
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2017 

Decomposition Algorithms in Stochastic Integer Programming: Decomposition Algorithms in Stochastic Integer Programming: 

Applications and Computations. Applications and Computations. 

Babak Saleck Pay 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Industrial Engineering Commons, Operational Research Commons, Other Operations 

Research, Systems Engineering and Industrial Engineering Commons, and the Systems Engineering 

Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/5027 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/84613311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarscompass.vcu.edu%2Fetd%2F5027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholarscompass.vcu.edu%2Fetd%2F5027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=scholarscompass.vcu.edu%2Fetd%2F5027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=scholarscompass.vcu.edu%2Fetd%2F5027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholarscompass.vcu.edu%2Fetd%2F5027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholarscompass.vcu.edu%2Fetd%2F5027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5027?utm_source=scholarscompass.vcu.edu%2Fetd%2F5027&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


c©Babak Saleck Pay, August 2017

All Rights Reserved.





i

DECOMPOSITION ALGORITHMS IN STOCHASTIC INTEGER

PROGRAMMING: APPLICATIONS AND COMPUTATIONS.

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Systems Modeling and Analysis)

at Virginia Commonwealth University.

by

BABAK SALECK PAY

Director: Dr. Yongjia Song, Assistant Professor

Department of Statistical Sciences and Operations Research

Virginia Commonwealth University

Richmond, Virginia

July, 2017



ii



Acknowledgements

I would like to express my deepest gratitude to all people who helped me during

this journey.

First, I really thank my dear family, Baba, Moman, Abji and Madar (RIP).

They were a true supporters and were there whenever I needed help. There is a

strong emotional bound among us which neither time nor distance can break.

Second, I want to thank my dear adviser Dr. Yongjia Song. During the four

years of PhD, I have learned a lot from him, either in his classrooms or in our research

meeting. He helped me generously in every aspect of this job.

I also want to thank Dr. Jason Merrick for trusting and granting me the PhD

position.

I want to express my gratitude to the other members of my committee: Dr. J
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DECOMPOSITION ALGORITHMS IN STOCHASTIC INTEGER

PROGRAMMING: APPLICATIONS AND COMPUTATIONS.

By Babak Saleck Pay

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2017.

Director: Dr. Yongjia Song, Assistant Professor

Department of Statistical Sciences and Operations Research

In this dissertation we focus on two main topics. Under the first topic, we

develop a new framework for stochastic network interdiction problem to address

ambiguity in the defender risk preferences. The second topic is dedicated to com-

putational studies of two-stage stochastic integer programs. More specifically, we

consider two cases. First, we develop some solution methods for two-stage stochastic

integer programs with continuous recourse; second, we study some computational

strategies for two-stage stochastic integer programs with integer recourse.

We study a class of stochastic network interdiction problems where the defender

has incomplete (ambiguous) preferences. Specifically, we focus on the shortest path

network interdiction modeled as a Stackelberg game, where the defender (leader)

makes an interdiction decision first, then the attacker (follower) selects a shortest

xi



path after the observation of random arc costs and interdiction effects in the net-

work. We take a decision-analytic perspective in addressing probabilistic risk over

network parameters, assuming that the defender’s risk preferences over exogenously

given probabilities can be summarized by the expected utility theory. Although the

exact form of the utility function is ambiguous to the defender, we assume that a set

of historical data on some pairwise comparisons made by the defender is available,

which can be used to restrict the shape of the utility function. We use two different

approaches to tackle this problem. The first approach conducts utility estimation

and optimization separately, by first finding the best fit for a piecewise linear concave

utility function according to the available data, and then optimizing the expected

utility. The second approach integrates utility estimation and optimization, by mod-

eling the utility ambiguity under a robust optimization framework following [4] and

[44]. We conduct extensive computational experiments to evaluate the performances

of these approaches on the stochastic shortest path network interdiction problem.

In third chapter, we propose partition-based decomposition algorithms for solv-

ing two-stage stochastic integer program with continuous recourse. The partition-

based decomposition method enhance the classical decomposition methods (such as

Benders decomposition) by utilizing the inexact cuts (coarse cuts) induced by a sce-

nario partition. Coarse cut generation can be much less expensive than the standard

Benders cuts, when the partition size is relatively small compared to the total num-

ber of scenarios. We conduct an extensive computational study to illustrate the

advantage of the proposed partition-based decomposition algorithms compared with

the state-of-the-art approaches.
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In chapter four, we concentrate on computational methods for two-stage stochas-

tic integer program with integer recourse. We consider the partition-based relaxation

framework integrated with a scenario decomposition algorithm in order to develop

strategies which provide a better lower bound on the optimal objective value, within

a tight time limit.
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CHAPTER 1

INTRODUCTION

1.1 Stochastic Linear/Integer Programming

Stochastic programming has firmly established itself as an indispensible modeling

tool and solution approach to deal with optimization problems under uncertainty [10].

Among all the stochastic programming models, two-stage stochastic program is one

of the most popular models that has been applied in a variety of application areas,

see, e.g., [46, 21, 11, 101, 75, 102, 3]. In two-stage stochastic programs, the first-stage

decisions, known as the here-and-now decisions, are made before the realization of

the random parameters in the model. On the other hand, the second-stage decisions,

known as the wait-and-see decisions, are made after resolutions of the random pa-

rameters are observed. The second-stage decisions are meant to compensate for the

first-stage decisions, and therefore are also called the recourse decisions.

We present a two-stage stochastic linear program as follows:

z∗ = min
x∈X

cTx+ E[f(x, ξ)], (1.1)

1



where

f(x, ξ) = min dTy (1.2a)

s.t. T̃ x+Wy ≥ h̃ (1.2b)

y ∈ Rn2 . (1.2c)

In (1.1), X ⊂ Rn1 is a non-empty and closed set. In (1.2), the triple (Ω,F ,P)

is a probability space in which ξ = (T̃ , h̃) is defined and the closed set Ξ ⊂ RD is the

support for P .

There are two basic assumptions upon which most of the methods in stochastic

programming are built. The first assumption is that the probability distribution of

ξ is known; but, in most cases, calculating the expected value E[f(x, ξ)] is compu-

tationally very intensive. Moreover, if decision maker accept a good approximate

solution, then we might be able to avoid this intense calculation. Hence, we can

follow the most common procedure in stochastic programming which is finding a

discrete set of realization of random parameters. This set is used to approximate

the true underlying probability distribution. The larger the set, the better the ap-

proximation. In stochastic programming literature, we call the set defined above as

scenario set and the problems that use such a set are called scenario-based problems.

The second assumption is the independence of random parameters ξ of decision vari-

able x. See [35] for a class of problems that violate this assumption. Throughout

this dissertation, we follow these two assumptions.

To obtain an approximate of E[f(x, ξ)], we can use Monte Carlo estimation.

2



Given a set of independent random samples ξ1, ξ2, · · · ξN , we have:

fN(x) =

∑N
k=1 fk(x)

|N |
, (1.3)

where for each scenario k ∈ N , fk(x) represents the second-stage value function,

which is given by:

fk(x) := min
yk∈Rn2+

{
d>yk | T kx+Wyk ≥ hk

}
. (1.4)

Note that N = {1, 2, . . . , N} is the the set of indices corresponding to each scenario.

In model (1.4), T k ∈ Rm2×n1 , and hk ∈ Rm2 could be scenario-specific, while d ∈ Rn2

and W ∈ Rm2×n2 are assumed to be fixed for all scenarios k ∈ N . Then, a two-stage

stochastic program with a finite set N of equally probable scenarios, motivated by

the sample average approximation (SAA) [10], can be formulated as:

min
x∈XLP

c>x+
N∑
k=1

fk(x), (1.5)

where XLP is a linear relaxation of a set given by X =
{
x ∈ Rn1−p1

+ × Zp1+ | Ax = b
}

,

and n1 ≥ p1. Set X does not need to be bounded, however first-stage problem must

have a bounded solution.

The assumption that matrix W is fixed in is the so-called fixed recourse assump-

tion. Without this assumption, the SAA may be unstable and ill-posed, as shown

by Example 2.5 in [84]. The proposed partition-based algorithms depend on the

structure of fixed recourse. Formulation (1.5) implicitly assumes that all scenarios

happen with the same probability and this probability has been incorporated in the

second-stage objective coefficient vector d. For simplicity of presentation, we also

3



assume that the second-stage problem is feasible and bounded for any feasible first-

stage solution x ∈ X, a property known as the relative complete recourse. However,

we note that this assumption is not necessary for the proposed algorithms to work.

Putting problems from two stages together with all the scenarios k ∈ N yields

the so-called extensive formulation as follows:

z∗ = min cTx+
∑
k∈N

dTyk (1.6a)

s.t. Ax = b (1.6b)

T kx+Wyk ≥ hk, ∀k ∈ N, (1.6c)

x ∈ Rn1−p1
+ × Zp1+ , y

k ∈ Rn2
+ , ∀k ∈ N. (1.6d)

Although off-the-shelf commercial mixed integer programming (MIP) solvers can be

used to directly solve (1.6), this is not an efficient approach since (1.6) is a large-scale

MIP when a large number of scenarios is incorporated into the model to characterize

uncertainty. Because of this difficulty, decomposition approaches have been stud-

ied extensively in the literature that could exploit the special structure of two-stage

stochastic programs. In (1.6), the scenario-based constraints are linked together only

through the first-stage variables. Therefore, given a fixed first-stage solution, (1.6)

decomposes into |N | separate (and smaller) problems, one for each scenario k ∈ N .

This decomposability is the main building block of different decomposition methods

developed for two-stage (and multi-stage) stochastic programs. The most popular de-

composition algorithm applied to solve two-stage stochastic programs is the L-shaped

method [94], which applies Benders decomposition [9] to (1.6). Along this line, there

4



is a rich literature on various decomposition methods developed for two-stage stochas-

tic programs such as stochastic decomposition [42], subgradient decomposition [82],

regularized decomposition [72], level decomposition [103, 53], inexact bundle method

[99, 25], etc. On the other hand, the adaptive partition-based algorithms have re-

cently been proposed to directly mitigate the computational challenge in two-stage

stochastic linear programs brought by the large number of scenarios [86]. Under the

assumption of fixed recourse, the basic idea of these partition-based algorithms is to

partition the scenario set into clusters, and construct a lower approximation for the

second stage value function by aggregating constraints and variables for scenarios

within the same cluster. This partition is then adaptively refined according to the

optimal dual multipliers for each scenario obtained at certain trial points, until it

is sufficient, i.e., the optimal solution obtained by solving the corresponding lower

approximation is optimal to the original problem with all scenarios. Existence of a

sufficient partition whose size is independent of the number of scenarios is shown

by [92]. [92] also combines this scenario partition idea with Bender decomposition

and level decomposition, using the concept of on-demand accuracy [25], and yields

significant computational improvements.

Depending on whether or not the second-stage variables involve integer restric-

tions, there are two types of two-stage stochastic integer programs (SIP): SIP with

continuous recourse and SIP with integer recourse. In this paper, we focus on the

former one, in which case the aforementioned decomposition methods based on the

cutting plane approach can still be applied because the second-stage problem is still a

linear program (LP). Enhancements of the basic Benders decomposition that exploit

5



the structure given by the first-stage integer variables have been successful recently.

In [11], the authors take advantage of the integrality information of the first-stage

solution and derive a new class of valid inequalities based on mixed integer rounding.

In [12], two strategies that apply split cuts to exploit the integrality of the first-stage

variables are proposed to yield strengthened optimality cuts. We note that these

enhancements can also be incorporated in the proposed partition-based algorithms

in a straightforward way.

1.1.1 Benders decomposition

Benders decomposition [see, e.g., 10] or the L-shaped method [94] is a well-known and

widely accepted solution framework for solving two-stage stochastic linear programs.

The idea of Benders decomposition is to iteratively approximate the epigraph of

function fk(x), Fk :=
{

(x, θk) ∈ Rn1 × R | θk ≥ fk(x)
}
,∀k ∈ N , by constructing a

piece-wise convex relaxation defined by a set of valid inequalities that are generated

during the algorithm. This relaxation, also called the Benders master problem, is as

follows:

min
x∈XLP

c>x+
∑
k∈N

θk (1.7a)

s.t. θk ≥ Gkx+ gk, (Gk, gk) ∈ Gk, ∀k ∈ N, (1.7b)

where Gk is a collection of optimality cuts which are valid inequalities that have been

generated for each scenario k ∈ N so far through the algorithm. The Benders master

problem is a relaxation of (1.6) in that it contains only a partial set of constraints

that are necessary to describe the set Fk. Given an optimal solution (x̂, {θ̂k}k∈N)

6



of the Benders master problem (1.7), the second-stage problem (1.4) is solved for

k ∈ N to generate Benders optimality cuts. Specifically, let λ̂k be the corresponding

optimal dual vector for scenario k ∈ N , the Benders optimality cut (1.7b) takes the

form:

θk ≥ (hk − T kx)>λ̂k. (1.8)

An alternative way of applying Benders decomposition to solve (1.6) is to maintain

a single variable θ in (1.7) instead of one variable θk for each scenario k ∈ N :

min
x∈XLP

c>x+ θ (1.9a)

s.t. θ ≥ Gx+ g, (G, g) ∈ G, (1.9b)

where G is a collection of the aggregated Benders optimality cuts (known as the

L-shaped cuts):

θ ≥
∑
k∈N

(hk − T kx)>λ̂k. (1.10)

A single cut (1.10), instead of (at most) one cut for each scenario k ∈ N , is generated

at each iteration. As a result, Benders decomposition has two well-known variants:

single-cut (1.10), and multi-cut (1.8).

While multi-cut Benders decomposition adds more information to the master

problem at each iteration, it has to solve potentially a much larger master problem

(1.7) compared to the single-cut Benders decomposition, although less iterations are

expected for the algorithm to converge. We note that in order to integrate the

partition-based approach within the branch-and-cut framework for solving two-stage

SIPs with continuous recourse, it is more convenient to work with the single-cut
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variant of the Benders decomposition (see more details in Section 3.2). For more

information about the trade-off between single-cut and multi-cut approach as well

as other enhancements to Benders decomposition, see, e.g., [75, 103, 91, 51, 31, 98].

1.1.2 Level decomposition

It is well-known that cutting plane methods such as Benders decomposition suffer

from instability [14, Example 8.7]. They might take “large jumps” even in the region

that is close to the optimal solution and oscillate around it, which slows down the

convergence. Regularization techniques mitigate this inefficiency of cutting plane

approaches by keeping the next iteration close to the so-called stabilization center,

which is usually defined as the incumbent solution encountered during the solution

procedure (see, e.g., [43]). Regularization technique for cutting plane approaches

can be categorized in two different classes: proximal bundle method [72] and level

bundle method [53]. In the context of stochastic programming, proximal bundle

method and level bundle method are known as regularized decomposition (see, e.g.,

[73]) and level decomposition (see, e.g., [99]), respectively. In this paper we leverage

the level decomposition to stabilize the proposed decomposition algorithm. We next

briefly review the basic idea of the level method.

Instead of the standard cutting plane model (1.7), the trial point for the next

iteration is obtained by solving a quadratic master problem in level decomposition,

which models the projection of the stabilization center onto a level set defined by

the current cutting plane relaxation and a given level target parameter. By doing

this, we keep the next iteration either close to the previous one or close to the
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incumbent solution depending on how the stabilization center is defined. In practice,

the stabilization is usually defined as the incumbent solution, or is kept unchanged

from the previous iteration whenever a substantial decrease on the upper bound

is not obtained. The projection problem is formulated as the following quadratic

program:

min
x∈X

1

2
‖x− x̄‖2

2 (1.11a)

s.t. cTx+
∑
k∈N

θk ≤ flev (1.11b)

θk ≥ Gkx+ gk, (Gk, gk) ∈ Gk, ∀k ∈ N, (1.11c)

where x̄ is the stabilization center and flev is the level target. In the context of two-

stage stochastic programming, after obtaining a trial point x̂, we solve the scenario-

based subproblem (1.4) for each scenario k ∈ N , update the best upper bound zub

so far, and add a new optimality cut (1.11c) (if any violated) to (1.11). Then, we

update the level set by setting flev = κzlb + (1 − κ)zub for some parameter κ and

solve the level master problem (1.11). Unlike the standard Benders decomposition,

optimal objective value of the level master problem (1.11) does not yield a lower

bound for the problem. Instead, an updated lower bound is obtained whenever the

level set, i.e., the feasible region of model (1.11), is an empty set, in which case the

lower bound is updated to the level target, flev.

1.1.3 Adaptive partition-based algorithms

We next briefly review the adaptive partition-based algorithms introduced in [86].

Assume that we have an initial partition of the scenarios N = {P1, P2, ..., PL} where
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P1 ∪ P2 ∪ ... ∪ PL = N and Pi ∩ Pj = ∅ ∀i, j ∈ {1, . . . , L}, i 6= j.

zN = min cTx+
∑
P∈N

dTyP (1.12a)

s.t. TPx+WyP ≥ hP ∀P ∈ N , (1.12b)

x ∈ X, yP ∈ Rn2
+ ∀P ∈ N , (1.12c)

where yP =
∑

k∈P y
k, TP =

∑
k∈P T

k, and hP =
∑

k∈P h
k. It is clear that the

partition-based problem (1.12) is a relaxation of the original stochastic program (1.6).

The goal of the partition-based framework is to identify a partition N such that the

corresponding optimal solution x̂N of (1.12) either solves (1.6) exactly (in this case,

the partition N is referred to as “sufficient” in [86]) or has the objective value that is

sufficiently close to the optimal objective value of the original problem (1.6) according

to some user-specified criterion. To achieve this goal, the partition-based framework

solves a sequence of problems of the form (1.12) with adaptively “refined” partitions

N . A partition N ′ is a refinement of partition N , if ∀P ′ ∈ N ′, P ′ ⊆ P for some

P ∈ N , and |N ′| > |N |. In [86] and [92], partitions are refined according to the

optimal second-stage dual solutions λ̂k for each scenario k ∈ N . This is motivated by

the observation that the gap between lower and upper bounds at a given trial solution

x̂ is caused by the mismatch among these dual solutions [86, Theorem 2.5]. After a

partition refinement, the partition-based master problem gives a tighter relaxation of

the original stochastic program. Algorithm 1 summarizes the basics steps of adaptive

partition-based method.
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zub ← +∞, find an initial scenario partition N

while gap > ε do

Solve (1.12); obtain x̂ and zN

foreach k ∈ N do

Solve subproblem (1.4) with x̂ and obtain an optimal dual solution λ̂k

end

Refine partition N by further partitioning each component P ∈ N based

on clustering {λ̂k}k∈P

zub ← min
{
zub, c>x̂+

∑
k∈N fk(x̂)

}
gap← zub−zN

zN

end

Algorithm 1: Adaptive Partition-Based Algorithm
It is clear that this framework will always converge in a finite number of it-

erations, since there exists a trivial partition that is given by the original scenario

set itself. The key for the partition-based framework to work well in practice is to

develop an adaptive approach to find a small completely sufficient partition in an

efficient manner, if any such partition exists. It has been proved in [92, Theorem 1]

that there exists a sufficient partition for two-stage stochastic linear programs with

fixed recourse, whose size is at most n1 −m1 + |E|, where n1 and m1 are the num-

ber of first-stage variables and constraints, respectively, and E is the set of extreme

points of the dual polyhedron of (1.4), i.e., {λ ∈ Rm2
+ | W>λ ≤ d}. Although the

number of extreme points of the dual polyhedron is exponentially many, this number

|E| is independent of the total number of scenarios |N |, and thus may still be small

compared to |N |. In [92], the adaptive partition-based algorithms are embedded into
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an overall cutting plane framework by generating coarse optimality cuts correspond-

ing to a scenario partition first, and resorting to the exact Benders optimality (fine)

cuts only when it is necessary to do so. In the meantime, the scenario partitions are

refined so that these coarse cuts are asymptotically exact as well. This framework

generates cuts whose qualities are adaptive to the solution procedure. This idea has

also been applied in a level decomposition framework in [92]. More details along this

line will be elaborated in Section 3.2.1.

In this work, following [86] and [92] we embed the adaptive partition-based

overall cutting plane framework within the branch-and-cut framework for solving

two-stage SIPs with continuous recourse. An immediate consequence of this exten-

sion is that there is no theoretical guarantee that a sufficient partition of a small

size exists. In other words, it is possible that any partition of size less than the sce-

nario size ,|N |, may yield an objective value that is strictly less than the true optimal

value. However, we may still benefit from the adaptive partition-based framework by

generating cheap coarse cuts early in the solution process, and gradually enhancing

the cut quality using more efforts, which is adaptive to the solution progress.

1.2 Expected Utility

In this section we briefly review the basic assumptions of expected utility theory

when completeness axiom is violated. We do not specifically contribute to the current

literature of expected utility models, however, we utilize it in network interdiction

model which is the subject of Chapter 2.

Von-Neumann and Morgenstern [95] proved that if a preference relation (�)
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satisfies a set of properties (axioms), then there exists an increasing utility function

such that the decision makers preferences can be represented by expected utility. In

other words, there exists a function u : R → R, such that for any arbitrary pair of

risky decisions X and Y (also called lotteries or gamble), decision maker prefers X

to Y if and only if E[u(X)] ≥ E[u(Y )]. The set of axioms are (this is the variant

which Wakker listed in his book [96]):

1. � is a weak ordering:

(a) � is transitive:

X � Y and Y � Z implies X � Z. (1.13)

(b) � is complete:

For all X and Y, X � Y OR X ≺ Y OR X ∼ Y. (1.14)

2. Standard-Gamble solvability: Suppose X = [p : M, 1 − p : m] is a gamble

which yields M with probability p and m with probability 1− p. Then, for all

m < α < M , there exists α such that:

α ∼ X (1.15)

3. Standard-Gamble dominance: Suppose X = [p : M, 1 − p : m] and Y = [q :

M, 1 − q : m] be two different gambles such that M > m. For all p > q we

have:

X � Y (1.16)
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4. Standard-Gamble consistency: Suppose X = [p : M, 1 − p : m], Y = [λ :

α, 1− λ : C], and Z = [λ : X, 1− λ : C], then we have:

α ∼ X implies Y ∼ Z. (1.17)

If any of the properties above is not satisfied, then Von-Neumann and Morgenstern

expected utility theorem, in its original form, does not hold any more. The viola-

tion of axioms is not a hypothetical assumption. Indeed, in real world setting, it

is often very difficult to assume that all the axioms are true. Among these axioms,

completeness is perhaps the most controversial one [6]. Indeed, Von-Neumann and

Morgenstern originally mentioned that it may be more convincing that decision mak-

ers cannot decide on all pairs of lotteries. The completeness axiom states that the

space of the lotteries is completely ordered. In other words, the decision maker is

capable of choosing one lottery over the other one for any pairs of lotteries (or be

neutral). As it was mentioned, this is not always the case. For instance, when we

are dealing with utility elicitation procedure, we are usually limited by the number

of questions we could ask from the decision maker; or, when the decision maker is a

group of people, we are usually unable to uniquely determine the preferences over a

given set of comparisons.

Despite their note about violation of completeness, Von-Neumann and Morgen-

stern never mentioned how to modify the theorem to address this issue. Later, in

1962, Aumann proved that when we do not have completeness, Von-Neumann and

Morgenstern expected utility still holds, however, instead of a unique utility func-

tion, we will have a set of utility functions [6]. In Chapter 2, we propose a model
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for stochastic network interdiction problem where the available knowledge about the

operators is incomplete. Therefore, we have a set of utility function which are aligned

with our assumptions about decision maker’s risk preferences. We base our model

development on the framework proposed by Armbruster and Delage [4] which takes a

robust optimization perspective to address the ambiguity on the shape of the utility

function.

1.3 Network Interdiction Problem

Network interdiction problems involve two competing sides, a “leader” and a “fol-

lower”. For the convenience of presentation, we use the word “she” to refer to a

leader, and the word “he” to refer to a follower. The follower attempts to meet his

desired objective (e.g., minimizing the cost of transporting illegal drugs through the

network by picking a shortest path), while the leader modifies the parameters of the

network (e.g., the traveling cost of each arc) to make it harder for the follower to

achieve his objective, a decision known as interdiction. Depending on the follower’s

objective, network interdiction problems are classified as shortest-path interdiction,

maximum-flow interdiction, maximum-reliability path interdiction, etc.

The network interdiction problem was originally proposed during the Cold War.

Rand Corporation researchers sought a means of interdiction planning for former So-

viet Union rail roads, in order to interfere rail traffic to Eastern Europe [39]. Readers

can refer to [58, 33, 89, 70, 100] for origins of network interdiction models. Since

then, researchers have applied network interdiction to various real-world problems by

securing systems of great societal and economic importance such as power systems
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[76, 77], transportation networks [88, 81, 32], cyber networks [63, 80], etc., as well

as disrupting networks of harmful or illegal goods such as drug distribution network

[57, 36], nuclear smuggling network [68, 60, 19, 67, 85], human trafficking network

[48], etc.

There are many different variants of the network interdiction problem. We focus

on the shortest path network interdiction problem, rooting our basic formulation in

the model of [45]. Given a graph G = (V,A), the inner problem corresponds to

the follower finding a shortest path from a source node s to a target node t, after

first having observed the leader’s interdiction decision; the outer problem models the

leader’s interdiction decision in order to maximize the length of the shortest path

chosen by the follower, given a limited budget for the interdiction. This max-min

problem can be formulated as:

max
x∈X

min
y

∑
a∈A

(ca + xada)ya (1.18a)

s.t.
∑

a∈FS(m)

ya −
∑

a∈RS(m)

ya =


1 if m = s

−1 if m = t

0 o.w.

(1.18b)

ya ≥ 0, ∀a ∈ A, (1.18c)

where ca is the traveling cost of arc a and da is the interdiction effect on arc a, ∀a ∈ A,

FS(m) is the set of arcs that leave node m, RS(m) is the set of arcs that enter node

m, ∀m ∈ V , and X = {x ∈ {0, 1}|A| | r>x ≤ r0} is the budget constraint set,

16



where r is the interdiction cost vector and r0 is the available budget for the leader.

Constraints (1.18b) are the flow-balance constraints for the shortest path problem.

We can turn this max-min model into a mixed-integer program (MIP) model by

fixing x, taking the dual of the inner problem, and then releasing x, yielding [45]:

max
x,π

πt − πs (1.19a)

s.t. πn − πm − daxa ≤ ca, ∀a = (m,n) ∈ A (1.19b)

πs = 0 (1.19c)

x ∈ X, (1.19d)

where πm is the dual variable corresponding to constraint (1.18b) for node m ∈ V .

Stochastic variants of the network interdiction problem have also been studied

extensively in the literature. In stochastic network interdiction problems, a variety

of uncertain sources of risk can emerge, for example, the leader may not necessarily

know which two nodes are the source node s and target node t between which the

follower wants to travel; the cost and interdiction effect of each arc could be uncertain

as well, so that the leader may not know how much the cost of each arc will change

after a particular interdiction plan is applied [59]. For the maximum-flow network

interdiction problem, uncertainty may also be apparent in the capacities of arcs

[22, 23]. [8, 61, 90] study the case where the leader and the follower may have

different perceptions about the parameters of the network. [41, 40] study models in

which the exact configuration of the network is not known and we only have a set

of possible configurations; problems of this sort can appear in computer, defense,

and drug transportation networks. Decision makers’ risk preferences have also been
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incorporated into network interdiction models; for example, recently, [87] study the

shortest path interdiction problem when the interdictor’s risk aversion is modeled

by a chance constraint. We consider a stochastic shortest path interdiction problem

with uncertainty in the traveling cost, the interdiction effect on each arc, and, as

explained in detail below, ambiguity in decision-makers’ risk preferences.

We assume that the leader initially interdicts some arcs; the follower then ob-

serves the leader’s interdiction decision, the resolution of the random cost and inter-

diction effect of each arc, and finally solves a deterministic shortest path problem.

This is the same as the sequence of decisions given in [59]. Under this assumption,

the leader contends with probabilistic risk because she makes her decision before

the resolution of network-parameter uncertainty. Therefore, the decision could lead

to desirable or undesirable outcomes, depending on the realizations of the network

parameters. We develop our model to take explicit account of the leader’s risk pref-

erences and ambiguity in her knowledge of those preferences. The follower deals with

a deterministic optimization problem in this case, and therefore no utility function

is needed to model his decision. We suppose that there exists a utility function

which can be used to summarize the leader’s risk preferences, but that the leader is

unsure which utility function is the true one, although she has some knowledge that

constrains the shape of her true utility function. It may seem less natural to argue

that the leader does not know her own utility function. However, people are often

indecisive about expressing a clear opinion between risky alternatives, particularly

when stakes are outlandish and difficult to imagine concretely, and many prominent

utility theorists have identified completeness as particularly problematic for both
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descriptive and normative analysis. As [5] argued in his seminal work, for exam-

ple, completeness “is perhaps the most questionable of all the assumptions of utility

theory.” This is particularly true when the leader consists of a group of decision

makers. These considerations motivate us to explicitly model the partial knowledge

that decision-makers have about their true utility functions. First, we assume that

a set of pairwise comparisons between given pairs of gambles is available, for exam-

ple, by observing past decisions made, or by discussing acceptable comparisons in

the committee, etc. In addition, we suppose that the decision makers are willing to

make further, common conjectures about their utility functions, e.g., that they are

monotonically nondecreasing (with respect to path costs) and concave [62, 18]. These

important characteristics of real-world decision-making have not been addressed by

standard network interdiction literature, to the best of our knowledge.

As discussed above, the ambiguity about the true utility function is modeled

by a set of constraints on the form of the utility function according to the available

historical data and some common assumptions. One way to deal with this ambiguity

is to find a utility function that best fits the available knowledge according to some

criterion. Alternatively, one could deal with the optimization problem under the

ambiguity about the utility function in a robust optimization fashion, i.e., the leader

maximizes her worst-case utility [4, 44]. The special case in which the set of possible

utility functions is a singleton corresponds to exact or complete knowledge of the

true utility function [18]. Incorporating the incomplete knowledge theme in network

interdiction problem was also addressed in [15]. Nevertheless, there are some funda-

mental differences between our contribution and what authors proposed in [15]. In
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their work, the leader has incomplete knowledge about the structure of the network

and its parameters (e.g., traveling cost) and she learns more about the network (in a

sequential manner) through a set of interactions with the follower. On the contrary,

we assume that both the leader and the follower have complete knowledge about the

topology of the network. Moreover, the leader’s uncertainty about the network pa-

rameters is represented as a random variable with a known probability distribution

(source of uncertainty) and the incomplete knowledge that we consider is toward the

shape of her utility function.

20



CHAPTER 2

STOCHASTIC NETWORK INTERDICTION WITH INCOMPLETE

PREFERENCE

2.1 Introduction

A common theme in research in defense and homeland security is prescribing an

optimal decision to the defender given the adaptation of the attacker [16]. A good

example of this set-up is the important problem of network interdiction, where the

attacker seeks to reach a target and the defender allocates resources to make this

as hard as possible (see, e.g., [60, 16, 85]). Given a network of possible paths of

any complexity, this requires an optimization for the path taken by the attacker

and an optimization for the defender to allocate available resources to interdict the

attacker’s most preferred paths [100].

Given the nature of this problem, either party may not have complete informa-

tion about their opponent or even the underlying network, so the research on this

area has concentrated on stochastic network interdiction [34, 22, 23, 41, 61, 8, 59].

In the field of decision analysis, the presence of uncertainties in a prescriptive set-

ting requires the consideration of risk preferences [47, 27]. Such considerations have

recently been studied in network interdiction with a risk averse defender [87]. How-

ever, neither party will have complete information about the other’s risk preferences

and even their own risk preferences. Previous decisions made by either the attacker
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or the defender will reveal some information about their risk preferences, but this

information may not be complete [64].

In this chapter, we focus on a situation in stochastic network interdiction when

the defender’s incomplete preference information can be revealed from historical data

on decisions that they have made in the past. We propose two different approaches to

tackle this problem. The first approach follows the traditional decision-analytic per-

spective, which separates the utility learning and optimization. Specifically, we first

fit a piecewise linear concave utility function according to the information revealed

from historical data, and then optimize the interdiction decision that maximizes the

expected utility using this utility function. The second approach integrates utility

estimation and optimization by modeling the utility ambiguity under a robust opti-

mization framework, following [4] and [44]. Instead of pursuing the utility function

that best fits the historical data, this approach exploits information from the his-

torical data and formulates constraints on the form of the utility function, and then

finds an optimal interdiction solution for the worst case utility among all feasible

utility functions. The approaches proposed in this chapter forge an interdisciplinary

connection between the areas of network interdiction and decision analysis. We use

synthetic data to model empirically developed knowledge about the decision-makers’

preferences. The models we present are in this respect intended to be data-driven,

an advantage made possible precisely because of their interdisciplinary nature.

The organization of this chapter is as follows. In Section 2.2.1 we discuss the

groundwork of expected utility model with incomplete knowledge and introduce the

required notations which will be used throughout the chapter. In section2.2.2 we re-
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view the classical way of fitting a utility function. In our case, we find the best utility

function which fit the incomplete knowledge we have about the decision maker. In

Section 2.3 we discuss the robust expected utility model and then present two pro-

posed approaches for stochastic network interdiction problem: robust utility model

and robust certainty equivalent model. Detailed numerical results and discussion

around the performance of different approaches are presented in section 2.4. We

introduce an extension to the proposed approaches in Section 2.5.

In Section 2.2 we describe the proposed approaches. In Section 2.4, we present

numerical results for the two different approaches that we study on stochastic shortest

path interdiction instances. We discuss some extensions of the proposed approaches

in Section 2.5 and then we close with some concluding thoughts in Section 2.6.

2.2 Stochastic Shortest Path Interdiction with Incomplete Defender’s

Preference

In this section we first present some preliminaries on the expected utility theory and

incomplete preference. Then we introduce two different approaches that we propose

to solve the stochastic shortest path interdiction problem with incomplete defender’s

preference. The first approach first fits a piecewise utility function given the incom-

plete knowledge about the defender’s preference exploited from historical data, and

incorporates this utility function in the context of optimizing the expected utility.

The second approach models the optimization problem with incomplete preference

under a robust optimization framework motivated by [4, 44]. In particular, we con-

sider the robust expected utility model and the robust certainty equivalent model,
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and present how they specialize into the stochastic shortest path network interdiction

problem with incomplete defender’s preference.

2.2.1 Preliminaries: expected utility and incomplete preference

In this section we introduce the foundations of the proposed approaches for

stochastic shortest path interdiction where the leader has incomplete preference.

We start by formulating the expected utility maximization problem as a stochastic

program, and then describe how the ambiguity about the utility function is modeled

based on the available historical data.

Stochastic programming is a classic method for solving problems with uncer-

tain parameters (considered as random variables) generated from known probability

distributions. In practice, a finite number of samples are drawn from the joint distri-

bution of uncertain parameters, resulting in a sample average approximation (SAA)

of the problem, which is in turn solved in lieu of the original problem; in this respect,

our models are applicable even to distributions with infinite support, so long as the

SAA can be used to generate a reasonable approximation to the underlying problem

[10]. Let h(x, ξk) be the random return (ξ is the vector of random parameters and

x is the vector of decision variables) for scenario k, corresponding to a particular

realization ξk of the original problem’s uncertain parameters; the objective function

of the SAA problem is E[h(x, ξ)] =
∑

k∈K pkh(x, ξk), where K is the finite set of

scenarios and pk = P(ξ = ξk), ∀k ∈ K. We use the expected utility theory to

model decision-makers’ risk preferences, as previously described. With this in mind,

if we substitute the decision-maker’s utility function u for the random return h, the
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following stochastic program maximizes the decision maker’s expected utility:

max
x∈X

E[u(h(x, ξ))], (2.1)

where x is the decision vector, ξ is the vector of uncertain parameters of the problem,

and h(x, ξ) is the return of decision x, contingent on the random vector ξ. In the

following, we assume that our decision-maker does not know the exact form of the

utility function u(·), but we wish to model that our decision-maker has some partial

knowledge which constrains the true shape of the utility function u(·).

We characterize incomplete knowledge of the utility function by a set U , which

consists of all possible non-decreasing concave utility functions consistent with decision-

makers’ prior knowledge of u(·) according to historical data on a set of pairwise

comparisons made by the decision-makers. Formally, set U can be characterized as

follows:

U2 = {u : u is non-decreasing and concave} (2.2a)

Un = {u : E[u(W0)]− E[u(Y0)] = 1} (2.2b)

Ua = {u : E[u(W`)] ≥ E[u(Y`)],∀` = 1, ..., L} , (2.2c)

where W0,W1, . . . ,WL, Y0, Y1, . . . , YL each represents a different gamble or prob-

abilistic lottery over possible outcomes. The pairs of comparisons between these

gambles given in the set Ua reveal knowledge of the true utility function u acquired

by observing past choices. In our context, W` and Y` are two different interdiction

plans. If they appear in Ua, then the decision-maker has observed in the past that

under the true utility function W` is weakly preferred to Y`. Note that each in-
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terdiction plan is a gamble indeed. Because under different realization of random

parameters (i.e., different scenarios), we will have different outcome (i.e., length of

the shortest path that the follower chooses). Set U2 expresses that the true utility

function exhibits risk aversion. Un encodes an assumption of scale; if we assume

that W0 is the gamble with the highest expected utility and Y0 is the gamble with

the lowest expected utility among all possible lotteries, then Un requires that the

utility of each other gamble is normalized to the interval [0, 1]. For simplicity, we

assume that W0 and Y0 have deterministic outcomes, representing the largest and

lowest outcome among all possible gambles, respectively. We then define U , the set

of all possible utility functions consistent with prior knowledge, as the intersection

of these three sets. We denote the union of the support of all gambles {W`, Y`}L`=1

as Z =
⋃
`∈L {supp(Y`) ∪ supp(W`)}, and we index this set Z by Z = {z̄j}j∈T .

Before proceeding to the stochastic network interdiction formulation, we sum-

marize what type of information the leader has. As we mentioned before, the leader

has a full knowledge about the topology of the network. However, she is uncertain

about the traveling cost and the interdiction effect of each arc. This uncertainty will

be modeled as a random variable with a known probability distribution. Moreover,

leader has an incomplete knowledge about the shape of her utility function. The

source of this knowledge is the previous interactions that she had with the follower.

This information is provided in the form of pair-wise comparisons of two different

interdiction plan (W`, Y`). We should mention that, the pairs of (W`, Y`) does not

need to be limited to the interdiction plans for the current network. Indeed, we can

use another types of information obtained from same group of decision makers who
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has been playing different game on the network (historical data). However, in our

specific case, we are modeling the leader side. Therefore, we can access to the leader

and follow a common utility elicitation procedure by asking her preference about

different pairs of interdiction plans. Since we know that completeness axiom is very

likely to be violated, we need a framework which can take this in to account.

2.2.2 Fitting the utility function using piecewise linear concave functions

One of the most natural ideas for optimization with an ambiguous utility function

is to first find a utility function of a parametric form that best fits the available

incomplete preference information, and then optimize the expected utility using this

specific utility function. Utility estimation and optimization are thus separated. In

this section, we propose to find such best fit among all piecewise linear concave

functions. Theoretically, utility functions of any parametric form can be used in this

framework, and we chose the family of piecewise linear concave functions out of their

computational convenience in both fitting and optimization.

Since the utility function under consideration is piecewise linear, its form totally

depends on the utility value αj, j ∈ T at each realization z̄j, j ∈ T . Therefore, the

expected utility for each gamble W` and Y` is
∑

j∈T P[W` = z̄j]αj and
∑

j∈T P[Y` =

z̄j]αj, respectively. The set of αj’s are compatible with the available knowledge

27



according to (2.2), if there exists a vector β ∈ RT
+ such that:

∑
j∈T

(P[W0 = z̄j]αj − P[Y0 = z̄j]αj) = 1 (2.3a)

∑
j∈T

(P[W` = z̄j]αj − P[Y` = z̄j]αj) ≥ 0, ∀` = 1, 2, . . . , L (2.3b)

(αj+1 − αj) ≥ βj(z̄j+1 − z̄j), ∀j = 0, 1, . . . , T (2.3c)

(αj+1 − αj) ≤ βj+1(z̄j+1 − z̄j), ∀j = 0, 1, . . . , T − 1 (2.3d)

α ∈ RT+1
+ , (2.3e)

where constraint (2.3c) and (2.3d) enforce the value of α so that the corresponding

utility function is non-decreasing and concave.

To find the utility function that best fits the available knowledge on the in-

complete preference among all piecewise linear concave utility functions, we first

compute an upper bound ᾱj and a lower bound αj on the utility value αj at each

realization z̄j, j = 0, 1, . . . , T , as long as they satisfy (2.3). Since the true utility

at each realization z̄j must be between these two bounds, we compute the average

of these two bounds, ũj = 0.5(ᾱj + αj), ∀j = 1, . . . , T , and find a piecewise linear

concave utility function whose values at realizations z̄j, j = 1, . . . , T are the closest

to ũj, j = 1, . . . , T . This approach is also used, e.g., in [4] as a benchmark to compare

with their proposed robust utility framework. Specifically, these two bounds ᾱj and

αj can be calculated by solving 2 × T linear programs: ᾱj = max{αj | (2.3)} and

αj = min{αj | (2.3)} for j = 1, 2, . . . , T . Then the best fit can be found by solving
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the following quadratic program:

min

{∑
j∈T

(αj − ũj)2 | α satisfies (2.3)

}
. (2.4)

Given an optimal solution of (2.4), the piecewise linear utility function that will

be used in the optimization can be represented as: u(z) = mini∈I{viz + wi}, where

I is the number of pieces of this function. This utility function is then plugged into

the stochastic program (2.1) to maximize the expected utility:

max
x∈X

1

K

∑
k∈K

min
i∈I
{vi(h(x, ξk)) + wi} , (2.5)

where h(x, ξk) is the length of the shortest path that the follower chooses in each

scenario k ∈ K. Note that h(x, ξk) can also be seen as a piecewise linear concave

function of x, we introduce a new variable θk for each scenario k ∈ K and reformulate

(2.5) as follows:

max
∑
k∈K

1

K
θk (2.6a)

s.t. θk ≤ vi

(∑
a∈P

(c̃ka + d̃kaxa)

)
+ wi ∀P ∈ P , i ∈ I, k ∈ K (2.6b)

x ∈ X, (2.6c)

where P is the set of all s-t paths in the network. To solve model (2.6) we can

use a branch-and-cut algorithm. In model (2.6), constraints (2.6b) for each piece

i ∈ I and each scenario k ∈ K should be satisfied for all s-t paths in the network.

However, there are exponentially many such paths, which makes it inefficient or even

impractical to include them in the model all at once. This motivates us to solve
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model (2.6) with an initial set of paths P ′ ⊆ P (possibly P ′ = ∅) using a branch-

and-bound approach. Whenever an integral relaxation solution (x̂ ∈ {0, 1}|A|) is

obtained during the branch-and-bound tree, we solve a shortest path problem for

each scenario k with cka+dkax̂a being the cost of each arc a, and obtain an s-t path P̂ .

We then check if any constraint (2.6b) for this solution x̂ and scenario k is violated

with P̂ being the s-t path used in the constraint. If so, we add this constraint as a

lazy constraint to the MIP solver to cut off solution x̂.

Model (2.6) with a large number of pieces |I| could be computationally de-

manding to solve. In fact, I could be as large as T − 1 in the worst case, resulting in

(T − 1)×K constraints for each path P ∈ P in model (2.6). However, we observed

in our experiments that among these T − 1 pieces, a large number of them could be

eliminated if their corresponding slopes are close enough to each other (more details

are provided in Section 2.4). A simple heuristic can be devised to reduce the number

of pieces to, e.g., a constant N ′ < T − 1 by tuning a threshold δ, where consecutive

pieces are merged if their slopes differ by no more than δ. However, this does not

guarantee that the best fitted utility function among all piecewise linear concave

functions with at most N ′ pieces can be found in this way. To do so, we propose the

following formulation instead:
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min
∑
j∈T

(αj − ũj)2 (2.7a)

s.t. ∃β ∈ RT
+ s.t. (α, β) satisfies (2.3) (2.7b)

αj = min
i=1,...,N ′

{viz̄j + wi}, ∀j ∈ T (2.7c)

vi ≥ 0, i = 1, . . . , N ′. (2.7d)

To handle constraint (2.7c) for each j ∈ T , we introduce a new binary variable for

each piece of the utility function and replace (2.7c) by the following set of constraints:

αj ≤ viz̄j + wi ∀i ∈ N, j ∈ T (2.8a)

αj ≥ (viz̄j + wi)−M(1− tij) ∀i ∈ N, j ∈ T (2.8b)∑
i∈{1,...,N ′}

tij = 1 ∀j ∈ T (2.8c)

tij ∈ {0, 1}, ∀i ∈ {1, . . . , N ′}, j ∈ T, (2.8d)

where M is an upper bound for all pieces within range [Y0,W0]. A valid value

for M can be set as, e.g., 1
δ∗
W0 + 1 where δ∗ is the smallest element in the set

∆ = {z̄j+1 − z̄j | j = 1, . . . , T − 1}, since the slope of any piece is bounded by 1
δ∗

.

Formulation (2.8) can possibly be improved, e.g., using disjunctive programming [7],

however, as we indicate in Section 2.4, solving (2.8) to get the best fit piecewise linear

concave function with up to N ′ pieces is not a bottleneck in the entire procedure.
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2.3 Robust expected utility framework with incomplete preference

In this section, we propose an alternative approach to address the incomplete leader’s

preference by following the robust expected utility framework rooted in [4, 44]. To

do so, we first explain the main results of [4, 44], and then adapt these ideas into the

stochastic shortest path interdiction setting.

We model the worst-case utility by modifying problem (2.1) to take an inner

infimum over the functional space of possible utility functions:

max
x∈X

inf
u∈U

E

[
u

(
min

{∑
a∈P

(c̃a + d̃axa) | P ∈ P

})]
, (2.9)

It will be useful for us to focus on the inner optimization problem here indepen-

dently, as there is considerable development required to explain how [4, 44] approach

optimization over the set of functions U . First, we partition the set of utility func-

tions by their values at points zj ∈ Z, j ∈ T . For any given α this yields a set of all

those utility functions consistent with these utilities for each possible outcome of our

gambles, U(α) := {u : u(zj) = αj}; for each such α, we will need to further restrict

our attention to those utility functions also in Un, Ua, and U2. Thus we reformulate

the inner optimization in (2.9) as:

min
α

E

[
u

(
min

{∑
a∈P

(c̃a + d̃axa) | P ∈ P

})]
(2.10a)

s.t. U(α) ∩ U2 6= ∅ (2.10b)

U(α) ⊆ Ua (2.10c)

U(α) ⊆ Un. (2.10d)
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There are infinitely many utility functions satisfying these constraints. In par-

ticular, for each consecutive pair of points zj and zj+1 in our gambles’ support, we

may generate an infinite number of lines by varying αj and αj+1. However, by the

definition of U2 our utility functions must also be non-decreasing, so αj ≤ αj+1

for each such pair, and we seek to find the worst-case utility consistent with these

assumptions. Hence, if we call the optimum utility of point z as u∗(z) (optimum

regarding worst-case utility):

u∗(z) = min
v≥0,w

vz + w (2.11a)

s.t vz̄j + w ≥ αj, ∀j = 0, 1, . . . , T. (2.11b)

Model (2.11) provides a tractable linear programming (LP) representation for

the concave piecewise linear program formed by connecting each (zj, αj) to its succes-

sor (zj+1, αj+1) by a line segment; at each z, this piecewise linear function gives the

minimal function value consistent with the vector α and our structural assumptions

on U . If we now substitute z by h(x, ξ) for every scenario, and use constraints (2.3)

to model (2.10b) to (2.10d), the following LP model gives the worst-case utility for

a fixed x ∈ X:

min
α,β,v,w

∑
k∈K

pk(vk

(
min

{∑
a∈P

(c̃a + d̃axa) | P ∈ P

})
+ wk) (2.12a)

s.t. z̄jvk + wk ≥ αj, ∀k = 1, 2, . . . , K, ∀j = 0, 1, . . . , T (2.12b)

∃β ∈ RT
+ s.t. (α, β) satisfies (2.3) (2.12c)

v ∈ RK
+ . (2.12d)
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Remark. If {αj}Tj=1 satisfies (2.3) (recall that αj is defined in Section 2.2.2), then

the piecewise linear utility function defined by {αj}Tj=1 is identical to the worst-case

utility in (2.9).

This model is solvable only for a given x. If we consider a fixed x, then the

distribution h(x, ξ) is determined, and so we can find the corresponding expected

utility. To find the leader’s optimal x ∈ X, we need to combine our outer decision

problem with the framework we have just developed for minimizing over the set U .

Because the decision problem is a maximization problem, we first need to change

the optimization sense of problem (2.12). To this end, we can fix the value of x,

take the dual of the problem (2.12), and then release x. We introduce the following

sets of dual variables: µk,j, k = 1, 2, . . . , K, j = 0, 1, . . . , T for constraint (2.12b),

ν`, ∀` = 1, 2, . . . , L for constraint (2.3b), λ
(1)
j , ∀j = 0, 1, . . . , T − 1 for constraint

(2.3c), and λ
(2)
j , ∀j = 0, 1, . . . , T − 1 for constraint (2.3d). The combined model can

now be stated as:
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max
x∈X,µ,ν,λ(1),λ(2)

ν0 (2.13a)

s.t.
∑
j∈T

z̄j
pk
µk,j ≤ min

{∑
a∈P

(c̃a + d̃axa) | P ∈ P

}
, ∀k ∈ 1, 2, . . . , K

(2.13b)∑
k∈K

µk,j − [P(W0 = z̄j)− P(Y0 = z̄j)] ν0 −
∑
`∈L

[P(W` = z̄j)− P(Y` = z̄j)] ν`

+ (λ
(1)
j − λ

(1)
j−1)− (λ

(2)
j − λ

(2)
j−1) ≥ 0, ∀j = 0, 1, . . . , T

(2.13c)

λ
(2)
j (z̄j+1 − z̄j)− λ(1)

j−1(z̄j − z̄j−1) ≤ 0, ∀j = 0, 1, . . . , T − 1 (2.13d)∑
j∈T

µk,j = pk, ∀k = 1, 2, . . . , K (2.13e)

µ ∈ RK
+ × RT+1

+ , ν ∈ RL+1
+ , λ(1) ∈ RT

+, λ
(2) ∈ RT

+. (2.13f)

If h(·, ξ) is a concave function of x, the feasible set defined by constraint (2.13b)

is convex. When all constraints are linear in the decision variables, we can use an

LP or MIP solver (depending on whether or not the decision vector x involves any

integer variables) to solve this model and find an optimal x ∈ X and the associated

worst-case utility.

2.3.1 A robust utility model for stochastic shortest path interdiction

with incomplete defender’s preference

In this section, we develop a model in which the leader’s risk preference is ambigu-

ous and the follower makes his decision after observing the realization of the random
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variables (wait-and-see). This model is particularly useful for modeling situations

in which the leader represents a group of decision makers with different risk prefer-

ences, for modeling leader for whom standard decision-analytic elicitation techniques

require preference comparisons that the leader finds difficult to concretely imagine, or

simply for evaluating the sensitivity of standard models to the completeness assump-

tion. In this case, the leader confronts a risky decision but the follower faces only

a deterministic shortest path problem. Because the leader’s preferences are incom-

plete, we use the previously developed model (2.13) to represent optimization under

incomplete preferences. The objective is to find an interdiction plan by considering

the leader’s worst-case utility. The value of each interdiction plan, that is, the value

of the shortest path that the follower chooses given that plan, depends on uncertain

parameters (cost and interdiction effect of each arc). From the perspective of the

leader, each interdiction plan can be seen as a gamble. Therefore, in this model, the

pairwise comparisons are for different interdiction plans.

In constraint (2.13b), h(x, ξ) is the value of the shortest path that follower

chooses contingent on the random scenario value ξ given an interdiction plan x.

Let set P be the set of all s-t paths in the network, so that h(x, ξ) = h(x, c̃, d̃) =

min
{∑

a∈P (c̃a + d̃axa) | P ∈ P
}

. Constraint (2.13b) can then be reformulated as:∑
j∈T z̄jµk,j ≤ pk

∑
a∈P (c̃ka + d̃kaxa), ∀P ∈ P , ∀k = 1, 2, . . . , K, which gives the

following MIP formulation for the stochastic network interdiction problem with a

wait-and-see follower and incomplete knowledge about the leader’s preferences:
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max
x∈X,µ,ν,λ(1),λ(2)

ν0 (2.14a)

s.t.
∑
j∈T

z̄jµk,j ≤ pk
∑
a∈P

(c̃ka + d̃kaxa), ∀P ∈ P , ∀k = 1, 2, . . . , K (2.14b)

(2.13c)−−(2.13f). (2.14c)

Similar to solving model (2.6), we can add constraints (2.14b) in a delayed constraint

generation manner and solve (2.14) using a branch-and-cut algorithm. For the sake

of computational comparison (presented in Appendix) we also consider a common

practice in robust optimization to handle constraint 2.14b. Note that constraint

2.14b can be written as (for x = x̂):

1

pk

∑
j∈T

z̄jµk,j ≤ min

{∑
a∈A

(c̃ka + d̃kax̂a)ya, y ∈ Y

}
, ∀k = 1, 2, . . . , K. (2.15)

Let πki , i ∈ V be the dual variable corresponding to each constraint in Y , then

we can replace constraint (2.14b) with the following two constraints:

1

pk

∑
j∈T

z̄jµk,j ≤ πkt , ∀k = 1, 2, . . . , K (2.16)

πkn − πkm ≤ c̃ka + d̃kaxa, ∀a = (m,n) ∈ A, ∀k = 1, 2, . . . , K. (2.17)

Same approach could be applied to the model (2.6), however because of the similarity

in the structure and acceptable computational performance of model (2.6), we only

compare this formulation for robust expected utility model.
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2.3.2 A robust certainty equivalent model for stochastic shortest path

interdiction with incomplete defender’s preference

The performance of the robust utility model (2.14) depends on the amount

of information that can be exploited from historical data on pairwise comparisons

made in the past. When we do not have enough information, the corresponding

worst-case utility may not well represent the decision maker’s actual risk preference.

In the extreme case, for example, when only a very small number of comparisons

are incorporated, then the worst-case utility function may just be a linear function,

making it a risk neutral model. Indeed, it is shown in [4] that model (2.14) is inclined

towards a risk neutral model when a large amount of ambiguity exists. In this case,

the robust certainty equivalent model, also proposed and studied in [4], is shown to

be more desired.

Given a utility function u(·), the certainty equivalent of a gamble h(x, ξ) is the largest

sure amount such that the decision maker is indifferent between this sure amount and

the gamble. In other words, the certainty equivalent corresponding to the optimal

interdiction plan x̂ is given by sup{C | E[u(h(x̂, ξ))] ≥ u(C)}. When the information

on the preference is incomplete, i.e., the utility function is only known to belong

to an ambiguity set U , the robust certainty equivalent can be defined in a robust

optimization setting as:

sup{C | E[u(h(x̂, ξ))] ≥ u(C), ∀u ∈ U}. (2.18)

Recall that U is defined in (2.2), to check whether a constant C is qualified as
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a candidate for the robust certainty equivalent, one could instead solve:

max
x∈X

min
u∈U

{E[u(h(x, ξ))]− u(C)} , (2.19)

and check if the optimal objective value is nonnegative. It is clear that model (2.19)

is almost identical to model (2.9), one could apply the same approach used for solving

(2.13) to solve model (2.19) with a fixed C. Since the certainty equivalent is a scalar,

one could solve (2.18) by finding the largest qualified C using a bisection procedure.

We note that C can only take values between Y0 and W0, the smallest and largest

outcome from any gamble.

Here, we summarize the pros and cons of each model presented in this section and

try to provide a guideline on how to choose the right model given a specific situation.

The proposed models could be separated to two different groups: one which separates

the utility estimation and optimization phase and another one which integrates the

utility estimation and optimization in a robust manner in order to optimally deploy

the available information. As it will be discussed in section 2.4, the first group of

methods are very straightforward to implement and computationally easy. However,

if we have inadequate amount of information on decision maker’s risk preferences

(a considerable amount of ambiguity is involved), then the first group of methods

will perform very poorly in capturing the risk aversion. This is the situation where

we prefer robust certainty equivalent model because of its strength in capturing risk

aversion under high level of ambiguity. When we have enough information regarding

the shape of the utility function, then we choose robust expected utility model if

computational time is not a limiting issue for us, otherwise the first group of methods
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are preferred.

2.4 Computational Experiments

In this section we evaluate the models described in the previous section through a

set of test instances that are randomly generated. We first provide details on how

our random instances are generated. Then we present and discuss the computational

results for various models that we consider.

2.4.1 Instance generation

Recall that all the proposed approaches require a set of comparisons between pairs of

gambles as inout. We assume that the results of these comparisons should be consis-

tent with some underlying (true) utility function. Our instance generation procedure

is primarily directed towards constructing a set of gamble pairs with this property.

For simplicity, all the network instances that we generate in our experiments are grid

networks of various sizes. The instance generation procedure consists of the following

steps:

1. Select the size of the grid network and assign the cost and interdiction effect

for each arc of the network in each scenario. The costs and interdiction effects

are randomly generated according to a uniform distribution U(15, 30).

2. Randomly generate a set of feasible interdiction plans using a given budget

ratio ρ, so that r0 = |A| × ρ. We assume that the interdiction costs for all

arcs are identical, i.e., ra = 1, ∀a ∈ A (recall that r0, r are defined in (1.18)).

We consider three different budget ratios ρ ∈ {0.5, 0.6, 0.7}. For each ratio, we
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randomly generate 20 different interdiction plans.

3. Calculate the outcome corresponding to each decision (i.e., the shortest path

value for each interdiction plan) for each scenario and refer to the values of

these outcomes as “attributes”.

4. Assign a utility value for each attribute using an underlying non-decreasing

concave utility function, which can be interpreted as the “true utility”. In our

experiments we use u(z) = a(tan−1(cz))d + b with c = 0.009 and d = 0.01, and

parameters a and b are determined based on two constraints: u(Y0) = 0 and

u(W0) = 1.

5. Calculate the expected utility values of the generated interdiction plans:

5.1. For each budget ratio, calculate the expected utility of each plan.

5.2. Calculate the difference of expected utilities between every two plans and

sort these differences in an ascending order.

6. Given a fixed number of pairwise comparisons to be included in any model, we

choose pairs of gamble comparisons corresponding to the largest differences in

terms of the expected utility values evenly from each budget ratio.

2.4.2 Computational settings

We implement all models considered in Python 3.4 and we use Gurobi 6.5.1 as the

LP and MIP solver to solve them. For each network instance and scenario size,

we generate five replications and report the average results. We leave all Gurobi
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parameters at their default settings except for the time limit, number of threads,

and MIPGap. We impose a time limit of 3600 seconds on each experiment, set the

number of threads to one, and set the MIPGap (ending optimality gap) parameter

to 10−3. Valid inequalities in models (2.6) and (2.14) are added as lazy constraints in

Gurobi. We use package Networkx [37] for graph-related algorithms (e.g., for solving

the shortest path problems) and Numpy [97] for array and matrix computations. All

experiments are conducted on a Linux workstation with four 3.00 GHz processors

and 6 Gb memory.

2.4.3 Comparison between the robust expected utility model and the

robust certainty equivalent model

In this section we present and discuss the performances of the following models:

1. The risk neutral model (RNM), where the interdictor simply maximize the

expected value of the stochastic shortest interdicted path, i.e.,

max
x∈X

E[h(x, ξ)].

2. The robust expected utility model (REU) presented in (2.14) in Section 2.3.1.

3. The robust certainty equivalent model (RCE) presented in (2.18) in Section

2.3.2.

4. Fitting the utility function using piecewise linear concave functions with up

to T − 1 pieces (recall that T is the cardinality of the support of all random

gambles involved in the set of pairwise gamble comparisons), which we call
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the “full piecewise linear fitting” (FPM), presented in model (2.4). Given a

solution of (2.4), we use parameter δ = 10−4 so that consecutive pieces are

merged together if the differences between their slopes are less than δ.

5. Fitting the utility function using piecewise linear concave functions with up

to N ′ = 5 pieces, which we call the “partial piecewise linear fitting” (PPM),

presented in model (2.7).

We first evaluate whether or not the robust models (REU and RCE) could

successfully capture the risk aversion of the decision maker, if the amount of prefer-

ence information is little, which happens when the number of pairwise comparisons

recorded in the historical data is small. We use a well-known risk measure, the

Conditional Value at Risk (CVaR), to quantify the level of risk aversion of the cor-

responding solution. Given a parameter α, CVaR is defined as:

CV aRα = E[X | X ≤ V aRα(X)], (2.20a)

where,

V aRα = max{c : P(X ≥ c) ≥ 1− α}, (2.21a)

which represents the α% worst outcome, i.e., the realization of the shortest inter-

dicted path value is larger than this value with probability at least 1 − α. In the

context of shortest path interdiction, X in 2.20a and 2.21 is the length of the shortest

path that the follower choose after observing the leader’s plan.

Table 1 reports the corresponding CVaR values for optimal plans obtained from

different models with 100 scenarios, a fixed budget ratio (0.4) and two different levels
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of α (0.01 and 0.1). For the robust expected utility model, we consider two different

situations: one with 20 pairwise gamble comparisons and the other with only three

pairwise gamble comparisons. To some extent, the number of pairwise comparison

included in the model represents the amount of incomplete preference information.

We should mention that to emphasize the unfavorable effects caused by the lack of

information, the three pairwise comparisons are chosen as the ones with the smallest

differences in their expected utility values (please refer to Step 6 of the instance

generation procedure in Section 2.4.1).

Table 1. Comparison of the solution behavior for the risk neutrial model (RNM), ro-

bust expected utility model (REU) with 20 and 3 pairwise comparisons, and

robust certainty equivalent model (RCE) with 3 pairwise gamble compar-

isons using CVaR.

Instances

α = 0.01 α = 0.1

RNM
REU REU RCE RCE

RNM
REU REU RCE RCE

(L = 3) (L = 20) (L = 3) (L = 20) (L = 3) (L = 20) (L = 3) (L = 20)
3× 3 93.30 93.30 106.4 109.20 106.4 114.47 114.47 122.97 121.56 122.97
4× 4 158.90 158.90 174.40 181.13 176.20 183.71 183.71 192.53 192.93 197.05
5× 5 234.10 234.10 248.40 264.13 251.90 260.13 260.13 271.18 272.65 275.38
6× 6 310.63 310.63 321.63 342.33 320.63 341.28 341.28 352.93 350.39 351.00
7× 7 381.60 380.10 397.30 426.55 396.43 416.82 420.40 427.96 432.57 430.49

Table 2. Comparison of solution time for REU and RCE with L = 20
Instances REU (L = 20) RCE (L = 20)

3× 3 1.30 58.46
4× 4 3.99 196.66
5× 5 10.75 410.08
6× 6 223.05 16573.62
7× 7 3604.83 20827.93

As we can observe in Table 1, solutions from the risk neutral model (RNM)

and REU (L = 3) behave almost the same in terms of the CVaR value. On the
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other hand, we see that the robust certainty equivalent model can capture the risk

aversion quite well, which yields similar CVaR values as REU with a larger number

of pairwise gamble comparisons. For REU and RCE when L = 20, CVaR values

are very similar. However, as we mentioned earlier, the computational time of RCE

is intense, as reported in Table 2. Hence, when we do not have a large amount

of ambiguity, REU is a preferred approach. As an illustrative example, we focus

on the tail distribution (with α = 0.1) of the stochastic shortest interdicted path

values for optimal solutions yielded by various models for a particular instance in

Figure 1. Note that we expect a risk-averse decision to stay away from extremely

bad outcomes, i.e., the ones that correspond to very small shortest path values,

which should results in a larger CVaR value. This is indeed what we can observe

in Figure 1, since the realizations in the left tail of REU (L = 20) and RCE are

clearly larger than RNM and REU (L = 3). This confirms the observation made

by [4] that when there is not enough information that can be exploited from the set

of pairwise gamble comparisons, e.g., when too few comparisons are available, the

worst-case utility function given by the robust expected utility model behaves like a

linear function, which corresponds to a risk neutral model.

2.4.4 Comparison between the robust expected utility model and the

best fitted piecewise linear concave utility model

We next compare the performances of the robust expected utility model and the

best fitted piecewise linear concave utility model in terms of how the resulting utility

functions resemble the true underlying utility function. If we base our comparison

45



Fig. 1. Illustration on the tail distributions of the optimal solutions obtained by model

RNM, REU with L = 3 and L = 20, and RCE with L = 3 for a 3 × 3 grid

network instance with 100 scenarios and budget ratio 0.4.

using a measure of overall distance (e.g., the average squared error) from the true

utility function, we can observe from Table 3 that the fitted piecewise linear concave

utility functions perform better than the worst-case utility function from the robust

expected utility model. We also see that the performance of FPM and PPM are very

similar, meaning that a small number of pieces are sufficient to yield a good fit of
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Table 3. The average squared error between the resulting utility function from each

model (REU, FPM and PPM) and the true utility function. All instances

considered in this table have 100 scenarios and budget ratio 0.4.

Instances
Average Squared Error

REU (L=20) FPM PPM

3× 3 0.0323 0.0083 0.0088

4× 4 0.0286 0.0092 0.0099

5× 5 0.0245 0.0074 0.0083

6× 6 0.0341 0.0049 0.0077

7× 7 0.0409 0.0223 0.0288

the utility function. However, there is a key difference between these two types of

approaches: For FPM and PPM, utility estimation is separated from optimization,

so that the optimal solution does not have any effect on the fitted utility function.

On the contrary, in the robust expected utility model, the resulting worst case utility

function depends on the distribution of the stochastic shortest interdicted path value

corresponding to the optimal solution (note that the shortest path value is indeed a

random variable). In Figure 2, the barchart between the two vertical dashed lines

gives the distribution of the random outcome of the shortest interdicted path value

with respect to the optimal interdiction plan (the length of the shortest path for

each scenario). Focusing on the realization of this random variable, we see that the

worst case utility in this region is almost parallel to the true utility function, which

captures the true risk aversion locally in the area of interest. On the other hand, we
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see that the fitted function from the FPM model does not resemble the curvature

of the true utility function in that local area as accurate as the worst-case utility

function, although over the entire region, this function fits the true utility function

better.
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Fig. 2. An illustration of the true utility function, the worst-case utility function re-

sulting from the REU model, and the fitted utility function from the FPM

model for four grid network instances: 3 × 3 with interdiction budget r0 = 6

(top left), 4× 4 with interdiction budget r0 = 10 (top right), 5× 5 with inter-

diction budget r0 = 16 (bottom left) and 6 × 6 with r0 = 34 (bottom right)

with 100 scenarios and 20 pairwise comparisons.
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2.4.5 Computational performances

In this section we present the computational performances of the proposed ap-

proaches. In all tables presented below, we use the following labels:

• Instance: Size of the grid network in the form of n × n, e.g., a 3 × 3 grid

network has nine nodes and 12 arcs.

• K: Number of scenarios. We test for three different scenario sizes: K = 100,

500, and 1000.

• Time: If the instance is solved to optimality within the time limit, we report

the computational time (in seconds), otherwise, we report the average ending

optimality gap (A) and the number of instances that were solved to optimality

within the time limit (among the five replications) in the form of A(B) .

• # Nodes: Total number of nodes explored in the branch-and-bound tree.

• RootGap: The relative optimality gap between the best objective value ob-

tained (U∗) and the relaxation bound obtained after exploring the root node

of the branch-and-bound tree (UR), i.e., U∗−UR
UR

.
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Table 5. Average computational time for two approaches, REU and PPM, on sets of

pairwise gamble comparisons of different sizes (20, 50, and 100, respectively).

REU PPM

K Instance Budget 20 50 100 20 50 100

100

3× 3 6 2.77 1.77 2.45 7.44 12.10 15.30

4× 4 12 2.14 3.85 4.04 16.17 24.94 25.85

5× 5 20 21.79 46.69 48.76 27.17 33.74 45.78

500

3× 3 6 18.40 19.04 39.67 22.28 21.02 22.53

4× 4 12 23.72 36.90 45.03 32.16 33.69 36.96

5× 5 20 158.86 226.61 271.28 71.25 63.65 68.28

1000

3× 3 6 68.95 72.97 92.12 21.75 31.30 26.37

4× 4 12 57.88 95.28 657.41 39.68 51.14 46.87

5× 5 20 920.89 1332.38 1419.86 133.16 140.29 145.80

In Table 4, we report the average computational time (including the time spent

on fitting the utility function for approaches FPM and PPM), number of nodes

explored in the branch-and-bound tree, and the root optimality gap for three ap-

proaches REU, FPM and PPM for grid network instances with various network sizes,

interdiction budgets, and scenario sizes. From Table 4, we observe that FPM takes

more time than both PPM and REU in almost all the test instances. REU yields a

better performance in terms of computational time for small network instances with

a small number of scenarios, however, PPM gives the best performance in general,
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particularly for larger network instances. We also see that a larger scenario set has

more impact on REU than PPM. Finally, we see that all three approaches yield a

relatively tight root relaxation bound.

In Table 5, we report the average computational time for REU and PPM for

sets of pairwise gamble comparisons of various sizes. From 5, we observe that the

computational performance of PPM is almost independent of the number of pairwise

comparisons that are incorporated to the model. In contrast, REU takes significantly

more time when a larger number of gamble comparisons are incorporated.

In the Appendix, we report the full computational results for the three ap-

proaches, REU, FPM and PPM with various interdiction budget ratios in Table 19

and Table 21. We also report in Table 22 a detailed computational time profile for

approach PPM on three different phases (calculating the upper and lower bounds

ūj, uj, j ∈ T , fitting the utility function, and optimization using the utility function).

2.4.6 Summary of computational experiments

According to our computational experiments using stochastic shortest path interdic-

tion problems with incomplete defender’s preference, we conclude that there are two

important factors to consider when choosing the appropriate approach: the amount

of preference information (encoded by the set of pairwise gamble comparisons) and

the computational budget. When the number of pairwise gamble comparisons is

small, we see that the robust certainty equivalent model (RCE) captures the risk

aversion of the decision maker better than the robust expected utility model (REU).

When the number of pairwise gamble comparisons is sufficient, the robust expected
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utility model performs better than the approach that separates utility fitting and

optimization (FPM and PPM), as it better captures the local risk aversion behav-

ior of the true utility around the outcomes corresponding to the underlying optimal

interdiction plan. However, it comes at the cost of increased computational time.

Therefore, REU is a preferred approach when the computational budget is not tight.

Otherwise, one would choose to fit a piecewise linear concave utility function with a

fixed (small) number of pieces first, and then do optimization using the best fitted

function.

2.5 Extensions

In this section we discuss a possible extension of the proposed models, to the case

when the follower also makes his decision before the realization of uncertain pa-

rameters, i.e., in a “here-and-now” setting. Network interdiction problem with a

“here-and-now” follower has been studied by [52], where the authors show that dif-

ferent follower’s risk preferences may have a significant impact on the leader’s optimal

decision. We assume that the follower knows his own utility function; the leader is

ambiguous about the follower’s risk preference, but has access to some data (in the

form of pairwise comparisons of gambles made by the follower in the past) that can

help her gain possibly incomplete information about it.

One way to incorporate this incomplete information about the follower’s pref-

erence is to consider a set U of utility functions of some parametric form that are

consistent with the pairwise gamble comparisons. We consider formulation (2.22) to

model this situation. The lowest level problem is the expected utility maximization
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problem for the follower, given a fixed utility function. For a given interdiction deci-

sion x, since the leader is unsure about the follower’s utility function, she considers

the worst case (for her) among all possible utility functions that belong to the ambigu-

ity set constructed using her incomplete information about the follower’s preference.

Lastly, the outermost problem optimizes the leader’s interdiction decision.

min
x∈X

max
u∈U

max
y∈Y

E

[
u

(∑
a∈A

(c̃a + d̃axa)ya

)]
, (2.22)

where Y =
{
y ∈ R|A|+ | (1.18b), (1.18c)

}
.

Model (2.22) is challenging to solve. Instead of considering the worst case utility

function among U , one may settle with a sample approximation by sampling from this

set of utility functions (which belong to a finite dimensional space, since a particular

parametric form (such as piecewise linear functions) is assumed), and consider the

worst case utility function among all samples. Given a set of utility functions {uj}j∈J

sampled from the entire set U of utility functions that are compatible with the leader’s

incomplete knowledge about the follower, this problem can be formulated as follows:

min
x∈X

max
j∈J

max
y∈Y

E

[
uj

(∑
a∈A

(c̃a + d̃axa)ya

)]
. (2.23)

Suppose we consider the family of piecewise linear functions with a fixed number

of pieces N , similar to model (2.5), given a fixed interdiction plan x, the worst case
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expected utility can be calculated as:

max
j∈J

∑
k∈K

1

K
θjk (2.24a)

s.t. θjk ≤ vji

[∑
a∈A

(cka + dkaxa)ya

]
+ wji , ∀j ∈ J,∀k ∈ K, ∀i ∈ {1, . . . , N} (2.24b)

∑
a∈FS(m)

ya −
∑

a∈RS(m)

ya =


1 if m = s

−1 if m = t

0 o.w.

(2.24c)

vji ≥ 0, ∀i ∈ {1, . . . , N}, ∀j ∈ J, ya ∈ {0, 1}, ∀a ∈ A. (2.24d)

Therefore, the defender’s problem (2.23) can be formulated as:

min
x∈X

max
j∈J

{∑
k∈K

1

K
θjk | (2.24b) to (2.24d)

}
. (2.25)

Model (2.25) can be seen as a bilevel min-max optimization problem in which the

lower level problem depends on the higher level solution. Here we describe a possible

solution method with which we can solve some small instances. The solution method

is based on the integer L-shaped method developed to solve two-stage stochastic

integer programs [49].

Given a fixed integer feasible solution x̂ in the upper level, we can solve |J |

separate subproblems (2.24) in the lower level for each utility function j ∈ J and

obtain the corresponding expected utility value Qj(x̂). Assume that η0 is an overall

lower bound for the optimal objective value. Then the following integer L-shaped
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cut can be generated and added to the upper level problem:

η ≥ (Qj(x̂)− η0)

∑
i∈S(x̂)

xi −
∑
i/∈S(x̂)

xi − |S(x̂)|+ 1

+ η0,

where S(x̂) = {a ∈ A | x̂a = 1}.

We should mention that, even though it is easy to implement integer L-shaped

method, integer L-shaped cuts are known to be very weak, and should be embedded

with some additional structure-exploiting cuts that are problem specific. In order to

be able to solve medium- and large-scale instances, more advanced techniques are

needed for solving this problem.

2.6 Concluding Remarks

We studied the stochastic shortest path interdiction problem with a wait-and-see

follower when the leader has incomplete knowledge about her risk preference. We

took two different approaches to model this problem. In the first approach, we fit a

piecewise linear concave utility function according to the incomplete knowledge about

the leader’s true utility function through a set of pairwise gamble comparisons. Then

we used this best-fitted utility function to formulate an expected utility maximization

problem. In the second approach, we integrated the incomplete knowledge into

the expected utility maximization problem by adapting the robust expected utility

framework proposed by [4, 44], which combines utility estimation and optimization

into a single model. We also developed a branch-and-cut algorithm to solve both

of the proposed models. We conducted extensive computational experiments on

both approaches, and we found that the robust expected utility model performs
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better in terms of resembling the true utility function locally at the support of the

random outcomes associated with the corresponding optimal solution. However, this

model could be very time-consuming to solve in large-scale instances. On the other

hand, solving the expected utility maximization problem with a best-fitted piecewise

linear concave utility function with a small number of pieces is more computationally

convenient. As a possible future work, we could extend the proposed models to the

situation where the follower also needs to make a here-and-now decision. Therefore,

the leader needs to make an optimal interdiction plan with an incomplete knowledge

about the follower’s preference.
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CHAPTER 3

PARTITION-BASED DECOMPOSITION ALGORITHMS FOR

TWO-STAGE STOCHASTIC INTEGER PROGRAMS WITH

CONTINUOUS RECOURSE

3.1 Introduction

In this chapter, we propose adaptive partition-based decomposition algorithms for

two-stage SIP with integer variables only in the first stage. The core of the proposed

methods is based on the theoretical and computational results established for two-

stage stochastic linear programs reported in [86, 92]. We show that the success

of partition-based approaches for two-stage stochastic linear programs with fixed

recourse can be extended to the two-stage SIP with continuous recourse to some

extent. In particular, the overall cutting plane approach and level decomposition

using inexact cuts induced by scenario partitions can be successfully integrated into

the branch-and-cut algorithm used to solve the integer programming master problem.

However, in contrast to the linear case, where it has been proved that there exists

a sufficient partition whose size is independent of the number of scenarios used in

the model, we do not have such theoretical guarantee when the first-stage problem

involves integer variables. (The proof of [92][Theorem 1] highly depends on the

polyhedral property of the extensive formulation (1.6).) Therefore, using the same

refinement rule suggested by [86, 92] based on the optimal dual multiplier for each
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scenario may result in a very large partition in a few iterations, making the entire

algorithm less interesting. To address this issue, we propose a heuristic strategy for

doing partition refinement that maintains a small partition in the first few iterations

and then gradually increases the size of the partition, with the guidance of the

optimal dual multipliers.

The contributions of this chapter can be summarized as follows. First, this is the

first time to the best of our knowledge that the computational performances of the

adaptive partition-based decomposition algorithms for two-stage SIP are reported.

To make this happen, we integrate the partition-based overall cutting plane algorithm

and level decomposition with the branch-and-cut algorithm for solving the integer

programming master problem. In addition, we provide empirical guidance on how

to perform partition refinement when it is not necessarily guaranteed that a small

sufficient partition exists.

The rest of the chapter is organized as follows. In Section 3.2, we describe how

the partition-based overall cutting plane algorithm is integrated with the branch-

and-cut algorithm, and how the partition-based level decomposition is customized

for solving two-stage SIP with continuous recourse. We present our computational

experiment results in Section 3.3, and give concluding remarks in Section 3.4.

3.2 Partition-Based Decomposition Algorithms for Two-Stage Stochas-

tic Integer Programs with Continuous Recourse

In this section we propose two types of adaptive partition-based decomposition algo-

rithms for solving two-stage SIP with continuous recourse. The proposed algorithms
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integrate the partition-based framework established for two-stage stochastic linear

programs [86, 92] with the branch-and-cut algorithm for solving the integer program-

ming first-stage master problem.

3.2.1 A partition-based branch-and-cut algorithm

The partition-based branch-and-cut algorithm embeds the partition-based overall

cutting plane algorithm for two-stage stochastic linear programs with fixed recourse

[92] into the branch-and-cut framework. The key idea is to generate coarse cuts

corresponding to a scenario partition first, and resort to the exact Benders (fine)

cuts only when it is necessary. When the partition size is small compared to the

total number of scenarios, i.e., |N | � |N |, this potentially could accelerate the

cutting plane generation procedure by starting with coarse cuts that can be generated

efficiently, and only using the more expensive fine cuts when they are necessary to

close the optimality gap. When the fine cuts are generated, since the second-stage

subproblem is solved for each scenario k ∈ N , one could use the corresponding

optimal dual multipliers to refine the current partition. Because of these partition

refinements, the coarse cuts are asymptotically exact and their strengths are adaptive

to the solution procedure. Specifically, given a partition N and a first-stage solution

x̂, the partition-based subproblem for each component P ∈ N is defined as:

fP(x̂) = min
yP∈Rn2+

{
d>yP | WyP ≥ hP − TPx

}
, (3.1)

where TP :=
∑

k∈P T
k and hP :=

∑
k∈P h

k. A partition-based coarse cut can then be

generated by using the optimal dual multipliers λ̂P corresponding to the partition-
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based subproblem for each component P ∈ N :

θ ≥
∑
P∈N

(λ̂P)>(h̄P − T̄P x̂). (3.2)

It is clear that cuts (3.2) are valid optimality cuts for (1.6), since they can be seen as

Benders (fine) cuts for (1.12), which is a relaxation of (1.6). Compared with the stan-

dard Benders decomposition, where a fine cut that involves solving all N scenario-

based subproblems needs to be generated throughout the algorithm, partition-based

coarse cuts provide a much cheaper way of generating valid cuts, at least during

the early stages of the algorithm. This could be very useful especially in the first

few iterations of the algorithm, since the initial solutions usually are far from the

optimal solution, and it does not worth the effort of generating exact cuts based on

these solutions. The whole framework can be seen as a special case of the so-called

“on-demand accuracy” [99, 25, 24], where more accurate cuts are generated when

they are mostly needed.

We implement the partition-based branch-and-cut algorithm using the aggre-

gated form of Benders cuts (1.10) for the sake of convenience. Indeed, if a disaggre-

gated form is used, one needs to define a separate variable θP for each component P

of partition N . Since partitions are adaptively refined, one may have to introduce

a variable θk for each scenario k ∈ N and replace θP by
∑

k∈P θ
k, in order to keep

all the generated cuts in the same solution space, so that a single branch-and-bound

tree is maintained. Otherwise, one has to maintain one separate branch-and-bound

tree for each partition N , which may be computationally inefficient.

Algorithm 2 presents the partition-based branch-and-cut algorithm for two-stage
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SIP with continuous recourse in details. For the convenience of presentation, we

assume that the first stage feasible set X ⊆ {0, 1}n1 . At the root node of the branch-

and-bound tree, the algorithm performs the same way as the overall cutting plane

method with coarse and fine cuts presented in [92] for two-stage stochastic linear

programs. During the branch-and-bound tree, we only attempt to generate cuts at

integer feasible solutions. In our experiments, we have also tested on variants of

this algorithm where cuts are also added at fractional relaxation solutions obtained

during the branch-and-bound tree beyond the root node. However, these variants

did not lead to an improved computational performance. In Algorithm 2, for each

node t in the branch-and-bound tree, N0(t) represents the set of variables fixed to

zero, and N1(t) represents the set of variables fixed to one. In our default setting,

the partition refinement is performed following [86, Algorithm 2], which can be done

as follows:

1. Given a partition N , consider a component P ∈ N and a set of optimal dual

multipliers λ̂k, ∀k ∈ P .

2. Let {K1, K2, ...KM} be a partition of P such that ‖λ̂k − λ̂k
′‖ ≤ δ, ∀k, k′ ∈

Km,m = 1, 2, ...,M for some threshold δ > 0.

3. Remove partition P from N and add components K1, K2, ...KM to N .

This refinement strategy is motivated by [86, Theorem 2.5]. In practice, this refine-

ment strategy tends to yield a large partition after a few refinements, especially when

a small sufficient partition does not necessarily exists (which is the case for two-stage

SIP with continuous recourse). In our computational experiments, we also experi-
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ment with other refinement strategies that have stronger controls on the partition

size.

During the main loop of Algorithm 2, we first choose a node from the set of open

nodes to process in step one. In step two, we first solve the master problem (1.9)

with the integrality constraints relaxed, and obtain a first-stage relaxation solution

((x̂, θ̂)) and a lower bound for that node (lb). If the node lower bound is greater than

the overall upper bound (zub), we leave this node and choose another open node to

process (if there exists any). Otherwise, we update the overall lower bound (zlb).

The second part in step two is to attempt to generate either a coarse cut or a fine

cut. Note that, if we are at the root node, these cuts are added as long as there exists

any that is violated by the relaxation solution. Beyond the root node, we only add

cuts at integer feasible relaxation solutions, and if a fractional relaxation solution is

obtained, we go to step three and do branching. If there is no violated cut, we update

the overall upper bound (zub) and choose another open node to process. Otherwise,

we add a cut (coarse or fine) and repeat the process for the current node.

In addition to the partition-based coarse optimality cuts and the Benders (fine)

optimality cuts, one could potentially add other valid inequalities to strengthen the

relaxation of the underlying integer program during the branch-and-bound tree. In

particular, valid inequalities that exploit the integrality of the first-stage variables,

such as the ones shown by [12, 11], can be integrated into the algorithm in the cut

generation loop.
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Let t← 0, N0(0)← ∅, N1(0)← ∅, OPEN ← {0}, zlb ← −∞, zub ← +∞, γc < 0, γf < 0, and choose an
initial partition, e.g., N = {1, 2, . . . , |N |}
while OPEN 6= ∅ do

step 1: Choose t ∈ OPEN; OPEN ← OPEN \{l}.
step 2: Process node l. Set ADDEDCUT ← TRUE.
repeat

Solve the master problem (1.9) (with integrality constraints relaxed), obtain a relaxation

solution (x̂, θ̂) and the node lower bound lb.
if lb > zub or (1.9) is infeasible then

Go to step 1.
else

Update the overall lower bound zlb.
if x̂ ∈ {0, 1}n1 or t = 0 then

foreach P ∈ N do

Solve the dual of (3.1) and obtain an optimal dual solution λ̂P .
end

if θ̂ −
∑
P∈N (hP − TP x̂)>λ̂P < γc|θ̂| then

Add θ ≥
∑
P∈N (hP − TPx)>λ̂P to model (1.9).

else
foreach k ∈ N do

Solve the dual of (1.4) and obtain an optimal dual solution λ̂k.
end
Refine partition N according to some refinement strategy.
if θ̂ −

∑
k∈N (hk − Tkx̂)> λ̂k < γf |θ̂| then

Add θ ≥
∑
k∈N (hk − Tkx)> λ̂k to model (1.9).

else
Set ADDEDCUT ← FALSE.
if t > 0 then

zub ← min{lb, zub}
end

end

end

end
Additional valid inequalities could be added here.

end

until ADDEDCUT = FALSE ;
step 3: Branching if necessary
if lb < zub then

Choose i such that x̂i ∈ (0, 1).
Set N0(t+ 1)← N0(l) ∪ {i}, N1(t+ 1)← N1(l), N0(t+ 2)← N0(l), N1(t+ 2)← N1(l) ∪ {i},
and t← t+ 2.
OPEN ← OPEN ∪ {t+ 1, t+ 2}.

end

end

Algorithm 2: Partition-based branch-and-cut algorithm for solving two-stage

stochastic integer programs with continuous recourse.
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3.2.2 Stabilizing the partition-based decomposition algorithm

In this section, we integrate the adaptive partition-based algorithm with level decom-

position, aiming at stabilizing the overall cutting plane method with partition-based

coarse cuts and Benders (fine) cuts. We note that such an integration has been done

for the case of two-stage stochastic linear programs in [92]. Similar as the stan-

dard level decomposition briefly reviewed in Section 1.1.2, the level master problem

projects a stabilization center x̂ onto a level set constructed by the current cutting

plane approximation of the objective function and a certain level target flev. This

cutting plane approximation includes the partition-based coarse cuts and Benders

(fine) cuts. Specifically, the level master problem is given by:

z̄ = min
x∈X
‖x− x̂‖1 (3.3a)

s.t. (cT + αav` )x+ βav` ≤ flev, ∀` ∈ L (3.3b)

(cT + αm)x+ βm ≤ flev, ∀m ∈M (3.3c)

where

αav` = −
∑
P∈N`

(λ̂P` )>TP , βav` =
∑
P∈N`

(hP)>λ̂P` (3.4)

αm = −
∑
k∈N

(λ̂km)>T k, βm =
∑
k∈N

(hk)>λ̂km, (3.5)

and L and M collect all the coarse and fine cuts generated so far, respectively. We

note that the objective function of the level master problem (3.3) is defined using L1-

norm instead of the typical choice of L2-norm. This is because the L1-norm could be

linearized easily so that problem (3.3) remains an MIP, which can be better handled
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by the commercial MIP solvers.

Instead of embedding the partition-based level decomposition within the branch-

and-cut framework, we solve the level master problem (3.3) to optimality at each

iteration. Integrating the level decomposition within the branch-and-bound tree can

be a challenging task since in the level master problem (3.3), both the objective

function and the constraints may be different in each iteration.

Algorithm 3 is divided into two main loops depending on the type of cuts that

we generate to build the cutting plane relaxation. We start the algorithm with a first-

stage solution (x̂) and a lower bound (zlb) of the original problem (1.5) (which can

be obtained by solving the mean value problem of (1.5)). In step one, after updating

the level parameter (flev), we solve the level master problem (3.3) with x̂ as the

stabilization center. If the projection model is infeasible, then flev is a valid lower

bound, we then update the lower bound as well as the level parameter and repeat

the process with the same partition. Otherwise, we add a coarse cut based on the

solution xt+1 obtained from the level master problem (3.3) and update z̄. We change

the stabilization center only if a significant improvement in z̄ is observed (which is

controlled by κf ). Whenever the relative gap between lower bound (zlb) and upper

bound estimated in the coarse cut loop (z̄), given by gapc, is small enough, we go to

step two. In step two, we add a fine cut (3.3c) (by solving the second-stage problems

for all scenarios), refine the current partition, update the current upper bound, and

use the incumbent solution as the stabilization center in the next iteration.

In the next section, we elaborate more on implementation details regarding the

algorithms developed in this section.
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t← 0, κf , κ ∈ (0, 1), z̄t ← +∞, zub ←∞.
Choose an initial x̂t ∈ X, obtain zlb, e.g., from solving the mean-value problem.
Choose an initial partition N , and set tolerance parameters εc ≥ εf > 0. Calculate
gapc ← z̄t−zlb

|zlb| , gapf ← zub−zlb
|zlb| .

repeat
step 1: Coarse cut loop
repeat

Set flev = κ zlb + (1− κ)z̄t.
Solve model (3.3).
if model (3.3) is INFEASIBLE then

zlb ← flev, z̄
t+1 ← z̄t, x̂t+1 ← x̂t, t← t+ 1.

else
Obtain xt+1 from projection model (3.3), and add a coarse cut to
model (3.3).

z̄t+1 ← min
{
z̄t, c>xt+1 +

∑
P∈N (hP − TPxt+1)>λ̂P

}
,

gapc ← z̄t+1−zlb
|zlb| .

if z̄t+1 < z̄t − κf (z̄t − flev) then
x̂t+1 ← xt+1.

else
x̂t+1 ← x̂t.

end

end

until gapc < εc;
step 2: Fine cut loop
Add a fine cut to model (3.3).

Set zub ← min
{
zub, c>x̂t+1 +

∑
k∈N (hk − T kx̂t+1)>λ̂k

}
, z̄t+1 ← zub,

gapf ← zub−zlb
|zlb| , and t← t+ 1.

until gapf < εf ;
Algorithm 3: Partition-based level decomposition for solving two-stage stochastic

integer programs with continuous recourse.
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3.3 Computational Experiments

In this section we present and discuss the computational results obtained by the

proposed adaptive partition-based algorithms for two-stage SIP with continuous re-

course on several different test instances: sslp [2], storm [54], and cap [12] (see also

[55]). We note that some of these instances involve integer variables in the second

stage, and therefore do not have continuous recourse structure. In these cases, we

relax the integrality constraints in the second stage problem. Also, the set of “storm”

instances does not have integer variables in the first stage in the original problem,

and we impose integrality constraints on these first stage variables to make them

our test instances. We describe the problem profiles of the test instances in Table 6.

Except for the “cap” instances, where we directly use the instances available from

[12], we randomly generate our test instances with various sample sizes. Specifically,

for “storm” instances, we estimate the sample mean µ̂ and sample variance σ̂2 of

each random variable according to the scenario information contained in the original

data files [54], and generate random samples from a normal distribution given by

N(µ̂, 2
3
σ̂); for “sslp” instances, since the realizations of the random variables are all

0’s and 1’s, we generate random samples from a binomial distribution using param-

eter p estimated from the scenario information contained in the original data files

[2]. For each instance and scenario size, we generate five replications, and report the

average results of these five replications.
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Table 6. Profiles of test instances (|N | is the number of scenarios, n1 and m1 are the

numbers of first-stage variables and constraints, respectively, and n2 and m2

are the numbers of second-stage variables and constraints, respectively).

Instances |N | n1 n2 m1 m2

sslp (5-25) {5000, 10000, 20000} 5 130 1 30

sslp (10-50) {5000, 10000, 20000} 10 510 1 60

sslp (15-45) {5000, 10000, 20000} 15 690 1 60

Storm {500, 1000, 5000} 121 1259 185 528

cap (10) {100, 500, 1000} 25 1250 1 75

cap (11) {100, 500, 1000} 50 2500 1 100

3.3.1 Computational setup

All the experiments were conducted on a Linux workstation with 3.0 GHz Intel CPU

and 6 GB of RAM. We used the commercial solver Gurobi 7.0.1 to implement all

the algorithms in our computations. We modified the following Gurobi parameters

and left the rest as the default setting: we set the number of threads to one, the

time limit as one hour (3600 seconds), the integer feasibility tolerance parameter

to be 10−5, the optimality gap threshold (MIPGap) as 10−4, and we turned on the

PreCrush parameter. All algorithms are implemented in Python 3.5 and we used

Numpy [93] to do all the matrix operations.
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3.3.2 Implementation details

We implemented the proposed adaptive partition-based decomposition algorithms

presented in Algorithm 2 (labeled as “Partition-B&C”) and Algorithm 3 (labeled as

“Partition-Level”). To implement Algorithm 2 and the classical Benders decompo-

sition, we maintained a single branch-and-bound tree and use the Callback utility in

Gurobi to add cuts. Gurobi provides two ways to add a cut: cbCut (user cuts) and

cbLazy (lazy constraints), where user cuts are known as valid inequalities that are

added to strengthen the problem formulation, whereas the lazy constraints are the

constraints that are necessary to ensure the validity of the formulation. At the root

node, we used cbCut for adding cuts at fractional relaxation solutions and cbLazy

for integer feasible relaxation solutions. Beyond the root node, we only used cbLazy

in our implementation, since we only added cuts at integer relaxation solutions. Fur-

thermore, in our implementation, we called the cut generation routine only when

Gurobi found a new incumbent solution. We only called the refinement routine in

Algorithm 2 within the root node, since we found in our experiments that performing

refinements beyond the root node led to a worse computational performance. We set

the parameters in the proposed partition-based decomposition algorithms as follows.

We set the cut violation thresholds to be γc = 10−2 (coarse cuts) and γf = 10−8 (fine

cuts) in Algorithm 2 and Algorithm 3, and the refinement threshold to be δ = 10−5.

In the partition-based level decomposition (Algorithm 3), we set the optimality gap

thresholds to be εc = εf = 10−4, and level parameters κ = κf = 0.3.

In addition, we have implemented the following algorithms in our experiments

for the sake of comparison:
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• Extensive: Solve the extensive formulation (1.6) by Gurobi using the default

setting.

• Benders: Apply single-cut version of Benders decomposition (presented in

Section 1.1.1).

• Level: Apply standard level decomposition (presented in Section 1.1.2).

• Partition-Naive: Instead of solving the partition-based master problem (1.9)

in a branch-and-cut manner, we solve each master problem (1.9) with respect

to a partition N to optimality (as an MIP), and then refine the partition and

add cuts with respect to the corresponding optimal solution. This follows the

original idea of applying partition-based algorithm to solve two-stage stochastic

linear programs [86].

We use the following abbreviations for labels of columns in the tables presented

below:

• T: Average computational time when the time limit is not hit for all five repli-

cations. Otherwise, we report in this column using format A%(B), where A%

is the average optimality gap and B is the number of instances solved to opti-

mality within the time limit among the five replications.

• N: Average number of explored nodes in the branch-and-bound tree.

• RGap: Average root optimality gap U∗−R
U∗

, where U∗ is the final objective

value and R is the lower bound obtained after the root node is processed.
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• Cut: Average number of Benders optimality cuts added during the algorithm.

• FCut,CCut: Average number of fine cuts and coarse cuts added during the

algorithm, respectively.

• |N |: Average final partition size.
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Comparing the results in Table 7 and Table 8, we can see that the partition-

based algorithms “Partition-B&C”, “Partition-Naive” and “Partition-Level” outper-

form the existing algorithms that do not incorporate the idea of adaptive parti-

tions. In particular, this can be seen clearly from pairwise comparison between

algorithms “Benders” and “Partition-B&C”, and algorithms “Level” and “Partition-

Level”. Comparing the performances of the three partition-based algorithms shown

in Table 8, we see that the performance of algorithm “Partition-Level” dominates

the performance of “Partition-Naive” in most instances, indicating the advantage of

stabilization. In addition, we see that Algorithm “Partition-B&C” and “Partition-

Level” are competitive in the “sslp” instances, and compared to “Partition-Level”,

algorithm “Partition-B&C” performs significantly better for the “cap” instances, and

worse for the “Storm” instances. This phenomenon can be explained from results

shown in Table 9, which reports the number of cuts (coarse and fine) and the final

partition size for the proposed partition-based decomposition algorithms. In fact, we

see that the reason why algorithm “Partition-B&C” is outperformed in the “Storm”

instances is that too many fine cuts were generated compared to the other two al-

gorithms. This is due to the fact that we only perform refinements within the root

node. We can also see that algorithm “Partition-B&C” usually ends with a smaller

partition than the other two algorithms. This is not surprising since we do not per-

form partition refinement beyond the root node for algorithm “Partition-B&C”. We

note that algorithms “Partition-Level” and “Partition-Naive” did not reach the re-

finement step within the time limit for the “cap (11)” instances, so that no fine cuts

were added to the model and the final partition size is 1 for these instances. Because
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of this, we do not include results for this instance in the experiment on heuristic

refinement rules presented in Section 3.3.3. As a summary, although we see signifi-

cant advantages of integrating the adaptive partition into decomposition algorithms,

the performances of different partition-based algorithms vary case by case, and both

algorithms “Partition-B&C” and “Partition-Level” are competitive according to our

computational results.

3.3.3 Heuristic refinement strategies

We consider two types of heuristic refinement strategies, aiming at a stronger control

on the partition size after a partition refinement. The first heuristic refinement

strategy applies a refinement procedure which we call “partial refinement”, to avoid

solving all the second-stage subproblems immediately after a coarse cut fails to yield

any violation, but do so in a sequential manner. The second heuristic refinement

strategy maintains a decreasing sequence for the refinement parameter δ, instead of

a fixed parameter throughout the algorithm.

The first heuristic refinement strategy is motivated by the concern in our im-

plementation that, whenever a coarse cut generated is not violated by the relaxation

solution, we perform a “full” refinement on the current partition by solving all the

second-stage subproblems for all scenarios, using the corresponding dual optimal so-

lutions. A more conservative idea is to perform a partial refinement of the partition,

by sequentially solving the second-stage subproblems with respect to scenarios only

within each component of the current partition, until the resulting cut is violated

by the current relaxation solution. Therefore, if not all components of a partition is
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refined, the resulting cut is a mixture of fine cut and coarse cut, which we refer to as

a “semi-coarse cut”. It is clear that the semi-coarse cut can be seen as the weakest

cut (generated in this fashion) that is necessary for the algorithm to move on to a

new iteration. We show our experiment results on this partial refinement strategy

using algorithm “Partition-B&C” in Table 10. We see from Table 10 that doing

partial refinement instead of full refinement does not yield improvement in terms of

computational time. One possible explanation is that although the increase in parti-

tion size can be better controlled by the partial refinement strategy, the semi-coarse

cuts are relatively weak, which may lead to more cut generation iterations.

The second heuristic refinement strategy is motivated by the concern in the

simple refinement strategy described in Section 3.2.1 that, a fixed small threshold

δ = 10−5 could yield a very large partition after the first few refinements. We next

consider a heuristic refinement strategy to impose more controls on the allowable

increase in the partition size using an adaptive threshold value. Specifically, we start

with a larger threshold and then gradually decrease it to 10−5 during the solution

process, using a sequence 1
nτ

, where n is the number of times that a fine cut is added,

and τ controls the speed how the threshold δ decreases (we set τ = 3, 6, and 10

in our experiments). In the case of algorithm “Partition-B&C” (Algorithm 2), we

also need to determine how far beyond the root node that we are allowed to refine

the partitions (in contrast to the previous implementation where refinement is only

performed within the root node). This is because we may leave the root node with

a very small partition due to this heuristic refinement strategy, making the coarse

cuts too weak to be useful after the root node. To do so, we set a limit on the node
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count up to which we perform this heuristic refinement strategy. In our experiments

we set this limit to 100. Table 11 and 12 show the computational performances

of this heuristic refinement strategy for algorithm “Partition-B&C” and “Partition-

Level” (We skipped algorithm “Partition-Naive” since its performance is dominated

by “Partition-Level”), respectively.
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We see from Table 11 and 12 that the heuristic refinement strategy is more useful

for algorithm “Partition-Level”, in the sense that both computational time and the

partition size decreases significantly, especially for the “sslp” instances. Heuristic

refinement does not yield any improvement for algorithm “Partition-B&C” in most

cases, especially when τ is relatively small. However, we see that this strategy

makes it possible to solve some of the hardest instances in our test set, “cap(11)”, to

optimality within the time limit. These promising results motivate further research

on developing effective heuristic refinement strategies.

3.4 Conclusion

In this chapter, we proposed several adaptive partition-based decomposition algo-

rithms for solving two-stage stochastic integer programs with continuous recourse,

and performed an extensive computational study of the proposed algorithms on a

diversified set of test instances. Computational results indicate that the proposed

partition-based algorithms yield a better performance than the state-of-the-art de-

composition approaches. We also proposed several heuristic partition refinement

strategies to control the partition size during the algorithm, which is potentially use-

ful when a sufficient partition does not necessarily exist, as in the case of two-stage

stochastic integer programs with continuous recourse. The proposed algorithms have

a key limitation that the second stage problems should contain continuous variables

only. A natural extension of this work is to consider the more challenging case when

the second stage also involves some integer variables. In this case, we expect to

embed the adaptive partition-based algorithms into lower bounding techniques such
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as dual decomposition.
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CHAPTER 4

PARTITION-BASED DUAL DECOMPOSITION FOR TWO-STAGE

STOCHASTIC INTEGER PROGRAMS WITH INTEGER

RECOURSE

4.1 Introduction

In this chapter, we relax our assumptions of stochastic integer programs (SIP) from

chapter 3 to the case where both first-stage and second-stage variables are allowed to

be integer. This assumption introduces a higher level of complexity to the problem

since every subproblem now is a mixed integer program (MIP), which usually is

very challenging to solve. Moreover, we cannot adopt the decomposition methods

from two-stage stochastic linear program (in the manner we did in chapter 3) due

to the integrality constraints on second-stage variables. Our focus in this chapter

is to utilize partition-based relaxation framework and dual decomposition (DD) to

improve the lower bound for the optimal objective value of an SIP within a time limit.

The proposed method could be used instead of DD, whenever the time limit does

not allow to obtain a lower bound from DD. We also modify this method to obtain a

bound close to DD with scenario grouping (GDD), while improve the computational

time. For ease of use, we refer to the proposed method as partition-based dual

decomposition (PDD).

SIPs are applied in broad application areas such as energy planning [38, 66],
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vehicle routing [50], scheduling [28], and many others. Despite their numerous appli-

cations, solving SIPs is a very challenging task, unless they have special structures

to exploit [83, 10]. This difficulty is due to the integrality constraints on the second-

stage variables. In order to evaluate the second-stage cost for a fixed first-stage

solution in a given scenario, we need to solve an MIP which is generally NP-hard [1].

Although there are different methods in the literature especially designed for

SIPs with some specific structures (e.g., [10]), the more general SIPs are still very

difficult to solve. Scenario decomposition methods, (DD [17], progressive hedging

[71]) have been developed to tackle SIPs with integer recourse. These methods are

based on the Lagrangian relaxation of extensive model. One of the decomposition

methods that has been extensively studied is DD [17, 56], on which we base our

proposed framework. In this method, similar to other scenario decomposition meth-

ods, we dualize the nonanticipativity constraints in order to obtain a Lagrangian

relaxation problem which is decomposable for each scenario, so each scenario-based

subproblem could be solved independently. Since the Lagrangian dual problem could

be formulated as a convex optimization problem, a cutting-plane method can be ap-

plied to solve the Lagrangian dual problem. It is well known that this dual problem

gives a lower bound on the optimal objective value of the original SIP which is better

than one obtained from the linear programming (LP) relaxation.

It was mentioned in [17] that to further improve this bound, we can group

the scenarios together and form subproblems based on a group of scenarios instead

of a single scenario. Different aspects of scenario grouping for SIP with integer

recourse have been studied in the literature [74, 78, 30, 29, 26]. For the specific
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case of two-stage mixed 0–1 models, an improvement in lower bound using scenario

groups for different scenario decomposition algorithms was reported in [29]. Their

work was further studied in [30] for multistage mixed 0–1 problems. In a recent

work [74], authors formulated an MIP to optimally assign scenarios to groups in

order to maximize the improvement we gain in lower bound from grouping scenarios.

Another line of work in scenario grouping for SIP is studied in [78]. They generated

all possible groups of scenarios with a fixed cardinality and then for each group

they solve corresponding group subproblem (original SIP which is limited to those

scenarios in the group). Then, the lower bound is given by taking average over the

scenario groups. They proved that this bound is monotonically non-decreasing as

cardinality of the group increases. This framework was later extended to the multi-

stage case in [79, 13]. Authors in [13] provided a theoretical hierarchy of bounds by

enumerating all possible partitions of scenarios with subsets of nearly equal sizes.

In practice, they showed that only a sample of partition is enough to obtain a good

bound. In our proposed method, we consider the bound obtained from only one

partition of scenarios. Moreover, we do not control the size of each group in a

partition.

Before proceeding to the contribution of this study, it is worthwhile to define a

few terms which we will use throughout the chapter: we refer to any subset of the

original scenario set as group; we refer to a set of mutually-exclusive groups which

covers the original scenario set as partition; we refer to the Lagrangian dual problem

for partition-based relaxation of a two-stage SIP as partition-based Lagrangian

dual problem, we refer to a subproblem which contains all the scenario dependent

88



constraints indexed by a specific group as group subproblem; we refer to the

partition-based relaxation of a group subproblem (which is formed by aggregating all

the scenario dependent constraints in that group) as partition-based subproblem.

The contribution of this study is focused on developing some computational strategies

in order to obtain a relatively better bound than those obtained from DD and GDD,

when the computational time is very limited. We will empirically show that with a

very tight time limit, one can obtain a very good lower bound by solving partition-

based relaxation of group subproblem. We develop two strategies for this purpose.

In the first strategy, to which we refer as “One-phase PDD”, we solve a partition-

based Lagrangian dual problem for a given partition of scenarios. In this method,

a subproblem is defined based on a group of scenarios (similar to GDD); however,

instead of considering all the scenarios within the group separately, we aggregate

them (by adding the rows of scenario dependent constraints indexed by that specific

group). Hence, the partition-based subproblem is a relaxation of the corresponding

subproblem in GDD. In the second strategy, which we call “Two-phase PDD”, we

start with partition-based Lagrangian dual problem. When first phase is done, we

collect some intermediate information to utilize in the second phase. The second

phase is a GDD corresponding the the partition which was used to formulate the

partition-based Lagrangian dual problem.

In the following we clarify the main methodological difference between the pro-

posed framework in this chapter and one studied in the previous chapter. For SIPs

with continuous recourse, we did not work with a new problem formulation, instead

we propose strategies to accelerate the Benders decomposition framework. We esti-
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mate f(x) = minyk{
∑

k∈N d
Tyk | T kx+Wyk ≤ hk, ∀k ∈ N} using a weaker version

of Benders cut (i.e., coarse cut). To obtain a coarse cut, we form a partition of scenar-

ios. For each element in this partition, we solve the corresponding partition-based

subproblem, generate a Benders optimality cut, and add it to the master model.

Since the cut is not obtained by solving every single scenario in that element, it is

weaker than the original Benders optimality cut. For SIPs with integer recourse,

we form a partition over the scenario set, and define a new (relaxed) model based

on this partition. So, in the first case, the contribution is on solution methodology,

utilizing coarse Benders optimality cut defined using scenario partitions. specifically

generating new form of cuts. In the second case, the contribution is to define a new

formulation in order to obtain a lower bound.

The rest of the chapter is organized as follows. In Section 4.2 we review DD

method as well as a regularized cutting-plane method to solve. Next, we explain the

scenario grouping problem and its partition-based relaxation. Two computational

strategies are presented in Section 4.3. In Section 4.4 we discuss the computational

experiments and their numerical results. Some conclusion remarks are discussed in

Section 4.5

4.2 Problem Setting and Background

In this section, we review DD. We then discuss the scenario grouping problem in

Section 4.2.2 and its partition-based relaxation form in Section 4.2.3.
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4.2.1 Dual Decomposition

Given a finite set of scenarios N = {1, 2, . . . , |N |} and using sample average ap-

proximation, we can formulate the two-stage stochastic integer program with integer

recourse as:

z∗ = min
x,y1,...,y|N|

c>x+
1

|N |

|N |∑
k=1

d>yk (4.1a)

s.t. Ax ≤ b, (4.1b)

T kx+Wyk ≤ hk, ∀k ∈ N (4.1c)

x ∈ X ⊂ Rn1 , yk ∈ Y ⊂ Rn2 ,∀k ∈ N. (4.1d)

In model (4.1), c ∈ Rn1 , d ∈ Rn2 , and A ∈ Rm1×n1 . In constraint (4.1c),

T k ∈ Rm2×n1 is called the technology matrix and could be scenario dependent; W ∈

Rm2×n2 is the recourse matrix and we assume it is fixed for all scenarios. We further

assume that sets X and Y impose integrality constraints on first-stage variables x

and second-stage variables y, respectively. For every k ∈ N , we define the following

set:

Sk :=
{

(x, yk) : Ax ≤ b, T kx+Wyk ≤ hk, x ∈ X, yk ∈ Y
}
. (4.2)
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If we define a copy of first-stage variable for each scenario, then an alternative

formulation (variable-split [56]) for (4.1) is:

z∗ = min
x,x1,...,x|N|

y1,...,y|N|

|N |∑
k=1

1

|N |
(c>xk + d>yk) (4.3a)

s.t. xk − x = 0, ∀k ∈ N, (4.3b)

(xk, yk) ∈ Sk,∀k ∈ N. (4.3c)

Constraints (4.3b) are called the “nonanticipativity” constraints which enforce
all copies of first-stage variables to be equal. Relaxing constraints (4.3b) by intro-
ducing a dual vector λk ∈ Rn1 , ∀k ∈ N , the corresponding Lagrangian relaxation of
(4.3) is:

D(λ1, . . . , λ|N|) := min
x,x1,...,x|N|

y1,...,y|N|


|N|∑
k=1

(
1

|N |
(c>xk + d>yk) + (λk)>xk

)
−
|N|∑
k=1

(λk)>x : (xk, yk) ∈ Sk, ∀k ∈ N

 .

(4.4)

Because there is no constraint on x, we impose the condition
∑|N |

k=1 λ
k = 0 to

make (4.4) bounded. In the Lagrangian dual problem, for each arbitrary λ1, . . . , λ|N |

such that
∑|N |

k=1 λ
k = 0, (4.4) provides a lower bound on the optimal objective value

of (4.1): D(λ1, . . . , λ|N |) ≤ z∗. Hence, the Lagrangian dual problem is to find the

best such bound by solving the following problem:

zLD = max
λ1,...,λ|N|


|N |∑
k=1

Dk(λ
k) :

|N |∑
k=1

λk = 0

 , (4.5)

where

Dk(λ
k) = min

xk,yk

{
1

|N |
(c>xk + d>yk) + (λk)>xk : (xk, yk) ∈ Sk

}
. (4.6)

The objective function of problem (4.5) is a piecewise linear concave function

92



[56]. Therefore, we can apply a cutting-plane method to solve it. We state this

method in Algorithm 4 which was proposed in [17], and further studied in [56]. The

cutting-plane method overestimates
∑|N |

k=1 Dk(λ
k) by solving the following master

problem in each iteration:

max
θ1,...,θ|N|

λ1,...,λ|N|

|N |∑
k=1

θk (4.7a)

s.t.

|N |∑
k=1

λk = 0, (4.7b)

θk ≤ Dk(λ̂
k) + (x̂k)>(λk − λ̂k), ∀λ̂k ∈ I,∀k ∈ N, (4.7c)

where I is a set that contains all encountered λ̂k during the course of the algorithm

and x̂k is the corresponding solution of subproblem (4.6) for λk = λ̂k.

Set a convergence tolerance ε ;

Set I ← ∅, λ̂k ← 0,∀k ∈ N ;

Solve (4.6), ∀k ∈ N , save optimal value Dk(λ̂
k) and solution x̂k ;

repeat

Add θk ≤ Dk(λ̂
k) + (x̂k)>(λk − λ̂k), ∀k ∈ N to the model (4.7) if it is violated

by (θ̂k, λ̂k) ;

Solve (4.7), save θ̂k and λ̂k ;

Set I ← I ∪ {λ̂k} ;

Solve (4.6), ∀k ∈ N , save optimal value Dk(λ̂
k) and solution x̂k ;

Set gap←
∑N
k=1 θ̂

k−
∑N
k=1Dk(λ̂k)

|
∑N
k=1 θ

k|
;

until gap ≤ ε;
Algorithm 4: Cutting-plane algorithm

Algorithm 4 is not very efficient in its original form. Indeed, it is well known

that cutting-plane algorithms suffer from instability in general; in a sense that they

might take large jumps when they are close to the optimal solution. To alleviate
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this shortcoming, various regularization methods have been studied in the literature

such as proximal bundle method [72] and level method [53]. We adapt the level

method in order to stabilize the cutting-plane method in Algorithm 4. The core

idea of the level method is to define a level set based on the current cutting-plane

model and a level parameter. Then, we obtain the next trial point by projecting the

current stabilization center (which usually is the incumbent solution) onto the level

set, which keeps the next trial point as close as possible to the stabilization center.

Instead of solving a master model of the form (4.7), in level method we solve the

following projection problem:

min
θ1,...,θ|N|

λ1,...,λ|N|

|N |∑
k=1

|λk − λ̄k| (4.8a)

s.t.

|N |∑
k=1

λk = 0, (4.8b)

θk ≤ Dk(λ̂
k) + (x̂k)>(λk − λ̂k), ∀λ̂k ∈ I,∀k ∈ N, (4.8c)

|N |∑
k=1

θk ≥ lev, (4.8d)

where lev = κ lb+ (1− κ)ub, κ ∈ (0, 1), and λ̄ is the current stabilization center. lb

and ub are lower and upper bound on z∗, respectively. When model (4.8) is infeasible

(i.e., the level target cannot be met), then lev is a valid upper bound. We can update

upper bound and re-solve the projection model. When model (4.8) is feasible, then

we solve all the subproblems as before, add cuts (4.8c) to model (4.8), and update the

lower bound. If the lower bound is improved, then we also update the stabilization

center λ̄. This method is summarized in Algorithm 5.
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Set a convergence tolerance ε ;

Set I ← ∅, λ̄k ← 0, λ̂k ← 0,∀k ∈ N , κ ∈ (0, 1), status← FEASIBLE ;
Initialize lb and ub ;

Solve (4.6), ∀k ∈ N , save optimal value Dk(λ̂
k) and solution x̂k ;

repeat

Add θk ≤ Dk(λ̂
k) + (x̂k)>(λk − λ̂k), ∀k ∈ N to the model (4.8) ;

Solve (4.8) ;
if model (4.8) is INFEASIBLE then

status← INFEASIBLE ;
end
while status is INFEASIBLE do

ub← lev ;
lev ← κlb+ (1− κ)ub;
Solve (4.8) ;
if model (4.8) is FEASIBLE then

status← FEASIBLE ;
end

end

Save θ̂k and λ̂k as optimal solution of model (4.8) ;

Set I ← I ∪ {λ̂k} ;

Solve (4.6), ∀k ∈ N , save optimal value Dk(λ̂
k) and solution x̂k ;

if lb ≤
∑N

k=1Dk(λ̂
k) then

lb←
∑N

k=1Dk(λ̂
k) ;

lev ← κlb+ (1− κ)ub ;

λ̄k ← λ̂k ;

end

until gap ≤ ε;
Algorithm 5: Level method for cutting-plane algorihtm.
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4.2.2 Dual Decomposition with Scenario Grouping

Let P be a partition on the scenario set N , i.e., P = {P1, P2, . . . , PL}, P1∪P2∪ · · ·∪

PL = N and Pi ∩ Pj = ∅,∀Pi, Pj ∈ P , i 6= j). Then, we can write model (4.1) with

respect to partition P :

z∗ = min
x,y1,...,y|N|

c>x+
1

|N |

L∑
`=1

∑
k∈P`

d>yk (4.9a)

s.t. (x, yk) ∈ Sk, ∀k ∈ P`, ` = 1, 2, . . . , L. (4.9b)

By introducing a copy of variable x for each group and considering the nonantic-

ipativity constraints only among different groups, we have the following formulation

for (4.9):

z∗ = min
x,x1,...,xL

y1,...,y|N|

1

L

L∑
`=1

c>x` +
1

|N |

L∑
`=1

∑
k∈P`

d>yk (4.10a)

s.t. x` − x = 0, ` = 1, . . . , L, (4.10b)

(x`, yk) ∈ Sk,∀k ∈ P`, ` = 1, 2, . . . , L. (4.10c)

Introducing vector of Lagrangian multiplier λ` for the nonanticipativity constraints
(4.10b) in each group ` = 1, . . . , L,the Lagrangian relaxation of (4.10) is given by:

D(λ1, . . . , λL) = min
x1,...,xL

y1,...,yL


 1

L

L∑
`=1

c>x` +

L∑
`=1

 1

|N |
∑
k∈P`

d>yk + (λ`)>x`

 : (x`, yk) ∈ Sk, ∀k ∈ P`, ` = 1, . . . , L

 .

(4.11)

Then, we define the Lagrangian dual problem for (4.10) with respect to P as:

zPLD = max
λ1,...,λL

{
L∑
`=1

D`(λ
`) :

L∑
`=1

λ` = 0

}
, (4.12)
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where

D`(λ
`) = min

x`,{yk}k∈P`

{
1

L
c>x` +

1

|N |
∑
k∈P`

d>yk + (λ`)>x` : (x`, yk) ∈ Sk, ∀k ∈ P`

}
.

(4.13)

Note, because of implicit nonanticipativity constraint among scenarios within

the group, zLD ≤ zPLD.

Since model (4.12) has the same property as model (4.5), we use the level method

described in Algorithm 5 to solve it. To this end, instead of solving model (4.8), we

solve the the following projection problem with respect to partition P :

min
θ1,...,θL

λ1,...,λL

L∑
`=1

|λ` − λ̄`| (4.14a)

s.t.
L∑
`=1

λ` = 0, (4.14b)

θ` ≤ D`(λ̂
`) + (x̂`)>(λ` − λ̂`), ∀λ̂` ∈ I, ∀` = 1, . . . , L, (4.14c)

L∑
`=1

θ` ≥ lev. (4.14d)

In this case, in order to generate a cut, we solve group subproblems of the form

(4.13) for each group in P instead of (4.6).

4.2.3 Partition-based Dual Decomposition

We first present PDD. Then, we prove that PDD cannot provide a better bound than

DD. We also show as a result of this proof, the refinement procedure could improve

the bound.
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Let P be a partition of scenario set N . We define set S̄`:

S̄` :=
{

(x, y`) : Ax ≤ b, T `x+Wy` ≤ h`, x ∈ X, y` ∈ Y
}
, (4.15)

where T ` =
∑

k∈P` T
k, and h` =

∑
k∈P` h

k. Corresponding to partition P , we define

the following partition-based relaxation of the original two-stage SIP:

min
x,x1,...,xL

y1,...,yL

1

L

L∑
`=1

c>x` +
1

|N |

L∑
`=1

dTy` (4.16a)

s.t. x` − x = 0, ` = 1, . . . , L, (4.16b)

(x`, y`) ∈ S̄`, ` = 1, . . . , L. (4.16c)

By introducing a vector of Lagrangian multipliers λ` for nonanticipativity con-
straints (4.16b), the Lagrangian relaxation for (4.16) is given by:

D̄(λ1, . . . , λL) = min
x1,...,xL

y1,...,yL

{
L∑
`=1

(
1

L
c>x` +

1

N
d>y` + (λ`)>x`

)
: (x`, y`) ∈ S̄`, ` = 1, . . . , L

}
. (4.17)

Then, the Lagrangian dual problem for (4.16) is:

z̄PLD = max
λ1,...,λL

{
L∑
`=1

D̄`(λ
`) :

L∑
`=1

λ` = 0

}
, (4.18)

where,

D̄`(λ
`) = min

x`,y`

{
1

L
c>x` +

1

N
d>y` + (λ`)>x` : (x`, y`) ∈ S̄`

}
. (4.19)

Similar to (4.12), we can apply Algorithm 5 to solve (4.18). Instead of solving

master model (4.8), we solve projection problem (4.14) and to generate a cut, we

need to solve a subproblem of the form (4.19) instead of (4.6).

To present our result on the relation between zLD and z̄PLD, we first restate
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Proposition 1 in [56] which is the primal characterization of Lagrangian dual problem.

Then, we prove that z̄PLD ≤ zLD.

Proposition 1. The optimal value zLD of the Lagrangian dual (4.5) equals the op-

timal value of

min
x1,...,x|N|

y1,...,y|N|

|N |∑
k=1

1

|N |
(cTxk + dTyk) (4.20)

s.t. (xk, yk) ∈ conv(Sk), ∀k ∈ N, (4.21)

xk − x = 0, ∀k ∈ N, (4.22)

where conv(·) is the convex hull of mixed integer set.

The proof could be found in integer programming text books (e.g., [20, 65]).

Proposition 2. For any partition P on N , z̄PLD ≤ zLD.

Proof. In this proof, we use the primal characterization of (4.5) and (4.18). Note

that, in optimality, we want nonanticipativity constraints (4.22) be satisfied. Hence,

if we substitute x for all xk in (4.3) and for all x` in (4.16), we have the following

two LPs:

zLD = min
x,y1,...,y|N|

cTx+
N∑
k=1

1

|N |
dTyk (4.23a)

s.t. (x, yk) ∈ conv(Sk),∀k ∈ N, (4.23b)
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ẑPLD = min
x,y1,...,yL

cTx+
L∑
`=1

1

|N |
dTy` (4.24a)

s.t. (x, y`) ∈ conv(S̄`),∀` = 1, . . . , L, (4.24b)

where y` =
∑

k∈P` y
k. It suffices to show that both models (4.23) and (4.24) have

the same objective function, and the feasible region in (4.23) is a subset of feasible

region in (4.24). Therefore, ẑPLD cannot be larger than zLD.

Assume (x∗, {(yk)∗}|N |k=1) is an optimal solution to (4.23). Because (x∗, (yk)∗) ∈

conv(Sk), we have (yk)∗ ∈ conv(Sk(x∗)), where

Sk(x∗) =
{
yk : Wyk ≤ hk − T kx∗ , yk ∈ Y

}
. (4.25)

We also define

S`(x∗) =

{
(yk)k∈P` ∈ R|P`|×n2 : W (

∑
k∈P`

yk) ≤
∑
k∈P`

(hk − T kx∗) , yk ∈ Y, ∀k ∈ P`

}
.

(4.26)

We know that the following is true:

×k∈P`conv(Sk(x∗)) = conv(×k∈P`Sk(x∗)). (4.27)

We also know that:

×k∈P`Sk(x∗) ⊆ S`(x∗). (4.28)
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By applying conv(·) to the both sides of (4.28):

conv(×k∈P`Sk(x∗)) ⊆ conv(S`(x∗)), (4.29)

therefore:

{(yk)∗}k∈P` ∈ ×k∈P`conv(Sk(x∗))⇒ {(yk)∗}k∈P` ∈ conv(S̄`(x∗)). (4.30)

We re-write model (4.24) in the same space as model (4.23):

ẑPLD = min
x,y1,...,y|N|

cTx+
L∑
`=1

∑
k∈P`

1

N
dTyk (4.31a)

s.t. (x, (yk)k∈P`) ∈

conv

({
(x, (yk)k∈P`) : Ax ≤ b, T `x+W

∑
k∈P`

yk ≤ h`, yk ∈ Y, k ∈ P`

})
.

(4.31b)

Proof is completed because models (4.31) and (4.23) have the same objective

function and the optimal solution of model (4.23) is a feasible solution of (4.31).

Proposition 2 also justifies the refinement procedure to further improve the

bound. Assume we refine partition P to obtain partition P2. Then by applying

Proposition 2 (assume that N = P2), we have zPLD ≤ zP
2

LD.

4.3 Partition-based Relaxation Strategies for SIP

We utilize the results from previous section to propose two different computational

strategies to obtain a lower bound on the optimal objective value of an SIP. In

the rest of the chapter by “PDD procedure”, we refer to applying a cutting-plane
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method (e.g., Algorithm 5) to solve the Lagrangian dual problem for partition-based

relaxation, i.e., problem (4.18); by “GDD procedure” we refer to applying a cutting-

plane method to solve the Lagrangian dual problem with scenario grouping, i.e.,

problem (4.12) for a given partition P .

4.3.1 Strategy 1: One-phase PDD

Based on Proposition 2, choosing PDD over DD is not justifiable in theory, since the

latter always give a better bound. However, from a practical point of view, PDD

could be more promising than DD. Compared to PDD, DD is computationally more

demanding, since it solves more MIP subproblems in each iteration if (L << |N |).

This could prevent DD to provide a good bound when time limit is tight.

The strategy that we propose starts with applying the PDD procedure for a given

partition P . Next, we can either stop and report the current lower bound, or refine P

and repeat the procedure to improve the bound. One important shortcoming of this

method is its inability to transfer the generated cuts from one phase to the next. Note

that, the dimension of projection problem (4.14) is L(1+n1). Since L increases when

we move from one phase to the next, the dimension of (4.14) changes. Therefore,

the cuts are not transferable between phases. One way to handle this issue is to

discard all the generated cuts and apply the PDD procedure to the new partition.

However, we lose all the available information from the previous phase. We propose

an approach which allows us to partially employ the available information, by using

the active cuts from the final iteration of the first phase of PDD to initialize the new

master model. The initialization happens as follows.
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AssumeA = {(r, `) : if subproblem ` at iteration r generates the current active cut}.

Let λ̂`r be the dual multiplier vector corresponding to each element in A. Further as-

sume that after refining partition P , we obtain a new partition P2 with L2 elements

(L2 > L) and for each P` ∈ P we have P` = P`1∪P`2 , · · ·∪P`L′ , P`j ∈ P
2, j = 1, . . . , L′

(i.e., we have L′ new subproblem derived from subproblem ` in previous phase). To

generate the initial cuts, we only need to solve these new L′ subproblem of the form

(4.19). In order to maintain the condition
∑L2

`=1 λ
` = 0, we choose the new λ̂`j (dual

multiplier for subproblem `j derived from previous subproblem `) proportional to its

partition size, which is λ̂`j =
λ̂`r×|P`j |
|P`|

. To complete the initialization phase, we repeat

this procedure for all active cuts.

We conducted numerical experiments with and without initialization. Empiri-

cally, we did not observe any improvement in computational time when we initialize

the master model. For that reason, we only report the results for a case where the

final size of the partition is fixed beforehand, and we apply PDD procedure only

once.

4.3.2 Strategy 2: Two-phase PDD

An alternative to refinement in order to improve the One-phase PDD bound is to

disaggregate scenarios within each group. As we discussed in chapter 3, in refine-

ment, we form a larger partition derived from the previous one. Hence, increase the

number of subproblems in (4.19). On the contrary, by disaggregation we refer to

an operation which disaggregate the aggregated scenarios within each group of the

partition, without changing the partition. Depending on the size of the new group,
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we introduce more copies of variable y in the formulation of subproblem.

As an example, assume P = {{1, 2, 3, 4}, {5, 6, 7}}. Corresponding to P , there

are L = 2 subproblems with the form (4.19). If we perform refinement, we will obtain

a new partition with larger size, e.g., P2 = {{1, 2}, {3, 4}, {5}, {6, 7}}. Correspond-

ing to P2 we have L = 4 subproblem with the form (4.19). If we disaggregate the

groups, we will have, e.g., P = {{{1, 2}, {3, 4}}, {{5, 6}, {7}}}. We still have L = 2

subproblems. However, the form of the subproblems change. To introduce the for-

mulation of the new subproblem, let P` = {P`1 ∪P`2 · · · ∪P`L′} be the disaggregation

of P` ∈ P . Then the new formulation is:

D̂`(λ
`) = min

x`,y`1 ,...,y`L′

{
1

L
c>x` +

1

|N |

L′∑
j=1

d>y`j + (λ`)>x` : (x`, y`j) ∈ S̄`j , j = 1, . . . , L′

}
.

(4.32)

After disaggregation, similar to the first strategy, the cuts could not be trans-

ferred to the new phase. In this case, the problem is not dimension mismatch.

Consider the form of the cut that we generate: θ` ≤ D`(λ̂
`) + (x̂`)>(λ`− λ̂`). During

the first phase, we generate each cut by solving (4.19) and use D̄`(λ̂
`). After dis-

aggregation, we need to solve (4.32) and use D̂`(λ̂
`) to generate such a cut. Since

D̄`(λ̂
`) ≤ D̂`(λ̂

`), and we are maximizing
∑L

`=1 θ
` in each iteration, the cuts gen-

erated in first phase could be invalid for the next phase. For this strategy, our

computational experiments indicate that initializing the master model for the next

phase improves the computational time. To initialize the master model for the next

phase, for every element in A, we solve the corresponding subproblem (4.32) with

λ` = λ̂`r and add the generated cut to the new master model. In case solving (4.32)
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for all elements in A needs a large amount of time, one can always generate cuts

from a feasible solution of (4.32). Indeed, this is the way we generate initial cuts in

our implementation. Note, if we fix x = x̂`r, where x̂`r is a first-stage solution form

previous phase obtained from subproblem ` at iteration r, we end up with an MIP

which is easier to solve.

We provide more implementation related details for the numerical experiments

in the next section.

4.4 Computational Experiments

In this section we present some numerical experiments to test the performance

of the strategies developed in the previous section. We use two data sets: sslp [2]

and cap [55]. We label sslp data set (|N | = 150, 200) and cap-10 (|N | = 50, 70, 100)

as class easy; sslp data set (|N | = 500, 1000) and cap-11 (|N | = 50, 70, 100) as class

hard. We summarize the profile of these two data sets in Table 13.

Table 13. Profile of instances (n1 and n2 are number of variables in the first-stage

and second-stage; m1 and m2 are number of constraints in first-stage and

second-stage)

Instances n1 n2 m1 m2

sslp-5-25 5 130 1 30

sslp-10-50 10 510 1 60

sslp-10-50 15 690 1 60

cap-10 25 1250 1 75

cap-11 50 2500 1 100
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4.4.1 Computational Setting

All the experiments were conducted on a Linux workstation with 24 CPU cores

(2.2 GHz) and 40 GB of RAM. We use the commercial solver Gurobi 7.0.2 to solve

all MIPs. In Gurobi, we set the number of threads to one. All algorithms are

implemented in Python 3.4 and we use Numpy [97] to do all the matrix operations

and K-mean algorithm implemented in scikit-learn package [69] to form partition of

scenarios. In all experiments, we fix the partition size as a fraction of the size of the

original scenario set L = γ×|N | and we consider three different values for γ (0.05, 0.2,

and 0.3). All three Lagrangian dual problems ((4.5), (4.12), and (4.18)) are solved

by Algorithm 5 with the following parameters’ setting: ε = 10−4, κ = 0.2, lb = −∞,

and ub = +∞. Optimality gap is calculated by gap = z∗−z
|z∗| where z∗ is the optimal

objective value of (4.1) and z is a lower bound that a specific method generates. In

case z∗ is not available, we use an objective value corresponding to a feasible solution

of (4.1) (which is the case for all instances in class hard). The percentage of gap

which is closed by a proposed method is the relative distance between the optimality

gap obtained from that method and one obtained by DD method.

4.4.2 Numerical Results

In the first series of experiments, we compare the results of One-phase PDD and

DD with respect to the lower bound which each method generates. For class easy,

we impose 60 seconds time limit; for class hard, we impose 3600 seconds time limit.
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We report the best lower bound (LB) and number of iterations (r) for the class easy

in Table 14 and for the class hard in Table 15 (“∗” means algorithm converges within

the time limit). The numbers inside the parenthesis are the amount of optimality gap

which One-phase PDD closes compared to DD. As we observe, the bounds reported

under One-phase PDD columns always dominate those under DD columns (for sslp-

15-45, DD fails to provide a lower bound). The reason that the number of iterations

in DD is smaller compared to One-phase PDD (γ = 0.2, 0.3) is that DD needs to solve

more subproblems in each iteration. Hence, its iterations are computationally more

expensive. There is no relation among the partitions in the columns of One-phase

PDD (i.e., the larger ones are not the refined partition of smaller ones); therefore, we

cannot expect the result of Proposition 2 holds. The same behavior is also observable

in Table 15. However, there are instances in which the proposed One-phase PDD

could not improve the gap (marked by −).
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In the second series of experiments, we test the Two-phase PDD approach on

class easy to demonstrate the benefit of warm starting the master model with respect

to computational time. We impose four hours time limit on each experiment, and

we fully disaggregate each group after the phase one (the second phase is GDD).

In Table 16, under Two-phase PDD column, we report the total time and phase

2 time (which also include initialization time). Numbers inside the parenthesis are

the number of iterations in phase 2. Under GDD column we report computational

time when we apply GDD directly to the initial partition. As we observe, for most

instances, the convergence time for Two-phase PDD is less than the convergence

time in GDD. This is also evident from number of iterations, since the second phase

in Two-phase PDD has smaller number of iterations.

So far in this chapter, all reported computational time were based on solving

the subproblems sequentially. However, all the experiments in this study could also

be done in a parallel computing platform. For this reason, in the rest of the chap-

ter, we report an optimistic parallel time. In other words, the reported time only

accounts for the subproblem with the largest computational time (assuming that we

only solve subproblems in parallel). In this series of experiments, we report the per-

formance of Two-phase PDD for class hard. During phase one, we record the dual

multiplier corresponding to the best lower bound (λ̂best). At the end of the phase

1, we fully disaggregate each group and warm start the second phase. We then use

λ̂best to perform only one iteration of GDD. The reason is that, in our computational

experiments, we observed the second phase usually ends with a lower bound either

same as or very close to one obtained using λ̂best. In order to have a fair compar-
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ison with GDD, we also perform only one iteration of GDD with initial λ̂ = 0. In

our experiments, we consider 24 hours time limit, then report the optimistic parallel

time. We also set 900 seconds time limit on first phase and 1200 seconds time limit

on each subproblem.

The results of this experiment are reported in Table 17. The numbers inside

the parenthesis under Two-phase PDD column are the amount of optimality gap

that Two-phase PDD closes. We use “-” to indicate that for a specific instance the

optimality gap was not improved. As we observe, for γ = 0.05, Two-phase PDD is

closing the optimality gap in almost all instances. For γ = 0.2 and γ = 0.3, there are

only a few instances in which the relative gap is improved. In Table 18, we report the

computational time for GDD and Two-phase PDD. For Two-phase PDD, we report

the total time as well as the amount of time phase 2 spends (which also includes the

initialization of master model). The results imply that Two-phase PDD needs more

computational time compared to GDD. Nevertheless, it improves the optimality gap.
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Table 17. Comparison of lower bound for Two-phase PDD versus GDD for class hard

Instances |N | γ = 0.05 γ = 0.2 γ = 0.3
GDD Two-phase PDD GDD Two-phase PDD GDD Two-phase PDD

Cap-111
50 103988.85 103992.58 (2.69) 104025.00 104109.77 (82.77) 104023.30 104037.43 (13.57)
70 104075.11 104105.74 (22.52) 104115.70 104115.61 (-) 104103.19 104103.54 (0.32)
100 104189.46 104210.00 (19.46) 104203.05 104202.56 (-) 104168.09 104167.48 (-)

Cap-112
50 181462.60 181467.78 (5.22) 181449.51 181523.20 (65.50) 181416.25 181444.89 (19.37)
70 181626.98 181651.60 (28.01) 181549.29 181556.91 (4.60) 181534.63 181534.36 (-)
100 181704.36 181704.66 (0.29) 181638.83 181638.06 (-) 181618.55 181617.07 (-)

Cap-113
50 234439.20 234442.92 (2.20) 234426.22 234425.67 (-) 234389.41 234388.60 (-)
70 234356.77 234370.31 (7.80) 234303.77 234303.75 (-) 234300.26 234300.59 (0.15)
100 234249.57 234292.94 (23.80) 234211.27 234211.58 (0.14) 234168.75 234169.11 (0.14)

Cap-114
50 356743.44 356747.57 (6.30) 356657.50 356756.05 (47.35) 356652.70 356743.90 (42.83)
70 356620.17 356647.22 (21.95) 356579.54 356579.25 (-) 3565647.88 356550.80 (1.49)
100 356540.45 356542.13 (1.52) 356493.54 356495.13 (1.01) 356479.85 356481.03 (0.69)

sslp-5-25
500 -134.43 -131.87 (100) -137.30 -131.88 (99.95) -138.19 -131.87 (99.99)
1000 -132.13 -128.84 (99.97) -134.71 -134.70 (0.00) -135.81 -135.81 (0.00)

sslp-10-50
500 -350.09 -349.34 (64.67) -351.21 -353.14 (-) -354.74 -354.74 (0.00)
1000 -348.37 -347.09 (64.13) -349.22 -351.07 (-) -352.65 -352.65 (0.00)

sslp-15-45
500 -258.16 -258.40 (-) -261.89 -261.89 (0.00) -264.03 -264.03 (0.00)
1000 -258.40 -258.40 )(0.00) -261.53 -261.53 (0.00) -263.34 -263.34 (-)

Table 18. Comoputational time for Two-phase PDD versus GDD for class hard

Instances |N |
γ = 0.05 γ = 0.2 γ = 0.3

GDD
Two-phase PDD

GDD
Two-phase PDD

GDD
Two-phase PDD

Phase 2 Total Phase 2 Total Phase 2 Total

Cap-111
50 1200.04 1224.83 1869.79 44.93 90.26 298.88 36.59 328.57 538.05
70 1200.04 1277.71 1333.69 131.47 1900.54 2912.42 30.40 1677.87 2204.41
100 1200.04 1250.25 1540.87 152.16 2492.67 2775.08 48.94 104.07 172.70

Cap-112
50 1200.03 1200.03 1217.69 71.85 116.99 344.87 20.13 299.86 612.23
70 1200.02 1264.21 1304.18 91.86 722.06 1074.18 40.21 1593.39 1939.81
100 802.57 2091.09 3366.10 60.71 2345.64 3204.82 433.93 517.97

Cap-113
50 1200.03 1200.02 1217.48 113.44 504.15 1389.83 69.04 1106.51 1367.83
70 1200.03 1250.24 1563.67 142.32 1520.91 1844.96 59.90 1365.85 1570.03
100 1200.02 1250.24 1692.24 285.16 1498.71 1748.27 39.77 99.56 172.68

Cap-114
50 1200.03 1223.24 1238.26 34.59 108.29 577.08 31.06 388.31 613.16
70 1200.03 1200.02 1600.52 115.56 1369.99 2093.11 17.09 1718.23 2028.11
100 1061.11 2666.83 3566.06 93.66 1203.23 1527.86 39.92 1869.16 1981.77

sslp-5-25
500 7.02 14.55 18.80 0.74 19.72 33.72 0.37 11.65 30.28
1000 3.87 35.61 42.68 0.93 14.87 28.51 0.88 14.64 27.76

sslp-10-50
500 1200.04 1242.31 1308.88 1200.01 1246.60 1285.96 700.67 127.70 165.86
1000 1200.02 1325.29 1437.29 1200.43 1288.82 1316.85 1200.00 1287.20 1305.94

sslp-15-45
500 1200.03 1734.42 2065.77 551.48 780.20 842.46 806.90 1004.19 1103.45
1000 1200.04 1878.57 1947.09 1200.02 1586.25 1606.80 243.74 1835.72 1880.69
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4.5 Conclusion

In this chapter we presented formulation of partition-based Lagrangian relax-

ation for a two-stage SIP with integer recourse (referred to as PDD). Based on this

formulation, we suggested two strategies in order to obtain a lower bound for the

original SIP. In the first strategy, called One-phase PDD, we only apply PDD once

and report the result. This method is very promising (compared to DD), when we

have a very tight time limit. In the second strategy, called Two-phase PDD, we

disaggregate all the aggregated scenarios within a group, in order to improve the

bound. We also presented a method to partially utilize some information from the

first phase, since the cuts could not be transferred between phases. We conducted

some computational strategies to evaluate the performance of the proposed methods.

One-phase PDD exhibited good results (in terms of improvement on lower bound) in

both class easy and hard instances. For Two-phase PDD, we empirically verified that

the proposed method could improve the computational time for class easy. For class

hard, Two-phase PDD was successful in improving the lower bound when we have

a small partition with large groups, but failed for larger partitions. A very natural

extension of this work is to conduct a series of experiments on a parallel computing

platforms, since we only report a possible optimistic parallel time.
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APPENDIX

This Appendix contains some computational results for models developed in Chapter

2.

In Table 19, we present full computational results for three approaches REU,

FPM and PPM on our test instances with different interdiction budget ratios (0.4,

0.5, and 0.6). In Table 20, we present computational results for two equivalent

formulations for stochastic shortest path interdiction with a robust expected utility

model, (2.14) (labeled as REU throughout the paper), and a reformulation of (2.14)

by replacing (2.14b) with (2.16) and (2.17), labeled as REU-R. In Table 21, we

compare the computational time taken by approaches REU and PPM using instances

with various number of pairwise comparisons and interdiction budgets. In Table 22,

we report the detailed time profile for the three phases involved in approach PPM:

computing the upper bound ūj and lower bound uj for j ∈ T , fitting the piecewise

linear concave function with a fixed number of pieces, and optimizing the expected

utility using this fitted function.
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Table 19. Full computational results for three approaches REU, FPM and PPM on

instances with different interdiction budget ratios (0.4, 0.5, and 0.6).

Time # Nodes RootGap (%)
K Instance Budget REU FPM PPM REU FPM PPM REU FPM PPM

100

3× 3
5 1.31 9.77 7.65 13 10 10 3.45 0.69 0.48
6 2.77 10.85 7.44 38 30 23 2.42 0.94 0.64
7 2.77 11.12 7.28 37 35 22 2.03 0.77 0.45

4× 4
10 4.01 25.71 16.24 248 203 187 2.52 0.75 0.71
12 2.14 21.29 16.17 35 18 15 0.99 0.33 0.18
14 2.57 22.58 19.09 92 86 62 1.84 0.62 0.35

5× 5
16 9.51 56.22 21.79 838 900 671 2.22 0.82 0.67
20 21.79 69.97 27.17 1920 1671 1690 1.73 0.68 0.47
24 9.87 49.41 26.19 710 805 537 1.12 0.66 0.37

6× 6
24 223.04 294.37 33.81 13369 5187 3652 2.62 0.93 0.79
30 94.95 156.11 33.18 7385 1605 1988 1.60 0.71 0.77
36 197.45 223.50 38.97 24172 3574 3772 1.80 0.98 0.87

7× 7
34 1.01% (0) 2734.33 126.45 1637 33129 38290 1.62 1.36 1.16
42 1.16% (0) 2241.75 114.96 1017 33183 3313 1.53 1.10 1.07
50 0.69% (0) 388.47 51.00 1095 5229 8788 1.09 1.04 0.9

500

3× 3
5 15.54 37.85 22.31 13 11 13 4.83 0.87 0.87
6 18.40 44.15 22.28 36 30 34 3.72 1.10 1.34
7 22.85 47.22 22.44 46 40 39 3.21 0.73 0.77

4× 4
10 72.60 102.90 33.82 385 331 361 2.87 1.12 1.09
12 23.72 54.59 32.16 41 28 26.2 0.75 0.33 0.31
14 27.69 58.02 32.41 127 106 89 1.86 0.39 0.42

5× 5
16 91.62 246.15 53.73 1438 1206 1270 2.00 0.91 1.22
20 158.86 548.68 71.25 3225 3049 3119 1.00 0.59 0.60
24 140.02 436.59 67.32 3433 2825 3060 1.00 0.61 0.59

6× 6
24 620.18 1062.27 117.10 6154 4086 3909 1.00 0.63 0.66
30 545.03 674.66 89.77 9566 2074 2296 1.00 0.60 00.65
36 2104.30 2061.56 260.66 47361 8199 10883 1.80 0.76 0.77

7× 7
34 0.54% (1) 0.23% (2) 1645.34 47268 8967 61245 3.50 1.19 1.66
42 0.54% (0) 0.23% (0) 2495.81 49542 8103 110563 2.21 1.14 1.37
50 0.23% (1) 0.11% (3) 438.44 58127 8346 20899 1.94 1.02 0.99

1000

3× 3
5 53.73 43.53 21.48 16 10 14 4.39 0.82 0.84
6 68.95 52.4 21.75 41 32 33 4.08 0.91 0.91
7 82.98 60.47 22.29 48 44 47 3.43 0.90 0.90

4× 4
10 194.87 203.76 49.21 456 379 403 3.27 1.01 1.06
12 57.88 85.16 39.68 48 29 30 1.23 0.40 0.43
14 67.52 107.02 40.07 122 122 120 1.85 0.72 0.67

5× 5
16 675.91 512.68 71.14 1351 1163 1289 2.00 0.87 0.89
20 920.89 1257.17 133.16 3228 3331 3426 2.00 0.64 0.58
24 932.94 1352.48 134.39 4027 3386 3379 2.00 0.60 0.62

6× 6
24 1747.63 2171.98 257 5675 3274 4135 2.49 0.89 0.86
30 1178.01 1209.10 153 4811 2241 1892 1.36 0.64 0.61
36 0.43% (0) 0.15% (1) 1023 24519 7867 17488 2.00 0.88 0.83

7× 7
34 0.8% (0) 0.25% (0) 0.15% (0) 15669 7610 44732 2.37 1.02 1.17
42 0.77% (0) 0.28% (0) 0.19% (0) 16978 6388 38646 2.87 1.07 1.33
50 0.33% (0) 0.11% (3) 792.01 24243 6151 11509 1.46 0.73 0.84
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Table 20. Full computational results for two formulation REU and REU-R on in-

stances with different interdiction budget ratios (0.4, 0.5, and 0.6).

Time # Nodes RootGap (%)
K Instance Budget REU REU-R REU REU-R REU REU-R

100

3× 3
5 1.43 1.36 14 11 4.06 1.29
6 1.76 1.47 33 21 2.48 1.67
7 1.93 1.58 43 32 2.17 1.38

4× 4
10 4.15 4.21 242 129 2.22 1.36
12 2.28 2.61 39 8 0.83 0.18
14 2.52 2.69 84 34 1.80 0.49

5× 5
16 8.00 10.10 891 386 2.14 1.00
20 19.51 15.80 1922 744 1.77 0.88
24 10.56 8.77 1056 333 1.15 0.62

6× 6
24 223.04 153.54 13369 3655 2.62 1.28
30 94.95 70.33 7385 2025 1.60 0.85
36 197.45 122.01 24172 2932 1.80 0.91

7× 7
34 1.01 % (0) 0.10 % (4) 1637 23506 1.62 1.26
42 1.16 % (0) 1759.88 1017 21484 1.53 1.01
50 0.96 % (0) 484.03 1095 6058 1.09 0.80

500

3× 3
5 15.54 38.68 13 15 4.83 1.80
6 18.40 44.33 36 27 3.72 2.01
7 22.85 54.02 46 36 3.21 1.65

4× 4
10 72.60 88.84 385 240 2.87 1.92
12 23.72 36.36 41 15 0.75 0.23
14 27.69 39.98 127 37 1.86 0.50

5× 5
16 91.62 190.78 1438 451 2.00 0.91
20 158.86 346.30 3225 1118 1.00 0.86
24 140.02 324.82 3433 1146 1.00 0.84

6× 6
24 620.18 730.34 6154 1061 1.00 0.84
30 545.03 1006.18 9566 1631 1.00 0.74
36 2104.30 0.33 %(0) 47361 3410 1.80 0.96

7× 7
34 0.54 % (1) 1.38 % (0) 47268 2169 3.50 1.28
42 0.54 % (0) 1.20 % (0) 49542 2019 2.1 1.20
50 0.23 % (1) 0.89 % (0) 58127 1653 1.94 0.87

1000

3× 3
5 53.73 248.00 16 15 4.39 1.66
6 68.95 312.31 41 27 4.08 1.84
7 82.98 300.53 48 42 3.43 1.71

4× 4
10 194.87 484.99 456 318 3.27 2.26
12 57.88 208.90 48 21 1.23 0.32
14 67.52 242.36 122 50.6 1.85 0.61

5× 5
16 675.91 975.11 1351 473 2.00 0.93
20 920.89 1806.60 3228 1163 2.00 0.91
24 932.94 1790.63 4027 1380 2.00 0.91

6× 6
24 1747.63 3186.50 5675 1104 2.49 0.95
30 1178.01 2875.34 4811 1087 1.36 0.73
36 0.43 % (0) 0.87 % (0) 24519 600 2.00 1.13

7× 7
34 0.8 % (0) 1.15 % (0) 15669 510 2.37 1.37
42 0.77 % (0) 1.10 % (0) 16978 510 2.87 1.26
50 0.33 % (0) 0.77 % (0) 24243 510 1.46 0.94
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Table 21. Computational time (in seconds) for two approaches, REU and PPM, with

20, 50, and 100 pairwise gamble comparisons, using different interdiction

budget ratios (0.4, 0.5, and 0.6).

REU PPM
K Instance Budget 20 50 100 20 50 100

100

3× 3
5 1.31 1.65 2.16 7.65 11.77 15.20
6 2.77 1.77 2.45 7.44 12.10 15.30
7 2.77 1.70 2.35 7.28 11.74 15.92

4× 4
10 4.31 6.28 7.06 16.24 24.85 25.65
12 2.14 3.85 4.04 16.17 24.94 25.85
14 2.57 4.46 4.38 19.09 24.84 25.62

5× 5
16 9.51 26.92 28.93 21.79 33.03 45.20
20 21.79 46.69 48.76 27.17 33.74 45.78
24 9.87 23.40 25.04 26.19 32.87 45.35

500

3× 3
5 15.54 18.73 35.90 22.31 21.03 22.34
6 18.40 19.04 39.67 22.28 21.02 22.53
7 22.85 20.18 45.43 22.44 20.91 22.81

4× 4
10 72.6 104.03 113.48 33.82 35.40 38.57
12 23.72 36.90 45.03 32.16 33.69 36.96
14 27.69 41.15 51.86 32.41 34.16 37.11

5× 5
16 91.62 151.70 160.11 53.73 51.63 55.52
20 158.86 226.61 271.28 71.25 63.65 68.28
24 140.02 232.90 263.68 67.32 62.75 69.75

1000

3× 3
5 53.73 65.35 73.57 21.48 31.39 26.20
6 68.95 72.97 92.12 21.75 31.30 26.37
7 82.98 89.99 118.73 22.29 28.56 26.91

4× 4
10 194.78 264.14 788.39 49.21 54.97 60.63
12 57.88 95.28 651.47 39.68 51.14 46.87
14 67.52 105.05 641.31 40.07 55.11 48.82

5× 5
16 675.91 651.75 619.03 71.14 85.70 89.75
20 920.89 1332.38 1419.86 133.16 140.29 145.80
24 932.94 1600.88 1573.08 134.39 158.12 154.57
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Table 22. Detailed time profile (in seconds) for the three phases involved in approach

PPM: computing the upper bound ūj and lower bound uj for j ∈ T

(Bound), fitting the piecewise linear concave function with a fixed num-

ber of pieces (Fitting), and optimize the expected utility using this fitted

function (Optimization).

K Instance Budget Optimization Bound Fitting

100

3× 3
5 0.25 7.09 0.32
6 0.31 6.74 0.39
7 0.27 6.65 0.37

4× 4
10 0.54 14.53 1.17
12 0.37 14.59 1.21
14 0.44 14.48 1.18

5× 5
16 1.04 19.34 1.41
20 2.77 22.64 1.75
24 1.18 22.96 2.05

6× 6
24 7.56 24.08 2.08
30 5.84 24.98 2.36
36 9.67 26.69 2.62

7× 7
34 93.61 30.81 2.03
42 82.50 30.46 2.00
50 18.26 30.75 2.00

500

3× 3
5 1.31 12.02 8.98
6 1.48 11.86 8.94
7 1.63 11.87 8.95

4× 4
10 5.66 19.41 8.75
12 2.83 20.89 8.44
14 2.84 20.70 8.87

5× 5
16 11.98 24.47 17.28
20 29.29 24.60 17.36
24 25.56 24.34 17.42

6× 6
24 83.92 27.03 6.15
30 55.20 27.89 6.67
36 223.45 30.87 6.34

7× 7
34 1611.34 32.19 1.81
42 2461.81 32.22 1.79
50 404.85 32.07 1.79

1000

3× 3
5 2.43 14.07 4.98
6 2.81 13.91 5.03
7 3.36 13.94 5.00

4× 4
10 15.65 24.39 9.17
12 5.55 25.22 8.90
14 6.91 24.17 9.00

5× 5
16 34.31 26.85 9.98
20 94.67 28.73 9.77
24 69.58 27.37 10.44

6× 6
24 220.82 32.98 2.80
30 117.04 33.33 2.86
36 990.4 30.28 2.92

7× 7
34 3600 35.19 2.7
42 3600 34.68 2.68
50 754.13 35.18 2.7

119



Bibliography

[1] Shabbir Ahmed. Two-stage stochastic integer programming: A brief introduc-

tion. Wiley Encyclopedia of Operations Research and Management Science,

2010.

[2] Shabbir Ahmed, Renan Garcia, Nan Kong, Lewis Ntaimo, Gyana R Parija,

and Feng Qiu. A stochastic integer programming test problem library, 2015.

http://www.isye.gatech.edu/~sahmed/siplib.

[3] Vı́ctor M Albornoz, Pablo Benario, and Manuel E Rojas. A two-stage stochas-

tic integer programming model for a thermal power system expansion. Inter-

national Transactions in Operational Research, 11(3):243–257, 2004.

[4] Benjamin Armbruster and Erick Delage. Decision making under uncertainty

when preference information is incomplete. Management Science, 61(1):111–

128, 2015.

[5] Robert J Aumann. Utility theory without the completeness axiom. Economet-

rica, 30(3):445–462, 1962.

[6] Robert J Aumann. Utility theory without the completeness axiom. Economet-

rica: Journal of the Econometric Society, pages 445–462, 1962.

[7] Egon Balas. Disjunctive programming: Properties of the convex hull of feasible

points. Discrete Applied Mathematics, 89(1):3–44, 1998.

120

http://www.isye.gatech.edu/~sahmed/siplib


[8] Halil Bayrak and Matthew D Bailey M.D. Shortest path network interdiction

with asymmetric information. Networks, 52(3):133–140, 2008.

[9] Jacques F Benders. Partitioning procedures for solving mixed-variables pro-

gramming problems. Numerische mathematik, 4(1):238–252, 1962.

[10] John R Birge and Françoise Louveaux. Introduction to Stochastic Program-

ming. Springer, 2011.

[11] Merve Bodur and James R Luedtke. Mixed-integer rounding enhanced benders

decomposition for multiclass service-system staffing and scheduling with arrival

rate uncertainty. Management Science, 2016.

[12] Merve Bodur, Sanjeeb Dash, Oktay Günlük, and James Luedtke. Strength-
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