row vectors of MMM, mmm>

λi
(one vector for each wavelength

λi).

2.2 SPECTRAL MIXING MODELS

As previously mentioned, in HIs each pixel can be represented as a
mixture of the endmember spectra present in the scene. This section presents
some of the most relevant mixing models considered in the literature of SU [6,
8, 7]. However, we first consider a general formulation in which a pixel rrr can
be represented as

rrr =ΨΨΨ(MMM)+nnn, (2.1)

where rrr = [r1, . . . , rL]
> is a vector with L spectral components, MMM = [mmm1, . . . ,mmmR]

is a L×R matrix that contains the endmember spectral signatures mmmi, ΨΨΨ is an
unknown function defining the interaction between the solar radiation and
endmembers of MMM, and nnn is an independent additive noise assigned to un-
modeled parts of the system. Different models considered in SU of HIs differ
in the linearity (or not) of ΨΨΨ, and in the rôle of the abundances in the model.
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Another more specifically parametrized modeling of (2.1) can be written as

rrr =ΨΨΨ(MMM,ααα)+nnn, (2.2)

where ααα = [α1, . . . ,αR]
> is the abundance vector, and αi is the abundace

of the i-th endmember. Abundances are frequently defined to represent the
proportions of the contribution of each endmember to the total observed re-
flectance. Thus, abundances cannot be negative and must sum to one

R

∑
i=1

αi = 1, and αi ≥ 0, i = 1, . . . ,R. (2.3)

The physical phenomenon governing the interaction between sunlight
and various surface materials is naturally nonlinear. The nature of this nonlin-
earity is mainly linked to multiple reflections and to the transmission mech-
anisms of light [34]. Figure 4 illustrates the three principal types of light-
endmember interaction considered in modern HI processing [8]. In Figure 4a,
each sunlight beam interacts with only one material resulting in the linear
mixing model (LMM) [6]. In Figure 4b the incident beam interacts with mul-
tiple elements that happen to be intimately mixed, giving rise to the so-called
intimate mixing model [35, 36]. Multiple reflection, also named multiple
scattering, is illustrated in Figure 4c where each light beam can be reflected
by more than one different material modifying the observed electromagnetic
spectrum [37]. Multiple scattering has been considered in a variety of mixing
models [37, 8].

Next, models that are pertinent to this work will be formally defined.

2.2.1 Linear Mixing Model

The simplest and most common model in SU is the linear mixing
model (LMM) [6]. The LMM considers that the observed pixel rrr is mod-
eled as a linear combination of the endmember spectra plus an additive noise.
Thus,

rrr =MMMααα +nnn.

subject to
R

∑
i=1

αi = 1, and αi ≥ 0, ∀i ∈ {1, . . . ,R}.
(2.4)

The additive noise nnn is usually modeled as a vector of zero-mean, un-
correlated jointly Gaussian random variables with variance σ2

n , and indepen-
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(a) Linear mixing. (b) Intimate mixing.

(c) Multiple scattering.

Figure 4: Different forms of Solar interaction.



40

dent of the endmembers mmmi. Thus, nnn ∼ N (0,σ2
n III), where σ2

n is the noise
power and III is the identity matrix. This type of noise is often referred as white
Gaussian noise (WGN). The observation r` in the `-th wavelength of (2.4) can
be written as

r` =mmm>
λ`

ααα +n` (2.5)

where mmmλ`
denotes the `-th row of MMM written as a column vector.

It is important to highlight that when working with HIs, the number
of spectral bands L is much larger than the number of endmembers R, that is,
L� R.

2.2.1.1 Geometry of the LMM

The constraints over the abundances considered in (2.4) define the sim-
plex

Sααα = {ααα ∈ RR|ααα ≥ 000,ααα>111 = 1} (2.6)

represented in Figure 5a. It is clear that the vectors in Sααα are confined
to a (R− 1)-dimensional subspace due to the linear dependence among the
abundance components, i.e., αi = 1−∑ j 6=i α j. Note, however, that consid-
ering (2.4) rrr is a linear combination of the columns of MMM, where the linear
coefficients are the constrained abundances. Thus, all observations (neglect-
ing the noise) are also confined to a simplex

Srrr = {rrr ∈ RL|rrr =MMMααα,ααα ≥ 000,ααα>111 = 1} (2.7)

whose vertices are the endmembers. Then, it is clear that all the observed
pixels also lie in an (R−1)-dimensional space. This data simplex is illustrated
in Figure 5b. It is important to emphasize that the convex geometry of the
LMM is extensively exploited by a variety of algorithms proposed to solve
the SU problem.

Clearly, the LMM neglects nonlinear interactions among endmembers
as well as any other form of nonlinearity possibly present in the system. Other
mixing models considers different types of nonlinearity, always trading be-
tween physical significance and mathematical tractability.

2.2.2 Bilinear Mixing Models

When considering multiple reflections of the solar light beam over the
endmembers (see Figure 4c), we enter the realm of nonlinear mixing models.
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Figure 5: Simplex.

Bilinear models consider up to second order interactions, i.e., when the light
beam interacts with up to two endmembers. In a general formulation, bilinear
models represent a pixel rrr as [8]

rrr = fff (MMM,ααα)+nnn, (2.8)

where

fff (MMM,ααα) =
R

∑
k=1

αkmmmk +
R−1

∑
i=1

R

∑
j=i+1

βi, jmmmi�mmm j, (2.9)

and � represents the Hadamard (element-by-element) product

mmmi�mmm j =

 m1,i
...

mL,i

�
 m1, j

...
mL, j

=

 m1,i m1, j
...

mL,i mL, j

 .
In (2.9) the first term on the right side, also present in (2.4), corresponds to
the linear parcel of the signal arriving at the sensor, while the second term is
related to the nonlinear multiple scattering phenomenon. The coefficient βi, j
governs the amount of nonlinear contribution of the interaction between mmmi
and mmm j.

Different bilinear models assume different forms and constraints over
the coefficients βi, j, and abundances.
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2.2.2.1 Fan’s Model

The model proposed by W. Fan at al. [38] in 2009 is a bilinear model
as presented in (2.9), in which the coefficients βi, j are the product of the
abundances of the endmembers mmmi and mmm j, that is

βi, j = αiα j.

Thus,

fff (MMM,ααα) =
R

∑
k=1

αkmmmk +
R−1

∑
i=1

R

∑
j=i+1

αi α jmmmi�mmm j, (2.10)

while keeping the constraints over the abundances as given in (2.3) and re-
peated here for convenience

R

∑
i=1

αi = 1, and αi ≥ 0, i = 1, . . . ,R.

The mathematical expression of the Fan model is not physically mo-
tivated. It is derived from a polynomial approximation, where the first order
terms in the Taylor expansion series were considered, leading to the coeffi-
cient products αiα j in the second term of (2.10).

One problem of using this model for unmixing purposes is that the
simplex, whose extremities are the endmembers, is defined only for the linear
term. The nonlinear term can place the result of the mixture anywhere in the
vector space.

2.2.2.2 Nascimento’s Model

The nonlinear mixing model proposed in [39] generalizes Fan’s model.
The model has the same form presented in (2.9)

fff (MMM,ααα) =
R

∑
k=1

αkmmmk +
R−1

∑
i=1

R

∑
j=i+1

βi, jmmmi�mmm j, (2.11)

but here βi, j is necessarily not given by the product of the abundaces αi, α j.
Applying the same concepts as in [37], Nascimento assumes the following
coefficient constraints

• Positivity constraint: αk ≥ 0, βi, j ≥ 0 for ∀k and ∀(i, j)
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• Sum-to-one constraint: ∑
R
k=1 αk +∑

R−1
i=1 ∑

R
j=i+1 βi, j = 1.

Note that it makes sense to impose this sum-to-one constraint, so that
each component of rrr includes the total energy captured by the sensor in the
corresponding wavelength.

This is a very tractable model because it preserves the simplex formed
by the endmembers, which was an interesting characteristic of the linear mix-
ing model. The nonlinear terms are incorporated to the model as “new end-
members” (the Hadamard product between original endmembers). Consid-
ering the pure endmembers and the new (mixed) endmembers, the unmix-
ing problem can be treated as a linear unmixing problem. Thus, if we write
M̃MM = [mmm1, . . . ,mmmR,mmm1�mmm2, . . . ,mmmR−1�mmmR], with R̃ the number of columns of
M̃MM, and α̃αα = [α1, . . . ,αR,β1,2, . . . ,βR−1,R]

>, then Nascimento’s model can be
written as

rrr = M̃MMα̃αα +nnn

subject to
R̃

∑
k=1

α̃k = 1, α̃k ≥ 0, ∀k.
(2.12)

Just as Fan’s model, this model was designed to handle multiple inter-
action between the solar radiation and the endmembers. Thus, in principle,
this is not a suitable model for modelling intimate mixtures.

An issue about this model is that it assumes the previous knowledge of
the pure endmember signatures prior to the SU in order to “build” the mixed
endmembers.

2.2.2.3 Generalized Bilinear Model

The generalized bilinear model (GBM) [18] was proposed as a gener-
alization of Nascimento’s model. It has the same bilinear form as presented
in (2.9), and coefficients βi, j given by

βi, j = γi, jαiα j,

where, the parameters γi, j ∈ [0,1] govern the amount of nonlinear contribu-
tion. The constraints over abundances are kept as presented in (2.9). Thus,
we can rewrite (2.9) as

fff (MMM,ααα) =
R

∑
k=1

αkmmmk +
R−1

∑
i=1

R

∑
j=i+1

γi, jαi α jmmmi�mmm j (2.13)
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αk ≥ 0, ∀k ∈ {1, . . . ,R} (2.14)

R

∑
k=1

αk = 1 (2.15)

and

0≤ γi, j ≤ 1, ∀i ∈ {1, . . . ,R−1}, ∀ j ∈ {i+1, . . . ,R}. (2.16)

Comparing (2.13) with (2.11) the following differences can be ob-
served:

• Data generated by both models (noiseless case) are in limited space
regions. For model (2.11), there are R(R− 1)/2 mixed endmembers.
Hence, the data are in a simplex in R[R(R−1)/2]−1 whose extremities are
the pure endmembers and the mixed endmembers. For model (2.13),
the generated data will be in a nonlinearly distorted simplex in RR

whose extremities correspond to the pure endmembers (like in the lin-
ear mixing model). The nature of this nonlinear distortion, however,
is difficult to predict. An example has been shown in [40] for small
coefficients γi, j in which the distortion looks like a space curvature.
However, there is no guarantee that this will always be the case.

• The nonlinear terms mmmi �mmm j in (2.13) under constraints (2.15) and
(2.16) can no longer be considered as new endmembers in a linear
mixing model. This was possible in (2.11) because the coefficients
βi, j were included in the sum-to-one constraint. Thus, some solutions
used for the linear mixing model (such as those based on geometrical
approaches) cannot be directly applied to the model (2.13).

• To apply model (2.13) and use a linear unmixing strategy the con-
straints would have to be modified to

R

∑
k=1

αk +
R

∑
i=1

R

∑
j=1

γi, jαiα j = 1 (2.17)

αk ≥ 0, k = 1, . . . ,R (2.18)

and
γi, jαiα j ≥ 0, i = 1, . . . ,R, j = 1, . . . ,R. (2.19)

Note that in this case, γi, j can be greater than one, which is not allowed
in (2.16).

• The physical interpretation of f (MMM,ααα) being the sum of the spectral
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energies due to the pure endmembers mmmi and the nonlinear endmembers
mmmi�mmm j to compose the total spectral energy received is lost in (2.13).

• If an endmember mmmk is not present in a target pixel, then its interactions
with other endmembers are automatically eliminated from (2.13) (αααk =
0).

This model also assumes that pure endmembers have been estimated before
the unmixing.

2.2.3 Post-Nonlinear Mixing Model - PNMM

This is a large class of nonlinear unmixing models, for which the non-
linearity is obtained by applying a nonlinear function to a linear combination
of the endmembers. The general expression for the observations is

rrr = ggg(MMMααα)+nnn. (2.20)

This model has been initially proposed for source separation problems [41].
It is an interesting idea for mathematical modeling purposes. Although the
physical motivation is not very clear, this model can be seen as a generaliza-
tion of other bilinear models, such as GBM, falling in the particular cases if
the function ggg(.) is conveniently chosen. For instance, the PNMM considered
in [13] is given by

rrr = (MMMααα)ξ +nnn (2.21)

where (vvv)ξ denotes the exponentiation applied to each entry of the vector vvv.
For ξ = 2, (2.21) becomes a bilinear model closely related to the GBM but
without a linear term. The PNMM was explored in other works considering
different forms for ggg applied to hyperspectral data unmixing [42, 43].

When the function ggg(·) is modeled as a polynomial, the model is of-
ten called post polynomial nonlinear mixing model (PPNMM) [42]. A very
simple form of this model was considered in [44, 17]. The nonlinearity was
modeled by a polynomial of degree 2, and given by

g(si) = si +bs2
i , i = 1, . . . ,L (2.22)

where si is the i-th component of the vector MMMααα .
An interesting characteristic of this model is that it reduces to a bilin-

ear model
rrr =MMMααα +b(MMMααα)� (MMMααα)+nnn. (2.23)

On the other hand, a limiting feature is the fact that a single parameter b is
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used for all the wavelengths corresponding to a given pixel. In [44] Altmann
et al. states that the PPNMM should present SU results at least as good as
those obtained using the linear model considered in [45]. This should be the
case since the PPNMM becomes the LMM for b = 0. However, the model
can add some distortion to the solution once b is the same for all wavelengths.

The second order PPNMM (2.23) was considered in recent works [44,
17]. In [44] a Bayesian approach was applied to solve the SU problem, while
an optimization routine was considered in [17]. For both the PPNMM pre-
sented good results. A comparative analysis was also performed in [17] where
the authors present results considering different mixing models. The PPNMM
presented the smallest average error. This illustrates the potential of such
models even when restricted simple cases, as (2.23), are considered.

2.2.4 Intimate Mixing Models

While the linear and bilinear models are normally applied to macro-
scopic level of spectral mixture, sometimes the mixture can occur at micro-
scopic levels, as illustrated in Figure 4b. In this case the endmembers are said
to be intimately mixed [36]. Classical examples where intimate mixing occurs
are desert sands or mining fields where the endmembers are considered to be
minerals composing the “sand” or the “field” and mixed at the microscopic
level [46, 47]. Due to its physical meaning, the most popular approaches to
model intimately mixed endmembers can be found in [36]. However, more
tractable models based on the same concepts found in [36] have been reported
in the literature [35, 48, 49]. Nevertheless, intimate models depend on param-
eters that are inherent to the experiment such as the geometrical positioning
of the sensor in relation to the target sample, land relief, etc. This kind of
dependence makes the unmixing problem even more complex and difficult.

The use of intimate mixture models makes sense if the endmembers
are mixed at the microscopic scale. To illustrate this, consider a target scene
containing sand and trees. For a specific application, sand can be considered
as one endmember and trees as another. So, we would have just 2 endmem-
bers. However, these endmembers are composed by other materials (min-
erals, leafs, wood, etc). Thus, the definition of endmember depends on the
application, and what one considers to be a “pure” element. To circumvent
this issue, the authors in [8] state that it makes sense to associate “pure com-
ponents” to individual instances with size of the same order of magnitude as
the resolution of the sensor used. For this reason, and because of the com-
plexity of the models involved in this kind of mixture, we will not consider
models of intimate mixtures in the remaining of this work.
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2.3 SPECTRAL UNMIXING: PROBLEM DEFINITION

The spectral unmixing of a hyperspectral image RRR = [rrr1, . . . ,rrrN ], with
N pixels, consists in determining the endmember matrix MMM and the abun-
dance matrix AAA = [ααα1, . . . ,αααN ]. This problem is non-supervised and equiv-
alent to the blind source separation (BSS) problem in a typical signal pro-
cessing view. Some authors refer to this problem as blind hyperspectral un-
mixing (BHU) [50]. However, given the abundance constraints (2.3), the
statistical independence of the sources often assumed in BSS does not hold
for BHU [51].

The analysis of HIs has demanded great attention from the scientific
community in the past few years [52]. In this period, a variety of methods
were proposed to solve the SU problem considering linear and nonlinear mix-
ing [50, 8, 53]. Among the possible approaches we highlight the methods
that exploit the convex geometry of the problem, specially if the model is lin-
ear. Such methods are usually based on constrained least squares, Bayesian
approaches, projection techniques, and convex and non-convex optimization
procedures.

When the endmember matrix MMM is known, the SU problem is said to
be supervised and reduces to inversion (or regression) step. Note, however,
that this is a strong assumption since knowledge about the endmembers is
rarely available. On the other hand, assuming MMM known provides a controlled
environment where the true potential of proposed techniques can be unveiled.
In Section 2.3.1 the most common endmember extraction techniques are pre-
sented, while linear and nonlinear unmixing strategies are discussed in 2.3.2
and 2.3.3 respectively.

2.3.1 Endmembers Estimation

Endmember extraction algorithms (EEA) is the denomination given
to a range of endmember estimation techniques that rely on little or no prior
information regarding the observed pixels, i.e., {rrrn}N

n=1. EEAs exploit the
convex geometry of the LMM to identify the endmembers. Most EEA algo-
rithms assume the existence of pure pixels within the image. Pure pixels are
those that have only one endmember (in contrast to non-pure pixels that are
composed of a mixture of endmembers), that is, if a given pixel rrrn is a pure
pixel containing only the endmember mmmk then the corresponding abundance
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vector αααn has its entries αn,i defined as

αn,i =

{
1, i = k
0 otherwise.

Pure-pixel based approaches assume the existence of at least one pure
pixel per endmember. The majority of such algorithms use one of the follow-
ing two properties:

a) The extremes of the projection of the spectral vectors rrrn into any subspace
correspond to the endmembers.

b) The hypervolume defined by a set of p spectral vectors is maximum when
these vectors are endmembers.

EEAs representing group a) are the pixel purity index (PPI) [22], ver-
tex component analysis (VCA) [23], simplex growing algorithm (SGA) [24],
successive volume maximization (SVMAX) [26], and recursive algorithm
for separable nonnegative matrix factorization (RSSNMF) [54]; Algorithms
representing the group b) are the N-FINDR [55], iterative error analysis
(IEA) [56], sequential maximum angle convex cone (SMACC), and alternat-
ing volume maximization (AVMAX) [26].

2.3.2 Linear SU

Assuming the endmember matrix MMM to be known1, the problem boils
down to the solution of an inverse problem. For the LMM, the inverse step
consists in solving a linear system as in (2.4) for each of the N pixels. This
type of linear system are overdetermined, L� R, and, therefore, has no exact
solution [58]. However, an optimal solution can be achieved minimizing the
squared error, i.e., the least-squares (LS) [59]. The LS solution for a given
pixel rrrn is its orthogonal projection onto the space spanned by the columns of
MMM, and the projection coefficients are the abundances. Thus, the abundances
can be found by solving the following convex quadratic problem

ααα
∗ = argmin

ααα

‖rrr−MMMααα‖2
2, (2.24)

1MMM can be previously estimated using an EEA technique, or using other procedures such as
local measurements or using digital libraries [57].
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for which the linear combination coefficients ααα has a closed analytical ex-
pression given by

ααα
∗ =

(
MMM>MMM

)−1
MMM>rrr. (2.25)

Numerically more stable, the regularized LS [60] can be also applied to find
the abundances solving the following convex problem

ααα
∗ = argmin

ααα

‖rrr−MMMααα‖2
2 +λ‖ααα‖2

2. (2.26)

Solving (2.26) the expression for the ααα’s becomes

ααα
∗ =

(
MMM>MMM+λIII

)−1
MMM>rrr, (2.27)

where λ is the regularization parameter. Although widely used, the presented
LS approaches have no constraints over the abundances. In this context, con-
strained LS approaches can be found in [61, 62], where only the some-to-one
constraint is considered, and then, solving the dual unconstrained problem
using Lagrange multipliers. A version known as Fully Constrained Least
Squares (FCLS) is presented in [63].

When pure pixels are not available in a target scene, different ap-
proaches have been proposed in the literature. Among them, we highlight
those based on the minimum volume (MV) simplex, where the abundances
and endmembers are jointly estimated. From an optimization perspective,
MV algorithms can be formulated as

MMM∗,AAA∗ = argmin
MMM,AAA

‖RRR−MMMAAA‖2
F +λV (MMM)

subject to AAA� 0, 111>R AAA = 111>N ,
(2.28)

where ‖XXX‖F =
√

trace{XXXXXX>} is the Frobenius norm, � denotes the entry-
wise ≥ operator, i.e., αn,i ≥ 0, ∀n e ∀i, 111z represents a column vector with all
z components equal to 1, V (MMM) is a simplex volume penalty term which pro-
motes a minimum volume estimation, and λ is the regularization parameter.
Initially proposed in [64], this approach underlines several geometrical based
unmixing algorithms, minimizing successively with respect to MMM and AAA. This
is the case for the iterative constrained endmembers (ICE) algorithm [65],
and the minimum volume transform-nonnegative matrix factorization (MVC-
NMF) [66], whose main differences are related with the way they define the
regularizer V (MMM). For variations of these ideas recently introduced, see [67].
It is important to highlight that problem (2.28) is not convex and its solutions
are highly dependent on the initialization. A convex formulation, named min-
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imum volume enclosing simplex (MVES) can be found in [25], by reformu-
lating (2.28) with respect to MMM−1 instead of MMM .

Bayesian methods were also widely employed to solve SU problems.
This kind of approach brings great flexibility by incorporating constraints in
priors, i.e.; probability density functions (PDFs) a priori. It also estimates MMM
and AAA jointly, in a hierarchical Bayesian model using Monte Carlo Markov
Chain (MCMC) methods. This type of approach allows posterior PDFs to
be estimated even when considering very complex density functions [68].
MCMC Bayesian methods have been applied to linear SU problems in [45,
69, 70, 71].

2.3.3 Nonlinear SU

In recent years, promising methods were employed to nonlinear SU
of HIs. A large portion of these methods are based on specific nonlinear
parametric models as presented in Sections 2.2.2 and 2.2.4. However, some
approaches assume only general characteristics about the type of nonlinearity
or nonlinear function. This second group has been called in the literature
model-free (or model independent) nonlinear spectral unmixing [8].

2.3.3.1 Nonlinear SU using Parametric Models

For a given parametric model, the problem of SU can be formulated as
a constrained nonlinear regression or as a nonlinear source separation prob-
lem, depending on whether the endmembers are known or not.

Assuming that the mixing matrix MMM is known, various approaches
have been proposed for supervised bilinear models. In this context, SU of
a given pixel rrr can be formulated in a general way as the following minimiza-
tion problem

θθθ
∗ = argmin

θθθ

‖rrr−ϕϕϕ(MMM,θθθ)‖2
2

subject to θθθ ∈Ω,
(2.29)

where θθθ is a vector containing the abundances and any other model parame-
ters, ϕϕϕ(·) is a parametric bilinear function, and Ω defines the feasible region
for the vector θθθ , i.e., ααα ∈Sααα , and further constraints (possibly) imposed over
other model parameters. Since the Nascimento model can be interpreted as
a linear model with a new endmember basis (2.12), linear approaches can be
used to solve the problem, as in [39]. In [38, 40] the authors considered the
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FCLS proposed in [72] to estimate θθθ for a linearized version (via Taylor se-
ries expansion) of ϕ(·). A fully Bayesian approach based on Monte Carlo
approximations was conducted in [18] for the GBM. This same strategy was
applied in [17] but considering the PPNMM.

Methods for unsupervised nonlinear SU are also reported in the lit-
erature. In [73] the authors extended the Bayesian methodology considered
in [17] to solve an unsupervised problem. Another work worth mentioning
is the method proposed by Heylen and Scheunders [74]. In this work the
problem was approached from a geometric point of view considering mani-
fold learning techniques, using an integral formulation to calculate the “true”
geodesic distances in the manifold induced by the GBM. Within this con-
cept, strategies for nonlinear unmixing, dimensionality reduction, clustering,
or classification can be reformulated.

Artificial neural networks have also been considered when adopting
intimate mixture models [75]. More details about these and other methods
applied to supervised nonlinear SU can be found in [8] and in their references.

2.3.3.2 Model-free Nonlinear SU

When the type of nonlinearity is unknown, more flexible approaches
should be sought. In this context, methods based on reproducing kernels [76,
77] are of particular interest due to their capacity to approximate functions
without the need for a strict parametric model. Several kernel-based methods
were presented in the nonlinear SU literature [8]. However, not all of them
take into account that the type of nonlinearity involved in the mixing is mainly
due to multiple interactions between light and different endmembers. Chen et
al. [13] presents a supervised kernel-based formulation considering multiple
interactions between light and endmembers. For this, a partially linear model
was proposed leading to algorithms called K-Hype and SK-Hype (the latter
is used in this work and discussed in Section 3.1.4).

Within an unsupervised setting, two approaches are particularly rel-
evant for model-free unmixing. In [28] a Bayesian approach was proposed
employing a Gaussian process latent variable model (GPLVM) as a tool for
probabilistic nonlinear dimensionality reduction. Although the authors make
no prior strong assumption about the spectral signatures in MMM, they consider
the number of endmembers (R) to be known. The second approach is related
to manifold learning [78, 79], where geodesic distances are approximated
based on graphs obtained directly from the data [27].
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2.4 DETECTION OF NONLINEARLY MIXED PIXELS

It is now acknowledged that nonlinear unmixing algorithms can lead
to a better understanding of the individual spectral contributions. On the
other hand, nonlinear analysis techniques are necessarily more challenging
and complex than those employed for linear unmixing. As hyperspectral im-
ages tend to include both linearly and nonlinearly mixed pixels, there are two
important reasons to match the unmixing method to the nature of each pixel
in the image. First, nonlinear unmixing algorithms are always more complex
to implement than linear unmixing algorithms. Second, unmixing linearly
mixed pixels with nonlinear unmixing algorithms leads to poorer results than
doing it with linear unmixing algorithms. Hence, it makes sense to detect the
nonlinearly mixed pixels in an image prior to its analysis, and then employ
the simplest and more accurate available unmixing technique to analyze each
pixel. However, detecting nonlinearly mixed pixels in a hyperspectral image
is also a complex task. Physically motivated models [34, 80] usually tend to
be too complex for application in practical detection strategies.

In a pioneer work in the analysis of hyperspectral data Han and Good-
enough [81] used surrogate data, borrowed from analysis of nonlinear dynam-
ical time series [82], to test nonlinear hypothesis in HIs. In [81] a pixel was
seen as a realization of a dynamical nonlinear system along the wavelengths,
and considered the same approach as in [83]. However, nonlinearity in HIs
are modeled in the amplitude relation within each band (see Section 2.2), not
in its dynamics, i.e., along the bands. One possible approach is to consider
a simplified parametric model for the nonlinearity. The parameters of this
nonlinear model are then estimated from the image, and hypothesis tests are
derived based on these estimates. For instance, a single-parameter polyno-
mial post-nonlinear model is assumed in [42]. The main question regarding
parametric modeling of nonlinear mixing mechanisms is whether the chosen
model can capture the actual nonlinear effects present in a scene. When noth-
ing or little is known about the nonlinear mixing mechanism, a direct strategy
is to exploit the property of linear mixing models to confine the noiseless
data to a simplex. The hypothesis test proposed in [2] is based on the dis-
tance between the observed pixel and this simplex. Though this test is robust
to nonlinear mixing mechanisms, it conveys too little information about the
nonlinearity as a trade-off to guarantee simplicity. An alternative strategy is
to use nonparametric techniques to extract information about the nonlinearity
directly from the observations. A nonparametric unmixing technique based
on kernel expansions is presented in [13], but this work does not address non-
linearity detection. A nonlinear mixing model for joint unmixing and nonlin-
earity detection is proposed in [84]. It assumes that the observed reflectances
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result from linear spectral mixtures corrupted by a residual nonlinear compo-
nent. This model is rather similar to the model initially introduced in [13], but
the estimation method relies on a computationally intensive Bayesian proce-
dure.

2.5 BAND SELECTION

Nonlinear methods have been successfully applied to unmix nonlin-
early mixed HIs [8], where the size of the input data equals the number of
spectral bands in a space with dimension equal to the number of endmem-
bers [8]. It means that when dealing with HIs, and the profusion of spectral
bands generated in the acquisition process, these methods must deal with ma-
trices composed of hundreds or even thousands of vectors for each pixel. Such
inherent complexity, associated with the high redundancy within the complete
set of bands, make the search for band selection (BS) techniques natural and
relevant [29]. Several BS algorithms have been proposed for linearly mixed
HIs, which generally require solving an optimization problem [85]. However,
BS for nonlinear unmixing presents an even more challenging problem.

Band selection has been an active topic for classification of spectral
patterns, see [86, 87, 88, 89, 90] and references there in. When concerning
unmixing of HIs, band selection approaches [91, 85] are usually deprecated in
relation to subspace projection techniques [92, 23, 93]. This happens because
the more consolidated literature assumes linear mixing models which confine
the data into a low dimensional simplex [6]. Such assumption is lost when
nonlinear mixing models are considered. It is the case when considering ker-
nelized methods such as SK-Hype [13]. We highlight, however, that mutual
information based BS strategies [85] might be considered under nonlinear
modeling of the mixing occurring in hyperspectral images. This, however,
must be done with the proper care and is out of the scope of this work.
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3 PRELIMINARY THEORETICAL CONCEPTS

3.1 KERNEL REGRESSION

This section describes the two kernel frameworks for supervised non-
linear regression considered in this Thesis. The representation is rigorous but,
at the same time, lets the data speak for itselves. This characteristic is desir-
able when little is known about the functions to be estimated. Using some
knowledge obtained from the observations about the endmember matrix, we
propose a supervised learning strategy to make inference on ψψψ . Consider the
training set {MMM,rrr} with inputs MMM = [mmmλ1 , . . . ,mmmλL ]

>, and outputs or obser-
vations rrr = [r1, . . . ,rL]

>, where mmmλ`
is a column vector of the R endmember

signatures at the `-th wavelength, that is, mmm>
λ`

is the `-th line of the MMM matrix.
By analogy with the linear mixing model (2.5), we write the `-th row of (2.1)
as

r` = ψ(mmmλ`
)+n`, (3.1)

with r` the `-th entry of the observation rrr, ψ a real-valued function in a (re-
producing kernel) Hilbert space H , and n` an additive WGN in the `-th band.

Next, a discussion about Mercer kernels, and regression using Gaus-
sian process and least-squares support vector regression (LS-SVR) is pre-
sented. The theory related to these methods involves concepts from functional
analysis, convex optimization and functional derivatives. These concepts are
presented in Appendix A – Convex optimization in RKHS. In Appendix B a
more didactic discussion about Gaussian process is presented where the ker-
nel framework is shown to be a generalization of the standard Bayesian linear
regression under a few assumptions.

3.1.1 Mercer kernels and RKHS

The theory of positive definite kernels emerged from the study of pos-
itive definite integral operators [94], and was further generalized in the study
of positive definite matrices [95]. It was established that to every positive
definite function κ(·, ·) : M ×M → R, defined over a non-empty compact
M ⊂ Rd , there corresponds one and only one class of real-valued functions
on M forming a Hilbert space H with a uniquely defined inner product
〈·, ·〉H in it, and admitting κ as a reproducing kernel (r.k.) [96]. By defini-
tion, see [97] or Appendix A.3.2, κ is a r.k. of H if κ(·,mmmλ) ∈H for all
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mmmλ ∈M , and the reproducing property

ψ(mmmλ) = 〈ψ,κ(·,mmmλ)〉H (3.2)

holds, for all ψ ∈ H and all mmmλ ∈M . For the existence of a r.k. κ it
is necessary and sufficient that for every mmmλ ∈M the evaluation (Dirac)
functional δmmmλ

to be a continuous (or equivalently bounded) functional for
any ψ ∈H . On the other hand, supposing δmmmλ

to be also linear there ex-
ists a function ϕδmmm

λ

∈H such that δmmmλ
[ψ] = ψ(mmmλ) = 〈ψ,ϕδmmm

λ

〉H (Riesz
representation theorem [98, pg.188]). Thus, if H is a Hilbert space with
continuous linear evaluation functional, then H is called a reproduced ker-
nel Hilbert space (RKHS) admitting κ as its unique reproducing kernel, and
κ(·,mmmλ) = ϕδmmm

λ

is called representer of the evaluation at mmmλ . Furthermore,
as a direct consequence of the Riesz theorem, we have that κ(·,mmmλ) depends
on δmmmλ

, is uniquely defined by δmmmλ
, and has norm ‖κ(·,mmmλ)‖H = ‖δmmmλ

‖H ′1.
The RKHS H is then formed by a class of functions generated by all func-
tions of the form ψ(·) = ∑ j α jκ(·,mmmλ j), with norm defined by the quadratic
form ‖ψ‖2

H = ∑i ∑ j αiα jκ(mmmλ i,mmmλ j).
In the context of machine learning, kernel methods are often related

with the concept of building a high dimensional feature space H , and a map-
ping

ΦΦΦ : M −→ H (3.3)
mmmλ 7−→ ΦΦΦ(mmmλ) (3.4)

with inner product defined as κ(mmmλ ,mmmλ
′) = 〈ΦΦΦ(mmmλ),ΦΦΦ(mmmλ

′)〉H . If κ is a
r.k. of H , then H is a RKHS and also a feature space of κ with ΦΦΦ(mmmλ) =
κ(·,mmmλ). In this case ΦΦΦ is called the canonical feature map [99, pg. 120]. This
leads to the so called “kernel trick” allowing one to compute inner products
of data mapped into higher, or even infinite, dimensional feature spaces by
evaluating a real function κ(mmmλ i,mmmλ j) in the input space.

Several kernel functions have been considered in a variety of appli-
cations and algorithms during the past two decades of intense research ac-
tivity [76, 77, 100]. Among the most frequently used kernels we highlight
the Gaussian kernel. When defined over a compact metric space M , Gaus-
sian kernels, among other continuous kernels, are known to produce RKHSs
H that are dense in the space of continuous functions f : M → R, namely
C(M ). This means that for every function f ∈ C(M ) and all ε > 0 there
exists an ψ ∈ H such that ‖ f −ψ‖∞ ≤ ε . Kernels having such property

1H ′ denotes the set of all bounded linear functionals ζ : H →R. H ′ is also a Hilbert space,
and is called the dual of H [98]. See Appendix A.3.1 Definition 7.
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are often referred in the literature as universal kernels [99]. It is important
to ponctuate, however, that universal kernels can lead to overfitting learning
curves into the data. This can be a problem specially when the learning pro-
cess is embedded in high noise levels. Finally, for entries mmmλ i,mmmλ j ∈M , the
Gaussian kernel is given by

κ(mmmλ i,mmmλ j) = exp

(
−
‖mmmλ i−mmmλ j‖

2

2σ2

)
(3.5)

where the parameter σ2 > 0 controls the the kernel bandwidth. Other exam-
ples of common used kernel functions are the linear kernel

κ(mmmλi ,mmmλ j) =mmm>
λi

mmmλ j (3.6)

and the polynomial kernel

κ(mmmλi ,mmmλ j) = (mmm>
λi

mmmλ j + c)d (3.7)

where d is the polynomial degree and c≥ 0 is a real number.

3.1.2 Gaussian Process for regression

Gaussian process (GP) regression methods consist of defining stochas-
tic models for functions and performing inference in functional spaces [100].
A more detailed presentation can be found in Appendix B. A Gaussian pro-
cess is a collection of random variables, any finite number of which has a
joint Gaussian distribution [100]. Considering the model presented in (3.1),
replicated here for convenience,

r` = ψ(mmmλ`
)+n`,

we define a Gaussian prior distribution for ψ with mean and covariance func-
tions given by

E{ψ(mmmλ`
)}= 0

E{ψ(mmmλ`
)ψ(mmmλ`′

)}= κ(mmmλ`
,mmmλ`′

)
(3.8)

where κ is a positive definite kernel. For notational simplicity, it is common
but not necessary to consider GPs with zero mean. This assumption is not
overly restricting as the mean of the posterior distribution is not confined to
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be zero (as shown by (3.11)). The prior on the noisy observation rrr becomes:

rrr ∼N (000,KKK +σ
2
n III), (3.9)

with KKK the Gram matrix whose entries KKKi j = κ(mmmλi ,mmmλ j) are given by the
kernel covariance function evaluated at mmmλi and mmmλ j , σ2

n the noise power, and
III the L×L identity matrix.

To obtain the predictive distribution for ψ∗ , ψ(mmmλ∗) at any test point
mmmλ∗ , we can write the joint distribution of the observation rrr and ψ(mmmλ∗)
as [100] [

rrr
ψ∗

]
∼N

(
000,
[

KKK +σ2
n III κκκ∗

κκκ>∗ κ∗∗

])
(3.10)

with κκκ∗ = [κ(mmmλ∗ ,mmmλ1), . . . ,κ(mmmλ∗ ,mmmλL)]
> and κ∗∗ = κ(mmmλ∗ ,mmmλ∗). The pre-

dictive distribution of ψ∗, or posterior of ψ∗, is then obtained by condition-
ing (3.10) on the observation as follows:

ψ∗|rrr,MMM,mmmλ∗ ∼N
(

κκκ
>
∗
[
KKK +σ

2
n III
]−1

rrr,

κ∗∗−κκκ
>
∗
[
KKK +σ

2
n III
]−1

κκκ∗
)
.

(3.11)

The extension to a multivariate predictive distribution with test data MMM∗ =
[mmmλ∗1 , . . . ,mmmλ∗L ]

> yields:

ψψψ∗|rrr,MMM,MMM∗ ∼N
(

KKK>∗
[
KKK +σ

2
n III
]−1

rrr,

KKK∗∗−KKK>∗
[
KKK +σ

2
n III
]−1

KKK∗
) (3.12)

with [KKK∗]i j = κ(mmmλ∗i ,mmmλ j) and [KKK∗∗]i j = κ(mmmλ∗i ,mmmλ∗ j). Finally, we arrive at
the minimum mean square error (MMSE) estimator for GP regression:

ψ̂ψψ∗ = E{ψψψ∗|rrr,MMM,MMM∗}

=KKK>∗
[
KKK +σ

2
n III
]−1

rrr.
(3.13)

In order to turn GP into a practical tool for processing hyperspectral
data, it is essential to derive a method for estimating free parameters such as
the noise variance σ2

n and possible kernel parameters defining the unknown
parameter vector θθθ . We proceed as in [100] by maximizing the marginal
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likelihood p(rrr|MMM,σ2
n ,θθθ) with respect to (σ2

n ,θθθ), which yields

(σ̂2
n ,θ̂θθ) = argmax

σ2
n ,θθθ

(
−1

2
rrr>
[
KKK +σ

2
n III
]−1

rrr

−1
2

log |KKK +σ
2
n III|
)
.

(3.14)

This problem has to be addressed with numerical optimization methods. There
is no guarantee that the cost function does not suffer from multiple local op-
tima. However, our practical experience with hyperspectral data indicates that
local optima are not a critical problem in this context. The solutions to the
optimization problem (3.14) for all examples reported in this work were de-
termined using the GPML (Gaussian Processes for Machine Learning) tool-
box [101].

In the sequel, we shall use the Gaussian kernel for its smoothness and
non-informativeness, as we lack any knowledge about the unknown function
ψ . Then, θ = σ (scalar). Note that this kernel has been used successfully in
many signal and image processing applications, in particular for hyperspectral
data unmixing [13, 16].

3.1.3 LS-SVR

This section describes the use of a state-of-the-art kernel method for
nonlinear unmixing of hyperspectral data. Consider an observation r` at the `-
th wavelength, modeled as in (3.1), with ψ a real-valued function in a RKHS
H that characterizes the nonlinear interactions between the endmembers,
and n` an additive noise at the `-th band. In order to estimate ψ in the least
squares sense, we can formulate the following convex optimization problem,
also called LS-SVR [102]2:

min
ψ∈H

1
2
‖ψ‖2

H +
1

2µ

L

∑
`=1

e2
`

such that e` = r`−ψ(mmmλ`
), `= 1, . . . ,L.

(3.15)

Consider the Lagrangian function

L (ψ,eee,βββ ) =
1
2
‖ψ‖2

H +
1

2µ

L

∑
`=1

e2
` −

L

∑
`=1

β` (e`− r`+ψ(mmmλ`
)). (3.16)

2This is a direct application of the LS-SVR presented in Appendix A.6.
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where βββ = [β1, . . . ,βL]
> is the vector of Lagrange multipliers. Using the

directional derivative with respect to ψ [103], the conditions for optimality
with respect to the primal variables ψ and e` are given by

ψ
∗ =

L

∑
`=1

β`κ(.,mmmλ`
) (3.17)

e∗` = µβ` (3.18)

Substituting (3.17) and (3.18) in (3.16), we obtain the following function to
be maximized with respect to βββ :

L (ψ∗,eee∗,βββ ) =−1
2

βββ
>(KKK +µIII)βββ +βββ

>rrr, (3.19)

where KKK is the Gram matrix whose (i, j)-th entry is defined by κ(mmmλi ,mmmλ j).
Now we can state the following dual problem:

βββ
∗ = argmax

βββ

−1
2

βββ
>(KKK +µIII)βββ +βββ

>rrr. (3.20)

Its solution is obtained by solving the linear system:

(KKK +µIII)βββ = rrr. (3.21)

Although the formulation (3.15)–(3.20) allows one to address an estimation
problem in H by solving the linear system (3.21), this approach is compu-
tationally demanding since it involves the inversion of L×L matrices. This
issue is critical, as modern hyperspectral image sensors employ hundreds of
contiguous bands with an ever increasing spatial resolution.

3.1.4 SK-Hype

This section reviews the SK-Hype algorithm3 for nonlinear unmix-
ing of HIs [13]. It considers the mixing model consisting of a linear trend
parametrized by the abundance vector ααα and a nonlinear residual component
ψnlin. Thus, it considers an extension of the model rrr =ψψψ(MMM)+nnn (see Equa-
tion 3.1), where the underlying function ψ is

ψ(mmmλ`
) = θααα

>mmmλ`
+ψnlin(mmmλ`

), (3.22)

3Matlab code available at www.cedric-richard.fr
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where mmm>
λ`

is the `-th line of MMM, θ is a new parameter affecting the linear
mixing, which in turn is parameterized by the abundance vector ααα . In [13]
and [104], ψnlin is defined as a vector from a reproducing kernel Hilbert space
Hnlin.

In this section we briefly review the LS-SVR problem solved in SK-
Hype. This problem couples with the model presented in (3.22) and it is a
simple extension of the LS-SVR presented in Section 3.1.3 to a multi-kernel
setting. Here the endmember matrix MMM is considered known, and the SK-
Hype solves a supervised nonlinear kernelized regression problem. Thus, the
LS-SVR problem presented in [13] is given by

min
u

J(u) subject to 0≤ u≤ 1 (3.23)

with

J(u)=


min

ψ
F(u,ψ) =

1
2

(
1
u
‖ψlin‖2

Hlin
+

1
1−u

‖ψnlin‖2
Hnlin

)
+

1
2µ

L

∑
`=1

e2
`

subject to e` = r`−ψ(mmmλ`
) with ψ = ψlin +ψnlin

and ψlin(mmmλ`
) = hhh>mmmλ`

with hhh� 000
(3.24)

where Hlin and Hnlin are RKHSs, hhh = θααα , and u ∈ [0,1] controls the lin-
ear and nonlinear contributions. Note that the vector hhh does not have the
sum-to-one constraint, this was done intentionally ensure the convexity of the
problem. However, since hhh = θααα and 111>ααα = 1, the optimal fully constrained
abundances can be computed as ααα∗ = hhh∗/θ ∗ with θ ∗ = 111>hhh∗.

As stated, it can be shown that the problem (3.23)-(3.24) is convex and
more details can be found in [13]. Chen et al [104] solve the problem (3.23)-
(3.24) using a iterative optimization procedure that alternates the solutions
of (3.23)-(3.24) with respect to ψ and with respect to u successively.

3.1.4.1 Solving with respect to ψ

By the strong duality property [105], the solutions to the primal prob-
lem J(u) = F(u,ψ∗) and its dual are the same (see, Appendix A.2). The
Lagrangean function for problem (3.24) can be written using the Lagrange
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multipliers βl and γr as

G =
1
2

(
1
u
‖hhh‖2 +

1
1−u

‖ψnlin‖2
Hnlin

)
+

1
2µ

L

∑
`=1

e2
`

−
L

∑
`=1

β` (e`− r`+ψ(mmmλ`
))−

R

∑
r=1

γr hr

(3.25)

with γr ≥ 0, and using ‖ψlin‖2
Hlin

= ‖hhh‖2.4 The optimality conditions (see
Appendix A.2) of G with respect to the primal variables are given by hhh∗ = u

(
∑

L
`=1 β ∗` mmmλ`

+γγγ∗
)

ψ∗nlin = (1−u)∑
L
`=1 β ∗` κnlin(·,mmmλ`

)
e∗` = µ β ∗`

(3.26)

Replacing (3.26) in (3.25), we obtain the following dual problem

J(u) =



max
βββ ,γγγ

G′(u,βββ ,γγγ) =

− 1
2

(
βββ

γγγ

)>( KKKu +µIII uMMM
uMMM> uIII

)(
βββ

γγγ

)
+

(
rrr
000

)>(
βββ

γγγ

)
subject to γγγ � 000

(3.27)
where KKKu = uMMMMMM>+ (1− u)KKKnlin. Solving (3.27) with respect to the La-
grange multipliers is equivalent to solving the linear system(

KKKu +µIII uMMM
uMMM> uIII

)(
βββ

γγγ

)
=

(
rrr
000

)
(3.28)

which requires a (L+R)× (L+R), L� R, matrix inverse.
The estimative of a pixel can be obtained using ψ∗(mmmλ`

) = mmm>
λ`

hhh∗+
ψ∗nlin(mmmλ`

) for all wavelengths, i.e., rrr∗ = [ψ∗(mmmλ1), . . . ,ψ
∗(mmmλL)]

>, where
ψ∗nlin is given by (3.26). Finally, the abundance vector is estimated as

ααα
∗ =

MMM>βββ ∗+γγγ∗

111>(MMM>βββ ∗+γγγ∗)
. (3.29)

4Note that ψlin(·) = (·)>hhh. Thus, 〈ψlin,ψlin〉Hlin = 〈hhh,hhh〉Hlin = ‖hhh‖
2.
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3.1.4.2 Solving with respect to u

In [104] a closed analytical form is presented for u∗. Note that

fp,q(u) =
p
u
+

q
1−u

, com p,q≥ 0 (3.30)

is convex in the interval ]0,1[. Thus simple derivatives lead to the optimum
solution given by

u∗ = (1+
√

q/p)−1. (3.31)

Considering the problem (3.23), and using the stationarity conditions in (3.26)
the optimum solution becomes

u∗ =
(

1+(1−u∗−1)

√
(βββ ∗>KKKnlinβββ ∗)/‖hhh∗‖2

)
(3.32)

where u∗−1 is the optimum u∗ for the previous iteration.

3.2 BASIC DETECTION CONCEPTS

Modern detection theory is fundamental to the design of electronic sig-
nal processing system for decision making and information extraction. Such
systems share the common goal of being able to decide when an event of in-
terest occurs and then determine more information about that event. Basic
signal detection theory often assumes cases where the event of interest is in
fact a signal that may change its behavior in noisy measures. Such signal is
often referred as target signal. A vast theory exists on the subject concerning
different scenarios and considerations about the behavior of the target sig-
nal. The simplest case is when the target signal may or may not be present
in noisy measures. When one is concerned about detecting changes in the
underlying model of a signal that is always present, then such operation is of-
ten referred to as model change detection. Applications are found in numer-
ous fields including radar, communication, sonar, image processing, etc. We
emphasize, however, that for some physically motivated applications usual
detection strategies may result in models that are too complex, or inefficient,
and alternatives must be sought.

In this section a brief discussion of basic detection concepts is pre-
sented. More detailed information about detectors and detection systems can
be found in [106].
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3.2.1 The detection problem

A detection system aims at deciding when an event of interest occurs
or not. Thus, two hypotheses are directly present and stated as

H0 : The event did not occur, (3.33a)
H1 : The event occurred. (3.33b)

Thus the detection problem is divided in two mutually exclusive hypotheses.
The first hypothesis H0 is that the event of interest has not occurred, while
the second considers that the event has occurred. This problem is known as
binary hypothesis testing, since the outcome must be selected between two
hypotheses. Thus, for a given signal sample x, the detector must assign x to
one of the two hypotheses. Such problem is widely addressed in the literature
and sometimes referred as binary classification [106, 107, 108]. For any bi-
nary detection problem two types of errors can be defined when assigning a
signal sample x to one of the two possible hypotheses. The type I error occurs
if x is assigned to H1 but H0 is true. This type of error is also referred as
false alarm. The type II error is when x is assigned to H0 but H1 is true.
The probability of false alarm (PFA) is the probability that the detector de-
cides for H1 but H0 is true, that is P(H1|H0). The probability of detection
(PD) is the probability that the detector decides for H1 and H1 is true, that
is P(H1|H1). When designing a detector a common objective is to have a
small PFA while maximizing the PD.

To perform the detection a test statistic T is needed. This test is then
compared to a decision threshold τ to determine if a signal sample x follows
H0 or H1.

T
H0
≶
H1

τ (3.34)

where, the notation
H0
≶
H1

presents the detection decision depending on the com-

parison result, that is if T is smaller than τ , then x is assigned to H0, and
to H1 otherwise. The problems of finding a meaningful test statistic and an
optimal detection threshold τ are interlaced. In the literature many strategies
have been used to solve such problems. One of the most widely used is the
Neymam-Pearson (NP) strategy which address the two problems simultane-
ously by maximizing the probability of detection while fixing the probability
of false alarm, that is PFA = ξ . Such strategy leads to the known likelihood
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Figure 6: ROC Curve. Different detectors presented in different colors.

ratio test (LRT) given by

L(x) =
P(x|H1)

P(x|H0)

H0
≶
H1

τ (3.35)

where τ is found from

PFA =
∫

L(x)>τ

P(x|H0)dx = ξ . (3.36)

In many cases, however, considering a test statistic based on LRT or
its variants can be intractable depending on the underlying signal models and
their resulting PDFs. In such cases alternative test statistics must be sought.
Such alternatives, however, must produce reasonable PDF distributions under
H0 allowing the connection between the PFA and τ .

The performance of a given detector can be summarized by ploting the
PD versus the PFA both computed for τ varying in the range (−∞,+∞). This
approach produces a curve that gives values for the PD and PFA for all pos-
sible values of τ allowing one to quickly access the operating characteristic
of the detector in many situations. Such curve is named Receiver Operating
Characteristic (ROC). This curve must always be above the identity function
(the “45o line”). This is because the 45o ROC indicates that PD=PFA for all
possible τ and then the test could be replaced by a simple flip of a coin. The
ROC curve also allows to easily compare different detectors as illustrated in
Figure 6.

In some applications, the distribution under H1, i.e., P(T |H1), may
not be readily accessible not allowing one to produce analytical ROC curves.
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In such cases, estimations of the detector performance can be accessed using
empirical ROCs where the PD and PFA are computed empirically using syn-
thetic or labeled data. Note, however, that the PD and the PFA depend on τ

and thus, the empirical PD and PFA (i.e. PDEmp and PFAEmp), also need to be
computed for τ ∈ (−∞,+∞). In practice, however, this range can be reduced
to the range of the test statistic T . Considering N signal samples that must be
assigned to H0 or H1. Consider N0 to be the number of samples following
H0 and N1 the number of samples following H1. Consider that for a given
threshold τ we have C0 occurrences of false alarm, and C1 correctly detected
samples. Then, the empirical PD and PFA can be approximated as

PDEmp(τ) =
C1

N1
(3.37)

and
PFAEmp(τ) =

C0

N0
. (3.38)

3.2.2 Example: Detection of a DC level embedded in Gaussian noise

In this section we present a simple example to illustrate some of the
basic concepts discussed above. For this, consider the following signal detec-
tion problem

H0 : xi = ni (3.39a)
H1 : xi = A+ni (3.39b)

where i= 0,1, . . . ,N−1 is the time index, xi is the i-th sample of the observed
signal which may or may not have a DC component A = 0.25 embedded in
zero-mean WGN with power σ2

n = 1. Figure 7 shows the signal discussed
above for N = 200 where the DC level is present from sample 65 to 135.

Since the noise is Gaussian distributed the PDFs for the each sam-
ple xi under both hypotheses are clearly Gaussian and given by P(xi|H0) =
N (0,σ2

n ) and P(xi|H1) =N (A,σ2
n ), both depicted in Figure 8. Considering

the vector notation with xxx = [x0, . . . ,xN−1]
T we have

P(xxx|H0) = N (0,σ2
n III) (3.40)

and
P(xxx|H1) = N (A,σ2

n III). (3.41)
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The NP strategy leads to the LRT that can be written as

L(xxx) =
1

(2πσ2
n )

exp
(
− 1

2σ2
n

∑
N−1
i=0 (xi−A)2

)
1

(2πσ2
n )

exp
(
− 1

2σ2
n

∑
N−1
i=0 (xi)2

) H0
≶
H1

τ. (3.42)

Taking the logarithm of both sides and making some simple algebraic simpli-
fications we obtain

1
N

N−1

∑
i=0

xi
H0
≶
H1

σ2
n

NA
lnτ +

A
2
= τ

′ (3.43)

where τ ′ = σ2
n

NA lnτ + A
2 is the new threshold which is compared to the sample

mean x̄xx as test statistic:

T =
1
N

N−1

∑
i=0

xi
H0
≶
H1

τ
′. (3.44)

Note that T is Gaussian distributed under both hypotheses, that is

T ∼
{

N (0,σ2/N) under H0
N (A,σ2/N) under H1.

(3.45)

Then the PFA and PD can be determined as

PFA = P(T (xxx)> τ
′|H0) = Q

(
τ ′√

σ2
n /N

)
(3.46)

and

PD = P(T (xxx)> τ
′|H1) = Q

(
τ ′−A√

σ2
n /N

)
, (3.47)

where Q(x) = 1−Φ(x), where Φ(·) is the standard Gaussian cumulative dis-
tribution.

Figure 9 presents the distribution of the test statistic under both hy-
potheses, where the test threshold τ ′ was computed assuming a PFA = 0.05,
and 200 samples where used to make the test, that is N = 200. The PD corre-
sponds to the light gray shaded area while the PFA corresponds to the darker
gray shaded area. Note that by considering several samples and LRT the re-
sulting distribution for the test is much more separated than in Figure 8.

The ROC curve for the above detector is then presented in Figure 10,
where the PD becomes 1 when PFA larger than 0.2 can be tolerated, but good
performance can be achieved for low probability of false alarm.
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4 NONLINEAR MIXTURE DETECTOR

Strategies for detection of nonlinearly mixed pixels have been consid-
ered in the literature assuming strategies borrowed from analysis of nonlinear
dynamical time series [81] (in this case assuming that the nonlinear behavior
is along the bands), or using specific parametric nonlinear models for which
the detection is performed based on the estimate of models parameters [42].
When nothing or little is known about the nonlinear mixing mechanism, a
direct strategy is to exploit the property of linear mixing models to confine
the noiseless data to a simplex. The hypothesis test proposed in [2] is based
on the distance between the observed pixel and this simplex. Though this test
is robust to nonlinear mixing mechanisms, it conveys too little information
about the nonlinearity as a trade-off to guarantee simplicity. An alternative
strategy is to use nonparametric techniques to extract information about the
nonlinearity directly from the observations. A nonlinear mixing model for
joint unmixing and nonlinearity detection is proposed in [84]. It assumes that
the observed reflectances result from linear spectral mixtures corrupted by a
residual nonlinear component. This model is rather similar to the model ini-
tially introduced in [13] and presented in (3.22), but the estimation method
relies on a computationally intensive Bayesian procedure.

In this chapter, we present a model-free detector of nonlinenarly mixed
pixels in hyperspectral images. To detect nonlinearly mixed pixels in an hy-
perspectral image, assuming ψψψ in (2.1) is unknown, we propose to compare
the reconstruction errors resulting from estimating ψψψ with nonlinear and lin-
ear regression methods. As benchmark, we consider the LS-robust detec-
tor presented in [2] since it makes no strong assumption about the nonlinear
mixing that actually occurs in the scene. The performance of the proposed
technique is evaluated through simulations and followed by preliminary con-
clusions.
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4.1 DETECTION OF NONLINEARLY MIXED PIXELS

4.1.1 The detection problem

Given an observation rrr, we formulate the nonlinear mixture detector
as the following binary hypothesis test problem

H0 : rrr =MMMααα +nnn (4.1a)
H1 : rrr =ψψψ(MMM)+nnn (4.1b)

where nnn is a zero-mean WGN with variance σ2
n . We assume that the endmem-

ber matrix MMM is available, or has been estimated from data using an endmem-
ber extraction technique [7]. We shall relax this hypothesis in Section 5.1,
and use the nonlinear mixture detector to jointly perform this task.

We propose to compare the fitting errors resulting from estimating rrr
with a linear or a nonlinear estimator (3.13). Under H0, both estimators
should provide good estimates. Under H1, the estimation error resulting from
the linear estimator should be significantly larger than that obtained with the
nonlinear estimator. We shall now evaluate these fitting errors.

4.1.2 Linear estimation error

The MMSE estimator (3.13) may be used with the linear kernel (3.6)
to estimate ααα in (4.1a). Nevertheless, this would require to solve (3.14) in
order to estimate σ2

n . To avoid unnecessary computational effort, we shall
limit the use of GP to nonlinear model estimation. The MMSE estimator for
(4.1a) is given by:

α̂αα = (MMM>MMM)−1MMM>rrr (4.2)

resulting in the following estimation error:

eeelin = rrr− r̂rrlin =PPPrrr (4.3)

where PPP = IIIL−MMM(MMM>MMM)−1MMM> is an L×L projection matrix of rank ρ =
L−R. Note that no constraint is imposed on the abundance vector ααα . The
objective is to obtain the best linear estimator, since the purpose at this point
is not to perform unmixing, but to decide on the linearity (or not) of the con-
sidered mixture.
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Consider first the distribution for ‖eeelin‖2. Under H1, we have:

eeelin|H1 =PPP[ψψψ +nnn]. (4.4)

This implies that
eeelin|H1 ∼N (PPPψψψ,σ2

n PPP) (4.5)

where we use that the projection matrix PPP is idempotent, that is, σ2
n PPPPPP> =

σ2
n PPP. Thus, the distribution for the each entry elin,i of eeelin is given as

elin,i|H1 ∼N (ppp>i ψψψ,σ2
n ppp>i pppi) (4.6)

where ppp>i denotes the i-th row of matrix PPP. Under H0, we have:

eeelin|H0 ∼N (0,σ2
n PPP) (4.7)

and
elin,i|H0 ∼N (0,σ2

n ppp>i pppi). (4.8)

Proper normalization of each squared entry elin,i of eeelin yields the con-
ditional distributions under the two hypotheses1:

e2
lin,i

σ2
n ppp>i pppi

∣∣∣∣∣H1 ∼ χ
2
1

(
[ppp>i ψψψ]2

σ2
n ppp>i pppi

)
e2

lin,i

σ2
n ppp>i pppi

∣∣∣∣∣H0 ∼ χ
2
1 (0)

(4.9)

where χ2
n (λ ) is the noncentral χ-square distribution with n degrees of free-

dom and centrality parameter λ [109].2 As PPP is idempotent and of rank
ρ = L−R, which leads to ‖eeelin‖2 = rrr>PPPrrr, and assuming that the vector eeelin
has independent entries, we conclude that [106, p. 33]:

‖eeelin‖2

σ2
n

∣∣∣∣H0 ∼ χ
2
ρ (0) . (4.10)

1Note that the normalization used in (4.9) produces unit-variance normal random variables.
2Given N independent zero-mean unit normal random variables U1, . . . ,UN , and µ1, . . . ,µN

constants, then the distribution of ∑
N
j=1(U j +µ j)

2 is a non-central ξ 2 distribution with N degrees
of freedom and noncetrality parameter λ = ∑

N
j=1 µ2

j [109, p. 433].
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4.1.3 Nonlinear estimation error with GP

Since our interest at this point is not to make predictions for new data,
but to evaluate the fitting error between the model output and the available
data, we define the GP estimation error as:

eeenlin = rrr− r̂rrnlin (4.11)

where r̂rrnlin is given by (3.13) with MMM∗ = MMM, and thus, KKK∗ = KKK. Hence,
using (3.13) in (4.11) yields

eeenlin = rrr−ψ̂ψψ∗

∣∣∣
MMM∗=MMM

=HHHrrr (4.12)

where HHH = IIIL−KKK>
[
KKK +σ2

n IIIL
]−1 is a real-valued matrix.We shall now ana-

lyze the distribution of ‖eeenlin‖2 under hypotheses H0 and H1. Under hypoth-
esis H1, we have:

eeenlin|H1 =HHH(ψψψ +nnn). (4.13)

This leads to the following conditional distribution

eeenlin|H1 ∼N (HHHψψψ,σ2
n HHHHHH>). (4.14)

Thus, the distribution for each entry enlin,i of eeenlin can be written as

enlin,i|H1 ∼N (hhh>i ψψψ,σ2
n hhh>i hhhi) (4.15)

where hhh>i denotes the i-th row of HHH.
Under hypothesis H0, the distribution for the error becomes

eeenlin|H0 ∼N (HHHMMMααα,σ2
n HHHHHH>). (4.16)

The distribution of the i-th entry of eeenlin is thus given by

enlin,i|H0 ∼N (hhh>i MMMααα,σ2
n hhh>i hhhi). (4.17)

Analogously to the procedure applied in (4.9), proper normalization of each
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squared entry enlin,i of eeenlin yields the following conditional distributions:

e2
nlin,i

σ2
n hhh>i hhhi

∣∣∣∣∣H1 ∼ χ
2
1

(
[hhh>i ψψψ]2

σ2
n hhh>i hhhi

)
e2

nlin,i

σ2
n hhh>i hhhi

∣∣∣∣∣H0 ∼ χ
2
1

(
[hhh>i MαMαMα]2

σ2
n hhh>i hhhi

)
.

(4.18)

Non-central χ-square distributions in (4.9) and (4.18) make the analysis of
the test statistics in the next section intractable, even under H0. In order to
proceed, we argue that it is reasonable to assume that, under H0, both the
nonlinear GP regression method and the linear one should achieve the same
level of accuracy. Considering (4.10), this approximation leads to

‖eeenlin‖2

σ2
n

∣∣∣∣H0 = χ
2
ρ(0). (4.19)

We validated this approximation using extensive Monte Carlo simulations.
Figures 12a and 12b illustrate this assumption for a representative example.

4.1.4 The test statistics

We propose to compare the squared norms of the two fitting error vec-
tors eeenlin and eeelin to decide between H0 and H1. Also, the test statistic should
allow for the adjustment of the detection threshold to a given probability of
false alarm (PFA) for design purposes. Considering these two objectives, we
propose the following statistical test

T =
2‖eeenlin‖2

‖eeenlin‖2 +‖eeelin‖2

H1
≶
H0

τ (4.20)

where τ is the detection threshold.
The reasoning behind the choice of T defined in (4.20) is as follows.

Under H0, both ‖eeenlin‖2 and ‖eeelin‖2 are χ-square dependent random vari-
ables. Now, we write eeelin as eeenlin +

√
2εεε , where εεε is assumed to be also a

zero-mean i.i.d. Gaussian vector3, and neglect the cross-term eee>nlinεεε when
compared to ‖εεε‖2 in evaluating ‖eeelin‖2 under H0. The latter approxima-
tion is due to the lack of correlation between eeenlin and εεε , as the latter can be
largely attributed to mismatches resulting from the numerical optimization

3The constant factor
√

2 is for notation purpose only.
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required to solve (3.14). Under these considerations, (4.20) can be written
as T = ‖eeenlin‖2/(‖eeenlin‖2 + ‖εεε‖2) with both ‖eeenlin‖2 and ‖εεε‖2 independent
and χ-square distributed. Such a statistic is known to follow a beta distribu-
tion [110].

As the GP estimator tends to fit better nonlinearly mixed data, T should
be less than 1 under hypothesis H1. Conversely, T should be close to one for
linearly mixed pixels, as ‖εεε‖2 tends to be much less than 2‖eeenlin‖2. Hence,
as per (4.20), we accept hypothesis H0 if T > τ and we conclude for the
nonlinear mixing hypothesis H1 if T < τ .

4.1.5 Determining the detection threshold

Considering the assumption that the test statistic T has a beta distri-
bution under H0, a decision threshold τ can be determined for a given PFA
as

τ = B−1
α,β (PFA) (4.21)

where Bα,β is the cumulative distribution function of the beta distribution
with parameters (α,β ). The parameters of this function must be estimated
from the data. To this end, we initially determine an estimate ÂAA of the abun-
dance matrix assuming the linear mixing model with the real observations
RRR = [rrr1, . . . ,rrrN ] and the known endmember matrix MMM. Then, using MMM and ÂAA
we construct the synthetic image RRRs = MMMÂAA, which satisfies H0. For this lin-
early mixed hyperspectral image, we then compute, say, N samples of the test
statistics T |H0 defined in (4.20) and fit a beta distribution to these samples.
The threshold τ for each PFA is then determined using (4.21). These steps
are summarized in Table 2.

This procedure requires the knowledge of the endmember matrix MMM.
The next chapter proposes an iterative technique to estimate MMM from an hyper-
spectral image, which we assume to contain linearly and nonlinearly mixed
pixels.

4.2 SIMULATIONS

This section presents simulation results to validate the proposed ap-
proach for detecting nonlinearly mixed pixels, with synthetic images. The
use of synthetic images is important as they provide a ground truth against
which the performance of the detector can be verified. First, we propose a
definition for a degree of nonlinearity of an hyperspectral image so that the
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Table 2: Detection threshold.

For a given endmember matrix MMM and a HI RRR = [rrr1, . . . ,rrrN ] the detection
threshold τ can be computed for a given PFA as:

1. a synthetic image is created using the linear mixing model RRRs =MMMÂAA.
With the estimated abundance matrix ÂAA obtained using the LS;

2. then, the test statistics T |H0 are computed as in (4.20) for RRRs;

3. finally, a beta distribution is adjusted to the statistics T |H0, and τ is
computed for a given PFA using (4.21).

relative performances of different detectors can be compared. This is neces-
sary to quantify the relative energies associated with the linear and nonlinear
mixing components in hyperspectral images generated with different nonlin-
ear mixing models.

4.2.1 Degree of nonlinearity

Consider that a pixel vector can be written as the sum of a linear and
a nonlinear mixing component4 as is the case for most existing nonlinear
mixing models [38, 39, 37, 43, 18]:

rrr = rrrlin +rrrnlin (4.22)

where rrrlin and rrrnlin are, respectively, the linear and nonlinear mixing contri-
butions to rrr. The energy of rrr is given by

E = ‖rrr‖2 = ‖rrrlin‖2 +2rrr>linrrrnlin +‖rrrnlin‖2, (4.23)

where Elin = ‖rrrlin‖2 is the energy of the linear contribution and Enlin = 2rrr>linrrrnlin+
‖rrrnlin‖2 is the part of the pixel energy affected by the nonlinear mixing. Given
a mixing model, we define the degree of nonlinearity ηd as the ratio of the
energy of the nonlinear contribution Enlin to the total energy E. Thus,

ηd =
Enlin

E
=

1
1+A

(4.24)

4We do not account for noise contribution as it can be set by the user independently of the
mixing model.
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where A = ‖rrrlin‖2/(2rrr>linrrrnlin + ‖rrrnlin‖2). Next, we show how to apply this
definition for generating synthetic samples with two different mixing models.

4.2.1.1 Synthetic data generation with GBM

To be able to control the relative contributions of the linear and non-
linear mixing parts of the GBM model, we introduce a new scaling factor k
into the generalized bilinear model (GBM) used in [2]. For an endmember
matrix MMM and an abundance vector ααα , we write the modified noiseless GBM
model as

rrr = kMMMααα + γννν (4.25)

where 0≤ k≤ 1, ννν = ∑
R−1
i=1 ∑

R
j=i+1 αiα jmmmi�mmm j is the nonlinear mixing term,

γ is the scaling parameter for the nonlinear contribution, and� is the Hadamard
product. The degree of nonlinearity is then

ηd =
2kγ(ννν>MMMααα)+ γ2‖ννν‖2

k2‖MMMααα‖2 +2kγ(ννν>MMMααα)+ γ2‖ννν‖2 =
1

1+A
(4.26)

with A = k2‖MMMααα‖2/(2kγ(ννν>MMMααα)+γ2‖ννν‖2). We have to determine the scal-
ing factors k and γ so that the energy E is independent of ηd ≥ 0. This condi-
tion can be expressed as ‖MMMααα‖2 = k2‖MMMααα‖2 +2kγ(ννν>MMMααα)+ γ2‖ννν‖2, lead-
ing to

A =
k2

1− k2 (4.27)

or

k =

√
A

1+A
=
√

1−ηd . (4.28)

To obtain γ , note that the denominator of A can be written as γ2|ννν‖2+2kγ(ννν>MMMααα)=
(1− k2)‖MMMααα‖2. Since γ must be positive, we have

γ =
1

2‖ννν‖2

(
−2k(ννν>MMMααα)

+
√

4k2(ννν>MMMααα)2 +4‖ννν‖2(1− k2)‖MMMααα‖2
)
.

(4.29)

Once k and γ have been determined from ηd , we can generate data following
the model in (4.25).
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4.2.2 Synthetic data generation with PNMM

To match the noiseless PNMM model (2.21) with the proposed formu-
lation (4.25), we complement it with a weighted linear mixture as follows:

rrr = kMMMααα + γννν , (4.30)

where ννν = (MMMααα)ξ denotes the exponential value ξ applied to each entry of
MMMααα . Model (4.30) reduces to (2.21) for k = 0 and γ = 1. Again, parameters
k and γ are scaling factors that control the relative amounts of linear and
nonlinear contributions given ηd . As for the GBM, both can be set using
(4.28) and (4.29).

4.2.3 Simulations with known MMM

We now present simulations with synthetic data and a known endmem-
ber matrix MMM. These simulations allow us to assess the detector performance
disregarding estimation errors for the endmembers. Hence, they illustrate
the potential of the proposed detector. To construct synthetic data, we used
three materials (R = 3) extracted from the spectral library of the software
ENVITM [111]: green grass, olive green paint and galvanized steel metal.
Each endmember mmmr has L = 826 bands that were uniformly decimated by 3
to L = 275 bands.

To evaluate the performance of the proposed detector, we generated
8000 synthetic samples by mixing the three collected spectra. Among the
8000 pixels, 4000 were generated using the linear model in (2.4), and 4000 us-
ing the modified generalized bilinear model in (4.25). A fixed abundance vec-
tor ααα = [0.3, 0.6, 0.1]> was used for all samples. Nonlinearly mixed samples
were generated using different degrees of nonlinearity ηd ∈ {0.3,0.5,0.8} to
test the detector under different conditions. The power of the additive Gaus-
sian noise was set to σ2

n = 0.001, which corresponds to SNR = 21dB.
Figure 11 shows the receiver operating characteristics (ROCs) of the

proposed GP detector and the LS robust detector presented in [2] for the three
values of ηd . The proposed detector performs better, especially for moder-
ate to high degree of nonlinearity. For instance, Fig. 11c shows that the GP
detector achieves a probability of detection of 1 for PFA = 0.1, while the LS
robust detector yields a probability of detection of approximately 0.65 for
the same PFA. Figure 12 shows the histograms of ‖eeenlin‖2, ‖eeelin‖2 and T for
both linearly (H0) and nonlinearly (H1) mixed data. The proposed test statis-
tics clearly leads to histograms that differ significantly under both hypothe-
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(a) Robust LS detector.
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(b) Proposed GP detector.
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(c) Comparison of LS and GP (ηd =
0.5).

Figure 11: Empirical ROCs for: (a) the Robust LS detector [2], (b) the
proposed GP detector, (c) the two detectors for ηd = 0.5. All curves
were obtained for 8000 pixels (4000 linearly mixed and 4000 nonlinearly
mixed) and SNR = 21dB. Nonlinear mixtures were generated using the
simplified GBM described in Section 4.2.1.
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Figure 12: Histograms for (a) the squared norm of the GP fitting error, (b)
the least-squares fitting error, and (c) the test statistics (4.20).

ses H0 and H1, which explains the improvement in detection performance.
Figure 13 compares the histogram of T under H0 with the fitted beta distri-
bution, confirming that the distribution of T can be reasonably approximated
by a beta distribution.

We considered two unmixing algorithms to assess the impact of the
proposed detector on unmixing performance, one linear and one nonlinear.
Linear unmixing was performed using the fully-constrained least-squares (FCLS)
algorithm [72]. For nonlinear unmixing, we used the SK-Hype algorithm [13].
The two algorithms were employed in two unmixing strategies. First, each al-
gorithm was used to unmix the complete hyperspectral image. In the second
strategy called detect-then-unmix (D.+U.), the proposed detector (GP), and
the detector of [2] (LS) were used as a pre-processing step. Then, FCLS was
used to unmix pixels detected as linearly mixed and SK-Hype was used to
unmix pixels detected as nonlinearly mixed. The detection threshold τ was
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Figure 13: Histogram of the test statistics under H0 and the adjusted Beta
distribution.

determined for PFA= 0.01. Two synthetic images were considered with 1000
pixels each, 500 being linearly mixed and 500 being nonlinearly mixed. Each
image was constructed with a particular nonlinear mixing model, with a fixed
degree of nonlinearity ηd = 0.5 in both cases, with abundance vectors uni-
formly sampled in the simplex. The GBM (4.25) was used for the first image
(Image I), while the PNMM (4.30) with ξ = 3 was considered for the second
image (Image II). The SNR was 21dB in both cases. Parameters k and γ were
determined for each pixel to maintain the desired value of nonlinearity degree
ηd for all simulations. To compare the results, we used the root mean square
error (RMSE) of abundance estimation, defined as

RMSE =

√
1

NR

N

∑
n=1
‖αααn−α̂ααn‖2 (4.31)

where N is the number of pixels in each image.
The results (RMSE ± standard deviation) are presented in Tables 3

and 4. For each image, these tables indicate the RMSEs for the linearly mixed
part (LMM), for the nonlinearly mixed part (NLM), and for the full image (F.
Img.) using the three unmixing strategies. The results shown in bold blue are
those with the lowest RMSE in each row of the tables. As expected, FCLS has
the best results when unmixing linearly mixed pixels. The same observation
can be made for SK-Hype with nonlinearly mixed pixels. Nevertheless, we
verify that the results using the detect-then-unmix strategy and the proposed
detector (D.+U. GP) are very close to the best results for both types of pixels,
LMM and NLM. When processing the whole image without prior information
on the mixing nature of each pixel, the best results were those obtained with
the detect-then-unmix GP strategy. Additionally, we present the classification
error (C. E.) in percentage for the detect-then-unmix strategy in both tables.
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Table 3: Abundance estimation RMSE for MMM known and using the GBM
mixing model (SNR = 21dB, ηd = 0.5).

Image I: LMM + GBM
Model FCLS SK-Hype D.+U. GP (C.E.%) D.+U. LS (C.E.%)
LMM 0.0095 ± 0.00010 0.0205 ± 0.00057 0.0097 ± 0.00012 (0.6) 0.0096 ± 0.00010 (0.2)
NLM 0.0624 ± 0.00384 0.0312 ± 0.00110 0.0324 ± 0.00119 (5.6) 0.0509 ± 0.00314 (51.4)
F.Img 0.0446 ± 0.00332 0.0264 ± 0.00092 0.0239 ± 0.00097 (3.1) 0.0366 ± 0.00255 (25.8)

Table 4: Abundance estimation RMSE for MMM known and using the PNMM
mixing model (SNR = 21dB, ηd = 0.5).

Image II: LMM + PNMM
Model FCLS SK-Hype D.+U. GP (C.E.%) D.+U. LS (C.E.%)
LMM 0.0095 ± 0.00010 0.0205 ± 0.00057 0.0099 ± 0.00013 (1.2) 0.0095 ± 0.00010 (0)
NLM 0.0958 ± 0.00882 0.0440 ± 0.00204 0.0443 ± 0.00210 (0.8) 0.0483 ± 0.00276 (17)
F.Img 0.0681 ± 0.00772 0.0344 ± 0.00168 0.0321 ± 0.00176 (1) 0.0348 ± 0.00225 (8.5)

The last two columns in both tables clearly illustrate the better performance
obtained using the proposed (GP) detector, as opposed to the detector of [2].

To verify the statistical significance of the results shown in Tables 3
and 4, we performed the one-tailed left nonparametric Wilcoxon signed rank
test [112]. The test was performed to compare the abundance estimation RM-
SEs obtained with the proposed methodology (D.+U. GP) and with each of
the alternative methods listed in Tables 3 and 4. The Wilcoxon signed rank
test considers the samples to be paired, which corresponds to our case, and
tests the following null hypothesis

median(RMSEprop) = median(RMSEalt) (4.32)

where RMSEprop and RMSEalt stand for the RMSEs obtained using the pro-
posed and the alternative methods, respectively. Tables 5 and 6 show the
results obtained for the simulations corresponding to Tables 3 and 4. We
assigned the symbol A if the null hypothesis was rejected with negative Z
statistic, i.e., if there was enough evidence that RMSEprop < RMSEalt at the
0.05 significance level. We assigned the symbol “-” if the null hypothesis
could not be rejected. These results provide evidence that the improvement in
abundance estimation obtained using the proposed technique is statistically
consistent.
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Table 5: One-tailed Wilcoxon signed rank test for Image I (Significance
level 0.05).

FCLS SK-Hype D.+U. LS
LMM - A -
NLM A - A
F.Img. A A A

Table 6: One-tailed Wilcoxon signed rank test for Image II (Significance
level 0.05).

FCLS SK-Hype D.+U. LS
LMM - A -
NLM A - A
F.Img. A A A

4.2.4 Simulations with an unknown endmember matrix MMM

The simulations conducted in Section 4.2.3 assumed the endmember
matrix MMM to be known. Although this study is important to quantify the po-
tential of the proposed detector, the endmembers are rarely known in practice.
Hence, in this section, we study the sensitivity of the detection performance
as a function of the endmember estimation accuracy and of the degree of
nonlinearity. Endmember extraction was performed with the iterative method
proposed in Section 5.1, and with VCA [23] for comparison.

Figure 14 presents the results of 4 experiments using synthetic images
with 5000 samples, SNR = 21dB, abundances uniformly sampled in the sim-
plex, a proportion of nonlinearly mixed pixels in the image varying from 10%
to 50%, and ηd = 0.5. For every experiment, the endmember matrix was ex-
tracted using VCA. These results show how the detection performance can
degrade as the number of nonlinear pixels increases and as VCA loses accu-
racy in extracting the endmembers from the image. These results confirm the
importance of devising alternatives to VCA (or to other endmember extrac-
tion algorithms specifically designed for linearly-mixed images) for images
containing nonlinearly-mixed pixels.
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Figure 14: ROCs for different proportions of nonlinearly mixed pixels
and ηd = 0.5. Endmember extraction using VCA.

4.3 PRELIMINARY CONCLUSIONS

In this chapter we presented a nonparametric method for detecting
nonlinear mixtures in hyperspectral images. The performance of the detec-
tor was studied for supervised and unsupervised unmixing problems. When
the endmember matrix is known, we showed that the improvement in the
unmixing performance obtained when using the proposed detector is statisti-
cally consistent. Additionally, a degree of mixture nonlinearity based on the
relative energies of the linear and nonlinear contributions to the mixing pro-
cess was defined to quantify the importance of the linear and nonlinear model
counterparts. Such a definition is important for a proper evaluation of the rela-
tive performances of different nonlinear mixture detection strategies. Finally,
when considering unsupervised mixing problems we showed that the detec-
tion performance can degrade as the number of nonlinear pixels increases
and as VCA loses accuracy in extracting the endmembers from the image.
These results confirm the importance of devising alternatives to endmember
extraction algorithms specifically designed for nonlinearly-mixed images.
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5 EEA FOR NONLINEARLY MIXED HYPERSPECTRAL
IMAGES

The presence of nonlinearly mixed pixels in a hyperspectral image
tends to degrade the estimation accuracy of endmember extraction methods
based on a linear mixing model. As a consequence, nonlinearly mixed pix-
els also affect the performance of algorithms using the endmember matrix
such as the detection method presented in Chapter 4. There has been few
papers addressing endmember estimation from nonlinearly mixed images. A
nonlinear unmixing algorithm is derived in [73]. The pixel reflectances are
supposed to be post-nonlinear functions of unknown pure spectral compo-
nents. A Bayesian strategy is proposed to both unmix the data and estimate
the endmembers. Both tasks are however mutually dependent and the un-
mixing model is very specific. A nonlinear endmember estimation algorithm
based on the approximation of geodesic distances is introduced in [27, 78].
This algorithm can however suffer from the absence of pure pixels in the im-
age, and the effectiveness of using manifold learning methods on real data
still needs to be analyzed and confirmed. In this chapter, we propose an iter-
ative technique for estimating the endmember matrix MMM under the reasonable
assumptions that the number R of endmembers is known [113, 114, 115],
and that these endmembers are linearly mixed within at least a small part
of the image. Nonlinear mixtures may however compose a significant part
of the image. The proposed technique combines the detector of nonlinearly
mixed pixels presented in Section 4.1 and the endmember estimation algo-
rithm known as Minimum Volume Enclosing Simplex (MVES) [25].

5.1 ENDMEMBER EXTRACTION IN NONLINEARLY MIXED HY-
PERSPECTRAL IMAGES

The proposed procedure is described in Algorithm 1. It is a two-step
iterative algorithm, and called Iterative Endmember Estimation (IEE) Algo-
rithm. The first step consists of using MVES to estimate the endmembers
(line 2 and 14 in Algorithm 1). The second step uses (4.20) to compute
the detection statistics for all the L pixels in the image RRRtmp (line 7 in Al-
gorithm 1). Then, all pixels detected as nonlinearly mixed, that is, whose
detection statistic satisfies T (i) ≤ τr are removed (line 9), where τr = r f × τ

(line 4 and 11) is the relaxed detection threshold. The use of a relaxed thresh-
old is suggested to avoid discarding linear pixels during the first iterations,
when the estimates of MMM are still not sufficiently accurate. The relaxing fac-



88

tor is initialized for r f = 0.9 and is increased by a factor rinc = 0.1/Nmax at
each iteration to improve pixel selection as the estimation of the matrix MMM
improves (line 10). The procedure is repeated until the linear and the non-
linear GP models in (4.20) present similar fitting errors within the limit of ε .
Using this procedure, τr tends to the desired threshold τ as the estimation of
MMM improves, leaving mostly linear pixels for which both models have simi-
lar performance. A maximum number of iterations Nmax is also set to avoid
discarding too much data.

Note that we have opted for the MVES algorithm for endmember ex-
traction because it inscribes the data into a minimum-volume simplex. Thus,
MVES is suitable to estimate MMM in the absence of pure pixels. This feature
is specially interesting for our purpose since the procedure described above
discards data, which may even be pure or near-pure pixels during the first
iterations. Nevertheless, any other endmember estimation algorithm valid in
absence of pure pixel [116, 117, 118] could be potentially used with Algo-
rithm 1.

Algorithm 1: Iterative endmember estimation (IEE)
Input : The hyperspectral image RRR, and the number of

endmembers R
Output: Estimated endmember matrix M̂MM

1 Initialization: Tmax= 1, Tmin= 0, ε = 0.05, RRRtmp =RRR,
Nmax = 10, cc = 0, r f = 0.9, rinc = (1− r f )/Nmax,
PFA = 0.05;

2 M̂MM = MVES(RRRtmp,R);
3 Compute τ using (4.21);
4 τr = r f × τ; %% (relaxed threshold)
5 while Tmax−Tmin > ε & cc < Nmax do
6 for i = 1 to Npixels do
7 Compute TTT (i) using (4.20);
8 end
9 Remove all pixels with TTT (i)≤ τr from RRRtmp;

10 r f = r f + rinc; %% (relaxing factor)
11 τr = r f × τ;
12 Tmax= max(TTT ); Tmin= min(TTT );
13 cc = cc+1;
14 M̂MM = MVES(RRRtmp,R);
15 end
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Figure 15: ROCs for different degrees of nonlinearity ηd and 50% of
nonlinearly mixed pixels in the image. Endmember extraction using Al-
gorithm 1.

5.2 SIMULATIONS

5.2.1 Simulations with an unknown endmember matrix MMM

The simulations conducted in Section 4.2.4 (MMM unknown) showed how
the detection performance can degrade as the number of nonlinear pixels in-
creases and as VCA loses accuracy in extracting the endmembers from the
image. Figure 15 presents the results obtained with Algorithm 1 and classical
MVSE for endmember extraction. For this experiment, we generated data
with 50% of nonlinearly mixed pixels and different degrees of nonlinearity
ηd ∈ {0.3,0.5,0.8}. The corresponding cases for ηd = 0.5 and 50% of non-
linearly mixed pixels are shown in red and pointed by arrows in Figure 14
and Figure 15. The poor results obtained using classical MVSE are also in-
dicated. Comparing Fig. 11 and Fig. 15 shows that the results obtained with
the iterative endmember extraction algorithm are very close to those obtained
for a known endmember matrix MMM (which can be considered as the reference
detector).

Figure 16 illustrates a representative example of evolution obtained
with the proposed iterative endmember extraction algorithm. These plots cor-
respond to a simulation performed using 1000 synthetic samples, 500 be-
ing linearly mixed and 500 being nonlinearly mixed. The nonlinearly mixed
pixels were created using the GBM (4.25) with ηd = 0.5. The data were
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projected onto the space spanned by the columns of the current endmember
matrix MMM. They are represented as black dots. The current endmembers are
shown as green dots. The true endmembers are shown as black circles at the
vertices of the true simplex drawn with black lines. The data discarded at
each iteration are shown within blue circles. Figure 16a shows the first itera-
tion of Algorithm 1. Numerous nonlinear samples are outside the simplex and
endmember are poorly estimated. The situation improves in Fig. 16b, which
depicts the fourth iteration. Here, much less data lie outside the simplex, and
two of the endmember estimates have improved significantly. Similar im-
provement can be noticed in the seventh iteration in Fig. 16c. The final result
obtained after 10 iterations only is shown in Fig. 16d, where most of the non-
linear data were discarded and the endmember estimates are clearly close to
the true endmembers.

5.2.2 Choosing the parameters r f , Nmax, and ε

The implementation of Algorithm 1 requires the choice of parame-
ters Nmax, ε , and r f . We have found from several experiments that using
r f ∈ [0.8, 09], ε = 0.05 and Nmax = 10 is a good choice for different sce-
narios. This section explores the sensitivity of the algorithm performance
to variations of these parameter values about these choices. To this end we
applied the algorithm to synthetic data with the following properties: 100
pixels, R = 3 endmembers, 50 pixels mixed with the LMM and 50 pixels
mixed with the GBM with ηd = 0.5. The abundance vectors were sampled
uniformly in the simplex, and WGN was added to the scene to produce an
SNR of 21dB. The spectra used were the same used for the previous simula-
tions, uniformly decimated by 5, resulting in 166 bands. The three parameters
were chosen from the following sets: Nmax ∈ [5, 10, 15], ε ∈ [0.01, 0.05, 0.1],
and r f ∈ [0.7, 0.8, 0.9]. For each combination of parameters we performed
Nr = 900 runs of Algorithm 1, and computed the RMSE of endmember esti-
mation using (4.31) with the abundance vectors replaced with the endmem-
bers. Table 7 shows the obtained results. The best results were obtained for
each pair (r f ,ε) are highlighted in bold blue. These results show that the per-
formance of the algorithm is not very sensitive to different parameter choices.
They also show that choosing Nmax < 10 tends to increase the RMSE. Fur-
thermore, it is clear that choosing r f < 0.8 tends to require larger values of
Nmax.

The choice of the parameters should be directed to prevent the al-
gorithm from an early convergence with elimination of a large amount of
linearly mixed pixels along with the nonlinearly mixed ones. This can be
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Figure 16: Graphical illustration of the endmember estimation process
using the proposed iterative algorithm. The data set consists of 2000 pix-
els, with a proportion of 50% nonlinearly mixed pixels obtained with the
GMB model and ηd = 0.5. Green dots are the current estimated endmem-
bers, and black dots are the data projected onto the subspace spanned by
the columns of the current matrix MMM. The true endmembers are shown
as black circles at the vertices of the true simplex drawn with black lines.
The data discarded at the corresponding iteration are shown within blue
circles.
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Table 7: Mean RMSE for endmember estimation.

r f ε Nmax = 5 Nmax = 10 Nmax = 15

0.01 0.0825 ± 0.0384 0.0784 ± 0.0378 0.0778 ± 0.0408
0.7 0.05 0.0817 ± 0.0377 0.0788 ± 0.0396 0.0778 ± 0.0410

0.1 0.0832 ± 0.0383 0.0808 ± 0.0437 0.0783 ± 0.0398
0.01 0.0821 ± 0.0401 0.0783 ± 0.0416 0.0753 ± 0.0393

0.8 0.05 0.0805 ± 0.0387 0.0766 ± 0.0400 0.0778 ± 0.0435

0.1 0.0819 ± 0.0416 0.0758 ± 0.0367 0.0801 ± 0.0406

0.01 0.0776 ± 0.0428 0.0738 ± 0.0399 0.0702 ± 0.0394
0.9 0.05 0.0764 ± 0.0379 0.0741 ± 0.0420 0.0744 ± 0.042

0.1 0.0787 ± 0.0401 0.0785 ± 0.0355 0.0780 ± 0.0344

achieved by setting Nmax to a sufficiently large value, which controls both the
maximum number of iterations and the increment of the detection threshold τ .
From our experience with the proposed method, good results can be obtained
as follows:

a) Set r f somewhere in the range [0.8 0.9] (Remark: a larger value would
probably lead to early discarding of linearly mixed pixels).

b) Set ε ≤ 0.05, so that Rtmp would contains basically linearly mixed pix-
els when the condition Tmax−Tmin > ε is satisfied.

c) Secure the algorithm stopping with mostly linearly mixed pixels if con-
dition (b) cannot be satisfied by setting Nmax ≥ 10.

5.2.3 Simulation with synthetic data extracted from a real scene

In this section we evaluate the performance of the proposed method
using synthetic data that carries the characteristics of real data. While tests
using real data are important, the use of synthetic data (for which the ground
truth in known) is necessary for a more comprehensive evaluation. To concil-
iate both needs, we considered a scene corresponding to the alunite hill (de-
picted in Figure 18a) extracted from the 1997 AVIRIS scene from the Cuprite
mining site in Nevada [119]. The chosen region is indicated in Figure 17.
The alunite hill site has two interesting properties. First, it has a known num-
ber of endmembers (R = 3), i.e. alunite, muscovite, and kaolinite. Second,
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Table 8: RMSE for the abundances in the alunite hill scene.

Algorithm RMSE ± STD (C. E. %)
FCLS 0.0797 ± 0.0123 (-)
SK-Hype 0.0824 ± 0.0059 (-)
detect-then-unmix 0.0671 ± 0.0049 (3.83)

this scene has been accurately unmixed using linear mixing models [69]. To
build the synthetic image we used the MVES to linearly unmix the pixels
in the image. The reconstructed image considering the LMM is depicted in
Figure 18b. The reconstructed image is clearly very similar to the original im-
age, and thus carries its characteristics. To obtain a partly nonlinearly mixed
image, we randomly selected 30% of the pixels from the reconstructed im-
age and re-mixed them using the modified GBM model (4.25) with ηd = 0.3,
but preserving the abundances. Finally, we added a WGN to each pixel with
power adjusted to produce a 30dB SNR, which is typical for hyperspectral
images. The resulting synthetic image is shown in Figure 18c. This is a
partly nonlinearly mixed image for which we know the ground truth and that
carries the characteristics of a real image.

We applied the proposed EEA to the image of Figure 18c and com-
pared the endmember estimates with those obtained by applying the MVES
and the VCA algorithms directly to the image. We considered Nmax = 10,
ε = 0.05, and r f = 0.9. The results are shown in Figure 19. It can be verified
that the proposed method has led to the most accurate endmember estimates
even for a moderate degree of nonlinearity. Figure 20 shows in black the real
endmembers and the data projected into the column space of MMM. The end-
member estimates calculated by proposed EEA after 10 iterations are shown
in blue. This figure clearly shows the challenging problem posed to the algo-
rithm, as the chosen degree of nonlinearity introduces a relatively small de-
tachment of the nonlinearly mixed pixels from the simplex. Table 8 presents
the RMSE for the abundance vectors using the endmembers estimated with
the proposed EEA (labelled “detect-then-unmix”) and with two alternative
unmixing strategies: linear with the FCLS, and nonlinear with the SK-Hype.
The improvement obtained using the proposed method is of the order of 18%.
For a visual evaluation, Figure 21 compares the true nonlinearity map with the
detection map. The white and gray pixels where correctly classified, and the
black pixels were misclassified.
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Figure 17: Cuprite mining site. The green box corresponds to the alunite
hill scene.
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(c) GBM + WGN.

Figure 18: (a) Plot of the alunite hill with bands 30, 70 and 100. (b) Re-
construction of the scene using the LMM. (c) Adding 30 % of nonlinearly
mixed pixels and WGN to give a 30dB SNR.
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(b) Kaolinite.
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Figure 19: Endmember estimations for the nonlinearly mixed image with
different extraction techniques.
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Figure 20: The black circles are the real endmembers, the black dots are
the data projected in the columns of MMM. The blue circles are the estimated
endmembers with the proposed algorithm after 10 iterations. The simplex
for the “true” and estimated endmembers are also drawn.
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Figure 21: Detection map and true nonlinear map. Linearly mixed pix-
els in gray, nonlinearly mixed pixels in white, and misclassified pixels in
black.
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5.2.4 Real Data

5.2.4.1 Indian Pines

To test the proposed method using real images, we used the data set
available at the Indian Pines test site in North-western Indiana [120]. This
image was captured by the AVIRIS (Airborne Visible/Infrared Imaging Spec-
trometer). It has 145× 145 samples over 220 contiguous bands with wave-
lengths ranging from 366 to 2497 nm. Prior to analysis, noisy and water
absorption bands were removed resulting in a total of 200 bands that were
uniformly decimated to 50 to speed up simulations. The data set has a ground
truth map that divides the samples into 16 mutually exclusive classes. In
Table 9, the classes are organized by numbers (1 to 16), and the number of
samples of each class is shown. Note, however, that the number of samples in
each class can vary considerably. Note also that some classes are composed
of different materials. We can count 20 different materials if we consider
grass as an isolated material for the whole image. We chose to count each
grass (depending on the accompanying material) as a different material, lead-
ing to 22 endmembers. Figures 22a and 22b display images from the Indian
Pines region constructed by selecting three different bands, while Fig. 23a
presents the ground truth map for this image, where each class is represented
by a different color. In Figure 23a, we also indice the class number for each
area, where 0 represents the background, which is an unclassified area.

To perform the simulations, we divided the image into eight sub-images
to work with smaller areas of the image and to deal with 3 to 4 endmembers
at a time. To define these sub-images, we also paid attention to balance the
number of samples per endmember. By looking at Figs 22a and 22b, we can
note that some classes seem to have materials that are not accounted for in the
available ground-truth information. For instance, this is the case for classes 5,
11 and 14. Therefore, we introduced extra endmembers for some of the sub-
images. Table 10 describes how the sub-images were organized, showing the
classes, materials, numbers of pixels and endmembers chosen for each of the
eight sub-images.

For each sub-image, we estimated the endmembers as discussed in
Section 5.1, with Nmax = 10, a relaxing factor initially set to r f = 0.8, and
incremented by rinc = (1− r f )/Nmax = 0.2 at each of the 10 iterations. Then,
we ran the detection algorithm with PFA = 0.001. Since we subdivided the
real image into different sub-images, some of which have few pixels, we em-
ployed a more relaxed value of r f when compared to previous simulations to
avoid discarding too much data in the first few iterations. Moreover, natu-
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(a) Indian Pines representation (bands
5, 30, and 60).
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(b) Indian Pines representation (bands
5, 15, and 35).

Figure 22: Indian Pines test site representation selecting 3 different bands
in (a), and 3 other bands in (b).

ral phenomena such as endmember variability, wrong (or incomplete) ground
truth and illumination factors (among others) tend to degrade the detection
performance when dealing with real images, specially when considering non-
linear algorithms which are more susceptible to overfitting. Thus, we have
employed a smaller PFA to minimize incorrect detections of linearly mixed
samples as nonlinearly mixed. We performed the unmixing step using FCLS
for pixels detected as linearly mixed and SK-Hype for pixels detected as non-
linear mixtures. Figure 23b presents the detection map superimposed to the
ground-truth classes, where black dots represent pixels detected as nonlin-
early mixed.

Comparing the detection map in Fig. 23b with Figs 22a and 22b, one
can note similarities between the detection map and some patterns observed
in the image representations. For instance, the black triangular shape in class
11 in Fig. 23b (centered about coordinate (40,80)) is just besides what seems
to be a road or trail when looking to Figure 22a. Similarities can be found
between contours of detected nonlinear regions in Fig. 23b and the corre-
sponding regions in Figs 22a or 22b. Table 11 reports the RMSEs for the
reconstruction error for each of the eight sub-images using three approaches,
namely FCLS, SK-Hype, and detect-then-unmix. The results marked in bold
blue correspond to the lowest RMSEs. For almost all sub-images, we note
that the use of a nonlinear mixture detector improved the image reconstruc-
tion when compared to the pure linear or pure nonlinear unmixing strategies.
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Table 9: Indian Pines classes by region.

Class number Class Num. of Samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93
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(b) Indian Pines detection map.

Figure 23: Detection of nonlinearly mixed pixels in Indian Pines hyper-
spectral image. Black pixels were detected as nonlinearly mixed ones by
the proposed detector.
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Table 10: Subimages organization

Subimg. Classes Materials # of pxls. # of endmem.
1 9 and 7 Oats and grass-pasture-mowed 48 3
2 1, 4 and 13 Alfafa, wheat and corn 488 3
3 16 Stone-steel-towers 93 3
4 15 Buildings-grass-trees-drives 386 4
5 5 Grass-Pasture 483 3
6 8 and 12 Hay-windrowed and Soybean-clean 1071 3
7 3,6 and 10 Corn-mintill, grass-trees and soybean-notill 2532 4
8 14 2 11 Woods, corn-notill, soybean-mintill 5148 4

Table 11: Indian Pines recontruction error (RMSE) by subimage.

Subimg.
RMSE ± STD

FCLS SK-Hype detect-then-unmix
1 0.0028627 ± 6.6939e-06 0.0030332 ± 6.0053e-06 0.0029083 ± 6.5229e-06
2 0.0038963 ± 1.2293e-05 0.003881 ± 9.4813e-06 0.0038391 ± 1.1505e-05
3 0.0044259 ± 2.9087e-05 0.0035981 ± 8.9722e-06 0.0035537 ± 9.8622e-06
4 0.0040145 ± 1.1417e-05 0.0039097 ± 8.0165e-06 0.0038895 ± 8.5058e-06
5 0.0030848 ± 7.0516e-06 0.0032353 ± 5.9761e-06 0.0030527 ± 6.2275e-06
6 0.0039905 ± 6.5627e-06 0.004055 ± 7.1531e-06 0.0039644 ± 6.6603e-06
7 0.0034804 ± 5.8657e-06 0.0035049 ± 5.9207e-06 0.0034552 ± 5.9632e-06
8 0.0037665 ± 7.5723e-06 0.0039314 ± 7.3092e-06 0.0037531 ± 7.4932e-06
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5.2.4.2 Cuprite

This example applies the proposed EEA (Algorithm 1) to real data
from a scene extracted from the Cuprite Mining site in Nevada (Figure 26a).
This scene was captured by the AVIRIS instrument and has originally 224
bands. We removed the water absorption bands and decimated the data uni-
formly by a factor of 2, resulting in 94 bands. The decimation was carried
out to speed up simulations. As reference spectra we selected 18 spectral sig-
natures taken from the 1998 USGS spectral library. These spectral signatures
were selected based on minerals reported to be present in the Cuprite Mining
Field [23, 121, 122]. We estimated the number of endmembers using Virtual
Dimension (VD) [113] with probability of false alarm Pf = 10−4, resulting
in R = 5 endmembers. We performed the endmember estimation using the
proposed EEA (IEE), as well as VCA and MVES. We considered also a mod-
ification of Algorithm 1 where we replaced the proposed detector with the
robust least-squares based detector presented in [2]. We refer to this method
as LS for short. The parameter setting for the proposed EEA was Nmax = 10,
ε = 0.05, and r f = 0.7.1 We searched the 18 USGS spectra for the best match
(smaller spectral angle) with the endmembers extracted. The endmembers
were identified as Sphene, Montmorillonite, Kaolinite, Dumortierite, Pyrope.
These endmembers have strong components in this part of the Cuprite Min-
ing Field [23]. Figure 24 shows the endmembers estimated with the proposed
EEA (red line), with the LS (green lines), and the best matched signatures
from USGS spectral library (blue lines). Table 12 lists the spectral angles,
in radians, between the estimated and the library endmembers for the pro-
posed EEA, LS, VCA, and MVES2. Clearly, the proposed method presented
good estimation performance, outperforming the other methods. Figure 25
presents the abundance maps for the unmixing process using the detect-then-
unmix strategy with the GP detector. These abundance maps are in good
agreement with abundance maps estimated in [23]. Figure 26 presents the
reconstruction error (RMSE) for the Cuprite scene using the proposed EEA
(Fig. 26b) and the VCA (Fig. 26c). In both cases the unmixing procedure
was carried out using the SK-Hype algorithm. The darker tone dominating
Figure 26b indicates a better fitting of the model when compared with Fig-
ure 26c. This result is corroborated by the smaller RMSE obtained using the

1The parameter r f for the LS detector case was modified to 1.2 to adjust the algorithm to the
least-squares detector.

2Note that the mean spectral angle error used in [23] and [121] as a quality measure for the
endmember estimation can be thought as a weighted mean projection of all the image vectors
on the estimated endmembers, and therefore does not capture nonlinear relations between pixels
and endmembers.
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Figure 24: Estimated endmembers and USGS spectra.

Table 12: Spectral angles (in rad) between estimated and USGS spectra.

Endmemeber IEE LS VCA MVES
Sphene 0.0799 0.1498 0.3634 0.2457
Montmorillonite 0.0615 0.0852 0.0888 0.0762
Kaolinite 0.1471 0.1689 0.2022 0.2559
Dumortierite 0.1054 0.1008 0.0942 0.1422
Pyrope 0.1035 0.9792 0.1760 0.1588

proposed method (RMSEprop = 0.0040, RMSEVCA = 0.0051).

5.3 PRELIMINARY CONCLUSIONS

In this chapter an iterative algorithm was derived for endmember esti-
mation as a pre-processing step for unsupervised unmixing problems. It was
shown that the combined use of the detector presented in Chapter 4 and end-
member estimation algorithm leads to better unmixing results when compared
to state-of-the-art solutions. Simulations using different scenarios corroborate
the conclusions.
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Figure 25: Abundance maps.
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(c) VCA + SK-Hype

Figure 26: Cuprite scene and reconstruction errors.
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6 BAND SELECTION IN RKHS

Band selection has been an active topic of research for classification
of spectral patterns, see [86, 87, 88, 89, 90] and references therein. Sub-
space projection techniques [92, 23, 93] tend, however, to be preferred over
BS [91, 123] for reducing the complexity of linear unmixing processes. They
use the property that high-dimensional hyperspectral data are confined to a
low-dimensional simplex in linearly-mixed images with only a few endmem-
bers [6]. This assumption becomes invalid when nonlinear mixing phenom-
ena are involved. Recently, in a preliminary work [30], we introduced a BS
strategy method that employs the kernel k-means algorithm to identify clus-
ters of spectral bands in the RKHS where nonlinear unmixing is performed.
The HU results obtained were encouraging. One drawback of the approach
in [30] is the need for an arbitrary choice of the order of the nonlinear model
(the dimension of the dictionary). Given the order, band selection is per-
formed based on the distances among different bands in the RKHS. Hence,
the optimality of the solution is not driven by any direct measure of mod-
eling accuracy. A new coherence-based method for BS in the RKHS was
introduced in [31]. The coherence criterion is used to set the largest correla-
tion between the basis kernel functions included in the unmixing model. We
show that this BS approach is equivalent to search for a maximum clique in a
graph, that is, the largest complete subgraph in this graph. Starting from a ten-
tative dictionary cardinality, the proposed method determines both the dictio-
nary size and its elements in order to satisfy the required coherence criterion.
Using the maxCQL algorithm [124] to solve the maximum clique problem,
the new method results in dictionaries of kernel functions, and thus spectral
bands, that are less coherent than those obtained using kernel k-means initial-
ized with dictionaries of the same size.

In this chapter, we present both methods. First, we review the kernel
k-means approach. Then the strategy based on the so-called coherence cri-
terion [125] and maximum clique search in a graph is presented. Although
these two approaches are connected, they differ in their formulation and in the
characteristics of the sets of bands they select. We also show the accuracy of
the proposed methods with simulations using synthetic and real data. Finally,
we present some preliminary conclusions.
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6.1 REVISITING THE KERNEL FRAMEWORK

When employing kernelized methods for unmixing of hyperspectral
images, standard mixing models are replaced by more flexible nonparametric
or semi-parametric models. Thus, the `-th band of a pixel observation can be
modeled as

r` = ψ(mmmλ`
)+n` (6.1)

with ψ a real-valued function in a RKHS H that characterizes the nonlin-
ear interactions between the endmembers, and n` an additive noise at the `-
th band. In order to estimate ψ in the least squares sense, it is possible to
formulate a convex optimization problem as done in Section 3.1.3 and Ap-
pendix A.6 where the underlying function ψ can be written as

ψ =
L

∑
j=1

β jκ(·,mmmλ j) (6.2)

where βββ = [βi, . . . ,βL] is the vector of Lagrange multipliers, and can be found
by solving the following linear system

(KKK + εIII)βββ = rrr (6.3)

where KKK is the Gram matrix with entries κ(mmmλi ,mmmλ j), with i, j = 1, . . . ,L, and
ε is the regularization parameter.

Although the formulation presented in Section 3.1.3 allows one to
address an estimation problem in H by solving the linear system in (6.3),
this approach is computationally demanding since it involves the inversion of
L× L matrices. Similarly, when considering the SK-Hype algorithm (Sec-
tion 3.1.4), the linear system to be solved is given by(

KKKu + εIII uMMM
uMMM> uIII

)(
βββ

γγγ

)
=

(
rrr
000

)
(6.4)

which requires a (L+R)× (L+R), L� R, matrix inverse. This issue is crit-
ical, as modern hyperspectral image sensors employ hundreds of contiguous
bands with an ever increasing spatial resolution. Hence, it is of major interest
to consider band selection techniques that lead to significant computational
cost reduction without noticeable quality loss. Considering (6.2), a possible
strategy is to focus on a reduced-order model of the form:

ψ = ∑
j∈ID

β jκ(.,mmmλ j) (6.5)
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where ID ⊂ {1, . . . ,L} is an M-element (M < L) subset of indexes. We shall
call D = {κ(.,mmmλ j)} j∈ID the dictionary.

6.2 KERNEL K-MEANS FOR BAND SELECTION

Kernel k-means (KKM) is a direct extension of the k-means clustering
algorithm [126]. It maps the input data mmmλ`

into a RKHS H , and groups
their images κ(·,mmmλ`

) into disjoint clusters C1, . . . ,CM based on their relative
distance in H . Since determining centroids in H is intractable, KKM cal-
culates distances using the reproducing property, see Definition (10) in the
appendix Section A.3.2.

Given a cluster Ck enclosing points {κ(·,mmmλ`
)}`∈Ck , its centroid is de-

fined as
νk =

1
Nk

∑
i∈Ck

κ(·,mmmλi) (6.6)

where Nk is the number of points in Ck. The squared distance of any point
κ(·,mmmλ`

) to νk is computed as

‖κ(·,mmmλ`
)−νk‖2

H = κ(mmmλ`
,mmmλ`

)

− 1
Nk

∑
i∈Ck

κ(mmmλ`
,mmmλi)

+
1

N2
k

∑
i∈Ck

∑
j∈Ck

κ(mmmλi ,mmmλ j)

(6.7)

and the clustering error to minimize is defined as

E(ν1, . . . ,νM) =
M

∑
k=1

∑
`∈Ck

‖κ(·,mmmλ`
)−νk‖2

H . (6.8)

Each cluster Ck is then represented by the band `k corresponding to the closest
point to its centroid νk:

`k = argmin
`∈Ck

‖κ(·,mmmλ`
)−νk‖2

H . (6.9)

The global kernel k-means (GKKM) algorithm uses the principles described
above for incremental clustering [126]. GKKM does not suffer from poor
convergence to local minima and produces near-optimal solutions that are ro-
bust to cluster initialization. A fast GKKM (FGKKM) version that performs
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a unique KKM run and greatly reduces the complexity of the algorithm can
also be used.

Algorithm 2 presents the pseudo code for the KMM BS algorithm. It
receives as inputs the Gram matrix KKK and the desired number of bands M in
the final dictionary. In line 3, M clusters are found using the FGKKM. Then,
for each cluster the vector mmmλ`

minimizing (6.9) is found (line 6) and included
in the index set ID in line 7. Finally, the algorithm returns the index set of
selected bands ID in line 9.

Algorithm 2: FGKKM Band Selection (KKMBS)
Input : The L×L Gram matrix KKK and the desired number of

bands M.
Output: Selected band indexes ID .

1 Initialization:ID = { /0};
2 % Find clusters indices
3 [C1, . . . ,CM] = FGKKM(KKK,M);
4 % Find the vectors κ(·,mmmλ`

) closest to the centroids in
C1, . . . ,CM

5 for k = 1 to M do
6 `k = argmin`∈Ck

‖κ(·,mmmλ`
)−νk‖2

H ;
7 Insert `k into ID ;
8 end
9 return ID

6.3 COHERENCE-BASED BAND SELECTION

6.3.1 Coherence criterion for dictionary selection

Coherence is a parameter of fundamental interest for characterizing
dictionaries of atoms in linear sparse approximation problems [127]. It was
first introduced as a heuristic quantity for Matching Pursuit in [128]. Formal
studies followed in [129], and were enriched for Basis Pursuit in [130, 131].

Consider a set of kernel functions {κ(·,mmmλ`
)}`=1,...,M in H . The defi-
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nition of coherence was extended to RKHS as [125]:

µ = max
i6= j
|〈κ(·,mmmλi),κ(·,mmmλ j)〉H |

= max
i6= j
|κ(mmmλi ,mmmλ j)|

(6.10)

where κ is a unit-norm kernel. Otherwise, replace κ(·,mmmλi) with

κ(·,mmmλi)/
√

κ(mmmλi ,mmmλi)

in (6.10). Parameter µ is the largest absolute value of the off-diagonal entries
in the Gram matrix. It reflects the largest cross correlation in the dictionary
{κ(·,mmmλ`

)}`, and is equal to zero for every orthonormal basis. A dictionary
is said to be incoherent when its coherence µ is small. Although its defi-
nition is rather simple, coherence possesses important properties [125]. In
particular, it can be shown that the kernel functions in the dictionary D =
{κ(·,mmmλ`

)}`=1,...,M are linearly independent if (M−1)µ < 1. This sufficient
condition illustrates that the coherence (6.10) provides valuable information
on a dictionary at low computational cost. Other properties are discussed
in [125].

Kernel-based dictionary learning methods usually consider approxi-
mate linear dependence conditions to evaluate whether a candidate kernel
function κ(·,mmmλi) can be reasonably well represented by a combination of
the kernel functions that are already in the dictionary D . To avoid excessive
computational complexity, a greedy dictionary learning method has been in-
troduced in [125]. It consists of inserting the candidate κ(·,mmmλi) into the dic-
tionary D provided its coherence is still below a given threshold µ0, namely,

max
j∈ID

|κ(mmmλi ,mmmλ j)| ≤ µ0 (6.11)

where µ0 is a parameter [0,1[ determining both the maximum coherence in
D and its cardinality |D |. Using coherence criterion for BS allows to explic-
itly limit the correlation of kernel functions in the dictionary. This contrasts
with the kernel k-means strategy, which starts from a number of dictionary
elements prescribed by the user without taking the coherence of kernel func-
tions into consideration.

The coherence criterion (6.11) was proposed within the context of pa-
rameter estimation from streaming data. The design of the dictionary follows
a greedy strategy. The first kernel function is selected arbitrarily, and each
new candidate kernel function is tested using (6.11) to determine if it deserves
being included in the dictionary. This procedure is appropriate for online ap-
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plications because of its minimal computational cost. However, alternatives
should be sought which may lead to more effective solutions in batch mode
applications.

6.3.2 Band selection as a maximum clique problem

Consider a set of kernel functions {κ(·,mmmλ`
)}`=1,...,L. Determining

a subset D with a prescribed coherence level can be viewed as a two-step
procedure. The first step aims at listing all the pairs of functions that satisfy
the coherence rule (6.11). This can be performed by constructing a L× L
binary matrix BBB with entries defined as:

BBBi j =

{
1 if |κ(mmmλi ,mmmλ j)| ≤ µ0

0 otherwise.
(6.12)

The second step consists of finding in BBB, up to a simultaneous reordering
of its rows and columns, the largest submatrix of only ones. This problem
can be recast as determining a maximum clique in an undirected graph G =
{V,E}, where each vertex ` of V = {1, . . . ,L} corresponds to a candidate
function κ(·,mmmλ`

), and edges in E ⊆V×V connecting the vertices are defined
by the adjacency matrix BBB. Two vertices are said to be adjacent if they are
connected by an edge. A complete subgraph of G is one whose vertices are
pairwise adjacent. The maximal clique problem (MCP) consists of finding the
maximal complete subgraph of G [32]. This problem is NP-Complete [132].
Figure 27 illustrates this problem within the context of BS. This figure shows
for instance that the coherence of κ(·,mmmλ1) and κ(·,mmmλ4) is lower than the
preset threshold µ0, and the coherence of κ(·,mmmλ1) and κ(·,mmmλ2) is larger
than µ0. This graph has one maximum clique defined by the set of vertices
ID = {1,3,4,5}, which means that the coherence of the dictionary D =
{κ(.,mmmλ j)} j∈ID is lower than µ0 and it has maximum cardinality. A vast
literature exists on maximum clique problems (MCP), see [33] and references
therein. The next section reviews the main algorithms for MCP.

6.3.3 The maximum clique problem

MCP has a wide range of practical applications arising in a number
of domains such as bioinformatics, coding theory, economics, social network
analysis, etc. Given its theoretical importance and practical interests, consid-
erable efforts have been devoted for deriving exact and heuristic algorithms.
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Figure 27: The maximum clique problem (MCP).

Efficient exact methods have been designed mainly based on the branch-and-
bound (B&B) framework. Dynamic bounds on the clique size are used to
prune (or discard) branches during search, and then dramatically reducing the
search space [133]. Although algorithms are now much faster and efficient
than their past counterparts [134], the inherent complexity of exact methods
can still lead to a prohibitive computation time when large problems are ad-
dressed [33]. To handle problems whose optimal solutions cannot be reached
within a reasonable time, various heuristic and metaheuristic algorithms have
been derived with the purpose of providing sub-optimal solutions in an ac-
ceptable time. In this thesis, however, we shall focus on exact algorithms
since our application concerns small graphs with a number of vertices equal
to the number of bands.

Since the introduction of the Carraghan and Pardalos (CP) exact al-
gorithm [133], many refinements have been proposed to improve its perfor-
mance with a focus on two main issues. The first one is to tighten the upper
bound on the maximum clique during search for the purpose of more efficient
subtree pruning. The second one is to improve the branching rule, and then
select the most promising vertices to expand candidate cliques. In [33], the
authors classify the exact MCP algorithms into four groups, depending on
their strategies for pruning and branching. The first group solves sub-clique
problems for each vertex with iterative deepening and pruning strategies. Ex-
amples are the CP algorithm [133] and its improved version [135]. Both al-
gorithms are sensitive to the order of vertices, which can result in drastically
different execution times for a given graph [135]. A second group is based
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on vertex coloring techniques [136]. The most prominent algorithms in this
group use B&B strategies based on subgraph coloring. Examples of algo-
rithms are BT and the recent MCQ, MCR, MaxCliqueDyn, BB-MaxClique,
among others [33]. The third group improves the basic CP by tightening
candidate sets via the removal of vertices that cannot be used to extend the
current clique to a maximum clique. Along this line, three B&B algorithms,
denoted DF, χ and χ+DF were proposed in [137]. The fourth group consists
of the exact methods based on MaxSAT [124], which improve the techniques
based on vertex coloring. The MaxCLQ algorithm proposed in [124] is con-
sidered to be very effective and solved the DIMACS problem (p hat1000–3)
for the first time [33]. A complex approach (ILS&MaxCLQ) that combines
different algorithms such as the MaxCLQ, MCS and the ILS, was recently
proposed [138]. A comparative discussion on exact methods is presented
in [33]. The MaxCLQ and ILS&MaxCLQ were the only methods to solve all
the presented problems, with the smallest CPU times for the former.

6.3.4 Coherence-based BS algorithms

We shall now introduce kernel BS algorithms based on the coherence
criterion. As a baseline for performance comparisons, we consider first a
greedy strategy that consists of testing candidate kernel functions sequentially
and inserting them into the dictionary if coherence stays below a threshold
value µ0. Next, we propose an exact strategy based on MCP solving.

6.3.4.1 Automatic parameter settings

Before describing the kernel BS methods, we briefly present a proce-
dure for automatic parameter setting. It allows to set the coherence threshold
µ0 and Gaussian kernel bandwidth σ2 given a desired number of elements in
the dictionary.

Let KKKσ be the L×L Gram matrix whose (i, j)-th entry is defined by
κσ (mmmλi ,mmmλ j), where κσ denotes the Gaussian kernel (A.27) parameterized by
the bandwidth σ2, i.e.,

κ(mmmλi ,mmmλ j) = exp
(

1
2σ2 ‖mmmλi −mmmλ j‖

2
)
.

Let D be an M-element dictionary with coherence µ and index set ID . Then,
as shown in [125], a sufficient condition for linear independence of the M
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elements of D is given by (M−1)µ < 1. We write:

µ <
1

(M−1)
. (6.13)

The objective is to build a dictionary with (approximately) M linearly inde-
pendent elements. We thus propose to set the coherence threshold µ0 as:

µ0 =
1

(M−1)
(6.14)

and adjust σ2 to obtain a Gram matrix KKKσ whose entries are close to µ0 in
some sense. Indeed, on the one hand, if all the off-diagonal entries of KKKσ are
smaller than µ0, then D contains the L available elements. On the other hand,
if all the off-diagonal entries of KKKσ are greater then µ0, then D should be
composed of only one element. Therefore, we propose to adjust σ2 such that
E{(KKKσi j)(i6= j)} = µ0, where E{·} is the expected value and can be approxi-
mated as

E{(KKKσi j)|(i6= j)} ≈
2

L2−L

L−1

∑
i=1

L

∑
j=i+1

KKKσi j . (6.15)

Then, we set σ2 as the solution of the following optimization problem:

σ
2 =argmin

σ2

(
2

L2−L

L−1

∑
i=1

L

∑
j=i+1

[KKK1i j ]
1/σ2 −µ0

)2

s. t. σ
2 ∈ R+.

(6.16)

where KKK1 = KKKσ is the Gram matrix for σ = 1. Finally, we determine KKKD as
the largest sub-matrix of KKKσ whose all off-diagonal entries satisfy (6.11). We
emphasize that since KKKσi j ≤ 1, (6.15) is a decreasing function of σ−2, and
thus (6.16) has a unique solution.

6.3.4.2 Algorithms

In this section we present the two band selection algorithms using the
greedy and clique approaches that will be used in Section 6.4.

The greedy coherence-based approach is presented in Algorithm 3.
The inputs to Algorithm 3 are the desired number M of bands in the final
dictionary, and the L×L Gaussian kernel Gram matrix with σ = 1 and en-



112

tries KKK1i j = κ(mmmλi ,mmmλ j) = exp
(
−0.5‖mmmλi −mmmλ j‖

2
)

. It returns the index of

selected bands and the Gaussian kernel bandwidth σ2. Initialization occurs
in line 1, where the index set ID is initialized with the first spectral band
index, the number Nb of bands in the dictionary is set to one, and the coher-
ence threshold µ0 is adjusted according to (6.14). Next, σ2 is determined by
solving problem (6.16) in line 2, and the Gram matrix KKKσ is computed with
the optimum σ2 in line 3. From line 4 to line 13 the algorithm sequentially
tests all the L−1 remaining bands using condition (6.11). Breaking the parts
down, in line 5 a zero vector ccc of length Nb is created, and the off diagonal
terms (`,ID j) of the Gram matrix KKKσ are stored in ccc. If the maximum abso-
lute value of the entries of ccc is less than the coherence threshold (line 9), then
the `-th band index is added to ID , and Nb is incremented by one (lines 10
and 11). Finally, the algorithm returns the complete set of selected bands and
the kernel bandwidth in line 14.

Algorithm 3: Greedy Coherence-based Band Selection
(GCBS)

Input : The L×L Gram matrix KKK1 = (KKKσ )σ=1, and the
desired number M of atoms.

Output: The indices ID of selected atoms, and the Gaussian
kernel bandwidth σ2.

1 Initialization: ID = {1}, Nb = 1, µ0 = 1/(M−1);
2 Find σ2 solving (6.16);
3 Compute KKKσ using σ2 obtained in line 2;
4 for ` := 2 to L do
5 ccc := 000Nb×1;
6 for j := 1 to Nb do
7 ccc j :=KKKσ`,ID j

;

8 end
9 if max(|ccc j|)≤ µ0 then

10 Insert ` into ID ;
11 Nb := Nb +1;
12 end
13 end
14 return ID , σ2;

The clique coherence-based band selection method is described in Al-
gorithm 4. Similarly to Algorithm 3, the inputs are KKK1 and M. The adjacency
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matrix BBB in initialized with zeros (line 1), the vertices vector V with the in-
dices of all available wavelengths, µ0 following (6.14), and ID as an empty
set. The kernel bandwidth is computed in line 2, and the Gram matrix is com-
puted for the optimum σ2 in line 3. Through line 4 to 10 every entry of the
upper diagonal part of BBB is set according to (6.12). In line 11 the MaxCLQ al-
gorithm is used to find the indices of the maximum clique in the graph. These
indices are assigned to the dictionary index set ID , which is returned in line
12 together with the kernel bandwidth.

Algorithm 4: Clique Coherence-based BS (CCBS)
Input : The L×L Gram matrix KKK1 = (KKKσ )σ=1, and the

desired number M of atoms.
Output: The indices ID of selected atoms, and the Gaussian

kernel bandwidth σ2.
1 Initialization: BBB := 000L×L, V = {1, . . . ,L}, µ0 = 1/(M−1),

ID c = { /0};
2 Find σ2 solving (6.16);
3 KKKσ using σ2 obtained in line 2;
4 for i := 1 to L−1 do
5 for j := i+1 to L do
6 if [KKKσi j ]≤ µ0 then
7 BBBi j := 1;
8 end
9 end

10 end
11 ID := MaxCLQ(V,BBB);
12 return ID , σ2;

Note that M is used in Algorithm 4 and Algorithm 3 as a design pa-
rameter, which is required to obtain the coherence threshold and the Gaussian
kernel bandwidth. The number Nb of bands in the final dictionary can differ
from M.
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6.4 SIMULATIONS

6.4.1 Simulation with synthetic data

This section presents simulation results using synthetic data to illus-
trate the performance of the proposed band selection methods under con-
trolled conditions for which the abundance values are known. We constructed
synthetic images using two sets of endmembers. The first set had 8 endmem-
bers extracted from the spectral library of the ENVI software and correspond
to the spectral signatures of minerals present in the Cuprite mining field in
Nevada. The minerals are alunite, calcite, epidote, kaolinite, buddingtonite,
almandine, jarosite and lepidolite, and their spectra consisted of 420 contigu-
ous bands, covering wavelengths from 0.3951µm to 2.56µm. The second set
was extracted from the Pavia University data acquired by the ROSIS spec-
trometer. It has 610× 340 pixels with 103 bands over the spectral range of
430–680 nm (Figure 28, left). The data also has a ground truth labelling
42776 pixels (out of the 207400) into 9 classes labeled asphalt, meadows,
gravel, trees, painted metal sheets, bare soil, bitumen, self-blocking bricks
and shadows (Figure 28, right). We extracted the endmembers from this data
set using the vertex component analysis algorithm (VCA [23]), and consid-
ering only the labeled pixels. We constructed four 2000-pixel hyperspectral
images (N = 2000), each using 8 endmembers (R = 8) from the Cuprite or
Pavia data, and the GBM and PNMM (2.21) mixing models (see Section 2.2.2
and 2.2.3 ) with γi,i = γ = 1 and ξ = 0.7, respectively. The abundances were
obtained by uniformly sampling from the simplex, i.e., obeying the positiv-
ity and sum-to-one constraints. WGN was added to all images with power
adjusted to produce a 21dB SNR. We consider the root mean square error
(RMSE) in abundance estimation

RMSE =

√
1

NR

N

∑
n=1
‖αααn−ααα∗n‖2 (6.17)

and the CPU time required for both BS (when applicable) and unmixing (av-
eraged over 100 unmixings of the same HIs) to compare the different BS
strategies. All unmixings were performed using a Gaussian kernel and con-
sidering either the full set of bands or smaller sets selected using the BS strate-
gies presented in this chapter. SK-Hype was implemented for the full set of
bands. The kernel bandwidth for SK-Hype was selected among the values
σskp ∈ {0.5σ , σ , 2σ , 10σ , 20σ} to obtain the minimum RMSE, where σ is
the solution of (6.16), for M = 30. The global kernel k-means band selec-
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tion (KKMBS) algorithm (Section 6.2) implementation requires the number
of bands to be fixed a priori. To circumvent this issue, we considered a selec-
tion approach based on the Akaike Information Criterion and given by [139]

M = argmin
M

[E(ν1, . . . ,νM)+λM] (6.18)

where the parameter λ controls the complexity of the model, and needs to
be found empirically. The kernel bandwidth σkkm also needs to be selected
for KKMBS. A grid search was performed using a small part (200 pixels)
of the synthetic image to find λ and σkkm that would lead to a good RMSE
performance. The parameters were chosen among the values λ ∈{2,4,6} and
σkkm ∈ {0.5σ , σ , 2σ , 10σ , 20σ}, again with σ being the solution of (6.16),
for M = 30. The parameter set leading to the best performance in terms of
RMSE for the abundances was then selected. It is important to notice that, in
general, the abundance ground truth is not available from real data. Thus, the
RMSE in abundance estimation could not be used in design as a measure to
select model parameters. Hence, the SK-Hype and KKMBS designs used in
this comparison are based on a quasi-optimal choice of parameters for these
methods, which could not be determined in practice. The proposed design for
the BS methods, however, can be employed in practical applications.

BS with the CCBS and GCBS algorithms was performed using M ∈
{5, 10, 20, 30}, with parameters µ0 and σ adjusted using the methodology
presented in Section 6.3.4.1. We emphasize that this parameter setting strat-
egy assumes no prior knowledge about the abundance ground truth.

The simulation results are summarized in Tables 13 to 16. In these
tables, the first column shows the BS strategy considered prior to unmixing.
SK-Hype in this column indicates the solution without BS. The symbol “(r)”
besides CCBS or GCBS means that we have randomized the order of the
bands prior to applying the BS strategy. The second column shows the ob-
tained RMSE and the standard deviation (STD) in abundance estimation. The
third column lists the average CPU time elapsed in the (BS + unmixing) pro-
cess. Column four shows the number of selected bands Nb, and last column
shows the coherence of the final dictionary.

Tables 13 and 14 show the results for HIs built with Cuprite endmem-
bers and using, respectively, the GBM and the PNMM mixing models. Note
that the RMSE obtained using the BS algorithms are very close to those
obtained using all bands. Nevertheless the reduction in number of bands
obtained through BS is at least tenfold. The computational complexity ad-
vantage of the BS methods is evidenced by the required average CPU time,
which show reductions by factors ranging from 50 to 110, depending on the
algorithm and parameter settings. Note also that the number of bands in the
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final dictionary tends to be larger than the value M used to initialize the al-
gorithms. This increase in the anticipated number of bands is obtained to
optimize the dictionary coherence, what is not possible in the KKMBS algo-
rithm. As expected, the number of bands remained the same for the clique
algorithm (CCBS) for each value of M, and the slight changes in the RMSE
results indicate that the maximum clique is not unique. For the greedy ap-
proach (GCBS), however, different numbers of bands are obtained at each
execution due to initial randomization, and the results in terms of RMSE and
CPU time vary slightly. In general, randomization did not have any signif-
icant impact on the results. Finally, one should note from these tables that
the coherence-based algorithms produced dictionaries with coherence close
to µ0, and 2 to 23 times smaller than the coherence obtained using KKMBS.

Tables 15 and 16 show the results for the HIs created with the Pavia
endmembers using the GBM and PNMM respectively. Although the results in
Tables 15 and 16 follows the same pattern that the results in Tables 13 and 14,
we highlight that for the Pavia HIs the number of available bands is 103 in
contrast to the 420 used in the previous example. This explains the smaller
improvement in the Av. Time (Average Time) when using the BS algorithms
which is about 3 to 4 times smaller than using all the bands. Another differ-
ence in the results is that using the BS algorithms, and its reasoning for setting
µ0 and σ2, the best results in terms of RMSE were obtained by the proposed
method CCBS with M = 30 in both Tables. When concerning the number
of bands, the final Nb were closer to M than in the previous example. For
the coherence of the final dictionary the same pattern obtained in Tables 13
and 14 repeats for the Pavia HIs.

6.4.2 Simulation with real data

When working with real data ground truth for the fractional abun-
dances are rarely available. Thus, we compare the abundance estimation
results obtained using a full band approach and using the proposed band
selection strategy. First, the data is unmixed using the SK-Hype algorithm
using all the available spectral bands, what yields the estimated abundances
ααα

skp
n , n = 1, . . . ,N. The unmixing is then done for all of the BS methods

presented in this chapter. Generically denominating the BS-based estimated
abundances as αααbs

n , n = 1, . . . ,N, the RMSE between the SK-Hype abun-
dances and those obtained using a given BS algorithm is computed as

RMSE =

√
1

NR

N

∑
n=1
‖αααskp

n −αααbs
n ‖2. (6.19)
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Table 13: RMSE. 100 runs, 2000 pxl., 8 endmembers (Cuprite),
SNR=21dB, GBM, SK-Hype. µ0 computed using Equation (6.14) for
a given M, and σ is found solving problem (6.16).

Strategy RMSE ± STD Av. Time Nb µ

SK-Hype 0.0680 ± 0.0028 301.08 ± 17.93 420 -
KKMBS 0.0664 ± 0.0026 25.40 ± 0.22 36 0.5893

M = 5, µ0 = 0.25, σ = 0.2548
CCBS 0.0687 ± 0.0028 3.10 ± 0.14 10 0.2482
CCBS (r) 0.0687 ± 0.0028 3.13 ± 0.12 10 0.2482
GCBS 0.0724 ± 0.0031 2.91 ± 0.02 8 0.2482
GCBS (r) 0.0721 ± 0.0030 3.15 ± 0.15 7.13 ± 0.97 0.2331

M = 10, µ0 = 0.1111, σ = 0.1320
CCBS 0.0678 ± 0.0027 2.85 ± 0.13 16 0.1108
CCBS (r) 0.0679 ± 0.0027 2.89 ± 0.17 16 0.1108
GCBS 0.0685 ± 0.0028 2.57 ± 0.02 16 0.1104
GCBS (r) 0.0688 ± 0.0028 2.65 ± 0.06 13.09 ± 1.10 0.0996

M = 20, µ0 = 0.0526, σ = 0.0965
CCBS 0.0659 ± 0.0026 2.96 ± 0.15 21 0.0520
CCBS (r) 0.0660 ± 0.0026 3.01 ± 0.17 21 0.0520
GCBS 0.0670 ± 0.0027 2.59 ± 0.02 20 0.0525
GCBS (r) 0.0678 ± 0.0027 2.67 ± 0.08 15.95 ± 1.13 0.0467

M = 30, µ0 = 0.0345, σ = 0.0503
CCBS 0.0637 ± 0.0024 5.54 ± 0.22 42 0.0339
CCBS (r) 0.0637 ± 0.0024 5.74 ± 0.18 42 0.0339
GCBS 0.0637 ± 0.0024 3.32 ± 0.04 41 0.0344
GCBS (r) 0.0644 ± 0.0025 2.83 ± 0.07 33.39 ± 1.43 0.0326
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Table 14: RMSE. 100 runs, 2000 pxl., 8 endmembers (Cuprite),
SNR=21dB, PNMM, SK-Hype. µ0 computed using Equation (6.14) for a
given M, and σ is found solving problem (6.16).

Strategy RMSE ± STD Av. Time Nb µ

SK-Hype 0.0728 ± 0.0030 277.03 ± 4.30 420 -
KKMBS 0.0729 ± 0.0030 25.52 ± 0.18 36 0.7760

M = 5, µ0 = 0.25, σ = 0.2548
CCBS 0.0748 ± 0.0031 2.99 ± 0.10 10 0.2482
CCBS (r) 0.0749 ± 0.0031 3.12 ± 0.18 10 0.2482
GCBS 0.0764 ± 0.0032 2.85 ± 0.06 8 0.2482
GCBS (r) 0.0776 ± 0.0033 2.99 ± 0.15 7.13 ± 0.97 0.2331

M = 10, µ0 = 0.1111, σ = 0.1320
CCBS 0.0746 ± 0.0031 2.85 ± 0.19 16 0.1108
CCBS (r) 0.0745 ± 0.0031 2.84 ± 0.14 16 0.1108
GCBS 0.0757 ± 0.0032 2.57 ± 0.04 16 0.1104
GCBS (r) 0.0757 ± 0.0031 2.64 ± 0.10 13.09 ± 1.10 0.0996

M = 20, µ0 = 0.0526, σ = 0.0965
CCBS 0.0735 ± 0.0029 2.87 ± 0.12 21 0.0520
CCBS (r) 0.0737 ± 0.0029 2.96 ± 0.17 21 0.0520
GCBS 0.0753 ± 0.0031 2.55 ± 0.03 20 0.0525
GCBS (r) 0.0753 ± 0.0031 2.56 ± 0.04 15.95 ± 1.13 0.0467

M = 30, µ0 = 0.0345, σ = 0.0503
CCBS 0.0740 ± 0.0029 5.41 ± 0.18 42 0.0339
CCBS (r) 0.0740 ± 0.0029 5.62 ± 0.19 42 0.0339
GCBS 0.0737 ± 0.0029 3.24 ± 0.04 41 0.0344
GCBS (r) 0.0742 ± 0.0030 2.74 ± 0.07 33.39 ± 1.43 0.0326
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Figure 28: Pavia University. In the left, the Pavia University HI is repre-
sented using the bands 5, 30, and 50. In the right, the classified areas are
labelled from 1 to 9, while 0 corresponds to unclassified areas.

The images used are shown in Figure 28 and Figure 29. The first
image is the scene from the Pavia University described in Section 6.4.1. It
has 207400 pixels and the endmembers were also extracted using VCA, see
Section 6.4.1. The second image is a scene from the Cuprite mining field site
in Nevada, acquired by the AVIRIS instrument. It has originally 224 spectral
bands, from which we have removed the water absorption bands, resulting in
188 bands. This scene has 7371 pixels and previous analysis identified five
minerals (Sphene, Montmorillonite, Kaolinite, Dumortierite, and Pyrope) to
have strong components in this particular region [3]. The endmember matrix
was extracted using the VCA algorithm [23].

Tables 17 and 18 show the abundance RMSE results obtained using
(6.19). For both tables, the RMSE performance is compatible to that obtained
using synthetic images, and the savings in computational complexity can be
inferred from the CPU time reduction by a factor of at least 13 (for M = 30)
for the Cuprite scene and at least 3 (for M = 30) for the Pavia scene. In
comparing CCBS and GCBS with KKMBS one should note the significant
reduction obtained in dictionary coherence for the same model complexity
(Nb).
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Figure 29: Cuprite scene used in [3].

6.5 PRELIMINARY CONCLUSIONS

In this chapter we have proposed two methods for nonlinear unmixing
of hyperspectral images, which employ band selection directly in the repro-
ducing kernel Hilbert space (RKHS). The first method employs the KKM
algorithm to find clusters in the RKHS where each cluster centroids are as-
sociated to the closest mapped spectral vector. The second method is cen-
tralized and based on the coherence criterion, which incorporates a measure
of the quality of the dictionary in the RKHS for the nonlinear unmixing. We
have shown that this BS approach is equivalent to solving a maximum clique
problem (MCP). Contrary to competing methods that do not include an effi-
cient choice of the model parameters, the CCBS requires only an initial guess
on the number of selected bands. Simulation results employing both syn-
thetic and real data illustrate the quality of the unmixing results obtained with
the proposed methods, which leads to abundance estimations as accurate as
those obtained using the full-band SK-Hype method, at a small fraction of the
computational cost.
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Table 15: RMSE. 100 runs, 2000 pxl., 8 endmembers (Pavia),
SNR=21dB, GBM, SK-Hype. µ0 computed using Equation (6.14) for
a given M, and σ is found solving problem (6.16).

Strategy RMSE ± STD Av. Time Nb µ

SK-Hype 0.0810 ± 0.0035 15.2468 ± 0.3231 103 -
KKMBS 0.0852 ± 0.0038 5.69 ± 0.01 5 0.5347

M = 5, µ0 = 0.25, σ = 0.2385
CCBS 0.0845 ± 0.0037 4.62 ± 0.05 6 0.2402
CCBS (r) 0.0845 ± 0.0037 4.64 ± 0.05 6 0.2395
GCBS 0.0848 ± 0.0037 4.54 ± 0.02 6 0.2338
GCBS (r) 0.0862 ± 0.0038 5.02 ± 0.21 4.89 ± 0.37 0.1812

M = 10, µ0 = 0.1111, σ = 0.1
CCBS 0.0813 ± 0.0035 3.51 ± 0.04 12 0.1098
CCBS (r) 0.0813 ± 0.0035 3.53 ± 0.05 12 0.1098
GCBS 0.0824 ± 0.0035 3.65 ± 0.03 12 0.1080
GCBS (r) 0.0832 ± 0.0036 3.76 ± 0.12 9.58 ± 0.75 0.0907

M = 20, µ0 = 0.0526, σ = 0.0498
CCBS 0.0795 ± 0.0034 3.43 ± 0.04 20 0.0383
CCBS (r) 0.0794 ± 0.0034 3.45 ± 0.04 20 0.0437
GCBS 0.0795 ± 0.0034 3.49 ± 0.02 20 0.0499
GCBS (r) 0.0804 ± 0.0035 3.45 ± 0.07 16.55 ± 0.88 0.0408

M = 30, µ0 = 0.0345, σ = 0.0353
CCBS 0.0784 ± 0.0034 3.68 ± 0.03 25 0.0314
CCBS (r) 0.0784 ± 0.0033 3.68 ± 0.04 25 0.0311
GCBS 0.0787 ± 0.0034 3.67 ± 0.03 25 0.0300
GCBS (r) 0.0790 ± 0.0034 3.54 ± 0.06 21.09 ± 1.02 0.0282
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Table 16: RMSE. 100 runs, 2000 pxl., 8 endmembers (Pavia),
SNR=21dB, PNMM, SK-Hype. µ0 computed using Equation (6.14) for a
given M, and σ is found solving problem (6.16).

Strategy RMSE ± STD Av. Time Nb µ

SK-Hype 0.0839 ± 0.0035 14.6747 ± 0.3073 103 -
KKMBS 0.0878 ± 0.0038 5.31 ± 0.02 5 0.5347

M = 5, µ0 = 0.25, σ = 0.2385
CCBS 0.0861 ± 0.0037 4.34 ± 0.04 6 0.2402
CCBS (r) 0.0861 ± 0.0037 4.34 ± 0.05 6 0.2395
GCBS 0.0877 ± 0.0038 4.17 ± 0.02 6 0.2338
GCBS (r) 0.0882 ± 0.0039 4.56 ± 0.23 4.89 ± 0.37 0.1812

M = 10, µ0 = 0.1111, σ = 0.1
CCBS 0.0835 ± 0.0035 3.27 ± 0.03 12 0.1098
CCBS (r) 0.0835 ± 0.0035 3.25 ± 0.04 12 0.1098
GCBS 0.0852 ± 0.0035 3.32 ± 0.01 12 0.1080
GCBS (r) 0.0857 ± 0.0036 3.38 ± 0.08 9.58 ± 0.75 0.0907

M = 20, µ0 = 0.0526, σ = 0.0498
CCBS 0.0817 ± 0.0034 3.22 ± 0.04 20 0.0383
CCBS (r) 0.0817 ± 0.0034 3.23 ± 0.05 20 0.0437
GCBS 0.0817 ± 0.0034 3.27 ± 0.02 20 0.0499
GCBS (r) 0.0828 ± 0.0035 3.24 ± 0.05 16.55 ± 0.88 0.0408

M = 30, µ0 = 0.0345, σ = 0.0353
CCBS 0.0804 ± 0.0033 3.43 ± 0.05 25 0.0314
CCBS (r) 0.0803 ± 0.0033 3.45 ± 0.03 25 0.0311
GCBS 0.0806 ± 0.0033 3.48 ± 0.05 25 0.0300
GCBS (r) 0.0810 ± 0.0034 3.33 ± 0.06 21.09 ± 1.02 0.0282
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Table 17: Cuprite image. RMSE between the abundances estimated with
SK-Hype (all bands) and BS + SK-Hype.

Strategy RMSE ± STD CPU Time Nb µ

SK-Hype - 282.42 188 -
KKMBS 0.0777 ± 0.0036 19.289 13 0.8162

M = 5, µ0 = 0.25, σ = 0.0963
CCBS 0.0805 ± 0.0038 18.4835 9 0.2495
GCBS 0.0833 ± 0.0040 17.7114 9 0.2483

M = 10, µ0 = 0.1111, σ = 0.0489
CCBS 0.0659 ± 0.0027 15.2023 16 0.1090
GCBS 0.0695 ± 0.0029 14.5721 15 0.1090

M = 20, µ0 = 0.0526, σ = 0.0260
CCBS 0.0477 ± 0.0015 17.0942 25 0.0471
GCBS 0.0484 ± 0.0015 16.9595 25 0.0493

M = 30, µ0 = 0.0345, σ = 0.0178
CCBS 0.0378 ± 0.0010 20.6932 35 0.0333
GCBS 0.0395 ± 0.0011 20.4790 34 0.0300
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Table 18: Pavia University image. RMSE between the abundances esti-
mated with SK-Hype (all bands) and BS + SK-Hype.

Strategy RMSE ± STD CPU Time Nb µ

SK-Hype - 1740.47 103 -
KKMBS 0.0446 ± 0.0015 568.10 13 0.5066

M = 5, µ0 = 0.25, σ = 0.2492
CCBS 0.0659 ± 0.0037 513.21 6 0.2499
GCBS 0.0650 ± 0.0036 533.48 6 0.2499

M = 10, µ0 = 0.1111, σ = 0.1017
CCBS 0.0435 ± 0.0016 495.13 12 0.1024
GCBS 0.0500 ± 0.0023 497.92 12 0.1019

M = 20, µ0 = 0.0526, σ = 0.0503
CCBS 0.0301 ± 0.0008 488.67 21 0.0433
GCBS 0.0309 ± 0.0009 488.66 21 0.0472

M = 30, µ0 = 0.0345, σ = 0.0336
CCBS 0.0260 ± 0.0007 535.64 26 0.0336
GCBS 0.0263 ± 0.0007 538.63 26 0.0336
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7 CONCLUSIONS

In this thesis we tackled different issues within the complete unmix-
ing process of nonlinearly mixed hyperspectral images. We contributed to the
detection of nonlinearly mixed pixels, endmember estimation when a consid-
erable part of the HI is nonlinearly mixed, and band selection in the RKHS.

In Chapter 4 we presented a nonparametric method for detecting non-
linear mixtures in hyperspectral images. The performance of the detector was
studied for supervised and unsupervised unmixing problems. Furthermore,
we showed that the improvement in the unmixing performance obtained when
using the proposed detector is statistically consistent. Additionally, a degree
of mixture nonlinearity based on the relative energies of the linear and nonlin-
ear contributions to the mixing process was defined to quantify the importance
of the linear and nonlinear model counterparts. Such definition is important
for a proper evaluation of the relative performances of different nonlinear
mixture detection strategies.

In Chapter 5 an iterative algorithm was derived for endmember esti-
mation as a pre-processing step for unsupervised unmixing problems. It was
shown that the combined use of the detector presented in Chapter 4 and end-
member estimation algorithm leads to better unmixing results when compared
to state-of-the-art solutions. Simulations using different scenarios corroborate
the conclusions.

In Chapter 6 we have proposed two methods for nonlinear unmixing
of hyperspectral images, which employ band selection directly in the repro-
ducing kernel Hilbert space (RKHS). The first method employs the kernel
k-means (KKM) algorithm to find clusters in the RKHS where each cluster
centroids are associated to the closest mapped spectral vector. The second
method is centralized and based on the coherence criterion, which incorpo-
rates a measure of the quality of the dictionary in the RKHS for the nonlinear
unmixing. We have shown that this BS approach is equivalent to solving a
maximum clique problem (MCP). Contrary to competing methods that do not
include an efficient choice of the model parameters, the CCBS requires only
an initial guess on the number of selected bands. Simulation results employ-
ing both synthetic and real data illustrate the quality of the unmixing results
obtained with the proposed methods, which leads to abundance estimations
as accurate as those obtained using the full-band SK-Hype method, at a small
fraction of the computational cost.
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7.1 FUTURE WORK

This work concentrated in kernel methods to solve the unmixing prob-
lem in HIs. Thus, different possibilities were explored relating kernel meth-
ods and spectral unmixing itself. In this context, we highlight four problems
that naturally arise as possible continuations of the research work in the the-
sis. They are:

• analyze the impact of the band selection strategy discussed in Chapter 6
on the performance of the nonlinearity detector discussed in Chapter 4;

• investigate the possibilities of using different detection strategies ap-
plied to the detection of nonlinearly mixed pixels detection;

• follow the track opened in Section 6.3.4.1 and try to better understand
the relation between the kernel parameters, coherence, the accuracy of
the abundance estimation, and the universal property of the Gaussian
kernel to improve the methodology for designing the system (including
kernel’s) parameters;

• consider total least-squares, as opposed to least-squares, kernelized ap-
proach. This makes sense since spectral unmixing uncertainties are
present in both endmembers and pixel observations. Thus, the kernel-
TLS is a natural choice to treat the problem when nonlinearity is present.

7.2 PUBLICATIONS

During the period of this work we produced the following papers:

• T. Imbiriba, J.C.M. Bermudez, J.-Y. Tourneret, and C. Richard. De-
tection of nonlinear mixtures using Gaussian processes: application to
hyperspectral imaging. In ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 7949-7953, May 2014.

• T. Imbiriba, J.C.M. Bermudez, C. Richard, J.-Y. Tourneret. Nonpara-
metric detection of nonlinearly mixed pixels and endmember estima-
tion in hyperspectral images. IEEE Transactions on Image Processing,
v. 25, n. 3, p. 1136–1151, March 2016. ISSN 1057-7149.

• T. Imbiriba, J.C.M. Bermudez, C. Richard, J.-Y. Tourneret. Band selec-
tion in RKHS for fast nonlinear unmixing of hyperspectral images. In:
2015 23rd European Signal Processing Conference (EUSIPCO). 2015.
p. 1651–1655.
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• T. Imbiriba, J.C.M. Bermudez, C. Richard. Band selection for nonlin-
ear unmixing of hyperspectral images as a maximal clique problem.
IEEE Transactions on Image Processing (Submited). March 2016.

7.3 SOURCE CODE

Matlab source codes and datasets which replicate the simulations pre-
sented in this work are available at https://github.com/talesim/NP_
NL_Det_EE_HI/archive/master.zip (Chapters 4 and 5) and https://

github.com/talesim/clique_BS/archive/master.zip (Chapter 6).
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APPENDIX A -- Convex Optimization in RKHS
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A.1 CONVEX FUNCTIONS

A function f : Rn→R is convex if dom f is a convex set, and if for all
xxx,yyy ∈ dom f , and θ ∈ [0,1], we have

f (θxxx+(1−θ)yyy)≤ θ f (xxx)+(1−θ) f (yyy). (A.1)

A function f is strictly convex if strict inequality holds in (A.1) when-
ever xxx 6= yyy and 0 < θ < 1. We say f is concave if − f is convex, and strictly
concave if − f is strictly convex.

For an affine function we always have equality in (A.1), so all affine
(and therefore also linear) functions are both convex and concave. Con-
versely, any function that is convex and concave is affine [140, pg. 67].

A.2 THE LAGRANGE DUAL PROBLEM

Consider the following constrained optimization problem

minimize f0(xxx)

subject to fi(xxx)≤ 0, i = 1, . . . ,m,

hi(xxx) = 0, i = 1, . . . , p.
(A.2)

with xxx ∈ Rn. We assume its domain D = (
⋂m

i=1 dom fi)∩
(⋂p

i=1 domhi
)

is
nonempty, and denote the optimal value of (A.2) by p∗ = f0(xxx∗).

It is possible to formulate a (dual) problem for which the optimal so-
lution d∗ is a lower bound for the problem (A.2), i.e. d∗ ≤ p∗. This dual
problem is formulated considering the Lagrangean L : Rn×Rm×Rp → R
associated to problem (A.2), which is given by

L (xxx,λλλ ,ννν) = f0(xxx)+
m

∑
i=1

λi fi(xxx)+
p

∑
i=1

νihi(xxx), (A.3)

where λi, i = 1, . . . ,m and νi, i = 1, . . . , p, are Lagrange multipliers. The solu-
tion of the dual problem yields to lower bounds on the optimal value p∗ if we
consider λλλ � 0 and any ννν . To better understand this first note that for λλλ � 0
we have L (xxx,λλλ ,ννν)≤ f0(xxx). Thus, the Lagrange dual problem can finally be
formulated as

maximize g(λλλ ,ννν)

subject to λλλ � 0,
(A.4)
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for which the dual function is given by g(λλλ ,ννν) = infxxx∈D (L(xxx,λλλ ,ννν)) and has
optimal value d∗ = g(λλλ ∗,ννν∗)≤ p∗.

Note that the problem (A.4) is concave whether the problem (A.2) is
convex or not. This is true becouse g(λλλ ,ννν) is the pointwise infimum of a
family of affine functions of (λλλ ,ννν) [140, pg. 216]. Also note, that d∗ ≤ p∗

holds since f0(xxx∗) +∑
m
i=1 λi fi(xxx∗) +∑

p
i=1 νihi(xxx∗) ≤ f0(xxx∗) considering the

equality constrains hi(xxx∗) = 0, i= 1, . . . , p, λi≥ 0 and fi(xxx∗)≤ 0, i= 1, . . . ,m.
The equality between the solutions of the primal (A.2) and associated dual
problem (A.4) is achieved if the problem has strong duality [140, pg. 226].
Convex problems with affine equality constrains as

minimize f0(xxx)

subject to fi(xxx)≤ 0, i = 1, . . . ,m,

AAAxxx = bbb.
(A.5)

with f0, . . . , fm convex, usually (but not always!) have strong duality. For
problems in the form (A.5), strong duality can be verified using Slater’s con-
dition: ∃xxx ∈ relintD 1 such that

fi(xxx)< 0, i = 1, . . . ,m, AAAxxx = bbb.

Such point is sometimes called strictly feasible, since the inequality con-
strains hold strict inequalities. If k inequality constrains are affine, the the
Slater’s condition can be redefined to: ∃xxx ∈ relintD with

fi(xxx)≤ 0, i = 1, . . . ,k, fi(xxx)< 0, i = k+1, . . . ,m, AAAxxx = bbb.

Strong duality implies g(λλλ ∗,ννν∗)= f0(xxx∗)+∑
m
i=1 λ ∗i fi(xxx∗)+∑

p
i=1 ν∗i hi(xxx∗)=

f0(xxx∗), and hence that
m

∑
i=1

λ
∗
i fi(xxx∗) = 0,

since each term in the sum is non-negative,

λ
∗
i fi(xxx∗) = 0, i = 1, . . . ,m.

Thus, we have λ ∗i > 0 =⇒ fi(xxx∗) = 0, or equivalently, fi(xxx∗)< 0 =⇒ λ ∗i = 0.
Now, assuming that f0, . . . , fm and hi, . . . ,hp are differentiable, and

since xxx∗ minimizes L (xxx,λλλ ∗,ννν∗) in xxx, then the gradient of the Lagrangean

1The relative interior of a set C ⊆ Rn, denoted relintC, is defined as the interior related to
the affine set affC, i.e., relintC = {xxx ∈C |B(xxx,r)∩affC ⊆C for anyr > 0}.
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must vanish in xxx∗

∇ f0(xxx∗)+
m

∑
i=1

λ
∗
i ∇ fi(xxx∗)+

p

∑
i=1

ν
∗
i ∇hi(xxx∗) = 0.

Thus, we can write the Karush-Kuhn-Tucker (KKT) optimality conditions as

fi(xxx∗)≤ 0, i = 1, . . . ,m
hi(xxx∗) = 0, i = 1, . . . , p

λ
∗
i ≥ 0, i = 1, . . . ,m

λ
∗
i fi(xxx∗) = 0, i = 1, . . . ,m

∇ f0(xxx∗)+
m

∑
i=1

λ
∗
i ∇ fi(xxx∗)+

p

∑
i=1

ν
∗
i ∇hi(xxx∗) = 0.

(A.6)

If the problem is convex, then the KKT conditions are also sufficient
conditions, i.e., if a candidate point (x̃xx,λ̃λλ ,ν̃νν) satisfies the KKT conditions,
then this point is global optimum for the primal and dual problems. Therefore,
(xxx∗,λλλ ∗,ννν∗) = (x̃xx,λ̃λλ ,ν̃νν).

A.2.1 Example for the regularized LS

Consider a input-output sequence {(xxxi,yi)}N
i=1, with xxx ∈RD and scalar

y, governed by the model yi = f (xxxi)+ni, where ni is an additive noise inde-
pendent of xxxi, the function f (xxxi) = ϕϕϕ(xxxi)

>www, linear in www ∈ RM , and consid-
ering the mapping ϕϕϕ : RD→ RM , we can write the primal convex problem
as

min
1

2µ

N

∑
i=1

e2
i +

1
2
‖www‖2

s.t. ei = yi−ϕϕϕ(xxxi)
>www, i = 1, . . . ,N,

(A.7)

where µ is the regularization parameter. We can write the Lagrangean for (A.7)
as

L (www,eee,βββ ) =
1

2µ

N

∑
i=1

e2
i +

1
2
‖www‖2−

N

∑
i=1

βi(ei− yi +ϕϕϕ(xxxi)
>www). (A.8)

Since L (www,eee,βββ ) is convex with respect to the primal variables (www,eee), we
have ∇(www,eee)L (www∗,eee∗,βββ ) = 0. Thus, we can find the arguments (www∗,eee∗) which



134

minimize (A.8) by doing

∂L

∂ei
=

1
µ

ei−βi = 0 =⇒ e∗i = µβi

∂L

∂www
=www−

N

∑
i=1

βiϕϕϕ(xxxi) = 0 =⇒www∗ =ΦΦΦ
>

βββ

(A.9)

where ΦΦΦ = [ϕϕϕ(xxx1), . . . ,ϕϕϕ(xxxN)]
>. Replacing (www∗,eee∗) in (A.8) we obtain

g(βββ ) = L (www∗,eee∗,βββ )

=
1

2µ
µ

2
βββ
>

βββ +
1
2

βββ
>

ΦΦΦΦΦΦ
>

βββ −µβββ
>

βββ +βββ
>yyy−βββ

>
ΦΦΦΦΦΦ

>
βββ

=−1
2

βββ
>
(

ΦΦΦΦΦΦ
>+µIII

)
βββ +βββ

>yyy.

(A.10)

Thus, we can formulate the following convex unconstrained dual prob-
lem

βββ
∗ = argmax

βββ

−1
2

βββ
>
(

ΦΦΦΦΦΦ
>+µIII

)
βββ +βββ

>yyy, (A.11)

where the global optimum solution d∗ = p∗ is achieved by solving (A.11),
resulting in

βββ
∗ =

(
ΦΦΦΦΦΦ

>+µIII
)−1

yyy. (A.12)

Now, for any vector xxx, we can write the predictive form of f (xxx) as

f (xxx) =ϕϕϕ(xxx)>www∗ =ϕϕϕ(xxx)>ΦΦΦ
>

βββ
∗ =ϕϕϕ(xxx)>ΦΦΦ

>
(

ΦΦΦΦΦΦ
>+µIII

)−1
yyy. (A.13)

Interestingly, the dual formulation allows us to work in a space whose dimen-
sion is N (number of data), as ϕϕϕ(xxx)>ΦΦΦ

> is a 1×N vector and
(

ΦΦΦΦΦΦ
>+µIII

)
is a N ×N matrix, of inner products ϕϕϕ(xxx)>ϕϕϕ(xxx′) in RM , while in the orig-
inal formulation we were working in a space with dimension M. Another
characteristic of the dual representation is that the coefficient vector www can
be calculated in a implicit manner by solving the dual problem (A.11) for βββ .
This allow us to find a solution entirely in Rn. Also note that if we use other
traditional forms for solving the optimization problem (A.7), such as [59]

min
1

2µ
‖yyy−ΦΦΦwww‖2 +

1
2
‖www‖2, (A.14)
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whose solution is
www∗ =

(
ΦΦΦ
>

ΦΦΦ

)−1
ΦΦΦ
>yyy (A.15)

and has the following predictive form

f (xxx) =ϕϕϕ(xxx)>
(

ΦΦΦ
>

ΦΦΦ

)−1
ΦΦΦ
>yyy (A.16)

which can no longer be written as a function of N-dimensional matrices and
vectors, neither as a function of inner products in the space of ϕϕϕ . Although
it is necessary to invert N×N matrices (which can be really large matrices)
when using the dual form, this formulation becomes particularly interesting
when M is very large, specially for cases in which M is infinite. Thus the
dual formulation can be very attractive as it will be seen in the kernel based
formulation.

A.3 RKHS

In this section we will discuss about reproducing kernel Hilbert spaces
(RKHSs), kernels and their relation to feature spaces.

A.3.1 Important concepts and definitions from Functional Analysis

Before dealing with RKHS we will introduce a few key concepts from
functional analysis in the form of definitions and theorems. Those theorems
not properly demonstrated here are accompanied by references that have their
proof with the proper rigour. The theory of RKHS and functional analysis,
usually assumes vector spaces (or linear spaces) of complex functions built
over abstract fields. Here, however, we will consider only real functional
spaces F defined over real fields.

Definition 1 (Metric space, metric). A metric space is a pair (F ,d) where
F is a set and d is a metric on F (or distance function on F ), that is, a
function defined on F ×F such that for all f ,g,h ∈F we have:

(i) d is real-valued, finite and nonnegative.

(ii) d( f ,g) = 0 if and only if f = g.

(iii) d( f ,g) = d(g, f ) (Symmetry).

(iv) d( f ,g)≤ d( f ,h)+d(h,g) (Triangle inequality);
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Definition 2 (Cauchy sequence). A sequence { fn}∞
n=1 of elements of a metric

space F with metic d is said Cauchy (or fundamental) if for all ε > 0 there
exists a N = N(ε) ∈ N, such that

d( fm, fn)< ε for all m, n > N.

Definition 3 (Complete space). A Space F is complete if all Cauchy se-
quences in F converge (i.e., the sequence has a limit and this limit is an
element of F ).

Definition 4 (Normed spaces, Banach spaces). A normed space 2 F is a
vector space with a norm defined on it. A Banach space is a complete normed
(complete in the metric defined by the norm; see (A.17)). Here a norm on a
linear space F is a real-valued function ‖·‖F : F → R whose value at an
f ∈F is denoted by

‖ f‖F (read “norm of f”)

and which has the properties

(i) ‖ f‖F ≥ 0

(ii) ‖ f‖F = 0⇔ f = 0

(iii) ‖α f‖F = |α|‖ f‖F
(iv) ‖ f +g‖F ≤ ‖ f‖F +‖g‖F (Triangle inequality);

here f and g are arbitrary vectors in F and α is any scalar.
A norm on F defines a metric d on F which is given by

d( f ,g) = ‖ f −g‖F , ( f ,g,∈F ) (A.17)

and is called metric induced by the norm. The normed space just defined is
denoted by (F ,‖·‖F ) or simply by F .

Definition 5 (Hilbert space). An inner product space (or pre-Hilbert space)
is a vector H with an inner product defined on H . A Hilbert space is a
complete inner product space (complete in the metric defined by the inner
product; cf. (A.19) below). Here, an inner product on H is a mapping H ×
H into the scalar field R of H ; that is, with every pair of vectors f , g ∈H
there is associated a scalar which is written

〈 f ,g〉H
2Also called normed vector space or normed linear space.



137

and is called the inner product (or scalar product) of f and g, such that for
all vectors f , g, h ∈H and scalars α we have

(i) 〈 f +g,h〉H = 〈 f ,h〉H + 〈g,h〉H
(ii) 〈α f ,g〉H = α〈 f ,g〉H
(iii) 〈 f ,g〉H = 〈g, f 〉H = 〈g, f 〉H (the bar denotes complex conjugation.)

(iv)
〈 f , f 〉H ≥ 0

〈 f , f 〉H = 0⇔ f = 0.

Note that in (iii) the conjugate can be ignored since we are assuming only
fields of real numbers.

An inner product on H defines a norm on H given by

‖ f‖H =
√
〈 f , f 〉H (A.18)

and a metric on H given by

d( f ,g) = ‖ f −g‖H =
√
〈 f −g, f −g〉H . (A.19)

Hence inner product spaces are normed spaces, and Hilbert spaces are
Banach spaces [98]. An inner product and the corresponding norm satisfy the
Cauchy-Schwarz inequality [98, pg. 137], therefore, we have

|〈 f ,g〉H | ≤ ‖ f‖H ‖g‖H . (A.20)

A functional is an operator whose range is on the real line R or in the
complex plane C. Here, we deal only with spaces defined on real fields and,
therefore, we present the following definition for linear functionals.

Definition 6 (Continuous/bounded linear functional). A linear functional Ω

is a linear mapping from the vector space H to the scalar field R:

Ω : H → R.

If Ω is bounded, then there exists a real number λ > 0 such that for all f ∈H

|Ω[ f ]| ≤ λ‖ f‖H .
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Furthermore, the norm of Ω is

‖Ω‖H ′ = sup
f∈H , f 6=0

|Ω[ f ]|
‖ f‖H

= sup
f∈H ,‖ f‖=1

|Ω[ f ]|

or
|Ω[ f ]| ≤ ‖Ω‖H ′‖ f‖H ,

where H ′ is the space of bounded linear functionals(Definition 7).

Theorem 1 (Continuity and boundedness [98, pg.104]). A linear functional
Ω with domain in a normed space H is continuous if and only if Ω is
bounded.

The set of all bounded linear functionals form a normed space (Banach
space [98]) called dual space. As a Hilbert space is also a Banach space, we
present a definition for dual space considering only Hilbert spaces. However,
this definition can be directly carried out to the more general case of Banach
spaces.

Definition 7. [Dual space H ′] Let H be a Hilbert space. Then the set of
all bounded linear functionals on Ω em H constitutes a Hilbert space with
norm defined by

‖Ω‖H ′ = sup
f∈H , f 6=0

|Ω[ f ]|
‖ f‖H

= sup
f∈H ,‖ f‖H =1

|Ω[ f ]|

which is called dual space of H and is denoted by H ′.

Definition 8 (Definite positive functions). A function h : X×X→R is called
positive definite if, ∀n ∈ N, ∀α1, . . . ,αn ∈ R, and ∀xxx1, . . . ,xxxn ∈ X, we have

n

∑
i=1

n

∑
j=1

αiα jh(xxxi,xxx j)≥ 0. (A.21)

Furthermore, h is said strictly positive definite if, for all mutually distinct
∀xxx1, . . . ,xxxn ∈ X, the equality in (A.21) holds only when all αi = · · ·= αn = 0.
Finally, h is said symmetric if h(xxx,xxx′) = h(xxx′,xxx) for all xxx,xxx′ ∈ X.

Note that in order to a real function h be positive definite it must be
symmetric [141, pg.14, Lema 4]. In the literature there is no consensus about
Definition 8. Often the term positive definite is applied to strictly positive
definite functions, and the term positive semidefinite to positive definite func-
tions.
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Theorem 2 (Riesz’s representation). Let H be a Hilbert space and f ∈H
a element of this space. Every bounded linear functional Ω on H can be
represented in terms of the inner product, namely,

Ω[ f ] = 〈 f ,hΩ〉H

where hΩ ∈H depends on Ω, is uniquely determined by Ω and has norm

‖hΩ‖H = ‖Ω‖H ′ .

The proof for Theorem 2 can be found in [98, pg. 189].

Example 1 (Representation theorem in Rn). Consider the case where H =
Rn, and a vector xxx∈Rn. For any bounded linear functional Ω : H →R there
exists a vector yyyΩ ∈ Rn such that (Riesz)

Ω(xxx) = 〈xxx,yyyΩ〉H = xxx>yyyΩ =
n

∑
i=1

yixi

which is the form of all linear functional in Rn. Also note that the vector (of
coefficients of the linear functional) yyyΩ is uniquely determined by the func-
tional Ω since ∑

n
i=1 yixi is the only form of writing a linear functional in Rn.

A.3.2 RKHS and reproducing kernels

Let H be a Hilbert space of functions mapping a nonempty set X ⊂
Rn to the field real numbers R. We write the inner product on H as 〈 f ,g〉H
and the associated norm as ‖ f‖2

H = 〈 f , f 〉H . Note that since H is a space
of functions on X , there is for every xxx ∈ X a very special functional on H :
the one that assigns to each f ∈H its value at xxx.

Definition 9 (Evaluation functional). Let H be a Hilbert space of functions
f : X → R defined on a nonempty set X ⊂ Rn. For a fixed xxx ∈ X, the map
δxxx : H → R, δxxx : f 7→ f (xxx) is called the (Dirac) evaluation functional at xxx.

Note that the evaluation functionals are always linear: for f , g ∈H
and α,β ∈ R, δxxx[α f + βg] = (α f + βg)(xxx) = α f (xxx) + βg(xxx) = αδxxx[ f ] +
βδxxx[g].

Definition 10 (Reproducing kernel and RKHS). Let H be a Hilbert space
of real functions f : X → R defined on the nonempty set X.

(i) a function κ : X × X → R is called a reproducing kernel of H if
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κ(·,xxx) ∈H for all xxx ∈ X and the reproducing property

f (xxx) = 〈 f ,κ(·,xxx)〉H

holds for all f ∈H and all xxx ∈ X.

(ii) The space H is called reproducing kernel Hilbert space (RKHS) on
X if for all xxx ∈ X the evaluation functional δxxx is continuous (or equiva-
lently bounded): ∀xxx ∈ X there exists a scalar λxxx ≥ 0 such that | f (xxx)|=
|δxxx[ f ]| ≤ λxxx‖ f‖H .

Note that that if H is a RKHS, then we can write (using the Riesz’s
theorem 2)

δxxx[ f ] = f (xxx) = 〈 f ,hδxxx〉H ,

where hδxxx ∈H is a function uniquely determined by δxxx, and that condition
(i) in Definition 10 implies hδxxx = κ(·,xxx). Thus

f (xxx) = 〈 f ,κ(·,xxx)〉H

and
δyyy[κ(·,xxx)] = κ(xxx,yyy) = 〈κ(·,xxx),hδyyy〉H = 〈κ(·,xxx),κ(·,yyy)〉H ,

showing the reproducing property. Therefore we say that κ(·,xxx) = hδxxx is the
representer of the evaluation functional δxxx, or just representer of the evalua-
tion at xxx. The fact that κ(·,xxx) is the representer of the evaluation at xxx implies
that κ is uniquely determined by the evaluation functional, and consequently
each RKHS has just one reproducing kernel.

Theorem 3 (Existence of the reproducing kernel). H is a RKHS (i.e. its
evaluation functionals δxxx are continuous linear operators) if and only if H
has a reproducing kernel [96].

Proof. Given that a Hilbert space H has a reproducing kernel κ with the
reproducing property 〈 f ,κ(·,xxx)〉H = f (xxx), then

|δxxx[ f ]|= | f (xxx)|
= |〈 f ,κ(·,xxx)〉H |
≤ ‖κ(·,xxx)‖H ‖ f‖H (Cauchy-Schwarz (A.20))

= 〈κ(·,xxx),κ(·,xxx)〉1/2
H ‖ f‖H

= κ(xxx,xxx)1/2‖ f‖H .

consequently, δxxx : H → R is a bounded linear operator.
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Theorem 4. If a reproducing kernel κ exists it is unique [96].

Proof. In fact, if another reproducing kernel κ̃ existed, we would have for
some xxx ∈ X

0 < ‖κ(·,xxx)− κ̃(·,xxx)‖2
H = 〈κ(·,xxx)− κ̃(·,xxx),κ(·,xxx)− κ̃(·,xxx)〉H

= 〈κ(·,xxx)− κ̃(·,xxx),κ(·,xxx)〉H −〈κ(·,xxx)− κ̃(·,xxx), κ̃(·,xxx)〉H
= κ(xxx,xxx)− κ̃(xxx,xxx)−κ(xxx,xxx)+ κ̃(xxx,xxx) (reproducing prop.)
= 0.

(A.22)

RKHSs also have the important property that norm convergence im-
plies pointwise convergence [141, pg.10].

Corollary 1 (Convergence implies pointwise convergence). If two functions
converge in RKHS norm, then they converge at every point, i.e., if limn→∞ ‖ fn−
f‖H = 0, then limn→∞ fn(xxx) = f (xxx), ∀xxx ∈ X.

Proof. For any xxx ∈ X ,

| fn(xxx)− f (xxx)|= |δxxx[ fn]−δxxx[ f ]|
= |〈 fn,κ(·,xxx)〉H −〈 f ,κ(·,xxx)〉H |
= |〈 fn− f ,κ(·,xxx)〉H |
≤ ‖κ(·,xxx)‖H ‖ fn− f‖H (Cauchy-Schwarz (A.20)),
= ‖δxxx‖H ′‖ fn− f‖H (Theorem 2),

where ‖δxxx‖H ′ is the norm of the evaluation functional (which is bounded by
definition on the RKHS).

The last step of the above proof used the fact that κ(·,xxx) is the rep-
resenter of the evaluation at xxx whose consequence to norm is presented in
Theorem 2.

Theorem 5 (Every reproducing kernel is a positive definite function).
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Proof.

n

∑
i=1

n

∑
j=1

αiα jκ(xxxi,xxx j) =
n

∑
i=1

n

∑
j=1

αiα j〈κ(·,xxxi),κ(·,xxx j)〉H

= 〈
n

∑
i=1

αiκ(·,xxxi),
n

∑
j=1

α jκ(·,xxx j)〉H

=

∥∥∥∥∥ n

∑
i=1

αiκ(·,xxxi)

∥∥∥∥∥
2

H

≥ 0.

Theorem 5 admits a converse presented by the following theorem [96].

Theorem 6 (Moore-Aronszajn). To every positive definite function κ on X×
X there exists only one Hilbert space H of functions on X with κ as repro-
ducing kernel. The subspace H0 ⊂H spanned by the functions {κ(·,xxx)}xxx∈X
is dense in H and H is the set of functions on X which are pointwise limits
of Cauchy sequences in H0 with inner product

〈 f ,g〉H 0
=

n

∑
i

m

∑
j

αiβ jκ(xxxi,xxx j) (A.23)

where f = ∑
n
i αiκ(·,xxxi) and g = ∑

m
i βiκ(·,xxxi).

The proof of Theorem 6 is long and complex. Therefore, the following
discussion addresses only the main steps to conduct the proof. The interested
reader can consult [141] to a complete proof of Theorem 6 as well as the
original references [97, 95].

First it can be shown that Equation (A.23) is a valid inner product on
H0. However, H0 is not a complete space yet, and therefore is not a RKHS.
Nevertheless it is possible to complete H0 forming a Hilbert space H . H
is a space of functions f for which there exists a Cauchy sequence fn in H0
converging pointwise to f , with inner product defined as

〈 f ,g〉H = lim
n→∞
〈 fn,gn〉H0 . (A.24)

implying that H is unique (except for isometries [98, pg. 41]) and that it’s
topology is induced from H0. It can also be shown that κ is the reproducing
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kernel of H , since for any function f ∈H we have

〈 f ,κ(·,xxx)〉H = lim
n→∞
〈 fn,κ(·,xxx)〉H0

= lim
n→∞

fn(xxx)

= f (xxx),

(A.25)

and that the evaluation functional in H is continuous, and that pointwise
convergence implies norm convergence, presenting the same characteristics
and properties already presented to RKHSs.

Theorem 7 (Feature space). A symmetric function κ : X×X →R is a repro-
ducing kernel, or a positive definite function, if and only if there exists a map
ϕ from X to some space of convergent sequences `2(A) (where A is the index
set) such that

∀(xxx,yyy) ∈ X×X κ(xxx,yyy) = 〈ϕ(xxx),ϕ(yyy)〉`2(A)

= ∑
α∈A

(ϕ(xxx))α(ϕ(yyy))α .

Below we present the very interesting definition of universal kernel
[99, corollary 4.52 pg. 152].

Definition 11 (Universal kernel). Let C(X) be the space of continuous func-
tions f : X → R. A continuous kernel κ on a compact metric space X is
called universal if the RKHS H of κ is dense in C(X), i.e., for every function
g ∈C(X) and all ε > 0 there exists an f ∈H such that

‖ f −g‖∞ ≤ ε.

Universal kernels produce RKHSs rich enough to provide arbitrarily
accurate function approximations for all distributions. This guarantee learn-
ing in the absence of assumptions on the data-generating distribution. How-
ever, this flexibility also carries the danger of overfitting. Some examples of
universal kernels are presented below.

Example 2 (Examples of universal kernels). Let X be a compact subset (i.e.
closed and bounded [98, pg. 77, Theorem 2.5-3]) of Rn, σ > 0 and α > 0.
The the following kernels on X are universal:

• kernel exponencial:

κ(xxx,xxx′) := exp
{
〈xxx,xxx′〉

}
(A.26)
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• kernel Gaussian (or RBF):

κ(xxx,xxx′) := exp
{
− 1

2σ2 ‖xxx−xxx′‖2
}

(A.27)

• kernel binomial:
κ(xxx,xxx′) :=

(
1−〈xxx,xxx′〉

)−α (A.28)

where for the last kernel we additionally assume X ⊂ {xxx ∈ Rn : ‖xxx‖< 1}.

A.4 DIRECTIONAL DERIVATIVES ON HILBERT SPACES

Directional derivatives and gradients are essential to several optimiza-
tion techniques. This section introduce the concept of directional derivatives
for Hilbert spaces.

Let J be a functional

J :H −→ R
f 7−→ J( f )

(A.29)

where H is a Hilbert space. If for two elements f ,g ∈H , the limit

∂gJ( f ) = lim
ε→0

J( f + εg)− J( f )
ε

(A.30)

exists, then ∂gJ( f ) is called directional derivative of J at f in the direction of
g. If the limit (A.30) exists for all g ∈H , then J is said to be directionally
differentiable at f [142, pg. 38]. Since the directional derivative is a linear
functional, we can use Theorem 2 (Riesz’s representation) to represent it as
an inner product on H . Thus, the gradient ∇J( f ) of J at f ∈H , is exists,
satisfies [143, pg. 139]

∂gJ( f ) = 〈∇J( f ),g〉H , para todo g ∈H . (A.31)

We now present some illustrative examples.

Example 3 (Gradient on Rn). Consider the set of vectors eeei = [0, . . . ,1, . . . ,0]>, i=
1, . . . ,n, forming an orthonormal basis in Rn and the functional J : Rn→
R, xxx 7→ J(xxx), such that J(xxx) = aaa>xxx with aaa,xxx ∈ Rn. The directional derivative
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at xxx in the direction of eeei can be written, using Riesz’s theorem, as

∂eeeiJ(xxx) = 〈eeei,∇J(xxx)〉
= eee>i ∇J(xxx)

=
∂aaa>xxx
∂x1

0+ . . .+
∂aaa>xxx
∂xi

1+ . . .+
∂aaa>xxx
∂xn

0

=
∂aaa>xxx
∂xi

= ai,

where used ∇J(xxx) = [ ∂aaa>xxx
∂x1

, . . . , ∂aaa>xxx
∂xi

, . . . , ∂aaa>xxx
∂xn

]> = aaa in the third line. Note,
however, that we can achieve the same result above using the definition of
directional derivative in (A.30)

∂eeeiJ(xxx) = lim
ε→0

J(xxx+ εeeei)− J(xxx)
ε

= lim
ε→0

aaa>xxx+ εaaa>eeei−aaa>xxx
ε

= a>eeei = 〈aaa,eeei〉
= ai.

Note that in the third line we can conclude that ∇J(xxx) = aaa.

Example 4 (J( f ) = ‖ f‖2
H ).

∂gJ( f ) = lim
ε→0

‖ f + εg‖2
H −‖ f‖2

H

ε

= lim
ε→0

‖ f‖2
H +2ε〈 f ,g〉H + ε2‖g‖2

H −‖ f‖2
H

ε

= 〈2 f ,g〉H .

(A.32)

Thus the gradient is ∇J( f ) = 2 f .

Example 5 (J( f ) = f (xxx), f ∈H ). Using the reproducing property of the
RKHS we have f (xxx) = 〈 f ,κ(.,xxx)〉H , thus

∂gJ( f ) = lim
ε→0

〈 f + εg,κ(.,xxx)〉H −〈 f ,κ(.,xxx)〉H
ε

= lim
ε→0

〈 f ,κ(.,xxx)〉H + ε〈g,κ(.,xxx)〉H −〈 f ,κ(.,xxx)〉H
ε

= 〈κ(.,xxx),g〉H ,

(A.33)
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and ∇J( f ) = κ(.,xxx).

A.5 THE REPRESENTER THEOREM

Here we present a generalized version of the Wahba’s representer the-
orem [144].

Theorem 8 (Nonparametric representer theorem). Let X be a nonempty set, κ

a real-valued kernel on X×X, a training sample {xxxi,yi}N
i=1 ∈X×R, a strictly

monotonically increasing real-valued function g on [0,∞), an arbitrary cost
function c : (X×R2)N → R∪{∞}, and a class of functions

F =

{
f : X → R

∣∣∣∣∣ f (·) = ∞

∑
i=1

βiκ(·,xxxi),βi ∈ R,xxxi ∈ X ,‖ f‖H < ∞

}
.

(A.34)
Then any f ∈F minimizing the regularized risk functional

c((xxx1,y1, f (xxx1)), . . . ,(xxxN ,yN , f (xxxN)))+g(‖ f‖H ) (A.35)

admits a representation of the form

f (·) =
N

∑
i=1

αiκ(·,xxxi). (A.36)

The proof for Theorem 8 is relatively simple and can be found in [145].

A.6 LS-SVM FOR REGRESSION (LS-SVR)

We return now to the regularized LS problem presented in Section A.2.1.
Let us consider a input-output sequence {(xxxi,yi)}N

i=1, with xxx ∈ RD and scalar
y. Here, however, let us consider a more general (possibly nonlinear) relation
yi = ψ(xxxi)+ ni, where ni is an additive noise independent of xxxi and ψ ∈H
is a function of a given functional Hilbert space H . Thus, we can formulate
the following convex (regularized) optimization problem, also called least-
squares support vector machine (LS-SVM), as

min
1
2
‖ψ‖2

H +
1

2µ

N

∑
i=1

e2
i

such that ei = yi−ψ(xxxi), i = 1, . . . ,N,

(A.37)
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where ‖ ·‖H = 〈·, ·〉H is the norm on H . Using Lagrange multipliers β`, we
present the Lagrangean function as

L (ψ,eee,βββ ) =
1
2
‖ψ‖2

H +
1

2µ

N

∑
i=1

e2
i −

N

∑
i=1

βi (ei− yi +ψ(xxxi)). (A.38)

Analogously to the LS case, the Lagrangean function is convex with respect
to the primal variables ψ and ei. Thus we have ∇ψ,eeeL (ψ,eee,βββ ) = 000, and

∂L

∂ψ
= ψ−

N

∑
i=1

βiκ(.,xxxi) = 0 =⇒ ψ
∗ =

N

∑
i=1

βiκ(.,xxxi)

∂L

∂ei
=

1
µ

ei−βi = 0 =⇒ e∗i = µβi

(A.39)

where we used (A.31) for the functional derivative of ψ , and the results (A.32)
and (A.33). Note that in the first equation in (A.39) we derived directly the
result of the representer theorem 8. Replacing the results found in (A.39) in
the Lagrangean function (A.38) we have

g(βββ ) = L (ψ∗,eee∗,βββ )

=−1
2

βββ
>(KKK +µIII)βββ +βββ

>yyy,
(A.40)

where KKK is the Gram matrix whose (i, j)-th entry is defined by κ(xxxi,xxx j). Now
we can state the following dual problem

βββ
∗ = argmax

βββ

−1
2

βββ
>(KKK +µIII)βββ +βββ

>yyy, (A.41)

from which we can find the optimal solution making ∇βββ L = 000,

βββ
∗ = (KKK +µIII)−1 yyy. (A.42)

In this context, for a test sample xxx we can write the kernelized predic-
tive form replacing (A.42) in the expression for ψ∗ in (A.39)

ψ
∗(xxx∗) = κκκ

>
∗ βββ
∗

= κκκ
>
∗ (KKK +µIII)−1 yyy,

(A.43)

where κκκ>∗ = [κ(xxx∗,xxx1), . . . ,κ(xxx∗,xxxN)].
Note that the chosen formulation in (A.37) and it’s dual formulation (A.41)
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brought us some interesting characteristics. Among these characteristics we
can highlight two: directly derive the representer theorem (first equation
of (A.39)), and find solutions that are functions of inner products in the feature
space, which we can calculate implicitly using kernels. This last character-
istic allowed us to work in the data space, with N-dimensional vectors and
matrices (kernel trick) avoiding the problem known as the curse of dimen-
sionality. As an example, the Gaussian kernel represents the inner product
in an infinite-dimensional RKHS. Therefore it would be impossible to work
directly in such a large space.



APPENDIX B -- Gaussian Process Regression
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This appendix shows the application of Gaussian processes regression
to solve nonlinear problems. But first let us return to the linear regression
problem presented in Section A.2.1, but now, within a Bayesian formulation.

B.1 REVISITING THE LINEAR REGRESSION

Consider a sequence of input-output pairs {(xxxi,yi)}N
i=1 to be modeled

following yi = f (xxxi)+ni, where xxx ∈ RD is the input, the output y is a scalar,
ni is a zero mean white Gaussian noise, independent form xxx, with variance
σ2

n . Suppose f to be a linear function of www ∈ RM , given by f (xxxi) =www>ϕϕϕ(xxxi),
where ϕϕϕ : RD→ RM . Considering a Bayesian approach, and assuming the
values of www to float around zero, lets consider a isotropic Gaussian PDF as a
prior distribution for the weight vectors

www∼N
(
000,σ2

wIII
)

(B.1)

where σ2
w is the variacne of this distribution.

Adopting a vector notation we can write

yyy = fff +nnn, (B.2)

where fff = fff (XXX) = ΦΦΦwww (the matrix XXX was omitted to lighten the notation),
XXX = [xxx1, . . . ,xxxN ], and ΦΦΦ = [ϕϕϕ(xxx1), . . . ,ϕϕϕ(xxxN)]

>. To determine the distribution
of yyy, note that, for a given XXX , ΦΦΦwww is a linear combination of Gaussian random
variables and that the noise vector nnn is also Gaussian. Therefore, yyy has a
Gaussian PDF [146, pg. 464] with moments given by

E{yyy}= E{ fff}+E{nnn}= 000 (B.3)

and

cov{yyy}= E{yyyyyy>}
=ΦΦΦE{wwwwww>}ΦΦΦ>+E{ΦΦΦwwwnnn>}+E{nnnwww>ΦΦΦ

>}+E{nnnnnn>}
= σ

2
wΦΦΦΦΦΦ

>+σ
2
n III.

(B.4)

Thus, the distribution of the observations yyy, given the data matrix XXX ,
is given by

yyy|XXX ∼N
(
000,KKK +σ

2
n III
)

(B.5)

where KKK = σ2
wΦΦΦΦΦΦ>.

For many regression problems a predictive distribution is desired. This
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predictive distribution allows one to “predict” the value of the function f∗ =
f (xxx∗) for a new input xxx∗. Thus, following analogous steps considered above,
it is easy to show that f∗ also has a Gaussian distribution given by

f∗|xxx∗ ∼N (0,κ∗∗) , (B.6)

where κ∗∗ =ϕϕϕ(xxx∗)>ϕϕϕ(xxx∗). Assuming that yyy and fff ∗ are jointly Gaussian [147,
pg. 257], the joint PDF for the vector zzz= [yyy>, f∗]> has a Gaussian distribution
with moments

E{zzz}=
[

E{yyy}
E{ f∗}

]
= 000 (B.7)

and

cov{zzz}= E{zzzzzz>}=
[

E{yyyyyy>} E{yyy f∗}
E{ f∗yyy>} E{ f 2

∗ }

]
=

[
KKK +σ2

n III κκκ∗
κκκ>∗ κ∗∗

]
, (B.8)

where κκκ∗ = [ϕϕϕ(xxx1)
>ϕϕϕ(xxx∗), . . . ,ϕϕϕ(xxxN)

>ϕϕϕ(xxx∗)]>. Thus, we can write the dis-
tribution for the vector zzz as1[

yyy
f∗

]
∼N

(
000,
[

KKK +σ2
n III κκκ∗

κκκ>∗ κ∗∗

])
. (B.9)

The property that for jointly Gaussian random variables, the mean vec-
tor of the joint distribution can be written stacking the mean vectors of the two
marginals, and that the covariance matrix can be written as in (B.8) is some-
times referred to in the literature as marginalization of property [100].

The predictive (or posterior) distribution of f∗ is then obtained by con-
ditioning (B.9) on the observations yyy

f∗|yyy,XXX ,xxx∗ ∼N
(

κκκ
>
∗
[
KKK +σ

2
n III
]−1

yyy, κ∗∗−κκκ
>
∗
[
KKK +σ

2
n III
]−1

κκκ∗
)

(B.10)

where the identity presented in [100, (A.6) pg. 200] was used. The expansion
for the multivariate case is straightforward. Thus, for new input matrix XXX∗ the
predictive distribution of fff ∗ is given by

fff ∗|yyy,XXX ,XXX∗ ∼N
(

KKK>∗
[
KKK +σ

2
n III
]−1

yyy,KKK∗∗−KKK>∗
[
KKK +σ

2
n III
]−1

KKK∗
)

(B.11)

with [KKK∗]i j =ϕϕϕ(xxxi)
>ϕϕϕ(xxx∗ j) and [KKK∗∗]i j =ϕϕϕ(xxx∗i)>ϕϕϕ(xxx∗ j).

Finally, the minimum mean squared error (MMSE) estimator can be

1Note that Equation (B.9) is in fact the conditional distribution of zzz given the data XXX and xxx∗.
In a more rigorous notation one would write zzz|XXX ,xxx∗.
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obtained by taking the mean of the distribution (B.11)

f̂ff
MMSE
∗ =KKK>∗

[
KKK +σ

2
n III
]−1

yyy. (B.12)

The Bayesian formulation also allows us to estimate the parameters
θθθ = [σ2

n , σ2
w]
> intuitively by maximizing the log marginal likelihood of (B.9),

that is, maximizing the logarithm of the distribution yyy|XXX ∼N (000,KKK +σ2
n III).

Thus, one can formulate the following optimization problem

θ̂θθ = argmax
θθθ

log p(yyy|XXX ,θθθ) (B.13)

where

log p(yyy|XXX ,θθθ) =−1
2

yyy>
[
KKK +σ

2
n III
]−1

yyy− 1
2

log |KKK +σ
2
n III|− N

2
log(2π).

However, problem (B.13) is not convex and may contain local minima.
We emphasize here that in the approach presented in this section, data

are explicitly mapped by the function ϕϕϕ into a M-dimensional space. It is
also important to note that the solutions for both the scalar and multivariate
cases are always written in function of internal products ϕϕϕ(xxx)>ϕϕϕ(xxx′). Thus,
KKK = σ2

wΦΦΦΦΦΦ> can be seen as the Gram matrix with kernel KKKi j = κ(xxxi,xxx j) =
σ2

wϕϕϕ(xxxi)
>ϕϕϕ(xxx j). In Section A.6, we used kernel functions to implicitly map

the data into a high (even infinite) dimensional feature space and compute
inner products of the mapped data by evaluation a real function in the input
space. Such approach added great flexibility to the solution. Next, we will
demonstrate how to consider similar strategies but within a Bayesian formu-
lation.

B.2 GAUSSIAN PROCESS REGRESSION

In Section A.6 we converted a linear problem into a nonlinear one by
working directly in a functional space generated by kernels, i.e., the RKHS.
Following the same idea, we will transform the Bayesian linear regression
approach presented above in a kernelized nonlinear regression solution by
working directly in the functional space. For this, distributions will be con-
sidered directly over functions belonging to the RKHS.

Consider again the same problem presented in Section A.6, for which
a input-output sequence {(xxxi,yi)}N

i=1, with xxx∈RD and scalar output y, is mod-
eled by the following nonlinear relation yi =ψ(xxxi)+ni, where ni is zero mean
WGN with power σ2

n and independent of xxxi and ψ ∈H is a function belong-
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ing to the RKHS H .
Lets assume a Gaussian prior distribution for ψ ,

ψ|xxx∼N (0,κ) , (B.14)

where κ = κ(xxx,xxx) and κ(·, ·) is any kernel function. If the multivariate (vec-
tor) case is considered, then yyy =ψψψ +nnn, and the prior distribution becomes

ψψψ|XXX ∼N (000,KKK) , (B.15)

with KKKi j = κ(xxxi,xxx j), and

yyy|XXX ∼N
(
000,KKK +σ

2
n III
)
. (B.16)

Following the same reasoning used in Section B.1, lets consider a new
input xxx∗ and assume ψ∗ as its “predicted” output. Then, the joint distribution
for zzz = [yyy>, ψ∗]

> is given by[
yyy

ψ∗

]
∼N

(
000,
[

KKK +σ2
n III κκκ∗

κκκ>∗ κ∗∗

])
(B.17)

where κκκ∗ = [κ(xxx1,xxx∗), . . . ,κ(xxxN ,xxx∗)]> e κ∗∗ = κ(xxx∗,xxx∗). Thus, the condi-
tional, or predictive, distribution can be written as

ψ∗|yyy,XXX ,xxx∗ ∼N
(

κκκ
>
∗
[
KKK +σ

2
n III
]−1

yyy,KKK∗∗−κκκ
>
∗
[
KKK +σ

2
n III
]−1

κκκ∗
)

(B.18)

for the univariate case, and for multiple inputs XXX∗ as

ψψψ∗|yyy,XXX ,XXX∗ ∼N
(

KKK>∗
[
KKK +σ

2
n III
]−1

yyy,KKK∗∗−KKK>∗
[
KKK +σ

2
n III
]−1

KKK∗
)
. (B.19)

Finally, the MMSE estimator can be obtained by considering the expected
value of the conditional distribution (B.19)

ψ̂ψψ
MMSE
∗ =KKK>∗

[
KKK +σ

2
n III
]−1

yyy. (B.20)

The kernel hyperparameters θθθ k and the noise power σ2
n can be esti-

mated by maximizing the log marginal likelihood. Thus, for θθθ = [θθθ>k , σ2
n ]
>,

we have
θ̂θθ = argmax

θθθ

log p(yyy|XXX ,θθθ) (B.21)
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where

log p(yyy|XXX ,θθθ) =−1
2

yyy>
[
KKK +σ

2
n III
]−1

yyy− 1
2

log |KKK +σ
2
n III|− N

2
log(2π).
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