

Virginia Commonwealth University VCU Scholars Compass

Theses and Dissertations

Graduate School

2017

Investigation on Genetic Modifiers of Age at Onset of Major Depressive Disorder

Huseyin Gedik

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

Part of the Genetics Commons, Genomics Commons, and the Psychiatry Commons

© The Author

Downloaded from

https://scholarscompass.vcu.edu/etd/4994

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Investigation on Genetic Modifiers of Age at Onset of Major Depressive Disorder

A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University

by Huseyin Gedik, M.Sc.

Advisor: Silviu-Alin Bacanu, Ph.D. Associate Professor Department of Psychiatry Virginia Institute for Psychiatric and Behavioral Genetics

> Virginia Commonwealth University Richmond, VA August 2017

Acknowledgements

First, I would like to thank to Dr. Silviu-Alin Bacanu for accepting me as a graduate student.

Second, I would like to thank Dr.Hermine Maes and Dr. Timothy York for their kindness and understanding. I would like to also give credit to two post-doctoral trainees at VIPBG for their contribution to this thesis study. Principal Component analysis has been completed by Dr. Tim Bigdeli. He also helped me to have additively coded genotype post-Quality Control (QC) data. Dr. Roseann Peterson provided me with the phenotype data on CSA variable.

The thesis project depends on the post-genotyping experiment analysis cleaning and filtering the genotype data completed by Dr. Johnathan Flint's research group at Cambridge. I give credit to their work on sequence processing and ulterior steps until variant calling.

I would like to acknowledge that I had financial support from the Turkish Government with a scholarship supporting all my educational expenses during my graduate study.

My mother and father always help me to achieve through all my academic studies so I would like to thank my parents for their understanding and support.

Lastly, but not least, I would like to thank to my wife Remziye for her support during graduate school and bearing the challenges with me all this time.

Table of Contents

Acknowledgementsii
List of Tables
List of Figures
List of Abbreviationsix
Abstractx
1. Introduction1
2. Background Information
2.1. Depression Definition
2.2. Epidemiology
2.3. Etiology
2.4.1. Environmental risk factors in MDD6
2.4.2. Genetic risk factors in MDD6
2.5 Survival analysis9
2.5.1. Censoring
2.5.2. Cox Proportional Hazards Model (Cox PH)11
2.5.3. Proportional Hazards Hypothesis11
2. Methods
3.1. Study population

3.2. Genotyping	14
3.3. Statistical model	16
3.4. Gene set enrichment analysis	18
4. Results	23
4.1. Genome wide survival analysis results	23
4.1.1 All Sample analysis results	23
4.1.2 Case Cohort analysis results	29
4.2 Gene Set Enrichment Results	33
4.3 Cross platform comparison of gene enrichment analysis results between ConsensuspathD	B
and g:Profiler.	36
5. Discussion	38
6. Conclusion	42
References	43
Appendices	47
I. R script for the Cox Proportional hazard model run on the VCU VIPBG Light cluster	47
II. Query gene list (alphabetical order) of FS analysis for g:GOSt gene set enrichment	
analysis	51
III. Query gene list (alphabetical order) of CC analysis for g:GOSt gene set enrichment	
analysis	56
IV. Permutation results	61
V. Power analysis of GWSA	62

VI.	Remaining Gene Enrichment (g:GOSt) Results	.64
VII.	Sensitivity analysis of gene set enrichment results	. 69

List of Tables

Table.1 30 most significant SNVs in FS analysis.	. 24
Table.2 Genes located near suggestive SNPs in FS analysis.	. 25
Table.3 30 most significant SNVs from the CC analysis	. 30
Table.4 SNVs mapped to genes in the CC analysis.	. 31
Table.5 Summary table of gene set enrichment results	. 34
Table.6 A brief comparison of FS analysis enrichment results of the same queries between	
Consensus Path Database and g:Profiler	. 37
Table.7 Query gene list for FS analysis	. 51
Table.8 Query gene list for CC analysis	. 56
Table.9 Permutation results of 4 most significant SNPs with very low MAF (<0.01)	. 61

List of Figures

Figure.1 Etiology of MDD	4
Figure.2 Risk Factors for MDD	5
Figure.3 Possible censoring types	0
Figure.4 Work Flow of GWAS and its processing	3
Figure.5 Histogram of age at interview distribution within the control group (left, n=5,220) and	
age at onset (AAO) distribution within the case group (right, n=5,282)14	4
Figure.6 Distribution of Minor Allele Frequencies (MAF) of SNPs	5
Figure.7 Ancestral Principal Component Analysis (PCA). Red and grey color filled circles	
represent cases and controls, respectively	7
Figure.8 Cox regression model in R ("survival" library)	8
Figure.9 Gene enrichment and path analysis workflow	9
Figure.10 Schematic of gene regions	9
Figure.11 SNV mapping to genes (g:SNPense)	0
Figure.12 Gene enrichment analysis (g:GOSt)	1
Figure.13 Quantile-quantile plot of p-values from summary statistics of AS analysis	3
Figure.14 Manhattan plot of $-\log 10P$ for FS analysis. The red horizontal line points out the	
genome wide significance threshold ($P = 5 \times 10^{-8}$) and the blue horizontal line signs the suggestive	e
significance level of genetic association ($P = 5 \times 10^{-5}$)	6
Figure.15 Locus zoom for <i>LHPP</i>	7
Figure.16 Locus zoom for <i>SIRT1</i>	7
Figure.17 Locus zoom for chr13:107,257,974–108,057,974	8

Figure.18 Locus zoom for chr6:3,986,107–4,786,107 bp	
Figure.19 Quantile-quantile plot for CC analysis.	
Figure.20 Manhattan plot of -log10 <i>P</i> from CC analysis	
Figure.21 Locus zoom for VWC2, ZPBP and C70RF72	33
Figure.22 Functional gene annotation used in "Evidence code".	35
Figure.23 g:GOSt results for <i>Biological Process</i> GO terms in FS analysis	
Figure.24 Power analysis. The green strip denotes sample size (1,000, 5,000 and 10,00	00) and the
brown one event rate (0.5, 0.7 and 0.99), q denotes the allele frequency	
Figure.25 g:GOSt results for <i>Biological Process</i> GO terms in CC analysis	64
Figure 26 g:GOSt results for <i>Cellular component</i> in FS analysis	65
Figure 27 g:GOSt results for <i>Molecular Function</i> GO term in FS analysis	66
Figure 28 g:GOSt results for KEGG pathways in FS analysis.	66
Figure.29 g:GOSt results for Reactome pathway in FS analysis	66
Figure.30 g:GOSt results for Cellular Component GO terms in CC analysis	67
Figure.31 g:GOSt results for Molecular Function GO term in CC analysis	67
Figure.32 g:GOSt results for KEGG pathway in CC analysis	68
Figure.33 g:GOSt results for Reactome pathway in CC analysis.	68

•

List of Abbreviations

5HTR2ASerotonin 2A Receptor gene
AAOAge at Onset
CC analysisCase Cohort analysis
COMTCatechol-o-Methyltransferase gene
Cox PHCox Proportional Hazard
CSAChildhood Sexual Abuse
dbSNP database
GATKGenome Analysis Tool Kit
GOGene Ontology
g:GOStGO statistics
GWASGenome Wide Association Study
GWSAGenome Wide Survival analysis
HapMapHaplotype Map
KEGGKyoto Encyclopedia of Genes and Genomes
LDLinkage Disequilibrium
LHPPPhospholysine Phosphohistidine Inorganic Pyrophosphate
Phosphatase
MDDMajor Depressive Disorder
MAFMinor Allele Frequency
OMIMOnline Mendellian Inheritance in Man
SIRT1Sirtuin1
SLC6A4Solute carrier family 6 member 4 (5HTT, serotonin
transporter)
SNPSingle Nucleotide Polymorphism
SNVSingle Nucleotide Variation
THTyrosine Hydroxylase gene
TPH 1Tryptophan Hydroxylase 1 gene

Abstract

INVESTIGATION ON GENETIC MODIFIERS OF AGE AT ONSET OF MAJOR DEPRESSIVE DISORDER

By Huseyin Gedik, M.Sc.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2017

Major Advisor: Silviu-Alin Bacanu, Ph.D. Associate Professor Department of Psychiatry Virginia Institute for Psychiatric and Behavioral Genetics

Major Depressive Disorder (MDD) is a complex multifactorial disorder, which would lead to disability. Environmental and genetic factors are involved in MDD etiology. The aim of this project was to identify loci modifying age at onset (AAO) of MDD using survival models after adjusting for Childhood Sexual Abuse (CSA). To achieve this aim, a dataset was made available by the China Oxford and VCU Experimental Research on Genetic Epidemiology (CONVERGE) consortium. The study population had 5,220 controls and 5,282 cases with MDD. We performed two univariate association analyses using Cox Proportional Hazard (Cox PH) models. These two are Full Sample (FS), cases and controls, and only the Case Cohort (CC). No genome-wide significant associations were found in univariate analyses. Subsequent gene set enrichment analysis showed that there were significant enrichments in neurological Gene Ontology terms and some novel non-neural pathways. These findings may allow us to better understand MDD pathology.

1. Introduction

Major depressive disorder (MDD) (OMIM #608516) has lifetime prevalence in the range of 1-16.7% (Kessler & Bromet, 2013). It is also much more common in females than males and mean of age at onset (AAO) ranges from approximately 24 to 34 (Weissman et al., 1996). Psychiatric disorders, including MDD, have underlying genetic factors that modulate the risk for these disorders. A meta-analysis of twin studies showed that the heritability of major depression is 37% (Sullivan, Neale, & Kendler, 2000), which suggests that i) genetic factors are involved in MDD etiology and ii) there are also non-genetic risk factors for depression. In a twin study on Swedish twin sample, early AAO of MDD is significantly associated with increased liability to MD (Kendler, Gatz, Gardner, & Pedersen, 2005).

Early medical intervention or lifestyle changes may ameliorate the prognosis of major depression. For this reason, prognostic markers are crucial for preventing exacerbations in patients developing depression. A single highly penetrant candidate risk locus has not been reported yet for MDD so this supports the common disease common variant hypothesis. On the other hand, Genome-wide association studies (GWAS) aim to identify numerous common variants that contribute to genetic liability to disease. Finding genome wide significant genetic loci would indicate possible biological mechanisms, which could be a potential target for drug design or prognostic marker for the disorder.

The aim of this study was to uncover genetic modifiers that affect the MDD AAO in the entire sample or only within cases. Therefore, we conducted a genome wide survival analysis which tests for an association between CONVERGE genotypes and survival to onset of MDD among 10,502 Han Chinese female participants. The association tests were performed using Cox Proportional Hazard (Cox PH) survival regressions.

2. Background Information

2.1. Depression Definition

The mood disorders, which include depression, have been known since ancient times. The classification of depression as a mental illness goes back to the description of melancholy by Hippocrates (460-377 BC). Major depression, a common chronic recurrent disorder, affects all social segments of the population. Major Depressive Disorder (MDD) (OMIM # 608516) is a common psychiatric disorder that is characterized by persistent depressed mood, reduced interests; lessened cognitive function, and/or vegetative symptoms like abnormal sleep or appetite, change in activity, lack of self-worth, suicidal thought and fatigue or loss of energy (Otte et al., 2016). To be diagnosed as MDD by DSM5 (American Psychiatric Association, 2013) out of these symptoms at least five or more should manifest in two-week period almost daily. Also, one of the symptoms has to be either depressed mood or reduced interest.

MDD is also an important public health problem due to the loss of ability to do work. The quality of life deteriorates in many ways as depression symptoms become more prominent. In particular, the worsening in social functioning can be more pronounced than in many other physical illnesses (Hirschfeld et al., 2000). The prevalence of MDD, the negative effects on both the individual and the community level, and the burden of this disorder, point to depression being an important public health problem and financial burden to the health care system.

2.2. Epidemiology

Depression is one of the common psychiatric disorders. Studies on the epidemiology of depression have resulted in different rates of prevalence in different populations. Lifetime

prevalence of MDD differs from one country to another ranging from 1% to 16.9% (Kessler & Bromet, 2013). In China, the 12 month prevalence of MDD is estimated to be 2.3% and life time prevalence is 3.3% (Gu et al., 2013). In another study of 6,694 people, whose age range 18-96 years old, the monthly prevalence of depression was 5.2% in states of California and New York in U.S. It has been reported that depression is seen at a higher rate in women and increases towards the middle of life (Ohayon, 2007).

2.3. Etiology

The etiology of MDD have been investigated for decades. Neurotransmitter systems play a crucial role in the etiology. With the start of use of monoamine oxidase inhibitor and tricyclic antidepressant (TSA) as a medical intervention to treat psychiatric disorders, "Monoamine Hypothesis" (Schildkraut, 1965) was introduced. Then, numerous studies were conducted on mood disorders, etiopathogenesis of depression, and neurotransmitters.

The monoamine hypothesis suggests that the reduction in the function and deficiency of one of the three biogenic amines (serotonin, noradrenalin, and dopamine) or the increase in the number and sensitivity of its receptors is the underlying biological mechanism of depression. This hypothesis at first explained the cause of the depression in relation with the full or partial failure of noradrenalin receptor system, especially in functionally important noradrenalin receptor sites.

The role of serotonin in depression has been extensively studied area of research. The "Serotonin/Indolamine Hypothesis" proposed that depressive disorders are a consequence of decreased serotonin levels in the brain (Racagni & Brunello, 1999; Stahl, 1998). There are also studies on symptoms of depression associated with reduced serotonin synthesis in the brain due to the lack of tryptophan (Neumeister et al., 2004).

The underlying physiological decrease in dopamine (DA) signaling may result either from a reduction in release from the anterior synaptic neurons, or from impaired signal transduction due to changes in the number of receptors, function or altered signal processing among cells (Dunlop & Nemeroff, 2007). A study measured the level of major catecholamine metabolite, produced by the monoamine oxidase and catechol-O-methyl transferase on dopamine, (HVA) in internal jugular vein. Findings pointed out that decrease in HVA concentration correlated with the increase in depression severity in the patients' with treatment-refractory depression (Lambert, Johansson, Agren, & Friberg, 2000).

As a result, there are supporting evidences of Monoamine Hypothesis such that serotonin and dopamine play a role in biology of depression.

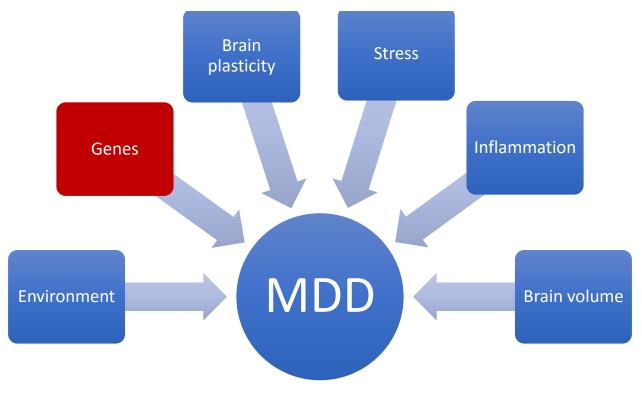
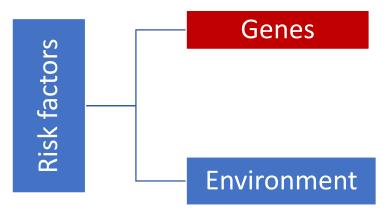



Figure.1 Etiology of MDD.

There is not any single mechanism that explaining the etiology of MDD (**Fig.1**). Stress plays a major role in etiology of MDD, specifically if encountered at earlier stages of life. A stressful event could trigger the Hypothalamic-Pituitary-Adrenal axis releasing corticosteroids (de Kloet, Joels, & Holsboer, 2005). Inflammation affects the HPA axis by increasing its activity (Besedovsky, del Rey, Sorkin, & Dinarello, 1986) The increase in activity leads to change in central nervous system hippocampal structure and function (Brown, Rush, & McEwen, 1999). Decrease in hippocampal neurogenesis could weaken the healthy response to stress (Santarelli et al., 2003). Lowered volume in hippocampus region also has a role in MDD etiology (Otte et al., 2016).

MDD is a complex disorder having both genetic and environmental components in its etiology. Two of the major environmental contributions come from the childhood adversity and stressful life events. As for the genetic component, twin studies indicated there is a heritability estimate of 37% for MDD (Sullivan et al., 2000). This suggests genetic factors are involved in etiology of MDD. Neurogenesis, HPA axis and inflammation affecting the HPA axis may also play a role due to their regulation of stress response.

2.4. Risk Factors

Figure.2 Risk Factors for MDD

There are various risk factors involve in MDD etiology. Among these, two broad categories are the genetic and environmental risk factors (**Fig.2**).

2.4.1. Environmental risk factors in MDD

Various studies have shown that being a woman, having a low level of education, genetic factors, the presence of a depressive personality, stressful life events, lack of close relationship, physical illness leading to loss of power and mental disorders are major risk factors for major depression (Swindle, Cronkite, & Moos, 1998). Being between the ages of 18-44, single, not working and having a low socioeconomic status are other risk factors for depression (Anthony & Petronis, 1991; Bruce, Takeuchi, & Leaf, 1991).

For females, the rate of depression is found to be higher in separated and divorced than in married ones (Weissman et al., 1996). The effect of these risk factors differs depending on the severity of depression. For instance, biological susceptibility plays a more important role in severe cases of depression, while the role of environmental factors is more substantial in non-familial types of depression (Farmer, 1996).

One of the important environmental risk factors for MDD is CSA. Research shows that CSA is an indication of earlier AAO of depression (Gladstone et al., 2004). A report on MDD in Chinese women indicated that CSA is associated with the recurrent MDD (Chen et al., 2014).

2.4.2. Genetic risk factors in MDD

At first, psychiatric genetics tried to uncover the genetic factors affecting the liability of individuals to disease via family, twin and adoption studies. A meta-analysis of twin studies (Sullivan et al., 2000) estimated the heritability of MDD at 37%, which suggests that genetic factors are involved in etiology of MDD. It is more likely that heritable forms of depression are diagnosed especially early in life, and tend to be recurrent. It is thought that the heritability of

depression is not derived from a single locus, but from the joint effects of multiple genetic loci. Such hypothesis is supported by children of depressed patients being three to four times more likely to develop MDD (Sullivan et al., 2000; Weissman et al., 2006). Familial risk for MDD includes genetic factors, family environment, and specific risk factors of an individual (Avenevoli & Merikangas, 2006).

2.4.2.1. Candidate gene approaches

The serotonin transporter gene, *SLC6A4*, (Goldman, Glei, Lin, & Weinstein, 2010) is one of the most studied genes in major depressive disorder (Levinson, 2006). The reason for the focus of research on this gene is that there are 2 different (long / Long and short / Short) genetic polymorphisms. The short allele decreases the transporter synthesis of serotonin. This decrease may slow down the adaptation of the serotonin neurons to the stimulus (Lesch et al., 1996). An association study reported that there is a significant association between antidepressant treatment response and A allele of rs7997012 in serotonin 2A receptor (*5HTR2A*) gene (McMahon et al., 2006). Catechol-o-methyl transferase (*COMT*) (Dopamine catabolism) gene have been studied to understand the genetics of MDD. In a multicenter European cohort, results pointed out that there is an association between the COMT Val/Val genotype and MDD (Massat et al., 2005).

An association study on 300 depressed patients and 265 healthy controls showed that rs1386494 in TPH gene tryptophan hydroxylase 2 (*TPH 2*) (serotonin synthase) gene has statistically significant (P_{adj} =0.012) association with MDD after adjusting for multiple testing correction (Zill et al., 2004).

2.4.2.2. Genome-wide association studies

There were two main developments in human genome research. The Human Genome Project and the International HapMap project, which allowed us to build a reference for the human

genome sequence. They also aimed to discover the human genome by identifying the genetic locations of about 25,000 genes. Two human genome drafts were published in 2001 (Lander et al., 2001; Venter et al., 2001) and the completed human genome was published later (International Human Genome Sequencing, 2004). The International HapMap project aimed to catalog common human sequence similarities by publishing a genome-wide database of genomic sequences of individuals from different populations (International HapMap, 2005).

One of the main goals of the HapMap project is to facilitate the identification of genetic variants that are associated with diseases under the common disease common variant hypothesis (Collins, Guyer, & Charkravarti, 1997; Gershon, Alliey-Rodriguez, & Liu, 2011; Lander, 1996; Pritchard & Cox, 2002). According to this hypothesis, most genetic variants leading to complex diseases should have minor allele frequencies greater than 5%. These genetic variants are risk factors or susceptibility variants to the disease. As a result of reduce in the cost of technologies, DNA microarrays allow us to assay hundreds of thousands of genetic variants at the same time. After the HapMap project, efforts focused on identifying 'tag' SNPs as representative of haplotype blocks. These efforts opened the door for effective and cost-efficient chip-based Genome Wide Association Studies (GWAS). Eventually, this method resulted in finding common variants associated with complex disorders. After the first GWAS was successfully performed (R. J. Klein et al., 2005), a growing number of GWAS studies have been conducted.

The first large scale GWAS on 18,759 independent and unrelated European descent individuals (9,240 MDD cases and 9,519 healthy controls) did not uncover any replicable genome wide significant loci associated with MDD risk (Major Depressive Disorder Working Group of the Psychiatric et al., 2013). However, they found 15 genome wide significant SNPs in the cross-disorder analyses (MDD-Bipolar disorder). Subsequently, CONVERGE consortium reported

that two loci (*LHPP* and *SIRT1*) associated with MDD risk reached genome wide significance in a large Han Chinese cohort including only women (consortium, 2015). Another large GWAS in a European cohort found 15 independent loci associated with the risk of MDD (Hyde et al., 2016). However, they could not reproduce the CONVERGE results.

There are still gaps in the genetic architecture of MDD. For instance, gene-environment interaction analysis is still in its infancy. Similarly, the analysis of rare and structural variations would be the focus for the next MDD studies.

2.4.2.3 Genome-wide survival analysis

Genome wide studies allow us to investigate the whole genome. This approach showed bore some success when applied to psychiatric disorders, e.g. CONVERGE MDD study (consortium, 2015). However, another interesting research focus of MDD might be to uncover genetic variants that increase or decrease AAO, i.e. AAO modifiers.

The study of AAO modifiers for a complex genetic disorder is achieved by conducting a Genome-wide Survival analysis (GWSA). However, their application to complex disorders such as psychiatric disorders is rather scant. In one of them, a study on alcohol dependence uncovered three loci significantly associated with the AAO of Alcohol dependence (Kapoor et al., 2014).

2.5 Survival analysis

Survival analysis is a statistical method of research that deals with the time it takes for a subject to reach the event of interest. Today, survival analysis is an important research method for various scientific fields to investigate the time until the breakdown of equipment, the occurrence of a disease, or the time it takes until an earthquake occurs (Cox, 1972). In survival analysis, the length of interval to failure is treated as a dependent variable.

2.5.1. Censoring

The concept of censoring is what sets survival analysis apart from other statistical methods. The censored observation is an unfinished observation and provides some information about the timing of the failure to occur. This means that although a unit or an individual has been under observation for a certain period, it has not failed during this interval. In this case, the time of the event is beyond the observed censoring time, and it may or may not occur later.

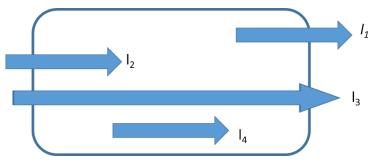


Figure.3 Possible censoring types.

For instance, some of the patients observed may still be living at the end of the study. Also, an individual under observation cannot be studied due to dropping off from the study. If the time of failure is outside the observation period due to such reasons, it is denoted as a censored observation (Lee & Wang, 2003, p. 2).

The concept of censoring is shown graphically in **Fig.3**. Here, I index (I = 1, 2, ...) refers to the time when events occur (Lee & Wang, 2003, pp. 3-4).

 I_1 = the event has an end time outside the observation period (i.e. right-censored observation).

 I_2 = event has an actual start time outside of the observation period (i.e. left-censored observation).

 I_3 = event has started and ended at a time outside of the observation period.

 I_4 = the event has known start and finish time.

In this study, there were only **right-censored** individual observations in the phenotype dataset.

2.5.2. Cox Proportional Hazards Model (Cox PH)

One of the frequently used models in survival analysis is the Cox proportional hazard (PH) model (Cox, 1972). Although the model assumes proportional hazards, there is no definite form of probability distribution for survival times. For this reason, the Cox PH model is described as a semi-parametric model. $X_1, X_2, X_3, ..., X_n$ are explanatory variables and $x_1, x_2, x_3, ..., x_n$ are the values of these variables. In the Cox PH model, the set of values of the explanatory variables is denoted by **x** vector, $(x_1, x_2, x_3, ..., x_n)$. The baseline hazard function is $h_0(t)$. Cox proportional hazards model for the i^{th} individual (J. P. Klein & Moeschberger, 2003, pp. 244-245),

$$h_i(t) = h_0(t)\exp(\beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_n x_{ni})$$
(1)

2.5.3. Proportional Hazards Hypothesis

The proportional hazard assumption implies that the hazard ratio is constant over time. In the survival analysis, the hazard ratio is defined as the effect of the explanatory variable on the risk of the event involved. The hazard ratio, which is the vector of explanatory variables of two groups $x = (x_1, x_2, ..., x_n)$ and $\hat{x} = (\hat{x}_1, \hat{x}_2, ..., \hat{x}_n)$ (J. P. Klein & Moeschberger, 2003, pp. 244-245).

$$\hat{\theta} = \frac{\hat{h}_0(t)e^{\left(\sum_{j=1}^n \hat{\beta}_j x_j^*\right)}}{\hat{h}_0(t)e^{\left(\sum_{j=1}^n \hat{\beta}_j x_j^*\right)}} = \frac{e^{\sum_{j=1}^n \hat{\beta}_j x_j^*}}{e^{\sum_{j=1}^n \hat{\beta}_j x_j}} = e^{\left(\sum_{j=1}^n \hat{\beta}_j \left(x_j^* - x_j\right)\right)}$$
(2)

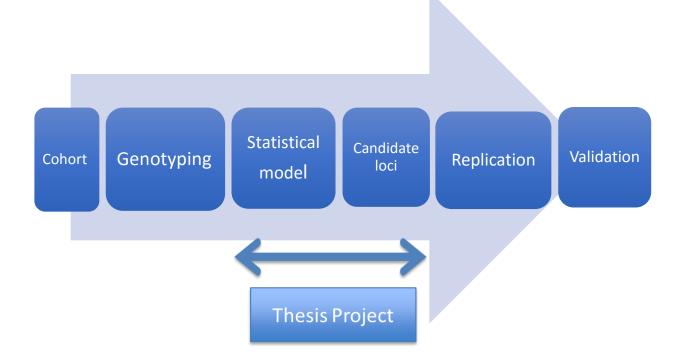
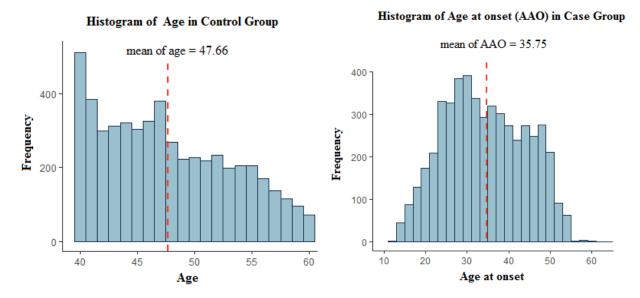
The β parameter is the natural logarithm of the hazard ratio. Equation 2 does not include the base hazard ratio $\hat{h}_0(t)$ (J. P. Klein & Moeschberger, 2003, pp. 244-245). In other words, when values for x* and x are specified, the value of the exponential term is fixed for the hazard ratio estimation, meaning that it is not time dependent. If this is denoted by constant θ , the hazard ratio can be written as given in Equation 3:

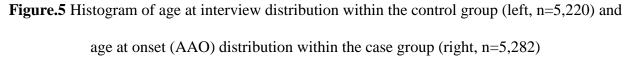
$$\hat{\theta} = \frac{\hat{h}(t, x^*)}{\hat{h}(t, x)} \tag{3}$$

Equation 3 is a mathematical expression of the proportional hazard assumption. Another mathematical expression of proportional hazard assumption; $\hat{\theta} \ \hat{h}(t, x) = \hat{h}(t, x^*)$. Here, $\hat{\theta}$ is called the proportionality constant and it is time independent (J. P. Klein & Moeschberger, 2003, p. 245). To check the proportionality assumption researchers commonly plot the survival curves using the Kaplan Meier estimates for each group (Persson, 2002, pp. 26-27). The use of the classical Cox proportional hazards model is not appropriate if the fundamental assumption of proportional hazards is grossly violated.

2. Methods

There were some major steps in an overall workflow of a GWAS as simplified in a schematic below (**Fig.4**). The scope of this study is also pointed out as thesis project on this workflow. Genome wide association genotype data was provided by the CONVERGE consortium (consortium, 2015). We are using a QC-ed subset of this dataset including genotype data and phenotype data of 10,502 individuals, e.g. age at examination, age at onset of MDD and with CSA.


Figure.4 Work Flow of GWAS and its processing.

3.1. Study population

All participants are female and of Han Chinese descent, who recruited from 58 different mental health clinics. Controls were recruited from patients coming to the same clinics for lesser surgical operations. The case group consisted of 5,282 female participants diagnosed with MDD and the control group consisted of 5,220 females with no history of MDD. The mean age at interview for the control group was 47.66 with a standard deviation (std) of 5.61 and the age at

onset is 35.75 with std of 9.36 for the case group (**Fig.5**). There were 412 individuals in the case ohort with AAO < 18 years. These cases were excluded from the final statistical analysis.

The clinical diagnoses of MDD were according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. The case group had several exclusionary criteria, such as having bipolar disorder, psychosis or mental retardation. All required permissions were granted from participating hospitals' ethics review committees. Details of the participation, the interview with individuals included into the case group and recruitment criteria were explained previously in a CONVERGE report (consortium, 2015).

3.2. Genotyping

In this study, genotyping experiment used genomic and mitochondrial DNA extracted from the saliva samples of each participant. The genetic data was low pass whole-genome sequencing data (low coverage, the average at around 1.7x) that was carried out on Illumina Hiseq. This allowed us to assay all variants either inside the protein coding or noncoding genomic regions. Alignment

of sequence reads to a reference human genome (GRCh37.p5) was completed with Stampy (v1.0.17) (Lunter & Goodson, 2011).

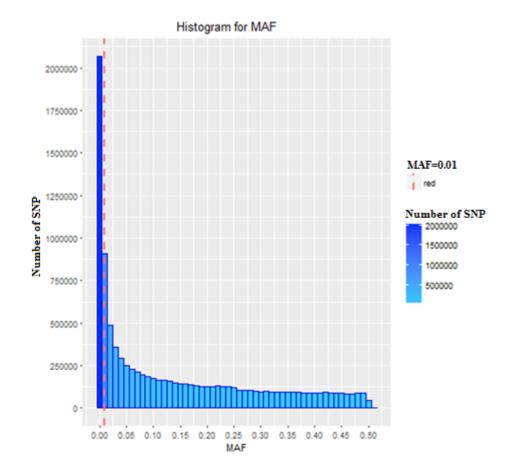
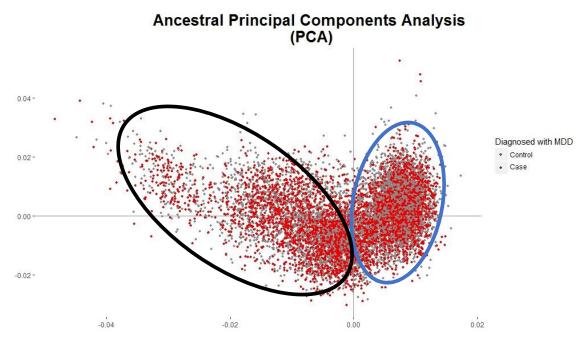


Figure.6 Distribution of Minor Allele Frequencies (MAF) of SNPs.

After filtering out SNPs with MAF < 0.01 (**Fig. 6**), out of 9,708,891 SNPs, 6,755,406 SNPs were selected for the Cox PH regression analysis.


The genotype data (single nucleotide variant, SNVs) had already been imputed and processed through stringent quality control (QC) processes. All the steps explained in this section were carried out by the CONVERGE consortium. The details of these procedures is described in the previously published research article (Cai et al., 2017).

Variant discovery and genotyping has been processed with GATK's Unified Genotyper (v2.7-2). 1000 genomes Phase 1 East Asian sample was used as the reference panel for variant calls. SNVs were named based on the SNV database version 137 (dbSNP v137) on NCBI. For genotype imputation, BEAGLE was used (Cai et al., 2017). Genotype data included in this study has 99% called SNVs (consortium, 2015). For all called SNVs, p-value for violation of Hardy-Weinberg equilibrium (HWE) is $P > 10^{-7}$, minor allele frequencies (MAF) $> 10^{-3}$ and information score > 0.3. For the statistical analysis, only 6,748,514 SNPs were included in the final two statistical models (FS analysis and CC analysis) described below.

3.3. Statistical model

We used a Cox proportional hazard (PH) regression model to investigate possible significant associations between AAO of MDD and genotype of SNVs (Cox, 1972). In this study, the Cox PH analyses were run on the R statistical program using the "survival" library (Therneau et al., 2000). For depression, the survival object of the Cox regression function defines the time to event, which in this case is MDD AAO. The control group was right censored, i.e. the disease phenotype has not been observed in those healthy individuals at the time of medical examination.

The ancestral PCA plot was computed using all 10,502 subjects. Principal Component 1 (PC1) and Principal Component 2 (PC2) explained the geographical distribution of the subjects (**Fig.7**). Thus, these two PCs were included in the survival regression model to account for population stratification.

Figure.7 Ancestral Principal Component Analysis (PCA). Red and grey color filled circles represent cases and controls, respectively.

We performed two different analyses. The first one was in **Full Sample (FS)** and the second was in **Case Cohort (CC)** only. The statistical model for the analyses contains genotype as predictor and the first two principal components and CSA as covariates. I.e.

$$h_{i}(t,X) = h_{0}(t)exp(\beta_{1}X_{1} + \beta_{2}X_{2} + \beta_{3}X_{3} + \beta_{4}X_{4})$$
$$h(t|x) = h_{0}e^{\beta_{1}X_{1} + X_{2}\beta_{2} + \beta_{3}X_{3} + \beta_{4}X_{4}}$$

 $X_1 \rightarrow$ Genotype vector $X_2 \rightarrow$ 1st Ancestral Principal Component

 $X_3 \rightarrow$ 2nd Ancestral Principal Component $X_4 \rightarrow$ CSA vector

 $h_0 \rightarrow$ Baseline hazard (no assumption).

We chose Bonferroni as the multiple testing correction method for p-values from the genetic association analyses. An example of Cox PH regression model for FS analysis in R is shown in **Fig.8**. Highlighted with yellow rectangle is the R function in the survival library. Marked in i) red is the hazard ratios and ii) blue is the significant p-value. Also highlighted in **Fig.8**, "Surv"

(survival) function in R survival library was the object specific to survival analysis. This function generates the Survival object in R function. Survival object includes individual observations of the time to event either being right censored or not. In this case, observations (AAO) in the case group are not censored whereas observations (age at interview) in control group is right-censored. The R script used for the of the Cox PH regression analysis can be found in the Appendices.

<pre>> G5 <- coxph(Surv(x6570\$AA0, x6570\$MDD) ~ x6570[,c("rs80309727_2")] + PC1 + PC2 + CSA, data = x6570) > summary(G5) Call: coxph(formula = Surv(x6570\$AA0, x6570\$MDD) ~ x6570[, c("rs80309727_2")] + PC1 + PC2 + CSA, data = x6570)</pre>
n= 9896, number of events= 4736 (194 observations deleted due to missingness)
coef exp(coef) se(coef) z x6570[, c("rs80309727_2")] 9.853e-02 1.104e+00 2.076e-02 4.744 2.08e-06 PC1 -6.053e+00 z.551e-05 1.498e+00 -4.040 5.24e-05 *** PC2 -9.432e+00 8.013e-05 1.489e+00 -6.336 2.36e-10 *** CSA 1.136e+00 3.115e+00 4.907e-02 23.151 < 2e-16
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
exp(coef) exp(-coef) lower .95 upper .95 x6570[, c("rs80309727_2")] 1.104e+00 9.062e-01 1.060e+00 1.149376 PC1 2.351e-03 4.253e+02 1.248e-04 0.044305 PC2 8.013e-05 1.248e+04 4.332e-06 0.001482 CSA 3.115e+00 3.211e-01 2.829e+00 3.429148
Concordance= 0.571 (se = 0.005) Rsquare= 0.048 (max possible= 1) Likelihood ratio test= 489.6 on 4 df, p=0 Wald test = 626.2 on 4 df, p=0 Score (logrank) test = 688.7 on 4 df, p=0

Figure.8 Cox regression model in R ("survival" library).

To empirically test the significant p-values, we conducted a permutation tests on four top SNPs (**Table.5** in the Appendices), which all have MAF < 1 %. These SNPs were tested with at least 5×10^5 permutations.

3.4. Gene set enrichment analysis

Most GWAS analyses end up with a large number of loci having numerous moderate but none/few genome wide significant association signals. For this reason, a possible approach to analyze these findings is to conduct an aggregate analysis. Gene set enrichment analysis is one of the most well-known such methods. It allows us to aggregate information over numerous loci in biological pathways.

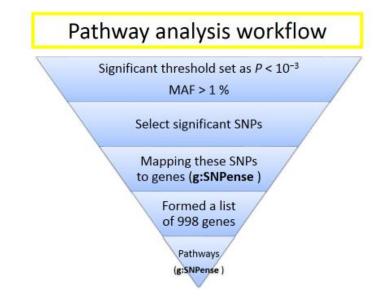


Figure.9 Gene enrichment and path analysis workflow.

To achieve this, first step was setting a SNP prioritization threshold of genetic association significance to select SNPs (**Fig.9**). So, after the selection of the moderately significant Single Nucleotide Variations (SNVs) based on an *a priori* significance threshold ($P < 10^{-3}$). They were mapped to (sometimes multiple) genes (**Fig.10**). A variant was deemed as mapped to a gene when it was located within 50 kb of coding sequences of the gene.

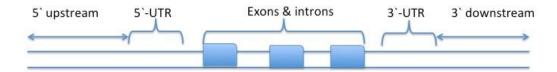


Figure.10 Schematic of gene regions.

For this purpose, **g:SNPense** was used for SNP mapping to genes (**Fig.11**). This SNP mapping tool is an online SNP IDs converting application (http://biit.cs.ut.ee/gsnpense). It accepts

a list of at most 4,000 rs IDs as a query. This list of rs IDs were converted into a gene list. g:SNPense mapped all SNPs residing within the 50kb upstream and downstream region of the coding sequence of a gene, including 3` and 5`-UTR regions mapped to a single or multiple genes (**Fig.10**). This allowed us to form a gene list to be used as a query for gene set enrichment analyses.

g:GOSt Gene Group Functional Profiling g:Cocoa Compact Compare of Annotations g:Convert Gene ID Converter g:Sorter Expression Similarity Search g:Orth Orthology search g:SNPense Convert rsID J. Remand. T. Arak, R. Adler, L. Koberg, S. Reisberg, H. Peterson, J. Vilo: g:Profier a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Research 2016; doi: 10.1093/nar/gkw199 (PDF, I) Organism Homo sapiens T Insert list of rs-codes (separated by linebreaks):			
Growert Gene ID Converter Gisorter Expression Similarity Search Gisorter Expression Similarity Search Gisorth Orthology search Gisorth Orthology search Gisorter risiD Ader, L. Koberg, S. Reisberg, H. Peterson, J. Vilo: g:Profiler a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Research 2016; doi: 10.1093/nar/gkw199 (PDF, in Organism Homo sapiens		g:GOSt Gene Group Functional Profiling	
g:Sorter Expression Similarity Search g:Orth Orthology search Welcome! Contact FAQ R / APIs Beta Archive g:Sorter TstD J. Reimand, T. Arak, R. Adler, L. Kolberg, S. Reisberg, H. Peterson, J. Vilo: g:Profiler ~ a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Research 2016; doi: 10.1093/nar/gkw199 (PDF, I) Organism Homo sapiens T	(l'Drofilor	g:Cocoa Compact Compare of Annotations	
Welcome! Contact FAQ R / APIs Beta Archive g:Orth Orthology search J. Reimand, T. Arak, R. Adler, L. Kolberg, S. Reisberg, H. Peterson, J. Vilo: g:Profiler a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Research 2016; doi: 10.1093/nar/gkv/199 (PDF, in Organism Homo sapiens T Image: State	9.FIOIIIEI	g:Convert Gene ID Converter	
Welcome! Contact FAQ R / APIs Beta Archive g:SNPense Convert rsID J. Reimand, T. Arak, R. Adler, L. Kolberg, S. Reisberg, H. Peterson, J. Vilo: g:Profiler a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Research 2016; doi: 10.1093/nar/gkv/199 (PDF, in Organism Homo sapiens T G		g:Sorter Expression Similarity Search	
J. Reimand, T. Arak, P. Adler, L. Kolberg, S. Reisberg, H. Peterson, J. Vilo: g:Profiler a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Research 2016; doi: 10.1093/nar/gkv199 (PDF, i Organism Homo sapiens 🔻 🔍		g:Orth Orthology search	
Organism Homo sapiens ▼	Welcome! Contact FAQ R / APIs Beta Archive	g:SNPense Convert rsID	
Homo sapiens 🔻 🔍	J. Reimand, T. Arak, P. Adler, L. Kolberg, S. Reisberg, H. Peterson, J. Vilo	p: g:Profiler a web server for functional interpretation of gene lists (2016 update) Nucleic Acids Research 2016; doi: 10.1093/nar/gkw199 (PDF, m

g:SNPense Clear or run an example

Figure.11 SNV mapping to genes (g:SNPense).

In order to test the list of genes for enrichment in any biological pathways or curated gene sets, an online tool called Gene Group Functional Profiling (g:GOSt) version r1730_e88_eg35 (Ensembl 88, Ensembl Genomes 35 (rev 1730, build date 2017-05-18)) was used for gene set enrichment analysis (Fig.12) (Reimand et al., 2016). If needed, there are older versions of g:GOSt in the archive tab on the g:Profiler website.

All g:GOSt queries had the same options selected as shown in **Fig.12**. Selected SNPs from FS analysis mapped to 998 genes. For the CC analysis, the query had 1,147 genes. The two gene lists are in the Appendices. From the options list of g:GOSt, for gene set enrichment analysis, there were only GO (Gene Ontology) terms and two biological pathways (KEGG and Reactome) selected.

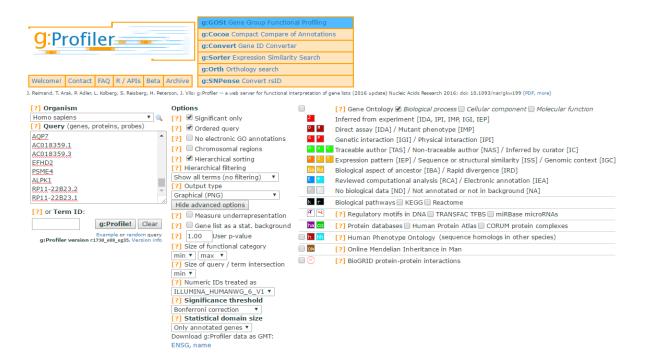


Figure.12 Gene enrichment analysis (g:GOSt).

Among other options, three can significantly affect the results of the gene enrichment analysis. These options were ordered query option, including Electronic GO annotations and multiple testing adjustment method of p-values in the gene enrichment analysis. The key point in the query was the selection of the ordered (ranked) query option. This allowed us to perform a test for enrichment based on an ordered query of the descending statistical significance of genetic associations. The selected options for the gene set enrichment analysis were the same as in **Fig.12**. The ambiguous gene identifiers (IDs) were resolved manually. By default, g:GOSt searches query gene IDs in 116 different databases. In queries, gene IDs were either HGNC (HUGO Gene Nomenclature Committee) gene symbol or Ensemble gene ID. Duplicates of gene IDs were automatically discarded by g:GOSt.

The test for significance of the pathway enrichment in the query gene list is based on a hypergeometric test. In order to show enrichment results separately for each category (source) of

GO term group and pathway gene set, we queried the gene lists once at a time selecting only one GO term category or the pathway gene set as the query option on the g:GOSt option panel.

g:GOSt can provide adjusted p-values for multiple testing based on three options, which are Bonferroni's, Benjamini–Hochberg False Discovery Rate (FDR) (Benjamini, Drai, Elmer, Kafkafi, & Golani, 2001) and a modified method (g:SCS method) developed by the g:Profiler research group (Reimand, Kull, Peterson, Hansen, & Vilo, 2007). For the gene set enrichment analyses, Bonferroni's method was method to adjust enrichment p-values for multiple testing.

For validation purposes, an additional web based tool from Max Planck Institute called ConsensusPathDB (Herwig, Hardt, Lienhard, & Kamburov, 2016) that shows the raw (unadjusted) p-values along only with their FDR adjustment. The significance for the enrichment analysis was set as q-value < 0.05. Thus, only for the purpose of this comparison, the change in options panel were deselection of the ordered query option and switching the multiple testing method from Bonferroni to FDR in g:GOSt.

4. Results

Two different Cox PH analyses, denoted **Full Sample (FS)** and **Case Cohort (CC)**, were implemented in this study to uncover modifier SNPs. Survival GWAS did not yield any genome wide significant SNPs, however, there seemed to be several suggestive SNVs (p-value $< 5 \times 10^{-5}$) associated with the AAO of the MDD.

4.1. Genome wide survival analysis results

4.1.1 All Sample analysis results

Quantile-quantile plot (Q-Q plot) showed (**Fig.13**) some departures from the null expectation (shaded area shows the 95 % confidence interval). The early deviation from the diagonal line points out that the p-values did not follow the expected null distribution. (Genomic inflation was estimated to be 1.075) This departure was either due to enrichment or to liberal tests. However, given that the permutations p-values were much larger than survival regression p-values, it is likely that the departure was due to liberal survival tests.

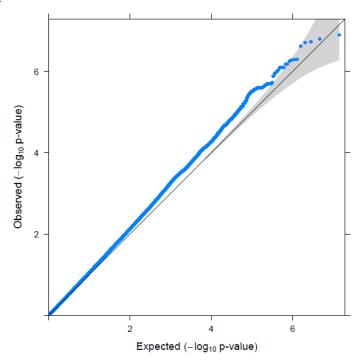
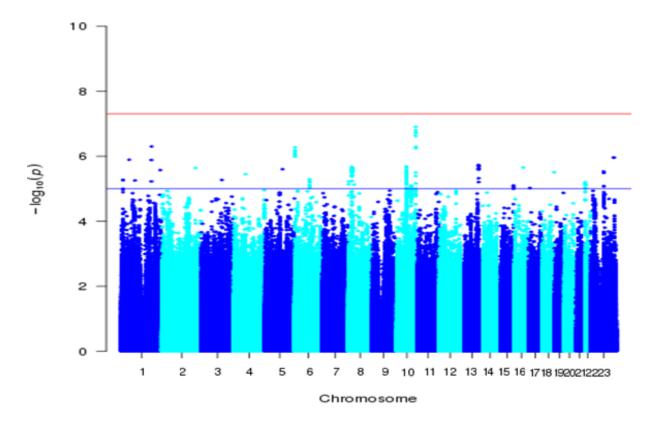


Figure.13 Quantile-quantile plot of p-values from summary statistics

CHR	SNV	BP	MAF	Hazard Ratio (HR)	Z score	P (unadjusted)		
10	rs11245287	126246537	0.261	0.880	-5.286	1.25x10 ⁻⁷		
10	rs35841851	126236419	0.296	0.885	-5.242	1.59x10 ⁻⁷		
10	rs11245283	126236663	0.297	0.886	-5.214	1.85x10 ⁻⁷		
10	rs35936514	126244970	0.260	0.882	-5.203	1.96x10 ⁻⁷		
10	rs12258489	126245297	0.260	0.883	-5.167	2.38x10 ⁻⁷		
1	rs74359973	187629589	0.011	1.568	5.026	5.01x10 ⁻⁷		
6	rs55800092	4386107	0.150	0.861	-5.015	5.30x10 ⁻⁷		
10	rs12262706	126247468	0.292	0.890	-5.003	5.64x10 ⁻⁷		
6	rs17138114	4379511	0.151	0.862	-4.973	6.61x10 ⁻⁷		
6	rs7747061	4381445	0.151	0.862	-4.973	6.61x10 ⁻⁷		
6	rs56222106	4374034	0.150	0.863	-4.935	8.02x10 ⁻⁷		
6	rs75592374	4374582	0.150	0.863	-4.935	8.02x10 ⁻⁷		
6	rs1888325	4374751	0.150	0.863	-4.935	8.02x10 ⁻⁷		
6	rs78823440	4375064	0.150	0.863	-4.935	8.02x10 ⁻⁷		
6	rs1034115	4391428	0.150	0.864	-4.910	9.12x10 ⁻⁷		
6	rs170950	4391144	0.150	0.864	-4.903	9.44x10 ⁻⁷		
6	rs77648291	4375421	0.145	0.861	-4.886	1.03x10 ⁻⁶		
23	rs140957023	140958072	0.017	1.498	4.874	1.10x10 ⁻⁶		
1	rs181909501	48949127	0.020	6.235	4.842	1.28x10 ⁻⁶		
1	rs78146918	187610780	0.011	1.538	4.839	1.30x10 ⁻⁶		
13	rs116500056	107657974	0.017	1.413	4.769	1.86x10 ⁻⁶		
13	rs16969523	107658220	0.017	1.412	4.756	1.97x10 ⁻⁶		
13	rs35061615	107658285	0.017	1.412	4.756	1.97x10 ⁻⁶		
13	rs35932768	107658655	0.017	1.412	4.756	1.97x10 ⁻⁶		
13	rs61967003	107659212	0.017	1.412	4.756	1.97x10 ⁻⁶		
13	rs16969540	107662658	0.017	1.412	4.756	1.97x10 ⁻⁶		
13	rs12861527	107663978	0.017	1.412	4.756	1.97x10 ⁻⁶		
13	rs7990181	107667344	0.017	1.412	4.756	1.97x10 ⁻⁶		
10	rs80309727	107667344	0.017	1.104	4.746	2.08x10 ⁻⁶		
8 rs59341197 23461233 0.278 0.895 -4.742 2.11x10 ⁻⁶								
BP: base pair, SNV: Single Nucleotide Variant, P: p-value, MAF: Minor Allele frequency, CHR: Chromosome								

Table.1 30 most significant SNVs in FS analysis.

The 30 most significant SNVs (**Table 1**) were all suggestive ($P < 5x10^{-5}$) genome wide significant associations. These SNVs are common variants and have MAF greater than 1 %, whereas SNVs on chromosome 13, 1 and 23 have MAFs that are close to 1%. The most significant SNV association was on Chromosome 10 in *LHPP* locus. This locus was also reported as having


genome wide significant association signal for SNVs inside an *LHPP* intron (consortium, 2015). Another point is that SNVs on *LHPP* with HR < 1 implicates the tested allele as being protective.

SNP ID	Gene	Gene region	P value	MAF	Gene	Chr	Gene Association *
rs11245287	LHPP	intron	1.247x10 ⁻⁷	0.261	phospholysine phosphohistidine inorganic pyrophosphate phosphatase	10q26.13	cholesterol, anticoagulant
rs140957023	MAGEC3	intron	1.096x10 ⁻⁶	0.017	MAGE family member C3	Xq27.2	NA
rs78146918	ERVMER6 1-1	intron	1.305x10 ⁻⁶	0.011	endogenous retrovirus group MER61 member 1	1q31.1	NA
rs80309727	RNU6-523P	intron	2.075x10 ⁻⁶	0.453	RNA, U6 small nuclear 523, pseudogene	10q21.3	NA
rs59341197	RNU4-71P	upstream	2.114x10 ⁻⁶	0.278	RNA, U4 small nuclear 71, pseudogene	8p21.2	NA
rs192525648	CCL17	intron	1.305x10 ⁻⁶	0.011	C-C motif chemokine ligand 17	16q21	NA
rs118149296	ADAM23	intron	2.289x10 ⁻⁶	0.018	ADAM metallopeptidase domain 23	2q33.3	NA
rs56197202	RNU4-71P	intron	2.327x10 ⁻⁶	0.273	coiled-coil domain containing 88C	14q32.11 -q32.12	Dehydroepia ndrosterone, Albuminuria
*NCBI Phenotype-genotype integrator NHGRI or dbGAP p-value<5x10 ⁻⁵ Chr: Chromosome MAF: Minor Allele Frequency							

Table.2 Genes located near suggestive SNPs in FS analysis.

The majority of the most significant variants that were mapped to genes were in/near genes that have no known association with any disease phenotype and have low MAF (~1%) (**Table.2**). Exceptions are rs11245287 and rs56197202, which are common variants with MAF around 26%. These two common variants are located in introns of *LHPP* and *RNU4-71P* respectively. The SNP in *LHPP* was the most significant one.

According to the NCBI Phenotype-genotype integrator, https://www-ncbi-nlmnihgov.proxy.library.vcu.edu/gap/phegeni?tab=1&gene=64077, rs4315021 variant in LHPP is associated with (p-value = 3.06×10^{-5}) total cholesterol concentration in blood. This result particularly belongs to NHLBI Family Heart Study (dbGaP Study Accession: phs000221.v1.p1

Figure.14 Manhattan plot of $-\log_{10}(P)$ for FS analysis. The red horizontal line points out the genome wide significance threshold (P = 5×10^{-8}) and the blue horizontal line signs the suggestive significance level of genetic association (P = 5×10^{-5}).

As mentioned before, for obtaining variant association statistics there were both case and control subjects included in the AS analysis (**Fig.14**). LocusZoom online tool generated regional association plots allow us to explore the loci showing suggestive genome-wide significant associations. (**Fig. 15-18**). LocusZoom used all analyzed SNVs residing within the locus and p-values used as an input for regional association locus plotting (Pruim et al., 2010). To generate these plots, LD population was set to ashg19/1000 Genomes Nov 2014 ASN (East Asians).

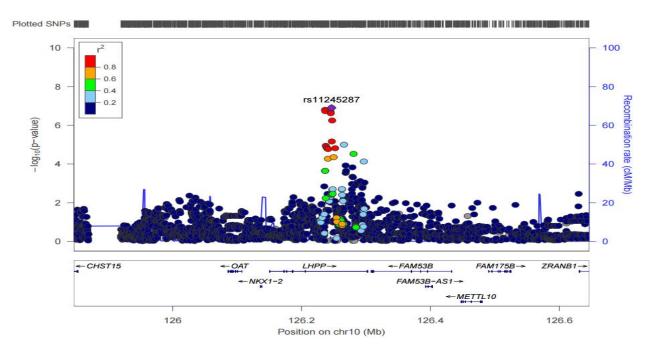


Figure.15 Locus zoom for LHPP.

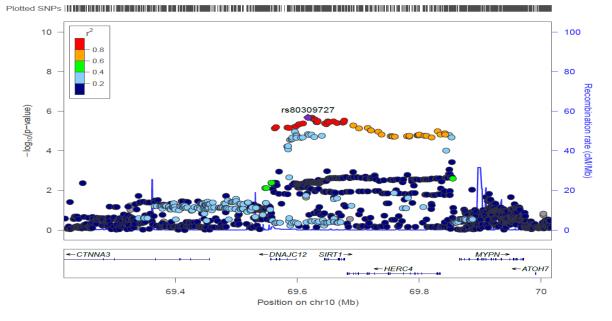


Figure.16 Locus zoom for SIRT1.

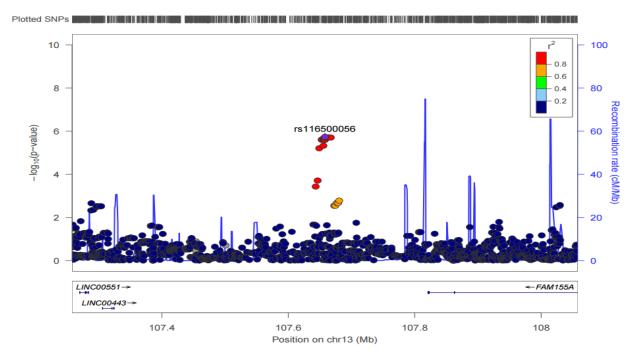


Figure.17 Locus zoom for chr13:107,257,974–108,057,974.

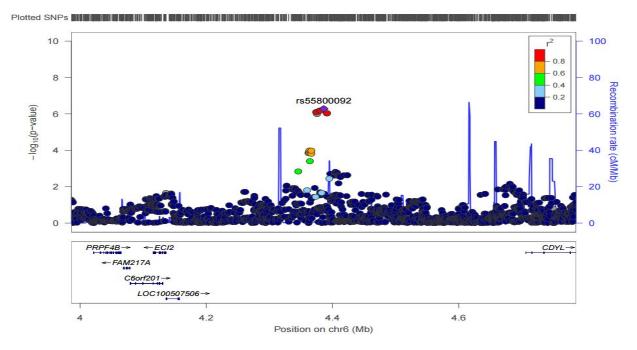


Figure.18 Locus zoom for chr6:3,986,107–4,786,107 bp.

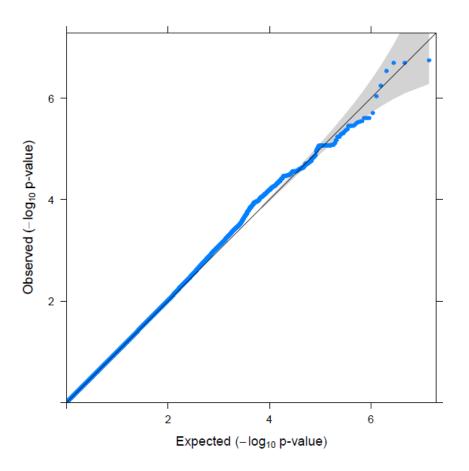


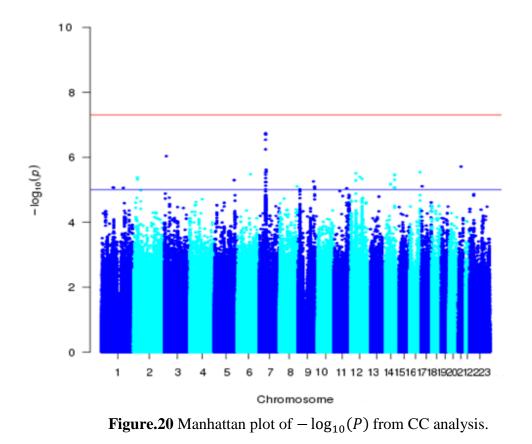
Figure.19 Quantile-quantile plot for CC analysis.

4.1.2 Case Cohort analysis results

CC analysis also showed some departure from null expectation (**Fig.19**). Genomic inflation was $\lambda = 1.014$. As shown in **Fig.19**, there was a deflation in the association p-values towards the right tail of the Q-Q plot, however, the top six significant SNV associations, were within the 95% confidence interval of the expected normal distribution.

CHR	SNP	BP	MAF	Hazard Ratio (HR)	Z score	P (unadjusted)
7	rs690911	49939147	0.0562	1.264	5.219	1.80x10 ⁻⁷
7	rs2366025	50080818	0.0563	1.264	5.200	1.99x10 ⁻⁷
7	rs6944334	50018441	0.0560	1.264	5.200	1.9910 ⁻⁷
7	rs692270	49892044	0.0576	1.257	5.132	2.86x10 ⁻⁷
7	rs691417	49887533	0.0562	1.254	5.002	5.69x10 ⁻⁷
3	rs151020965	11904509	0.0222	1.427	4.908	9.21x10 ⁻⁷
21	rs74591900	32762165	0.0265	1.439	4.760	1.93x10 ⁻⁶
7	rs72590997	52362582	0.1270	0.864	-4.712	2.45x10 ⁻⁶
7	rs72590998	52362961	0.1270	0.864	-4.712	2.45x10 ⁻⁶
7	rs72591000	52379298	0.1269	0.864	-4.712	2.45x10 ⁻⁶
7	rs9642460	52384825	0.1271	0.864	-4.684	2.82x10 ⁻⁶
16	rs77700579	81490144	0.0952	1.181	4.679	2.88x10 ⁻⁶
7	rs7778784	50135200	0.0577	1.231	4.675	2.94x10 ⁻⁶
12	rs11173011	40046408	0.2019	1.132	4.664	3.10x10 ⁻⁶
6	rs36142524	101946461	0.0218	1.446	4.648	3.34x10 ⁻⁶
7	rs2221656	50099404	0.0579	1.229	4.640	3.48x10 ⁻⁶
14	rs1285804	91819984	0.0161	1.436	4.639	3.49x10 ⁻⁶
14	rs1285806	91822382	0.0161	1.436	4.639	3.49x10 ⁻⁶
14	rs1285807	91823106	0.0161	1.436	4.639	3.49x10 ⁻⁶
14	rs1285811	91830078	0.0161	1.436	4.639	3.49x10 ⁻⁶
12	rs7295237	71016832	0.1204	1.176	4.609	4.05x10 ⁻⁶
2	rs4666290	30149295	0.2274	1.133	4.601	4.21x10 ⁻⁶
7	rs79417164	50170934	0.0282	1.345	4.592	4.40×10^{-6}
12	rs75833894	86726432	0.0461	1.276	4.582	4.60×10^{-6}
2	rs13414785	30149187	0.2323	1.132	4.570	4.87x10 ⁻⁶
14	rs1285768	91797825	0.0123	1.515	4.569	4.90x10 ⁻⁶
5	rs2135026	155810433	0.1743	1.141	4.563	5.05x10 ⁻⁶
12	rs7978510	40038294	0.2018	1.130	4.558	5.16x10 ⁻⁶
9	rs1819343	117328001	0.3978	0.908	-4.543	5.55x10 ⁻⁶
7	rs1483080	50045825	0.0641	1.208	4.533	5.82x10 ⁻⁶
BP: Ba	ase Pair, SNV: Sing	gle Nucleotide Va	riant, P: p-va	alue, MAF: Minor Allele F	requency, C	CHR: Chromosome

Table.3 30 most significant SNVs from the CC analysis.


The 30 most significant SNVs in CC analysis (**Table.3**) were all suggestive ($P < 5 \times 10^{-5}$) genome wide significant associations. The most significant SNV association was Chromosome 7 rs690911 ($P = 1.80 \times 10^{-7}$, HR=1.264). This locus have two overlapping genes that are ZPBP and *VWC2*.

SNP ID	Gene	Gene region	MAF	p-value	Gene	Chr	Gene Association*
rs690911	ZPBP/ VWC2	intron	0.056	1.796x10 ⁻⁷	zona pellucida binding protein / von Willebrand factor C domain containing 2	7p12.2	NA/cholesterol, triglycerides, sleep, calcium, platelet aggregation
rs151020965	FANCD2P2	intron	0.022	9.209 x10 ⁻⁷	Fanconi anemia complementation group D2 pseudogene 2	3p25.2	NA
rs74591900	TIAM1	intron	0.027	1.935 x10 ⁻⁶	T-cell lymphoma invasion and metastasis 1	21q22.11	ALS, Hip, Neuroblastoma, coronary disease, lipids
rs77700579	CMIP	intron	0.095	2.881 x10 ⁻⁶	c-Maf inducing protein (plays a role in T-cell signaling pathway)	16q23.2- q23.3	Adiponectin, cholesterol, HDL, Type 2 Diabetes, Body height
rs7778784	C7ORF72	upstream	0.058	2.938 x10 ⁻⁶	chromosome 7 open reading frame 72	7p12.2	NA / SLE, Chrone disease, Hippocampus
rs11173011	C12ORF40	intron	0.202	3.103 x10 ⁻⁶	chromosome 12 open reading frame 40	12q12	NA
rs36142524	GRIK2	intron	0.022	3.344 x10 ⁻⁶	kainate type subunit 2ily tyrosine kinase	6q16.3	Body weight, Cholestrol, LDL, Lipoprotein, FSH, BMI
rs1285804	CCDC88C	intron	0.016	3.493 x10 ⁻⁶	coiled-coil domain containing 88C	14q32.11 -q32.12	Insulin, insulin resistance, BMI
*NCBI Phene Allele Freque		e integrator	NHGRI	or dbGAP p-v	value < 5x10 ⁻⁵ Chr : Chr	omosome N	IAF: Minor

Table.4 SNVs mapped to genes in the CC analysis.

Most of the significant variants in CC analysis are known to exhibit significant association with other disease phenotypes (**Table.4**). Most of these SNPs are rather rare (MAF < 10%) with the exception of rs11173011, which is a common variant with MAF = 26%. This common SNP resides in *C120RF40* (chromosome 7 open reading frame 40). NCBI Phenotype-genotype integrator indicates that there are significant associations between variants in *C120RF40* and Systemic Lupus Erythematosus (SLE), Crohn's disease.

The most significant association signal was located in one of the introns of von Willebrand factor C domain containing 2 (*VWC2*). According to the NCBI Phenotype-genotype integrator, there is a significant gene association between variants in *VWC2* loci and cholesterol, triglycerides, sleep, calcium and platelet aggregation.

CC analysis yielded the best signal on chromosome 7, which is, however, only suggestive (**Fig.20**). Locus zoom plot (**Fig.21**) explored the SNVs, which are in Linkage Disequilibrium with the most significant SNV (rs690911) in the *VWC2* loci, nearby the *ZPBP* and *C70RF72 loci*.

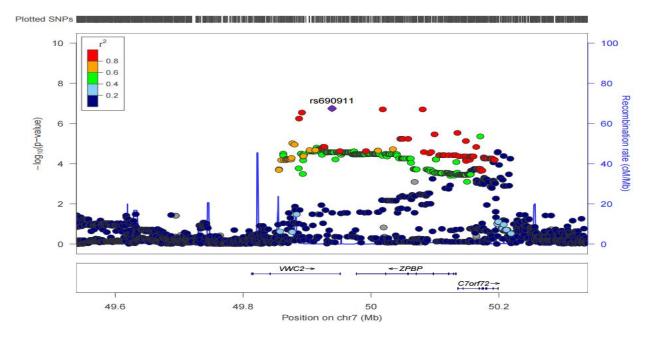


Figure.21 Locus zoom for VWC2, ZPBP and C7ORF72.

4.2 Gene Set Enrichment Results

Gene set enrichment analysis results are shown in summary (**Table.5**) and in **Fig.23** pertaining to the graphical outputs obtained from the g:GOSt (**Fig.12**). The remaining results are in Appendices. [The gene lists associated with the two analyses are in Appendices (**Table.7** and **Table.8**).]

In summary, **Table.5** shows the top significant gene set enrichments of GO term categories and Pathway (KEGG and Reactome) gene sets in each gene list of two models. Most of the significant enrichments were found in *Cellular Component* and *Biological Process* GO categories. The most significant enrichment for FS analysis was cell periphery (GO:0071944, $q = 3.23 \times 10^{-5}$). The most significant enrichment for CC analysis was synapse (GO:0045202, $q = 1.33 \times 10^{-5}$). Neuronal system (REAC:112316) was significantly enriched in both analyses.

lel	GO Term /	GO Term	Term or	Gene	Gene	Genes	q_B	q FDR
Model	Pathway ID	category	Pathway name	set	list	Shared		
	GO:0071944	Cellular Component	cell periphery	5283	795	180	3.23x10 ⁻⁵	6.66x10 ⁻⁸
	GO:0044700	Biological Process	single organism signaling	6263	396	110	9.47x10 ⁻⁴	9.63x10 ⁻⁷
	GO:0065008	Biological Process	regulation of biological quality	3428	380	69	1.04x10 ⁻³	1.06x10 ⁻⁶
FS	GO:0097458	Cellular Component	neuron part	5283	795	180	1.10x10 ⁻³	1.12x10 ⁻⁶
го	GO:0045202	Cellular Component	synapse	809	944	50	1.63x10 ⁻³	1.65x10 ⁻⁶
	GO:0055085	Biological Process	transmembrane transport	1395	526	48	3.77x10 ⁻³	3.84x10 ⁻⁶
	REAC:112316	Reactome	neuronal system	359	886	26	4.76x10 ⁻³	8.74x10 ⁻⁴
	KEGG: 05231	KEGG	choline metabolism in cancer	101	664	10	2.36x10 ⁻²	1.35x10 ⁻³
	GO:0045202	Cellular Component	synapse	809	1049	60	1.33x10 ⁻⁵	1.98x10 ⁻⁸
	GO:0097458	Cellular Component	neuron part	1322	1130	91	2.02x10 ⁻⁵	3.01x10 ⁻⁹
	GO:0120036	Cellular Component	plasma membrane bounded cell projection organization	1323	1112	86	4.59x10 ⁻⁵	1.35x10 ⁻⁷
CC	GO:0007156	Biological Process	homophilic cell adhesion via plasma membrane adhesion molecules	156	509	16	5.67x10 ⁻⁵	8.44x10 ⁻⁸
	GO:0016358	Biological Process	dendrite development	203	1039	25	7.08x10 ⁻⁵	1.05x10 ⁻⁷
	KEGG:04724	KEGG	glutamergic synapse	114	855	14	2.82x10 ⁻⁴	8.46x10 ⁻⁶
	KEGG:04713	KEGG	circardian entrainment	96	855	13	2.33x10 ⁻⁴	6.98x10 ⁻⁶
	GO:0005509	Molecular Function	calcium ion binding	701	477	30	5.38x10 ⁻³	8x10 ⁻⁶
	REAC:392154	Reactome	Nitricoxide stimulates guanylate cyclase	25	188	4	3.21x10 ⁻²	6.66x10 ⁻⁴
	REAC:112316	Reactome	neuronal system	359	1078	27	5x10 ⁻²	1.04x10 ⁻³
Hocht	oerg False Discovery t ive domain size / FI	Rate adjusted p-	lopedia of Genes and G value KEGG: 7,168 / $P = 3.3$	_		-		-

Table.5 Summary table of gene set enrichment results.

All queries had the same panel of options for the gene set enrichment analysis as shown in **Fig.12**. The graphical output is in a matrix form with color coded cells designating the kind of annotation

of the gene.

Z	Inferred from experiment [IDA, IPI, IMP, IGI, IEP]
DH	Direct assay [IDA] / Mutant phenotype [IMP]
G P	Genetic interaction [IGI] / Physical interaction [IPI]
A a C	Traceable author [TAS] / Non-traceable author [NAS] / Inferred by curator [IC]
X S Y	Expression pattern [IEP] / Sequence or structural similarity [ISS] / Genomic context [IGC]
Ba Rd	Biological aspect of ancestor [IBA] / Rapid divergence [IRD]
E e	Reviewed computational analysis [RCA] / Electronic annotation [IEA]
0 ?	No biological data [ND] / Not annotated or not in background [NA]

Figure.22 Functional gene annotation used in "Evidence code".

There are seventeen different annotations (**Fig.22**). These codes are called "Evidence code", which are helpful to interpret the gene enrichment analysis results in terms of reliability. In brief, the experimentally verified red color-coded annotations are more reliable than the blue color-coded ones, electronically annotated by *in silico* analysis.

The graphical outputs of g:GOSt FS enrichment analyses reveal significant GO terms and pathways (**Fig. 23, and Fig.25-28 in Appendices**). For instance, **Fig.23** shows a portion of the graphical output of g:GOSt from the ranked query of the gene list FS analysis. This output was the result of the query gene list of FS gene enrichment analysis when only the *Biological Process* GO term was selected on the options panel. The rest of the query genes are not on the g:GOSt graphical output figures due to large horizontal dimension of the graphical output from g:GOSt.

The most significant GO term among the *Biological Process* category (**Fig. 23**) was single organism signaling (GO:0044700, $q = 9.47 \times 10^{-4}$).

sou	rce	term name Gene Ontology (Biological process)	term ID	n. of term genes	n. of query genes	n. of commor genes	corrected ⁿ p-value	RP11-57G10.8 RP11-622A1.1 RPL12P8 MBP SIRT1 HERC4 FBXL17 ADAM23 CCL17 RNU4-71P RNU6-623P ERVMER61-1 MAGEC3 LHPP	PRKACB SLC12A8 DNAJC12
BP BP		taxis chemotaxis	GO:0042330 GO:0006935	551 550	515 515	25 25	1.75e-02 1.70e-02		
BP		cell communication	GO:0007154	6287	396	109	2.42e-03	2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 e.
BP BP	臣	signaling single organism signaling	GO:0023052 GO:0044700	6275 6263	396 396	110 110	1.06e-03 9.47e-04		2 <mark>e</mark> /
BP		nervous system development	GO:0007399	2216	956	99	3.62e-02		e
BP BP	臣	transmembrane transport ion transmembrane transport	GO:0055085 GO:0034220	1395 1045	526 385	48 31	3.77e-03 6.18e-03		2 e
BP		synapse organization	GO:0050808	249	401	14	1.29e-02		2
BP		localization	GO:0051179	6175	829	201	1.92e-02		e 🗌
BP BP BP	臣	regulation of biological quality regulation of membrane potential regulation of postsynaptic membrane potential	GO:0065008 GO:0042391 GO:0060078	3428 386 135	380 855 577	69 28 12	1.04e-03 7.45e-03 3.58e-02		
BP BP	臣	cellular response to purine-containing compound cellular response to caffeine	GO:0071415 GO:0071313	9 8	337 337	4	9.45e-03 5.29e-03		?

Figure.23 g:GOSt results for Biological Process GO terms in FS analysis.

The following two top two significantly enriched GO terms were regulation of biological quality (GO:0065008, $q = 1.04 \times 10^{-3}$) and the transmembrane transport (GO:0055085, $q = 3.77 \times 10^{-3}$). There were 1,395 genes in transmembrane transport GO term. The gene list query for this GO term consisted of 526 genes. Number of shared genes between the gene query list and the term gene set was 48 genes.

4.3 Cross platform comparison of gene enrichment analysis results between ConsensuspathDB and g:Profiler.

In order to assess the reliability of the g:Profiler platform, we used the same query gene list in another online gene set enrichment tool called Consensus Path DataBase (CPDB) from Max Planck Institute for Molecular Genetics. The slight difference between the results of the two platforms (**Table.6**) were mainly due to the number of genes recognized as the query genes and the number of genes by default in each GO term.

Table.6 A brief comparison of FS analysis enrichment results of the same queries between

	_		g:P	rofiler/CPDB	
GO term ID	GO term	gene set size	overlapping genes	p-value (unadjusted)	q-value
GO:0048648	Cell Development	1907 / 1859	87 / 87	NA / 5.79x10 ⁻⁶	2.78x10 ⁻³ /2.41x10 ⁻³
GO:0044700	single organism signaling	6263 / 6201	237 / 227	NA / 1.47x10 ⁻⁵	3.53x10 ⁻⁴ /7.18x10 ⁻⁴
GO:0071944	cell periphery	5283 / 5176	217 / 205	NA / 1.86x10 ⁻⁷	1.96x10 ⁻⁶ /6.84x10 ⁻⁶
GO:0097060	synaptic membrane	289 / 267	24 / 21	NA / 3.83x10 ⁻⁵	4.95x10 ⁻⁴ /4.85x10 ⁻⁴
	ntology q-valu e CPDB: Cons	5	U	hod for False dise	covery rate NA:

Consensus Path Database and g:Profiler.

5. Discussion

This study aimed to use whole genome survival regression to uncover genetic modifiers of MDD AAO. To achieve the aim, we employed two Cox PH analyses Full Sample (FS) and Case Cohort (CC) only. These analyses used ancestry principal components (PCs) and child sexual abuse (CSA) as covariates. While there were no statistically significant univariate findings, aggregate analyses show enrichment in some of the expected places, e.g. neuronal and synaptic pathways. However, CC analysis revealed some interesting non-neuronal pathways that might provide avenues for future treatments.

The most significant genetic association in all univariate analyses occurred in the intronic region of *LHPP*. Previously, in the CONVERGE consortium GWAS, this locus has been reported as having genome wide significant SNP (consortium, 2015). The reason for getting similar genetic associations in the FS analysis would be that the FS analysis used the same genotype data and almost the same cohort. Maybe not unexpectedly, because using only cases, Cox PH CC analysis yielded rather different results from FS analysis.

The reason for not finding any genome wide significant loci in both analyses could be due to lack of power for this analysis. Similar to most initial studies of psychiatric disorders, an increase in the study sample size would uncover loci that have fallen just below the genome wide significant threshold in current study. (For our two analyses (FS and CC) we had 80% power to detect variants with Hazard Ratio > 1.4 and MAFs > 0.01.)

Unlike univariate results, the gene enrichment results from the two analyses were much more similar when we look at the gene set enrichments in GO term gene sets. The gene enrichment results for FS analysis pointed to cell periphery GO term (GO:0071944, $q = 3.23 \times 10^{-5}$), synapse (GO:0045202, $q = 1.63 \times 10^{-3}$), neuron part (GO:0097458, $q = 1.10 \times 10^{-3}$), transmembrane transport

(GO:0055085, $q = 3.77 \times 10^{-3}$), regulation of biological quality (GO:0065008, $q = 1.04 \times 10^{-3}$), single organism signaling (GO:0044700, $q = 9.47 \times 10^{-4}$), Choline metabolism in cancer (KEGG:05231, $q = 2.36 \times 10^{-2}$) and Neuronal system (REAC:112316, $q = 4.76 \times 10^{-3}$).

CC analysis showed significant enrichment of Plasma membrane bounded cell projection organization (GO:0120036, $q = 4.59 \times 10^{-5}$), Dendrite development (GO:0016358, $q = 7.08 \times 10^{-5}$), Homophilic cell adhesion via plasma membrane adhesion molecules (GO:0007156, $q = 5.67 \times 10^{-5}$), Neuron part (GO:0097458, $q = 2.02 \times 10^{-5}$), Synapse (GO:0045202, $q = 1.33 \times 10^{-5}$), Calcium ion binding (GO:0005509, $q = 5.38 \times 10^{-3}$), Glutamergic synapse (KEGG:04724, $q = 2.82 \times 10^{-4}$), Circadian entrainment (KEGG:04713, $q = 2.33 \times 10^{-4}$), nitric oxide stimulates guanylate cyclase (REAC:392154, $q = 5 \times 10^{-2}$) and Neuronal system (REAC:112316, $q = 3.21 \times 10^{-2}$) the gene sets in query gene list. For pathway enrichment (KEGG and Reactome) Glutamergic synapse (KEGG:04724, $q = 2.82 \times 10^{-4}$) and Circadian entrainment (KEGG:04713, $q = 2.33 \times 10^{-4}$) showed significant signals. Given that CC analysis did not assume that controls would develop the diseases eventually, we believe that this analysis provided somewhat more reliable results for validation (and, possibly, treatment).

CC pathway enrichment analysis gave us two significantly enriched terms that are biologically relevant to the MDD pathology. These two terms were Glutamergic synapse (KEGG:04724, $q = 2.82 \times 10^{-4}$) and dendrite development (GO:0016358, $q = 7.08 \times 10^{-5}$). A copy number variation (CNV) study (Glessner et al., 2010), supports Glutamergic synapse. In this research, the duplication of chromosomal region (5q35.1) spanning the *SLIT3* gene, which codes for a protein responsible for cell migration and axon guidance, was observed in 5 unrelated individuals with MDD. A pathway analysis on genome-wide association datasets reported that Neuroticism association results indicates a significant enrichment in axon guidance Reactome gene

set (Kim et al., 2015). A genome wide gene expression study indicated that the postmortem brain samples from individuals who committed suicide with or without MDD shows a significant change in gene expression of genes involved in GABAergic (inhibitory) and glutamatergic (excitatory) neurotransmission (Sequeira et al., 2009).

Functionally similar genes could be on chromosomal regions close to each other. These genes with high LD may inflate the findings in gene set enrichment analysis. We have not accounted for the LD structure of SNVs in the gene set enrichment analysis. Another drawback of the gene set enrichment analysis is that we could not map all the SNVs to genes. Unmapped intergenic SNVs were eliminated in the SNP mapping to gene step (g:SNPense). Also, the SNPs which coincide within the overlapping or neighboring genes at extremely close proximity to each other may or may not be mapped to all genes in that chromosomal region.

In gene enrichment results, the same group of genes intersected multiple different GO terms neighboring function or structures. This could be observed in FS analysis in which *Biological Process* term had significant enrichment in Cell communication (GO:0007154) and Signaling (GO:0023052) GO terms. These two GO terms obviously have overlapping genes in their gene sets. Because of this, they both came out as significantly enriched GO terms. This same idea also applies to the result of gene set enrichment for CC analysis. The *Cellular component* terms Synapse (GO:0045202, $q = 1.33 \times 10^{-5}$) and Neuron part (GO:0097458, $q = 2.02 \times 10^{-5}$) were the most significantly enriched gene sets in the query gene list for CC analysis. It is highly probable that these two terms have overlapping gene sets, and so both of them are highly enriched.

The strength of the current study relies on a well-characterized and recruited case group. The Han Chinese population is relatively more homogenous than most of the other ethnic groups in terms of genetic makeup. We claim that the more homogenous the study population means the more reliable the genetic epidemiology study. However, a significant association finding in one ethnic group may not replicate in another ethnic group. So, the findings might not generalize to non-Han Chinese population.

6. Conclusion

Sequencing, rather than array based genotyping methods, allows us to study practically all non-coding and coding variants in the genome. Two statistical analyses yielded different, albeit non-significant, univariate results were due to differences in cohorts analyzed. The pathway enrichment results indicated that the suggestive univariate signals showed significant enrichment in nervous system cell biology and function. However, suggestive variants sometimes were mapped to multiple genes and adjustment for LD structure was not performed. Thus, an additional replication cohort may be needed to validate the significant enrichment findings. Nonetheless, aggregate results mostly mirror MDD research literature explaining MDD biology as a disorder of synaptic transmission systems, ion channels, receptors and dendrite development. However, some of the non-neural pathways (e.g. nitric oxide) from the case cohort analysis might provide good targets for new treatments.

References

- American Psychiatric Association. (2013). *Diagnostic and statistical manual of mental disorders* (5th ed.). Arlington, VA: Author.
- Anthony, J. C., & Petronis, K. R. (1991). Suspected risk factors for depression among adults 18-44 years old. *Epidemiology*, 2(2), 123-132.
- Avenevoli, S., & Merikangas, K. R. (2006). Implications of high-risk family studies for prevention of depression. *Am J Prev Med*, *31*(6 Suppl 1), S126-135. doi:10.1016/j.amepre.2006.07.003
- Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., & Golani, I. (2001). Controlling the false discovery rate in behavior genetics research. *Behav Brain Res*, *125*(1-2), 279-284.
- Besedovsky, H., del Rey, A., Sorkin, E., & Dinarello, C. A. (1986). Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. *Science*, *233*(4764), 652-654.
- Brown, E. S., Rush, A. J., & McEwen, B. S. (1999). Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. *Neuropsychopharmacology*, 21(4), 474-484. doi:10.1016/S0893-133X(99)00054-8
- Bruce, M. L., Takeuchi, D. T., & Leaf, P. J. (1991). Poverty and psychiatric status. Longitudinal evidence from the New Haven Epidemiologic Catchment Area study. *Arch Gen Psychiatry*, *48*(5), 470-474.
- Cai, N., Bigdeli, T. B., Kretzschmar, W. W., Li, Y., Liang, J., Hu, J., . . . Flint, J. (2017). 11,670 whole-genome sequences representative of the Han Chinese population from the CONVERGE project. *Sci Data*, 4, 170011. doi:10.1038/sdata.2017.11
- Chen, J., Cai, Y., Cong, E., Liu, Y., Gao, J., Li, Y., . . . Flint, J. (2014). Childhood sexual abuse and the development of recurrent major depression in Chinese women. *PLoS One*, *9*(1), e87569. doi:10.1371/journal.pone.0087569
- Collins, F. S., Guyer, M. S., & Charkravarti, A. (1997). Variations on a theme: cataloging human DNA sequence variation. *Science*, *278*(5343), 1580-1581.
- consortium, C. (2015). Sparse whole-genome sequencing identifies two loci for major depressive disorder. *Nature*, *523*(7562), 588-591. doi:10.1038/nature14659

http://www.nature.com/nature/journal/v523/n7562/abs/nature14659.html#supplementaryinformation

- Cox, D. R. (1972). Regression Models and Life-Tables. *Journal of the Royal Statistical Society. Series B* (*Methodological*), 34(2), 187-220.
- de Kloet, E. R., Joels, M., & Holsboer, F. (2005). Stress and the brain: from adaptation to disease. *Nat Rev Neurosci, 6*(6), 463-475.
- Dunlop, B. W., & Nemeroff, C. B. (2007). The role of dopamine in the pathophysiology of depression. *Arch Gen Psychiatry, 64*(3), 327-337. doi:10.1001/archpsyc.64.3.327
- Farmer, A. E. (1996). The genetics of depressive disorders. *International Review of Psychiatry*, 8(4), 369-372. doi:10.3109/09540269609051551
- Gershon, E. S., Alliey-Rodriguez, N., & Liu, C. (2011). After GWAS: searching for genetic risk for schizophrenia and bipolar disorder. *Am J Psychiatry*, *168*(3), 253-256. doi:10.1176/appi.ajp.2010.10091340
- Gladstone, G. L., Parker, G. B., Mitchell, P. B., Malhi, G. S., Wilhelm, K., & Austin, M. P. (2004).
 Implications of childhood trauma for depressed women: an analysis of pathways from childhood sexual abuse to deliberate self-harm and revictimization. *Am J Psychiatry*, *161*(8), 1417-1425. doi:10.1176/appi.ajp.161.8.1417
- Glessner, J. T., Wang, K., Sleiman, P. M., Zhang, H., Kim, C. E., Flory, J. H., . . . Hakonarson, H. (2010). Duplication of the SLIT3 locus on 5q35.1 predisposes to major depressive disorder. *PLoS One*, 5(12), e15463. doi:10.1371/journal.pone.0015463

- Goldman, N., Glei, D. A., Lin, Y. H., & Weinstein, M. (2010). The serotonin transporter polymorphism (5-HTTLPR): allelic variation and links with depressive symptoms. *Depress Anxiety*, 27(3), 260-269. doi:10.1002/da.20660
- Gu, L., Xie, J., Long, J., Chen, Q., Chen, Q., Pan, R., . . . Su, L. (2013). Epidemiology of major depressive disorder in mainland china: a systematic review. *PLoS One*, 8(6), e65356. doi:10.1371/journal.pone.0065356
- Herwig, R., Hardt, C., Lienhard, M., & Kamburov, A. (2016). Analyzing and interpreting genome data at the network level with ConsensusPathDB. *Nat. Protocols*, 11(10), 1889-1907. doi:10.1038/nprot.2016.117

http://www.nature.com/nprot/journal/v11/n10/abs/nprot.2016.117.html#supplementary-information

- Hirschfeld, R. M., Montgomery, S. A., Keller, M. B., Kasper, S., Schatzberg, A. F., Moller, H. J., ... Bourgeois, M. (2000). Social functioning in depression: a review. *J Clin Psychiatry*, *61*(4), 268-275.
- Hyde, C. L., Nagle, M. W., Tian, C., Chen, X., Paciga, S. A., Wendland, J. R., . . . Winslow, A. R. (2016).
 Identification of 15 genetic loci associated with risk of major depression in individuals of
 European descent. *Nat Genet*, *48*(9), 1031-1036. doi:10.1038/ng.3623
- International HapMap, C. (2005). A haplotype map of the human genome. *Nature, 437*(7063), 1299-1320. doi:10.1038/nature04226
- International Human Genome Sequencing, C. (2004). Finishing the euchromatic sequence of the human genome. *Nature*, *431*(7011), 931-945. doi:10.1038/nature03001
- Kapoor, M., Wang, J. C., Wetherill, L., Le, N., Bertelsen, S., Hinrichs, A. L., . . . Goate, A. (2014). Genomewide survival analysis of age at onset of alcohol dependence in extended high-risk COGA families. *Drug Alcohol Depend*, *142*, 56-62. doi:10.1016/j.drugalcdep.2014.05.023
- Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2005). Age at onset and familial risk for major depression in a Swedish national twin sample. *Psychol Med*, 35(11), 1573-1579. doi:10.1017/S0033291705005714
- Kessler, R. C., & Bromet, E. J. (2013). The epidemiology of depression across cultures. *Annu Rev Public Health*, *34*, 119-138. doi:10.1146/annurev-publhealth-031912-114409
- Kim, H. N., Kim, B. H., Cho, J., Ryu, S., Shin, H., Sung, J., . . . Kim, H. L. (2015). Pathway analysis of genome-wide association datasets of personality traits. *Genes Brain Behav*, 14(4), 345-356. doi:10.1111/gbb.12212
- Klein, J. P., & Moeschberger, M. L. (2003). *Survival analysis : Techniques for censored and truncated data*. New York, NY: Springer-Verlag New York Inc.
- Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J. Y., Sackler, R. S., Haynes, C., . . . Hoh, J. (2005). Complement factor H polymorphism in age-related macular degeneration. *Science*, *308*(5720), 385-389. doi:10.1126/science.1109557
- Lambert, G., Johansson, M., Agren, H., & Friberg, P. (2000). Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. *Arch Gen Psychiatry*, *57*(8), 787-793.
- Lander, E. S. (1996). The new genomics: global views of biology. Science, 274(5287), 536-539.
- Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., . . . International Human Genome Sequencing, C. (2001). Initial sequencing and analysis of the human genome. *Nature*, 409(6822), 860-921. doi:10.1038/35057062
- Lee, E. T., & Wang, J. W. (2003). *Statistical methods for survival data analysis* (3rd ed.). New York: J. Wiley.

- Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., . . . Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. *Science*, *274*(5292), 1527-1531.
- Levinson, D. F. (2006). The genetics of depression: a review. *Biol Psychiatry, 60*(2), 84-92. doi:10.1016/j.biopsych.2005.08.024
- Lunter, G., & Goodson, M. (2011). Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. *Genome Res, 21*(6), 936-939. doi:10.1101/gr.111120.110
- Major Depressive Disorder Working Group of the Psychiatric, G. C., Ripke, S., Wray, N. R., Lewis, C. M., Hamilton, S. P., Weissman, M. M., . . . Sullivan, P. F. (2013). A mega-analysis of genome-wide association studies for major depressive disorder. *Mol Psychiatry*, *18*(4), 497-511. doi:10.1038/mp.2012.21
- Massat, I., Souery, D., Del-Favero, J., Nothen, M., Blackwood, D., Muir, W., . . . Mendlewicz, J. (2005). Association between COMT (Val158Met) functional polymorphism and early onset in patients with major depressive disorder in a European multicenter genetic association study. *Mol Psychiatry*, *10*(6), 598-605. doi:10.1038/sj.mp.4001615
- McMahon, F. J., Buervenich, S., Charney, D., Lipsky, R., Rush, A. J., Wilson, A. F., . . . Manji, H. (2006). Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. *Am J Hum Genet*, *78*(5), 804-814. doi:10.1086/503820
- Neumeister, A., Nugent, A. C., Waldeck, T., Geraci, M., Schwarz, M., Bonne, O., . . . Drevets, W. C. (2004). Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. *Arch Gen Psychiatry*, *61*(8), 765-773. doi:10.1001/archpsyc.61.8.765
- Ohayon, M. M. (2007). Epidemiology of depression and its treatment in the general population. *J Psychiatr Res, 41*(3-4), 207-213. doi:10.1016/j.jpsychires.2006.10.006
- Otte, C., Gold, S. M., Penninx, B. W., Pariante, C. M., Etkin, A., Fava, M., . . . Schatzberg, A. F. (2016). Major depressive disorder. *Nat Rev Dis Primers, 2*, 16065. doi:10.1038/nrdp.2016.65
- Owzar, K., Li, Z., Cox, N., & Jung, S. H. (2012). Power and sample size calculations for SNP association studies with censored time-to-event outcomes. *Genet Epidemiol, 36*(6), 538-548. doi:10.1002/gepi.21645
- Persson, I. (2002). *Essays on the Assumption of Proportional Hazards in Cox Regression*. Uppsala: Acta Universitatis Upsaliensis.
- Pritchard, J. K., & Cox, N. J. (2002). The allelic architecture of human disease genes: common diseasecommon variant...or not? *Hum Mol Genet*, *11*(20), 2417-2423.
- Pruim, R. J., Welch, R. P., Sanna, S., Teslovich, T. M., Chines, P. S., Gliedt, T. P., . . . Willer, C. J. (2010).
 LocusZoom: regional visualization of genome-wide association scan results. *Bioinformatics*, 26(18), 2336-2337. doi:10.1093/bioinformatics/btq419
- Racagni, G., & Brunello, N. (1999). Physiology to functionality: the brain and neurotransmitter activity. Int Clin Psychopharmacol, 14 Suppl 1, S3-7.
- Reimand, J., Arak, T., Adler, P., Kolberg, L., Reisberg, S., Peterson, H., & Vilo, J. (2016). g:Profiler-a web server for functional interpretation of gene lists (2016 update). *Nucleic Acids Res, 44*(W1), W83-89. doi:10.1093/nar/gkw199
- Reimand, J., Kull, M., Peterson, H., Hansen, J., & Vilo, J. (2007). g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments. *Nucleic Acids Res, 35*(Web Server issue), W193-200. doi:10.1093/nar/gkm226
- Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., . . . Hen, R. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. *Science*, *301*(5634), 805-809. doi:10.1126/science.1083328

Schildkraut, J. J. (1965). The catecholamine hypothesis of affective disorders: a review of supporting evidence. *Am J Psychiatry*, *122*(5), 509-522. doi:10.1176/ajp.122.5.509

- Sequeira, A., Mamdani, F., Ernst, C., Vawter, M. P., Bunney, W. E., Lebel, V., . . . Turecki, G. (2009). Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. *PLoS One*, 4(8), e6585. doi:10.1371/journal.pone.0006585
- Stahl, S. M. (1998). Basic psychopharmacology of antidepressants, part 1: Antidepressants have seven distinct mechanisms of action. *J Clin Psychiatry, 59 Suppl 4*, 5-14.
- Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: review and meta-analysis. *Am J Psychiatry*, *157*(10), 1552-1562. doi:10.1176/appi.ajp.157.10.1552
- Swindle, R. W., Jr., Cronkite, R. C., & Moos, R. H. (1998). Risk factors for sustained nonremission of depressive symptoms: a 4-year follow-up. *J Nerv Ment Dis*, *186*(8), 462-469.
- Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., . . . Zhu, X. (2001). The sequence of the human genome. *Science*, *291*(5507), 1304-1351. doi:10.1126/science.1058040
- Weissman, M. M., Bland, R. C., Canino, G. J., Faravelli, C., Greenwald, S., Hwu, H. G., . . . Yeh, E. K. (1996). Cross-national epidemiology of major depression and bipolar disorder. *JAMA*, *276*(4), 293-299.
- Weissman, M. M., Wickramaratne, P., Nomura, Y., Warner, V., Pilowsky, D., & Verdeli, H. (2006). Offspring of depressed parents: 20 years later. Am J Psychiatry, 163(6), 1001-1008. doi:10.1176/ajp.2006.163.6.1001
- Zill, P., Baghai, T. C., Zwanzger, P., Schule, C., Eser, D., Rupprecht, R., . . . Ackenheil, M. (2004). SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. *Mol Psychiatry*, 9(11), 1030-1036. doi:10.1038/sj.mp.4001525

Appendices

I. R script for the Cox Proportional hazard model run on the VCU VIPBG Light

cluster

library(survival) library(gtools) library(dplyr)

data2 <-read.table("/home/projects/CONVERGE/Genos/raw/converge.n11443.dec2014.sample.wrk.txt",sep = "",header = TRUE) # phenotype file from initial analysis

csa <- read.table("/home/hgedik/converge_csa_17Feb2017_n10502.txt",sep = "", header = TRUE) # phenotype file with CSA and PCs columns after all QC steps completed

data3 <- data2[, c("ID_1", "AAO", "AAO.raw", "AAO.noCSA")] # Subsetting first phenotype file for age at onset

data3[, 5] <- rep("NA", 11443) # Adding a column for getting as much AAO from the phenotype file filling the gaps.

```
data3$V5 <- as.numeric(data3$V5)
```

Filling gaps in AAO column from different columns

```
for (i in 1:11443)
{
    if (length(as.data.frame(unique(t(data3[i, -1])))[, 1]) == 2) {
        data3[i, 5] <- as.numeric(na.omit(unique(t(data3[i, -1]))))[1]
    }
    else {
        data3[i, 5] <- as.numeric(unique(t(data3[i, -1])))[1]
    }
}</pre>
```

```
data3 <- data3[, -c(2:4)]
```

```
colnames(data3)[c(1:2)] <- c("IID", "AAO")
```

```
colnames(csa)[1] <- c("IID")
```

data3 <- data3[data3\$IID %in% csa\$IID,] # Subsetting before QC phenotype data frame into a data frame without individuals excluded after QC steps

data3 <- merge(data3, csa, by = c("IID"), all.x = T) # Merging data frames by individual ID

data3 <- data3[, c(1, 2, 4:7)] # Excluding extra columns without need

colnames(data3)[c(1:6)] <- c("IID", "AAO", "MDD", "PC1", "PC2", "CSA") # Making sure that column names are exactly the same in the following steps

datacase <- data3[data3\$MDD == 1,] # Cases are subsetted in one data frame

```
datacase<-subset(datacase, AAO>=18)
```

age <- read.table("/home/hgedik/converge_n10502.mdd_plus_covars_v2.txt", sep = "", header = TRUE) # Another phenotype file with age at interview column of the control group

age <- age[, c(1, 3, 17)] # Subsetting the data frame for only the age, status and individual ID columns

colnames(age)[1:3] <- c("IID", "MDD", "AAO") # Make sure columns' names match

datacon <- data3[data3\$MDD == 0,] # Controls are subsetted

agecon <- age[age\$MDD == 0,] # Controls from the phenotype file with age at onset column

mergeCon <- merge(datacon, agecon, by = c("IID"), all x = T) # Merging two phenotype data frames

mergeCon <- mergeCon[!(is.na(mergeCon\$MDD.y) | mergeCon\$MDD.y == ""),] # Excluding rows with unidentified casecontrol status

mergeCon <- mergeCon[, c(1, 3:6, 8)]

colnames(mergeCon)[1:6] <- c("IID", "MDD", "PC1", "PC2", "CSA", "AAO")

datacon <- mergeCon # Final version of the control dataframe

phenodat <- rbind(datacase, datacon) # Combining rows from control and case data frames

setwd("/home/projects/CONVERGE/Genos/postExcl/recodeA/") # Setting the working directory where genotype files are located

file_list <- list.files() # Listing genotype files for looping over to run the Cox regression analysis

file_list <- file_list[-c(1)] # Individual's genotype file (with .raw extension) name as character array

exfile_list <- grep("chr10+", file_list, perl = TRUE, value = TRUE)

file_list2 <- file_list[!file_list %in% exfile_list]

file_list <- c(exfile_list, file_list2)

file_list2<-gsub(".raw", ".bim", file_list) # Genotype file of SNPs with .bim extension as list of characters

if (iseed<=27)

setwd("/home/projects/CONVERGE/Genos/postExcl/recodeA/")

x6570 <- read.table(paste(file_list[iseed]), sep = "", header = T) # Reading the genotype file into R

x6570 <- x6570[, -c(1, 3:6)] # Excluding FID and other columns without need for the regression analysis

x6570wo <- x6570[x6570\$IID %in% datacase\$IID,]

x6570wo <- merge(datacase, x6570, by = "IID") # Merging phenotype and genotype data

x6570 <- x6570[x6570\$IID %in% phenodat\$IID,]

x6570 <- merge(phenodat, x6570, by = "IID") # Merging phenotype and genotype data

x6570\$AAO <- as.numeric(x6570\$AAO) # Make sure that AAO column is numeric x6570wo\$AAO <- as.numeric(x6570wo\$AAO)

setwd("/home/projects/CONVERGE/Genos/postExcl/")

dat <- read.table(paste(file_list2[iseed]), sep = "", header = F)

dtf <- dat[rep(seq_len(nrow(dat)), each = 2),]
dtf <- dtf[, -c(3)]</pre>

colnames(dtf)[c(1:5)] <- c("CHR", "SNP", "POS", "AL1", "AL2")

Column number which designate the SNP number of each genotype file and also the number of regression run in the following for loop.

nrep<-length(names(x6570))

```
#Two empty dataframes for storing the results of regression summary statistics of AS analysis and CC analysis
respectively
   d301c < - data.frame(coef = rep(0, (nrep - 6)), expcoef = rep(0, (nrep - 6)), secoef = rep(0, (nrep - 6)), Zscore = rep(0, (nrep -
6)), pvalue = rep(0, (nrep - 6)))
   d301d < - data.frame(coef = rep(0, (nrep - 6)), expcoef = rep(0, (nrep - 6)), secoef = rep(0, (nrep - 6)), Zscore = rep(0, (nrep -
6)), pvalue = rep(0, (nrep - 6)))
   for (i in 7:nrep) {
        G5 <- coxph(Surv(x6570$AAO, x6570$MDD) ~ x6570[, i] + PC1 + PC2 + CSA, data = x6570)
        d301c[i-6, ] <- c(summary(G5)$coefficients[1, 1],summary(G5)$coefficients[1, 2],summary(G5)$coefficients[1,
3], summary(G5)$coefficients[1, 4], summary(G5)$coefficients[1, 5])
        G5 <- coxph(Surv(x6570wo$AAO, x6570wo$MDD) ~ x6570wo[, i] + PC1 + PC2 + CSA, data = x6570wo)
        d301d[i-6, ] <- c(summary(G5)$coefficients[1, 1],summary(G5)$coefficients[1, 2],summary(G5)$coefficients[1,
3], summary(G5)$coefficients[1, 4], summary(G5)$coefficients[1, 5])
   d301c <- cbind(dtf, d301c)
   d301d <- cbind(dtf, d301d)
   setwd("/home/hgedik/CSA/")
   write.table(d301c,paste("CSA", seq(1:598)[iseed], ".txt", sep = ""),row.names = F,quote = F)
   setwd("/home/hgedik/CSA/woCSA/")
   write.table(d301d,paste("CSA", seq(1:598)[iseed], ".txt", sep = ""),row.names = F,quote = F)
} else
   setwd("/home/projects/CONVERGE/Genos/postExcl/recodeA/")
   x6570 <- read.table(paste(file_list[iseed]), sep = "", header = T) # Reading the genotype file into R
   x6570 <- x6570[, -c(1, 3:6)] # Excluding FID and other columns without need for the regression analysis
   x6570wo <- x6570[x6570$IID %in% datacase$IID,]
   x6570wo <- merge(datacase, x6570, by = "IID") # Merging phenotype and genotype data
   x6570 <- x6570[x6570$IID %in% phenodat$IID,]
   x6570 <- merge(phenodat, x6570, by = "IID") # Merging phenotype and genotype data
   x6570$AAO <- as.numeric(x6570$AAO) # Make sure that AAO column is numeric
   x6570wo$AAO <- as.numeric(x6570wo$AAO)
   setwd("/home/projects/CONVERGE/Genos/postExcl/")
   dat <- read.table(paste(file_list2[iseed]), sep = "", header = F)
   dat <- dat[, -c(3)]
   colnames(dat)[c(1:5)] <- c("CHR", "SNP", "POS", "AL1", "AL2")
   # nrep is the column number which designate the SNP number of each genotype file and also the number of regression run
in the following for loop.
   nrep<-length(names(x6570))
   d301c < - data.frame(coef = rep(0, (nrep - 6)).expcoef = rep(0, (nrep - 6)).secoef = rep(0, (nrep - 6)).Zscore =
6)),pvalue = rep(0, (nrep - 6)))
   d301d <- data.frame(coef = rep(0, (nrep - 6)),expcoef = rep(0, (nrep - 6)),secoef = rep(0, (nrep - 6)),Zscore = rep(0, (nrep -
```

6)), pvalue = rep(0, (nrep - 6)))

```
for (i in 7:nrep) {
  G5 <-coxph(Surv(x6570$AAO, x6570$MDD) ~ x6570[, i] + PC1 + PC2 + CSA, data = x6570)
  d301c[i - 6, ] <- c(summary(G5)$coefficients[1, 1],summary(G5)$coefficients[1, 2],summary(G5)$coefficients[1, 3],summary(G5)$coefficients[1, 4],summary(G5)$coefficients[1, 5])
  G5 <- coxph(Surv(x6570wo$AAO, x6570wo$MDD) ~ x6570wo[, i] + PC1 + PC2 + CSA, data = x6570wo)
  d301d[i-6, ] <- c(summary(G5)$coefficients[1, 1],summary(G5)$coefficients[1, 2],summary(G5)$coefficients[1, 3],summary(G5)$coefficients[1, 1],summary(G5)$coefficients[1, 2],summary(G5)$coefficients[1, 3],summary(G5)$coefficients[1, 4],summary(G5)$coefficients[1, 5])
  d301c <- cbind(dat, d301c)
  d301d <- cbind(dat, d301d)
  setwd("/home/hgedik/CSA/")
  write.table(d301c,paste("CSA", seq(1:598)[iseed], ".txt", sep = ""),row.names = F,quote = F)
  setwd("/home/hgedik/CSA/")
  write.table(d301d,paste("CSA", seq(1:598)[iseed], ".txt", sep = ""),row.names = F,quote = F)</pre>
```

}

II. Query gene list (alphabetical order) of FS analysis for g:GOSt gene set enrichment

analysis

AACSP1	AASDH	ABCA1	ABCB5	ABHD15-AS1	AC003084.2	AC005276.1
AC005394	AC005592.	AC005616.1	AC006041.1	AC006372.4	AC006548.26	AC006548.28
.1	2					
AC006946	AC006946.	AC006946.17	AC007131.1	AC007551.2	AC007682.1	AC009120.4
.12	16					
AC009501	AC009961.	AC010127.3	AC010731.3	AC010731.4	AC017060.1	AC018359.1
.4	3					
AC018359	AC018731.	AC018755.18	AC053503.2	AC064853.2	AC064875.2	AC068196.1
.3	3					
AC073283	AC087430.	AC090505.6	AC091878.1	AC092071.1	AC092384.1	AC092684.1
.4	1					
AC096558	AC098784.	AC104820.2	AC135999.2	ACO2	ACOT9	ACOXL
.1	1					
ACSS3	ADAM23	ADAMTS9-	ADGRE5	ADGRV1	ADK	AF064858.6
		AS2				
AGBL1	AGBL1-	AKAP13	AL021546.6	AL022397.1	AL163953.3	ALLC
	AS1					
ALPK1	AMFR	ANGPT1	ANK2	ANKRD9	ANKRD22	ANKS1A
ANP32B	AP000695.	AP000696.2	AP001043.1	APRT	AQP6	AQP7
	6					
AQP10	ARF4P3	ARHGEF3	ARHGEF10	ARMC7	ARMCX4	ASB3
ASB5	ASCC2	ASCC3	ASH2L	ASIP	ASS1	ASTE1
ATF1P1	ATP2C1	ATP8A2	ATP8B2	ATP10B	ATXN7L1	AXDND1
BASP1	BBX	BICD1	BLOC1S1	BMP2K	BMP6	BMP8B
BMPR1B	BMS1P20	BNIP3L	BPIFB1	BRINP2	C2ORF54	C2ORF83
C5ORF66	C6	C8ORF86	C9ORF72	C9ORF129	C10orf103	C16ORF90
C19ORF4	C19ORF84	CACNB1	CACNB4	CADM1	CADPS	CADPS2
4						
CASC4	CCDC3	CCDC146	CCL17	CCL24	CD19	CD47
CD200R1	CD200R1L	CD276	CD302	CDC42BPA	CDC42EP3	CDH13
CDHR3	CDK13	CDK14	CEBPG	CECR7	CEP83	CETN3
CFAP70	CFAP77	CHCHD3	СНМ	CHPT1	CKLF-	CLEC4C
					CMTM1	
CMIP	CNBD1	CNGB1	CNR2	CNTLN	CNTNAP2	COL4A2
COL13A1	COL23A1	COLEC12	COLQ	COQ3	COQ8A	CPA6
CPNE2	CPSF7	CPVL	CRADD	CSMD1	CSMD2	CSRNP3
CTA-	CTAGE1	CTB-1I21.2	CTB-13L3.1	CTB-91J4.1	CTC-232P5.1	CTC-
747E2.10						338M12.9
CTC-	CTC-	CTC-512J12.4	CTC-	CTC-	CTCFL	CTD-
436P18.1	471J1.2		513N18.7	548K16.5		2009A10.1
		OTTO	CTD-	CTD-2373J6.1	CTD-	CTD-
CTD-	CTD-	CTD-	CID-			
CTD- 2021H9.1	CTD- 2086L14.1	CTD- 2143L24.1	2357A8.2		2374C24.1	2516F10.2
				CTD-		2516F10.2 CTD-
2021H9.1	2086L14.1	2143L24.1	2357A8.2		2374C24.1	
2021H9.1 CTD-	2086L14.1 CTD-	2143L24.1 CTD-	2357A8.2 CTD-	CTD-	2374C24.1 CTD-	CTD-

Table.7 Query gene list for FS analysis

CYTH1 DACH1 DACH2 DAFK2 DCCAFBL2 DCC DCLK1 DDX11- DDX33 DEFB110 DGKB DGKG DGKI DIAPH3 AS1 DISCIFF1 DISP3 DKK3 DLGAP1 DNAIC5 DNAIC12 DNAIC19P1 DIST DYM1 DOCK3 DOK6 DOPEY2 DPH6-AS1 DSCAML1 DTP3 DYM DYTN EBF1 EDARADD EEF1AP28 ELMO1 ERCAB EFHD2 EGFEMIP EHBT1 EHGESG000001 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENSG000001 ENSG000002 ENSG000002 ENSG000001 ENSG000002 ENSG000001 ENSG000002 ENSG000002 ENSG000001 ENSG000001 ENSG000002 ENSG000001 ENSG00001 ENSG00001 ENSG00001 ENSG00001 ENSG00001 ENSG00001 ENSG00001	OVTI1	DACUI	DACUD	DADVO	DCAE9L2	DCC	
AS1 DISCIFPI DISP3 DKK3 DLGAPI DNAICS DNAIC12 DNAIC12PI DISM3 DNMT1 DOCK3 DOK6 DOPEY2 DPH6-AS1 DSCAML1 DUTP3 DYM DYT EFF EDARADD EFF1A1P22 EFF1B2P3 ERCAB EFHD2 EGFEMIP EBARDD EFF1A1P22 ENSG000001 ENCN ENP64 ESG000001 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ESG000001 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ESR2 ETS2 ETV5 ETV5-AS1 ETV6 ENCOC2 F2R12 FAM13A FAM160A FAM18B FAM66C FAM66C FAM78B FAM214A FAM2 FMN2 FBX17 FBXW7 FGF19 FGF10P2P1 FHIT FHLS FMN2 FM07P FOXG1-AS1 FOXP2 FRM10 RAN214A FRMD5 FST14 FVN GABRB1 GABRB3 GALNT13 GAC1NT13							
DISCIPPI DISP3 DKA3 DLGAPI DNAICS DNAIC12 DNAIC19L DNM3 DNMT1 DOCK3 DOK6 DOPY2 DPH6-AS1 DSCAML1 DUTP3 DYM DTTN EBF1 EDARADD EFF1A1P22 EEF1B2P3 ERCAB EFHD2 EGFEMIP EHBP1 EHMT1 EF4EBP2P3 EEKO00002 ENSG000001 ENCN ENSG00001 ENSG000001 ENSG000002 ENSG00001 ENSG00001 EPCAM EPM2A EPST1 ERC2 ERVARE ESR1 1 ESR2 ETS2 ETV5 ETV5-AS1 ETV6 EXOC2 FAR13 FAM35A FAM160A FAM160B2 FAM174B FAM181A- FAM189A1 FAM214A 2 AS1 FAR24 FRD2 FMC1PP FOXF1- FNT4 FAM180A FAM180A1 FAM18A FAR2 FBLN2 FNC07P FOXF2- FRMD1 FRMD4A FRMD5 GALXN GALXN GALXN GALXAN GALXAN		DDX55	DEFBII0	DGKB	DGKG	DGKI	DIAPHS
DNM3 DNM11 DOCK3 DOR6 DOPFY2 DPH6-A51 DSCAML1 DUTP3 DYM DYTN EBF1 EDARADD EFF1A1P22 EEF1B2B3 EPCAB6 EFHD2 EGFEM1P EHBP1 EHMT1 EFF4BP27 ELMO1 ENCN ENP6 ENSG00001 ENSG000001 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENSG000001 ENSG000001 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENSG000001 ENSG000001 ENSG000001 ENSG000001 ENSG000001 ENSG000001 ENSG000001 ENSG000001 ENSG000002 ENSG000001 ENSG000001 ENSG000001 ENSG000001 ENSG000001 ENSG00001 ENSG0141 ENG1401414		DISD3	DKK3	DIGADI		DNAIC12	DNA IC10P1
DUTP3 DYM DYN EBFI EDARADD EEFLAIP2 EFFB2P3 EFCAB6 EFHD2 EGFEMIP EHBP1 EHMT1 EIF4EB2P3 ELMO1 EMCN ENPF6 ENSG000001 ENSG000002 ENSG000002 ENSG000002 ENSG000002 ENCAM EPM2A EPST11 ERC2 ERO1A ERVVER61- ESR1 ESR2 ETS2 ETV5 ETV5-AS1 ETV6 EXOC2 F2RL2 F13A1 FAAP24 FAM1400A FAM160C FAM174B FAM181A- FAM189A1 FAM24A FAR2 FBLX2 FBXL17 FEXW7 FGE19 FGFR10P2P1 FHIT FHL5 FMN2 FM07P FOXG1-AS1 FOXP2 FRMD1 FRMD4A GAPDHP2 GAPDHP5 GAS2 GFRA2 GGA3 GL181L2 GLN13 GRM7 GSTM1 GSTM2 GSTM3 GSTM3 GR14 GR22 GR14 GRM7 GSTM1 GSTM2 GSTM3 GSTM3 GR14 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
EFC.AB6 EFHD2 EGFEN1P EHBP1 EHMT1 EIF4EBP2P3 ELMO1 EMCN ENPP6 ENSG00001 ENSG00002 ENSG00002 ENSG00002 ENSG00002 ENSG000002 ENSG00002 ENSG00002 ENSG00001 ENSG0001 ENSG0001 ENSG00001 ENSG00001 ENSG00001 ENSG00001 ENSG00001 ENSG0001 ENSG0001 ENSG0001 ENSG0001 ENSG0001 ENSG0001 ENSG0001 ENSG0001 ENSG001 ENSG001 ENSG0014 ENSG005 <							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ENICIN	ENPPO					
F13A1 FAAP24 FAM13B FAM66C FAM69C FAM78B FAM90A1 FAM135A FAM160A FAM160B2 FAM174B FAM181A- FAM189A1 FAM214A 2 AS1 FAM189A1 FAM214A AS1 FRA2 FBLN2 FBXL17 FBXW7 FGF19 FGR10P2P1 FHIT FHL5 FMN2 FM07P FOXG1-AS1 FOXP2 FRMD1 FRMD4A FRMD5 FSTL4 FYN GABRB1 GABRB3 GALS GALS GL21 GL21 GNA01 GNPTAB GNRHR GOLPH3L GPC5 GPC5-AS2 GPHN GPR18 GPT183 GRAMD1B GRD2 GR1K2 GR1K4 GRM7 GSTM1 GSTM2 GSTM5 GTE2F2P2 GTPBP3 HDAC4 HDAC9 HERC4 HERPUD2 HHAT HMGB1P1 HMGB3P4 HMGN2P22 HMGN2P35 HNRNPA HORMAD HS3ST4 HSP8 HSPE1P19 IGFBP7 IGSF98 IP54	EPCAM	EPM2A	EPSTI1	ERC2	ERO1A		ESR1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ESR2	ETS2	ETV5	ETV5-AS1	ETV6	EXOC2	F2RL2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F13A1	FAAP24	FAM43B	FAM66C	FAM69C	FAM78B	FAM90A1
FAR2 FBLN2 FBXL17 FBXW7 FGF19 FGFRIOP2P1 FHIT FHL5 FMN2 FMO7P FOXG1-AS1 FOXP2 FRMD1 FRMD1 FRMD1 FRMD1 FRMD1 FRMD1 FRMD1 FRMD1 FRMD5 GALNS GALNS GALNS GALNS GALNT13 GALNS GALNT13 GALNS GALNT13 GALNS GALNT13 GALNS GRS113 GR12 GR14 GR3 GR14 GR3 GR14 GR3 GR14 <td< td=""><td>FAM135A</td><td></td><td>FAM160B2</td><td>FAM174B</td><td></td><td>FAM189A1</td><td>FAM214A</td></td<>	FAM135A		FAM160B2	FAM174B		FAM189A1	FAM214A
FHL5FMN2FM07PFOXG1-AS1FOXP2FRMD1FRMD4AFRMD5FSTL4FYNGABRB1GABRB3GALNSGALNT13GAPDHP2GAPDHP5GAS2GFRA2GGA3GLB12GLB1325GL12GNA01GNPTABGNRHRGOLPH3LGPC5GPC5-AS2GPHNGPR18GPR183GRAMD1BGRID2GRIK2GRIK4GRM7GRM7GSTM1GSTM2GSTM5GTF2P2P2GTPBP2GTPBP3H2AFYH2AFZ93HCG2040054HCN1HCRTR2HDAC4HDAC9HERC4HERPUD2HHATHMB1P1HMGB3P4HMGN2P22HMGN2P35HNRNPAHORMADHS3ST4HSPB8HSPE1P19IGFBP7IGSF9BIP541IL10RAIL17RAIL18R1INPP1IPCEF1IQCA1LIQGAP2ITGA7ITM2AKAZNKCNA5KCND2KCNH1KCN6KCKK12KCNMB2KIAR034KIAA0040AS1KIAA0232KIAA0930KIAA1211KIAA1462KIFAP3KIRRELKLHL23LIFRLIRP1LIM2LINC00526LINC00236LINC00378LINC00434LINC0117LINC01310LINC01314LINC01377LINC01435LINC0148220LING02LL22NC03LLGL2LMCD1LMCD1-AS1LMNTD1LPAL2-80A10.6<	FAR2		FBXL17	FBXW7		FGFR10P2P1	FHIT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
GAPDHP2GASDHP5GAS2GFRA2GGA3GLB1L2GLB1L325GIL2GNA01GNPTABGNRHRGOLPH3LGPC5GFC5-AS2GHNGPR18GPR183GRAMD1BGRID2GRIK2GRIK4GRM7GSTM1GSTM2GSTM5GTF2F2P2GTPBP2GTPBP3H2AFYH2AFZ93HCG2040054HCN1HCRT2HDAC4HDAC9HERC4HERDD2HHATHMGB1P1HMGB3P4HMGN2P21HMGN2P35HNRNPAHORMADHS3ST4HSPB8HSPE1P19IGFBP7IGSF9BIP541IIICA7ITM2AKAZNKCNA5KCND2IQCA1LIQGAP2ITGA7ITM2AKAZNKCNA5KCND2KCNH1KCNJ6KCNK12KCNMB2-KCTD8KIAA0040AS1KIAA0232KIAA0930KIAA1211KIAA146C-LANCL1-AS1LCORLHPP14P306E5.3LINC00276LINC00378LINC00434LINC01435LINC00434LINC0112LINC0151LINC01314LINC01377LINC01435LINC0148220LINC0114LINC01314LINC0177LINC01435LINC01482LPGAT1LPIN1LPIN2LPPLRP1LRP1-ASLRP1BLRRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARC47MBPBPMG67MIR638MIR6481MMIR4448 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
			01102	011012	00115	GEDTEE	GLDTLS
GPHNGPR18GPR183GRAMD1BGRID2GRIK2GRIK4GRM7GSTM1GSTM2GSTM5GTT2F2P2GTPBP2GTPBP3H2AFYH2AFZP3HCG2040054HCN1HCRTR2HDAC4HDAC9HERC4HERPUD2HHATHMGB1P1HMGB2P4HMGN2P22HMGN2P35HNRNPAHORMADHS3ST4HSPB8HSPE1P19IGFBP7IGSF9BIP541IIL1RL1IL10RAIL17RAIL18R1INPP1IPCEF1IQCA1LIQGAP2ITGA7ITM2AKAZNKCNA5KCND2KCNH1KCNJ6KCNK12KCNMB2KCTD8KIAA0040AS1KIAA0930KIAA1211KIAA1462KIFAP3KIRRELKLHL23KREMENKRTAP21-L3MBTL4LA16C-LANCL1-AS1LCORLHPP14P306E5.3LINC00276LINC00378LINC00434LINC0050LINC00520LINC00536LINC00882LINC00233LINC01102411LINC01314LINC01377LINC01435LINC01482201LMCD1-AS1LMNTD1LPAL2-80A10.61LRC1-AS1LMTD1LPAL2LING017LINC1310LINC01314LINC01-AS1LMNTD1LPAL2-80A10.61MAF6MAPKAP1MARCH7MBPBP1MAGC3MALRD1MAPK6MAPKAP1MARCH7MGC2MCG2MCH2MECOMMETAZOA_SMGAT5BMIR4697H		-	GNPTAB	GNRHR	GOLPH3L	GPC5	GPC5-AS2
GRM7GSTM1GSTM2GSTM5GTF2F2P2GTPBP2GTPBP3H2AFYH2AFZP3HCG2040054HCN1HCRTR2HDAC4HDAC9HERC4HERPUD2HHATHMGB1P1HMGB3P4HMGN2P22HMGN2P55HNRNPAHORMADHS3ST4HSPB8HSPE1P19IGFBP7IGSF9BIP541IIGSF11IL1RL1IL10RAIL17RAIL18R1INPP1IPCEF1IQCA1LIQGAP2ITGA7ITM2AKAZNKCNA5KCD2KCNH1KCNJ6KCNK12KCNMB2KCNMB2-KCTD8KIAA0040AS1APP306E5.3KIRAC1-LAS1LCORLHPP14P306E5.3IINC00276LINC00378LINC00434LINC012LINC0151LINC01310LINC01314LINC01377LINC01435LINC01482200IINC01310LINC01314LMCD1-AS1LMNTD1LPAL2LRGAT1LPIN1LPIN2LPPLRP1LRP1-ASLRP18LRRC1LRRQ4LRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMIR607MIR623MIR3681HGMIR4488MIR4453MIR4697HGMIR4754MIR607MRPL2PPMRPL48P1MRPL49P1MRPS21P8MSH2MSRAHGDHGMRPL48P1MRPL49P1MRPS21P8MSH2MSRA							
H2AFYH2AFZP3HCG2040054HCN1HCRTR2HDAC4HDAC9HERC4HERPUD2HHATHMGB1P1HMGB3P4HMGN2P22HMGN2P35HNRNPAHORMADHS3ST4HSPB8HSPE1P19IGFBP7IGSF9BIP541ILIRLIILIRLAILIRAILIRRAILIRRIINPP1IPCEF1IQCA1LIQGAP2ITGA7ITM2AKAZNKCNA5KCND2KCNH1KCNI6KCNK12KCNMB2KCNMB2-KCTD8KIAA0040AS1KIAA0232KIAA0930KIAA1211KIAA1462KIFAP3KIRRELKLHL23KREMENKRTAP21-L3MBTL4LA16C-LANCL1-AS1LCORLHPP14P306E5.3IINC00276LINC00378LINC00434LINC01050LINC0051LINC00530LINC00536LINC00882LINC00923LINC0110241IINC01171LINC01310LINC01314LINC01377LINC01435LINC0148220IINGQ2LL22NC03LLGL2LMCD1LMCD1-AS1LMNTD1LPAL2-80A10.6IING4MAEC1MARCH7MBPMAC12BPMAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR607MIR22PMRPL48P1MRPL49P1MRP21P8MSRAMC2							
HERC4HERPUD2HHATHMGB IP1HMGB3P4HMGN2P22HMGN2P35HNRNPAHORMADHS3ST4HSPB8HSPE1P19IGFBP7IGSF9BIP541IIL10RAIL17RAIL18R1INPP1IPCEF1IQCAILIQGAP2ITGA7ITM2AKAZNKCNA5KCND2KCNH1KCNJ6KCNK12KCNMB2KCNMB2- AS1KCTD8KIAA0040 AS1KIAA0232KIAA0930KIAA1211KIAA1462KIFAP3KIRRELKLHL23KREMENKRTAP21-L3MBTL4LA16C- LANCL1-AS1LANCL1-AS1LCORLHPP14P306E5.3JONES36JINC00378LINC00434LIFRLILRP1LINC00520LINC0036LINC00882LINC00923LINC0110241JINC0117LINC01310LINC01314LINC01377LINC01435LINC0148220JINC012LINC0177LINC01435LINC01482LINC0148220JINC01112LINC0117LINC01310LINC01314LINC01377LINC01435LINC0148220JINC01112LINC01310LINC012LPPLPP1LP1-ASLP1BLRC1LRRQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR607MIR623MIR3681HGMIR4448MIR							
HNRNPA IP54HORMAD IHS3ST4 IHSPB8 HSPE1P19HSPE1P19 IGFBP7IGFBP7 IGSF9BIGSF11ILIRL1IL10RAIL17RAIL18R1INPP1IPCEF1IQCA1LIQGAP2ITGA7ITM2AKAZNKCNA5KCND2KCNH1KCNJ6KCNK12KCNMB2 KCNMB2KCTD8KIAA0040 AS1KIAA0232KIAA0930KIAA1211KIAA1462KIFAP3KIRRELKLHL23KREMENKRTAP21-L3MBTL4LA16C- LA16C-3LANCL1-AS1LCORLHPP14P306E5.3LINC00238LINC00276LINC00378LINC00434LINC0050LINC0051LINC00520LINC00366LINC00882LINC00923LINC0110241LINC0112LINC0117LINC01310LINC01314LINC01377LINC01435LINC0148220LINGO2LL22NC03LLGL2LMCD1LMCD1-AS1LMNTD1LPAL2-80A10.6LINGO1LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR607MIR623MIR681HGMIR4448MIR4453MIR4697HGMIR4754 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
1P541IGSF11IL1RL1IL10RAIL17RAIL18R1INPP1IPCEF1IQCA1LIQGAP2ITGA7ITM2AKAZNKCNA5KCND2KCNH1KCNJ6KCNK12KCNMB2KCNMB2-KCTD8KIAA0040AS1AS1KIAA0232KIAA0930KIAA1211KIAA1462KIFAP3KIRRELKLHL23KREMENKRTAP21-L3MBTL4LA16C-LANCL1-AS1LCORLHPP14P306E5.3							
IGSF11IL1RL1IL10RAIL17RAIL18R1INPP1IPCEF1IQCA1LIQGAP2ITGA7ITM2AKAZNKCNA5KCND2KCNH1KCNJ6KCNK12KCNMB2KCNMB2-KCTD8KIAA0040KIAA0232KIAA0930KIAA1211KIAA1462KIFAP3KIRRELKLHL23KREMENKRTAP21-L3MBTL4LA16C-LANCL1-AS1LCORLHPP14P306E5.3IINC00276LINC00378LINC00434LIFRLILRP1LIM2LINC00536LINC00276LINC00923LINC0110241111111LINC0151LINC01310LINC01314LINC01377LINC01435LINC014822011111LING02LL22NC03LLGL2LMCD1LMCD1-AS1LMNTD1LPAL2-80A10.6-1111LPGAT1LPIN1LPIN2LPPLRP1LRP1-ASLRP1BLRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBP1111111MR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR6689MIRLET7MLECMOB3BMPP4MPPE1MRC2HGDHG111111MRC2PP			116561	1151 20			100170
KCNH1KCNJ6KCNK12KCNMB2KCNMB2- AS1KCTD8KIAA0040KIAA0232KIAA0930KIAA1211KIAA1462KIFAP3KIRRELKLHL23KREMENKRTAP21-L3MBTL4LA16C- 306E5.3LANCL1-AS1LCORLHPP14P306E5.3JJLIFRLILRP1LIM2LINC00238LINC00276LINC00378LINC00434LINC0050LINC0051LINC00520LINC00536LINC00882LINC00923LINC0110241JJJJJJLINC0112LINC0117LINC01310LINC01314LINC01377LINC01435LINC0148220JJJJJJLING02LL22NC03LLGL2LMCD1LMCD1-AS1LMNTD1LPAL2-80A10.6JJJJJJLIRG1LPN1LPIN2LPPLRP1LRP1-ASLRP1BLRRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR668MRPL22PMRPL48P1MRPL49P1MRP21P8MSRAMSRAHGDHGJMTCYBPMTR3MY018BMYRIPNANALCNNALCN-AS1	IGSF11	IL1RL1	IL10RA	IL17RA	IL18R1	INPP1	IPCEF1
KCNH1KCNJ6KCNK12KCNMB2KCNMB2- AS1KCTD8KIAA0040KIAA0232KIAA0930KIAA1211KIAA1462KIFAP3KIRRELKLHL23KREMENKRTAP21-L3MBTL4LA16C- 306E5.3LANCL1-AS1LCORLHPP14P306E5.3LINC00276LINC00378LINC00434LIFRLILRP1LIM2LINC00238LINC00276LINC00378LINC00434LINC0050LINC0051LINC00520LINC00536LINC00882LINC00923LINC0110241LINC0112LINC0117LINC01310LINC01314LINC01377LINC01435LINC01482200LINC011LMCD1-AS1LMNTD1LPAL2-80A10.6LING02LL22NC03LLGL2LPPLPPLRP1LRP1-ASLRP1BLRRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR6689MIRLET7MLECMOB3BMP4MPPE1MRC2HGDHGMROH2BMRPL22PMRPL48P1MRPL49P1MRPS21P8MSH2MSRA11	IQCA1L	IQGAP2	ITGA7	ITM2A	KAZN	KCNA5	KCND2
KIAA0232KIAA0930KIAA1211KIAA1462KIFAP3KIRRELKLHL23KREMENKRTAP21-L3MBTL4LA16C-LANCL1-AS1LCORLHPP14P306E5.3LINC00276LINC00378LINC00434LIFRLILRP1LIM2LINC00536LINC00276LINC00378LINC00434LINC0050LINC0051LINC00520LINC00536LINC00882LINC00923LINC0110241111111LINC0112LINC0117LINC01310LINC01314LINC01377LINC01435LINC0148220111111LINGO2LL22NC03LLGL2LMCD1LMCD1-AS1LMNTD1LPAL2-80A10.6111111LRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBP111111MIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR5689MIRLET7MCMOB3BMPP4MPPE1MRC2MROH2BMRPL22PMRPL48P1MRPL49P1MRPS21P8MSH2MSRA11111111MTCYBPMTMR3MYO18BMYRIPNANALCNNALCN-AS1		KCNJ6	KCNK12	KCNMB2		KCTD8	KIAA0040
KREMENKRTAP21-L3MBTL4LA16C-LANCL1-AS1LCORLHPP14P306E5.3LIFRLILRP1LIM2LINC00238LINC00276LINC00378LINC00434LINC0050LINC0051LINC00520LINC00536LINC00882LINC00923LINC0110241LINC0112LINC0117LINC01310LINC01314LINC01377LINC01435LINC0148220LING02LL22NC03LLGL2LMCD1LMCD1-AS1LMNTD1LPAL2-80A10.6LPGAT1LPIN1LPIN2LPPLRP1LRP1-ASLRP1BLRRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMIR607MIR623MIR3681HGMIR4448MIR453MIR585MIR605MIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR5689MIRLET7MLECMOB3BMPP4MPPE1MRC2HGDHGMROH2BMRPL22PMRPL48P1MRPL49P1MRPS21P8MSH2MSRA1MTCYBPMTMR3MY018BMYRIP<	KIAA0232	KIAA0930	KIAA1211	KIAA1462		KIRREL	KLHL23
LIFRLILRP1LIM2LINC00238LINC00276LINC00378LINC00434LINC0050LINC0051LINC00520LINC00536LINC00882LINC00923LINC0110241111111LINC0112LINC0117LINC01310LINC01314LINC01377LINC01435LINC0148220111111LING02LL22NC03LLGL2LMCD1LMCD1-AS1LMNTD1LPAL2-80A10.61111LPGAT1LPIN1LPIN2LPPLRP1LRP1-ASLRP1BLRRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR607MIR623MIR3681HGMRPL49P1MRP521P8MSH2MSRAHGDHGMROH2BMRPL22PMRPL48P1MRPL49P1MRPS21P8MSH2MSRA1MTCYBPMTMR3MY018BMYRIPNANALCNNALCN-AS1			L3MBTL4		LANCL1-AS1	LCOR	LHPP
LINC0050LINC0051LINC00520LINC00536LINC00882LINC00923LINC011024111<			LIM2		LINC00276	LINC00378	LINC00434
41LINC0112LINC0117LINC01310LINC01314LINC01377LINC01435LINC0148220LINC01310LINC01314LINC01377LINC01435LINC01482LINGO2LL22NC03LLGL2LMCD1LMCD1-AS1LMNTD1LPAL2-80A10.6LPG1-AS1LMNTD1LPAL2LPGAT1LPIN1LPIN2LPPLRP1LRP1-ASLRP1BLRRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBP </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
20LINGO2LL22NC03 -80A10.6LLGL2LMCD1LMCD1-AS1LMNTD1LPAL2PGAT1LPIN1LPIN2LPPLRP1LRP1-ASLRP1BLRRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMCF2MCHR2MECOMMETAZOA_S RPMGAT5BMIR585MIR605MIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR5689MIRLET7MLECMOB3BMPP4MPPE1MRC2HGDHG </td <td>4</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	4	1					
-80A10.6LPGAT1LPIN1LPIN2LPPLRP1LRP1-ASLRP1BLRRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMETAZOA_SMGAT5BMIR585MIR605MCF2MCHR2MECOMMETAZOA_S RPMGAT5BMIR585MIR605MIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR5689MIRLET7MLECMOB3BMPP4MPPE1MRC2HGDHG </td <td></td> <td></td> <td>LINC01310</td> <td>LINC01314</td> <td>LINC01377</td> <td>LINC01435</td> <td>LINC01482</td>			LINC01310	LINC01314	LINC01377	LINC01435	LINC01482
LPGAT1LPIN1LPIN2LPPLRP1LRP1-ASLRP1BLRRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMECOMMETAZOA_S RPMGAT5BMIR585MIR605MIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR5689MIRLET7MLECMOB3BMP4MPPE1MRC2HGDHG </td <td>LINGO2</td> <td></td> <td>LLGL2</td> <td>LMCD1</td> <td>LMCD1-AS1</td> <td>LMNTD1</td> <td>LPAL2</td>	LINGO2		LLGL2	LMCD1	LMCD1-AS1	LMNTD1	LPAL2
LRRC1LRRIQ4LRRTM4LRSAM1LUZP2LY75-CD302LYARMAD2L1MAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPBPMCF2MCHR2MECOMMETAZOA_S RPMGAT5BMIR585MIR605MIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR5689MIRLET7 DHGMLECMOB3BMP4MPPE1MRC2MROH2BMRPL22PMRPL48P1MRPL49P1MRPS21P8MSH2MSRA1MTCYBPMTMR3MY018BMYRIPNANALCNNALCN-AS1	LPGAT1		LPIN2	LPP	LRP1	LRP1-AS	LRP1B
MAD2L1 BPMAGEC3MALRD1MAPK6MAPKAP1MARCH7MBPMCF2MCHR2MECOMMETAZOA_S RPMGAT5BMIR585MIR605MIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR5689MIRLET7 HGMLECMOB3BMP4MPPE1MRC2MROH2BMRPL22PMRPL48P1MRPL49P1MRPS21P8MSH2MSRA11MTCYBPMTMR3MY018BMYRIPNANALCNNALCN-AS1							
MCF2MCHR2MECOMMETAZOA_S RPMGAT5BMIR585MIR605MIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR5689MIRLET7MLECMOB3BMPP4MPPE1MRC2HGDHG </td <td>MAD2L1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MAD2L1						
MIR607MIR623MIR3681HGMIR4448MIR4453MIR4697HGMIR4754MIR5689MIRLET7MLECMOB3BMPP4MPPE1MRC2HGDHG </td <td></td> <td>MCHR2</td> <td>MECOM</td> <td></td> <td>MGAT5B</td> <td>MIR585</td> <td>MIR605</td>		MCHR2	MECOM		MGAT5B	MIR585	MIR605
MIR5689 HGMIRLET7 DHGMLECMOB3BMPP4MPPE1MRC2MROH2B 1MRPL22P 1MRPL48P1MRPL49P1MRPS21P8MSH2MSRAMTCYBPMTMR3MYO18BMYRIPNANALCNNALCN-AS1	MIR607	MIR623	MIR3681HG		MIR4453	MIR4697HG	MIR4754
HGDHGMROH2BMRPL22PMRPL48P1MRPL49P1MRPS21P8MSH2MSRA1111MSRAMSRAMTCYBPMTMR3MYO18BMYRIPNANALCNNALCN-AS1							
MROH2B MRPL22P MRPL48P1 MRPL49P1 MRPS21P8 MSH2 MSRA 1 MTCYBP MTMR3 MYO18B MYRIP NA NALCN NALCN-AS1							
MTCYBP MTMR3 MYO18B MYRIP NA NALCN NALCN-AS1		MRPL22P	MRPL48P1	MRPL49P1	MRPS21P8	MSH2	MSRA
77	MTCYBP 45		MYO18B	MYRIP	NA	NALCN	NALCN-AS1

NANS	NAV2	NEK11	NELL1	NFATC2IP	NFIA	NFIA-AS1
NIPSNAP	NLGN1	NOSTRIN	NOVA1-AS1	NPAS3	NRG2	NRG3
1	T(LOIVI	1000 mail		1111100	11102	11105
NTM	NTRK3	NUDT18	NUF2	NUP85	NXPH1	OCA2
OLFML2	OPRM1	OR2AH1P	OR2D2	OR5AR1	OR10Y1P	OR51R1P
A						
OSBP2	OXCT2	РАН	PALM2	PARK2	PARL	PARVA
PAX5	PAXIP1	PAXIP1-AS2	PBX3	PCAT29	PCDH15	PCLO
PCNP	PCSK5	PCYT1B	PCYT1B-AS1	PDE4B	PDE4D	PDE10A
PDIA5	PDZD7	PEPD	PEX14	PFDN1	PGM1	PHBP4
PHOSPH	PIK3C2G	PIK3C3	PITPNC1	PLA2G4E	PLA2G4E-	PLA2G4F
O2					AS1	
PLA2R1	PLEKHA7	PLGRKT	PNP	POLA1	POLR2A	POTEI
PPARGC1	PPFIA2	PPFIBP1	PRAMEF25	PRB4	PRDM16	PRDX4
Α						
PRELID2	PRICKLE2	PRKACB	PRKG1	PRLR	PROS2P	PRPH
PRTFDC1	PSD3	PSMA2P1	PSME4	PTCHD1-AS	PTPRC	PTPRD
PTPRN2	PVT1	QKI	RABEP2	RACGAP1	RAD1P1	RAD51B
RALYL	RANP2	RAP1GAP2	RAPGEF5	RBFOX1	RERGL	RGS6
RGS7	RHPN2	RIT2	RN7SL66P	RN7SL301P	RN7SL344P	RN7SL394P
RN7SL56	RN7SL756	RNF152	RNF220	RNF225	RNU4-71P	RNU6-230P
1P	Р					
RNU6-	RNU6-	RNU6-331P	RNU6-481P	RNU6-523P	RNU6-638P	RNU6-651P
235P	310P					
RNU6-	RNU6-	RNU6-743P	RNU6-815P	RNU6-918P	RNU6-988P	RNU6-1104P
666P	712P	DODOO	DOD1	DODA	DODA	DD1 41 CO2 1
RNU6- 1250P	RNU7-48P	ROBO2	ROR1	ROR2	RORA	RP1-41C23.1
RP1-	RP1-	RP1-	RP1-164F3.8	RP3-434P1.6	RP3-	RP4-536B24.3
97J1.2	118J21.24	118J21.25	Kr 1-1041 5.8	Kr 5-454r 1.0	468K18.7	Kr 4-330D24.3
RP4-	RP4-	RP4-	RP4-736H5.3	RP4-	RP5-	RP5-
536B24.4	597J3.1	725G10.3	Ri 1 750115.5	785G19.5	837021.2	887A10.1
RP5-	RP5-	RP5-972B16.2	RP5-1069C8.2	RP5-1101C3.1	RP11-1L9.1	RP11-6N13.1
933B4.1	937E21.1					
RP11-	RP11-	RP11-14I17.3	RP11-17P16.1	RP11-17P16.2	RP11-22B23.1	RP11-22B23.2
9L18.2	9L18.3					
RP11-	RP11-	RP11-24P4.1	RP11-30G8.2	RP11-30J20.1	RP11-	RP11-
22H5.2	24J19.1				32D16.1	42H13.1
RP11-	RP11-	RP11-57C13.3	RP11-57C13.6	RP11-	RP11-6101.1	RP11-6101.2
42015.2	50B3.2			57G10.8		
RP11-	RP11-	RP11-75I2.3	RP11-80H8.4	RP11-80I3.1	RP11-93G5.1	RP11-
64B16.5	72M17.1					111D3.2
RP11-	RP11-	RP11-	RP11-	RP11-	RP11-	RP11-
114H23.1	115A15.4	120M18.2	121G22.3	122G18.7	131H24.5	132A1.6
RP11-	RP11-	RP11-	RP11-	RP11-165E7.1	RP11-	RP11-
137P24.5	141M1.3	152L20.3	161H23.9	5544	166N6.2	168022.1
RP11-	RP11-	RP11-217B7.2	RP11-	RP11-	RP11-	RP11-239C9.1
17403.3	180K7.1	DD11	217L21.1	234A1.1	237D3.1	DD11
RP11-	RP11-	RP11-	RP11-	RP11-	RP11-	RP11-
243A14.1	244F12.1	264B17.2	264B17.3	264B17.4	264B17.5	265N7.2
RP11-	RP11-	RP11-	RP11-290L1.7	RP11-	RP11-	RP11-
266K4.1	276E17.2	278H7.1	DD11	306G20.1	307N16.6	314P15.2
RP11- 342M3.5	RP11- 347H15.1	RP11- 354I13.2	RP11- 359E10.1	RP11-364B6.2	RP11- 369E15.2	RP11- 369E15.4
		1 1 4 1 1 7 7	1 1 7 1 5 1 1 1		10715112	11715134

RP11-	RP11-	RP11-	RP11-	RP11-	RP11-	RP11-
385J1.3	386M24.9	396020.2	397C12.1	403P17.2	406O16.1	410D17.2
RP11-	RP11-	RP11-	RP11-	RP11-	RP11-	RP11-
413H22.2	420K14.8	420N3.2	420N3.3	421P23.1	429A20.2	429A20.3
RP11-	RP11-	RP11-	RP11-	RP11-	RP11-	RP11-
429A20.4	436D23.1	436F21.1	443C10.1	443C10.2	443C10.3	444A22.1
RP11-	RP11-	RP11-	RP11-	RP11-	RP11-	RP11-
446J8.1	451013.1	453E17.3	453E17.4	462G2.2	466A19.6	466A19.8
RP11-	RP11-	RP11-	RP11-479J7.1	RP11-486E2.1	RP11-	RP11-
467H10.2	474D1.3	474D1.4	iti ii 17907.1	10111 10012.1	486G15.1	486G15.2
RP11-	RP11-	RP11-	RP11-	RP11-	RP11-	RP11-
503E24.2	513G11.3	525K10.2	525K10.3	535A5.1	535C21.3	539E19.2
RP11-	RP11-	RP11-	RP11-	RP11-	RP11-	RP11-
543A18.1	543H23.2	550A9.1	552D8.1	565A3.2	570L15.2	589M4.2
RP11-	RP11-	RP11-	RP11-624L4.1	RP11-646I6.5	RP11-	RP11-
589M4.3	613M10.9	622A1.1	10110212111	14 11 0 1010.0	650J17.1	665G4.1
RP11-	RP11-	RP11-	RP11-	RP11-	RP11-	RP11-
671P2.1	696F12.1	713P17.3	713P17.5	728G15.1	737024.3	748L13.7
RP11-	RP11-	RP11-	RP11-777F6.3	RP11-	RP11-	RP11-
753E22.2	753E22.3	75706.4		793A3.2	797H7.6	813I20.2
RP11-	RP11-	RP11-817I4.2	RP11-	RP11-	RP11-	RP11-
815J21.1	817I4.1	10 11 01/112	849N15.4	849N15.5	855A2.1	855A2.3
RP11-	RP11-	RP11-871F6.3	RP11-936I5.1	RP11-	RP13-	RPH3A
862P13.1	863N1.4			1398P2.1	497K6.1	
RPL7AP3	RPL7L1P1	RPL7P13	RPL12P8	RPL17P35	RPL23AP29	RPL30P13
1	0					
RPL31P52	RPS3AP38	RPS4XP20	RPS4XP23	RPS5	RPS6KA2	RPS6P23
RPS8P4	RPSAP31	RPTOR	RREB1	RSU1	RUNX1	RYR2
RYR3	S1PR2	SATB1-AS1	SCARB1	SCARNA23	SCFD2	SCHIP1
SCN3B	SCN7A	SCN9A	SDHAF2	SDHC	SDK2	SEC14L5
SEC22A	SEL1L	SEMA5A	SEPT7	SEPT7-AS1	SEPT9	SERTAD4
SFXN3	SGCD	SGCG	SGCZ	SGK223	SGO1-AS1	SHANK2
SHB	SIGLEC5	SIPA1L2	SIPA1L3	SIRPB3P	SIRT1	SIX4
SLC2A13	SLC8A1-	SLC10A2	SLC12A8	SLC13A3	SLC14A2	SLC14A2-
	AS1					AS1
SLC15A1	SLC20A2	SLC22A2	SLC22A3	SLC22A10	SLC22A14	SLC22A23
SLC24A2	SLC25A18	SLC25A37	SLC27A6	SLC29A4	SLC35D2	SLC35F1
SLC44A1	SLC52A3	SLIT1	SLIT3	SMAD4	SMAP1	SMCO4
SMIM19	SMKR1	SNHG18	SNRPD3	SNTG1	SOCS4	SORCS1
SORCS2	SOX9-AS1	SPC25	SPNS1	SPPL3	SPTBN1	SRGAP1
ST3GAL1	ST6GALN	ST13P19	STAC	STAM2	STAP1	STARD13
P1	AC3					
STAT6	STEAP1B	STOML3	STUM	STYX	SVEP1	SWAP70
SYNE2	SYNJ2	SYT9	SYT14	TAS2R1	TBC1D5	TBXAS1
TDRD9	TEAD1	TECPR2	TEKT3	TENM2	TENM4	TIAL1
TIGAR	TM4SF19-	TM4SF19-	TMCO4	TMEM55B	TMEM94	TMEM132B
	AS1	TCTEX1D2				
TMEM132	TMEM135	TMEM185A	TMEM261	TNR	TP53I13	TPM3P3
D						
TRIB3	TRIM14	TRIM21	TRMT10C	TRPC5	TRPS1	TSPAN7
TSPAN8	TTC7B	TTC21B	TTC39B	TWSG1	TXNL1	UBA6
UBA6-	UBAC2	UBAC2-AS1	UBE2CP3	UBXN7	UBXN7-AS1	UCKL1
AS1						

UHRF1BP 1	ULK4	UNC5C	VCAN	VN1R9P	VN1R31P	VN1R32P
VPS54	VWDE	WDHD1	WDR7	WDR25	WDR70	WIPI1
WNK2	Y_RNA	YES1	YRDCP3	ZBED3-AS1	ZC2HC1B	ZCCHC24
ZFP30	ZMAT4	ZMYND12	ZNF100	ZNF124	ZNF229	ZNF423
ZNF500	ZNF525	ZNF540	ZNF571	ZNF571-AS1	ZNF573	ZNF584
ZNF607	ZNF626	ZNF670	ZNF670-	ZNF733P	ZNF781	ZNF793
			ZNF695			
ZNF804A	ZNF837	ZNF841	ZSCAN5A			

III. Query gene list (alphabetical order) of CC analysis for g:GOSt gene set enrichment analysis

ABCC3	ABCD2	ABCG4	ABHD2	AC003092.1	AC004901.1	AC004941.3
AC005034.2	AC005062.2	AC005387.2	AC005775. 2	AC006042.7	AC006372.5	AC006466.5
AC006548.28	AC007128.1	AC007349.7	AC007682.	AC009403.2	AC010136.2	AC011288.2
AC012074.2	AC012354.6	AC012368.1	AC012501. 2	AC013463.2	AC018816.3	AC018890.6
AC020743.2	AC024560.3	AC037459.4	AC069277. 2	AC079610.2	AC092684.1	AC092687.3
AC092798.2	AC096579.1 5	AC096649.3	AC100802. 3	AC104306.4	AC104667.3	AC118754.4
AC132008.1	ACA64	ACEA_U3	ACSL3	ACTBP2	ADAMTS16	ADAMTSL 1
ADCY9	ADGB	ADGRD1	ADGRE5	ADGRL2	AEBP2	AGAP3
AGBL1	AGFG1	AHCYL2	ALDH1A2	ALK	ALPK2	AMPH
ANGPT2	ANKRD7	ANKS1A	ANXA2P3	AP000282.2	AP000462.3	AP000619.6
AP001347.6	AP002856.4	AP1G1	AQP4-AS1	ARF4P3	ARFIP2	ARL8A
ARL15	ARSB	ASB11	ASPN	ASTN2	ATG13	ATP2B2
ATP5B	ATP6V0A4	ATP6V1C2	ATP8A2P3	ATP8B4	ATP10B	B3GLCT
B3GNTL1	BACE1	BACE1-AS	BAZ2A	BBC3	BCL11B	BEND3P2
BIN3	BMP6	BMX	BNIP3P13	BPI	BRCC3	BTBD11
BTC	C1ORF50	C2CD2L	C2ORF88	C3	C4ORF22	C6ORF229
C7ORF72	C8ORF37- AS1	C8ORF58	C9ORF57	C100RF90	C100RF113	C11ORF40
C12ORF40	C16ORF90	C19ORF60	CACNA1C	CACNA1C- IT2	CACNA1G	CACNA1H
CADM1	CARD14	CARMIL1	CBL	CCAR2	CCBE1	CCDC7
CCDC18	CCDC18- AS1	CCDC30	CCDC40	CCDC61	CCDC88C	CCDC105
CCDC146	CCDC153	CCDC171	CCDC190	CCNL1	CCNYL1	CCSER1
CD1D	CD44	CD300LF	CDC5L	CDC20	CDC42SE2	CDCA3
CDH13	CDH18	CDH20	CDHR3	CDK5	CDYL2	CELF2
CENPP	CEP78	CEP128	CEP164P1	CEP250	CERK	CERS4
CETP	CFAP47	CH17-262A2.1	CHCHD3	CHD6	CHD7	CHN2
CLEC4C	CLNK	CLRN3	CMB9- 94B1.2	CMC4	CMIP	CNTLN
CNTN4	CNTN5	COBL	COL4A4	CORO2B	CPA6	CPLX2
CPXM2	CRLF1	CSGALNACT1	CSMD1	CSMD3	CSRNP3	CTA- 221G9.12
CTA-392E5.1	CTB- 22K21.2	CTB-52I2.4	CTB- 118P15.2	CTB- 158E9.1	CTBP2P8	CTC- 360J11.5
CTC- 360J11.6	CTC- 394G3.2	CTC-432M15.3	CTC- 459M5.2	CTC- 471J1.8	CTC-512J12.4	CTC- 512J12.6
	CTD-	CTD-2010I16.1	CTD-	CTD-	CTD-	CTD-

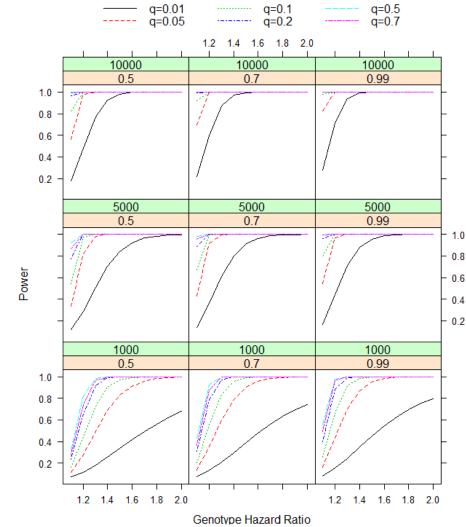
Table.8 Query gene list for CC analysis

CTD-	CTD-	CTD-2525I3.2	CTD-	CTD-	CTD-	CTD
2308N23.2	2354A18.1	CTD-252515.2	2534I21.8	2619J13.3	2619J13.13	CTD- 3006G17.2
CTD-	CTD-	CTD-	CTNND2	CTSB	CXCL13	CYB5AP4
3020H12.3	3020H12.4	3128G10.7	CINND2	CISD	CACLIS	CTDJAF4
CYP7B1	DAB1	DACH1	DCC	DCUN1D5	DDX11	DDX19A
DDX39A	DADI DENND1A	DESI1	DIO2-AS1	DLEU1	DLGAP1	DDA19A
DDX39A DMXL2	DNAH5	DNAJC3	DIO2-ASI DOCK1	DDEUT DOCK8	DOK7	DPH6
DPH6-AS1	DPP6	DPYD	DOCKI DR1	DRC1	DSCAM	DTNB
DUXA	DYNC2H1	ECM2	EEF2KMT	EEFSEC	EFR3A	EIF2D
EIF4A3	ELF2	ELL2P1	ELMOD1	ELOVL1	EMID1	EMP1
ENOX1	ENPEP	ELE2P1 ENPP7P14	EPB41L4A	ERC1	ERC2	ERG
ERMAP	ESR1	ESRRG	ET D41L4A EXT1	EKC1 EZH2	F8	F11-AS1
FA2H	FADS2	FAM19A5	FAM81B	FAM129A	FAM169B	FAM189A1
FANCC	FANCD2P2	FAP	FARP1	FARS2	FASTK	FAT1
FBN1	FBXO21	FCRL2	FDPSP3	FGD2	FGD6	FGFBP1
FGFR1	FGGY	FURL2 FHIT	FILIP1	FKBP8	FNIP1	FPR1
FREM3	FRMD1 FXVD6	FRMPD4	FSTL4	FSTL5	FTH1P24	FTLP12
FUNDC2	FXYD6	FXYD6- FXYD2	GAA	GAB4	GALNT9	GAS7
GBP1P1	GCH1	GFRA1	GJA8	GLDC	GLDN	GLYR1
GMNN	GNB3	GNG12-AS1	GNGT1	GLDC GNL2P1	GLDN GNL3L	GPATCH8
GPCPD1	GRAMD1C	GRHL2	GRIK2	GRIP1	GRM7	GRM7-AS3
GSN	GUSBP5	HACD2	HDAC4	HDAC9	HECA	HHIPL1
HINFP	HIST1H4E	HKDC1	HMCN2	HMGA2	HMGB1	HMGN1P11
HNRNPA1P6	HRCT1	HSBP1L1	HTR1DP1	HTRA1	HYI	HYI-AS1
0	IIII	IISDI ILI	IIIKIDI I	IIIKAI	1111	IIII-ASI
IARS	IFT57	IGFBP7-AS1	IGKC	IGSF9B	IL1RAPL2	IMMP2L
INSR	INTS10	IPPK	IQCJ	IQCJ-	ITGA8	ITPR1
				SCHIP1		
ITPR1-AS1	ITPR3	ITSN2	JARID2	KALRN	KANK1	KATNBL1P
						6
KB-	KCNA1	KCND3	KCNH5	KCNIP4	KCNJ3	KCNK6
1562D12.1						
KCNMA1	KCNMA1-	KCNMB2	KCNMB2-	KCNQ5	KIAA0232	KIAA1143
	AS1		AS1			
KIAA1211L	KIAA1217	KIAA1328	KIAA1549	KIAA1671	KIAA1755	KIF18B
KIF21A	KLHL1	KLRC2	KLRC3	KRT8P45	KRT18P34	KSR2
LA16C-	LA16C-	LAMA5	LAMC3	LDB2	LDLRAD3	LDLRAD4
306E5.1	306E5.3					
LGALS9DP	LHFPL3	LINC00113	LINC00374	LINC00442	LINC00504	LINC00547
LINC00578	LINC00582	LINC00643	LINC00644	LINC00824	LINC00870	LINC00877
LINC01016	LINC01035	LINC01036	LINC01056	LINC01073	LINC01250	LINC01266
LINC01299	LINC01317	LINC01322	LINC01331	LINC01435	LINC01501	LINC01592
LINC01627	LINC01629	LINC01706	LINC01722	LINC01749	LINC01807	LINC01828
LINC01850	LINC01926	LINC01929	LINC01933	LINC01992	LINC02008	LINC02017
LINC02055	LINC02071	LINC02174	LINC02196	LMCD1- AS1	LMNTD1	LNP1
LPP	LRP1B	LRRC8B	LRRC31	LRRIQ4	LUZP2	LYSMD4
LYST	MAD1L1	MAGI2	MAP1B	MAP3K4	MAPKAP1	MARC2
MARCH1	MBOAT1	MBP	MBTPS1	MCAM	MCC	MCF2L
MCPH1	MED8	METAZOA_SR	METTL15	MFSD9	MGAT4C	MGC16275
		Р _				
MICU3	MIGA1	MIR181A1HG	MIR769	MIR3651	MIR3941	MIR4308
MIR4475	MIR4479	MIR4525	MIR4662B	MIR4670	MIR4697HG	MIR4754

MIR5190	MIR6734	MIR6756	MIR7114	MIR8062	MITF	MKRN7P
MLC1	MMP1	MMP20	MOB3B	MORF4L1	MPL	MRPL45
MRPS22	MS4A4A	MSI2	MSLN	MTAP	MTCP1	MTCYBP28
MTF2	MTG2	MTHFD2P7	MUC4	MVB12B	MYH14	MYLK
MYLKP1	MYOM2	MYRIP	NALCN-	NDUFA3P2	NDUFA5	NDUFS4
	1110112		AS1	100111312		TID OI 54
NEBL	NEDD4L	NGLY1	NINJ2	NIPAL1	NIPAL3	NIPBL
NIT2	NKAIN2	NLGN4X	NLRX1	NME1	NME1-NME2	NMNAT1
NNT	NOL8	NOS1	NOS2	NOX4	NPM1P30	NR2C1
NREP	NRG3	NRXN3	NSMF	NSRP1P1	NXPH1	OGN
OMD	OPHN1	OR7A3P	OR7E66P	OR7E129P	OR11K1P	OSGEP
OTOF	P3H1	P3H3	PABPC1P1 0	PALM2	PAPPA2	PCDH9
PCDH11X	PCDHA1	PCDHA4	PCDHA8	PCED1B	PCED1B-AS1	PCLO
PDE1C	PDE7B	PDE8B	PDLIM2	PDZD3	PELI1	PEMT
PGLYRP1	PHACTR3	PHF2P2	PIF1	PIGA	PIP5K1B	PIR
PKD1L2	PKHD1	PKIB	PKN2	PKN2-AS1	PLCB1	PLCB1-IT1
PLCH1	PLEKHA1	PLEKHA8	PLEKHG6	PLS3-AS1	PLXNC1	PM20D1
PNLIPP1	PNMAL1	POC1B	POLA1	POLR2H	POLR2M	POU5F1P6
PPP6R3	PQLC1	PQLC2L	PRDM11	PRDM16	PREX1	PRKCA
PRKG1	PRKG1-AS1	PROX1	PRPF39	PRR20A	PRR20C	PRR27
PRSS46	PRSS50	PRUNE2	PSAT1	PSD3	PSMB6	PTAR1
PTCHD1-AS	PTGES3P5	PTPRB	PTPRD	PTPRE	PTPRN2	PTPRT
PTTG1IP	PVT1	RAB9A	RAB14	RAB17	RAB37	RAB40B
RAD51B	RAD52	RAPGEF6	RASGEF1	RASGEF1C	RASGRF2	RASSF5
KADJID	KADJ2	KAI OLI 0	В		KASOKI 2	
RBFOX1	RBFOX3	RBM33	RBM41	RBM47	RBMS3	RELN
RERE	RFPL4AP6	RFWD2	RGS7	RHBDL2	RIMS3	RN7SKP165
RN7SKP228	RN7SKP269	RN7SL391P	RN7SL714 P	RNA5SP14 6	RNA5SP309	RNF6
RNF38	RNF138P2	RNF165	RNF214	RNF217	RNF225	RNLS
RNU4-56P	RNU4-86P	RNU5A-2P	RNU6-7	RNU6-8	RNU6-75P	RNU6-125P
RNU6-192P	RNU6-262P	RNU6-300P	RNU6- 347P	RNU6- 1090P	RNU7-6P	ROBO1
ROBO2	ROGDI	RP1-34B20.4	RP1-	RP1-	RP1-	RP1-91J24.3
			35C21.2	68D18.4	90G24.10	
RP1-92014.3	RP1-	RP1-228P16.3	RP1-	RP1-	RP1-	RP1-
	92014.6		228P16.4	251M9.3	292B18.4	297M16.2
RP3-	RP3-	RP3-399J4.2	RP3-	RP3-	RP3-468B3.2	RP4-
331H24.5	369A17.6		422G23.3	428L16.2		569D19.5
RP4-	RP4-	RP4-663N10.2	RP4-	RP4-	RP4-713B5.2	RP4-
612C19.1	612C19.2		669H2.1	678D15.1		717I23.2
RP5-	RP5-	RP5-994D16.12	RP5-	RP5-	RP11-6O2.2	RP11-8L2.1
864K19.4	994D16.9		1054A22.4	1106E3.1		
RP11-8L8.2	RP11-	RP11-19J3.5	RP11-	RP11-	RP11-25L3.3	RP11-
	10K17.6		21L1.1	25L3.1		28A22.2
RP11-32K4.1	RP11-	RP11-53B2.1	RP11-	RP11-	RP11-62C3.8	RP11-
	33I11.2		61G19.1	62C3.6	DD11 BCE15	62C3.10
DD11	DD11		RP11-	RP11-	RP11-76E12.1	RP11-
RP11-63E5.6	RP11-64I5.1	RP11-70F11.8				70 4 10 2
			74K11.2	75C9.2		78A18.2
RP11-	RP11-	RP11-70F11.8 RP11-84A14.4	74K11.2 RP11-	75C9.2 RP11-	RP11-97E7.1	RP11-
RP11- 81A22.5	RP11- 83M16.6	RP11-84A14.4	74K11.2 RP11- 87F15.2	75C9.2 RP11- 93K22.6	RP11-97E7.1	RP11- 98E6.1
RP11-	RP11-		74K11.2 RP11-	75C9.2 RP11-		RP11-

RP11-	RP11-	RP11-154D17.1	RP11-	RP11-	RP11-	RP11-
150C16.1	154D6.1	Kr11-1J4D17.1	158D2.2	161D15.1	161D15.2	171I2.1
RP11-	RP11-	RP11-175E9.1	RP11-	RP11-	RP11-	RP11-
172F10.1	173A6.3	KF11-1/JE9.1	175E9.2	192P3.4		196H14.4
		RP11-203M5.7			196H14.3 RP11-212E8.1	
RP11- 202H2.1	RP11-	KP11-203WI5.7	RP11- 204C23.1	RP11- 208K4.1	KP11-212E8.1	RP11- 213G6.2
	203M5.6	RP11-231C18.3			DD11	
RP11-	RP11-	KP11-251C18.5	RP11-	RP11-	RP11- 242C24.2	RP11-
215A19.2	215D10.1	DD11 252C24 2	235P11.1	239H6.2		242C24.3
RP11-	RP11-	RP11-252C24.3	RP11-	RP11-	RP11-	RP11-
242P2.1	243M5.5	DD11 00001 0	255E6.6	259A24.1	263G22.1	264M12.4
RP11-	RP11-	RP11-280O1.2	RP11-	RP11-	RP11-	RP11-
26608.1	277P12.6	DD11.005D14.1	281H11.1	283G6.5	283G6.6	285G1.15
RP11-	RP11-	RP11-305P14.1	RP11-	RP11-	RP11-	RP11-
305B6.1	305B6.3		315L6.1	317M11.1	326A19.3	331H2.4
RP11-	RP11-	RP11-334C17.6	RP11-	RP11-	RP11-	RP11-
334C17.3	334C17.5		342M1.3	342M21.2	355122.2	359B12.2
RP11-	RP11-	RP11-375N15.1	RP11-	RP11-	RP11-385J1.3	RP11-
363G15.2	366L20.3		382E9.1	384F7.1		391L3.4
RP11-	RP11-	RP11-404O13.4	RP11-	RP11-	RP11-	RP11-
391L3.5	391M7.3		405M12.2	410D17.2	429A20.3	430H10.2
RP11-	RP11-	RP11-433A10.3	RP11-	RP11-	RP11-	RP11-
430H10.4	431D12.1		434D9.2	435F13.2	436D23.1	436F21.1
RP11-	RP11-	RP11-485F13.1	RP11-	RP11-	RP11-	RP11-
442J17.3	44503.2		492I21.1	497K15.1	505D17.1	507B12.2
RP11-	RP11-	RP11-525K10.3	RP11-	RP11-	RP11-	RP11-
510J16.5	513H8.1		526F3.1	529K1.3	531H8.1	531H8.2
RP11-	RP11-	RP11-550I24.2	RP11-	RP11-	RP11-	RP11-
538C21.2	548M13.1		550I24.3	555M1.3	558A11.2	563P16.1
RP11-	RP11-	RP11-593P24.4	RP11-	RP11-	RP11-	RP11-
570K4.1	586K2.1		597G23.1	638L3.1	654A16.3	655H13.2
RP11-	RP11-	RP11-669N7.2	RP11-	RP11-	RP11-	RP11-
65709.1	669I1.1		672L10.5	673E1.4	67704.5	689P11.2
RP11-	RP11-	RP11-691H4.4	RP11-	RP11-	RP11-	RP11-
689P11.3	690J15.1		707P17.1	736K12.1	764D10.2	767N15.1
RP11-	RP11-	RP11-817J15.3	RP11-	RP11-	RP11-	RP11-
779P15.2	817J15.2		849N15.4	901H12.1	1016B18.1	1082L8.3
RP11-	RP11-	RP11-	RP11-	RP13-	RP13-	RPIAP1
1094M14.5	1094M14.8	1105014.1	1365D11.1	143G15.4	580F15.2	
RPL7AP8	RPL21P39	RPL26P9	RPL31P13	RPL36AP10	RPL38	RPN1
RPRM	RPS5	RPS26P54	RPUSD4	RSU1	RTN4	RTN4R
RUNX1	RXFP2	SAE1	SAGE4P	SATB1-AS1	SCARNA11	SCFD2
SCG5	SCHLAP1	SCML2	SCNN1A	SDC3	SDK1	SEC14L5
SEH1L	SEMA4D	SERINC2	SETD7	SETDB1	SGCD	SGCZ
SGO1-AS1	SHANK2	SHISA9	SIX4	SLAIN2	SLC1A2	SLC1A6
SLC2A14	SLC4A2	SLC5A4	SLC6A5	SLC6A15	SLC22A2	SLC22A10
SLC24A2	SLC4A2 SLC24A3	SLC27A6	SLC0A5 SLC28A3	SLC35G4	SLC38A11	SLC22A10 SLC44A3
SLC24A2 SLC44A3-	SLC24A5 SLFN12L	SLC27A0	SIC28A5 SMAD3	SNORA31	SNORA64	SNORA67
AS1	JLINI2L	SLITJ	SUADS	DIJUKAJI	51101/04	STORAU/
SNORA84	SNX2P2	SNX29	SORBS2	SORCS1	SORCS2	SPAAR
SPAG16	SPATA4	SPATC1L	SPCS3	SPHKAP SSU72D8	SPNS3	SPOCK1
SPOCK3	SRGAP1	SSPN	SSTR1	SSU72P8	ST6GALNAC	STAC
			CTTV 20	(TON)	5	
	$CT \Lambda T 4$					
STARD4- AS1	STAT4	STK35	STK39	STON2	STXBP4	SULT1C2

SUMF1	SUPT6H	SVBP	SVILP1	SYN3	SYNPO2	SYT6
SYT9	SZT2	TAF9BP1	TBC1D19	TBC1D24	TBCA	TCEANC
TCP11	TEC	TEKT5	TENM2	TENM3	TESC-AS1	TESPA1
TEX13A	TFEC	THPO	THSD7A	THSD7B	TIAM1	TIE1
TIMM10B	TM4SF5	TMED5	TMEM59L	TMEM132B	TMEM132D	TMEM132E
TMEM150C	TMEM229B	TMEM268	TMEM269	TMTC2	TNFRSF1A	TNFRSF8
TNFRSF10D	TNFSF9	TNKS	TNPO3	TNS1	TOB2	TOM1L1
TOMM70	TOPORSLP 1	TPGS1	TPGS2	TPP2	TPTE2	TRAF2
TRAPPC9	TRHDE	TRIB3	TRIM9	TRIM66	TRIP4	TRMT44
TRPC4	TRPC6	TRPM2	TRPV4	TSHZ2	TSHZ3	TSNAX-
						DISC1
TSPAN11	TSPAN13	TTN	TTN-AS1	TTYH2	TUSC3	TXNL4A
U3	U8	UBE2E2	UBR1	UHRF1BP1	UMAD1	UPP1
				L		
UQCC1	USH1C	USP5	USP43	UTP18	UTRN	VAT1L
VCAM1	VEGFD	VEPH1	VRK2	VWA8	VWC2	WASF1P1
WBSCR17	WDFY4	WDR7	WDR33	WFDC1	WLS	WTAPP1
WWOX	XRCC6	Y_RNA	YAP1	YBX1P10	ZBTB7C	ZBTB20
ZBTB20-AS1	ZC3H4	ZCWPW2	ZDHHC23	ZEB1-AS1	ZFPM2	ZMIZ1-AS1
ZNF3	ZNF285	ZNF365	ZNF385D	ZNF501	ZNF534	ZNF595
ZNF609	ZNF718	ZNF804A	ZNF836	ZNF837	ZPBP	


IV. Permutation results

SNP	CHR	p-value (Cox)	Minor allele frequency (MAF) / count	Permutated p -value					
rs192512830	Х	7.89x10 ⁻¹⁰	10 ⁻³ /11	2.38x10 ⁻⁵					
rs117319230	4	1.34x10 ⁻⁹	5.71x10 ⁻⁴ /6	1.56x10 ⁻⁵					
rs148193623	2	4.48x10 ⁻⁸	10 ⁻³ / 11	1.34x10 ⁻⁵					
rs6915535	6	2.77 x10 ⁻⁸	7.52x10 ⁻⁴ /8	4.69x10 ⁻⁶					
SNP: Single Nuc	SNP: Single Nucleotide Polymorphism MAF: Minor Allele Frequency, CHR: Chromosome								

Table.9 Permutation results of 4 most significant SNPs with very low MAF (<0.01)

V. Power analysis of GWSA

The assumptions for the power analysis were the additive genetic model, proportional hazards ratio, biallelic variant in Hardy-Weinberg equilibrium. Power was estimated (**Fig. 25**) using survSNP R library: Power Calculations for SNP Studies with Censored Outcomes (Owzar, Li, Cox, & Jung, 2012). The FS analysis had around 10,000 sample with 5,000 cases (0.5, the rate of event observation to all observations) and CC had approximately 5,000 all cases (event rate is ~ 0.99).

Figure.24 Power analysis. The green strip denotes sample size (1,000, 5,000 and 10,000) and the brown one event rate (0.5, 0.7 and 0.99), q denotes the allele frequency

So, the top left corner and the middle row of third column of the **Fig.25** represent the FS and CC analysis respectively. The power analysis suggests that these two analyses are well-powered (> 0.8) in variants with Genotype hazard ratio > 1.4 and MAF > 0.01. For variants with small hazard ratio, the power of two analyses is steeply reduced below 80% for rarer variants.

VI. Remaining Gene Enrichment (g:GOSt) Results

The first group of figures are the graphical outputs of gene list queries of the FS analysis. All the gene list queries per term are the same within each two Cox PH Analyses. This means each analysis has its own gene list query. These two gene lists can be found in Appendices section at the end of the thesis.

source	term name Gene Ontology (Biological process)	term ID	n. of term genes	n. of query genes	n. of commo genes	corrected n p-value	SLCGA15 PLVACC1 RNU6-382P CBL 215D10.1 SHANK2 CDC153 PDZD35 DH01 CCDC153 PDZD35 DH01 CCDC153 PDZ035 DH01 CCDC163 CCDC163 CCDC163 RTM4 ACG18616.3 ATG13 CCDC163 RTM4 ACG18616.3 ATG13 CCDC163 CCDC163 CCDC205 SIX4 SIX4 SIX4 SIX4 SIX4 SIX4 SIX4 SIX4
BP	regulation of calcium-mediated signaling	GO:0050848	78	37	4	4.42e-02	
BP 🔁 BP	cell-cell adhesion via plasma-membrane adhesion molecules homophilic cell adhesion via plasma membrane adhesion molecules	GO:0098742 GO:0007156	229 156	445 509	17 16	3.64e-04 5.67e-05	
1 1 1 1 1 1 1 1	cellular component morphogenesis cell morphogenesis cell projection organization plasma membrane bounded cell projection organization cell development regulation of cell development regulation of cell orgevelopment regulation of cell projection organization regulation of plasma membrane bounded cell projection organization regulation of plasma membrane bounded cell projection organization neuroopenesis regulation of neurogenesis regulation of neurogenesis neuron development dendrite development dendrite development regulation of cell morphogenesis involved in differentiation regulation of neuron grojection development regulation of neuron grojection development	GC:0032989 GC:000902 GC:0120036 GC:0120036 GC:0120036 GC:0044468 GC:0000904 GC:0003144 GC:0120035 GC:0031476 GC:012035 GC:002008 GC:0050767 GC:004666 GC:001175 GC:0010759 GC:0010759	1012 920 1348 1323 1907 789 658 2216 551 542 1470 682 994 872 203 255 557 409	978 978 1112 1039 978 1112 1039 978 1112 1130 1130 1112 1039 1039 1039 1039 1039 1039 1039	59 54 87 86 97 52 44 118 44 44 83 45 59 55 25 22 40 37	8.95e-03 2.14e-02 5.19e-05 2.45e-02 6.04e-03 6.68e-03 3.25e-03 3.142e-03 3.17e-02 3.32e-02 3.32e-02 3.16e-02 7.08e-05 4.03e-02 1.51e-02 9.62e-04	
BP 🖼 BP	regulation of dendrite development biological adhesion cell adhesion	GO:0050773 GO:0022610 GO:0007155	128 1335 1327	1130 457 457	17 45 45	1.71e-02 1.66e-03 1.40e-03	
BP 🖼 BP	synaptic signaling trans-synaptic signaling	GO:0099536 GO:0099537	596 596	1078 1078	42 42	3.43e-02 3.43e-02	
BP BP BP BP BP BP BP	locomotion localization localization of cell regulation of localization movement of cell or subcellular component cell motility	GO:0040011 GO:0051179 GO:0051674 GO:0032879 GO:0006928 GO:0048870	1639 6175 1407 2456 1876 1407	1136 1136 1136 1132 1136 1136	94 274 82 131 108 82	8.68e-03 7.67e-03 2.49e-02 2.60e-03 9.81e-04 2.49e-02	

Figure.25 g:GOSt results for Biological Process GO terms in CC analysis.

The *Biological Process* GO term was the only option selected as the gene set enrichment term on the options panel. The far-left of the same figure has the first column as the GO category. The second column designates the term names, which are in hierarchical order. The far right-hand side is the color-coded matrix of gene annotations with column heads as gene names. (**Fig.22** explains each annotation).

The *Biological Process* GO category had enriched GO terms in the query gene list of CC analysis (**Fig.24**). Plasma membrane bounded cell projection organization (GO:0120036, $q = 4.59 \times 10^{-5}$), dendrite development (GO:0016358, $q = 7.08 \times 10^{-5}$), and homophilic cell adhesion via

plasma membrane adhesion molecules (GO:0007156, $q = 5.67 \times 10^{-5}$) were the top three significant GO terms found as enriched in the CC query gene list.

source	term name Gene Ontology (Cellular component)	term ID	n. of term genes	n. of query genes	n. of common genes	corrected p-value	RP11-822A1.1 RP11-822A1.1 MBP MBP SIRT1 HERC4 FBXL17 FBXL1
CC ℡	synapse	GO:0045202	809	944	50	1.63e-03	
CC	synapse part	GO:0044456	674	944	42	1.30e-02	
CC	postsynapse	GO:0098794	409	273	16	1.97e-03	
CC	synaptic membrane	GO:0097060	289	944	24	2.21e-02	
CC	postsynaptic membrane	GO:0045211	219	388	14	1.68e-03	
CC ℡	euchromatin	GO:0000791	34	27	3	4.90e-03	? ? <td?< td=""> ? ?</td?<>
CC	nuclear euchromatin	GO:0005719	26	27	3	2.13e-03	
CC ⊑	neuron part	GO:0097458	1322	944	71	1.10e-03	
CC	cell projection	GO:0042995	1849	941	88	5.87e-03	
CC	plasma membrane bounded cell projection	GO:0120025	1789	956	88	2.74e-03	
CC	neuron projection	GO:0043005	1083	941	60	3.83e-03	
CC	dendrite	GO:0030425	474	311	18	5.03e-03	
CC CC CC CC CC CC CC CC CC CC CC CC CC	membrane transporter complex membrane part intrinsic component of membrane integral component of membrane transmembrane transporter complex ion channel complex cation channel complex cell periphery plasma membrane plasma membrane part integral component of plasma membrane	GO:0016020 GO:1990351 GO:0044425 GO:0031224 GO:0016021 GO:002495 GO:0034702 GO:0034703 GO:0071944 GO:0005886 GO:0005887	9362 326 6876 5775 5654 319 282 204 5283 5182 2584 1536	797 767 986 563 563 767 767 743 795 795 795 793 777	277 23 261 137 136 22 22 17 180 176 105 65	7.27e-04 1.80e-02 2.42e-03 4.14e-02 2.09e-02 4.30e-02 5.67e-03 2.72e-02 6.55e-05 1.43e-04 6.59e-05 1.55e-02	

Figure 26 g:GOSt results for Cellular component in FS analysis.

In **Fig.26**, cell periphery GO term (GO:71944) is indicated as the most significant ($q = 6.55 \times 10^{-5}$) term among *Cellular component* GO category. The FS analysis GO term query has top significant loci mostly computationally (*in silico*) annotated genes. It also shows that there are significant gene enrichments in synapse (GO:0045202, $q = 1.63 \times 10^{-3}$) and neuron part (GO:0097458, $q = 1.13 \times 10^{-4}$)

The most significant ($q = 5.01 \times 10^{-4}$) GO term is substrate specific transporter activity (GO:00022892) among other terms in the *Molecular Function* GO category as shown in **Fig.27**. As a subgroup of this category, ion transmembrane activity (GO:0015075) has a moderate gene set enrichment ($q = 2.54 \times 10^{-2}$).

source	term name Gene Ontology (Molecular function)	term ID	n. of term genes	n. of query genes	n. of commo genes	corrected ⁿ p-value	CCL17 RNU4-71P RNU6-523P ERVMER61-1 MAGEC3 LHPP
MF	metal ion transmembrane transporter activity	GO:0046873	440	508	22	1.16e-02	2222
MF 🔁	transporter activity	GO:0005215	1333	526	47	2.52e-03	2 2 2 2
MF	substrate-specific transporter activity	GO:0022892	1139	526	44	5.01e-04	-2222
MF	transmembrane transporter activity	GO:0022857	1037	526	40	2.22e-03	? ? ? ?
MF	passive transmembrane transporter activity	GO:0022803	469	777	28	4.76e-02	? ? ? ?
MF	channel activity	GO:0015267	468	777	28	4.57e-02	? ? ? ?
MF	gated channel activity	GO:0022836	331	371	15	2.78e-02	? ? ? ?
MF	substrate-specific transmembrane transporter activity	GO:0022891	948	526	39	6.07e-04	? ? ? ?
MF	substrate-specific channel activity	GO:0022838	439	777	28	1.35e-02	? ? ? ?
MF	ion transmembrane transporter activity	GO:0015075	878	520	35	4.56e-03	? ? ? ?
MF	cation transmembrane transporter activity	GO:0008324	667	777	36	2.31e-02	2 2 2 2
MF	ion channel activity	GO:0005216	428	777	27	2.54e-02	2 2 2 2
MF	cation channel activity	GO:0005261	316	777	22	4.43e-02	2 2 2 2

Figure 27 g:GOSt results for Molecular Function GO term in FS analysis.

source	term name Biological pathways (KEGG)	term ID	n. of term genes	n. of query genes	n. of common genes	corrected p-value	CCL17 RNU4-71P RNU6-523P ERVMER61-1 MAGEC3 LHPP
keg	Glycerophospholipid metabolism	KEGG:00564	95	101	4	4.83e-02	? ? ? ?
keg	Arrhythmogenic right ventricular cardiomyopathy (ARVC)	KEGG:05412	72	457	7	3.29e-02	????
keg	Dilated cardiomyopathy	KEGG:05414	89	251	6	5.00e-02	????
keg	Choline metabolism in cancer	KEGG:05231	101	664	10	2.36e-02	????

Figure 28 g:GOSt results for KEGG pathways in FS analysis.

The most significant pathway for FS analysis in KEGG pathway database is Choline

metabolism in cancer (KEGG:05231, $q = 2.36 \times 10^{-2}$) as shown in **Fig.28**.

source	term name Biological pathways (Reactome)	term ID	n. of term genes	n. of query genes	n. of common genes	corrected p-value	CCL17 RNU4-71P RNU6-523P ERVMER61-1 MAGEC3 LHPP
rea	Netrin mediated repulsion signals	REAC:418886	10	250	3	5.00e-02	? ? ? ?
rea	Axon guidance	REAC:422475	556	513	23	3.55e-02	? ? ? ?
rea	Neuronal System	REAC:112316	359	886	26	4.76e-03	????

Figure.29 g:GOSt results for Reactome pathway in FS analysis.

Neuronal system (REAC:112316, $q = 4.76 \times 10^{-3}$) was the most significantly enriched Reactome gene set in the query gene list of the FS analysis as shown in **Fig.29**.

term name Gene Ontology (Cellular component)	term ID	n. of term genes	n. of query genes	n. of commor genes	corrected ¹ p-value	C70RF72 CMIP TIAM1 FANCD2P2 VWC2 ZPBP
synapse neuron to neuron synapse asymmetric synapse synapse part postsynaptic specialization postsynaptic density	GO:0045202 GO:0098984 GO:0032279 GO:0044456 GO:0098794 GO:0099572 GO:0014069	809 201 199 674 409 197 195	1049 93 1109 1049 46 93 93	60 7 21 50 8 7 7	1.33e-05 4.25e-02 3.68e-02 3.23e-04 5.91e-03 3.72e-02 3.48e-02	
membrane cell periphery plasma membrane plasma membrane part	GO:0016020 GO:0071944 GO:0005886 GO:0044459	9362 5283 5182 2584	1070 1136 1136 37	364 244 238 15	3.36e-02 1.83e-03 4.68e-03 8.82e-03	
neuron part cell projection plasma membrane bounded cell projection neuron projection	GO:0097458 GO:0042995 GO:0120025 GO:0043005	1322 1849 1789 1083	1130 1111 1111 1130	91 110 106 71	2.02e-06 3.60e-05 9.04e-05 1.55e-03	
	Gene Ontology (Cellular component) synapse neuron to neuron synapse asymmetric synapse synapse part postsynapse postsynaptic specialization postsynaptic density membrane cell periphery plasma membrane part neuron part cell projection plasma membrane bounded cell projection neuron projection	Gene Ontology (Cellular component) synapse GC:0045202 neuron to neuron synapse GC:0098984 asymmetric synapse GC:0032279 synapse part GC:004456 postsynapse GC:0098794 postsynaptic specialization GC:009872 postsynaptic density GC:0014069 membrane GC:0014069 cell periphery GC:0071944 plasma membrane part GC:0044459 neuron part GC:004205 cell projection GC:0044459 neuron part GC:0044459 cell projection GC:0044459 neuron part GC:0042995 cell projection GC:0042995 plasma membrane bounded cell projection GC:0120025 neuron projection GC:0142055	Gene Ontology (Cellular component)term genessynapseGC:0045202809neuron to neuron synapseGC:0098984201asymmetric synapseGC:0098984201synapse partGC:0098794409postsynapsic specializationGC:0098794409postsynaptic specializationGC:0098794409postsynaptic densityGC:0014069195membraneGC:0014069195plasma membrane partGC:00058865182plasma membrane partGC:00044592584neuron partGC:0044592584cell projectionGC:00429551849plasma membrane bounded cell projectionGC:00120251789neuron projectionGC:00430051083	Gene Ontology (Cellular component) term genes query genes synapse GO:0045202 809 1049 neuron to neuron synapse GO:008984 201 93 asymmetric synapse GO:0045202 809 1049 synapse part GO:0032279 199 1109 postsynapse GO:0044456 674 1049 postsynapse GO:004502 197 93 postsynaptic specialization GO:0014069 195 93 membrane GO:00171944 5283 1136 plasma membrane part GO:005886 5182 1136 plasma membrane part GO:0074445 2584 37 neuron part GO:0042955 1849 1111 gell projection GO:0042955 1849 1111	Gene Ontology (Cellular component) term genes query query genes common genes synapse GC:0045202 809 1049 60 neuron to neuron synapse GC:009884 201 93 7 asymmetric synapse GC:0044502 809 1049 60 synapse part GC:004456 674 1049 50 postsynapse GC:009572 197 93 7 postsynaptic specialization GC:0014069 195 93 7 postsynaptic density GC:0014069 195 93 7 membrane GC:0014069 195 93 7 plasma membrane part GC:0044456 5182 1136 244 plasma membrane part GC:0044459 2584 37 15 neuron part GC:0044295 1849 1111 106 cell projection GC:0042955 149 1111 106 neuron projection GC:0043005 1083 1330 71	Gene Ontology (Cellular component) term genes query query genes common p-value genes synapse neuron to neuron synapse asymmetric synapse synapse part postsynapse GO:0045202 809 1049 60 1.33e-05 synapse neuron to neuron synapse synapse part GO:0032279 199 1109 21 3.68e-02 synapse part GO:004456 674 1049 50 3.23e-04 postsynapse postsynapse GO:0014056 197 93 7 3.72e-02 postsynaptic specialization postsynaptic density GO:0014062 195 93 7 3.86e-02 cell periphery GO:0014062 195 93 7 3.72e-02 plasma membrane cell periphery GO:0014062 196 136 244 1.83e-03 plasma membrane part GO:0005886 5182 1136 244 1.83e-03 cell periperipery GO:00071944 5284 37 15 8.82e-03 plasma membrane part GO:00074585 1322 1130 91 2.02e-06 cell project

Figure.30 g:GOSt results for Cellular Component GO terms in CC analysis.

Another broad category of Gene Ontology is *Cellular Component* (Fig.30). In this GO category, we found sixteen GO terms are significantly enriched in our query gene list based on results in CC analysis. Top two significant GO terms are Neuron part (GO:0097458, $q = 2.02 \times 10^{-5}$) and Synapse (GO:0045202, $q = 1.33 \times 10^{-5}$).

source	term name Gene Ontology (Molecular function)	term ID	n. of term genes	n. of query genes	n. of corrected common p-value genes	SIXA SGCD MGAT4C ALK PTPRB CDC88C C120RF40 C700RF72 CMIP FANC02P2 ZP8P ZP8P
MF	calcium ion binding	GO:0005509	701	477	30 5.38e-03	

Figure.31 g:GOSt results for Molecular Function GO term in CC analysis.

Molecular Function term called calcium ion binding (GO:0005509) shows a significant enrichment ($q = 5.38 \times 10^{-3}$) in the query gene list of CC analysis (**Fig.31**).

source	term name Biological pathways (KEGG)	term ID	n. of term genes	n. of query genes	n. of common genes	corrected p-value	11PR1 AC01886.3 ATG13 ATG13 ERTV4 DENUDIA DENUDIA DENUDIA DENUDIA DENUDIA DENUDIA SCO SCO SCO ALK SCO CORF4 CCI20RF40 CCI20RF40 CCI20RF40 CCI20RF72 CCI20RF40 CCI20RF40 CCI20RF40 CCI20RF40 CCI20RF42 CCI20RF40 CCI20RF42 CCI20RF40 CCI20RF72 CCI20RF40 CCI20RF40 CCI20RF72 CCI20RF40 CCI20RF72 CCI20RF40 CCI20RF72 CCI20RF40 CCI20RF72 CCI20RF40 CCI20RF72 CCI20RF7
keg	Salivary secretion	KEGG:04970	90	855	10	3.06e-02	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
keg	Renin secretion	KEGG:04924	64	244	5	5.00e-02	2 7 7 8 7 7 8 8 8 8 8 7 7 7 8 8 8 7 4
keg	Glutamatergic synapse	KEGG:04724	114	855	14	2.82e-04	2 2 2 2 2 2 k 2
keg	Circadian entrainment	KEGG:04713	96	855	13	2.33e-04	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Figure.32 g:GOSt results for KEGG pathway in CC analysis.

source	term name Biological pathways (Reactome)	term ID	n. of term genes	n. of query genes	n. of corrected common p-value genes	GAS7 SIX4 SGCD MGAT4C ALK ALK CDC88C CDC88C CDC88C CPCR80
rea	Nitric oxide stimulates guanylate cyclase	REAC:392154	25	188	4 3.21e-02	
rea	Neuronal System	REAC:112316	359	1078	27 5.00e-02	

Figure.33 g:GOSt results for Reactome pathway in CC analysis.

The gene enrichment results for KEGG pathways yield Glutamergic synapse (KEGG:04724, $q = 2.82 \times 10^{-4}$) and Circadian entrainment (KEGG:04713, $q = 2.33 \times 10^{-4}$) as statistically significant signals in CC analysis (**Fig.32**).

Reactome pathway terms Nitric oxide stimulates guanylate cyclase (REAC: 392154, $q = 5x10^{-2}$) and Neuronal system (REAC:112316, $q = 3.21x10^{-2}$) are the only two nominally significant findings from g:GOSt query of gene list of CC analysis (**Fig.33**).

In all gene set enrichment analysis from the main text, the only reported results were with $q \le 0.05$ after Bonferroni correction. Effective domain size for GO is 18,971. Based on this number, g:GOSt accepts $P < 6.58 \times 10^{-6}$ as signal of significant enrichment after Bonferroni's correction. On the other hand, the significance threshold for Benjamini-Hochberg FDR is $P = 6.28 \times 10^{-3}$ for GO gene set enrichment. **Table.10** is the counterpart of summary results table (**Table.5**) which adds FDR q-values for each GO term. FDR adjustments enhances the significance of the signals.

VII. Sensitivity analysis of gene set enrichment results

When interpreting the GO term gene set enrichment results, it should be noted that the queries used the electronic annotations. This means that the results were based on *in silico* gene annotations. If you avoid using electronically annotated genes in gene set enrichment of g:GOSt, this would result in non-significant enrichments in some of the terms. The repeated g:GOSt queries with adding option "No electronic GO annotations" had the following results.

For FS analysis, the only GO terms remain significant are cell periphery (*Cellular Component*, GO:0071944, $q = 3.84.91 \times 10^{-4}$) and substrate specific transporter activity (*Molecular Function*, GO:0022892, $q = 1.91 \times 10^{-4}$). Also, axon guidance (*Biological Process*, GO:0007411, $q = 1.91 \times 10^{-2}$) came out as significantly enriched in FS analysis. This is somewhat different than the primary results for FS analysis on gene list query for GO term category Biological Process.

For CC analysis, GO terms remain significant are neuron part (*Cellular Component*, GO:0097456, $q = 3.89 \times 10^{-4}$), lipid transporter activity (*Molecular Function*, GO:0005319, $q = 6.27 \times 10^{-3}$) and regulation of neuron differentiation (*Biological Process*, GO:0045664, $q = 5.15 \times 10^{-4}$).