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Abstract Coronary artery disease (CAD) is a complex disease
driven by myriad interactions of genetics and environmental
factors. Traditionally, studies have analyzed only 1 disease
factor at a time, providing useful but limited understanding
of the underlying etiology. Recent advances in cost-effective
and high-throughput technologies, such as single nucleotide
polymorphism (SNP) genotyping, exome/genome/RNA se-
quencing, gene expression microarrays, and metabolomics
assays have enabled the collection of millions of data points
in many thousands of individuals. In order to make sense of
such 'omics' data, effective analytical methods are needed. We

review and highlight some of the main results in this area,
focusing on integrative approaches that consider multiple mo-
dalities simultaneously. Such analyses have the potential to
uncover the genetic basis of CAD, produce genomic risk
scores (GRS) for disease prediction, disentangle the complex
interactions underlying disease, and predict response to
treatment.
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Introduction

Coronary artery disease (CAD) is a significant impediment to
good health and productivity worldwide. Globally, CAD is the
leading cause of death with 7 million deaths in 2011 alone,
accounting for 11.2 % of all deaths [1]. Unfortunately the
impact of CAD is increasing, as the disease burden is
projected to nearly double from 47 million disability-
adjusted life years (DALYs) in 1990 to 82 million DALYs in
2020 [2]. However, this impact is asymmetrically distributed
between developed and developing countries. CADmorbidity
is projected to more than double in developing countries from
1990 to 2020, but only increase by 50 % in developed coun-
tries [3].

Development of CAD is a multidecade process of athero-
sclerotic formation and chronic inflammation that ultimately
leads to angina, myocardial infarction (MI), and death [4]. It
arises from complex interactions of a multitude of factors—
both environmental and genetic. Risk factors, such as tobacco
use, low physical activity, obesity, hypertension, hypercholes-
terolemia, and diabetes have long been known. The contribu-
tion of genetics has been suspected given the importance of
family history for CAD in an individual’s current risk. This
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has been strengthened with data from Swedish twin studies
demonstrating a substantially larger concordance rate for
monozygotic twins compared with dizygotic twins and heri-
tability of 0.57 for males and 0.38 for females [5, 6]. However,
identifying the specific genetic changes that modify CAD risk
has been, and still is, a challenge despite intense investigation
in recent years.

Uncovering the Genetic Basis of CAD

The publication of the Human Genome in 2001 offered an
unprecedented launching pad for the understanding the genet-
ic basis of diseases [7, 8]. Within 6 years, seminal papers were
published that began to outline the genetic architecture of
CAD. These were initially based on univariate genome wide
association studies (GWAS), where frequencies of individual
SNPs in those with CAD (cases) were compared with those
without CAD (controls). Although these GWAS datasets were
significantly larger than what researchers were used to at that
time, the statistical approach of testing individual SNPs for
association was rather straightforward. One of the first studies
considered 1607 MI cases and 6728 controls with no history
of CAD from an Icelandic population [9]. This genome-wide
scan found and replicated a locus associated with MI whose
top SNP yielded an odds ratio of 1.28.

In the same issue of Science, McPherson et al. also found a
locus associated with CAD in the Ottawa Heart Study that
validated in both the Copenhagen City Heart Study and Dallas
Heart Study [10]. The top SNP in the locus increased the risk
of CAD by 15%–20% in individuals who were heterozygous
and 30 %–40 % in those who were homozygous. Analysis of
CAD cases from the Wellcome Trust Case Control Consor-
tium [11] and GermanMI Family Study revealed another SNP
that was also strongly associated with CAD [12]. Each copy of
the SNP allele increased CAD risk by 36 %.

Interestingly, these initial SNPs all mapped to chromosome
band 9p21, identifying it as the first locus to harbor common
variants for CAD [13]. This locus was also replicated in other
populations including Italian, Japanese, Korean, and Indian,
suggesting it may be a universal risk allele [14–16]. 9p21 does
not code for any known proteins but the closest genes, within
150 kb, are CDKN2A and CDKN2B, which control cell pro-
liferation and apoptosis. Moreover, targeted deletion of the
noncoding interval of 9p21 in mice increased cardiac expres-
sion of CDKN2A and CDKN2B as well as vascular cell
proliferation [17]. In addition, it has also been shown that
9p21 contains an abundance of enhancers and that the CAD
risk SNPs disrupt STAT1 binding to 1 such enhancer thereby
disrupting the interferon-γ response [18]. The mediator be-
tween 9p21 and downstream genes may be ANRIL, a noncod-
ing RNA in the region, which can alter downstream gene
expression [19, 20]. 9p21 has also been found to be associated

with coronary calcification levels, abdominal aortic aneu-
rysms, and intracranial aneurysms, suggesting a broader role
for this variant in vessel function [21–24].

CAD has been associated with other loci in subsequent
large-scale meta-analyses. A variant mapping to 6q25.1 in-
creases CAD risk by 23% per allele [12]. Notably, this SNP is
located within the MTHFD1L gene, which can influence
plasma homocysteine levels and affect risk of CAD [11].
New loci have also been identified using haplotype analysis,
whereby proximal SNPs are grouped together and treated as a
single unit, thus, enhancing the detection power. Re-analysis
of the WTCCC dataset identified the 6q26-q27 locus, con-
taining 4 SNPs within the SLC22A3-LPAL2-LPA gene cluster
[25]. The LPA gene encodes for part of lipoprotein(a) (Lp(a)),
whose plasma levels correlate with CAD pathogenesis [26,
27]. Analysis of the haplotype determined that it accounted for
15% of Lp(a) plasma level variability. Soranzo et al. also used
haplotype analysis to identify 12q24 as a CAD locus contain-
ing 2 SNPs yielding an odds ratio of 1.144 [28]. Interestingly,
this locus also demonstrates considerably disease pleiotropy
with type 1 diabetes, celiac disease, and hypertension.

“Missing” Heritability

The initial univariate GWAS were able to identify common
SNPs associated with CAD with low to moderate effect size
[29]. However, these SNPs account for less than 10% of CAD
heritability, and it has been posited that the remaining unex-
plained heritability may be due to rarer variants with larger
effects and/or undiscovered common variants with small ef-
fects [30–32]. These shortcomings suggested the need for
larger data sets to allow for increased detection power. The
CARDIoGRAM Consortium was formed to overcome these
issues by amalgamating 14 GWAS with 22,223 CAD cases
and 64,762 controls of European ancestry [33]. This meta-
analysis identified 13 new loci, with each allele increasing
CAD risk by between 6 % and 17 % [34]. The C4D Genetics
Consortium performed another large-scale analysis, where
8424 cases of European ancestry and 6996 cases of South
Asian ancestry, along with 15,062 controls were analyzed
[35]. Five new loci were identified including 1 SNP of partic-
ular biological interest as the nearest gene, PDGFD (117 kb
downstream), encodes the platelet-derived growth factor D
protein. This protein is suspected to promote pathogenesis of
atherosclerotic plaques and the SNP’s risk allele was associ-
ated with increased transcription of PDGFD in aortic media,
aortic adventitia, and mammary artery. Together, both CAR-
DIoGRAM and C4D recently identified 46 genome-wide
significant loci, explaining a little over 10 % of CAD herita-
bility [36]. Although many CAD SNPs are still to be discov-
ered, more collaborative GWAS with larger and more diverse
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sample populations are needed to further explain the remain-
ing “missing” heritability.

Constructing Genomic Risk Scores

One of the potential benefits of genomic association studies is
the use of an individual’s genomic profile to create a score
capturing the risk of developing CAD. Currently, the Fra-
mingham Risk Score (FRS) is a powerful tool that incorpo-
rates a patient’s age, sex, cholesterol, smoking status, blood
pressure, and diabetes status to generate a 10-year CAD risk
prediction [37]. However, it can be the case that a majority of
new CAD cases appear in individuals who are not in the
highest FRS risk group [38]. Given that many of the FRS
factors are dependent on age and/or have a genetic compo-
nent, the use of genetic variants may allow for earlier and
more efficient identification of those at risk for CAD before
changes in other risk factors like blood pressure or plasma
lipid levels occur. Therefore, a genomic risk score (GRS),
comprised of the increased risk associated with genetic vari-
ants, can be calculated and used to stratify patients into dif-
ferent risk categories, as is done with the FRS; early stratifi-
cation being crucial for maximum benefit from lifestyle mod-
ification or therapeutic intervention to stymie pathogenesis.

As an initial investigation of the usefulness of a GRS with
regard to individual risk prediction, Ripatti et al. built a 13-
SNP GRS for CAD and tested its utility in a prospective study
of 30,725 individuals of European ancestry free of cardiovas-
cular disease [39•]. They found that patients with a GRS in the
top 20 % had a 66 % increased risk (95 % CI: 35 %–104 %,
P=10-10). In another study, a very similar 13-SNP GRS was
tested in 3014 individuals from the Framingham Heart Study
with an 11-year median follow-up [40]. Analysis in this pop-
ulation found that each risk allele had a hazard ratio of 1.07
(95 % CI: 1.00–1.15, P=0.04). Although this GRS did not
improve prediction of CAD over the FRS, it did associate
strongly with high coronary artery calcium levels, a marker for
subclinical atherosclerosis, suggesting that these SNPsmay be
predictive of atherosclerotic plaque progression.

In another prospective study of 4818 Caucasian males [41],
a 15-SNP GRS improved net reclassification (6.5 %, P=
0.044) and discrimination (1.11 %, P=0.048) over FRS, indi-
cating that there was a marginal improvement of identifying
those at risk for CAD [42]. The largest benefit of the 15-SNP
GRS was realized when analysis was restricted to men be-
tween 50 and 59 years, where a 2.8 % (P=0.0038) discrimi-
nation improvement over FRS occurred. Analysis of a 28-
SNP GRS in a Finnish-based prospective cohort of 24,124
individuals also showed an improvement over FRS [43]. In
this study, FRS provided a discrimination index of 0.851,
while adding the GRS improved the index to 0.856 (P=
0.0002). Moreover, addition of the GRS helped reclassify

12 % of the individuals as high-risk, potentially identifying a
group of patients that would benefit from early targeted
healthcare. The value of a GRS also extends beyond individ-
ual risk prediction as it also captures a "best guess" of the
genetic architecture of disease/trait, thus, genetic overlaps
between CAD traits can also be assessed [44].

Although it is still early days, these GRS studies point to
the potential use of SNPs in identifying and classifying indi-
viduals as high- and low-risk for CAD. It is also clear that
GRS's based on lead SNPs from each associated locus use
only a small fraction of the potential for prediction and more
elaborate strategies and statistical methods, such as supervised
learning, are needed to optimize the genomic predictions [45].
Further analyses using large numbers of genetic variants are
needed to determine the effectiveness of a GRS as a screening
tool and indicator for intervention, especially in or before the
early stages of pathogenesis where FRS variables like age,
cholesterol, and blood pressure are less predictive and lifestyle
modifications can have a greater impact.

Network Approaches to Understand CAD Etiology

Despite the success of GWAS, these results only provide 1
piece of the puzzle. It has been challenging to interpret the
individual SNP associations in terms of the underlying bio-
logical pathways, and therefore, current knowledge of disease
etiology is still limited. To have a phenotypic effect, true
causal genetic variants must exert their influence through
other mediators, such as changes in the structure of protein
encoded by the gene (eg, nonsynonymous variants) or chang-
es in regulatory elements affecting the binding affinity of
transcription factors, thus, affecting the gene’s RNA levels
and presumably the levels of the encoded protein. Data about
these biological phenomena were not available in many early
studies, limiting the ability to decipher these complex effects.
To address this shortcoming, studies now aim to combine
various sources of systems level information, such as geno-
mic, transcriptomic, and metabolomic data. Because both
gene expression and metabolites are known to be influenced
by genetic variation, joint investigation of these genetic effects
on gene expression and metabolite levels and on clinically-
relevant phenotypes such as atherosclerosis affords insight
into how the genetic effects on disease are mediated [46•].

Beyond the ability to examine multiple sources of biolog-
ical data at once, another important conceptual advance has
been the shift toward examining genes as part of networks,
such as transcriptional regulation networks [47], rather than
considering them in isolation. A network-based analysis has
the power to better model these biomolecular relationships
and their potential role in disease. The network is the context:
in some cases, the individual gene associations may be weak
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but subtle global trends may reveal themselves when exam-
ined at the level of multiple related genes.

In a formal mathematical sense, a network consists of
nodes (also called vertices) connected by edges (Fig. 1). Typ-
ically, nodes represent some discrete entity, such as a gene,
protein or metabolite, whereas edges represent relationships
between entities. The edges may be undirected, representing a
symmetric relationship such as “gene A is correlated with
gene B” or directed, representing an asymmetric relationship
such as “gene A upregulates gene B”. The edges need not
represent purely physical relationships such as interactions;
they may simply represent statistical effects such as correla-
tion. One of the earliest and simplest applications in network
analysis has been visualization of complex relationships be-
tween biological entities such as genes and genetic variants,
allowing the researcher to construct a mental image of the
underlying etiology. However, as the data becomes larger,
more complex, and multi-faceted so the networks become less
interpretable, requiring more sophisticated approaches for
visualization and analysis in order to extract biological mean-
ing from them.

Researchers have long known that information sources
such as transcriptomics can offer valuable insights into CAD
etiology [48, 49], as circulating leukocytes link organ systems
in mediating the atherosclerotic process [50], however, inte-
gration with other data sources including genetic and metab-
olite variation has only been possible relatively recently with
the wide-spread use of high-throughput assays. A summary of
recent examples of gene networks that have been linked to
CAD etiology is given in Table 1. One of the first examples of
network-driven models of complex disease is that by Chen
et al. [51], who examined genotypes, gene expression, and
metabolite data from BxH-cross mice. They constructed net-
works of co-expressed genes and identified highly-connected
components (modules) of these networks that were associated
both with genetic variants and with several intermediate phe-
notypes related to obesity, diabetes, and atherosclerosis, such
as abdominal fat mass, weight, plasma insulin, free fatty acids,
total plasma cholesterol, and aortic lesion size. Using a statis-
tical approach based on Mendelian Randomization [52] (see
below), some of these sub-networks were then postulated as
causal mediators between genetic variants and the disease-
related traits. One of the modules with the strongest associa-
tions that was also supported to have a causal effect on
metabolic traits was the macrophage-enriched metabolic net-
work (MEMN) consisting of 1406 genes, out of which 375
genes were estimated to be causal of obesity-related traits.
From these genes, it was hypothesized that Lpl and Lactb
caused obesity and that Ppm1l was a causal driver of pheno-
types related to metabolic syndrome, predictions which were
subsequently validated in mice [53]. Significantly, theMEMN
network together with its link to obesity were also replicated
in human adipose tissue [54]. Beyond the specific findings of

these studies, these results highlight the power of integrating
several sources of information and of considering networks
rather than genes in isolation to uncover some of the biological
processes connecting genetic variation with observable
phenotypes.

Mendelian Randomization for Predicting Causality

Network analyses tend to rely on statistical association, such
as correlation, to infer the network structure from observation-
al data. In order to identify new drug targets and interventions
that can reduce disease risk, we must identify which factors
cause disease and, which are merely associated with it, as
association does not necessarily imply causation [55]. For
example, if a metabolite is observed to be associated with
disease, one cannot say that the metabolite is causal of the
disease based on this observation alone. Such a claim can only
be made using methods such as interventional experiments
where the metabolite level is manipulated and the resulting
effect on disease is observed. Yet, in some cases, statistical
analyses of genomic variation may be able to determine which
relationships are causal. Genetic variation is unique in that an
individual’s alleles are assigned randomly during meiosis
(assuming nonassortative mating with respect to the pheno-
type of interest) and are largely fixed for the life of the
individual. Consequently, genetic variants can be viewed as
natural perturbations of the system (Mendelian Randomiza-
tion [56, 57]), allowing us to interpret a genetic-phenotypic
association as causal in 1 direction, namely genetic variant
causes phenotype. Leveraging this causal information through
statistical frameworks such as instrumental variables (IVs)
allows one to infer whether other associations with disease
are indeed causal or simply correlations. Such an approach has
provided evidence that increases in plasma HDL cholesterol
do not lower the risk of myocardial infarction despite the well-
documented strong negative correlation between the 2 in
observational studies, thus, drug targeting of HDL-C for
CAD treatment may not be a successful strategy [58•]. Ap-
plied on a larger scale, statistical methods based on the prin-
ciples of Mendelian Randomization approaches can help ori-
ent the edges in an undirected gene or metabolite network
(inferred from associations), generating directed networks
representing putative causal structures [52, 59, 60] that can
later be tested experimentally either in laboratory models or
randomized controlled trials in humans.

Integrative Omics to Decipher the Role of Inflammation
in CAD

In humans, large-scale multi-omic datasets are being increas-
ingly utilized to better elucidate the biological pathways
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responsible for the known links between inflammation and
CAD [61]. Laurila et al. [62] analyzed Finnish individuals
assayed for transcriptomics in fat tissue, HDL lipidomic pro-
files, and genotypes, in order to dissect the genetic contribu-
tion to levels of plasma high-density lipoprotein cholesterol
(HDL-C), as HDL-C levels are known to be negatively asso-
ciated with risk of CAD. The analysis compared multi-omic
profiles of individuals at the extremes of HDL distribution and
highlighted the role of the HLA region and of inflammation
pathways in controlling HDL-C levels and a wide range of

differences in both adipose transcriptome and lipidomic pro-
files. Another analysis of CAD case/control individuals from
the Framingham Heart Study [63•] revealed differences in co-
expression patterns of genes between cases and controls; these
differential moduleswere found to be enriched for quantitative
trait loci (QTLs) that affect CAD risk, including a module
enriched for B-cell immune genes. By integrating various data
sources, including protein-protein interaction (PPI) networks
and gene networks derived from other studies, they found
several regulatory genes, dubbed key drivers, exhibiting

Fig. 1 Network-based analysis
of omic data to model the
processes connecting genetic
variation to disease
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strong effects on these modules. One such gene was
TNFRSF13C, which is known to affect aortic root atheroscle-
rosis, thereby providing support for the hypothesis that chang-
es in coregulation of B-cell-related gene networks, caused by
such drivers, was partly responsible for increases in CAD risk.

Expanding beyond the small set of metabolites traditionally
associated with CAD (eg, total LDL/HDL cholesterol or tri-
glycerides), characterization of a wide-range of metabolite
levels has become increasingly important in understanding
of etiology CAD and related metabolic diseases [64, 65].
Atherosclerotic plaques themselves are heterogeneous and
composed of multiple immune cell types and a wide variety
of fats, lipoproteins, and other metabolites [66, 67]. Thus,
there is a need to include metabolomic variation together with
genetic and transcriptomic effects. Such analyses have now
become possible with technological advances in 1H NMR and
high-resolution mass spectrometry, which routinely measure
levels of hundreds of metabolite species in large human co-
horts. For example, a recent metabolomic GWAS of 216
serum metabolite measures in over 8300 Finnish individuals
[68] identified 31 loci with genome-wide significant associa-
tions to metabolite levels. Integration of genomics,
transcriptomic, and metabolite data in a large Finnish cohort
led to specific evidence for the role of inflammation in CAD
through the identification of the Lipid-Leukocyte (LL) mod-
ule [69], a network of highly co-expressed genes related to the
acute inflammatory response, which was inferred to be reac-
tive to lipid levels through causal inference methods [59]. This
analysis was later extended to assess a wide-range of metab-
olite species, revealing the effect of specific sub-species on the
module’s coherence, indicating that the degree of co-

expression in the module was significantly associated with
metabolite levels such as linoleic acid and various LDL and
HDL particles [70]. Later, by integrating serum metabolomics
data with genetic variation and transcriptomic data in humans
and in mice, Inouye et al. [46•] used a powerful data-driven
multivariate approach to identify 11 metabolic networks and
detect 7 previously-unknown loci associated with serum me-
tabolite levels, notably SERPINA1 and AQP9. Transcriptional
data was then used to show that AQP9 expression in murine
liver was associated with the size of atherosclerotic lesion and,
in humans, both AQP9 and SERPINA1 expression in arterial
tissue was substantially upregulated in plaques, providing a
potential explanatory link between genetic variation and a
phenotype relevant to disease progression.

New Data Sources to Model Disease

Apart from genetic, transcriptomic, and metabolomic data,
another rich source of information is the microbiome, the
characterization of the diverse set of microbial communities
inhabiting the human body, which are increasingly being
recognized as important factors in obesity and atherosclerosis
[71–73]. Recent evidence points to the presence of oral path-
ogens such as Chryseomonas, Veillonella, and Streptococcus
in atherosclerotic plaques and, thus, potentially contributing to
the inflammatory process [74, 75]. A recent example of one
such integrative study involving the gut microbiome, genetic
variation, and gene expression in inbred mice strains (Hybrid
Mouse Diversity Panel) [76] across several time points re-
vealed the complex interactions between these components in

Table 1 Molecular networks relevant to coronary artery disease

Name Source Main associations Biological interpretation Ref

Macrophage-
enriched
metabolic
network
(MEMN)

B×H mouse cross,
multiple tissues

Obesity, diabetes, atherosclerosis, total
cholesterol levels, and HDL levels

Network represents an inflammatory response
driven by genetic variation and affecting
disease phenotypes, in liver and/or adipose
tissue.

[51]

Lipid-leukocyte
(LL) module

Human population-
based cohort,
whole blood

Various metabolites (HDL, VLDL,
glycoproteins, isoleucine, and others) and
immune response markers (IL-1ra, CRP, and
heavy molecular weight adiponectin)

Module implicates acute inflammatory cells (mast
cells and basophils) as reactive to various
metabolites. Inverse relationship between
module expression and its density.

[69,70]

Combined
inflammatory
pathway

Human cohort
enriched for low
familial HDL-C,
adipose tissue

VCAM1 levels and SNPs predictive of low
HDL-C

Pathway represents an inflammatory link between
genetic variation and HDL-C levels and
indicates that HDL levels may be regulated by
inflammatory processes.

[62]

Two differential
modules (case
and control)

Human CAD
case/control study,
whole blood

Control module enriched for SNPs predictive of
CAD.

Differential pathways represent 2 modes of
regulation acting in CAD vs non-CAD
individuals, and indicate that B-cell immune
pathways may be causally driving lipids levels
and risk of CAD.

[63•]

CRPC-reactive protein,HDL high density lipoprotein,HMWA highmolecular weight adiponectin, IgE immunoglobulin E, IL-1ra interleukin 1 receptor
antagonist, VCAM1 vascular cell adhesion molecule 1, VLDL very low density lipoprotein
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contributing to obesity. Further, the effects of high-fat/high-
sucrose diets on the composition of gut bacterial communities
was modulated by the specific genetic makeup of each mouse
strain, leading to down-stream effects on metabolism and
eventual risk of obesity.

Another potential source of useful information is epige-
netics, which describes both epigenetic marks and noncoding
RNAs (ncRNAs) [77, 78]. Many epigenetic marks are thought
to be reset during early embryogenesis; however, some epi-
genetic marks may still be passed between generations [79],
and marks may be modified in response to environmental
exposures such as smoking [80]. Some epigenetic effects
relevant to CAD include homocysteine-induced methylation
in vascular smooth muscle cells, contributing to atherosclero-
sis [81], and the ncRNA microRNA-33 found to regulate
cholesterol homeostasis [82]. Further large-scale studies will
be required in order to assay genome-wide methylation status
and ncRNA expression levels in concert with other data
sources.

Future Directions

Apart from incorporating novel sources of biological varia-
tion, an important factor not considered in many studies is
time itself: the biological processes underlying cardiac and
metabolic disease are dynamic, all while interacting with a
complex array of environmental and genetic effects. CAD
may take several decades to manifest clinically, and is typi-
cally preceded by subclinical phenomena. Clearly, this disease
progression can be influenced at various stages by external
interventions such as life-style changes (diet and exercise) and
medication such as statins, and disease trajectories vary wide-
ly between individuals. Hence, to better understand these
processes larger and more detailed repeated measures data
will be required. Such experiments present their own unique
challenges in analysis and interpretation [83, 84]. A recent
multi-omic study examined whole-genome sequencing, RNA
sequencing, proteomics, metabolomics, ncRNA, and auto-
antibody data measured in blood components from 1 individ-
ual over a 14 month period [85], revealing in detail the
correlation of multiple body systems like inflammatory and
insulin response pathways to viral infection and early onset of
type 2 diabetes. This study provides a glimpse into what will
becomemore common, with costs of technology reducing to a
level enabling such detailed measurements over much larger
cohorts and longer time-scales. Similar studies with much
larger sample sizes based on individuals with various disease
states will be necessary to be able to draw robust conclusions
about the pathogenesis of CAD and improve preclinical
models.

To complement temporal dynamics, spatial effects will
need to be considered as well, that is, heterogeneity in

expression across tissues [86, 87]. Studies that consider only
1 tissue type, typically blood and its components, will not be
able to detect such variation. This will require assays of
multiple tissue types, both to capture coordinated processes
happening in all tissues and to localize effects that occur only
in specific tissues. One such effort is the Genotype-Tissue
Expression (GTEx) project [88], which aims to conduct a
wide-ranging survey of gene expression and its associated
genetic variation across multiple human tissues.

In addition to the important goals of predicting those indi-
viduals that are at high risk or disease and developing a deeper
understanding of disease etiology, another major avenue of
research where systems and network approaches may have an
impact is pharmacogenomics, that is, the study of how genetic
variation influences each individual’s response to medication.
Both drug response and drugmetabolism can be considered as
phenotypes, and many of the existing analysis methods are
applicable. This will be useful for tailoring more specific sets
of medication to each individual, matched to their genomic
profile [89, 90]. The clinical utility of pharmacogenomics
approaches has so far been rather limited [91]. However,
testing for loss-of-function variation in the gene CYP2C19
(part of the P450 family of enzymes) is now recommended for
informing the use of the antiplatelet drug clopidogrel in indi-
viduals with acute coronary syndrome (ACS) undergoing
percutaneous coronary intervention (PCI) [92] because such
variants may adversely affect platelet activity and increase the
risk of cardiovascular events.

Conclusions

CAD and related diseases are complex phenotypes and are the
result of interplay amongst a multitude of genetic and envi-
ronmental effects together with an important inflammatory
aspect. Initially, analyses tended to be restricted to only 1 type
of high throughput data, such as GWAS considering associa-
tion of disease with genetic markers, or only considering
blood biomarkers for disease progression. Although such
focused analyses have proven insightful, they provide limited
information about a narrow aspect of the disease, while ignor-
ing the complex interactions between these different process-
es. The advent of multi-omic studies, which concurrently
analyze genetic variation, transcriptomics, metabolomics,
and others sources of information over hundreds or thousands
of individuals, has begun providing deeper insight into the
underlying mechanisms responsible for observed phenomena,
such as the gene networks responsible for the known link
between inflammation and disease and the various feedback
loops amongst genetic variation, microbial communities, me-
tabolism, and ultimately disease.

Hence, the coming major challenges will firstly be collec-
tion of large-scale multi-omic samples across thousands of
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individuals in order to achieve the statistical power to detect
the multitude of interacting effects in CAD etiology. Second,
novel statistical and computational methods will be required
to effectively combine these different information sources into
a coherent model of disease, with the aim of generating
plausible biological hypotheses that can be tested in animal
models and clinical trials. Third, the testing of these models
will need to rigorously evaluate the specific reliability of the
models as well as their modes of failure so that refinements to
the model can bemade. Meeting these challenges will result in
greater understanding of CAD etiology and, if successfully
implemented, translate into better clinical outcomes.
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