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A variant of KCC2 from patients with febrile
seizures impairs neuronal Cl− extrusion and
dendritic spine formation
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Abstract

Genetic variation in SLC12A5 which encodes KCC2, the neuron-
specific cation-chloride cotransporter that is essential for hyper-
polarizing GABAergic signaling and formation of cortical dendritic
spines, has not been reported in human disease. Screening of
SLC12A5 revealed a co-segregating variant (KCC2-R952H) in an
Australian family with febrile seizures. We show that KCC2-R952H
reduces neuronal Cl� extrusion and has a compromised ability to
induce dendritic spines in vivo and in vitro. Biochemical analyses
indicate a reduced surface expression of KCC2-R952H which likely
contributes to the functional deficits. Our data suggest that KCC2-
R952H is a bona fide susceptibility variant for febrile seizures.
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Introduction

GABAergic inhibition in the mammalian brain is conveyed by

the conductance increase associated with the opening of GABAA

receptor channels (GABAARs) (shunting inhibition) and by the

postsynaptic hyperpolarization (voltage inhibition) caused by the

conductive Cl� influx along its electrochemical gradient, which is

largely maintained by the neuron-specific K-Cl cotransporter,

KCC2 [1]. During mammalian brain development, the functional

expression of KCC2 undergoes a dramatic increase [1–3] that is

critical for the establishment and maintenance of hyperpolarizing

inhibitory postsynaptic potentials [1]. More recently, rodent

KCC2 has (independently of its role as an ion transporter) been

shown to play an important role as a structural protein required

for the morphological and functional maturation of cortical

dendritic spines [4–6]. Thus, mutations in KCC2 can cause

perturbations in the functions of GABAergic and glutamatergic

transmitter systems and contribute to generation of epileptiform

discharges.

Animal models with expression deficits of KCC2 orthologues

have been described. Mutations in the Drosophila melanogaster KCC

gene kazachoc (kcc) confer increased seizure susceptibility [7]. The

mammalian KCC2 gene generates two N-terminal splice isoforms,

KCC2a and KCC2b, but expression of KCC2b only is strongly up-

regulated during development and accounts for most (> 90%) of the

total KCC2 protein in the adult murine cortex [8]. GABAergic

responses remain depolarizing in KCC2b knockout cortical cultures

[9], indicating that this isoform is responsible for the establishment

of hyperpolarizing GABAAR-mediated transmission [1]. Homozy-

gous KCC2b knockout mice exhibit generalized seizures and die

during the second postnatal week, whereas KCC2b heterozygotes,

which express ~50% of the wild-type (WT) mouse KCC2 (mKCC2)

protein level, show increased susceptibility to pentylenetetrazole-

induced seizures [10].

We analyzed the gene coding for human KCC2, SLC12A5, for

mutations in patients with seizure disorders. Here, we report the

functional characterization of a rare SLC12A5 variant. This missense

variant, resulting in an arginine-to-histidine substitution at position

952 in KCC2b (KCC2-R952H), was found in an Australian family
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with early childhood onset of febrile seizures. Our functional and

structural analyses in rodent cortical neurons in vivo and in vitro

indicate that this mutation brings about deficits in both neuronal

Cl� extrusion and the formation of dendritic spines. Functional studies

on rare variants are important as they provide insights into gene

malfunctions which are not accessible through genetic analyses

alone [11]. The significant functional deficit shown in this study,

taken together with the co-segregation in the family and the low

genic tolerance of SLC12A5, is consistent with a role for KCC2-

R952H as a susceptibility gene in febrile seizures.

Results

Identification of the human KCC2 variant

We analyzed 378 (266 unrelated) patients with seizure disorders,

including febrile seizures, febrile seizures plus and generalized

epilepsy, and found a total of 11 rare (minor allele frequency [MAF]

of < 1%) variants in SLC12A5. In one family with febrile seizures

(Fig 1A), a missense variant c.2855G>A (NM_020708.4) was identi-

fied in SLC12A5, and it was not present in ethnically matched

controls. The frequency of this variant is low (MAF 0.07%) in

publicly available variant databases (rs142740233 in NIH dbSNP,

Ensembl 1000 genomes and NHLBI Exome Variant Server), consis-

tent with a role in disease susceptibility. The variant exon will be

present in both KCC2b and KCC2a isoforms with an Arg to His

substitution at positions 952 and 975, respectively. This arginine is

highly conserved across mammalian and avian species (Fig 1B and C).

We selected the shorter KCC2b isoform for further study because it

is preferentially expressed in the cortex and hippocampus and has

been implicated in GABAergic signaling [1]. For convenience, we

refer to the KCC2b variant as KCC2-R952H.

KCC2-R952H was found in a family with febrile seizures

(Fig 1A). In one branch, there were four affected subjects (II-2, II-3,

III-1, III-2) with well-characterized and infrequent febrile seizures

(1–3 attacks) occurring between 12 months and 2.5 years of age.

The variant was inherited from a grandfather (I-2) with no knowl-

edge of childhood febrile seizures (FS) and with no living parents to

confirm his seizure status. For similar reasons, the seizure status of

I-3 could not be confirmed. The inherited variant was present in all

three affected family members tested, with one affected individual

(II-3) not available for genotyping. In the second branch, informa-

tion on the precise phenotype was not available and testing was

limited.

Functional analysis of KCC2-R952H

We used surface protein biotinylation and immunoblotting to

compare the total and cell surface expression levels of KCC2-WT

and the mutated KCC2-R952H protein in a mouse neural stem cell

line (Fig 2). While no difference in the total protein expression

level was observed between KCC2-WT and KCC2-R952H

(98.6 � 0.16% of WT; P = 0.625), the surface expression of

KCC2-R952H was markedly reduced (61 � 0.16% of WT;

P = 0.004).

In order to investigate the capacity of KCC2-R952H to transport

Cl�, we took advantage of the very low endogenous level of
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Figure 1. Segregation, conservation and location of the KCC2-R952H variant.

A Pedigree of the family with the KCC2-R952H variant, showing segregation of the variant with the febrile seizures phenotype.
B Amino acid sequence alignment of KCC2 shows high conservation of R952 among different species.
C Putative membrane topology of KCC2. R952H is located in the distal part of the intracellular C-terminus.
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functional KCC2 expression in rodent cortical pyramidal neurons

during the first postnatal week [2,12,13]. In utero electroporation

(IUE) with rat KCC2 (rKCC2) has been shown to result in a preco-

cious hyperpolarizing shift in the reversal potential of GABAAR-

mediated currents (EGABA) at postnatal day (P) 6 in somatosensory

layer 2/3 cortical pyramidal neurons [12]. We observed a significant

increase in the Cl� extrusion capacity, quantified as the bumetanide-

insensitive somatodendritic EGABA gradient (DEGABA) [2,4,13], in P6-7

mouse somatosensory layer 2/3 cortical pyramidal neurons electro-

porated in utero with human KCC2-WT (DEGABA = �5.01 �
0.40 mV/50 lm; P < 0.001 vs. non-transfected EGFP-negative

neurons [control] with DEGABA = �2.24 � 0.31 mV/50 lm) (Fig 3).

As expected, neurons electroporated with a known transport-deficient

N-terminally deleted rat construct (rKCC2-DNTD) [4] displayed a very

low level of Cl� extrusion capacity (DEGABA = �2.07 � 0.38 mV/

50 lm) that was not different from that observed in EGFP-negative

neurons or those transfected with EGFP alone (DEGABA = �2.19 �
0.39 mV/50 lm) (Fig 3C), consistent with lack of functional mKCC2

at this age, cf. for example [2]. In neurons transfected with KCC2-

R952H, the mean Cl� extrusion capacity (DEGABA = �3.28 �
0.33 mV/50 lm) was slightly higher when compared to non-

transfected controls (P = 0.034; KCC2-R952H vs. control), but failed

to reach the level of Cl� extrusion capacity generated by KCC2-WT

(P = 0.002; KCC2-R952H vs. KCC2-WT) (Fig 3C). Thus, the R952H

mutation is associated with deficits in maintaining the Cl� driving

force required for hyperpolarizing GABAAR-mediated responses.

The C-terminal domain is critical for both the ion-transport

and structural role of KCC2 [4,5,14]. Our previous work showed

that this domain of rKCC2 interacts with the actin cytoskeleton

[4,15] to promote spine formation [4,5]. IUE of full-length rKCC2,

rKCC2-DNTD, or the isolated C-terminal domain of rKCC2, has

been shown to lead to a persistent increase in the density of

functional dendritic spines of layer 2/3 pyramidal neurons in vivo

during the brain growth spurt [5]. We analyzed the spine density

of Lucifer yellow-filled P15 layer 2/3 pyramidal neurons from

rats, electroporated in utero with either KCC2-WT or KCC2-

R952H. In line with our previous data obtained using rKCC2 [5],

confocal analysis of the second-order dendritic shafts of neurons

co-electroporated with KCC2-WT and EGFP revealed substantially

increased spine densities in both apical (1.56 � 0.07/lm;

P = 0.012) and basal (1.62 � 0.01/lm; P = 0.007) dendrites, as

compared to apical (1.18 � 0.08/lm) and basal (1.35 � 0.06/lm)

dendrites of neighboring EGFP-negative neurons (Fig 4A). Impor-

tantly, no significant effect on either apical (1.29 � 0.05/lm;

P = 0.126) or basal (1.18 � 0.07/lm; P = 0.283) spine density

was observed in neurons co-electroporated with KCC2-R952H and

EGFP when compared to apical (1.18 � 0.08/lm) and basal

(1.14 � 0.06/lm) dendrites of the surrounding non-transfected

EGFP-negative neurons (Fig 4A).

In order to further study the effects of the R952H mutation on the

maturation and maintenance of dendritic spines, we used cultured

mouse cortical KCC2�/� neurons, which lack mature dendritic

spines and instead display elongated filopodia-like dendritic protru-

sions [4]. We found a rescuing effect on spine length of mKCC2�/�

neurons after transfection with KCC2-WT (2.19 � 0.19 lm;

P < 0.001), but not with KCC2-R952H (2.83 � 0.17 lm; P = 0.3),

when compared to EGFP alone (3.12 � 0.28 lm) (Fig 4B). Thus,

our present in vivo and in vitro data indicate that the R952H muta-

tion compromises the participation of KCC2 in the formation and

maturation of cortical dendritic spines.

Discussion

To date, no loss-of-function mutation of the SLC12A5 gene

encoding for human KCC2 has been described. Here, we provide
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Figure 2. The R952H substitution in KCC2 leads to a reduction in surface expression.

A Western blot analysis of total protein shows comparable expression levels of KCC2-WT and KCC2-R952H, when heterologously expressed in C17.2 cells.
B Quantification of total (n = 5) and cell surface (n = 9) protein expression of KCC2-R952H, normalized to KCC2-WT. Statistical analysis was performed using Wilcoxon

matched pairs test. **P < 0.01. Error bars represent SEM.
C Representative Western blot of biotinylated (s, surface) and non-biotinylated (i, internal) KCC2-WT and KCC2-R952H. Tubulin and transferrin receptor (TfR) served as

loading controls.

Source data are available online for this figure.
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a detailed functional analysis of a novel KCC2 missense variant

KCC2-R952H, which was identified in an Australian family with

febrile seizures. Using mammalian cortical expression systems,

we demonstrate that the R952H mutation confers a deficit in

neuronal Cl� extrusion capacity (Fig 3). In addition, our data in

vivo (based on IUE) and in vitro (based on cultured mKCC2�/�

cortical neurons) show that the R952H mutation impairs the

contribution of KCC2 to the formation of dendritic spines (Fig 4).

Notably, R952 is located in the intracellular C-terminal domain of

KCC2 (Fig 1C), which is crucial for both the ion-transport [14]

and structural roles of KCC2 [4,5]. Several residues in the

C-terminus of KCC2, including S940 located in close proximity to
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Figure 3. Cl� extrusion capacity measurements from in utero electroporated cortical neurons reveal impaired Cl� extrusion by KCC2-R952H.

A IUE of EGFP and either KCC2-WT or KCC2-R952H at embryonic day 14.5 targets mouse cortical layer 2/3 pyramidal neurons (analysis at postnatal day (P) 6).
Transfected neurons co-express either of the KCC2 constructs (red) with EGFP, while endogenous mKCC2 levels in non-transfected neurons at this age are low. Scale
bars: 100 lm and 20 lm (insets).

B Whole-cell patch clamp recordings of GABA uncaging-elicited GABAA-mediated currents (IGABA) in transfected cortical layer 2/3 pyramidal neurons with a somatically
imposed Cl� load. Sample EGABA recordings and corresponding I-V curves at the soma and dendrite. Horizontal bars in the sample traces indicate the duration of the
uncaging UV-flash.

C Cl� extrusion capacity of P6-7 cortical pyramidal neurons expressing EGFP (n = 8), KCC2-WT (n = 15), KCC2-R952H (n = 16) or rKCC2-DNTD (n = 8) was quantified as
the somatodendritic EGABA gradient (DEGABA = EGABA-soma � EGABA-dendrite). EGFP-negative neurons (n = 17) served as controls. Statistical analysis was performed using
one-way ANOVA with Holm–Sidak post hoc test. *P < 0.05; **P < 0.01. Error bars represent SEM.
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R952, are critical for regulation of KCC2 surface expression [16].

The presently observed decrease in the surface expression of

KCC2-R952H in a neuronal stem cell line (Fig 2) is consistent

with both the decrease in Cl� extrusion and deficit in spine

formation.

Our functional analysis of this KCC2 variant in pyramidal

neurons of the mammalian cortex, taken together with the co-segre-

gation and genic intolerance analysis discussed below, is strongly

suggestive of a role for KCC2-R952H as a susceptibility variant in

FS, thereby extending the list of other seizure susceptibility genes

including GABRD, CACNA1H, HCN2 and SCN9A [17–19]. Such

susceptibility variants contribute to epilepsy with complex or poly-

genic inheritance [20]. Rare variants of this kind are not readily

amenable to statistical methods of validation such as genetic associ-

ation studies, as their low frequency means that very large cohorts

would be required to achieve statistical significance. Susceptibility

variants are also refractory to linkage analysis approaches, as they

do not segregate in a Mendelian fashion in large families. In this

context, it is important to note that SLC12A5 is among the 4.5%

most intolerant human genes (http://chgv.org/GenicIntolerance/)

with regard to genic variation, and therefore, mutations in SLC12A5

are good candidates to contribute to disease phenotypes. Given the

fact that KCC2 is a neuron-specific molecule, it is worth noting that

low genic tolerance is prominent in relation to neurodevelopmental

disorders [21].

A strong mechanistic link from the above observations on the

defects of KCC2-R925H to the human febrile seizure phenotype is

provided by studies which have shown that genetic deficits in

mKCC2 expression result in increased network excitability [22] and

higher susceptibility to seizures [10,23]. However, it is not known

whether the enhanced seizure susceptibility in the animal models is

attributable to reduced neuronal Cl� extrusion and/or to impair-

ments in spine formation. Seizure-triggering mechanisms show a

wide heterogeneity at the cellular and network level [24]. Thus,

a decrease in the efficacy of KCC2-dependent hyperpolarizing

inhibition is expected to promote triggering of seizures (see

Introduction). In addition, dendritic abnormalities including both

increases and decreases in spine number have been observed in

brain tissue from patients with genetic disorders characterized by a

high prevalence of seizures and epilepsy [25,26]. While an increase

in spine number may enhance overall excitability, a decrease may

lead to desynchronization [27] and thereby promote seizures as

discussed elsewhere [24,28].

In summary, our functional analyses of KCC2-R952H provide a

novel molecular basis for enhanced susceptibility to FS.

Materials and Methods

Patient recruitment

Patients were recruited through private practice, epilepsy clinics and

referral to our epilepsy genetics research program and underwent

phenotyping using a validated seizure questionnaire [29]. Medical

records were obtained where available. Control samples were

anonymous Australian blood donors.

Genetic screening

Patients were screened for mutations in the 26 coding exons of

SLC12A5 by single-stranded conformation analysis (SSCA) using the

GelScan 3000 apparatus (Corbett Research). The sequences of primers

used are listed in Supplementary Table S1. Samples showing

bandshifts were Sanger-sequenced using the BigDye terminator

cycle sequencing kit (Applied Biosystems), and sequencing reac-

tions were analyzed using the ABI 3131 Genetic Analyzer (Applied

Biosystems). Family members of patients showing a rare coding

variant were tested for that variant by direct Sanger sequencing.

Controls were screened for exons showing variants by SSCA as

described above.

A B

Figure 4. KCC2-R952H is unable to induce dendritic spines in vivo or rescue mature spine morphology of cortical mKCC2�/� neurons.

A In utero electroporation of E17.5 rat embryos with KCC2-WT leads to an increase of both apical (n = 28 neurons) and basal dendrite (n = 40) spine density of cortical
layer 2/3 pyramidal neurons, when compared to non-transfected neighboring neurons (apical, n = 18; basal, n = 22). In contrast, KCC2-R952H is unable to induce
dendritic spines (transfected: apical, n = 37; basal = 46; non-transfected: apical, n = 22; basal, n = 28). Analysis of spine density was performed on P15. Right panel:
representative confocal images of spine densities. Statistical analysis was performed using Student’s paired t-test. *P < 0.05; **P < 0.01.

B Expression of KCC2-R952H is incapable of rescuing normal spine morphology in cultured mKCC2�/� cortical neurons. Aberrant spine morphology of mKCC2�/�

neurons is rescued by expression of KCC2-WT (n = 19 neurons), but not KCC2-R952H (n = 12) or EGFP (n = 12). Right panel: representative confocal images of spine
lengths. Statistical analysis was performed using the Kolmogorov–Smirnov test. ***P < 0.001.

Data information: Scale bars, 5 lm. Error bars represent SEM.
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Experimental animals

Heterozygous KCC2 mice (KCC2+/�) [4] were crossed to produce

KCC2�/� embryos. ICR mice and Wistar rats were used for IUE.

Experiments using mice were carried out with the approval by the

National Animal Ethics Committee of Finland and the local Animal

Ethics Committee of the University of Helsinki. Experiments using

rats were conducted according to the guidelines of the Swiss Federal

Veterinary Office and approved by the cantonal Animal Welfare

Committee.

DNA constructs

The constructs expressing KCC2-WT, KCC2-R952H and rKCC2-

DNTD were generated by subcloning the respective KCC2 variant

sequences into the pCAG vector [5,30]. rKCC2-DNTD has been

described previously [4,5,15]. The pCAG-EGFP plasmid was co-

expressed to fluorescently label transfected cells [cf. 5].

Transfection, surface biotinylation and immunoblotting of neural
stem cell cultures

The mouse neural stem cell line C17.2 was cultured at 26°C using

standard methods [15]. Cells at ~80% confluency were transfected

with KCC2-WT or KCC2-R952H expression vectors using Turbofect.

Surface biotinylation and immunoblotting of the cells were

performed as described before [13].

IUE in mice and rats

Timed-pregnant rats with embryonic day (E) 17.5 embryos were

used for IUE with the above-mentioned plasmids. Rats were electro-

porated as previously described [5]. For IUE of mice, the following

modifications to the protocol were applied: Timed-pregnant mice

with E14.5 embryos were anesthetized with isoflurane (4.2% induc-

tion, 2.5% during surgery). All embryos were injected with 2 ll
plasmid DNA solution (in 0.9% NaCl, 0.1% Fast Green). The

plasmid encoding EGFP (1 lg/ll) was injected alone or with KCC2

constructs (3 lg/ll) [5]. Electroporation was done with 5-mm-

diameter circular electrodes (Sonidel Limited) with five pulses (45 V,

50 ms duration at 100 ms intervals), delivered with a square-wave

generator (CUY21vivo SC, Sonidel Limited).

Assessment of the efficacy of KCC2-mediated Cl� extrusion in
layer 2/3 pyramidal neurons

Acute 400-lm coronal neocortical slices were used as before [5]. To

measure KCC2-mediated Cl� extrusion, we used our standard assay

where a somatic Cl� load (19 mM) is imposed on the neuron via a

whole-cell patch pipette. The ensuing bumetanide-insensitive

somatodendritic EGABA gradient, DEGABA, determined as the differ-

ence between the EGABA at the soma and at 50 lm away along the

apical dendrite, provides an accurate estimate of the net Cl� extru-

sion [13]. Whole-cell patch clamp recordings were performed as

before [13] in an experiment-blind manner from EGFP-positive layer

2/3 pyramidal neurons from slices of P6-7 mice co-electroporated in

utero with plasmids bearing constructs encoding for EGFP and one

of the following: KCC2-WT, KCC2-R952H or rKCC2-DNTD. Some

animals were electroporated with the EGFP plasmid alone. DPNI-

caged GABA (Tocris) was used to elicit GABAAR-mediated currents

[31]. All recordings were performed in the presence of 10 lM
bumetanide (Tocris), 0.5 lM TTX (Abcam), 10 lM CNQX (Abcam)

and 1 lM CGP 55845 (Abcam) in the standard extracellular solution

[13].

Transfection of mouse primary cortical neurons

E16 mKCC2�/� embryos were used for primary neuronal culture [4].

Cortices from each embryo were dissected and plated separately.

Neurons were grown on coverslips coated with poly-D-lysine in

Neurobasal medium supplemented with B27 (GIBCO, Life Technolo-

gies). Transfection was performed on DIV8 using Turbofect

(Thermo Scientific) and experiments at DIV13.

Analysis of spine density and length

Spine density analysis of rat somatosensory layer 2/3 pyramidal

neurons filled iontophoretically with Lucifer yellow was done as

described previously [5]. Spine lengths from cultured neurons were

analyzed on acquired stacks of images using NeuronJ software

(http://rsb.info.nih.gov/ij/). Fluorescence images for dendritic

spine length analysis were acquired with a Zeiss LSM 710 confocal

microscope equipped with a 63× oil-immersion objective.

KCC2 staining in slices from in utero electroporated mice

Detection of KCC2 was done on 30 lm coronal cryosections from

fixed brains (P6 mice, fixed with 4% PFA). Blocking and staining

was performed in 3% BSA, 0.2% saponin, 10% goat serum in PBS

mounted with Vectashield hard set mounting medium. The follow-

ing antibodies were used: rabbit anti-KCC2 antibody (1:1,000;

Millipore), chicken anti-GFP (1:1,000; Abcam), donkey anti-rabbit

Cy3-conjugated (1:1,000; Jackson Immuno Research) and donkey

anti-chicken Alexa 488-conjugated (1:1,000; Jackson Immuno

Research).

Supplementary information for this article is available online:

http://embor.embopress.org
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