
Virginia Commonwealth University
VCU Scholars Compass

Computer Science Publications Dept. of Computer Science

2017

Mining Sequences of Developer Interactions in
Visual Studio for Usage Smells
Kostadin Damevski
Virginia Commonwealth University, damevski@acm.org

David C. Shepherd
ABB Corporate Research

Johannes Schneider
ABB Corporate Research

Lori Pollock
University of Delaware

Follow this and additional works at: http://scholarscompass.vcu.edu/cmsc_pubs

Part of the Computer Engineering Commons

© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This Article is brought to you for free and open access by the Dept. of Computer Science at VCU Scholars Compass. It has been accepted for inclusion
in Computer Science Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact
libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/cmsc_pubs/40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/84613317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/cmsc_pubs?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/cmsc?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/cmsc_pubs?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/cmsc_pubs/40?utm_source=scholarscompass.vcu.edu%2Fcmsc_pubs%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

Mining Sequences of Developer Interactions
in Visual Studio for Usage Smells

Kostadin Damevski, David C. Shepherd, Johannes Schneider, and Lori Pollock

Abstract—In this paper, we present a semi-automatic approach for mining a large-scale dataset of IDE interactions to extract usage

smells, i.e., inefficient IDE usage patterns exhibited by developers in the field. The approach outlined in this paper first mines frequent

IDE usage patterns, filtered via a set of thresholds and by the authors, that are subsequently supported (or disputed) using a developer

survey, in order to form usage smells. In contrast with conventional mining of IDE usage data, our approach identifies time-ordered

sequences of developer actions that are exhibited by many developers in the field. This pattern mining workflow is resilient to the ample

noise present in IDE datasets due to the mix of actions and events that these datasets typically contain. We identify usage patterns and

smells that contribute to the understanding of the usability of Visual Studio for debugging, code search, and active file navigation, and,

more broadly, to the understanding of developer behavior during these software development activities. Among our findings is the

discovery that developers are reluctant to use conditional breakpoints when debugging, due to perceived IDE performance problems

as well as due to the lack of error checking in specifying the conditional.

Index Terms—IDE usage data, data mining, pattern mining, usability analysis

Ç

1 INTRODUCTION

THE majority of software developers nowadays rely on
Integrated Development Environments (IDEs), some-

times extended via custom plug-ins, for much of their daily
work. IDEs provide developers with an extensive toolkit
that includes support for compilation, debugging, profiling,
refactoring and other tasks. Most development tasks can
now be completely accomplished within these environ-
ments. The complexity of modern IDEs warrants research
into the usability of such environments to accommodate a
broad set of tasks and developer skill levels. Studying
developer behaviors within such IDEs in the field can often
reveal interesting patterns to researchers, providing sup-
porting (or dissenting) evidence for findings on developer
behaviors on various software engineering tasks and use of
related tools, obtained in controlled lab experiments.

Large scale IDE usage datasets, collected from the inter-
action histories of hundreds of developers in the field, have
been available to researchers for a number of years. How-
ever, previous IDE usage data analyses have been either
limited to specific parts of the IDE (e.g., refactoring tools [1],
[2]) or have relied on simple analysis of individual IDE
actions or transitions between pairs of actions [3], [4]. Broad,

exploratory mining of longer sequences of developer behav-
ior, consisting of several interactions have rarely been con-
ducted using such datasets.

In this paper, we describe a novel exploratory workflow to
mine frequent usage patterns (or sequences) of interactions from
a large repository of IDE usage data. Extracting common
behaviors exhibited by a number of developers in the field
can highlight sequences of interactions with the IDE, which
are representative of software engineering micro tasks (e.g.,
comprehension, feature location) performed by developers.
Such mined tasks can provide a novel way to examine the
developer usage of the IDE, revealing approaches that devel-
opers take in accomplishing common activities, such as step-
ping through codewith the debugger, searching for a location
in the code base, or opening and editing sets of files. Other
descriptive statistics, such as elapsed time and occurrence
counts can also be computed to provide further insights into
developers’ behavior. These mined usage patterns can be
used as motivation to conduct a subsequent survey of the
developers, as we did in this paper, to identify usage smells,
whichmore strongly point to usability issueswith the IDE.

We apply our novel sequence mining workflow to a
large-scale IDE dataset, consisting of all the IDE interactions
of 196 developers at ABB, Inc. over a period of up to several
months. Throughout this paper, we call this data set the
ABB Developer (ABB-Dev) dataset. The results of mining
sequential patterns from this large-scale dataset are used as
a means of identifying deficiencies in IDE usability, due to
flaws in IDE design, gaps in developer knowledge in using
the IDE, or both of these factors. This type of usage analysis
is commonly performed in web applications [5], where web
server logs, which are easily available, are mined for
insights into application usage. However, many of the min-
ing approaches used in the web domain are incapable of
managing the scale, heterogeneity, and noise in IDE usage

� K. Damevski is with the Department of Computer Science, Virginia Com-
monwealth University, Richmond, VA 23284. E-mail: damevski@acm.org.

� D. Shepherd is with ABB Corporate Research, Raleigh, NC 27606.
E-mail: david.shepherd@us.abb.com.

� J. Schneider is with ABB Corporate Research, Baden-D€attwill CH-5405,
Switzerland. E-mail: johannes.schneider@ch.abb.com.

� L. Pollock is with the Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19350. E-mail: pollock@udel.edu.

Manuscript received 9 July 2015; revised 21 May 2016; accepted 4 July 2016.
Date of publication 18 July 2016; date of current version 24 Apr. 2017.
Recommended for acceptance by R. DeLine.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2592905

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 4, APRIL 2017 359

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

data. Logged messages in IDE data include a broad set of
asynchronous IDE events and intentional developer clicks
relevant to interpreting high-level developer behaviors,
intertwined with noise from messages caused by unrelated
IDE events and spurious clicks.

The described IDE usage data mining workflow has the
characteristics of a funnel, in that, in its early stages, it per-
forms general aggregation operations applicable to many
IDE data analytic tasks, while, in the later stages, it focuses
on identifying a few specific usability patterns and smells.
Therefore, the contributions of this paper are in both the
data analysis approach as well as the results from this anal-
ysis. First, our IDE usage data analysis workflow contains
the following novel characteristics:

� Applies sequential pattern mining to noisy and
large-scale IDE usage data,

� Clusters similar sequences for easier human inter-
pretation using a tailored distance function that com-
bines sequential similarity with the rarity of event
occurrence, and

� Confirms pattern findings by cross-referencing with
expert opinion and developer surveys to interpret
the mined behavior, examine the IDE usage pattern,
and remove any ambiguity due to imperfect log mes-
sage capture.

Second, we discovered several interesting developer
behaviors in Visual Studio via our usage data analysis, elu-
cidated via a survey of the discovered behaviors from over
50 developers at ABB, Inc.:

� Developers search their code frequently and ineffi-
ciently, due in part to the poor presentation of search
results in Visual Studio.

� Developers rapidly visit several files in their active
file set before locating a relevant file, and do not
report any hardship in doing so.

� Developers debug using a small command set and
recognize the need for improved capabilities, though
some, such as conditional breakpoints in Visual Stu-
dio, are poorly implemented.

The remainder of this paper is organized as follows.
Section 2 describes the goals of our mining approach,
while Section 3 outlines related approaches and studies.
In Section 4, we describe our IDE usage data mining
workflow. Section 5 describes a selection of the results of
that workflow, which are further elucidated via a devel-
oper survey discussed in Section 6. Section 7 details the
meaning and implications of the results of the usage
smell analysis, while Section 8 describes the threats to
validity. Finally, Section 9 summarizes the conclusions
and future work of this project.

2 DATA MINING GOALS AND CHALLENGES

The goal of our data mining is to discover interesting
sequences of user interactions within an IDE. Our study is
exploratory in that we mine from a dataset consisting of all
interactions in the IDE, rather than focusing on a subset
related to a specific IDE capability. Like several researchers
before us, we are interested in confirming or debunking
researchers expectations of developer behavior in the field, in

their natural setting and without observational bias. The main
difference to prior work in this area is that we are interested
in sequences of IDE interactions, rather than focusing on the
usage of a single command or the transition between pairs
of commands.

Sequences consisting of the IDE interaction patterns
exhibited by many developers can be interpreted as a set of
intentional commands and clicks performed by the user to
accomplish a small task. These tasks are often trivial (e.g.,
stepping through code with the debugger, building code
and fixing resulting errors), but sometimes reveal interest-
ing and unexpected behaviors. Since these behaviors are
exhibited by many developers, we can treat them as typical
usage of the IDE, which when inefficient, may reveal prob-
lems in IDE usability design or deficiencies in developer
training to use the IDE’s capabilities.

Large datasets consisting of all IDE interactions by a
set of developers have been available for several years.
Most notably, The Eclipse Usage Data Collector (UDC)
project collected such data from thousands of users of the
Eclipse IDE [6]. The UDC project has been discontinued
in recent releases of this IDE, so the collected data focuses
on usage of older versions of Eclipse. However, the ABB
Developer dataset, which we use in our study, provides a
more recent dataset, based on the Visual Studio IDE, at a
considerable scale of nearly 200 developers. The dataset
is collected by a Visual Studio extension, which has since
become a part of the Codealike IDE developer productiv-
ity suite [7].

Both UDC and ABB-Dev record a similar, broad set of
IDE commands that have been issued by developers, views
(windows within the IDE) that have received developer
clicks, and editor behaviors (without recording any of the
actual code for privacy reasons). These logged items are
provided in a time stamped stream indexed by an identifier
assigned to each developer whose interactions were
recorded. The datasets also contain certain events, triggered
by the IDE itself, such as when compilation completes, a
breakpoint is reached by the debugger, or when the IDE is
put in the background or re-activated. The actions of many
developers over several months of IDE usage generate very
large datasets, which are challenging to analyze.

A significant challenge in analyzing sequences of mes-
sages in IDE datasets is in differentiating noise from sig-
nal. In this work, we define noise to be the logged
actions that reflect spurious or irrelevant clicks or events
that do not provide relevant information on the devel-
oper’s task. For instance, consider a set of developer
actions to fix a bug in the IDE interrupted by a message
reporting that the project has finished building. In certain
cases, this event may inform us about what the developer
did in subsequent actions in the IDE, for instance, looked
at the build error log, while in other cases, it may not
provide useful information to the pattern. Some fre-
quently occurring messages may be relevant to certain
patterns (such as putting the IDE in the background),
while they may be irrelevant to other patterns. The num-
ber and diversity of such event combinations and the dif-
ficulty in understanding the influence of each event in a
developer’s workflow make enumerating all of these sce-
narios prohibitive.

360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 4, APRIL 2017

3 RELATED WORK

Due to its scale and unbiased nature, IDE usage data analy-
sis has frequently been used by researchers to examine
developer behavior in the field, including highlighting
which tools are commonly used by developers [3] and how
refactoring tools are used [4]. This data has also been used
as a means to build predictive models for a variety of soft-
ware engineering purposes, such as detecting coupled
source code artifacts [8] and recommending IDE tools to
developers [9]. The majority of such analyses did not
require deeper mining of developer actions in IDE usage
data, relying mostly on counts of messages and transitions
between pairs of messages (Markovian analysis).

The usability of the Visual Studio IDE has been investi-
gated only a few times in the past. Snipes et al. examined
efficent work patterns in Visual Studio and implemented a
game-like environment to encourage such developer behav-
iors [10], [11]. Recently, Amann et al. studied developer
usage of Visual Studio using a field dataset of over 6,300
hours of developer time [12]. Their work focused primarily
on measuring the time consumption and frequency of cer-
tain actions (e.g., code completion, navigation, etc.) in
Visual Studio. Compared to this prior work, our approach
focuses on pattern mining an even larger dataset of Visual
Studio interactions, where the mined results are followed
up with a developer survey.

Recently, pattern mining has been used for the identify-
ing novel code transformations for inclusion in the IDE by
Negara et al. [1]. While the researchers relied on pattern
mining, as does this paper, they used a more conventional
itemset mining technique that does not maintain the
sequential order of the mined items. Negara et al. also gath-
ered a dataset that included the code that the developers
were maintaining, which is more difficult to obtain at scale
and is categorically different from the dataset we use in our
work. Such a dataset can be recorded by the Fluorite
tool [13], which captures developer interactions in the IDE
editor sufficient to reconstruct the program at each point in
time. The dataset used in this paper, as well as other large
scale IDE interaction datasets, such as the Eclipse UDC
dataset, do not contain any of the code, due to privacy and
other similar concerns.

Vakilian et al. studied usability problems with IDE refac-
toring tools [2] using the critical incident technique, based
on analysis of interactions preceding and following a fixed
set of specific IDE actions or events. The IDE usage dataset
used was much more detailed than the one used in this

paper in its reflection of user behavior in using refactoring
tools. Compared to our mining technique, their approach
was more focused rather than exploratory, and was reliant
on a less ambiguous dataset.

Khodabandelou et al. used a hiddenMarkovmodel based
approach to build a process model of developer behavior
based on the Eclipse UDC dataset [14]. The approach used
was similar to ours in both its exploratory nature and its
dataset. The main difference with our work is that our tech-
nique focuses on mining individual behavioral patterns,
while the goal of the approach by Khodabandelou was to
build an abstraction (e.g., a finite statemachine) of the overall
high-level behavioral processes used by the developers.

Sequential pattern mining has been used for usability
analysis in several related domains, including the mining of
web logs for usability testing of web-based applications [15]
and in improving the success factors in online collaborative
learning [16].

4 MINING APPROACH

The inputs to our data mining workflow are time-ordered
logs of IDE interactions for each developer, collected during
their regular work activities, spanning months of activity.
The output is a list of behavioral patterns, commonly exhib-
ited by developers, that exemplify potential IDE usability
problems. The mined patterns are selected to serve as points
of improvement in IDE design and use. To process the
inputs, while addressing the scale and noise typical in IDE
interaction datasets, we propose a novel mining workflow
consisting of several steps shown in Fig. 1. We discuss each
step below in detail.

4.1 Input IDE Interaction Dataset

The ABB-Dev IDE interaction dataset consists of over 8 mil-
lion logged actions by 196 developers at ABB, Inc., repre-
senting 32,811 developer hours of usage of the Visual
Studio IDE. The dataset is recorded by a Visual Studio
extension that, after a straightforward installation, sub-
scribes and records most of the IDE’s published events.
Each of the monitored developers had at least 5 hours of
development time recorded by the tool.

ABB-Dev contains all of the user interactions in the IDE
as timestamped log messages, including IDE commands
(e.g., build, execute a test), views (e.g., click on the error list
window), or events (e.g., build finished). Keypresses and
clicks within the IDE editor, which edit the code or just
move the cursor, are partially aggregated by the ABB-Dev

Fig. 1. A schematic of the sequence mining workflow for large-scale IDE log analysis.

DAMEVSKI ET AL.: MINING SEQUENCES OF DEVELOPER INTERACTIONS IN VISUAL STUDIO FOR USAGE SMELLS 361

tool to reduce log size, so that not each keypress is written to
the log, but instead several keypresses are converted into a
message, such as an editor scroll down event, tab insertion,
deletion, etc.

To illustrate the dataset, a listing of two sample ABB-Dev
messages is shown in Fig. 3; each message consists of a
type, timestamp, user id, and category. Fig. 2 shows a visu-
alization of each developer’s contribution to the overall
ABB-Dev dataset in terms of number of hours monitored
and the number of interaction messages. There were groups
of developers that allowed the tool to monitor their behav-
ior for relatively short periods (days, visualized as circles),
medium periods (weeks, visualized as triangles) and longer
periods (months, visualized as squares).

4.2 Data Preparation

To prepare the dataset for the task of detecting interesting
usage patterns in the IDE, and for the sequential pattern
mining process (next step), while also removing

unnecessary processing downstream in our workflow, we
perform the following four actions:

1) Separate the dataset into time-ordered sequences of indi-
vidual developer interactions. The original ABB-Dev
dataset is stored in one very large log file, in time
order. We separate the dataset by developer, while
preserving the order of each developer’s messages
by their time order. The ordering of messages, but
not their actual time, is important to sequential pat-
tern mining.

2) Add log messages to represent inactive time intervals.
While breaks in developer interactions with the IDE
are common, the sequential pattern mining process
ignores the actual event timestamps. To account for
such breaks in time and avoid spurious associations
between developer actions that are distant in time,
we introduce a new message into the log to signify
that a period of inactivity occurs for a developer in
the log. In our analysis, we chose a threshold of 5
minutes as we believe that this constitutes a substan-
tive period, which, when passed, likely indicates a
break in the developer’s activity. In our estimation, it
is fairly unlikely that a developer is still performing
a task and does not have any key press or click in the
IDE for a 5 minute span. The inactivity message can
be repeated to signify a longer break. In order to
limit the repetition we choose a threshold of 30
minutes (or six consecutive messages) where we
deem further repeats to be unnecessary, based on
the gap size of the sequential pattern mining algo-
rithm described in the next step of our workflow.
Changing the gap size requires adjusting the thresh-
olds for the inactivity messages in order to prevent
long periods of inactivity from being ignored by the
mining algorithm.

3) Aggregate repetitive edit messages into a single edit mes-
sage. In ABB-Dev, the set of messages indicating the

Fig. 3. A sample of two log messages from the ABB-Dev IDE usage
dataset.

Fig. 2. Distributions of the developers according to the number of hours monitored and the number of log messages collected. The circles denote
developers with less than a week of monitoring, triangles denote developers with between a week and a month of monitoring, while squares denote
developers with more than a month of monitoring.

362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 4, APRIL 2017

action of editing code and the messages signifying
moving the cursor within the IDE are overly
detailed, and individually irrelevant to our analysis.
Note that large-scale field IDE usage datasets like
ABB-Dev do not contain the actual code, and indi-
vidual small-scale editing commends (e.g., insert
tab, delete line) are difficult to interpret. Thus, we
aggregate consecutive sets of edit-related messages
into a single edit message for analysis.

4) Aggregate repetitive move cursor messages within the edi-
tor messages into a single move cursor message.ABB-Dev
records both clicks within the editor window and
scrolling up and down commands separately. Thus,
we combine consecutive move cursormessages into a
single move cursor message, except when a subse-
quence of actions contains both move cursor and edit
messages. In this case, we aggregate it all into a single
edit message. Often developers move the cursor
before decidingwhere to perform edits. The edit mes-
sage is the relevant action in this process, while the
movements of the cursor constitute a detail irrelevant
to our subsequent mining task.

4.3 Sequential Pattern Mining

At the beginning of the sequential pattern mining, the data
consists of a set of time-ordered interaction sequences, one for
each of the 196 developers. While the previous step shrunk
the number of messages in the dataset, via aggregation of the
numerous edit and move cursor messages, the size of most
sequences continues to range between tens of thousands to
hundreds of thousands of messages, a challenging scale for
many common sequential patternmining algorithms.

Sequential pattern mining algorithms identify a set of
subsequences (or patterns) that occur in some percentage
(or, with minimum support) of the input sequences. The per-
developer split of the ABB-Dev data sequences allows us to
specify a meaningful support parameter to the sequential
pattern mining algorithm, i.e., at least 10 percent of the
developers. Thus, if a sequential pattern is exhibited by 20
of the roughly 200 developers, then the algorithm should
discover the pattern. In this way, we can search for IDE
usage patterns that are common across a substantial popula-
tion of the developers, allowing for greater relevance to the
mined results.

To account for the noise in IDE data due to unrelated
events and clicks, as described in Section 2, we mine
sequences while tolerating a gap of one message in the
input sequences. For example, a gap of a single message
instructs the pattern mining algorithm to consider a candi-
date pattern a ! c to have occurred in an input sequence
a ! b ! c, thus contributing to the level of support needed
to consider the a ! c pattern relevant. We also experi-
mented with longer gaps, but decided, based on observing
both the input sequences and identified patterns, that a gap
of one message avoids noise in most cases that we consider
and produces few or no spurious patterns at the support
level of 10 percent. Note that the concept of noise is task-
dependent and thus other analyses might define and handle
noise in different ways.

Sequential pattern mining algorithms produce an
exhaustive set of patterns found in the input dataset. This

results in all of the subpatterns a, b, c, a ! b, and b ! c to be
part of the output if the longer pattern a ! b ! c is identi-
fied. To reduce the number of smaller subpatterns that are
found by the sequential pattern mining algorithm, we
require that the algorithm produces closed or maximal pat-
terns, where patterns that are contained within longer pat-
terns are ignored. Closed sequential pattern mining
algorithms remove all patterns that exist within other iden-
tified patterns and occur at the same support level, while
maximal pattern mining removes sub-patterns regardless of
the support level. For our problem, the maximal pattern
mining is preferable, as once we have identified patterns
that meet the threshold of 10 percent support, further
changes in the support levels are not relevant to the subse-
quent analysis that we perform.

Accounting for each of these requirements: relatively
low support of 10 percent, a gap of one message and maxi-
mal patterns, while also processing the lengthy sequences
in the ABB-Dev dataset is a challenge for most sequential
pattern mining algorithms. Few of the commonly used
sequential pattern mining algorithms are capable of even
producing maximal patterns [17]. We considered a number
of popular algorithms, finally identifying the recently pro-
posed MG-FSM algorithm [18] as the only one that could
satisfy all of these requirements. MG-FSM is parallelized
using map-reduce (Hadoop) functionality which eases its
use on a cloud infrastructure and aids desired scalability
for larger datasets.

4.4 Pattern Filtering

The MG-FSM algorithm produces 84,145 patterns based on
our requirements, which is too large for human examina-
tion, even though many of the patterns are quite similar.
For instance, one pattern may contain an edit, followed by
a project build, followed by a click on the error view, while
another may contain the same sequence with a click on the
project explorer view preceding the build command. The
next two steps in our workflow have the goals of first fil-
tering out irrelevant patterns, and then grouping similar
patterns to enable human analysis. Much of the filtering at
this stage was motivated by our desire to detect usage
smells in the IDE, while other goals may necessitate differ-
ent filtering strategies.

The first filter removes overly short patterns that are less
likely to provide a clear, unambiguous snapshot of devel-
oper behavior. Specifically, many patterns under 8 mes-
sages were difficult to interpret meaningfully or in a way
that may provide evidence for a specific developer behav-
ior, and thus we filter out all sequences less than 8 message
long (approximately 34 K patterns). We recognize that this
may remove some interesting shorter behaviors, perhaps
even removing the presence of patterns reflecting certain
aspects of the IDE’s functionality.

The second filter removes patterns that contain messages
that are too ambiguous if interpreted as usage smells. There-
fore, due to the lack of any evidence outside of the IDE
usage stream, we remove all patterns that contain a time
gap and all patterns that contain a command noting that
Visual Studio was placed in the background. We also
remove patterns with the move cursor message as the

DAMEVSKI ET AL.: MINING SEQUENCES OF DEVELOPER INTERACTIONS IN VISUAL STUDIO FOR USAGE SMELLS 363

purpose of the cursor movement was unclear in many cases
and it provided little to no help in identifying usage smells.
In total, this resulted in a reduction of about 33 K patterns.

While filtering these messages earlier in the workflow
would be computationally cheaper, as they are of no rele-
vance to the mining of usage smells, their removal could
affect the results produced by the sequential pattern mining
by adding spurious associations. This is because messages
that would be ordinarily separated by time or cursor move-
ment messages would be brought closer together, and pos-
sibly identified as patterns, with the removal of such
messages earlier in the workflow.

4.5 Pattern Clustering

After the filtering step, less than a quarter (i.e., 17,867) of the
initial 84,145 patterns remain. Many of these remaining pat-
terns are still similar to each other, intuitively correspond-
ing to groups of developer actions commonly performed to
achieve a specific small goal (e.g., find a location in the
code, debug). Grouping similar sequences allows examina-
tion of the different ways that developers commonly per-
form a task and enables identification of unexpected IDE
usage workflows.

To cluster patterns, we use the k-medoids algorithm, a
variant of k-means that uses existing points in the dataset as
cluster centroids. K-means cannot be used directly because
calculating a centroid of a set of mined patterns often results
in a non-pattern, since numerical operations, like addition
and division, cannot be performed on two patterns. K-
means cannot proceed with a non-pattern centroid, as, then,
the distance function is undefined between a non-pattern
and a pattern.

For the distance function, we define a novel function that
combines two characteristics of similar patterns: 1) similar
patterns have long subsequences of IDE actions in common;
and 2)when an action occurs rarely in the dataset, the sequen-
ces that contain that message are similar. To address the first
characteristic, we use Longest Common Subsequence (LCS);
to address the second characteristic, we use a function that
takes into account individual action frequencies in the dataset.
We combine both of these influences by aweighted sum.

Specifically, we define the distance function, DðPa; PbÞ,
for any two mined IDE interaction patterns Pa and Pb as fol-
lows. Note that a value of 0 for the distance function indicates
that two patterns are completely alike, while a value of 1 indicates
that the patterns are completely different

DðPa; PbÞ ¼ aDLCSðPa; PbÞ þ ð1� aÞDOccðPa; PbÞ:
Using a factor a, ranging between 0 and 1, we weigh influ-
ences from two separate measures of distance, one based on
simple Longest Common Subsequence,DLCS , and the other,
DOcc, which accounts for the occurrence frequencies of the
messages that constitute the two patterns

DLCSðPa; PbÞ ¼ 1� jLCSðPa; PbÞj
jPa [Pbj ;

where j � j is the modality of a set, LCSðPa; PbÞ is the longest
common subsequence between the two patterns without
regard for starting position, and Pa [Pb is the union of the
messages in the two sequences

DOccðPa; PbÞ ¼
1 if Pa \ Pb = ;
P

e2Pa\Pb
Fe

Ftotal
otherwise;

(

wherePa \ Pb is the set of the commonmessages between pat-
terns Pa and Pb, and e is each message in this common mes-
sage set. Fe is the occurrence frequency of each message e in
theABB-Dev dataset, while Ftotal is defined as the following:

Ftotal ¼
X

j2Pa[Pb
Fj:

To illustrate how this distance metric is computed, con-
sider an example consisting of two sequential patterns:
Pa ¼ a ! b ! c ! d and Pb ¼ a ! b ! d. Assume also that
the messages fa; b; cg occur 100 times in the dataset, while
the message d occurs only twice. We can compute
jLCSðPa; PbÞj ¼ jfa; bgj ¼ 2 and jPa [Pbj ¼ jfa; b; c; dgj ¼ 4,

and, therefore, DLCSðPa; PbÞ ¼ 1� 2
4 ¼ 0:5. To compute,

DOccðPa; PbÞ, we first compute Ftotal ¼ 100þ 100þ 100þ 2 ¼
302, resulting in DOcc ¼ 100

302 þ 100
302 þ 2

302 ¼ 0:67. These two dis-

tance measures are combined, based on a weight a to form
the final distance value.

After experimenting with a few different ratios between
the two constituent distance measures, we settled on an a

value of 0.25. In this way, we weigh the frequency (or rarity)
of messages as three times more important than the longest
common subsequence between two patterns in clustering
them. The distribution of messages in the ABB-Dev dataset
is exponential, so we found the existence of the same rare
messages to be an important characteristic of the similarity
between two patterns.

The distribution of message types in the dataset is expo-
nential, so we found message rarity to be an important char-
acteristic of the similarity between two patterns.

To specify the number of clusters (i.e., the k in k-
medoids), we consider the optimum average silhouette
width for different k. The average silhouette width reflects
the average closeness to the centroid for the clustered data
points, relative to its closeness to the centroids of neighbor-
ing clusters. This metric ranges between �1 and 1, where a
higher value is indicative of more separable clusters. In
order to have a human-interpretable number of clusters, we
only examined the average silhouette size for between 10
and 50 clusters. While the overall strength of the clustering
was relatively poor, indicated by a negative silhouette
width (in the range [�0.3,�0.1]), we chose a value for k=20,
where there is an “elbow” in the average silhouette width
curve and adding more clusters does not improve the
results. It should be noted, however, that given the high
number of input sequences, values of k that are an order(s)
of magnitude higher than the ones we examined may pro-
duce a significantly better clustering, but would also require
much more effort for human interpretation.

4.6 Expert Analysis

Two of the authors examined the pattern clusters discovered
by the pattern clustering step. The clusters ranged between 1
and 15 different message (or IDE interaction) types in each
cluster, and generally represented similar interactions, or
sub-patterns consisting of a few interactions, occurring in

364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 4, APRIL 2017

slightly different order. The composition of the patterns
allowed straightforward human observational analysis of the
behavioral patterns associated with each cluster, without the
need to perform additional sequence filtering.

The authors were presented with a listing of all of the
patterns in each cluster, and asked to characterize each of
the clusters in terms of the developer behavior that it repre-
sents. There was widespread agreement on the characteriza-
tion of the behaviors of the clusters, which we show in
Table 1. In certain cases, where there was disagreement or
ambiguity, the authors used the data collection tool and
Visual Studio to verify that a pattern corresponded to the
expected sequence of interactions in Visual Studio. This was
also used as a means to determine whether there exists
more than one way to produce the same sequence of mes-
sages, to reduce the possibility of misleading results.

After characterizing the dataset, the authors used a com-
plementary dataset to provide further statistical information
on the time that developers took when performing the behav-
iors corresponding to each pattern. To calculate these meas-
ures, we revisited the original ABB-Dev dataset and
identified occurrences of the relevant pattern for which we
extracted this additional statistical information. For the meas-
ures related to time, we identified occurrences of the pattern
bothwith andwithout a gap, to avoid the influence on time of
any additional noise messages. This ensured that the time sta-
tistics for each pattern were not skewed by any sequences
with a gap. The result of this analysis was a set of interesting
usage patterns that correspond to potential usability smells in
the IDE,whichwe discuss in the next section.

5 MINING RESULTS

In this section, we highlight a few interesting developer
behaviors mined using our workflow and the ABB-Dev IDE
usage dataset.1

5.1 Cluster 9: Usage of Grep-Like Search Tools

This cluster captures developers’ typical use of the FIND IN
FILES dialog, which implements a string matching (grep-
like) search over the entire open project in Visual Studio.
Such a dialog is available in most modern IDEs.

5.1.1 Developers’ Workflow

The patterns in this cluster show typical usage of FIND IN
FILES consisting of users opening the FIND IN FILES dialog,
entering a search query, and pressing the search button.
This triggers the FIND RESULTS view, which displays a list of
all of the lines that match the given query. The user can
review the lines displayed in this window, which are
unranked and unordered. Single-clicking a line in this win-
dow opens the file in an IDE editor as a temporary tab,
while a double-click creates a permanent presence of the file
in the editor tabs.

All of the patterns in this cluster involve behaviors based
on the two views: FIND IN FILES dialog where the query is
entered, and FIND RESULTS where the results were examined.
Other commands such as editing (indicative of search suc-
cess) were present in some of the mined patterns, as well
as query reformulations (indicative of search failure)—re-
visiting the FIND IN FILES dialog after clicking on a result in
the FIND RESULTS view. Each of the patterns was observed
across at least 30 developers.

5.1.2 Potential Usage Smell

One behavior that stands out when examining this cluster
is that developers commonly review several results,
spending considerable time, in each search session.
Developers viewed as many as eight consecutive search
results before either finding the desired place in the code
base or, more likely, abandoning the search. Prior lab
studies support this finding, indicating that many
searches of this type fail [19]. There were 65 instances in
our input ABB-Dev dataset of developers following a

TABLE 1
Extracted Clusters and Characterization of the IDE Usage Behaviors They Represent

Cluster Characterization Percentage
of Patterns

1 debugging: shorter length stepping sequences 19%
2 navigation: shorter length usage of ABB’s custom call graph navigation tool 13%
3 debugging:medium length stepping sequences 13%
4 debugging: activities related to stopping at a breakpoint 10%
5 editing: repetitions of opening several files in the solution explorer and edit 8%
6 editing: long length solution explorer and editing interactions 8%
7 navigation: longer length usage of ABB’s custom call graph navigation tool 5%
8 debugging: a mix of stepping and running to breakpoints 4%
9 searching: usage of Visual Studio’s Find in Files tool 3%
10 navigation:medium length usage of ABB’s custom call graph navigation tool 2%
11 debugging: a mix of activities related to starting to debug (e.g., setting breakpoints, starting the debugger) 2%
12 debugging: finishing debugging followed by setting breakpoints, editing, building and related views 2%
13 editing: combinations of editing, building and related views (e.g., viewing the error list) 2%
14 debugging: finishing debugging followed by editing, debugging and other activities 1%
15 debugging: longer length stepping sequences 1%
16 editing/debugging: editing followed by starting to debug 1%
17 editing/building: general editing behavior (e.g., building, looking at errors, editing and recompiling) 1%
18 navigation: very long usage sequences of ABB’s custom call graph navigation tool 1%
19 editing/navigation: editing and navigating using the next and previous IDE buttons < 1%
20 searching: find all reference and find symbol searches < 1%

1. The dataset of mined interaction patterns is available at: http://
vcu-swim-lab.github.io/mining-vs

DAMEVSKI ET AL.: MINING SEQUENCES OF DEVELOPER INTERACTIONS IN VISUAL STUDIO FOR USAGE SMELLS 365

search by viewing at least eight search results with a
median time of 50 seconds for this activity.

Analysis of the time that individuals spent focused on
each clicked result indicates that the time between result
clicks is quite short, an average of 10 to 12 seconds. This pro-
vides further proof that most of the individual clicked results
were not of value to the developers, for their current task.

Our analysis shows that patterns of multiple search
result views are: 1) common among developers, 2) relatively
time consuming, wasting a median time of almost a minute
of developer time, and 3) likely to be the result of subopti-
mal retrieved search results, as the developers moved fairly
quickly between each click.

5.2 Cluster 15: Stepping Numerous Times with the
Debugger

5.2.1 Developers’ Workflow

When using Visual Studio to debug, after the debugger has
stopped their program at a breakpoint, developers com-
monly proceed executing the program in the debugger
using the STEPOVER and STEPINTO commands. Both com-
mands execute a single statement of code, and while the STE-
PINTO command follows method invocations, the STEPOVER

command remains at the same level of the call path. All of
the patterns in Cluster 15 consist of sequences of this set of
stepping commands.

5.2.2 Potential Usage Smell

The most surprising finding in examining this cluster is the
sheer number of step commands that users tended to exe-
cute in succession. While we expected that users may step
through several statements after encountering a breakpoint,
this cluster contained 19 pattern instances with more than
50 debugging step commands. These were also frequent in
the original ABB-Dev dataset; a pattern of 75 steps occurred
uninterrupted 23 times in the dataset.

To detect potential usage smells, our main goal was to
detect long sequences of repetitive STEPOVER or STEPINTO

commands where subsequent commands occurred within a
very short time frame. There were numerous instances of
the commands being issued with one second or less
between them. The reasoning is that, if the timespan
between two commands is very short, then the developer
could not have performed any substantial analytical task, so
the developer was most likely just pressing buttons at a
high pace for a prolonged time.

Users displayed a tendency to use only specific debug-
ging commands, even though more efficient commands are
available. Developers rapidly pressed a step command tens
of times in a sequence, while use of Visual Studio debugging
commands such as RUNTOCURSOR or conditional breakpoints
could replace all or many of these individual commands.

Additional analysis of individual pattern occurrences in
the original ABB-Dev datasets highlights a few related
observations. One such observation is that there are large
differences between how often certain debugging com-
mands are used by the developers in our dataset. A rela-
tively small set of debugging events and commands occur
in almost all developers, i.e., seven debugging commands/
events occur in 90 percent or more of all developers. These

are the common set of debugging commands and related
events, such as setting and stopping on breakpoints, STE-
PINTO, STEPOVER, and starting, stopping, and restarting the
debugger. Most of the remaining debugging commands
occur in a smaller range of developers (30-80 percent of all
developers). These include the attach-to-process command,
the local variable declarations window, and the call stack
window. Most of these commands are of broad applicability
and should be considered for recommendation to other
developers. Another, very small share of debugging com-
mands occurs in less than 30 percent of all developers.
These are very domain specific, such as viewing the hexa-
decimal display, thread activity, etc., and perhaps are better
distributed via an IDE extension.

We also investigated whether developers using a richer
palette of debug commands exhibited less repetitive behav-
ior by using linear regression relating each developer’s
number of distinct debug commands to the time they
require to execute a fixed length sequence of stepping com-
mands. More precisely, we measured the mean timespan
yðiÞ until 16 stepping commands occurred for each devel-
oper i. We obtained a mean value of y of 20.1 s and a stan-
dard deviation of 14.3 s, leaving on average less than 1.5 s
between two stepping commands. Let nðiÞ be all debug
commands executed by developer i. This variable is used to
normalize among developers with different amounts of
data contribution to the data set. The variable xðiÞ is the
number of different commands used by developer i. We
used the following model y ¼ a � x=nþ �, where � is
assumed to be Gaussian noise. We obtained a p-value for a
of 0.000027 and an adjusted R-squared value of 0.202.

Therefore, we conclude that developers using fewer dis-
tinct debugging commands behave more repetitively.

5.3 Cluster 19: Editing Files in the Working Set

5.3.1 Developers’ Workflow

The working set, consisting of all of the currently open tool
windows and files in Visual Studio, is continually managed
by the environment. The IDE NAVIGATOR DIALOG, shown in
Fig. 4, is commonly invoked via the Ctrl+Tab keystroke to
navigate to the next file in the working set (Ctrl+Shift+Tab
navigates to the previous file). The patterns in this cluster
show developers opening and subsequently editing one or
more files in their current working set using the Ctrl+Tab
key and the IDE NAVIGATOR WINDOW.

The mined patterns in this cluster consist of repetitions of
only two commands: editing and navigating via the IDE
NAVIGATOR DIALOG. The behavior is consistent with making
small changes across several of the files of the working set.
Patterns ranged between editing one to five files.

5.3.2 Potential Usage Smell

The most notable finding when analyzing this cluster is that
users often open unnecessary files when using the working
set dialog, exhibited by consecutive invocations of the IDE
NAVIGATOR DIALOG without editing. These unnecessary files
are opened either in error, or as means of quickly reminding
the developer of something, perhaps the name of a type or a
method [19], which could have been preserved via some
other means, such as active task context [20] or code

366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 4, APRIL 2017

bubbles [21]. For instance, in one particular pattern in this
cluster, developers use the dialog to navigate to five sepa-
rate files to ultimately find the file they wanted to edit.
These navigations are relatively quick, spanning only a few
seconds, but may still consume valuable developer cogni-
tive energy.

We analyzed the patterns in this cluster to measure the
success rate in reaching the final destination using the work-
ing set dialog, by identifying subpatterns where a dialog
invocation preceded an edit. We considered one use of the
dialog preceding an edit to be optimal, as the user found the
file to edit, and any additional uses of the dialog preceding
the edit to be unnecessary, as the user had to continue using
the dialog to reach the relevant file. Using this approach, we
found that opening files via the working set dialog was
unnecessary 47 percent of the time in the extracted patterns.
Ideally, the IDE and its working set support should enable
developers to rapidly transition to edit files, without the
need for several stops along the way.

Visual Studio working set support is not optimal, as
many times files are opened without subsequent editing.

6 SURVEY STUDY

To assess and shed more light on the findings from our pat-
tern mining approach to analyzing IDE interactions, we
conducted a survey of 51 developers at ABB, Inc., to query
their self-efficacy in using the IDE for three purposes:
searching code with FIND IN FILES, navigating within their
active file set, and stepping with the debugger. To solicit
participation, the survey was advertised via e-mail to 661
developers at several of the company’s product develop-
ment sites across the globe. The 51 respondents had an aver-
age of 8.6 years (standard deviation of 5.9 years) of
experience in using Visual Studio. The majority (> 80 per-
cent) of developers were using one of the three most recent
versions of the environment (i.e., Visual Studio 2012, 2013 &
2015) for their daily work. On a scale of 1 to 5, where 1

denotes not usable and 5 denotes extremely usable, the
developers found Visual Studio as more usable than not,
giving it an average score of 3.9 (standard deviation of 0.9).

6.1 Find in Files Search

We first asked the survey respondents a series of questions
related to their use of the FIND IN FILES tool to perform proj-
ect-wide (solution-wide in Visual Studio language)
searches. The tool was used for this purpose by 44 of the 51
developers surveyed, with many developers using the tool
frequently, or at least once daily, as shown in the first row
of Table 2, which lists the number of developers that
reported performing each activity of interest to our study at
specific time frequencies.

The developers indicated a wide distribution of the num-
ber of results that they reviewed in each FIND IN FILES search
session. Table 3 displays the distribution of respondents’
answers, which indicates that there are 20 percent of devel-
opers (9 out of 44) that examine many (more than 5) results
before locating a relevant block of code to their task.

We also asked the respondents to describe any difficul-
ties they may have faced in using FIND IN FILES and received
10 such responses. While some respondents complained
about the tool’s speed, or its key bindings in different Visual
Studio versions, several (n ¼ 8) developers complained
about the simplistic text-based UI that this tool uses to pres-
ent its results, stating, for example:

The output is too cluttered. Results could be bit more
organized in terms of folder/solution/projects [.It] needs
to be better than notepad++ for an IDE.

It is difficult to find anything in Find Results since the
results and their line numbers are not put nicely into col-
umns. The results look like a mess.

6.2 Stepping with Debugger

For the part of the survey that inquired about debugger use,
we intended to determine if long stepping chains were

TABLE 2
Developer Self-Expressed Frequencies of Performing

the Three Activities of Interest

ACTIVITY NUMBER OF DEVELOPERS

Never Monthly Weekly Daily Hourly >Hourly

FIND IN FILES
search

7 1 9 19 8 7

stepping with
debugger

7 6 3 10 15 10

active file
navigation

30 1 6 4 7 3

Fig. 4. A screenshot of the IDE NAVIGATOR DIALOG in visual studio.

TABLE 3
Responses to Question: ‘On Average, How Many Search

Results Do You Need to Examine Before Locating
a Useful Program Element?’

NUMBER OF DEVELOPERS

One
Result

Two
Results

Three
Results

Four
Results

Five
Results

More
than 5

7 14 7 5 2 9

DAMEVSKI ET AL.: MINING SEQUENCES OF DEVELOPER INTERACTIONS IN VISUAL STUDIO FOR USAGE SMELLS 367

prevalent among developers and the reason for the absence
of usage of conditional breakpoints and the RUN TO CURSOR

command. Recall that in Table 2, the results shows that
debugger use is indeed prevalent among developers, with a
few exceptions. Interestingly, developers self-reported
usage of many consecutive stepping commands, as shown
in Table 4, which ranged relatively similar to what we
observed in our interaction log analysis.

As indicated in Table 5, the usage of conditional break-
points was relatively infrequent, though the feature was
something that many developers had used in the past. On
the other hand, there were a few more developers using the
RUN TO CURSOR command frequently.

On an open ended question of how they used stepping
and the RUN TO CURSOR to debug a program, a few of the
respondents indicated that they rarely need the RUN TO CUR-

SOR command, and that its functionality can be duplicated
by adding another breakpoint, such as:

Break to the beginning of interesting segment. Hitting
F10 to the end and checking values between. I use
new break point and F5 rather than RunToCursor.
[...]

Another respondent hinted at the purpose for long step-
ping sessions, which is to comprehend what a block of code
is doing at runtime, one statement at a time:

I use the step-commands to explore the code and what is
happening. Until I get an “AHA” experience [...]

For conditional breakpoints, on an open-ended question
asking for any difficulties they may have faced in their use,
the respondents raised two issues: 1) the slow-down that
these breakpoints inflict on the debugger and 2) the fact that
the conditions are difficult to express and are not error
checked. Specifically, developers stated that:

The debugging is slowed down so much that I have
stopped using it. It would be very useful for me, since I
often want to see what happens at some specific state in a
longer run.

I often had the problem that the condition statement could
not be evaluated. Then the debugger did not stop and I
had to check the condition again.

6.3 Active File Navigation

The survey asked developers about their usage of the
active file navigation capability in Visual Studio, usually
triggered via the Ctrl+Tab or Ctrl+Shift+Tab keystrokes,
which navigate to the next and previous file in the list,
respectively. The frequency of use is shown in the second
row of Table 2, and is considerably less prevalent than the
use of the search tool.

As before, we asked the developers who used active file
navigation about how many files they typically visit before
locating the relevant file. The distribution of responses,
shown in Table 6, clearly shows that most developers do
not experience finding the necessary file on the first try.

When asked the open-ended question about the difficul-
ties they may have faced in using active file navigation in
Visual Studio, most of the respondents gave no answer or
stated they had experienced none. Only one respondent
described a usability problem with the following statement:

The list is too long sometimes.

7 DISCUSSION AND IMPLICATIONS

In general, the surveyed developers’ self-reported tenden-
cies confirmed the observations made via our pattern min-
ing of IDE interactions, providing more confidence in the
validity of this analytic technique for IDE interaction data.
Surprisingly, many developers seemed aware of the high
number of results that they examined during search with
FIND IN FILES, the number of files they navigated to before
reaching their destination, and the multitude of consecutive
steps they performed with the debugger. However, devel-
opers often did not necessarily consider these behaviors as
inefficient or a nuisance, often answering “No difficulty” to
our questions about problems with a specific feature. For
instance, in active file navigation, a number of the surveyed
developers reported no difficulty, when opening several
unrelated files before locating the file they were looking for.
For stepping with the debugger, while the surveyed devel-
opers seemed to always find value in numerous stepping
actions, we believe that, in practice, a sequence of useful
step commands where the state of a (set of) variable is
observed by the developer is followed or preceded by a
(potentially large) sequence of quick steps to get past irrele-
vant statements. We further believe that developer is usu-
ally unaware or does not consider these extra steps as
additional work.

This unawareness of inefficient workflows is common in
usability analysis of software, especially in situations where

TABLE 4
Responses to Question: ‘On Average, How Many StepOver or
StepInto Commands Do You Execute in One Sequence Before

You Resume Execution or End the Debugging Session?’

NUMBER OF DEVELOPERS

0-10
Steps

10-20
Steps

20-30
Steps

30-40
Steps

40-50
Steps

More
than 50

15 14 10 2 1 2

TABLE 5
Developer Self-Expressed Frequencies in Using Conditional
Breakpoints and the RUN TO CURSOR Debugger Command

CAPABILITY NUMBER OF DEVELOPERS

Never Monthly Weekly Daily Hourly >Hourly

conditional
breakpoints

13 11 11 8 0 1

RUN TO

CURSOR command
11 4 7 11 7 4

TABLE 6
Responses to Question: ‘On Average, How Many Files Do You
Navigate to Before Opening the File You Are Looking For?’

NUMBER OF DEVELOPERS

One
File

Two
Files

Three
Files

Four
Files

Five
Files

More
than 5

5 4 5 3 1 3

368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 4, APRIL 2017

users are not actively performing the task that they were
being surveyed about [22]. In these cases, software users
commonly forget and ignore minor nuisances that are
quickly resolved via an extra set of clicks within a short
timespan. It is also difficult for the surveyed developers to
imagine the possibility of an alternative interface design,
where that specific interaction with the software would be
made more efficient.

7.1 Find in Files Search

When searching using FIND IN FILES, several of the develop-
ers in the survey agreed that the tool’s UI had several imper-
fections in the way that it presents its results. One reason for
this poor presentation is that the retrieved result set is
unranked, which can result in an overwhelming amount of
information when the query string frequently occurs in the
code base. Several researchers have proposed within-IDE
software search tools based on information retrieval tech-
nologies that, like web search tools, provide a ranked list of
results making it easier for developers to reach relevant
code quicker [23], [24]. Others have suggested improved
user interfaces to allow quicker click-less review of the
search results [25]. While such advances, among others, in
code search have been discussed in the software mainte-
nance research community for several years, most IDEs, in
their default configurations, still rely on string matching
approaches like FIND IN FILES.

7.2 Stepping with Debugger

When debugging, the surveyed developers justified their
low usage of conditional breakpoints as due to poor perfor-
mance and the difficulty in catching errors in the conditions.
We believe that the poor performance is accidental, and spe-
cific to the Visual Studio versions used by the developers in
our studies, as evaluating a condition at a specific point in
the code, unless it is performed within a tight loop, should
present little difficulty to modern hardware. The difficulty
in catching errors in the conditional can be remedied by log-
ging the range of values of the constituent variables of the
breakpoint’s condition, enabling post-hoc analysis if the
breakpoint is never triggered.

There was a significant number of developers that
reported that they never used conditional breakpoints or
the RUN TO CURSOR command, likely because they were
unaware of them. Our data analysis also showed that the
distribution of debugging command use was skewed, and
many useful commands are rarely used. Ideally, developers
would know every command and use that command at the
appropriate time. In reality, as shown by Murphy-Hill
et al. [9], they often know and use only a small subset of the
overall command set.

While it is unrealistic to expect developers to memorize
every command, we feel that there is a minimum subset
that should be known. We suggest two solutions. First,
developers should be trained to use an IDE. Unfortunately,
according to our experience, training on how to use this
powerful tool is surprisingly sparse in most industrial or
academic environments. Second, the commands themselves
should be made more visible and intuitive to invoke. Visual
Studio 2015 has already begun to do this. Conditional break-
points, formerly an almost hidden feature in the UI is now

highlighted through an icon that is shown as soon as a
breakpoint is created.

7.3 Active File Navigation

As we examined active file navigation in Visual Studio, we
noticed that it is easy to open the incorrect files due to the
lack of additional information about each file on the IDENAV-

IGATOR DIALOG screen. For instance, if the working set dialog
would provide a preview of a code snippet for a selected file,
developers may be more likely to choose the correct file on
the first attempt. Additionally, the dialog only shows the file
name instead of the relevant method or field name, which
makes the user map between files and program elements
themselves. In the past several versions of Visual Studio, and
especially the 2015 release, increased visual support, using
the progressive disclosure interaction technique [26], has
appeared in many of the IDE’s tools (e.g., the call graph fea-
ture surfaced in the CodeLens extension).

8 THREATS TO VALIDITY

Our IDE usage data analysis is potentially susceptible to sev-
eral threats, both internal and external. One internal threat is
that our ABB-Dev dataset only records certain IDE com-
mands and events, while it does not, most notably, record
the contents of the IDE editor or interactions with any other
applications outside of the IDE. Therefore, it is possible that
we missed or misunderstood certain regularly occurring
developer behaviors. To mitigate this threat, two of the
authors recreated the patterns that we focused on to ensure
their reproducability and plausability. The developer survey
also lent support to the validity of some of the mined behav-
iors. TheABB-Dev datasetwe used is also unbalanced, repre-
senting the interaction data of some developers more than
others. This threat is mitigated by the substantial number of
developers in the dataset and by the probabilistic nature of
the sequential patternminingwe perform.

Another threat comes from the fact that we did not con-
trol for different versions of the Visual Studio IDE. While
we know from internal ABB information that most of the
data reflected the most recent two versions of the IDE
(Visual Studio 2012 and 2013), even these could have dif-
fered, affecting our final conclusions. Finally, another threat
comes from the choice of parameters in our analysis, includ-
ing the length of patterns to filter and the weight of the
measures in the final distance function. For each of these
parameters, we examined samples of data or considered rel-
evant statistics to choose reasonable values to detect inter-
esting usage patterns and smells. However, more study is
needed to verify that these parameter choices yield the
strongest results.

Externally, we collected data from 196 developers for a
period of less than 12 months from a single company. The
results, drawn from a limited number of users and time
length, may not be generalizable to other Visual Studio
users for a longer period of time. Another external threat is
that we investigated only the Visual Studio IDE and there-
fore the conclusions may not be applicable to other IDEs.
However, a few of the most popular IDEs offer a very simi-
lar set of tools, so some of the mined usage smells may
apply more broadly than Visual Studio.

DAMEVSKI ET AL.: MINING SEQUENCES OF DEVELOPER INTERACTIONS IN VISUAL STUDIO FOR USAGE SMELLS 369

9 CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach for mining sequences
of actions from IDE usage data. Our approach uses scalable
sequential pattern mining, coupled with pre-processing and
post-processing steps intended to reveal interesting IDE
usage scenarios from many developers. A selection of those
scenarios is thoroughly analyzed, via expert opinion and a
developer survey, to yield more understanding of those pat-
terns, which span code search, file navigation and debug-
ging. The result is a set of recommendations for Visual
Studio improvement in each of these categories.

As future work, we plan to investigate different ways to
tailor the mining approach to a more fixed set of behaviors
(e.g., related to debugging). We will also explore approaches
to changing some of the post-processing steps to include
shorter sequences in the subsequentmanual analysis.

ACKNOWLEDGMENTS

We would like to thank Will Snipes for help in administer-
ing the study and for collecting the usage dataset. We also
thank the numerous developers at ABB, Inc. that contrib-
uted their IDE usage data and answered our survey.

REFERENCES

[1] S. Negara, M. Codoban, D. Dig, and R. E. Johnson, “Mining fine-
grained code changes to detect unknown change patterns,” in
Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 803–813. [Online]. Avail-
able: http://doi.acm.org/10.1145/2568225.2568317

[2] M. Vakilian and R. E. Johnson, “ Alternate refactoring paths reveal
usability problems,” in Proc. 36th Int. Conf. Softw. Eng., 2014,
pp. 1106–1116. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2568225.2568282

[3] G. Murphy, M. Kersten, and L. Findlater, “How are Java software
developers using the Eclipse IDE?” IEEE Softw., vol. 23, no. 4,
pp. 76–83, Jul./Aug. 2006.

[4] E. Murphy-Hill, C. Parnin, and A. P. Black, “Howwe refactor, and
how we know it,” IEEE Trans. Softw. Eng., vol. 38, no. 1, pp. 5–18,
Jan./Feb. 2012. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6112738

[5] M. Spiliopoulou, “Web usagemining forWeb site evaluation,”Com-
mun.ACM, vol. 43, no. 8, pp. 127–134, Aug. 2000. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=345124.345167

[6] The Eclipse Foundation-Filtered UDC Data. (2016). [Online]. Avail-
able: http://archive.eclipse.org/projects/usagedata, Accessed
on: Feb. 4, 2016.

[7] Codealike: Powerful metrics for high-performance developers. (2016).
[Online]. Available: https://codealike.com, Accessed on: Feb. 4,
2016.

[8] Lijie Zou, M. Godfrey, and A. Hassan, “Detecting interaction
coupling from task interaction histories,” in Proc. 15th IEEE Int.
Conf. Program Comprehension, Jun. 2007, pp. 135–144. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4268248

[9] E. Murphy-Hill, R. Jiresal, and G. C. Murphy, “ Improving soft-
ware developers’ fluency by recommending development envi-
ronment commands,” in Proc. ACM SIGSOFT 20th Int. Symp.
Found. Softw. Eng., 2012, Art. no. 42. [Online]. Available: http://
dl.acm.org/citation.cfm?doid=2393596.2393645

[10] W. Snipes, V. Augustine, A. R. Nair, and E. Murphy-Hill, “Towards
recognizing and rewarding efficient developer work patterns,” in
Proc. Int. Conf. Softw. Eng., 2013, pp. 1277–1280. [Online]. Available:
http://portal.acm.org/citation.cfm?id=2486983

[11] W. Snipes, A. R. Nair, and E. Murphy-Hill, “Experiences gamify-
ing developer adoption of practices and tools,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 105–114. [Online]. Available: http://
doi.acm.org/10.1145/2591062.2591171

[12] S. Amann, S. Proksch, S. Nadi, and M. Mezini, “A study of visual
studio usage in practice,” in Proc. 23rd IEEE Int. Conf. Softw. Anal.
Evolution Reengineering, 2016, pp. 124–134.

[13] Y. Yoon and B. A. Myers, “Capturing and analyzing low-level
events from the code editor,” in Proc. 3rd ACM SIGPLANWorkshop
Evaluation Usability Programming Languages Tools, 2011, pp. 25–30.
[Online]. Available: http://doi.acm.org/10.1145/2089155.2089163

[14] G. Khodabandelou, C. Hug, R. Deneckre, and C. Salinesi,
“Unsupervised discovery of intentional process models from
event logs,” in Proc. 11th Work. Conf. Mining Softw. Repositories,
2014, pp. 282–291. [Online]. Available: http://dl.acm.org/
citation.cfm?doid=2597073.2597101

[15] A. Vargas, H. Weffers, and H. V. da Rocha, “ A method for remote
and semi-automatic usability evaluation of web-based applica-
tions through users behavior analysis,” in Proc. 7th Int. Conf. Meth-
ods Techn. Behavioral Res., 2010, pp. 19:1–19:5. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1931344.1931363

[16] D. Perera, J. Kay, I. Koprinska, K. Yacef, and O. Zaiane,
“Clustering and sequential pattern mining of online collaborative
learning data,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 6,
pp. 759–772, Jun. 2009. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=4564464

[17] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu,
and V. S. Tseng, “SPMF: A Java open-source pattern mining
library,” J. Mach. Learn. Res., vol. 15, pp. 3389–3393, 2014. [Online].
Available: http://jmlr.org/papers/v15/fournierviger14a.html

[18] I. Miliaraki, K. Berberich, R. Gemulla, and S. Zoupanos, “Mind the
gap: Large-scale frequent sequence mining,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, Jun. 2013, pp. 797–808.

[19] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An explor-
atory study of how developers seek, relate, and collect relevant
information during software maintenance tasks,” IEEE Trans.
Softw. Eng., vol. 32, no. 12, pp. 971–987, Dec. 2006.

[20] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in Proc. 14th ACM SIGSOFT Int. Symp.
Found. Softw. Eng., 2006, pp. 1–11.

[21] A. Bragdon, et al., “Code bubbles: Rethinking the user interface
paradigm of integrated development environments,” in Proc.
32nd ACM/IEEE Int. Conf. Softw. Eng., 2010, pp. 455–464.

[22] J. Nielsen and J. Levy, “Measuring usability: Preference versus
performance,” Commun. ACM, vol. 37, no. 4, pp. 66–75, Apr. 1994.
[Online]. Available: http://doi.acm.org/10.1145/175276.175282

[23] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature loca-
tion in source code: A taxonomy and survey,” J. Softw. Mainte-
nance Evolution: Res. Practice, vol. 25, pp. 53–95, 2013.

[24] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz, “Sando: An
extensible local code search framework,” in Proc. ACM SIGSOFT
20th Int. Symp. Found. Softw. Eng., 2012, pp. 15:1–15:2.

[25] J. Wang, X. Peng, Z. Xing, and W. Zhao, “Improving feature loca-
tion practice with multi-faceted interactive exploration,” in Proc.
Int. Conf. Softw. Eng., 2013, pp. 762–771. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486888

[26] J. Nielsen, “Progressive disclosure,” Jakob Nielsen’s Alertbox, 2006.
[Online]. Available: http://www.nngroup.com/articles/progres-
sive-disclosure/

Kostadin Damevski received the PhD degree in
computer science from the University of Utah, Salt
Lake City. He is an assistant professor with
the Deparment of Computer Science, Virginia
Commonwealth University. Prior to that he was a
faculty member at Virginia State University and a
postdoctoral research assistant with the Scientific
Computing and Imaging institute, University of
Utah. His research focuses on software mainte-
nance and empirical software engineering, applied
to a variety of domains, ranging from industrial
software systems to high-performance computing.

David C. Shepherd is a senior principal scientist
with ABB Corporate Research where he leads a
group focused on improving developer productiv-
ity and increasing software quality. His back-
ground, including becoming employee number 9
at a successful software tools spinoff and working
extensively on popular open source projects, has
focused his research on bridging the gap
between academic ideas and viable industrial
tools. His main research interests to date have
centered on software tools that improve develop-
ers search, and navigation behavior.

370 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 4, APRIL 2017

Johannes Schneider received the PhD degree
from ETH Zurich, in 2011. He was a postdoc with
IBM’s Zurich Research Laboratory in the Informa-
tion Analytics Group. Now, he is a scientist with
ABB Corporate Research, Switzerland. In Octo-
ber 2016, he is going to join the University of
Liechtenstein as an assistant professor in data
science.

Lori Pollock is a professor in computer and
information sciences, University of Delaware
and ACM Distinguished Scientist. Her research
focuses on software artifact analyses for easing
software maintenance, testing, and developing
energy-efficient software, code optimization, and
computer science education. She leads a team
to integrate CS into K-12 through teacher profes-
sional development in the CS10K national efforts.
She was awarded the ACM SIGSOFT Influential
Educator award 2016 and University of Dela-

ware’s Excellence in Teaching Award, E.A. Trabant Award for Women’s
Equity in 2004. She serves on the Executive Board of the Computing
Research of Women in Computing (CRA-W), which was honored with
the National Science Board’s 2005 Public Service Award to an organiza-
tion for increasing the public understanding of science or engineering.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DAMEVSKI ET AL.: MINING SEQUENCES OF DEVELOPER INTERACTIONS IN VISUAL STUDIO FOR USAGE SMELLS 371

	Virginia Commonwealth University
	VCU Scholars Compass
	2017

	Mining Sequences of Developer Interactions in Visual Studio for Usage Smells
	Kostadin Damevski
	David C. Shepherd
	Johannes Schneider
	Lori Pollock
	Downloaded from

	untitled

