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1 Introduction

Human mobility modelling is the study of people’s movement habits. It is used
for the characterisation of movement patterns, for example, in transitions between
different places or how the public transportation infrastructure is used. Understand-
ing and characterising human mobility is a major scientific problem that has rele-
vance to many scientific domains such as controlling epidemics [NW09, BGB11],
analysis and forecasting of traffic [GLPC12, PZWS13, JWS08], urban planning
[YZX12, ZLYX11, QLL+11], and numerous innovative mobile and network appli-
cations [SBBK+11, ZLH13, HNT13, RZL+12, SKJH06]

An important usage of mobility modelling is in context aware computing. In or-
der to provide a richer human-computer interaction, context can be utilised by the
computers. Context aware computing was first introduced by [ST94] as a computer
program that changes its behaviour adaptively according to its usage location and
people and objects around it. From then, context aware mobile applications have
grown at a great rate. In the beginning, it was a fundamental part of ubiquitous
and pervasive computing applications, but over time it became an important part
of desktop applications, web applications, mobile computing, and nowadays, a part
of the Internet of Things (IoT) [PZCG14]. One of the key characteristics to derive
context is location-aware computing by modelling user’s mobility [Gus02]. Mobil-
ity models have been the focus of different studies, and they cover different key
areas. Deriving important places in each user’s life by processing their movement
traces [NB08], extracting the statistical characteristics of movement in terms of
movement habit [SQBB10], and designing predictive models capable of predicting
future movement behaviour of users [SMM+11] are a few of the examples in this
area. These studies have predominantly focused on the movement between places;
however, what is not known is how regular the movement between these locations
are, i.e., how regular human movement trajectories are. In this thesis, our focus is
on exploiting the existing regularity within movement trajectories which is mostly
overlooked in the previous studies.

Existing research papers explore and analyse people’s movement data to detect
and extract their patterns and characteristics [SQBB10, GHB08]. However, the
results reported in these studies are based on very high levels of abstraction and
low resolution data; one of the main reasons for this matter is the type of datasets
used in the studies. The most common data source for these studies is call data
records (CDR). CDR are the data that mobile operators receive and log based on
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their users’ usage. For example, whenever users make phone calls, send messages, or
change the cell-tower that they are connected to while moving the mobile operator
will receive and log some data based on these actions. This data can be used to
derive the user’s location by multi-lateration of radio signals between cell towers.
The accuracy of the obtained location is heavily affected by the number of available
cell towers and their positions. In best case scenarios, the approach can only derive
the location in block levels; hence, CDR data constrains the accuracy at which we
can analyse mobility, and it is not possible to study the movement behaviours in
higher level of detail. Therefore, these studies mostly analyse the movement in terms
of the transitions between different areas. Figure 1 displays an example of this kind
of mobility analysis.

Figure 1: Precise analysis of movement trajectories is mostly overlooked by mobility
modelling studies where their analysis is done in high levels of abstraction like the
transition of the user in different areas of the city.

In addition, there are studies that take the movement data either with high accuracy
like GPS traces or low accuracy like CDR location data as input and process them
to extract the meaningful or distinct places for each user [LFK07, NB08, IBC+12].
These places are those that have some meaning in user’s life like home, work place,
gym, and favourite restaurant. After extracting these places, the movement between
them is studied to create mobility models or analyse the predictability of transitions
as illustrated in Figure 2.

In this work, we present a study on the regularity of route mobility. As mentioned,
existing research has mostly overlooked the route mobility concept and does not
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Figure 2: The movement data is processed first to extract the meaningful places for
each person. The movement patterns between these places is studied afterwards.

give any information regarding the actual path taken by the user for transitioning
from one location to another, therefore the actual movement trajectory between
locations is missing as illustrated in Figure 3 (a). By studying the route mobil-
ity, we provide insights regarding the actual paths taken between any two points
as shown in Figure 3 (b) and present how regular the movement between these
points are. For this aim, we carry out our analysis using three different mobil-
ity datasets in three different cities that contain different modes of transportation.
Cabspotting [PSDG09a, PSDG09b] is the first dataset, which contains the GPS
traces of more than 500 cabs from a one-month period in San Francisco. Ge-
oLife [ZZXM09, ZLC+08, ZXM10] is the second dataset that contains the GPS
traces of 182 users that has been collected over a period of five years, and most of
the traces are in the city of Beijing. Finally, the last dataset is the Taxi Service
Trajectories [MMGF+13, MMGF+16], and it contains the GPS traces of more than
400 cabs from a 24 day interval.

Everyday human mobility in urban areas is constrained by the urban infrastructure
and road network; therefore, making the cabs of the two datasets a feasible proxy for
human mobility. It’s worth mentioning that the datasets used in this work are freely
available which assists in reproducibility of results. In contrast to the other studies
that focus on the movement of each user or moving object, we analyse the movement
trajectories in general which can be used for any user in the area of observations.

As our first technical contribution, we develop a principled methodology for mea-
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Figure 3: (a) The source and destination of a trip is known and can be used for
studying the transition between places, but the information regarding the actual
path taken between these two locations is missing. (b) Shows three different possible
paths that a moving object can use to reach its destination.

suring the regularity of movement trajectories by computing the entropy of all tra-
jectories for any given spatial and temporal resolution. For this aim, we convert the
trajectories into Markov chains and quantify their regularity using Markov trajectory
entropy [EC93]. Using this method, we analyse and quantify the overall regularity
of trajectories and demonstrate that, as a whole, trajectories appear irregular and
hard to predict. Consequently, we reveal that only a subset of points along the tra-
jectories are responsible for irregularity within the trajectory. We extract and call
these points fork-points. By representing the trajectories with their fork-points, we
can show a higher predictability for them. Motivated by this result, as the second
contribution of this thesis, we introduce a segmentation algorithm that segments
the trajectories into more regular sub-segments. The segmentation can be used as
an alternative compressed representation of the trajectories. Finally, we introduce
a predictive framework capable of predicting moving objects trajectories.
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2 Related Work

An extensive part of our work explores the human movement traces and analyses the
inherent degree of regularity present within them. We categorise previous studies
into three groups: human mobility, trajectory analysis, and energy efficiency. We
first introduce the related work done in the area of human mobility which covers
general characteristics of human movement. Next, we give an overview of trajectory
analysis studies as our system relies on such techniques to provide predictions re-
garding the destination and rest of the trajectory. Finally, due to the applicability of
trajectory processing approaches in systems that provide energy efficient tracking,
we mention the important works done in this area. In this section we provide a
brief summary of the work done in the mentioned areas and discuss how our work
differentiates from them.

2.1 Human Mobility

Human mobility patterns and the amount of regularity within them are studied in
numerous scientific studies. These studies can be categorised either as mobility dis-
placement modelling or characterisation of regularity within the movement patterns.
Here we introduce the works done in each category.

In terms of the movement displacement, several key attributes have been discovered
in different studies. It is shown that even though human motion is not a random
walk, it can be modelled with Lévy flight [BHG06, GHB08, RSH+11]. According to
the Lévy flight model, human movement consists of straight line trips with no pause
or directional change which are known as flights. The length or distance of these
flights follow a truncated power-law distribution – meaning that these travelling dis-
tances decay as a power-law. In a similar way, it also means that these travels are
mainly consisted of many small flights interleaved with longer flights. In another
attempt [ZMH+15] Zhao et al. explains the shared features of human walks using
Lévy walks by decomposing the movement patterns based on their transportation
mode. Therefore, by having information regarding transportation mode, the Lévy
flights can be broken into a mixture of log-normal distributions, while the flights
in each mode contain power-law distributed jump sizes. Furthermore, other stud-
ies [RSH+11, KKK06] have shown that in addition to the flights, the pause times
of human walks demonstrate a truncated power-law distribution as well. Another
important characteristic of human motion as demonstrated in [GHB08] shows that
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people will only move within a confined area; however, this confined area differs
among people.

There are works that simulate individuals’ movement through human mobility mod-
els [LHK+09, LHK+12, MCN11, SKWB10]. These studies exploit human walking
traces and significant patterns in human mobility to create systems that are able
to simulate human movement as realistically as possible. These systems exploit the
identified features to simulate the human movement inside communities and areas
such as university campus or companies. For pedestrian specific simulations, Blue
et al. [BA01] uses Cellular automata microsimulation for simulating the pedestrians
movement in discrete cells of 0.21m2. Yoon et al. [YNLK06] introduces a framework
for statistical mobility model generation. To do this, they make use of coarse-grained
wi-fi traces in a campus area.

Besides mobility displacement modelling, there have been studies investigating the
regularity within human movement patterns, mainly the transitions between fre-
quently visited locations. Song et al. [SQBB10] uses a dataset of call data records
(CDR) to generate movement trajectories and investigate their predictability. The
study reports an upper limit of 93% for predictability of human movement. How-
ever, the user’s location in CDR data is a low resolution approximation; and hence,
it contains a large amount of uncertainty. In a similar way, Lin et al. [LHL12] uses
GPS data in order to have location data of higher resolution compared to call data
records. The paper, used a grid model to provide a building level granularity and
reported a 90% predictability for mobility. There are two main issues regarding
these two papers. First, the mobility patterns are constructed with a fixed sampling
rate. As a result, if a user visits multiple locations during this sampling interval,
only one place will be represented for that time, which will lead in an incomplete
reconstruction of user’s visitations. The other issue arises from the fact that the
length of the location visitation sequence is determined by the sampling rate which
affects entropy. Lu et al. [LWB+13] analyses movement patterns of individuals in
Cote d’Ivoire to measure regularity. Similarly, the authors reported an upper bound
of 88% for predictability. In addition, Lu et al. shows that the mentioned limit can
be reached by implementing Markov Chain based predictors.

While the previous studies analysed the data in high levels of abstraction, Smith
et al. [SWGB14] explores the predictability of human movement by taking real-
world topological constraints into account; therefore, reporting a more realistic and
tighter upper bound. The study analyses the effect of sampling rate and spatial
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resolution on the predictability and reports that the predictability upper bound is
11% to 24% lower than what previous studies have claimed. As a solution, Smith
et al. suggests the integration of external data sources to improve the predictions
based on the application requirements. De Domenico et al. [DDLM13] reveals a
relationship between social interactions and mobility. The study combines the data
regarding user’s social interactions with movement data and improves the accuracy
of user’s position predictions.

Li et al. [LJH+14] analyse movement predictability in terms of vehicular mobility.
For this aim, they focus on predicting the next most likely major intersection along
a route. For deriving a predictability limit, entropy theory is used. The research
reports the predictability of vehicular mobility to be larger than 78%; therefore,
showing presence of a strong regularity in the movement patterns.

This thesis provides the first ever study of regularity of route mobility. We demon-
strate that movement trajectories can be decomposed into sub-segments with high
predictability, despite using a very small set of points along the route for predicting
the route accurately. Compared to the previous studies, we use trajectories in high
level of details.

2.2 Trajectory Analysis

A trajectory captures a moving object’s path through space as a function of time.
Hence, a trajectory represents the path taken by a moving object and is an im-
portant piece for modelling and analysing its movement. Even when trajectory
information is missing, studies make assumptions regarding trajectories or try to
approximate them. For example, Zheng et al. [ZHL06] studies the effect of social
activities on users’ whereabouts. They combine social attributes with geographical
data to derive their location based on a survey data. Since the survey data contains
no trajectory information, Dijkstra’s shortest path algorithm was used for recreating
the paths. But not all studies use the information regarding the actual trajectories.
These studies mostly use the trajectory data only as an input data to derive other
information such as places that each user visits. In [LZX+08], Li et al. uses the GPS
traces of 65 users over 6 months in order to provide a similarity measure to match
more alike users with each other based on their movement behaviour. They intro-
duce a framework named hierarchical-graph-based similarity measurement (HGSM)
that is based on user’s location visitation history. Therefore, the GPS trajectories
are only used to detect user’s distinct location visitations.
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One of the first works to focus on trajectory tracking was proposed by Lange et
al. [LFDR09]. The study tracks and processes the actual trajectory of a moving
object and simplifies it according to a certain accuracy bound to provide an ap-
proximation. Liao et al. [LPFK07] uses GPS traces to capture regularity within
user’s movement behaviour. Accordingly, their model is able to detect undefined or
irregular behaviour within mobility patterns of a user. Their system is built upon
a hierarchical Markov model that uses Rao-Blackwellized particle filters at different
hierarchical levels to provide a more efficient inference for user’s destination and
mode of transportation. Our model can capture the regularity of all user’s in an
geographical area and we are able to show why some movement might be irregular.

In a series of studies, Krumm et al. analyse GPS traces to create predictive mobility
models. In [Kru06, KH06] destination prediction based on a probabilistic approach
is presented with the intuition that drivers choose efficient routes. In a similar ap-
proach they use a grid representation of the world for discretisation of trajectories.
What differentiates our work from these studies is that we analyse the human move-
ment trajectories in a more general level. We make no claim regarding the users’
mode of transportation as we aggregate all movement trajectories of all users to-
gether. In addition, our model is able to predict the path in addition to destinations.
In [Kru10] the author uses a dataset of driver’s turning decisions at intersections to
predict the driver’s route. This approach can be used to predict the trajectory, but
it can only provide prediction at the intersection for the next segment of the trip
and not the whole trajectory.

2.3 Energy Efficiency

Tracking user’s movement and extracting his position in a continuous matter and
with high accuracy using mobile sensors such as GPS sensor can be costly action
in terms of energy. Therefore, providing energy-efficient tracking for mobile devices
requires exploring and analysing of movement of users and their corresponding tra-
jectories. For this reason, we have decided to introduce a selection of these studies
that are related to mobility in this section.

Most of the first works on energy-efficient mobility monitoring focused on opti-
mising energy consumption by reducing the sampling rate of GPS receivers. We
can categorise these into two groups. The first group depends on the fact that
the accuracy requirement of localisation varies. Moreover the reduction of sam-
pling is done by either using less expensive alternative localisation methods such
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as Wi-Fi and cell-tower triangulation – whenever it is allowed by the accuracy re-
quirements [LKLZ10, PKG10] – or by exploiting other external information that can
provide information regarding the movement. SensTrack [ZLJG13] system uses the
information regarding the acceleration and direction derived from the less expensive
sensors to trigger GPS sampling. Whenever a user moves indoors, he uses WiFi
localisation. The study is related to our work where it uses a Gaussian process
regression method to reconstruct the trajectories from partial samples. The stored
samples are similar to the fork-points that we use to decompose the trajectory, but
unlike our work they are not related to the regularity of movement. Fang et al. [FZ11]
exploits the information regarding constraints and limitations on daily movement.
The authors present EnAcq, a trajectory data acquisition scheme that utilises the
information regarding the road networks with map matching techniques to improve
energy consumption. In order to reduce energy usage, Nodari et al. [NNS15] model
movement trajectories. The approach samples and communicates the location only
when the moving object deviates from predicted trajectory.

The other group of studies that are relevant to our work, utilise line simplification
methods, such as Douglas Peucker [DP73], to simplify the actual trajectory with an
approximation. The points in the compressed trajectory do have similarities to our
detected fork-points that can be used to compress the trajectories as well. Lange
et al. [LDR11] use line simplification techniques to reduce the sampling rate and at
the same time use dead reckoning to select communication intervals. Constandache
et al. [CGS+09] introduce EnLoc, an energy efficient localisation framework. EnLoc
exploits the regularity of users’ movement. By using the habitual characteristic of
mobility, it predicts the population’s location to provide an offline optimal solution
for energy efficient localisation. The EnLoc system schedules location updates at so-
called uncertainty points, which roughly correspond to fork-points in the context of
our work. Entracked [KBBN11, BBKN15] is another system for trajectory tracking.
In EnTracked, application designers provide a desired degree of accuracy for position
and/or trajectory tracking accuracy and the system determines the optimal strategy
to achieve the desired accuracy with the least amount of energy. The system design
of EnTracked combines intelligent sensor management strategies with trajectory
simplification techniques and intelligent uploading policies to preserve energy.

It is worth mentioning that there are also other approaches that provide optimal
approaches without the reduction of sampling. For example, instead of adapting
GPS duty cycle, Ramos et al. [RZL+11] propose the LEAP system which saves
energy by offloading computationally intensive parts of the GPS processing pipeline
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to a server or cloud platform. We exclude detailed discussion about these works as
they do not take advantage of human mobility analysis for energy reduction.
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3 Data Collection

We analyse regularity in route mobility using three different datasets that contain
the movement trajectories of moving objects. Spatial trajectories contain rich infor-
mation that can be utilised in different applicable areas, but because of the way they
are captured and stored they contain may contain noise and inaccuracies. Therefore,
they should be first processed according to our needs.

We have performed our analysis using three different datasets. Cabspotting [PSDG09a,
PSDG09b], which contains GPS traces of more than 500 cabs from a one-month pe-
riod in San Francisco; GeoLife [ZZXM09, ZLC+08, ZXM10] contains the GPS traces
of 182 users that has been collected over a period of five years, and most of the
traces are in the city of Beijing; and finally, Taxi Service Trajectories [MMGF+13,
MMGF+16], which contains the GPS traces of more than 400 cabs from a 24 day
interval.

In this chapter we cover the concepts that enable us to process our spatial data
and making it ready for our computations. We first summarise the factors that are
intertwined with collecting spatial data. Next, as in our case the data is already
collected, the majority of this section describes the techniques required for processing
the spatial trajectories to be transformed to a clean and ready-shape version for our
analysis. Finally, we close this chapter by demonstrating the datasets after the
post-processing steps.

3.1 Trajectory Preprocessing

To record the continuous movement of an object we need to sample it in the form
of discrete points. This will lead into storing an approximation of the continuous
movement. The higher the sampling rate, The higher the accuracy of the original
movement in the samples.

Even though more accurate representation of the movement is desired while working
with trajectories, there are certain factors that prevent us from collecting the most
accurate trajectories. For example, the higher the sampling rate the larger the
number of measurements will be, which can lead into massive datasets. In addition,
higher sampling rates also require more network communication to transmit the
samples. Therefore, storage space and network communication capacity are two of
these constraints. To overcome this issue, simplification methods are proposed to
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save storage and communication costs and remove redundant data.

Figure 4: Point policy is an update policy where an application specific error distance
(r) is selected. From each sampled location, a new sample is only recorded when the
object moves further than the error threshold from its previous sampled location.

Gathering more samples puts a computational burden on the devices leading into
higher consumption of energy. Reading continuously from energy expensive track-
ing sensors like GPS can deplete energy much faster. To address this issue, the
research community has proposed several solutions. These studies integrate meth-
ods such as dead reckoning to estimate the future position of the object based on
its previously known location, direction, speed, and time. This information can be
extracted from available tracking sensors such as accelerometers and gyroscopes. By
using this approach it is possible to reduce the usage of energy hungry sensors like
GPS. In addition, update schemes are used to decide when to store or communicate
the location of a device. Point policy [CJNP04] is an example of a simple update
policy. As illustrated in Figure 4, point policy defines an error threshold and only
stores or reports the position when the user moves beyond the defined error thresh-
old. Therefore, an application specific error threshold can be selected for the point
policy to store a sample of the movement. There are advanced methods such as the
Douglas-Peucker algorithm [DP73] that can be used for approximating the original
trajectory. More advanced works in the area of energy efficient tracking have already
been discussed in Section 2.
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An important factor is the inherent error present in the tracking devices. For ex-
ample, when using call data records (CDR) to track the user, the derived locations
contain a high amount of error. Thus, it is not meaningful to capture the location
for every few seconds. GPS sensors, on the other hand, have an average error of
10 meters. At times during the sampling of movement, the observed position may
have much higher error which is not in line with other samples leading to the cre-
ation of outliers in the captured data. Due to the captured noise, the trajectories
are never perfectly accurate. To solve this issue, it is possible to use a variety of
filtering techniques. In order to familiarise the reader with this issue we provide an
example trajectory and describe two simple filtering methods to resolve the noise.
The first simple method to remove the noise is to use a mean filter. Mean filtering
works as sliding window that covers the last n temporally adjacent values of the last
observation z. Therefore, calculating the mean of the last n observations. Equation
1 describes the mean filtering.

x̂i =
1

n
Σi
j=i−n+1zj (1)

Figure 5: The captured noise in trajectories can be removed by using the filtering
methods. Both median and mean filtering introduce lag to the original trajectory;
however, unlike mean filtering, median filtering is not sensitive to outliers.

Two downsides of the mean filtering is that it introduces some lag to the original
trajectory, and its sensitivity to outliers. Figure 5 displays a trajectory before and
after mean filtering with a window of size five is applied to it.
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The second method that we describe here is called median filtering and it can be
used to mitigate the mean filters sensitivity to the outliers. Median filtering, as
described in Equation 2, is similar to the mean filtering. The only difference is that
we take the median of the last n observation instead of the mean:

x̂i = median {zi−n+1, zi−n+2, ..., zi−1, zi} (2)

Both techniques have the disadvantage of adding lag to the original trajectory. The
aim of introducing filtering in this section is to only help the reader to under-
stand the characteristics of real world data better. For more advanced filtering
techniques, we invite the readers to look into Kalman filtering [Gel74] and Particle
filtering [DDFG01].

3.2 Cleaning Datasets: Postprocessing

In every data collection there are different factors that can affect the quality of the
captured data. These factors can be related to the accuracy of the sensors or the
approaches used for the study. Based on available resources and tracking devices,
their energy capacities, and their average error level, a meaningful sampling rate is
chosen. Thus, there is a trade-off between the accuracy of the captured trajectory
and the available resources. In addition, different applications may need data with
certain standards which may be different than the original application that led into
the data collection study.

In our work we use three different datasets for our experiments, and we have to
process and clean these datasets to meet our desirable level of quality. In this section,
we discuss the methods needed to process and format the datasets according to our
needs. We first discuss the general principles for cleaning the datasets and provide
specific thresholds values used by cleaning methods for each dataset in Section 3.2.4.
This will enable our readers to follow the steps we took to produce the results.

3.2.1 Velocity pruning

In analysing the regularity of route mobility, it is important for the data to have
sufficient degree of accuracy so that it would provide a good approximation of how
people move. One attribute that we can use to see if the trajectory is faulty is to
check the velocity between any two consecutive observations. After computing the
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Figure 6: Two sampled trajectories from the Cabspotting dataset is shown. It is
evident that both of the trajectories have unrealistic segments that look like very
long jumps which are faulty. The trajectories that contain segments with unrealistic
speed values are removed.

velocity, we remove any trajectory that contains a pair of observations with unreal-
istic speed. The removal of segments where speed is not within the possible velocity
range of that metropolitan area is called velocity pruning. Therefore, all trajec-
tories that contain a segment with an unacceptable speed value are removed from
the dataset. Figure 6 illustrates two examples to provide a better understanding
regarding how the velocities above the maximum range may affect the trajectories.

3.2.2 Trip Merging and Pruning

Another characteristic that can be used to remove faulty trajectories is the distance
between the source and destination of a trip. There are trips where the distance is
really small for the trip to be meaningful, which can correspond to either erroneous
observations or cases where the user did not start any trips but was recording some
observations. Figure 7 provides two examples of such trips. We remove any trip
that has an overall distance smaller than a threshold.

Similar to the overall trip distance, trip duration is another factor that can give us
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Figure 7: Two sampled trajectories from the Cabspotting dataset is shown. The
distance between the source and destination of some trips is too small to be a
representation of an actual trip. These cases are removed from the dataset.

information regarding the trip. For example, a trip that lasted for 10 seconds is not
meaningful to be counted as a real trip. Any duration for trips that are not within
a selected range is removed.

3.2.3 Distance and Update Rate Between Consecutive Samples

As already mentioned, each spatial trajectory in the dataset is made of discrete
data-points. Therefore, there is a gap between any two consecutive data-points.
Based on the size of these gaps there are three different cases. First, if the size of
the gaps is small the quality of the trajectory is at a desirable level; thus, nothing
needs to be done. Second, the length of the gaps in some cases are bigger than what
is required for our application but still reasonable. In such cases we can reduce the
length of these gaps, and reconstruct the original path using linear interpolation,
which is discussed later. Finally, in some cases the gap between two consecutive
observations is too large to be meaningfully filled by linear interpolation. Figure 8
illustrates two instances of such cases. Trips that contain these non-useful segments
are removed as part of the cleaning pipeline.

Similarly to the distance between consecutive observations, the update interval be-
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Figure 8: Two sampled trajectories from the Cabspotting dataset. In some cases,
the gaps between any two consecutive observations of a trajectory is too big to be
meaningfully filled with linear interpolation.

tween every consecutive observation can affect the linear interpolation. Thus, all
trajectories that contain a segment of consecutive samples where the update inter-
val is bigger than a threshold are removed.

3.2.4 Dataset Specific Thresholds

Each of the three selected datasets for our study has their specific level of quality.
Accordingly, we have selected a set of thresholds to have the best possible level of
accuracy in each dataset. All threshold values are stated table 1.

Since Cabspotting dataset contains traces both when cabs had a passenger and when
they were empty, we remove all the empty cab traces in addition to the described
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Table 1: Threshold values used for cleaning for each dataset

Cabspotting Geolife Taxi Service Trajectories

Velocity Threshold 34m/s 34m/s 34m/s

Minimum Trip Distance 250m 200m 250m

Minimum Trip Duration 60s 30s 60s

Maximum Trip Duration 14400s 14400s 14400s

Maximum Sampling Inter-
val

180s 180s 180s

Maximum Consecutive
Samples Distance

1000m 400m 300

cleaning steps for all the datasets.

3.2.5 Interpolation

Because of the update interval between two position readings, we might still have
gaps in the extracted trajectories. To get rid of the gaps, we use linear interpolation
on the sequence of cells as an approximation for missing cells in the trajectory. To
clarify, assume we have two data points P1 and P2 with the following coordinates,
(x1, y1) and (x2, y2). If we want to fill in the gap between these two points, we
consider each axis separately. Here, we explain how the linear interpolation works
on one axis, and the value on the y-axis can be calculated in a similar way. Let P1

and P2 be sensed at times t1 and t2 respectively. Therefore, in order to approximate
the value xt on x-axis at some time t between t1 and t2, we calculate:

xt = x2 − (x2 − x1)
(t− t1)

(t2 − t1)
(3)

We use interpolation to reduce the time interval between the data points to ten
seconds. We did not choose a smaller value for the interval between the updates
since we might introduce harsh oscillations to our trajectories. After this step, we
remove those traces that still contain gaps. We have categorised trip trajectories
into different groups based on their source. Each of these trajectories Ts,d consist
of a sequence of n cells c1, ..., cn, where c1 = s and cn = d. Whenever the moving
object of our interest starts to move from a location, we will select and extract all
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Figure 9: Interpolation example

of the trajectories in our system that have the same cell as their source for the next
step of processing. Before going further, we have to demonstrate the necessary tools
for measuring regularity.

3.3 Grid Transformation

To analyse and quantify the regularity of trajectories, we use a grid network model
over the world. We then discretise the trajectory data by mapping each observation
into a discrete grid cell. The mapping is done by converting each longitude and
latitude pair into a cell index on a d×d sized grid according the algorithm described
by Nurmi et al. [NBK10]. Figure 10 illustrates an example of using a grid network
to discretise a trajectory into multiple cells. This enables us to be able to index
the data points to grid cells and aggregate all the corresponding data points in one
cell together. Accordingly, each mobility trace will become a sequence of grid cells.
Using a grid model to discretise the trajectories has some advantages. Discretising
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Figure 10: Before being able to use our data for regularity analysis, we discretise
the trajectory using a grid model into discretised cells.

the measurements is essential for computational tractability, and helps to overcome
inaccuracies in location measurements, e.g., due to driving on a different lane or due
to inaccurate GPS fixes.

In our analysis, we use different cell sizes for each of the three datasets based on their
average sampling rate. Cell sizes: 400m× 400m, 200m× 200m, and 250m× 250m

are selected for the Cabspotting, Geolife, and Taxi Service Trajectories datasets,
respectively. The cell sizes are selected as a trade-off between location accuracy
and computational requirements. Choosing lower values for d results in trajectories
with higher resolution, but such values will lead to inaccurate trajectories since the
original dataset’s observations did not have the required accuracy.

As a final step, we have to make sure that the source is always connected to the
destination. It means that from any cell, the next cell along the path should be one
of the eight neighbours of the current cell. Therefore, after the discretisation of the
trajectories, we again remove any trajectory that may end up with a gap.

3.4 Data Description

Before moving into the regularity analysis chapter, it is worth looking into some
statistics describing the final cleaned datasets to get more familiar with them.

After the cleaning pipeline, Cabspotting dataset has 535 unique users and 318, 011
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distinct trajectories, Geolife dataset has 173 unique users and 41, 756 distinct tra-
jectories, and Taxi Service Trajectories dataset has 439 unique users and 945, 881

distinct trajectories. Table 2 provides more detailed statistics for each dataset after
the cleaning process.

After discretising the data using a grid network, each trajectory is then defined by
a sequence of cells. Figure 11 shows the distribution of lengths of the trajectories.
We can observe that the trajectories in the Cabspotting dataset have less variety
compared to the other two datasets, and the average length of its trajectories is just
a bit over five cells. Thus, this dataset has mostly short trajectories. This is mainly
because of the larger cell sizes used for discretisation in the Cabspotting dataset
because of its relatively poor quality compared to the other datasets. In addition,
compared to the other datasets, Cabspotting contained more errors; therefore, more
trajectories got removed during the cleaning process.

Figure 11: The distribution of discretised trajectory length for each dataset.

On the other hand, Geolife trajectories contain more variety but still the mean of
the trajectory lengths is around five samples, just like the Cabspotting dataset.
Considering the fact that we used the smallest cell size for the Geolife dataset, it
might be expected that the dataset should have longer trajectories, but it should
be taken into account that in addition to the driving trajectories, Geolife dataset
contains other modes of transportation like walking. This is one of the reasons that
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Table 2: Cabspotting dataset after cleaning

Cabspotting

Maximum
consecu-
tive points
distance

Maximum
sampling
rate

Maximum
trip dura-
tion

Maximum
trip dis-
tance

Maximum
segment
velocity

Minimum 140.306 21.000 60.000 250.074 0.145

1st Quartile 473.201 109.000 301.000 1207.944 7.047

Median 545.905 129.000 450.000 1894.011 9.312

Mean 553.619 147.667 501.730 2189.747 9.533

3rd Quartile 630.594 175.000 640.000 2853.580 11.833

Maximum 1101.062 6713.000 9880.000 11456.437 33.988

Geolife

Maximum
consecu-
tive points
distance

Maximum
sampling
rate

Maximum
trip dura-
tion

Maximum
trip dis-
tance

Maximum
segment
velocity

Minimum 55.567 5.000 30.000 200.071 0.163

1st Quartile 214.729 98.000 325.000 503.792 4.064

Median 247.327 172.000 697.000 1204.249 11.288

Mean 254.859 228.467 1003.558 3278.627 12.031

3rd Quartile 287.981 270.000 1293.000 3584.881 18.815

Maximum 520.612 12009.000 14021.000 101859.025 33.998

Taxi Service
Trajectories

Maximum
consecu-
tive points
distance

Maximum
sampling
rate

Maximum
trip dura-
tion

Maximum
trip dis-
tance

Maximum
segment
velocity

Minimum 99.951 15.000 60.000 250.049 0.050

1st Quartile 327.045 90.000 375.000 1306.066 11.395

Median 363.153 105.000 540.000 2015.175 13.985

Mean 363.443 143.198 629.459 2299.213 13.678

3rd Quartile 399.784 150.000 765.000 3028.302 16.499

Maximum 679.239 13455.000 14295.000 47779.620 20.000
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originally Geolife trajectories are shorter compared to the other two datasets. For
the Taxi Service Trajectories we have more variance compared to the other datasets
and also longer trajectories in general. In the Taxi Service Trajectories dataset the
mean of the trajectory lengths is around 11 cells. While the dataset is similar to the
Cabspotting dataset in terms of transportation mode, relatively it has higher quality
trajectories. We also selected a cell size smaller than the one used for discretising
the Cabspotting. Therefore, generally longer trajectories were expected for the Taxi
Service Trajectories dataset.
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4 Trajectory Regularity

Previous studies on human mobility have demonstrated that individual mobility
patterns, characterised by transitions between important locations, are predictive
to a high degree [LWB+13]. While the regularity of location transitions has been
established, less is known about the routes that people take while transitioning
between locations. That is to say, the regularity of human movement trajectories
has mostly been overlooked and no conclusive information is available.

Individuals’ everyday movements are affected by different factors, which make them
more regular. As an example, consider the movement trajectories of a person that
has several frequently visited locations, such as home and work. His movement
trajectories between these locations tend to overlap to a high degree since the person
usually takes the same familiar path. In addition to the personal attributes of a
person, the movement trajectories are also constrained by the overall structure of
road networks and public transportation routes.

In this section we describe methods for quantifying the amount of randomness
present in movement trajectories. We first demonstrate how to use the discretised
trajectory data, so that we can use the Markov chains. Next, entropy is described
and used to quantify the irregularity of each discrete cell. Then the entropy of the
Markov trajectories is presented as a way to quantify the randomness between any
source and destination. Finally, the entropy of conditional Markov trajectories is
discussed as means to measure the irregularity of trajectories by conditioning on an
intermediate cell.

Figure 12: A movement trajectory discretised over a 2-D coordinate system.
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4.1 Representing the Trajectories as Markov Chains

In the previous section, we have shown how to discretise GPS traces into a 2-D
coordinate systems with square-shaped cells. As an example consider Figure 12,
which shows a movement trajectory discretised over square cells. Here, the tra-
jectory takes on a path passing through the cells C4,1, C4,2, C4,3, C3,3, C2,3, C1,3, C1,4.
Therefore, each trajectory is a sequence of transitions between subsequent cells start-
ing from the source cell and ending at the destination cell. We quantify regularity
of trajectories by modelling them as (first order) Markov chains. Each cell along
a trajectory corresponds to a state in a Markov chain and movements from one
cell to another correspond to transitions between states. We construct a transition
matrix based on the trajectories and compute the corresponding probability tran-
sition matrix. Given the collection of all trajectories T , we create a Markov chain
M(T ) by constructing a transition probability matrix P = pi,j where pi,j denotes
the probability of observing a transition between grid cells i and j. Next, as an
initial attempt to analyse the regularity, we calculate the entropy of each state to
learn about their irregularity. Entropy described by Equation 4 is a measure from
Information Theory, and it is used to quantify the unpredictability of a state.

H(X) = Σn
i=1P (xi)I(xi) = −Σn

i=1P (xi)logbP (xi) (4)

In general, it is possible to have a transition between any two states of the Markov
chain. Since we are using a grid model and the generated Markov chain is a repre-
sentation of our trajectories, the only transition is possible from any state is only to
its eight neighbours as illustrated in Figure 13. Therefore, P (xi) from Equation 4
corresponds to the probability of the transition between the current cell and its i’th
neighbour. Based on this constraint we can re-write Equation 4 as follows:

H(X) = −Σ8
i=1P (xi) log2 P (xi) (5)

In the case where the transition probability is evenly distributed between all the
neighbours – meaning that the current state contains the highest amount of irregu-
larity – Equation 5 is equal to the value 3. On the other hand, if all the transitions
from the current cell are to one of the eight neighbours – meaning that the outcome
of the transition from this cell is completely predictable – the Equation 5 will be
equal to 0. As a result we can see that the cell entropy value is bounded as follows:
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Figure 13: In our application environment, the only possible transitions from any
states is to its eight neighbours.

0 ≤ H(X) ≤ 3 (6)

We modelled the trajectories of the three datasets as (first order) Markov chains.
Next, we calculated the popularity of each cell by counting the number of times the
cell was visited by different trajectories. Furthermore, we computed the entropy
for all states. Finally, we have plotted the results using heat-maps as illustrated in
Figure 14.

Consider Figure 14, in cell visitation figures (a, c, e) we can locate the areas where
most of the movement trajectories are concentrated. Since we have the smallest cell
size and highest sampling resolution for the Geolife dataset, we can observe that
the dense areas are mostly around the main roads. Because of the higher cell sizes
for the other two datasets, there is no specific paths where the trajectories would
be concentrated around. Nevertheless, based on the cell irregularity plots (b, d, f)
of all three datasets, it is obvious that there are only a subset of cells in the dense
areas where they demonstrate the highest amounts of irregularity. This is in line
with our assumption that trajectories consist of more regular segments connected
by highly irregular points that are responsible for most of the irregularity exhibited
by the trajectory. In the next section, we look into the cell entropies along the path
in more detail.
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Figure 14: a, c, and e display the popularity of each cell by computing the loglog(x)

where x is the number of visitations to that cell. b, d, and f shows the amount of
irregularity within each cell by computing 2x where x is the cell entropy.
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Figure 15: For Cabspotting and Taxi Service Trajectory trajectories, the most pop-
ular source is selected. Accordingly, based on the trajectories that start from the
selected cell, five popular destinations are selected.

4.2 Distribution of Entropy within a Trajectory

To gain more familiarity with cell entropies within a trajectory, we select the most
popular source cell (cell where highest number of trajectories started from) of
the Cabspotting and Taxi Service Trajectories datasets. For Cabspotting dataset,
11, 888 trajectories start from the most popular source cell. For Taxi Service Trajec-
tories, this number is 38, 024. Next, we select five of the most popular destinations
based on the trajectories starting from the previously chosen source cell. Figure 15
shows these cells for the two mentioned datasets.

As the next step, we randomly sample one trajectory from each of the selected source
destination pair which gives us five trajectories for each dataset. We match all the
cell entropies along the trajectories and interpolate them along 20 points, so that
they are of the same length. Figure 16 shows the interpolated cell entropies for the
five selected trajectories of each dataset. Since a large number of trajectories start
from the selected sources, we can observe that the cell entropy is relatively high at
the beginning of the trip. As we progress along the paths, there are points where
the entropy becomes relatively low that results in higher predictability of the next
transition.

Cells with high local entropy value appear as peaks in our plot. These correspond to
decision points where trajectories start to deviate from each other, these are namely
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Figure 16: Cell local entropies along five different trajectories chosen from the two
datasets between the most popular source and five popular destinations.

our fork-points. Having knowledge about the transition from the fork-point for a
moving object gives higher information for predicting the future of the trajectory.
The segments created by these fork-points are highly regular; therefore, it is our
desire to extract the points that are mainly responsible for the amount of randomness
in a trajectory to be able to encode the whole trajectory with them. The fork-points
in each trajectory can help us to split the trajectories into segments that have higher
regularity. In Section five we introduce an algorithm for segmenting the trajectories
into these more regular segments by using fork-points. In the next section, we look
into the quantification of randomness within trajectories as a whole.
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4.3 The Entropy of Markov Trajectories

We are interested in a method that enables us to quantify the overall amount of ran-
domness within a trajectory. We use the entropy of Markov trajectories as described
by Ekroot et al. [EC93] to quantify the randomness of trajectories in a irreducible
finite state Markov chain. To model the discretised trajectories of all datasets, we
created a transition matrix. The size of this square matrix depends on the total
number of cells after discretisation. Therefore, if we have n unique cells in our grid
network, we create a transition matrix Tn,n. We compute the frequency of each pos-
sible transition in the dataset and update the transition matrix accordingly. Next,
we extract the probability transition matrix Pn,n as an intermediate step in order
to be able to compute the Markov trajectory entropies. Pn,n can simply be created
from Tn,n by summing the values in each row, and dividing the values of each row by
the calculated sum. The value of Pi,j corresponds to the transition probability from
state i to state j. Using the constructed Markov chain, it is possible to represent
the trajectories of a moving object as a weighted random walk on a graph. In such
a graph, each trajectory cell is represented by vertices and possible transitions by
edges. This graph is known as the state transition diagram.

In order to compute the entropy of Markov trajectories, we create a trajectory
entropy matrix H, and we use an example along the steps for better understanding.
Figure 17 displays the state transition diagram of a 5-state Markov Chain with the
probability transition matrix of:

P5,5 =


0 0.7 0.3 0 0

0 0 0 0 1

0 0.2 0 0.8 0

0 0 0 0 1

0.6 0 0 0.4 0


The associated state entropy rate of the given Markov chain example is given by:

H(χ) = −Σi,jµiPi,jlogPi,j (7)

In Equation 7, µ is the stationary distribution and can be calculated by solving
µ = µP . A trajectory T from the source i to the destination j is presented as Ti,j,
in which no intervening state is equal to j, and we want to compute the trajectory
entropies H(Ti,j). A general closed form solution used for computing the H(Ti,j) is
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Figure 17: State transition diagram for a 5-state Markov Chain.

as follows:

H = K − K̃ +H∆ (8)

The matrix H∆ is the entropy rate of a state. It is a diagonal matrix with entries
(H∆)i,i = H(χ)

µi·
. Here H(χ) is the entropy rate of a state. Equation 9 describes how

to calculate H∆.

H(χ) = −Σi,jµiPi,jlogPi,j (9)

And matrix K in Equation 8 can be calculated using:

(I − P + A)−1(H∗ −H∆) (10)

K̃ is a matrix in which the element on ith row and in jth column equals the diagonal
element Kj,j of K; A is the matrix of stationary probabilities with entries Ai,j = µj;
H∗ is the matrix of single-step entropies with entries H∗i,j = H(Pi·) = −ΣkPi,klogPi,k;
and H∆ is a diagonal matrix with entries (H∆)i,i = H(χ)

µi·

Now, we are able to compute the matrix of trajectory entropies Hn, n as described
by Equation 8. Hn, n contains the entropies of the trajectories between any two
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cells in the extracted data points. For our example Markov Chain we would get the
following Markov Trajectory entropies:

H5,5 =


2.7161 1.9555 6.7135 3.3746 1.0978

1.6182 3.5738 8.3318 2.9957 0

2.3401 3.5810 9.0537 1.3210 0.72192

1.6182 3.5738 8.3318 2.9957 0

1.6182 3.5738 8.3318 2.9957 1.6296


For example, the entropy of the T1,5 trajectory is 1.6296 bits, while the entropy
of deterministic trajectories – meaning the transitions are completely predictable –
T4,5 and T2,5 is equal to zero which means that these trajectories do not contain any
randomness.

Previously, we gave an example of how people move between important places. For
example, people tend to commute on the same path between their home and work.
We made an assumption that for these more frequent routes, there will be more
regularity present. To investigate this matter, we have extracted all the trajectories
starting from the most popular source in each dataset and computed the Markov
trajectory entropy matrix. We can observe from the result, as shown in Figure 18
that our assumption was in fact true. The more trips we have for a given source and
destination, the more regular the paths are. In the next section, we look into how
knowing which cells are visited between a source and destination changes the entropy
of Markov trajectories. Up until now, we analysed the trajectories by discretising
them into states and showing that some of these states have much lower uncertainty
than others. Then, we described the entropy of Markov trajectory which enables
us to compute the randomness within any complete trajectory between any two
locations. Next, we introduce entropy of conditional Markov trajectories which
helps us to compute the trajectory entropy after conditioning on an intermediate
cell.

4.4 The Entropy of Conditional Markov Trajectories

Based on the technique introduced by Ekroot and Cover [EC93], we were able to
calculate the amount of randomness in an irreducible finite state Markov chain.
Therefore, we were able to compute the entropy of the trajectory between any two
states in the graph that models the user’s mobility. However, if we gain new infor-
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Figure 18: The Markov trajectory entropy is computed for all the trajectories started
from the most popular source for all three datasets. There is a decreasing trend in
the trajectory entropy values as we observe more trajectories between a source and
destination.

mation that the user passed through states on its path to reach the destination, we
cannot utilise the new information with the previous approach. Here, we describe a
method for computing the entropy of conditional Markov trajectories by introducing
a way to transform the original Markov chain so that it expresses the conditional
distribution of trajectories based on the work done by Kafsi et al. [KGT13].

To understand this matter better, consider the following example. Based on our ex-
ample Markov Chain shown in Figure 17, we computed the entropy of the trajectory
between the two states 1 and 5 to be 1.6296 bits. If we learn that the user has gone
through state number 4 before reaching the destination, we would like to compute
the trajectory entropy T1,5 conditioned on visiting the fourth state along the way.



34

Before going further and describing the entropy of conditional Markov trajectories,
it should be noted that the additive property does not hold for the entropy of Markov
trajectories. Based on our example we would have the H1,4 +H4,5 = 3.3746 but after
conditioning on visiting the fourth state and computing the conditional entropy we
getH1,5|4 = 0. Therefore, it is evident that the additional information about the user
passing state number 4 makes the trajectory fully predictable. By extracting such
intermediate states, it is possible to fully encode the trajectory. Therefore, if there
exists a set of intermediate cells such that by conditioning on them the conditional
entropy of Markov trajectories becomes zero – meaning the path changing into being
fully predictable – we can break the whole trajectory into segments connected by
the cells of this set. As a result we would have fully regular segments, connected by
the decision points.

Before going through the algorithm for computing the entropy of conditional Markov
trajectories, we first demonstrate a few concepts that are needed for the algorithm.
We can define the conditional entropy of a trajectory between the source s and
destination d, Ts,d, that passes an intermediate state u by:

Hsd|u = H(Tsd|Tsd ∈ T usd)

= −Σtsd∈T u
sd
p(tsd|Tsd ∈ T usd)logp(tsd|Tsd ∈ T usd)

where T us,d is a set that contains all the trajectories between the source s and the
destination d that go through the intermediate state u. Now consider a sequence
of intermediate cells u = u1u2...ui. Then T u

sd is the set of all trajectories in the set
Tsd that visits every intermediate cell in u in order, before reaching the destination.
The entropy of the trajectory between source s and destination d where it visits the
intermediate cells u is:

H(Tsd|Tsd ∈ T usd) =
l−1∑
k=0

Hukuk+1|d̄ +Huld (11)

where u0 is the source s.

As part of the algorithm we have to compute the entropy of the Markov trajectories
which was described in the last section. During the steps of this algorithm, our
Markov chain is not necessarily irreducible. As a result, we cannot use the algorithm
by Ekroot and Cover as it is valid only for the irreducible Markov chains. Because
of this problem, we demonstrate an alternative method in to compute the entropy
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Algorithm 1 Conditional Markov Trajectory Entropy
1: u0←s
2: for k = 0 to l-1 do
3: Compute P ′k from P using:

(P ′k)ij =


0 if i = uk+1, d and i 6=j,
1 if i = uk+1, d and i = j,

Pij if i 6=uk+1, d and αiduk+1
= 1,

1−αjduk+1

1−αiduk+1

Pij if i 6=uk+1, d and αiduk+1
< 1.

4: Compute H(T ′ukuk+1
) from P ′k using Equation 13

5: Assign the computed value H(T ′ukuk+1
) in the last step to Hukuk+1|d̄

6: end for
7: Computed Huld from P using Equation 13
8: Hsd|u1...ul =

∑l−1
k=0 Hukuk+1|d̄ +Huld

9: Return Hsd|u1...ul

of a Markov trajectory that can be used for non-irreducible chains.

Consider a Markov chain such that there exists a path with positive probability
from any state to a give state d with the transition probability matrix P . Then, by
removing the dth row and column of P we can get the sub-matrix Qd as follows:


Qd P1d

...
Pd1 . . . Pdd

 (12)

Then the entropy of the trajectory between source s and destination d such that
s 6=d is given by the following equation:

Hsd =
∑
k 6=d

((I −Qd)
−1)skH(Pk.) (13)

Now we can compute the conditional Markov trajectory entropies using algorithm 1
as described by [KGT13]. The algorithm takes as an input, source and destination
states s, d, sequence of visited middle states u = u1...ul, and probability transition
matrix P of the corresponding Markov chain. As the output, the algorithm returns
the entropy of Markov trajectory conditioned on the intermediate cells Hsd|u1...ul .



36

With a probability transition matrix with N states, and l intermediate states, the
algorithm has running time-complexity of O(lN3). It should be mentioned that the
value of Hsd|u would not necessary be smaller than Hsd as some may expect. This is
due to the fact that Hsd|u is conditioned on learning a dependent random variable
and not the entropy of Tsd given another random variable. Therefore, Hsd|u can be
bigger than Hsd.

In this chapter, we covered the methods that can assist the quantification of random-
ness in trajectories. In the first two parts, we demonstrated how to transform our
trajectory dataset into first-order Markov chains and looked into the distribution of
cell entropies in trajectories. We also provided methods to both measure the entropy
of Markov trajectories and the entropy of conditional Markov trajectories. By using
these methods, we will provide two segmentation methods in the next chapter that
can be used to break the trajectories into more regular parts.
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5 Trajectory Segmentation and Compression

In reality, movement paths of people do have common parts that overlap with each
other. These shared segments can be for example along main roads until they
reach a crowded intersection that acts a terminal point. This is the point that the
people’s paths start to deviate from each other in order to reach their very own
destinations, which makes the rest of the path more specific to each individual. In
the Trajectory Regularity chapter we showed that most of the uncertainty associated
with route choices is concentrated along a small set of fork-points. Each fork-point
can be effectively understood as a point that segments the overall trajectory into
sub-segments that are relatively more regular compared to the whole trajectory.

We are interested in extracting these fork-points. For example, cells with transitions
evenly distributed among their neighbours. These states demonstrate higher entropy
values as shown previously by discretising the trajectories and computing their cor-
responding local entropy. In this chapter, we introduce two different algorithms that
can be used to segment the trajectories by identifying the fork-points.

5.1 Conditional Markov Entropy Based Segmentation

In Section 3.3 we described how a grid model can be used to discretise trajectories.
After the discretisation we represented our trajectories as Markov chains. This will
result in a general model of how people move between different states that requires no
timing information. In this section we describe a segmentation algorithm proposed
by Kafsi et al. [KGT15]. The algorithm uses the conditional Markov entropy measure
introduced in Section 4.4 to segment trajectories when no timing information is
available.

Let s and d be the source and destination of a given trajectory, and let u be an
intermediate point that the user visits along his path from s to d. The algorithm
segments the trajectories by finding the intermediate states where the ratio between
conditional and unconditional entropy, i.e. Hsd|u/Hsd is over a specified threshold.

In the previous chapter, we discussed how conditioning on an intermediate cell
may increase the Markov trajectory entropy. To understand this matter better,
consider the following example. We select a source cell s and a destination d, and
we want to analyse the entropy distribution of trajectories between the pair. We
measure the entropy of the whole trajectory and move on to measure the conditional
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entropies. We do this by conditioning on the intermediate cells between s and d as
observed one by one. If observing an intermediate cell u results in a conditional
Markov trajectory entropy Hsd|u bigger than the Markov trajectory entropy Hsd,
the intermediate cell u is a decision point that acts as the intermediate cell of many
other trajectories in addition to the trajectories between s and d. Therefore, it
results in lower predictability and higher uncertainty for the trajectories between
s and d. As a result, the posterior distribution can be very different from the
prior distribution. On the other hand, consider the intermediate cells that lead into
Hsd|u/Hsd ratios smaller than one. These are the points that act as intermediate
points for the source s and destination d. As a result, they increase the amount of
predictability of trajectories. Therefore, we can extract the segmentation points by
finding the set of intermediate cells Uα(tsd) such that:

Uα(tsd) = {u ∈ tsd|Hsd|u > αHsd} (14)

where α is a predefined threshold. For α = 1, the set Uα(tsd) contains all the
intermediate cells that will increase the trajectory entropy tsd. The set Uα(tsd)

can be derived using the recursive segmentation algorithm of Kafsi et al. [KGT15];
see Algorithm 2. The algorithm extracts the segmentation points by finding the
intermediate cells that have a Hsd|u/Hsd ratio bigger than threshold α.

The algorithm, takes as an input the trajectory tsd, transition probability matrix
P , and threshold α. As the output, it produces the indices of segmentation points.
With threshold α = 0 the segmentation points set U will include all the intermediate
cells of all trajectories between s and d. The algorithm, will recursively segment the
trajectory by finding the intermediate cells that maximise the conditional entropy.
It is possible to calculate all the conditional Markov entropies Hsd|u beforehand to
make the algorithm more efficient. But initially, due to the inversion of a matrix of
size O(N), the algorithm has O(N3) complexity.

5.2 Extracting the Segmentation Points

In addition to the segmentation using the conditional Markov trajectory entropy, we
introduce our own alternative. This segmentation method is based on the algorithm
described in our work [FN16]. Instead of conditional Markov trajectory entropy, our
algorithm relies on local cell entropy values to detect segmentation points.

Algorithm 3 describes our fork-point detection approach. The core idea is to contin-
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Algorithm 2 Trajectory segmentation
1: begin
2: U←0

3: if len(traj) > 2 then
4: segment(traj, 0, len(traj)-1)
5: end
6: return U
7: end
8: function segment(traj, i, j)
9: k←partition(traj, i, j)

10: if k≥0 then
11: U←U∪k
12: if i+ 1 < k then
13: segment (traj,i,k)

14: if k + 1 < j then
15: segment(traj,k,j)

16: function partition(traj, i, j)
17: s←traj, d←traj[j]
18: k←argmaxi<k<jHsd|traj[k]

19: u←traj[k]

20: if Hsd|u > αHsd then
21: return k
22: else
23: return -1

uously monitor the entropy rate (see Equation 4) of grid cells that are encountered,
and to return cells that have a significantly higher entropy rate compared to the
distribution of cell entropies of the corresponding Markov chain. These will make
our set of fork-points. To accomplish this, we first have to compute the entropy
rate of each grid cell of the corresponding probability transition matrix. Next, using
Algorithm 3, we can determine significant deviations in entropy rates in a robust
fashion and return those as the fork-points.

To compute the entropy rate of every grid cell, we should compute the entropy rate
of each state of the probability transition matrix P of the underlying Markov chain.
Each state corresponds to a cell along a trajectory and at any state the moving object
has the possibility of moving to any of it’s eight neighbouring states. Therefore, this
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Algorithm 3 ForkPointDetection
1: allStateEntropies← set of cell entropies in the probability transition matrix
2: µ← mean(allStateEntropies)
3: σ ← sd(allStateEntropies)
4: z ← thresholdValue
5: for each trajectory in the dataset do
6: stateEntropyArray ← state entropy of the trajectory cells in order
7: window ← emptylist

8: forkPoints← emptylist

9: for each cell of the selected trajectory do:
10: stateEntropyArray ← stateEntropyArray.append(entropy(cell))

11: if entropy(cell)−µ
σ

≥ z then
12: window ← window.append(entropy(cell)).
13: else
14: if window is not empty then
15: forkPoints← forkPoints.append(max(window))

16: window ← emptylist

17: return forkPoints

can be simply accomplished by keeping a running count of the number of transitions
between grid cells. Note that the interpolation of the measurements ensures that
subsequent measurements are in neighbouring cells; consequently, we only need to
extract eight values per cell.

To find the set of fork-points, we detect significant deviations in the entropy rates
using a statistical significance test. Specifically, we calculate estimates of the mean
and standard deviation of the overall entropy rate of states of the corresponding
probability transition matrix. Next, we go through each trajectory of the dataset
and derive a z-score using Equation 15 for each cell that is encountered in that
trajectory.

z =
x− µ
σ

(15)

The z value is like a threshold that provides us with a measurement of how off-target
the current state entropy is from its distribution. Whenever the z-score of a cell
exceeds a threshold of statistical significance, we initiate peak detection and buffer
measurements until the score of the cell falls below the initial threshold. The cell
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Figure 19: Whenever the entropy passes the threshold value, the cell entropies are
added into a window and the maximum value from the window is selected as a
segmentation point when the cell entropy value goes below the threshold.

with the maximal z-score is then selected as the fork point. Figure 19 demonstrates
our fork-point detection algorithm over an example trajectory. The fork-points are
shown as blue dots and the black line is is our threshold. We use a threshold of 0.5

for initiating the peak detection algorithm.
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6 Prediction

In the previous chapters, we have covered methods that can be used to analyse and
measure the amount of randomness in trajectories or how predictable they are. In
this chapter, we move towards predicting the paths. For this aim, we introduce
five popular trajectory similarity measures and evaluate their performance in our
problem setup. Using the trajectory similarity measures, we first look into the
problem of predicting the destination of trajectories. Furthermore, we look into
predicting the segments of the trajectories by predicting the fork-points along a
trajectory.

6.1 Destination Prediction

Whenever a user starts a new trip, we would like to learn more about his trip. For
example, we want to predict the destination that the user is headed to. Without
knowing anything regarding the trajectory of the user, this task becomes very dif-
ficult. When the user starts a new trip, the only available spatial information to
us is the source of the trip. Therefore, to have a baseline, we first try to predict
the destination by extracting all the destinations reached from that source and their
corresponding frequencies. We select the most frequently reached destination of that
set as the predicted destination.

Figure 20 shows the result of predicting the destination based on the most frequent
destination for all the trajectories grouped by each source of the three datasets.
From the plot we can observe that as the source becomes the starting point of more
trajectories, the accuracy decreases significantly. When there are more trajectories
starting from the same source the space of possible destinations grows; therefore,
the result is expected. The accuracy decreases significantly and stabilises at 20

trajectories per source. For sources that are the origin of 20 or more trajectories,
the accuracy is bounded between 0.125 and 0.25.

In the baseline, we looked into predicting the exact destination by selecting the most
frequently reached destination for each source. But this approach does not provide
any information about the quality of the predicted destination or how close it is to
the actual destination. Therefore, we also extract how close is the predicted desti-
nation to the actual one. Figure 21 displays the results on how far is the predicted
destination to the actual one. In this case, the distance increases immediately and
stabilises at 5 trajectories per source.
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Figure 20: The average accuracy of the destination prediction based on the most
frequent destination.

6.2 Trajectory Similarity Measures

As previously shown, when we have more sample trajectories between a source and
destination pair, the entropy of the trajectories between those pairs tend to go lower.
Based on this finding, we would like to identify which trajectories are similar to each
other. Motivated by the wide variety of applications for trajectories, many similarity
measures have been developed by the research community. Here we describe five
popular trajectory similarity methods.

6.2.1 Euclidean Distance

One of the simplest distance measures used to quantify the similarity of trajectories
is Euclidean distance [JDLVDVV80]. Euclidean distance or L2−norm is the distance
of the straight-line connecting two points. Euclidean distance is simple to implement
and has a linear complexity. Therefore, it is capable of handling large sized datasets.
It was first introduced as a distance measure for time series but later was used for
trajectories as well. Given two trajectories T1 and T2 we can compute the euclidean
distance using 16 where d(p1,i, p2,i) is the distance of the straight-line connecting the
two points in the cartesian space. The two trajectories should have the same length
so that we can use the Euclidean distance.
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Figure 21: The average distance error of the destination prediction based on the
most frequent destination to the actual destination.

Σn
i=1d(p1,i, p2,i)

n
(16)

6.2.2 Dynamic Time Warping

Dynamic TimeWarping (DTW) [SR88] is another time series similarity measure that
is used in a variety of applications from speech recognition to signature recognition.
It is also used for finding the similar trajectories. DTW has an advantage when
it comes to temporal aspects of two trajectories as the number of observations in
each trajectory and the speed of the moving object do not effect this measure. The
distance is computed using a recursive approach and can be implemented using
dynamic programming. Algorithm 4 describes Dynamic Time Warping. It takes
two trajectories a and b with lengths n and m respectively. The algorithm checks
all the possible point combinations between the two trajectories to find the lowest
distance.

6.2.3 Longest Common Subsequence

Longest Common Subsequence (LCSS) [KH90] is string similarity measure that can
be used with trajectories as well. One of the benefits of using LCSS for trajectories
is its capability to handle noisy trajectories, and sequences of different lengths.
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Algorithm 4 Dynamic Time Warping Distance
1: dtw ← array[n,m]

2: for i← 1 to n do
3: dtw[i, 0]← infinity

4: for i← 1 to m do
5: dtw[0, i]← infinity

6: dtw[0, 0]← 0

7: for i← 1 to n do
8: for j ← 1 to m do
9: cost← d(a[i], b[j])

10: dtw[i, j]← cost+minimum(dtw[i− 1, j], dtw[i, j − 1], dtw[i− 1, j − 1])

11: returndtw[n,m]

Initially, the algorithm tries to find the longest common pattern between the two
strings, or in our case discretised trajectories. We can use a threshold so that
whenever the distance of two observations is below the defined threshold we count
them as similar. This enables the measure to handle noisy observations. Algorithm 5
describes how to implement the measure. It takes two trajectories a and b with
lengths m and n respectively.

Algorithm 5 Longest Common Subsequence
1: lcss← array[m,n]

2: for i← 0 to m do
3: lcss[i, 0]← 0

4: for i← 0 to n do
5: lcss[0, i]← 0

6: for i← 1 to m do
7: for j ← 1 to n do
8: if |a[i]− b[j]| < threshold then
9: lcss[i, j]← lcss[i− 1, j − 1] + 1

10: else
11: lcss[i, j]← max(lcss[i, j − 1], lcss[i− 1, j])

12: returnlcss[m,n]
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6.2.4 Edit Distance with Real Penalty

Edit Distance with Real Penalty (ERP) [CN04] is another measure for evaluating
the similarity of trajectories. ERP is based on edit distance and uses the L1-norm to
quantify distances. By using L1-norm, ERP is proven to be a metric measure. This
is an advantage compared to DTW and LCSS. ERP behaves identically to DTW
in the transformation case, but compares to a constant, g, whenever a deletion or
insertion is used. The authors suggest a constant of 0. As with edit distance, ERP
is calculated through dynamic programming. The recursion equations for ERP are
given as follows:

erp(i, j) = min{d(Ai, Bj) + erp(i− 1, j − 1),

d(Ai, g) + erp(i− 1, j),

d(Bi, g) + erp(i, j − 1)}. (17)

Here d(Ai, Bj) is a distance measure between the elements in the sequence.

6.2.5 Edit Distance for Real Sequences

Like ERP, Edit Distance for Real Sequences (EDR) [COO05] is another edit distance
based similarity measure. It incorporates a threshold similar to LCSS to match
similar points. For two trajectories a and b, EDR defines a match function for a
pair of points (pi, pj) where pi ∈ Ta and pj ∈ Tb. If |pi,x − pj,x| ≤ threshold and
|pi,y − pj,y| ≤ threshold then the match method will return true; therefore, the
sub-cost between the points pi and pj is zero. Otherwise, the sub-cost will be one.

6.2.6 Applying the Similarity Measures

We have covered five different popular distance measures used for trajectories. We
use these measures to implement an algorithm to predict the destination of each
trajectory. Since the trajectories are discretised into discrete cells, for each trajectory
we extract all those that start from the same source. Next, as we move and visit the
next cells, we compute the similarity between the selected trajectory and each of the
extracted trajectories. We sort the extracted trajectories based on their similarity.
Finally, using a majority voting between the destinations of the first five trajectories
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we predict the destination. The approach is described by Algorithm 6 which takes
a trajectory T with length n as input.

Algorithm 6 Similarity-based Destination Prediction
1: Tset ← trajectories that start from the same source as T

2: n← len(Tset)

3: predictions← empty list

4: for i← 2 to n do
5: similarities← empty list

6: for j ← 1 to n do
7: if len(Tset,j) ≥ i then
8: append(sim(T [1..i], Tset,j[1..i]), destination of Tset,j) to similarities

9: sort the similarities based on the similarity value

10: use majority voting between top five similarities to select the

prediction at step i and append it to predictions

11: return predictions

Here sim(Ti[1..i], Tj[1..i]) uses one of the five introduced similarity measures to com-
pute distance. The algorithm takes trajectory T and starts to traverse each of its
cells one by one. At each step, given the length of the traversed cells on the original
trajectory, we extract the beginning of other trajectories. Therefore, at each step
the length of all trajectories fed to the similarity function is equal. Then, one of the
similarity measures is used to compute the similarity between the pairs. Finally, the
top five trajectories with lowest distance are selected and using a majority voting
between those a destination is predicted.

This algorithm can be used also to predict the next cell along a trajectory instead
of the destinations. The only difference is at step 10 of Algorithm 6 where instead
of doing a majority voting on destinations, we do it for the next visited cell in each
trajectory.

6.3 Trajectory Prediction

By now, we have looked into how predictable paths are by creating a baseline where
we tried to predict the destination of trajectories by only using frequency. After-
wards, we covered five popular distance measures for trajectories to provide a better
destination prediction framework. Although, we did not take into account the fork-
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points derived by trajectory segmentation as covered in the last chapter. In this
section, we introduce an algorithm that utilise the fork-points for the prediction.

As discussed, our framework is capable of aggregating movement objects’ trajectories
and analysing their regularity. We extract the points where paths starts to diverge
from each others as fork-points. As a result, a trajectory contains regular segments
that are connected with each other at segmentation points. These points are mostly
responsible for the amount of irregularity in the trajectories. Knowledge regarding
these points results in the highest reduction in trajectory entropy. In other words,
knowing that a moving object has passed these points gives the highest amount
of information possible about the path that the object is taking. Therefore, it is
possible to encode the entire trajectory by the segmentation points along the way.

Accordingly, we introduce Algorithm 7 that uses an encoded version of trajectories
to predict the paths, and finally the destination. The algorithm is very similar to
Algorithm 6, but instead of extracting the destination of the trajectories through
majority voting, we extract the next fork-point along the path for each of the tra-
jectories using majority voting. The algorithm takes the trajectory Tc and its fork-
points TEc as input. Then, it extracts all the trajectories starting from the same
source Tset and their corresponding fork-points TEi.

In this chapter we explored the predictability of trajectories and covered trajectory
similarity measures. In addition, we introduced two algorithms that use the sim-
ilarity measures to predict the destination of trajectories and also the fork-points
along them. In the next chapter we will analyse and evaluate the performance of
our algorithms.
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Algorithm 7 Fork-point Prediction
1: Tc ← current trajectory

2: TEc ← Tc encoded by its fork-points

3: Tset ← trajectories that start from the same source as Tc
4: n← len(Tset)

5: for i← 1 to n do
6: TEi ← Ti encoded by its fork-points

7: predictions← empty list

8: for i← 2 to n do
9: similarities← empty list

10: for j ← 1 to n do
11: if len(Tset,j) ≥ i then
12: forkpointc ← the first fork-point of TEc that appears

after i’th cell of trajectory Tc
13: append(sim(T [1..i], Tset,j[1..i]) , first fork-point of TEj) that

appears after i’th cell of trajectory Tset,j) to similarities

14: sort the similarities based on the similarity value

15: use majority voting between top five similarities to select the

next fork-point at step i and append it to predictions

16: return predictions
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7 Evaluation

This chapter describes our experimental setup used for evaluation. We explore the
performance of the segmentation, compression, and prediction of the approaches in-
troduced in this thesis. First, we evaluate the segmentation algorithms’ compression
power by looking into their compression rates. Then, we explore the effectiveness
of our segmentation algorithm by comparing it to the conditional Markov entropy
based segmentation algorithm. Afterwards, we evaluate the predictability of desti-
nations and segments.

In order to perform the evaluations we selected a subset of trajectories from each
dataset due to computational limitations. From each dataset, we select the most
popular source cell where the highest amount of the trajectories have started from.
After extracting the trajectories that start from the most popular source we have
11, 888 trajectories for the Cabspotting dataset, 731 trajectories for the Geolife
dataset, and 6, 208 trajectories for the Taxi Service Trajectories.

Figure 22 shows a heatmap for the trajectories of each dataset that start from the
most popular source. The figure demonstrates the number of visitations to each cell
and the corresponding entropy value of each cell. It can be easily observed that
close to the popular source cell the visitation frequency is high for the cells. As we
get further away from the source of trajectories there are fewer visitations for each
cell until we reach destinations that have been visited only few times. Regarding
the cell entropies, it can be observed that there is no relationship between the cell
visitations and entropy value. It again asserts our theory that there is an inherent
regularity within how people move. The cells with high cell entropy values are the
fork-points that segment the trajectories. Now that we covered the properties of the
data used for evaluations we move onto the next sections.

7.1 Compression

We have covered two different algorithms that utilises the entropy information to
do the trajectory segmentation. The first algorithm by [KGT15] uses conditional
entropy of Markov trajectories. We also introduced our own segmentation algorithm
that uses the cell entropies [FN16]. We use these algorithms to find the set of fork-
points within each trajectory. By using the segmentation methods and detecting the
fork-points, it is possible to compress and encode the trajectory with its fork-points.
Figure 23 illustrates the compression power of our segmentation approach using cell
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Figure 22: Heatmap of the cell visitation and entropy of the trajectories starting
from the most popular source for each dataset.

entropies. It can be observed from the density plot that for most of the trajectories
we can encode the trajectories with less than thirty percent of its points.
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Figure 23: The density of fork-points per trajectory based on our segmentation
approach using cell entropy.

On the other hand, by using the conditional entropy of Markov trajectories on
the Cabspotting dataset we get the compression ratios as shown by Figure 24. As
evident in the Figure, by using this segmentation approach we cannot achieve a good
compression of the trajectories as the majority of points will remain as segmentation
points. Therefore, by using our algorithm we can achieve higher compression rates.

7.2 Regularity and Segmentation

We have seen that by using the cell entropies we can achieve higher compression rates
compared to the method which uses the conditional entropy of Markov trajectories.
In addition to compression rate, we are interested in how effective our approach is in
finding the fork-points. In other words, we would like to measure the effectiveness
of our approach in detecting the points that are responsible for the highest amount
of irregularities within trajectories. In order to achieve this objective, we computed
the Markov trajectory entropy of every trajectory of the most popular source of
Cabspotting dataset. In addition, we also detected the fork-points of each trajectory
using our approach. Finally, we extracted the segmentation points as returned by
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Figure 24: The density of fork-points per trajectory based on conditional entropy of
Markov trajectories.

the conditional Markov trajectory entropy segmentation method.

Next, for each trajectory we only extract the points as returned by the conditional
entropy method. These are the cells which will result in ratios of conditional en-
tropies over total entropies of higher than one. Of these points, we randomly select
one of our fork-points and one of the non fork-points of the trajectory. For the
selected points, we compute the ratio of the conditional Markov trajectory entropy
over the total entropy of the trajectory. Figure 25 illustrates the results. We can ob-
serve that our approach can effectively detect points that are responsible for higher
irregularities within trajectories. Therefore, in addition to higher compression ratio
our approach is also effective in finding the cells that cause the highest amount of
irregularity within trajectories. In addition, our segmentation approach is compu-
tationally less expensive compared to the method that computes the conditional
entropies.
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Figure 25: The effectiveness of our segmentation approach is measured by comparing
it to the achieved ratios of conditional entropy over total entropy of trajectoriesf.

7.3 Destination Prediction

In the previous chapter, we have introduced five of the most popular trajectory
similarity measures. In this section, we first explore and compare the effectiveness
of the trajectory similarity measures to each other for predicting the destination.
Afterwards, we select a smaller set of data and utilise the conditional entropy of
Markov trajectories to predict the destination and see how it performs compared to
the classical trajectory similarity measures.

In order to compare the similarity measures to each other we use Algorithm 6. In
addition to calculating the accuracy for predicting the destination, we also compute
how far the predicted destination is from the actual destination of the trajectories.
Figures 26 and 27 display the results. Based on the figures, we can observe that
the task of destination prediction is quite hard. In the beginning of the paths
the accuracy is close to zero and as we move along the path to finally reach the
destination we can only achieve an accuracy of 40% percent for Cabspotting, 60%
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for Geolife, and 40% for the Taxi Service Trajectories. However, if we look into the
predicted destination and compute how far they are from the actual destinations, we
can see that the distance converges really fast to the minimum amount somewhere
in the middle of paths. While this result is better compared to accuracy achieved
by exact matching the predicted destination and the actual one, the distance error
of 1000 meters is still quite large. Another interesting observation is regarding the
performance of the different similarity measures. They seem to be not that different
from each other. This can be due to the fact that we use discretised version of the
trajectories and the their corresponding short lengths compared to GPS trajectories.

Figure 26: The accuracy of predicting the destination based on different similarity
methods along the path.

In addition to the classic similarity measures for trajectories, we also used the con-
ditional entropy of the Markov trajectories to predict the destination. Due to its
high computational complexity, from the trajectories starting from the most popular
source in each dataset, we only selected those that their destinations are in the top
10 most popular destinations from the most popular source to proceed.
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Figure 27: The distance from the predicted destination to the actual destination
based on different similarity methods along the path.

At each step along the trajectories, we extract all the observed cells by then and con-
dition on all the observed cells and compute the conditional entropy of the Markov
trajectories. We select the one that has the lowest conditional entropy value for the
prediction. Figures 28 and 29 display the results. We can observe that using the
conditional entropy does not help the prediction task and it performs worse than
state-of-the-art trajectory similarity measures. Therefore, the irregularities within
the paths are not small enough for the conditional entropy to find the actual path.

7.4 Segment Prediction

In the previous sections, we explored how efficient our segmentation algorithm is
for compressing the trajectories and how effective it is in finding the points that
contain the highest amount of irregularities. We also looked into the task of pre-
dicting the destination of the trajectories using the trajectory similarity measures
and conditional entropy values. As the last section of this chapter, we analyse how
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Figure 28: The accuracy of predicting the destination based on different similarity
methods along the path.

segmenting the trajectory affects the prediction. Mainly, as we progress along the
path we would like to predict the next fork-point on the way. In order to do this,
we do the trajectory segmentation and use Algorithm 7 to predict the fork-points
in a segment based manner.

Figure 30 shows the results of the fork-point predictions. We can observe that
segmentation has significantly improved the accuracy compared to when we only
select the most similar trajectories and return the destination of that trajectory as
the prediction. As we progress along the path, the fork-point prediction accuracy
increases and in general we reach an accuracy above 80%. Although the prediction
accuracy is higher in the beginning compared to the destination prediction results,
the accuracy is still relatively low. We can conclude that there is higher amount
of uncertainty at beginning of the paths which makes the prediction difficult. This
finding is line with the fact that we use a subset of data for evaluation which only
contains the trajectories that start from the most popular source cell. As we progress
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Figure 29: The distance from the predicted destination to the actual destination
based on different similarity methods along the path.

along the path, there is less and less irregularity within the paths to reach the
destination and that is why we get the better accuracies as we progress towards the
destination. Another interesting observation is the performance of the similarity
measures. In this case they all almost perform the same way. This is in line with
our assumption in the last section that short lengths are most probably contribute
to this behaviour.
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Figure 30: The accuracy of predicting the fork-points based on different similarity
methods along the path.
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8 Conclusion

In this thesis, we analysed the amount of regularity within trajectories and ways
to utilise it for decomposing the trajectories into segments which can be used for
encoding and prediction.

As our first contribution, we introduced a trajectory segmentation algorithm that
utilises local entropy. Our approach only needs to compute the local entropy of
cells; therefore, it has lower computational complexity compared to the approach
that segments the trajectories using conditional entropy of Markov trajectories which
requires costly matrix multiplications. We have shown that using our segmentation
algorithm, we can encode the majority of trajectories with less than 30 percent of
their points. In addition, we have shown that the extracted segmentation points
are in fact the points along the trajectories that are responsible for most of the
irregularity within the path.

The thesis has also investigated the predictability of trajectories. We described five
popular trajectory similarity measures and showed that predicting the destination
of a trajectory along the path using the similarity measures are difficult. We also
have observed that the conditional entropy of Markov trajectories perform worse
compared to the traditional trajectory similarity measures for predicting the des-
tination. Finally, as our last contribution, we have shown that by decomposing
the trajectories into segmentation points we can achieve better prediction accura-
cies. The effect of segmentation for prediction can be understood better when we
compare the prediction accuracy around the ending of trajectories where for the
traditional similarity measures we achieved at best an accuracy of 0.5 while using
the segmentation points we achieve prediction accuracies above 0.8 for all datasets.

To evaluate our algorithms, we have selected three popular movement datasets in
the human mobility research studies. These datasets are openly available which help
the reproducibility of results. To be able to analyse and process trajectory data, we
have covered methods for preprocessing them which are required for implementing
systems that capture and store trajectories. In addition, postprocessing methods
introduced to handle the erroneous and noisy observations. A limitation regarding
these datasets is that two of them only contain cab traces. While the way that
people move can be approximated with cab traces, they may lack some properties
of general human movement. For example, the way that cabs navigate through the
city may be different from how a private car would do. In addition, we do not have
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any information regarding other types of movements such as walking. GeoLife is the
only dataset that contains all types of transportations but compared to the other
two datasets it has considerably less trajectories.

In order to use Markov models for measuring the amount of regularity, we used a
grid model to discretise the trajectories and transform the area of observations into
the states of a Markov chain. Markov chains enabled us to use regularity measures,
specifically local entropy, entropy of the Markov trajectories, and conditional entropy
of Markov trajectories. However, it should be mentioned that using a uniform
resolution grid model causes some limitations. In case of big highways with multiple
lanes or large traffic junctions, the mapping of the observations to the grid cells
may not be accurate as the location may mistakenly be mapped to a neighbouring
grid cell instead of the correct one. This issue causes lower overall regularity in the
discretised system.

The proposed approach for modelling the people’s movement can be used in other
contexts other than the energy efficient tracking. Location Based Services (LBS)
are one example where the methodology can be useful. There are two types of these
services. Ones that are dependent on the location of the user in the current moment
and those that require a trace of the object’s movement. In either case, our ap-
proach can be used to model the movement and provide the system with predictions
regarding the path and the whereabouts of the user. Spatial trajectories are also of
high importance in the business analysis, city planning, and transportation.

The discussed methodology and system not only can be used in the context of
movement and energy efficient tracking but also to any other real-world phenomena
that can be modelled as a discrete Markov chain. Then, it is possible to use the
segmentation methods to extract the irregular points.

Everyday, more mobile applications track their user’s whereabouts by continuously
sensing their locations. Sensing the user’s location constantly is a costly action,
and greatly affects the energy consumption of tracking devices. Such applications
sense the locations and human movement trajectories continuously over an interval
of time. As a result, more smartphone users choose to disable the tracking option
in order to lower their energy consumption and save battery. On the other hand,
human movement habits are regular to a high degree; therefore, continuously track-
ing the locations by using costly sensors is not efficient. It is possible to make use
of this inherent regularity in their movement trajectories to predict path people
take to reach their destinations, which will result in an energy proportional usage of
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resources. After predicting the trajectory of the moving object, it is possible to re-
duce the usage of sensors proportionally. Therefore, accurate prediction of people’s
movement can result in efficient management of device resources.

As future work, we plan to look into real-time sampling techniques along individuals’
trajectories as they move. More specifically, we are interested in providing an energy-
efficient tracking solution that transform the trajectories into fork-points for future
reference and as people move we accordingly change the sampling rate.
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