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Abstract 
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SH3 and multiple ankyrin repeat domains 3 (SHANK3) is a multidomain scaffold 

protein that is highly augmented in the postsynaptic density (PSD) of excitatory 

glutamatergic synapses within the central and peripheral nervous systems. SHANK3 

links neurotransmitter receptors, ion channels, and other critical membrane proteins to 

intracellular cytoskeleton and signal transduction pathways. Mutations in SHANK3 are 

linked with a number neuropsychiatric disorders including autism spectrum disorders 

(ASDs). Intellectual disability, impaired memory and learning, and epilepsy are some of 

the deficits commonly associated with ASDs that result from mutations in SHANK3. 

Interestingly, these symptoms show some clinical overlap with presentations of human 

neurological disorders involving hyperpolarization-activated cyclin nucleotide-gated 

(HCN) channels. In fact, it has recently been demonstrated in human neurons that 

SHANK3 haploinsufficiency causes Ih-channel dysfunction, and that SHANK3 has a 

physical interaction with HCN channels via its ANKYRIN repeat domain. These insights 
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suggest that SHANK3 may play important roles in HCN channel expression and 

function, and put forward the idea that HCN channelopathies may actually encourage 

some of the symptoms observed in patients with SHANK-deficiency related ASDs. In 

this study, we provide preliminary data that suggests the ANK domain of SHANK3 

interacts with COOH portion of HCN1. We also exploited the differences between two 

mouse models of autism to show that a subset of SHANK3 isoforms may be involved in 

the proper expression and function of HCN channels. We found that HCN2 expression 

is significantly decreased in a mouse model lacking all major isoforms of SHANK3 

(exons 13-16 deleted; Δ13-16), while HCN2 expression is unaltered in a mouse model 

only lacking SHANK3a and SHANK3b (exons 4-9 deleted; Δ4-9). Surprisingly, we also 

found that HCN4 expression is altered in SHANK3Δ13-16, but not SHANK3Δ4-9. Taken 

together, our results show HCN channelopathy as a major downstream carrier of 

SHANK3 deficiency.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 

1 Introduction 

1.1 An Introduction to Autism Spectrum Disorders 

Autism spectrum disorder (ASD) presents as a developmental disability 

characterized by persistent deficits in social contexts involving communication and 

interaction, and patterns of repetitive behavior that restrict interests or activities 

(American Psychiatric Association, 2013). The diagnostic criteria for ASD is such that 

symptoms should be apparent in the early developmental stages of a child, and that 

these symptoms cause critical impairments in social situations, academic or 

occupational performance, and in any other relevant areas in which the expected level 

of functioning is compromised. Studies have shown that parents with autistic children 

observe developmental concerns with their child’s communication and fine motor skills 

as early as six months after birth, and that the diagnostic stability of ASD in children as 

young as two years of age is often valid and binding (Bolton et al., 2012; Kleinman et 

al., 2008; Kozlowski et al., 2011; Lord et al., 2006). The severity of ASD is based on the 

person’s level of impairment in social settings and the degree to which their behavior is 

restrictive and repetitive. Some illustrious examples of autistic behavior are as followed: 

delayed development of speech, echolalia, lack of interaction with other children or 

response to people, treating others as inanimate objects, extreme dislike of certain 

sounds or textures, aggressive behavior, desire to keep objects in specific physical 

patterns, and “islets of competence” – skills in which the person has advanced 

competence such as drawing, music, arithmetic, and memory.  
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1.1.2 ASD in the population 

In the United States from 2006-2007, roughly 1 out of 6 children had a 

developmental disability such as speech and language impediments or more critical 

debilities such as intellectual deficits, cerebral palsy, and autism (Boyle et al., 2011). 

According to the Autism and Developmental Disabilities Monitoring Network, ASD 

affects approximately one out of every 68 children, and, although the disease is 

reported to occur in any race, ethnicity, or socioeconomic status, ASD is about 4.5 times 

more common in boys than girls in the United States (Boyle et al., 2011; Christensen, 

2016). Interestingly, however, the severity of ASD-symptoms is more severe in females 

than in males (Frazier et al., 2014; Holtmann et al., 2007). 

 

1.1.3 Risk factors for ASD 

The risk factors and characteristics of ASDs are considerably broad. Many 

studies on twins have demonstrated that the concordance of ASD with monozygotic 

twins is greater than it is between dizygotic twins, and that vulnerability to ASD has a 

significant environmental factor in shared twin environments (Hallmayer et al., 2011; 

Rosenberg et al., 2009; Taniai et al., 2008). Parents who already have one child with 

ASD risk a higher recurrence rate (3-18%) of having another child with ASD (Ozonoff et 

al., 2011; Sumi et al., 2006), and parents with advanced age are also more likely to 

have a child with ASD (Durkin et al., 2008). Children who are born with low birth weights 

or prematurely are at a slightly greater risk of having ASD (Schendel and Bhasin, 2008). 

Interestingly, however, although autism is conventionally understood as having deficits 
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in social interactions and restrictive, repetitive behaviors, recent data reveals that 

roughly 44% of children diagnosed with ASD have average to above average 

intelligence as measured by intelligence quotient (IQ) tests (Christensen, 2016).  

The susceptibility to ASDs is also higher in persons who have particular genetic 

or chromosomal abnormalities. Approximately one out of 10 children with autism will 

also present with down syndrome (DiGuiseppi et al., 2010), Fragile X syndrome 

(Kaufmann et al., 2004), tuberous sclerosis (Smalley, 1998), and neurometabolic 

disorders (Zecavati and Spence, 2009). Furthermore, the comorbidity of ASD and one 

or more developmental disorder diagnoses is a striking 83% while the co-occurrence of 

ASD with one or more psychiatric disorders or one or more neurological disorders is 

10% and 16%, respectively (Levy et al., 2010). Some common developmental 

comorbidities are learning and intellectual disabilities, ADHD, sensory integration 

disorder, and various nonverbal learning disabilities (Christensen, 2016; Levy et al., 

2010). Psychiatric comorbidities include disorders such as anxiety, bipolar, depression, 

obsessive-compulsive, psychosis, and schizophrenia (Simonoff et al., 2008). 

Neurological comorbidities include cerebral palsy, epilepsy and seizures, Tourette 

syndrome, encephalopathy, and loss of hearing or vision(Doshi-Velez et al., 2014; Levy 

et al., 2010). 

 

1.1.4 ASD Etiology 

Although a unified understanding for the causes of ASD is not known, it is well 

accepted among researchers that genetic abnormalities and environmental factors, 
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either individually or in combination, can manifest in disorders across the autistic 

spectrum. Significant progresses have been made in understanding the genetic causes 

of ASDs, largely due to whole genome and exome sequencing studies that have 

elucidated a number of genes implicated in syndromic and non-syndromic ASD (Hulbert 

and Jiang, 2016). This panorama of genes, which are mostly involved in synaptic 

function, cellular metabolism, remodeling chromatin, and translation of mRNA appear to 

unite in neuronal pathways that regulate brain homeostasis (Huguet et al., 2013). 

Indeed, some progress has been made in understanding the transmission of ASD in 

families. Simplex families (only one person affected with ASD) show a higher incidence 

of de novo mutations in comparison to affected individuals in multiplex families 

(Marshall et al., 2008; Sebat et al., 2007). This is in line with the high rate sporadic 

ASDs from de novo chromosomal mutations found in simplex families (O’Roak et al., 

2011). Still, studies have suggested that subclinical autistic behaviors localized in 

multiplex families may imply unique mechanisms of genetic transmission of ASD among 

the population (Constantino et al., 2010; Virkud et al., 2009). Moreover, hereditary 

research on idiopathic ASDs culminates in the idea that, many different impairments of 

genes that link to common pathways may ultimately result in only damaging a select 

number of neurobiological pathways associated with development and plasticity (Chaste 

and Leboyer, 2012).  

There is considerable evidence to support the hypothesis that ASDs are mainly a 

consequence of impairments in neuronal synapses and networks (Gilman et al., 2011; 

Zoghbi, 2003). The postsynaptic density (PSD) is a dense specialization of proteins 

localized to the postsynaptic membranes of excitatory neurons. Moreover, the PSD is 
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subjugated by glutamate receptors, a multitude of scaffold proteins including PSD95, 

Homer, etc., as well as signaling proteins (Sheng and Hoogenraad, 2007). Thus, PSD 

acts to aggregate and organize neurotransmitter receptors at the synaptic cleft, and also 

serves as a signaling apparatus (Kennedy, 1997, 2000; Ziff, 1997). The PSD plays a 

critical role in neuroplasticity as its size continually grows in proportion to the size and 

strength of neuronal synapses during long-term potentiation (Meyer et al., 2014). As 

there are many proteins in the PSD that are involved in the maintenance and regulation 

of synaptic function, many of their respective genes have been identified in ASDs that 

affect synaptic plasticity and neuronal development. Among some of the first candidate 

synaptic genes implicated in idiopathic ASDs were the X-linked neuroligins NLGN3 and 

NLGN4X, and the scaffolding protein SHANK3 (Durand et al., 2007; Gauthier et al., 

2010; Jamain et al., 2003; Laumonnier et al., 2004; Moessner et al., 2007). Of these 

genes, SHANK3 remains among one of the most highly researched genes regarding 

ASDs. This is largely because SHANK3 haploinsufficiency has been implicated in 

monogenic forms of ASDs, affecting roughly 1% of the population (Moessner et al., 

2007). The genetics, gene and protein structure, and implications of SHANK3 in ASD 

and ASD mouse models are discussed in detail next.   

 

1.2 SHANK3 

1.2.1 A brief introduction to SHANK3 

SH3 and multiple ankyrin repeat domains 3 (SHANK3), also known as proline-

rich synapse-associated protein (ProSAP2), is a multidomain scaffold protein belonging 
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to the SHANK family of proteins that is highly augmented in the PSD of excitatory 

glutamatergic synapses within the central and peripheral nervous system (Boeckers et 

al., 1999a, 2002). The cytogenic location of SHANK3 in homo sapiens is 22q13.33 and 

contains 58,570 base pairs of which 22 exons are translated into protein. Full-length 

Shank3 is comprised of 1,731 amino acids that fold into five highly conserved domains 

and facilitate protein-protein interactions:  an ankyrin repeat (ANK), a Src homology 3 

(SH3), a PSD-95/Discs large/ZO-1 (PDZ), a proline-rich region that contains Homer- 

and cortactin-binding sites (Pro-rich), and a sterile alpha motif (SAM; Sheng and Kim, 

2000; Wang et al., 2014a; Fig 1). The transcription of SHANK3 is considerably 

elaborate as the gene possesses at least six intragenic promoters and undergoes 

alternative splicing, resulting in an impressive array of protein isoforms (Lim et al., 1999; 

Waga et al., 2014; Wang et al., 2014b; Zhu et al., 2014). SHANK3a, the full-length 

isoform, contains all five functional domains while the rest of the cohort is produced by 

alternative splicing and different promoter-specific regions within the SHANK3 gene. 

Accordingly, these other isoforms (e.g. SHANK3b/c/d/e/f) encompass varying 

arrangements of the five different functional domains (Wang et al., 2014a).  
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Figure 1. Cartoon of Shank3 gene organization and the domain composition 
within major Shank3 isoforms. Shank3 has 22 exons, of which 11, 12, 18, 21, and 22 
undergo alternative splicing (Wang et al., 2014b). The six intragenic promoters help 
develop an array of isoforms (Shank3a-f), each composed of different combinations of 
functional domains. Note that, as the genetics of Shank3 becomes more understood 
(e.g. alternative splicing, new promoters) a complete list of Shank3 isoforms remains to 
be determined. Image adapted from (Wang et al., 2014b). 
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1.2.2 Expression of SHANK3 

SHANK3 is expressed in various tissues throughout the body such as fat, kidney, 

lung, spleen, heart, and brain (Fagerberg et al., 2014). In the brain in particular, it is 

becoming more evident that SHANK3 isoforms show differential expression patterns not 

only among different brain regions but in development as well (Wang et al., 2014a). For 

example, q-PCR studies in mouse brains show SHANK3a expression increases 

significantly after postnatal day five and stabilize at postnatal day 10 while SHANK3b 

expression increases steadily from postnatal day one until four weeks when it stabilizes 

(Wang et al., 2014a). Region specific characterizations of SHANK3 in mice brains have 

also indicated variable expression levels of selective SHANK3 isoforms; the expression 

of full-length SHANK3a, SHANK3b, and SHANK3e are highest in the striatum vs other 

brain compartments; SHANK3c and SHANK3d are expressed more in the cerebellum 

vs. other brain compartments; messenger RNA is highly abundant for all isoforms in 

hippocampal neurons but not in hippocampal astrocytes (Monteiro and Feng, 2017; 

Wang et al., 2014a). Moreover, it appears that varying mutations in SHANK3 can affect 

the function of select SHANK3 isoforms, and, consequently, each impairment may 

result in idiosyncratic disruptions at specific excitatory synapses in different regions of 

the brain, thus providing some explanation for the diversity of phenotypes seen in ASDs 

caused by mutations in SHANK3 (Monteiro and Feng, 2017; Wang et al., 2014a).  

 

1.2.3 The Role of SHANK3 in the Postsynaptic Density 
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 As SHANK3 is a scaffolding protein, the protein-dense nature of the PSD where 

it is primarily localized allows for intensive protein-protein interactions and complex 

synaptic functions. To begin with, it is conventionally known that SHANK3 is involved in 

glutamate receptor clustering. Metabotropic glutamate receptor 5 (mGluR5) is a G 

Protein-coupled receptor involved in neurotransmission and the maintenance of normal 

brain function. The interaction between SHANK3 and mGluR5 is mediated by the 

proline rich domain of SHANK3, which binds with the mGluR-binding protein Homer (Tu 

et al., 1999). One study showed that RNA interference of SHANK3 in cultured neurons 

decreased the synaptic levels of mGluR5 and resulted in decreased mGluR5-dependent 

neurotransmission and synaptic plasticity, and that the use of a positive allosteric 

modulator rescued mGluR5 signal transmission (i.e. the study revealed mGluR5 as a 

potential target for pharmacological therapies in patients with ASD;  Verpelli et al., 

2011). Another study demonstrated in a mutant SHANK3 mouse line that SHANK3 

deficiency impairs mGluR5-Homer scaffolding, which has been implicated in ASD 

phenotypes such as learning deficits (Wang et al., 2016).  

Guanylate kinase-associated protein (GKAP) and postsynaptic density-95 

(PSD95) complexes mediate the interaction between the PDZ domains of SHANK3 and 

N-methyl-D-aspartic acid receptor (NMDAR) while the PDZ domain directly interacts 

with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) 

(Boeckers et al., 1999b; Ehlers, 1999; Kim et al., 2009; Naisbitt et al., 1999; Tu et al., 

1999; Uchino et al., 2006). NMDAR, AMPAR, and kainate receptors are the three major 

ionotropic glutamate receptors. Briefly, NMDARs are calcium permeable ionotropic 

glutamate receptors that only open in response to glutamate binding when the neuronal 
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membrane potential is depolarized. NMDARs are highly involved in memory and 

synaptic plasticity because activation NMDARs can induce long-term potentiation (LTP) 

or long-term depression (LTD; Hasan et al., 2013; Sheng and Kim, 2002; Shipton and 

Paulsen, 2014). Indeed, mutations in these glutamate receptors have been linked to 

ASDs (Carlson, 2012). Although the mechanism through which SHANK3 regulates the 

expression and function of NMDAR remains largely unknown, it has been shown that 

loss of SHANK3 in mice induces decreased function of NMDAR by obstructing the 

Rac1/PAK/Cofilin/actin signaling pathway (Duffney et al., 2013).  

As mentioned, SHANK3 has a direct interaction with AMPARs via its PDZ 

domain by binding to the carboxylic acid terminus of the receptor (Uchino et al., 2006). 

Briefly, AMPARs activate in response to glutamate binding which facilitates rapid 

synaptic transmission in the central nervous system. Like NMDARs, AMPARs are also 

intimately involved in synaptic plasticity via LTP and LTD (Song and Huganir, 2002), 

and these receptors play a critical role in the formation of epileptic seizures (Rogawski, 

2013). It has recently been found that SHANK3 interacts with Rho-GAP interacting CIP4 

homolog 2 (Rich2), and that these binding partners together regulate the recycling of 

AMPARs and increase the dendritic spines of hippocampal neurons in mice, linking the 

SHANK3-Rich2 interaction to synaptic plasticity (Raynaud et al., 2013).  

SHANK3 also plays a critical role in the organization of actin cytoskeleton and 

the development of dendritic spines (Sala et al., 2001). In fact, re-introduction of 

SHANK3 can rescue spinogenesis in aspiny neurons in hippocampal neurons 

(Roussignol et al., 2005). SHANK3 requires several actin-regulatory binding partners in 

order to substantiate the maintenance and formation of excitatory synapses. For 
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example, SHANK3 interacts with cortactin via its Pro-rich domain. Cortactin is an F-actin 

binding protein that plays a key role in stabilizing the branching of actin filaments 

(Weaver et al., 2001). Cortactin requires the Arp2/3 actin polymerization complex to 

bind a nucleate new branches of actin (Uruno et al., 2001). It has recently been 

suggested that Shank proteins recruit cortactin to the synapses and that their interaction 

is involved in the maintenance and function of neuronal spine flexibility (MacGillavry et 

al., 2016). However, although mutations in SHANK3 affect the levels of F-actin, they do 

not appear to affect levels of cortactin in dendritic spines (Durand et al., 2012). Alpha 

fodrin (α -fodrin, formally known as SPTAN1) also mediates the interaction between 

SHANK3 and the actin cytoskeleton (Böckers et al., 2001). Interestingly, the binding of 

the ANK repeat domain in SHANK3 to α -fodrin may be regulated by a novel, conserved 

domain termed the Shank/ProSAP -N-terminal (SPN) domain, located N-terminal to the 

ANK repeat domain (Mameza et al., 2013). The ANK repeat domain also connects 

SHANK3 to the actin cytoskeleton by binding to Sharpin, which has been associated 

with the multimerization of Shank proteins (Lim et al., 2001). Other actin binding 

partners for Shank include Abp1 (actin binding protein 1) that directly links the Pro-rich 

region of SHANK3 to F-actin (Qualmann et al., 2004); beta PIX, a guanine nucleotide 

exchange factor for the small GTPases Rac1 and Cdc42, which is recruited by Shanks 

to modulate postsynaptic structure (Park et al., 2003); and ProSAPiP1 (ProSAP-

interacting protein 1), which links the PDZ domain of SHANK3 to Spine-associated Rap-

Gap (SPAR) and is highly involved in the regulation of dendritic spine morphology 

(Wendholt et al., 2006). Moreover, the complexity of SHANK3’s role in the PSD 
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continues to increase in light of the fact that the array of SHANK3 isoforms likely 

undergo differential interactions with a multitude of PSD-localized binding partners. 

 

1.2.4 Mutations in SHANK3 Can Result in ASDs 

 Mutations in SHANK3 have been associated with individuals affected with ASD 

for over a decade now (Durand et al., 2007; Gauthier et al., 2009; Moessner et al., 

2007). The 22q13.3 deletion syndrome (Phelan-McDermid Syndrome; PMS) involves 

the monogenic microdeletion of SHANK3 in roughly 95% of the cases, in which more 

than half of the patients show autistic-like behavior (i.e. patients have a syndromic form 

of ASD; Phelan and McDermid, 2012). PMS is characterized by global developmental 

delay, speech impairments, intellectual disabilities, hypotonia, and ASD-like behaviors. 

Although monogenic forms of autism caused by point mutations in exons or intragenic 

mutations in SHANK3 only account for a small fraction of ASDs, these cases establish 

haploinsufficiency of SHANK3 as sufficient for pathogenesis (Berkel et al., 2010, 2012; 

Boccuto et al., 2013; Moessner et al., 2007; Wang et al., 2014b). In fact, all reported 

cases of SHANK3 deletions associated with ASD are heterozygous in nature (Moessner 

et al., 2007). Still, recurrent breakpoints during chromosomal translocation in the 

SHANK3 gene have also been reported (Bonaglia et al., 2006). 

 

1.2.5 Mouse Models of Autism 

 Modeling SHANK mutations in humans through the use of mutant mouse lines 

has received considerable attention over the last decade. At present, there are 11 lines 
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of mutant mice with each carrying a different mutation in the SHANK3 gene. These 

mutations are deletions of different exons and thus result in the loss of functional 

domains in SHANK isoforms. They are as followed: Δe4-9Buxbaum(B) (Bozdagi et al., 

2010), Δe4-9Jiang(J) (Wang et al., 2011b), Δe4-7 (Peça et al., 2011), Δe9 (Lee et al., 

2015), Δe11 (Schmeisser et al., 2012), Δe13-16 (Peça et al., 2011), Δe21 (two lines; 

Duffney et al., 2015; Kouser et al., 2013), Δe21R1117X (Zhou et al., 2016), Δe21InsG 

(Speed et al., 2015), and Δe4-22 (Wang et al., 2016). All of these mutations result in a 

frameshift of the downstream transcripts and thus truncated SHANK3 proteins and 

isoforms. It is important to note however that, given how SHANK3 possesses six 

intragenic promoters and undergoes alternative splicing of exons, each of these mice 

display select impaired isoforms but not the entire disruption of the SHANK3 (Wang et 

al., 2014b; Zatkova et al., 2016).  

Accordingly, each of these mice present with different synaptic structures and 

behavioral phenotypes. For example, in Δe4-9Buxbaum(B) mice, Bozdagi and colleagues 

observed a reduction of the signal transmission at glutamatergic synapses, impairment 

of LTP, and deficits in social interaction and communication (Bozdagi et al., 2010). 

However, in Δe4-9Jiang(J) mice, signal transmission in CA1 hippocampal neurons is 

unaffected, but LTP is reduced (Wang et al., 2011b). Wang and colleagues also 

observed decreased levels of PSD proteins and altered dendritic spine morphology, as 

well as aberrations in social and motor behaviors, ultrasonic vocalizations, and learning 

and memory (Wang et al., 2011b). Profound ASD-like phenotypes are observed in 

Δe13-16 mice. Abnormal, repetitious grooming which lead to skin lesions was observed, 

as well as increased anxiety and a predilection for social novelty (Peça et al., 2011). 
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Interestingly, these mice also showed impairments at cortico-striatal synapses, a facet 

of neural circuitry hypothesized to be dysfunctional in ASDs (Fuccillo, 2016; Peça et al., 

2011). Many behavioral tests on Δe21 mice were normal, although some ASD-like 

phenotypes (such as grooming and impaired spatial learning) were observed (Kouser et 

al., 2013). Still, electrophysiological studies on these mice revealed debilities in 

plasticity and synaptic transmission in the hippocampus, which is consistent with their 

observed spatial learning deficiency (Kouser et al., 2013). Because the mouse model 

Δe4-22 mouse line created by Jiang and colleagues mimics the genetic defect most 

frequent among patients with ASD (i.e. loss of the entire SHANK3 gene), it is, so far, 

perhaps the model with the most construct validity. (Wang et al., 2016). Interestingly, 

the loss of SHANK3 in these mice leads to the reorganization of Homer and mGluR5 at 

both the synapse and soma, revealing a neuropathology mechanism may be present 

among humans with ASD (Wang et al., 2016).  

 

1.2.6 Rescuing Phenotypes in ASD Mouse Models 

 Impressively, recent studies have shown to be successful in rescuing ASD-

phenotypes in mice models of autism and may provide insight into pharmacological 

therapies for ASD patients. By inhibiting cofilin (an actin depolymerizer) and activating 

Rac1, researchers rescued physiological and behavioral impairments in mutant 

SHANK3 mice (Duffney et al., 2015). Re-expression of the SHANK3 gene in a mouse 

model with conditional SHANK3 knock-in enhanced PSD proteins, dendritic spines, and 

striatal function (Mei et al., 2016). Although some behavioral phenotypes were rescued 

in these mice, such as repetitious grooming and impaired social interaction, adult mice 
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still demonstrated anxiety and poor motor coordination (Mei et al., 2016). Indeed, 

substantial effort will be required to fully characterize the relationship between the array 

of ASD phenotypes and the genetic complexity of SHANK3 mutations. Nonetheless, it 

appears that different mutations of SHANK3, which affect SHANK3 isoforms 

differentially, results in a panorama of ASD phenotypes. Linking these phenotypes to 

the molecular diversity in SHANK3 mutations presents an incredible challenge.  

 

1.3 HCN Channels 

1.3.1 A Brief Overview of the Structure of HCN Channels 

Hyperpolarization-activated cyclin nucleotide-gated (HCN) channels are a 

subgroup of cyclic nucleotide-regulated cation channels within the superfamily of poor-

loop cation channels (Yu et al., 2005). The currents carried by HCN channels are 

hyperpolarization-activated currents (Ih; also known as If for “funny” current), and were 

first observed in 1976 in rabbit heart (Noma and Irisawa, 1976). In mammals, this small 

family of membrane proteins is comprised of four members (HCN1-4) that are 

expressed in cardiac and nervous tissue. Each HCN channel is composed of four 

subunits arranged such that they form a homo- or heterotetramers with a centrally 

located pore. Each of these four subunits have characteristic biophysical signatures 

such as hyperpolarization-dependent activation, mixed permeability for Na+ and K+ ions 

that results in a reversal potential around -30 to -40 mV, and sensitivity to intracellular 

cAMP and cGMP (Gauss et al., 1998; Ishii et al., 1999; Jiang et al., 2008; Ludwig et al., 

1998, 1999; Moosmang et al., 2001; Santoro et al., 1998; Seifert et al., 1999). HCN 
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channels can be broken down into three structural segments: a cytosolic amino (NH2) 

terminal portion, the transmembrane core section, and cytosolic carboxylic acid 

(COOH)terminal domains. The transmembrane core is comprised of six α-helical 

segments (S1-S6) with a positively charged S4 segment serving as the voltage sensor, 

a trademark of the voltage-gated cation channel superfamily (Chen et al., 2000; Vaca et 

al., 2000; Yu and Catterall, 2004; Fig 2).  However, the  inward movement of the 

positively charged S4 segment within the core of the channel has contrasting effects 

between HCN and other depolarizing channels, activating HCN channels and 

deactivating, for example, Kv channels (Seoh et al., 1996). Although these ion channels 

structurally resemble K+ channels, they are less selective for K+ ions and also permit 

the inward flow of Na+ ions (Craven and Zagotta, 2006). The COOH-terminal of all HCN 

channels possesses two structural domains, the cyclic nucleotide binding domain 

(CNBD) and a C-linker region that links this COOH-terminus to the transmembrane 

core. As discussed in detail below, a unique feature of HCN channels is the presence of 

a CNBD domain that moderates the effect of cAMP or cGMP on HCN channels (Chen 

et al., 2001; Wainger et al., 2001). Between the four channels, there is high sequence 

homology between the transmembrane pores and the proximal segments of the COOH-

termini while the sequences of the NH2-termini and the distal COOH-termini share little 

homology (Biel et al., 2002, 2009; Kaupp and Seifert, 2001). Accordingly, allosteric 

interactions between the transmembrane segments and the proximal portion of the 

COOH-terminus occur during channel gating.  
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Figure 2. Cartoon Schematic of an HCN Channel. HCN channels are composed of four 
subunits that combine to form a central pore within the membranes of neurons in the nervous 
and cardiovascular systems. Each subunit has six transmembrane segments (S1-S6) of which 
S4 acts as the voltage sensor. HCN channels are unique in that they are less selective to K+ 
ions and permit the flow of Na+ ions as well. This unique selectivity filter is located between S5 
and S6. The C-terminal of HCN channels is also unique in that it possesses a cyclic nucleotide 
binding domain (CNBD) to which cAMP is able to bind and shift the V1/2 of HCN1,2, and 4.  
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1.3.2 HCN Channels are Activated by Hyperpolarization 

As their name suggests, HCN channels activate upon hyperpolarization. These 

channels conduct hyperpolarization-activated cation currents (Ih) which, in contrast to 

most ion channels that conduct upon membrane depolarization, allow the inward flux of 

cations inward upon membrane hyperpolarization. Conversely, depolarization of the 

membrane closes HCN channels, which impedes the tonic inward flux and has the 

ultimate effect of hyperpolarizing the membrane back towards its RMP. HCN channels 

are partially active near the resting membrane potential (RMP) and thus influence the 

membrane potential to stabilize at more depolarized voltages (Doan and Kunze, 1999; 

Ludwig et al., 2003; Lupica et al., 2001; Meuth et al., 2006). Hence, at physiological 

conditions, HCN channels have a reversal potential at roughly 0 to -40 mV 

(DiFrancesco, 1993). In general, the gating kinetics of HCN channels can be 

characterized by two currents upon activation: a minor instantaneous current (IINS), 

which presents almost immediately, and a major slowly developing current (ISS) that 

stabilizes from a range of tens of milliseconds to seconds (Macri and Accili, 2004; 

Proenza et al., 2002). The most functionally significant attributions of Ih currents are the 

generation and regulation of the heart beat (i.e. “pacemaker” currents; Brown et al., 

1979b; DiFrancesco et al., 1989), and control of intrinsic, rhythmic oscillations in 

neuronal circuitry (Dossi et al., 1992; Leresche et al., 1990, 1991; McCormick and 

Pape, 1990). At the cellular level, HCN channels contribute to the maintenance of 

resting membrane potential, regulation of input resistance, and the initiation and 

propagation of action potentials.  
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1.3.3 HCN Channel Activity Can Be Modulated by cAMP 

 As indicated by their name, one of the key characteristics of HCN channels is 

their ability to be modulated by the direct binding of cyclic nucleotides (DiFrancesco and 

Tortora, 1991; Ludwig et al., 1998; Wainger et al., 2001). This feat is unique to HCN 

channels as most of the functional roles mediated by cAMP are through protein 

phosphorylation (Duman and Nestler, 1999). Elevated levels of cAMP significantly 

increase the activation kinetics of HCN channels by shifting the voltage-dependence of 

the channel to more positive membrane potentials, especially HCN2 and HCN4 (Bobker 

and Williams, 1989; Wainger et al., 2001). Contrarywise, decreased levels of cAMP 

reduce HCN channel activation and shift the membrane potential to more negative 

values. This regulation of cyclin nucleotides has significant physiological contributions 

such as the “fight or flight” mechanism. For example, β-adrenergic agonists, which 

increase cAMP levels, results in an increased heart rate (Brown et al., 1979b, 1979a), 

while muscarinic acetylcholine receptor agonists result in the deceleration of the heart 

(DiFrancesco and Tromba, 1988a, 1988b; DiFrancesco et al., 1989).  

 

1.3.4 Basic Physiology of HCN Channels   

Although HCN channels are highly implicated in the proper function of SAN cells 

and Purkinje fibers in cardiac tissues (DiFrancesco, 1993), the focus in this thesis will 

be more directed towards their physiological significance in the central nervous system. 

As mentioned, HCN channels are partially open at rest and, consequently, they help set 

and stabilize the RMP. This membrane stabilization occurs because constant 
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conductance of an inward cation current decreases the membrane resistance (Rm), 

which is generally described as the ratio of the change in voltage to the current 

propagated (Nolan et al., 2007). In this way, HCN channels act as physiological voltage 

clamps as they compete against hyperpolarizing and depolarizing currents; they 

activate upon hyperpolarization and close when the membrane depolarizes, 

respectively (Bayliss et al., 1994; Biel et al., 2009; Mayer and Westbrook, 1983; Nolan 

et al., 2007; Solomon and Nerbonne, 1993). These phenomena can be seen in voltage 

clamp experiments and are termed “voltage sags.” Depolarizing voltage sags can be 

seen by eliciting a hyperpolarization current step, which increases the number of Ih 

currents and eventually shifts the membrane potential back towards the RMP (Biel et 

al., 2009; Pape, 1996; Robinson and Siegelbaum, 2003). Likewise, Hyperpolarizing 

voltage sags can be seen by eliciting depolarizing current steps, which halts the tonic Ih 

current and drags the membrane potential back down towards its resting potential (Biel 

et al., 2009; Pape, 1996; Robinson and Siegelbaum, 2003). The HCN channels 

opposition to hyperpolarizing or depolarizing inputs also has the effect of preventing 

low-frequency oscillations in the membrane potential (Nolan et al., 2007). Moreover, the 

consequences of this type of channel conductance behavior is that, because Ih currents 

are typically active at RMP, the input resistance of the neuron is already lessened, and 

any currents arriving at the synapse will have diminished effects on the membrane 

potential (also known as the “dampening effect”). Therefore, the amplitude and kinetics 

of excitatory postsynaptic potentials (EPSPs) are decreased. Similarly, the effects of 

inhibitory postsynaptic potentials (IPSPs) are negated because hyperpolarization 
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activates the channel and permits cation conductance, thus depolarizing the membrane 

(Atherton et al., 2010; Kase and Imoto, 2012).  

Dendritic integration is the process by which neuronal cells take excitatory and 

inhibitory synaptic inputs and integrate this information at the soma in order to 

determine whether or not an action potential (AP) will fire. Dendritic integration has been 

well characterized in CA1 pyramidal neurons (Stuart and Spruston, 2015), and this 

process is heavily reliant upon HCN channels for a unique type of regulation (Magee, 

1998, 1999, 2000). For example, it is generally anticipated that repetitious EPSPs 

generated at more distal dendrites undergo summation in the soma to elicit an AP. 

However, temporal summation due to EPSPs distal to the soma are often not present in 

neocortical and hippocampal pyramidal neurons. This phenomena is explained by an 

increasing somatodendritic axis gradient of HCN channels such that the concentration is 

lower in the soma and increases roughly 10-fold along the way to distal dendrites (Biel 

et al., 2009; Lörincz et al., 2002; Magee, 1998, 1999, 2000). The physiological 

consequence of this is that the input resistance at dendritic sites is significantly reduced, 

which results in smaller voltage changes by incoming EPSPs. Moreover, although HCN 

channels tend to shift the potential of the membrane to a more depolarized state, it 

appears that the large collections of channels at dendritic sites has the principal effect of 

diminishing input resistance and EPSP summation, predominantly in the neurons of the 

cortex and hippocampus (Berger et al., 2001; Magee, 1998, 1999, Poolos et al., 2002, 

2006; Williams and Stuart, 2000). However, HCN channel localization (at lower 

concentrations) in the soma of non-pyramidal interneurons of the cortex and 

hippocampus has been characterized as well (Lupica et al., 2001). Yet, the overall 
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result is still inhibitory as any depolarization will halt the flux of Ih currents and have a 

hyperpolarizing effect on the membrane. Moreover, the global excitability of the neurons 

in the cortex and hippocampus is essentially weakened due to the dichotomic 

functionality of HCN channels.  

1.3.5 Differences among HCN Isoforms 

As mentioned, there are differences among HCN channels with respect to gating 

kinetics of activation and inactivation, steady-state voltage dependency, and degree of 

influence by cAMP. For example, HCN1 has the fastest gating kinetics (Ishii et al., 2001; 

Santoro et al., 2000), the most positive V1/2 value (i.e. more HCN1 channels are active 

at RMP than the other isoforms; Altomare et al., 2003; Baruscotti et al., 2005), and 

presents the weakest shift in activation curve in saturating cAMP conditions (Altomare 

et al., 2003; Viscomi et al., 2001; Wainger et al., 2001; Wang et al., 2001). Although 

HCN2 and HCN4 both demonstrate intense sensitivity to cAMP and have relatively 

equal V1/2 values (Altomare et al., 2003; Ludwig et al., 1999; Moroni et al., 2000; 

Viscomi et al., 2001; Wainger et al., 2001; Wang et al., 2001; Zagotta et al., 2003), both 

channels have slower opening kinetics than HCN1, especially HCN4 being the slowest 

of the four isoforms (Ishii et al., 1999; Ludwig et al., 1999; Seifert et al., 1999). HCN3 

channels in humans have intermediate activation kinetics, and surprisingly, even though 

the channel possesses a CNBD, the channel elicits no functional response upon the 

binding of cyclic nucleotides (Stieber et al., 2005; Table 1).  
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Table 1. General Features of the HCN Channel Family. The data was organized into 
this chart based on the information provided in the excellent review done by (Biel et al., 
2009). Amino acid numbers were taken from Uniprot and represent the human HCN 
isoforms. T act stands for “time for activation.” 
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1.3.6 The Expression of HCN Isoforms in the Nervous System 

HCN1-4 are all expressed in the brain, albeit they have different expression 

patterns and localizations within the nervous system (Monteggia et al., 2000; 

Moosmang et al., 1999; Santoro et al., 2000); HCN1 expression has been observed in 

the spine, brainstem, neo and cerebellar cortex, and hippocampal tissues (Milligan et 

al., 2006; Moosmang et al., 1999; Notomi and Shigemoto, 2004; Santoro et al., 1997); 

HCN2 is expressed more so in the thalamus and brainstem compartments, although its 

distribution in the brain is global (Milligan et al., 2006; Moosmang et al., 1999; Notomi 

and Shigemoto, 2004; Santoro et al., 2000); HCN3 expression is considerably low 

throughout the central nervous system (Moosmang et al., 1999; Notomi and Shigemoto, 

2004; Stieber et al., 2005); HCN4 expression is variable among different brain 

compartments, having pronounced mRNA levels in the mitral cell layer of the olfactory 

bulb and the thalamus, but little expression in the cerebral layers (Ludwig et al., 1998; 

Moosmang et al., 1999; Notomi and Shigemoto, 2004; Santoro et al., 1997, 2000). 

 

1.3.7 HCN Channels and Memory 

More recently, HCN channels have been implicated in working memory and age-

related working memory decline (Wang et al., 2007, 2011a). Briefly, working memory is 

a limited, temporary cognitive organization of information in the prefrontal cortex that is 

responsible for reasoning and decision-making behavior. The role of HCN channels in 

working memory is described as follows: During a wake cycle, alertness causes low 

levels of norepinephrine (NE) to be released. NE activates α2A-adrenoceptors, which 
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halts the production of cAMP. This results in a decreased number of HCN channels 

open at the RMP, which increases the input resistance of the membrane and thus the 

effect of synaptic activity on synapses. Moreover, reduced HCN channel activity may 

allow for increased neuronal firing to relevant spatial information (Wang et al., 2007). On 

the other hand, D1- receptors increase cAMP production (Vijayraghavan et al., 2007). 

Thus, when HCN channels are activated, the input resistance of the membrane 

decreases because the open probability of the channels is higher due to the effects of 

cAMP. In this way, HCN channels may help inhibit irrelevant spatial information.  

 

1.3.7 HCN Channels and Neurological Disorders   

HCN channels have been indicted for having at least some role in neurological 

disorders such as epilepsy, neuropathic pain disorders and Parkinson’s disease. Down 

regulation of Ih currents has been attributed to epileptogenesis and spontaneous 

absence seizures in mice with mutant HCN1 and HC2, respectively (Chung et al., 2009; 

Huang et al., 2009; Ludwig et al., 2003). However, transcriptional channelopathies of 

HCN channels have also shown to be related with epileptogenesis and seizure 

production. For example, in mice models of epilepsy it was discovered that the altered 

expression of HCN1 was associated with the incidence of seizures (Kole et al., 2007; 

Phillips et al., 2014), and that alterations of HCN1 and HCN2 expression in young mice 

enhance the tendency to develop epilepsy in adult mice (Brewster et al., 2002; Dube et 

al., 2000). This is also consistent with the alterations in HCN channel expression 

observed in human epileptic brain tissue (Bender et al., 2003). Surprisingly, only a few 

studies have confirmed HCN channels as the direct cause of epilepsy in humans 
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(DiFrancesco et al., 2011; Nakamura et al., 2013; Nava et al., 2014; Tang et al., 2008). 

There is increasing evidence implicating HCN channels mediating the initiation and 

frequency of APs in neural pathways involved in pain (Jiang et al., 2008). Neuropathic 

pain can be described as an enduring state of pain due to nerve tissue damage. A study 

has demonstrated that the HCN2 isoform appears to maintain neuropathic pain 

succeeding nerve damage (Momin et al., 2008). Interestingly, in mice with HCN2 

deletions specifically in sensory nociceptors, researchers have found that neuropathic 

pain can be abolished without affecting the response to ordinary acute pain (Emery et 

al., 2011). Moreover, developing pharmacological therapies to target HCN channels 

presents a significant challenge given the critical functionality of the HCN channel family 

within the central nervous system. The indictment of HCN channels in Parkinson’s 

disease is also very recent, and only a handful of studies have characterized Ih in the 

substantia nigra during the atrophy of dopaminergic neurons, the chief etiology of 

Parkinson’s disease. Although little is known about how downregulation of Ih is 

associated with Parkinson’s disease, loss of channel activity appears to follow after the 

degeneration of dopamine neurons (Chan et al., 2011; Good et al., 2011).  

 

1.4 SHANK3-HCN Interactions 

It has recently been suggested by several studies that there is some clinical 

overlap between the symptoms of neurological disorders involving HCN channels and 

the symptoms of ASDs associated with SHANK3 haploinsufficiency. In fact, it has 

recently been demonstrated in human neurons that SHANK3 haploinsufficiency results 
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in Ih-channel dysfunction because of decreased current density, and that SHANK3 

deletion results in decreased levels of endogenous HCN3 and HCN4 proteins (Yi et al., 

2016). Yi et al. also observed in pulldown assays that SHANK3 has a physical 

interaction with HCN1, HCN2, and HCN3 channels via its ANKYRIN repeat domain. 

These insights suggest that SHANK3 may play important roles in HCN channel 

expression and function, and that HCN channelopathies (Ih-current impairments) may 

actually encourage some of the symptoms observed in patients with ASDs caused by 

mutations in SHANK3 and in Phelan-McDermid syndrome (Yi et al., 2016).  Further, our 

lab has recently characterized thalamocortical neurons in two different ASD mouse 

models, SHANK3Δ13-16 and SHANK3Δ4-9 (Bozdagi et al., 2010; Peça et al., 2011), and 

found that Ih-current impairment is largely responsible for changes in the basic neuronal 

electrical properties of SHANK3 deficient neurons (not yet published). SHANK3Δ13-16 

mice, but not SHANK3Δ4-9 mice, exhibited decreased membrane potential and an 

increase in input resistance, trademarks of HCN channelopathy (Baruscotti et al., 2010; 

Poolos, 2012). Although the targeted mutations in SHANK3Δ4-9 result in the loss of full-

length SHANK3 (SHANK3a) and SHANK3b isoforms, these mice still retain one major 

of SHANK3 protein isoform, SHANK3c (Bozdagi et al., 2010; Wang et al., 2014b). 

Therefore, we suspect that this remaining isoform may help preserve the usual 

expression of HCN channels in SHANK3Δ4-9 mice. On the other hand, SHANK3Δ13-16 

mutations result in the loss of most SHANK3 isoforms, thus explaining the difference in 

the neuronal electrical properties between these two mouse models (Peça et al., 2011; 

Wang et al., 2014b).  
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1.5 Goal of This Work 

The goal of this work was to investigate potential interactions between functional 

SHANK3 domains and the N- and C- Termini of HCN channel isoforms, and to further 

characterize the protein expression profiles of HCN isoforms in SHANK3Δ13-16 and 

SHANK3Δ4-9 mice. Our central hypothesis for this study is that the HCN channelopathy 

plays a major role downstream from SHANK3 deficiency, especially in altering the basic 

electrical properties (i.e. RMP and the input resistance) of affected neurons. Our 

preliminary data suggests that SHANK3 interacts with the C-terminus of HCN1. We also 

demonstrate that the differences between targeted mutations of SHANK3 in mouse 

models of autism have drastically opposing effects on the expression of HCN channels. 

Therefore, we propose that a subset of SHANK3 isoforms are necessary for the proper 

expression of certain HCN channels.  
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2 Methods 

2.1 Yeast Two-hybridization 

Five cDNA fragments encoding different amino acid segments of SHANK3 [amino acids 

(aa) 1-353 (ankyrin containing), 348-668 (SH3 and PDZ containing), 663-1000 (Pro-rich 

containing), 994-1338 Pro-rich and homer binding site containing), and 1338-1730 

(SAM containing)] were inserted in pGBKT-7 to yield the following plasmids to be used 

as bait: pGBKT7_SHANK3-1, pGBKT7_SHANK3-2, pGBKT7_SHANK3-3, 

pGBKT7_SHANK3-4, and pGBKT7_SHANK3-5. Four cDNA fragments encoding 

various amino acid segments of the N- and C-termini of mouse HCN1 [aa (HCN1 N-

terminus containing), (HCN1 CNBD domain containing), (HCN1 distal C-terminus 

containing), and (HCN1 distal C-terminus without the final SNL aa)] were inserted in 

pGADT-7 to yield the following library plasmids: pGADT7_m1-N, pGADT7_m1-C, 

pGADT7_m1-CNBD, pGADT7_m1-ext-C, and pGADT7_m1-ext-C_noSNL. Five cDNA 

fragments encoding various amino acid segments of the N- and C-termini of mouse 

HCN2 [aa (HCN2 N-terminus containing), (HCN2 C-terminus containing), (HCN2 CNBD 

domain containing), (HCN2 distal C-terminus containing), and (HCN2 distal C-terminus 

without the final SNL aa)] were inserted in pGADT-7 to yield the following plasmids: 

pGADT7_m2-N, pGADT7_m2-C, pGADT7_m2-CNBD, pGADT7_m2-ext-C, and 

pGADT7_m2-ext-C_noSNL. After creating cDNA constructs for the PDZ and SH3 

domains, we inserted them in pGBKT7 plasmids to create pGBKT7_SHANK3-PDZ and 

pGBKT7_SHANK3-SH3. Upon the realization that the PDZ and pro-rich fragments 

within the pGBKT7 plasmids resulted in autoactivation, we inserted new cDNA 
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constructs into pGADT7 plasmids to create pGADT7_SHANK3-PDZ and 

pGADT7_SHANK3-pro-rich. Likewise, we inserted new cDNA constructs of the CNBD 

and Ext-C of the mHCN2 into pGBKT7 plasmids to create pGBKT7_m2-CNBD and 

pGBKT7_m2-ext-C. For controls, we used the pGBKT7-53 (which encodes the Gal4 

DNA binding domain fused with murine p53) and pGADT7-T (which encodes the Gal4 

activation domain fused with SV40 large T-antigen) matchmaker vectors (Clontech 

Laboratories, Inc.). The bait and prey plasmids were co-transformed into the yeast train 

AH109. Detection of successful transformation was done by observing colony growth on 

yeast synthetic media with depleted leucine and tryptophan. Detection of protein-protein 

interactions was done by observing growth on yeast synthetic media with either 

depleted leucine, tryptophan, and histidine (triple dropout media), or depleted leucine, 

tryptophan, histidine, and adenosine (quadruple dropout media). All cDNA constructs 

were verified by DNA sequencing. Yeast transformation protocols were followed as 

directed by Clontech Laboratories, Inc. Matchmaker® Gold Yeast Two-Hybrid System 

User Manual.  

 

SHANK3 and HCN2 Knockout mice 

Shank3 knockout mice were purchased from The Jackson Laboratory (Shank3Δ13-16, 

Stock No: 017688; Shank3Δ4-9, Stock No: 017890; jax.org). The brain-specific HCN2 

knockout mice were generated by crossing the nestin-Cre mice (B6.Cg-Tg(Nes-

Cre)1Kln/J; Stock No: 003771; jax.org) with Floxed-HCN2 mice (exons 3-4 floxed; kindly 

provided by Dr. Peter McNaughton from King’s College, London). 

 

http://www.clontech.com/xxclt_ibcGetAttachment.jsp?cItemId=17597
http://www.clontech.com/xxclt_ibcGetAttachment.jsp?cItemId=17597
http://jax.org/
http://jax.org/
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Immunoblotting 

Crude whole cell lysates were made of mouse brains from mice with comparable age 

groups. Brains were dissected and briefly rinsed in ice cold PBS. The brain was placed 

in a pre-chilled glass grinder with 1ml of ice cold lysis buffer (pH 7.35) composed of 

150mM NaCl, 20mM Tris-HCL, 1% Triton-X, 0.1% SDS, 1mM each of EDTA and EGTA, 

2mM PMSF, and 40µl of a Pierce Protease Inhibitor Tablet dissolved in 2x PBS. Each 

sample was homogenized by 20-25 strokes while on ice. After a brief incubation period, 

samples were transferred to Eppendorf tubes, sonicated for 15 secs each, and 

subjected to centrifugation to remove cellular debris. Lysates were then mixed with 

sample buffer containing 2-mercaptoethanol, boiled and centrifuged for 10 min each, 

and then loaded in to 10% SDS-polyacrylamide gels. Gels were transferred at 4°C to 

polyvinylidene difluoride membranes, and blots were subsequently washed two times in 

TBS-T. Blots were blocked in TBS-T containing 4% dry, non-fat milk, 1% goat serum, 

and 0.1% sodium azide for one hour at room temperature and then incubated with 

primary antibodies overnight at 4°C in the same blocking solution as described above 

(anti-HCN1 (1: 300), mouse anti-HCN2 (1: 1000), and rat anti-HCN4 (1: 2000); Novus 

Biologicals). The relative amount of β-actin was used as loading control (beta actin 

loading control (1: 1,000); Thermo Fisher Scientific). Blots were extensively washed 

three times with TBS-T and then incubated for one hour at room temperature with 

horseradish peroxidase conjugated secondary antibody at a dilution of 1: 20,000 in the 

same blocking solution. Blots were washed three times with TBS-T and then treated 

with ECL detection reagents (GE Healthcare and Thermo Scientific West Femto 

Maximum Sensitivity substrate at a ratio of 4:1, respectively).  
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3 Results 

3.1 Yeast two-hybrid investigation of SHANK3 and HCN interactions 

The yeast two-hybridization assay is a useful genetic tool used to detect protein-

protein interactions. The strength of this system is its capability to provide a systematic 

survey of protein partners involved in interactions. Therefore, we used the 

MatchmakerTM Yeast two-hybridization system (Clontech Laboratories Inc.) to test for 

potential interactions between SHANK3 and HCN channels. Initially, we inserted five 

cDNA constructs of SHANK3 into pGBKT7 plasmids and used them as bait. The library 

plasmid (the prey) contained various cDNA fragments of the N- and C- termini of HCN1 

and HCN2. We co-transformed various combinations of bait and prey plasmids into 

AH109 yeast and assayed for interactions by observing growth on Trp-/Leu-/His- 

depleted agar plates. Although we observed no colony growth from transformations 

containing pGBKT7_SHANK3-1, pGBKT7_SHANK3-3, and pGBKT7_SHANK3-5, we 

did observe a continuing pattern in which the bait plasmids pGBKT7_SHANK3-2 and 

pGBKT7_SHANK3-4 always generated positive results when they were co-transformed 

with any prey plasmid (Sup. Fig. 1).  

This suggested that 1) either the PDZ or SH3 domains within the 

pGBKT7_SHANK3-2 plasmid or a pro-rich segment within the pGBKT7_SHANK3-4 

plasmid a broadly interacts with the termini of HCN channels, or 2) that autoactivation of 

the yeast two-hybridization system by SHANK3 fragments may be occurring. Therefore, 

we created individual cDNA constructs for the PDZ and SH3 domains by separately 

cloning them into pGBKT7 plasmids. We found that the PDZ domain specifically was 



33 
 

responsible for all of the false-positive results we observed when originally co-

expressing the pGBKT7_SHANK3-2 plasmid with pGADT7 plasmids containing HCN 

constructs (Sup. Fig. 2). To test for autoactivation, we co-transformed 

pGBKT7_SHANK3-2, pGBKT7_SHANK3-4, and pGBKT7_SHANK3-PDZ with empty 

pGADT7 plasmids. To our surprise, all three of these bait plasmids containing SHANK3 

domains were able to autoactivate the system (Fig. 3). However, when we co-

transformed pGBKT7_SHANK3-SH3 with HCN prey plasmids, we observed only one 

interaction from the pGBKT7_SHANK3-SH3 bait plasmid, which was with the 

pGADT7_m1-N plasmid (Fig. 4) and most likely the only positive hit.  

To combat the issue of autoactivation, we swapped the cDNAs of PDZ and pro-

rich domains from the pGBKT7 plasmid them into pGADT7 plasmids to create 

pGADT7_SHANK3-PDZ and pGADT7_SHANK3-Pro-rich. Likewise, we swapped the 

cDNAs of the CNBD and ext-C segments of the mHCN2 C-terminus from the pGADT7 

plasmid to the pGBKT7 plasmid to create pGBKT7_m2-CNBD and pGBKT7_m2-ext-C. 

We then co-transformed pGADT7_SHANK3-PDZ and pGADT7_SHANK3-Pro-rich with 

pGBKT7_m2-CNBD and pGBKT7_m2-ext-C. We also lessened the stringency of the 

assay by chaning from quadruple dropout to triple drop out SD agar plates under the 

presumption that the interaction between SHANK3 and HCN2 may be transient. Under 

this condition, we did not observe any autoactivation, nor did we observe any 

interactions between the bait and prey plasmids (Fig. 5).  

With the idea in mind that the interaction between SHANK3 and HCN may be 

transient, we decided to lessen the stringency and assay the original 

pGBKT7_SHANK3-1, pGBKT7_SHANK3-3, and pGBKT7_SHANK3-5 again. We co-
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transformed each of these bait plasmids with the prey plasmids containing the cDNA of 

CNBD and Ext-C for both mHCN1 and mHCN2. Surprisingly, we observed positive 

results for all of these co-transformations accept for pGKT7_SHANK3-3 + pGADT7_m2-

CNBD and pGBKT7_SHANK3-5 + pGADT7_m2-ext-C (Sup. Fig. 3). We again 

suspected the issue of autoactivation and so we co transformed pGBKT7_SHANK3-1, 

pGBKT7_SHANK3-3, and pGBKT7_SHANK3-5 each with an empty pGADT7 plasmid. 

We found that the bait plasmids pGBKT7_SHANK3-3 and pGBKT7_SHANK3-5 also 

have the ability to autoactivate the yeast two-hybrid system (Fig. 6).  

Given that the bait plasmid pGBKT7_SHANK3-1 did not appear to autoactivate 

the yeast two-hybrid system, we co-transformed pGBKT7_SHANK3-1 with the following 

prey plasmids: pGADT7_m1-N, pGADT7_m2-N, pGADT7_m1-CNBD, pGADT7_m2-

CNBD, pGADT7_m1-ext-C, and pGADT7_m2 ext-C. We also lessened stringency by 

performing the assay on triple dropout media. To our surprise again, we observed 

growth for all of these co-transformations (Sup. Fig 4). We decided to simultaneously 

test for auto activation and potential interactions between the pGBKT7_SHANK3-1 

plasmid and the same six HCN-segment containing prey plasmids by performing drop 

test analysis. As shown in figure 7, the co-transformation of pGBKT7_SHANK3-1 with 

an empty pGADT7 plasmid resulted in the growth of colonies up to 10-3 dilutions. 

Indeed, unintentional variations between experimental conditions may account for the 

contrasting results of pGBKT7_SHANK3-1 bait plasmids.  

Finally, we performed the same analysis as shown in Sup. Fig. 4, accept this 

time we used quadruple dropout media (Fig. 8). Interestingly, under these conditions, 

colony growth was only observed from co-transformations of pGBKT7_SHANK3-1 with 
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either pGADT7_m1-CNBD, pGADT7_m2-CNBD, or pGADT7_m2-ext-C. One possibility 

is that, although the bait plasmid pGBKT7_SHANK3-1 may be able to autoactivate the 

yeast two-hybrid system and give positive results on triple dropout media, its potential 

interaction with HCN C-terminal domains may augment the interaction in the yeast two-

hybrid system and allow for colony growth on the highly stringent quadruple dropout 

media.  
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Figure 3. The PDZ and Pro-rich domains of SHANK3 can autoactivate the MatchmakerTM 
yeast two-hybrid system. pGBKT7_SHANK3-2, pGBKT7_SHANK3-4, and pGBKT7_PDZ 
were each co-transformed with empty pGADT7 plasmids and plated on depleted Trp-/Leu- SD 
media agar plates (not shown) to select for successful transformations. Single colonies from the 
control plates were picked and streaked onto SD depleted Trp-/Leu- and Trp-/Leu-/His-/Ade 
agar plates. Left: control plate with depleted Trp-/Lue- SD media selecting for successful 
transformation. Right: Assay plate with depleted Trp-/Leu-/His-/Ade- SD media selecting for 
protein-protein interactions.  
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Figure 4: The SH3 domain does not autoactivate the Matchmaker Yeast two hybrid 
system. pGBKT7_SH3 was co-transformed with pGADT7_m1-N; m2-N; m1-CNBD; m2-CNBD; 
m1-ext-C; m2-ext-C; m1-ext-C_noSNL; and m2-ext-C_noSNL) and plated on Trp-/Lue- SD agar 
plates (not shown) to select for successful transformations. Single colonies from the control 
plates were picked and streaked onto depleted Trp-/Leu- and depleted Trp-/Leu-/His-/Ade- SD 
agar plates. Top and bottom left: control plates with depleted Trp-/Lue- SD media selecting for 
successful transformation. Top and bottom right: Assay plates with depleted Trp-/Leu-/His-/Ade- 
SD media selecting for protein-protein interactions. 
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Figure 5: Switching the PDZ and Pro-rich domains from pGBKT7 into pGADT7 does not 
autoactivate the Matchmaker yeast two-hybrid system. pGADT7_PDZ was co transformed 
into AH109 with an empty pGBKT7 plasmid, pGBKT7_m2-CNBD, and pGBKT7_m2-ext-C and 
plated on depleted Trp-/Leu- SD media agar plates (not shown) to select for successful 
transformations. Single colonies from the control plates were picked and streaked onto SD 
depleted Trp-/Leu-/His- agar plates. Left: Assay plate with depleted Trp-/Leu-/His- SD media 
selecting for protein-protein interactions. Right: assay plate with depleted Trp-/Leu-/His- SD 
media selecting for protein-protein interactions. Note that the stringency was lowered by 
switching from quadruple dropout plates to triple dropout plates.  
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Figure 6. pGBKT7 plasmids containing Pro-rich and SAM domains can also activate the 
Matchmaker yeast two-hybrid system. pGBKT7_(SHANK3-1; SHANK3-3; and SHANK3-5) 
were each transformed with empty pGADT7 vectors into AH109 and grown on depleted Trp-
/Leu- SD media agar plates (not shown) to select for successful transformations. Single colonies 
from the control plates were picked and streaked onto SD depleted Trp-/Leu-/His- agar plates to 
test for autoactivation.  
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Figure 7: Drop test analysis of pGBKT7_SHANK3-1 reveals autoactivation. 
pGBKT7_SHANK3-1 was co-transformed with each pGADT7_(m1-N; m2-N; m1-CNBD; m2-
CNBD; m1-ext-C; and m2-ext-C) plasmid into AH109 and grown on depleted Trp-/Leu- SD agar 
plates. Individual colonies were selected and grown in depleted Trp-/Leu- SD media until the 
optical density (o.D.) of each sample was measure to 0.1. Samples were serial diluted to 10-1, 
10-2, 10-3, 10-4 and, 10-5 and then plated onto Trp-/Leu-(left) and Trp-/Leu-/His- (right) agar plates 
as seen above.  
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Figure 8: Less autoactivation of the Matchmaker yeast two-hybrid system via 
pGBKT7_SHANK3-1 under more stringent conditions. pGBKT7_SHANK3-1 was co-
transformed with pGADT7_(m1-N; m2-N; m1-CNBD; m2-CNBD; m1-ext-C; and m2-ext-C) into 
AH109 and plated on depleted Trp-/Leu- SD agar plates (not shown) to select for successful 
transformations. Single colonies from the control plates were picked and streaked onto SD 
depleted Trp-/Leu-/His-/Ade- agar plates. Left: Assay plate with depleted Trp-/Leu-/His-/Ade- SD 
media selecting for protein-protein interactions. Right: assay plate with depleted Trp-/Leu-/His-
/Ade- SD media selecting for protein-protein interactions. Note that the stringency was 
increased by switching from triple dropout plates to quadruple dropout plates. 
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3.2 Immunoblotting of HCN channels in SHANK3 deficient mice 

As discussed above, SHANK3 haploinsufficiency can impair Ih currents, and an 

interaction between the ANK domain of SHANK3 and HCN channels has been revealed 

by protein pulldown assays (Yi et al., 2016). Our lab has also characterized the 

relationship between SHANK3 and HCN channels in thalamocortical neurons (not yet 

published). We have found that how SHANK3 deficiency causes Ih impairment is based 

on the cohort of Shank3 isoforms being deleted from the genome, and, more 

specifically, the design of the strategy to generate Shank3 knockout mouse models. As 

shown in figure 9 (image and data courtesy of Zhu Mengye; not yet published), Ih 

currents are impaired in the ventrobasal (VB) neurons of Shank3Δ13-16 mice, but not from 

Shank3Δ4-9 VB neurons. One likely explanation for this observation is that Shank3Δ4-9 

mice still express Shank3c, a major Shank3 isoform, while Shank3Δ13-16 mice lose most 

of the isoform cohort (Fig. 10).  

In order to substantiate the findings from the electrophysiology recordings, we 

decided to compare the levels of HCN channel proteins in whole brain lysates from WT, 

mutant Shank3∆13-16, and mutant Shank3∆4-9 mice using western blot analysis (Fig. 11). 

For negative control, we generated a brain-specific HCN2 knockout mouse model by 

crossing floxed-HCN2 (Emery et al., 2011) with Nestin-Cre mice, which we have termed 

HCN2Δ2-3. Accordingly, the HCN2 band matching the molecular weight (~95 kDa) is 

absent in the HCN2Δ2-3-/- lane (Fig 11a). Surprisingly, we observed almost a total loss of 

HCN2 expression in Shank3∆13-16-/- mice (Fig. 11b, lane 3) while Shank3∆4-9-/- mice 

showed no obvious loss of expression. Therefore, these results agree well with the 

electrophysiological recordings shown above (Fig 9). Next, we decided to investigate 
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whether the loss of SHANK3 would have similar effects on the expression of other 

members in the HCN channel family. Unexpectedly, we also observed an increase of 

HCN4 expression in HCN2Δ2-3 +/- and HCN2Δ2-3 -/- mice (Fig 12). Surprisingly, the 

expression of HCN4, but not HCN1, was increased in both HCN2Δ2-3  and Shank3∆13-16 

mice in comparison to the HCN4 expression in their WT littermates (Fig. 12). The 

expression of HCN4 was not altered in Shank3Δ4-9 mice (data not shown).  
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Fig. 9 The Ih current from Shank3Δ13-16, but not from Shank3Δ4-9 VB neurons, exhibits 
decreased current amplitude (all recordings were collected at room temperature). A. 
Representative Ih current traces recorded from VB neurons of WT (black), Shank3Δ13-16 +/- 
(blue), and Shank3Δ13-16 -/- (red) mice. Ih was activated by a series of hyperpolarizing voltage 
steps (bottom, right). B. Summary graphs of the Ih current amplitude measured at -120 mV of 
VB neurons from WT (black), Shank3Δ13-16 +/- (blue), and Shank3Δ13-16 -/- (red) mice (left) 
or WT (black), Shank3Δ4-9 +/- (blue), and Shank3Δ4-9 -/- (red) mice (right). C. Normalized tail 
current amplitudes (Itail) were plotted against voltage steps and fit with the Boltzmann equation. 
V1/2 values (mV): -97.8 ± 0.3 (WT); -97.6 ± 0.5 (Shank3Δ13-16+/-); -103.0 ± 0.3 (Shank3Δ13-
16-/-). D. Summary graphs of the Ih current amplitude measured at -120 mV of VB neurons from 
WT (black), Shank3Δ4-9 +/- (blue), and Shank3Δ4-9 -/- (red) mice (right). E. Normalized tail 
current amplitudes (Itail) were plotted against voltage steps and fit with the Boltzmann equation. 
V1/2 values (mV): -100.0 ± 0.5 (WT); 97.8 ± 0.2 (Shank3Δ4-9+/-); -98.3 ± 0.4 (Shank3Δ4-9-/-). 
Image and data kindly provided by the courtesy of Mengye Zhu.  
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Figure 10. SHANK3Δ13-16 mice lack most of the major isoforms. Cartoon representation 
showing differences between two different mouse models of autism. Loss of exons 4-9 in 
SHANK3Δ4-9 mice results in the forfeiture of full length SHANK3 (SHANK3a) and SHANK3b. 
Loss of exons 13-16 in SHANK3Δ13-16 mice results in the loss of all major SHANK3 isoforms. For 
example, SHANK3Δ13-16 mice lack any SHANK3 isoform that contains ANK, SH3, and PDZ 
domains while SHANK3Δ4-9 mice only lack isoforms containing ANK domains. A “+” indicates 
that the isoform is expressed in the mutant model while a “—“ indicates the isoform is absent in 
the respective mouse model. It should be noted that although these are the known isoforms of 
SHANK3, this is not an exhaustive list and it is likely that other isoforms of SHANK3 have yet to 
be elucidated. Image adapted from (Wang et al., 2014b).  
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A    B     C 

 

         

Figure 11. HCN2 expression is lost in Shank3Δ13-16 -/- mice but not Shank3Δ4-9 -/- 
mice. Proteins were isolated from whole brain lysates from mice of comparable age groups. 

Western blot (IB) analysis was performed on Hcn2Δ2-3 +/+ mice as a positive control and 

Hcn2Δ2-3 -/- mice as a negative control (A) using a polyclonal anti-HCN2 antibody from UC 

Davis. (B) IB analysis was done on Shank3Δ13-16 and Shank3Δ4-9 mice using a monoclonal 
anti-HCN2 antibody from UC Alomone. As demonstrated in lane 3, there is only a very faint 
signal for HCN2 in Shank3Δ13-16 -/- mice. In lane 5, however, a band is present at the correct 
kDa showing that HCN2 is expressed in Shank3Δ4-9 -/- mice. We used β-Actin as a loading 
control in (A) and Coomassie blue stained gel as a loading control for (B). For reference, a 
representative western blot of HCN2 from Alomone labs is included (C).  
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C             D 

 

Alomone HCN1           Alomone HCN4 

Figure 12. HCN4 expression, but not HCN1 expression increases in Shank3Δ13-16 -/- mice 

and in HCN2Δ2-3 mutant mice. Proteins were isolated from whole brain lysates from mice of 

comparable age groups. Western blot (IB) analysis was performed on Hcn2Δ2-3, Shank3Δ13-16, 
and Shank3Δ4-9 mice using a polyclonal anti-HCN1 and anti-HCN4 antibodies from Alomone. 
(A) IB results of anti-HCN1. No drastic change in the expression of HCN1 is visibly apparent in 
any of the three mouse models analyzed. (B) IB results of anti-HCN4. Increased HCN4 
expression can be seen in lanes 2, 3, 5 and 6, corresponding to HCN2Δ2-3 +/-, HCN2Δ2-3 -/-, 
Shank3Δ13-16 +/- and Shank3Δ13-16 -/- mice.  For reference, representative western blots of HCN1 
and HCN4 from Alomone labs are included (C & D).  
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4 Discussion 

In this study, I tried to combine both yeast genetics (yeast-two hybridization) and 

protein biochemistry (Western Blotting) to tackle the Shank3 - HCN interaction. For the 

Y2H, I learned basic molecular cloning techniques and successfully cloned cDNA 

constructs of Shank3 or HCN into the corresponding vectors. Moreover, I grasped the 

basics of yeast genetics and successfully reproduced the positive and negative controls 

by using amino acid-omission SD media. Although our preliminary results are 

promising, they are also affected by the issue of autoactivation. Extensive discussions 

regarding the potential solutions are provided below. For the immunoblotting, I learned 

basic protein biochemistry techniques and gained substantial understanding about 

monoclonal and polyclonal antibodies. Importantly, I took advantage of the three 

different lines of knockout mouse models available in the lab and obtained convincing 

and exciting WB results. First, we confirmed the quality of the anti-HCN2 antibody by 

using the HCN2Δ2-3-/- sample. Secondly, we show that the Shank3 deficiency has a 

specific impact on the expression of HCN2 but not of HCN1 or HCN4. Discussions are 

also provided below regarding this particular and intriguing observation. 

 

4.1 Discussion on Yeast Two-Hybridization 

This issue of autoactivation was a blight on our efforts. There are few other 

authors who have reported issues with autoactivation when using PDZ domains in a 

yeast two-hybrid system (Gisler et al., 2003). Nonetheless, we were presented with 

autoactivation from nearly every transformation of pGBKT7 plasmid containing SHANK 
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cDNA fragments. It is typically conventional to fuse the bait cDNA with the DNA binding 

domain (DBD) since the interaction between the DBD and the upstream activation 

sequence (UAS) is more stringent. Indeed, we used SHANK3 fragments as our bait. 

However, a small percentage of transcription initiation can be attributed to latent 

activation of a transcription factor from proteins, and this value increases with the 

random generation of cDNA fragments (Van Criekinge and Beyaert, 1999).  

The fact that our cDNAs were fragments only encompassed poorly defined 

regions of SHANK3 domains and not strictly generated to suitably imitate the precise 

molecular structure SHANK3 protein domains may have attributed to these false 

positives. Therefore, in going forward with this genetic approach it may be useful to 

better define the cDNA constructs such that only the cDNA relevant to the specific 

domain is fused to the DBD. Nonetheless, after isolation of the SHANK3 PDZ domain 

and subsequent cloning into the pGBKT7 plasmid, we still observed autoactivation (Fig. 

1). When we also isolated the SH3 domain, however, we did not observe autoactivation 

(Fig. 2). We observed a positive result from the co-transformation of pGBKT7_SHANK3-

SH3 with pGADT7_m1-N. Given the stringency of the assay in which this test was 

performed (-Trp/-Leu/-His/-Ade depleted SD media) it is tempting to interpret this is a 

potential positive interaction. However, this should be interpreted with caution as the 

pGADT7_m1-N library plasmid was never assayed for autoactivation (i.e. co-

transformation with an empty pGBKT7 plasmid).  

The PDZ domain plays a critical role in the organization of proteins in the PSD, 

and the localization of this domain into the nucleus may cause undesirable effects in 

such an artificial system, especially considering that it is bound to the DBD when placed 
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into bait plasmids. Once we swapped the PDZ domain into the pGADT7 library vector, 

however, we no longer observed any false-positive growth on our assay plates (Fig. 3). 

Because the pGBKT7_SHANK3-4 (pro-rich containing fragment) also showed 

autoactivation, we cloned it into pGADT7 library plasmids to see if autoactivation would 

still occur. Indeed, there was no autoactivation (Fig. 3), suggesting that, at least for 

these two fragments, their cloning into pGADT7 library plasmids in the Matchmaker® 

Yeast Two-Hybrid System is critical to avoid autoactivation. Moreover, it may prove 

fruitful to clone the HCN cDNA fragments into pGBKT7 plasmids and use them as bait 

against a SHANK3 library cloned into the pGADT7 plasmid.  

Another potential issue with this assay may be a low-level expression of histidine. 

Although AH109 yeast is engineered to only express the HIS3 gene upon activation of 

the GAL4 promoter, low level expression and thus background growth on media lacking 

His may still be occurring. Since 3-AT is competitive inhibitor of the HIS3 protein, 

optimizing the concentration of this compound within the media may also eliminate 

unwanted growth (Durfee et al., 1993; Fields, 1993). Indeed, the use of 3-AT on -Trp/-

Leu/-His media and co-transformation of pGBKT7_SHANK3-1 with an empty pGADT7 

vector may be sufficient to prevent colony growth, as seen in our autoactivation drop 

test analysis in figure 5.  

Another advantage of the AH109 yeast strain is the ADE2 reporter gene (James 

et al., 1996). In this strain, the non-essential ADE2 gene has a null mutation which 

results in the accumulation of an intermediate product during the biosynthesis of 

adenine. Consequently, AH109 colonies present as pink or red in color unless adenine 

is present in the SD media. However, AH109 yeast have a functional ADE2 gene under 
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the control of a GAL4 promoter, implying that any protein-protein interactions from the 

Matchmaker® plasmids will express ADE2 and present as white colonies on adenine 

deficient SD media. Although we found that under moderately stringent conditions (-

Trp/-Leu/-His SD agar) that pGBKT7_SHANK3-1 (ANK domain containing) could 

autoactivate the yeast two-hybrid system, we observed no colony growth on highly 

stringent media (-Trp/-Leu/-His/-Ade) between pGBKT7_SHANK3-1 with pGADT7_m1-

N, pGADT7_m2-N, or pGADT7_m2-ext-C. Instead, we observed red colonies from the 

co-transformation of pGBKT7_SHANK3-1 with pGADT7_m1-CNBD and pGADT7_m2-

CNBD. In comparison to the positive control colonies, the colonies from the co-

transformation of pGBKT7_SHANK3-1 with the m1- and m2-CNBD containing pGADT7 

plasmids were pink in color, indicating the ADE2 reporter gene was not expressed and 

thus may be a false positive. Interestingly, we observed white colonies from the co-

transformation of pGBKT7_SHANK3-1 with pGADT7_m1-ext-C (Fig. 6), which prompts 

the speculation that this is a promising result for a number of reasons. First, while the 

issue of autoactivation in figure 5 cannot be ruled out, the possibility that residual His 

expression allowed for growth during that assay cannot be ruled out either. Second, 

although autoactivation or residual His expression might be possibilities on -Trp/-Leu/-

His depleted SD media, there are both positive and negative results between 

pGBKT7_SHANK3-1 and various HCN containing library plasmids, as seen on the -

Trp/-Leu/-His/-Ade depleted SD media in figure 6. This suggests that potential 

interactions between SHANK3 and mHCN2 may augment the Matchmaker® system 

under these stringent conditions. Another reason is that the colonies resulting from the 

co-transformations of pGBKT7_SHANK3-1 and pGADT7_m1-ext-C were white in color, 
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implying that the ADE2 reporter gene was expressed. Finally, it has recently been 

shown via coimmunoprecipitation assays that the ANK repeat of SHANK3 specifically 

interacts with HCN channels (Yi et al., 2016). 

Taken together, the investigation between SHANK3 and HCN via the yeast two-

hybrid assay may still serve as a fruitful method to characterize the physical interactions 

between these two proteins. Future experiments should utilize the LacZ reporter gene 

under control of the GAL4 promoter in AH109 yeast. This would further reduce the level 

of false positives and also allow for a quantitative analysis of the binding strength. More 

radical approaches may also be considered as well. For example, it was shown that, 

instead of fusing the C-terminus of the DBD to the N-terminus of the protein of interest, 

inverting the complex such that the N-terminus of the protein of interest is ‘free’ not only 

proved viable but increased the binding efficiency between the proteins of interest 

(Béranger et al., 1997). Indeed, exposing the N-terminal segments of SHANK3 bait may 

reveal missed interactions, as well as inhibit the issue of auto activation.   

 

4.2 Discussion on Immunoblotting 

 A major finding in this study is that the differences between the targeted 

mutations in mouse models of autism have opposing effects on HCN channel 

expression. We showed that in Shank3Δ13-16 -/- mice, the expression of HCN2 is 

significantly decreased. However, HCN2 expression is unaltered in Shank3Δ4-9 -/- mice. 

These findings corroborate well with the electrophysiological studies our lab has done 

on VB neurons of Shank3Δ13-16 -/- and Shank3Δ4-9 -/- mice. Indeed, the significant 
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difference between these two mouse models is the expression of SHANK3 isoforms. In 

Shank3Δ4-9 -/- mice, the only SHANK3 isoforms lost are SHANK3a and SHANK3b. In 

Shank3Δ13-16 -/- mice, however, all major isoforms are lost. SHANK3a, SHANK3b, and 

SHANK3c all possess functional SH3 and PDZ domains. Therefore, it is tempting to 

speculate that in Shank3Δ4-9 -/- mice, SHANK3c may be responsible for the mostly 

normal expression of HCN channels, thus explaining the difference in Ih currents and 

protein expression between the models we examined in this study. In fact, our lab has 

also shown that Shank3c alone is sufficient to increase the Ih current amplitude in 

Xenopus oocytes injected with cRNAs encoding HCN2 (not yet published). However, 

the fact that we did not observe any interactions between the PDZ or SH3 domain of 

SHANK3 with the N- or C-termini of HCN2 during our yeast two-hybrid investigation 

confounds this hypothesis. Nonetheless, SHANK3c and other isoforms may have a role 

in vesicular trafficking, ensuring the proper expression HCN channels. Indeed, loss of 

SHANK3 has shown to affect receptor trafficking of NMDA and AMPA (Jiang and 

Ehlers, 2013; Raynaud et al., 2013; Sarowar and Grabrucker, 2016).  

Another unexpected finding in our preliminary study was that HCN4 expression 

appears to increase not only in HCN2Δ2-3 mice, but also in SHANK3 Δ13-16 mice. This 

observation warrants the question of whether or not the same pathways that induce 

increased HCN4 expression is similar between HCN2Δ2-3 and SHANK3 Δ13-16 mice. 

Although the primary amino acid sequences for all four HCN channel family members 

are highly similar in sequence, HCN2 and HCN4 share the highest homology and tend 

to form heteromers (Jackson et al., 2007).  Although the activation constants for HCN2 

and HCN4 are not comparable, with HCN4 being much slower to activate, they do share 
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high homology and many other biophysical characteristics (Table 1; Biel et al., 2009; 

Wang et al., 2001). The co-assembly of HCN2 and HCN4 to form heteromeric channels 

has been shown by multiple groups (Whitaker et al., 2007; Ye and Nerbonne, 2009; 

Zhang et al., 2009). One study showed that HCN2 and HCN4 show no preference in 

terms of homo- or heteromerization (Whitaker et al., 2007).The same study also 

demonstrated the co-assembly of HCN2 an HCN4 in rat thalamus. Therefore, it is 

tempting to speculate that in the absence of HCN2, HCN4 expression may increase to 

compensate for the loss of HCN2. Future experiments utilizing RT-qPCR to could verify 

this observation.  

We did not observe any obvious changes of HCN1 expression across the three 

mouse models being analyzed. Therefore, of the three isoforms we analyzed (HCN1,2, 

and 4) in SHANK3 Δ13-16 mice, it appears that the effect on neuronal physiology by 

impaired SHANK3 pathways may be carried downstream specifically by HCN2. In the 

thalamus, the expression of Shank3 and HCN2 predominates over those of Shank1,2 

and HCN1,3,4, respectively (Sheng and Kim, 2002). Indeed, these expression profiles 

substantiate our labs work on SHANK3 and HCN2 in the VB neurons of mouse 

thalamus (not yet published). Taken together, these results support such a model that 

HCN2 channelopathy plays a key role in mediating the downstream detrimental effects 

induced by Shank3 deficiency.  

 

4.3 Concluding Remarks 
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The Shank3 protein is of significant size, contains multiple highly conserved domains for 

mediating protein-protein interactions, and is known to interact with many different types 

of ion channels and receptors. We will continue to use biochemistry and physiology 

approaches to investigate the impacts on the function and expression of these cell 

surface proteins by Shank3. However, our biochemical assays and the 

electrophysiology characterization of neurons from three different HCN and Shank3 

knockout mice, especially the similarities between HCN-/- and Shank3-/- neurons, 

suggests that impairments of HCN channel function play a dominant role in mediating 

the detrimental effects induced by Shank3 mutations. 
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APPENDICES 

 

A 

 

B 

Supplementary Figure 1. The yeast two-

hybrid assay of pGBKT7_SHANK3 bait 

plasmids with pGADT7_m1 & m2 prey 

plasmids. A. Top left: control plate (-Leu/-

Trp) selecting for successful co-

transformation of pGBKT7_SHANK3-1, 

pGBKT7_SHANK3-2, pGBKT7_SHANK3-

3, pGBKT7_SHANK3-4, and 

pGBKT7_SHANK3-5 with pGADT7_m1-N. 

Bottom left: control plate (-Leu/-Trp) 

selecting for successful co-transformation 

of pGBKT7_SHANK3-1, 

pGBKT7_SHANK3-2, pGBKT7_SHANK3-

3, pGBKT7_SHANK3-4, and 

pGBKT7_SHANK3-5 with pGADT7_m2-N. 

Top right: assay plate (-Leu/-Trp/-His/-

Ade) selecting for interactions between 

pGBKT7_SHANK3-1, pGBKT7_SHANK3-

2, pGBKT7_SHANK3-3, 

pGBKT7_SHANK3-4, and 

pGBKT7_SHANK3-5 with pGADT7_m1-N. 

Bottom right: assay plate (-Leu/-Trp/-His/-

Ade) selecting for interactions between 

pGBKT7_SHANK3-1, pGBKT7_SHANK3-

2, pGBKT7_SHANK3-3, 

pGBKT7_SHANK3-4, and 

pGBKT7_SHANK3-5 with pGADT7_m2-N. 

B. pGBKT7_SHANK3-1, 

pGBKT7_SHANK3-2, pGBKT7_SHANK3-

3, pGBKT7_SHANK3-4, and 

pGBKT7_SHANK3-5  were each co-

transformed with pGADT7_m2-N and 

pGADT7_m2-C; m1-CNBD plasmids into 

AH109 and grown on depleted Trp-/Leu- 

SD agar plates. Individual colonies were 

selected and grown in depleted Trp-/Leu- 

SD media until the optical density (o.D.) of 

each sample was measure to 0.1. 

Samples were serial diluted to 10-1, 10-2, 

10-3, 10-4 and, 10-5 and then plated onto 

Trp-/Leu-(left) and Trp-/Leu-/His-/Ade- 

(right) agar plates as seen above. 
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Supplementary Figure 2. The yeast two-hybrid assay of pGBKT7_SHANK3_PDZ 
bait plasmids with pGADT7_m1 & m2 prey plasmids. A. Top left: control plate (-
Leu/-Trp) selecting for successful co-transformation of pGBKT7_SHANK3_PDZ with 
pGADT7_m1-N, pGADT7_m1-CNBD, pGADT7_m1-ext-C, and pGADT7_m1-ext-C-
noSNL. Bottom left: control plate (-Leu/-Trp) selecting for successful co-transformation 
of pGBKT7_SHANK3_PDZ with pGADT7_m2-N, pGADT7_m2-CNBD, pGADT7_m2-
ext-C, and pGADT7_m2-ext-C-noSNL. Top right: assay plate (-Leu/-Trp/-His/-Ade) 
selecting for interactions between pGBKT7_SHANK3_PDZ with pGADT7_m1-N, 
pGADT7_m1-CNBD, pGADT7_m1-ext-C, and pGADT7_m1-ext-C-noSNL. Bottom right: 
assay plate (-Leu/-Trp/-His/-Ade) selecting for interactions of pGBKT7_SHANK3_PDZ 
with pGADT7_m2-N, pGADT7_m2-CNBD, pGADT7_m2-ext-C, and pGADT7_m2-ext-
C-noSNL. 
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Supplementary Figure 3. The yeast two-hybrid assay of pGBKT7_SHANK3-1, 
pGBKT7_SHANK3-3, and pGBKT7_SHANK3-5 bait plasmids with the 
pGADT7_m1-CNBD, pGADT7_m2-CNBD, pGADT7_m1-ext-C, and pGADT7_m2-
ext-C prey plasmids. Top left: assay plate (-Leu/-Trp/-His/) selecting for interactions 
between pGBKT7_SHANK3-1, pGBKT7_SHANK3-3, and pGBKT7_SHANK3-5 bait 
plasmids with pGADT7_m2-CNBD. Bottom left: assay plate (-Leu/-Trp/-His/) selecting 
for interactions between pGBKT7_SHANK3-1, pGBKT7_SHANK3-3, and 
pGBKT7_SHANK3-5 bait plasmids with pGADT7_m2-ext-C. Top right: assay plate (-
Leu/-Trp/-His/) selecting for interactions between pGBKT7_SHANK3-1, 
pGBKT7_SHANK3-3, and pGBKT7_SHANK3-5 bait plasmids with pGADT7_m1-CNBD. 
Bottom right: assay plate (-Leu/-Trp/-His/) selecting for interactions between 
pGBKT7_SHANK3-1, pGBKT7_SHANK3-3, and pGBKT7_SHANK3-5 bait plasmids 
with pGADT7_m1-ext-C.  
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Supplementary Figure 4. The yeast two-hybrid assay of pGBKT7_SHANK3-1 bait 
plasmid with pGADT7_m1-N, pGADT7_m2-N, pGADT7_m1-CNBD, pGADT7_m2-
CNBD, pGADT7_m1-ext-C, pGADT7_m2-ext-C. Left: assay plate (-Leu/-Trp/-His/) 
selecting for interactions between pGBKT7_SHANK3-1 and pGADT7_m1-N, 
pGADT7_m1-CNBD, and pGADT7_m1-ext-C. Right: assay plate (-Leu/-Trp/-His/) 
selecting for interactions between pGBKT7_SHANK3-1 and pGADT7_m2-N, 
pGADT7_m2-CNBD, and pGADT7_m2-ext-C. 
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