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Abstract

Background: With next-generation sequencing (NGS) technologies, the life sciences face a deluge of raw data.

Classical analysis processes for such data often begin with an assembly step, needing large amounts of computing

resources, and potentially removing or modifying parts of the biological information contained in the data. Our

approach proposes to focus directly on biological questions, by considering raw unassembled NGS data, through a

suite of six command-line tools.

Findings: Dedicated to ‘whole-genome assembly-free’ treatments, the Colib’read tools suite uses optimized

algorithms for various analyses of NGS datasets, such as variant calling or read set comparisons. Based on the use of a

de Bruijn graph and bloom filter, such analyses can be performed in a few hours, using small amounts of memory.

Applications using real data demonstrate the good accuracy of these tools compared to classical approaches. To

facilitate data analysis and tools dissemination, we developed Galaxy tools and tool shed repositories.

Conclusions: With the Colib’read Galaxy tools suite, we enable a broad range of life scientists to analyze raw NGS

data. More importantly, our approach allows the maximum biological information to be retained in the data, and uses

a very low memory footprint.

Keywords: NGS, Metagenomics, RNA-seq, Variant calling, Whole-genome assembly-less treatment, De Bruijn graph,

Bloom filter, long read correction

Findings
Background

For some years now, owing to the impact of high-

throughput sequencing, also known as next-generation

sequencing (NGS), genomics is witnessing profound

changes. NGS technologies generate huge volumes of

data, up to terabyte scale, and new types of raw and pro-

cessed data. Usually, a generic assembly (preprocessing)

is first applied to the raw sequences, and then, in a sec-

ond step, the information of interest is extracted. This

protocol may lead to a significant loss of information, or
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may generate chimerical results because of the heuris-

tics used in the assembly. To circumvent this problem,

we developed a set of innovative methods for extract-

ing information of biological interest directly from NGS

data, which allows the user to bypass a costly and often

inaccurate assembly phase. Notably, the approaches devel-

oped do not require the availability of a reference genome.

This considerably broadens the spectrum of applications.

In this paper we present our approach, which relies on

a tools suite born from the Colib’read [1] project and

is dedicated to whole-genome assembly-free treatments.

A set of six tools based on this framework, KISSPLICE

[2], MAPSEMBLER2 [3], DISCOSNP [4], TAKEABREAK [5],

COMMET [6], and LORDEC [7], are described below. To

facilitate the use and the dissemination of our approach,

we have developed Galaxy [8–11] tools and created

© 2016 Le Bras et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.



Le Bras et al. GigaScience  (2016) 5:9 Page 2 of 14

repositories on GUGGO Tool Shed [12, 13]. We first

highlight the fundamental computational concepts shared

by the tools, and this is followed by the algorithmic

developments and tool descriptions. Next, several appli-

cations using biological data are described and the

Galaxy integration and dissemination processes are then

detailed. Finally, the Galaxy integration and processes are

described.

Overview

The common denominator of all the tools presented is

the fact that they are all dedicated to the analysis of NGS

datasets without the need for any reference genome. An

overview of these six tools is presented graphically in

Fig. 1. Table 1 summarizes the inputs and outputs of each

tool. In short, KISSPLICE, DISCOSNP, and TAKEABREAK

perform de novo variant identification and quantification.

For these tools the general approach is: 1) define a model

for the elements sought; 2) detect in one or several NGS

datasets those elements that fit the model; 3) output these

together with a score and their genomic neighborhood.

MAPSEMBLER2 generates a targeted assembly surround-

ing sequences of interest provided by the user. MAPSEM-

BLER2 can provide the assembly as a graph and proposes

a tool for visualizing it.

LORDEC uses short reads for correcting third-

generation long reads, and finally COMMET (COmpare

Multiple METagenomes) is dedicated to the comparison

of numerous metagenomic read sets. Special care was

given to limit both the memory and time requirements

of all tools. Thus, five of the six tools are based on the

usage of a compact representation of a de Bruijn graph, as

explained in the next section.

Note that all the algorithms presented here were devel-

oped bearing in mind the need for simple and user-

friendly tools. They can be applied on raw sequenced

short reads, without requiring any pretreatment. How-

ever, if users are aware of bias such as contaminants or

systematic sequencing errors, they can be used on prepro-

cessed datasets and this can give better results.

A common kernel: the de Bruijn graph

From a computational viewpoint, with the exception of

COMMET (which has no need of such a graph, and only

uses a bloom filter), all the algorithms presented are based

on the use of a de Bruijn graph (dBG). A dBG is a directed

graph whose vertices are the k-long words contained in

the reads, i.e. k-mers, and whose arcs represent all k-1
overlaps between these k-mers (vertices). See Figs. 2 and 3

for examples of dBGs.

Through the last decade, dBGs have been used exten-

sively in the short read assembly framework. Indeed,

the construction of such graphs is fast as it avoids any

alignment computation, and it is memory efficient, as it

compresses the read redundancy. In addition, since every

nucleotide is explicitly present in this structure, sequence

variants correspond to recognizable patterns. Therefore

dBGs are well tailored for developing methods for detect-

ing sequence polymorphism. DISCOSNP detects patterns

generated by single-nucleotide polymorphisms (SNPs);

KISSPLICE deals with RNA-seq data and finds patterns

generated by SNPs, indels, and alternative splicing (AS)

Fig. 1 Overview of the six tools from the Colib’read project integrated with Galaxy and presented in this paper
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Table 1 Summary of the Colib’read tools inputs and outputs

Tool In Out

KISSPLICE One or more RNA-seq read set(s) SNPs, small indels, alternative splicing events

DISCOSNP One or more raw genomic read set(s) SNP sequences with their coverages

TAKEABREAK One or more raw genomic read set(s) Inversion breakpoints

MAPSEMBLER2 Pieces of known sequences, and associated raw read sets Validation and visualization of genome structure near a locus of interest

COMMET Several raw metagenomic complex read sets Global comparison of input sets at the read level

LORDEC Illumina and PacBio read sets Corrected PacBio read set

events; and TAKEABREAK detects patterns generated by

inversions.

MAPSEMBLER2 and LORDEC are also based on a dBG,

respectively for building a targeted assembly and as a

reference for correcting third-generation long reads.

With the exception of KISSPLICE and COMMET, all the

algorithms presented are based on an efficient represen-

tation of the de Bruijn graph with optimized bloom filters,

implemented in the GATB C++ library [14], as used for

the first time in the MINIA [15, 16] assembler.

A bloom filter is a probabilistic data structure that stores

the presence/absence of items. It consists of a simple bit

vector, initially all set to ‘0’. Any item is associated with

a set of a few addresses in this vector (typically seven

addresses). While adding an item, the corresponding bits

are set to ‘1’. Note that a bit may be set to ‘1’ from several

distinct items. While querying an item, if all its bits are

equal to ‘1’ then the item is considered as indexed in the

bloom filter. Conversely, if any of its bits are equal to ‘0’,

the item is absent from the indexed data. The main advan-

tage of the bloom filter is its simplicity and its lowmemory

footprint. Its main disadvantage is that it is probabilistic: if

the bloom filter answers ‘yes’ while querying the presence

of an item, this answer may be wrong (with a controlled

percentage).

Thus, the bloom filter representation has the main

advantage of a very low memory footprint. For instance,

nearly 3 billion reads (100 bp) were analyzed by DISCO-

SNP, using at most 5.7GB of memory. Moreover, the

low memory footprint does not imply a degradation in

the running time. The COMMET tool, being a heuris-

tic based only on a bloom filter, is also fast and

has an extremely low memory footprint. Unfortunately

the GATB [14] data structure does not yet allow the

assignment of additional information to dBG nodes.

In the KISSPLICE case, as presented in more detail

in the following section, the nodes of the graph need

to be tagged, thus requiring the use of an explicit

dBG representation. Even if this representation is more

resource intensive, it scales up perfectly in RNA-seq data

problems.

Description of tools

DISCOSNP

DISCOSNP [4] is a reference-free SNP calling program

that focuses on the detection of both heterozygous and

homozygous isolated SNPs, from any number of sequenc-

ing datasets.

The DISCOSNP method rests on the following observa-

tion: in the dBG, a SNP generates a pair of paths composed

of k vertices, which represent 2k-1 length sequences that

are polymorphic on one position. This corresponds to a

so-called bubble in the dBG, as depicted in Fig. 2. The

model formalism can be found in [4].

DISCOSNP is composed of two modules: KISSNP2, fol-

lowed by KISSREADS. The tool takes as input any number

(potentially one) of read sets, i.e. samples. It processes all

read sets together (creating the dBG and detecting the

SNP-specific motifs) and outputs all isolated SNPs (for a

given k) shared by any number of samples. The KISSNP2

output is a multi-FASTA file in which every consecutive

pair of sequences corresponds to the two paths of a SNP

(2k-1 sequences) together with their left and right con-

tigs, which are reconstructed with the MINIA assembler

[15]. The KISSREADS module maps back input reads on

the sequences of the predicted SNPs in order to validate

Fig. 2 Toy example of a ‘bubble’ in the de Bruijn graph (k = 4). The bubble is generated by an SNP present in two polymorphic sequences,

. . . CTGACCT. . . and . . . CTGTCCT. . .
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Fig. 3 de Bruijn graph with k = 3 for the sequences: ACTGGAGCG (awb) and ACTGCG (ab). The pattern in the sequence generates an (s, t)-bubble,
from CTG to GCG. In this case, b = GCG and w = GGA have their first letter G in common, so the path corresponding to the junction ab has
k − 1 − 1 = 1 vertex

them and to provide per allele coverage and per read

set information. The coverage is then used to compute a

phi score, i.e. a normalized chi-squared statistic varying

between 0 and 1, which ranks best those SNPs that are dis-

criminant between the samples. Finally, SNPs are sorted

according to the phi score.

DISCOSNP outperforms, mostly in terms of time and

memory resources, state-of-the-art de novo or reference-

based SNP discovery methods [4]. Indeed, DISCOSNP

scales remarkably well on big data studies as illustrated in

Table 2.

KISSPLICE

KISSPLICE [2] (Fig. 4) is a program that enables the anal-

ysis of RNA-seq data with or without a reference genome

or transcriptome. It is an exact local transcriptome assem-

bler that allows identification of SNPs, indels, and AS

events. The software can deal with an arbitrary num-

ber of biological factors, and it is able to quantify each

variant in each condition. KISSPLICE has been tested on

Illumina datasets of up to 1 billion reads. The mem-

ory consumption is around 5Gb for 100 million reads.

The local aspect of KISSPLICE allows it to scale better

to larger datasets than traditional global assemblers, for

example Trinity [17]. However, it does not reconstruct

full-length transcripts, but only the variable regions. For

instance, in an exon skipping event only the sequence

of the skipped exon (plus some fixed-length context) is

computed.

Variations in a transcriptome (including AS events)

correspond to recognizable patterns in the dBG [2],

known as ‘bubbles’ as briefly described in the DISCOSNP

section above.

An example of such a bubble is given in Fig. 3.

The KISSPLICE program is composed of four steps: (i) de

Bruijn graph construction, (ii) biconnected components

decomposition, (iii) bubble enumeration, and (iv) event

classification and quantification. In the first step, common

to other Colib’read tools, the dBG is built from the set of

reads using the GATB structure.

The second step in KISSPLICE decomposes the dBG into

biconnected components (see [2] for formal definitions).

This step requires marking the nodes and cannot be per-

formed with the current version of the GATB structure,

explaining why an explicit representation of the dBG is

required. This decomposition has the advantage of not

splitting the searched motifs while offering the possibility

of performing the motif search in each component inde-

pendently, and possibly in parallel. With RNA-seq data,

this lossless graph decomposition is very efficient for split-

ting the dBG. For DNA-seq data, this decomposition is

not efficient as most of the graph is made of a single

biconnected component.

The third step, bubble enumeration, is the core of the

KISSPLICE program. In this step the goal is to find all

motifs (bubbles) satisfying the model constraints. This

step is implemented using the enumeration algorithm

given in [18].

Finally, in the fourth step each bubble is classified into

four categories (indels, SNPs, AS events, and repeats) and

quantified in each condition, independently. The quan-

tification is done with KISSREADS, where we obtain the

Table 2 Time and memory consumption examples

Tool Sample type Number of reads Computation time Max. RAM use

KISSPLICE H. sapiens tissues RNA-seq 71 million 3 h 8GB

DISCOSNP S. cerevisiaeWGS 1.4 billion 34 h 6GB

MAPSEMBLER2 S. cerevisiaeWGS 430 million 24 h 1GB

TAKEABREAK S. cerevisiaeWGS 430 million 2 h 4GB

COMMET Soil and seawater metagenomes 71 million 14 h 7GB

LORDEC E. coliWGS 11 million and 0.08 million 3.3 h 0.66 GB

LORDEC S. cerevisiaeWGS 2.25 million and 0.26 million 25 h 0.74 GB
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Fig. 4 Running KisSplice on Galaxy. a KisSplice tool form allowing selection of input datasets and tool parameters. b KisSplice outputs

number of reads for each condition mapping to each

variant. The final result, i.e. for each event the sequence

of the variable part plus some sequence context and the

quantification, is then output in a FASTA format.

TAKEABREAK

TAKEABREAK [5] is a method of detecting inversion vari-

ants from one or several sets of reads without any refer-

ence genome. The rationale behind it is similar to that of
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DISCOSNP: inversion variants generate particular topolog-

ical motifs in the dBG.

Inversion variants are defined as follows: a sequence I
is said to be an inversion variant between two genomes if

we can find the sequence aIb in one genome and aI ’b in

the other, with a and b being two k-mers and I ’ being the
reverse complement of I. We define the k-mers u and v as
the first and last k-mers of I respectively. The occurrence
in the data of the four breakpoint sequences au, vb, av’,
and u’b (each of size 2k) generate a particular motif in the

dBG that we call the inversion pattern. This motif is com-

posed of two k-forks (a k-fork can be defined by two paths

of size k joined at one extremity by a common branching

node) joining together in a pseudo-cycle the four k-mers

a, u, v, and b. An efficient algorithm was implemented in

the software TAKEABREAK to find such inversion break-

points in the dBG while avoiding numerous false positives

due to repeated sequences. The implementation has very

limitedmemory impact and runtimes (Illumina reads sim-

ulated at 2 × 40x coverage from human chromosome 22

can be treated in less than 10 min, with less than 1GB of

memory).

MAPSEMBLER2

MAPSEMBLER2 [3] is a targeted assembly program. It

takes as input one or more set(s) of NGS raw reads

(FASTA or FASTQ, gzipped or not) and a set of input

sequences, called the ‘starters’. All the input read sets

are used together to assemble the neighbors of each of

the starters provided. These neighbors are output either

as simple sequences (a sequence is cut as soon as two

choices occur during the assembly) or as a graph in which

polymorphisms are shown.

MAPSEMBLER2 may be used, for instance, for under-

standing the third-party assembly failures or chimeric

assemblies, or for validating and visualizing the presence

or absence of assumed polymorphism near one or several

sequence(s) of interest (Fig. 5).

A special tool, called the ‘Graph of Sequence Viewer’

(GSV), was developed for visualizing and manipulating

the graphs produced by MAPSEMBLER2, as shown in

Fig. 6. Such graphs are in JSON format.

The visualization framework was designed to facili-

tate the interpretation of MAPSEMBLER2 outputs. Cur-

rently, this visualizer is compatible only with JSON format

MAPSEMBLER2 outputs and with any dBG graph respect-

ing the specific JSON characteristics. Further work will

make GSV compatible with semantic web or systems biol-

ogy tools to visualize, for example, RDF files or biological

networks.

COMMET

COMMET [6] provides a global similarity overview

between all datasets of a large metagenomic project.

Directly from non-assembled reads, all-against-all com-

parisons are performed through an efficient indexing

strategy. The results are stored as bit vectors, i.e. a com-

pressed representation of read files, which can be used to

further combine read subsets by common logical opera-

tions. Finally, COMMET computes a clusterization of the

metagenomic datasets, which is visualized through den-

drograms and heatmaps.

LORDEC

LORDEC [7] is a tool to correct sequencing errors in long

reads obtained from third-generation high-throughput

sequencing technologies [7]. Third-generation sequenc-

ing machines, especially PacBio, offer the advantage of

delivering much longer reads than previous technologies

(up to 20Kb), often at the expense of sequence preci-

sion. Current estimates show that sequencing errors in

PacBio reads average around 15 %, while traditional Illu-

mina short reads exhibit an average error rate around

1 %. Moreover, PacBio sequencing suffers from a major-

ity of insertion/deletion errors. It is thus necessary to

correct these long reads before analysis, or at least dur-

ing assembly, and different solutions have been proposed

[19–22], but these approaches “require high computa-

tional resources and long running times on a supercom-

puter even for bacterial genome datasets”. [22].

In summary, LORDEC adopts a hybrid approach that

takes advantage of the low error rate of short reads

to correct the long ones. To avoid the computational

bottleneck of all-against-all alignments, LORDEC builds

the dBG of the short reads, and aligns long reads to

the paths of the dBG. LORDEC exploits the fact that

the dBG summarizes in a single structure the layout of

short reads along the target DNA/RNA sequence. Hence,

aligning a long read to the dBG allows the correction

of erroneous sequence positions much more efficiently,

and in a scalable manner. The dBG implementation

of GATB allows LORDEC to process huge short reads

libraries and to scale up to vertebrate or plant genome

cases.

The LORDEC software offers several programs: the

main one for correcting the long reads, and others for

trimming and splitting corrected reads into corrected

regions if needed. The output distinguishes these with

lower vs upper cases. The value of k can be optimized

by trying different values as low as possible around

log4 (genome-length) (see [23] for an explanation).

Note that unlike the other tools, LORDEC addresses

sequencing errors (which can be seen as technical arti-

facts) rather than biological events (such as variants, AS,

etc.). Hence, LORDEC fulfills a need for preprocessing the

read data before further analyses can extract biological

information from it, as illustrated by the application to

genome assembly described below.
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Fig. 5 RunningMAPSEMBLER2 on Galaxy. aMAPSEMBLER2 tool form allowing selection of input datasets and tool parameters. bMAPSEMBLER2

FASTA output

Applications

Table 2 presents several time and memory footprint

results, showing how the tools presented scale up on large

raw datasets.

De novo identification of alternative splicing events in
human RNA-seq data withKISSPLICE

KISSPLICE was applied to a human dataset that consists of

32 million reads from human brain and 39 million reads
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Fig. 6 Running GSV on Galaxy. The JSON graph generated byMAPSEMBLER2 can be navigated, filter parameters used to modify the visualization

aspect, and results exported

from liver from the Illumina BodyMap 2.0 Project (down-

loaded from the Sequence Read Archive, study acces-

sion number ERP000546, brain read accession numbers

ERR030882 and ERR030890, liver read accession numbers

ERR030887 and ERR030895). Even though KISSPLICE

does not require a reference genome, we applied it to a

case where an annotated reference genome is indeed avail-

able in order to be able to assess whether our predictions

are correct.

KISSPLICE ran in three hours using less than 8GB RAM

and was able to identify 2,336 bubbles corresponding to

AS events.

To assess whether these predictions were correct, we

aligned both paths of each bubble to the human refer-

ence genome (version hg19) using STAR [24] with default

parameters.

We found that for 132 bubbles (5.7 %), the two paths did

not map to the same genomic location, suggesting that the

bubbles were false positives. A manual inspection of these

cases revealed that most of them were due to repeats.

Among the bubbles where both paths mapped to the

same location, we found that 1,714 (81 %) corresponded to

annotated AS events, according to Ensembl v75 annota-

tion [25]. In contrast, 398 (19 %) corresponded to putative

novel AS events, with at least one splice site not annotated

before. Out of those 398 cases, 78 % (vs 97 % of them for

the annotated splice sites) were canonical (GT-AG), and

22 % were non-canonical. An issue common to all tran-

scriptome assemblers is that genomic indels, when located

in transcribed regions, can be confused with AS events

since they also generate bubbles in the dBG. In the pres-

ence of a reference genome, we can tell them apart easily

as one path will map in two blocks and the other in one

block. Using this criterion, we found that half of the non-

canonical novel AS events were indeed indels (49 %). The

remaining 51 % were composed of GC-AG, novel splice

sites, and some mapping or assembly errors.

To summarize, we find that out of 2,336 bubbles

reported by KISSPLICE, 76 % are AS events annotated in

Ensembl, 14 % are AS events, not annotated but canoni-

cal, 2 % are AS events, not annotated and not canonical,

2 % are genomic indels, and 5 % are repeat-associated false

positives.

Furthermore, we reported in [2] that KISSPLICE is

more sensitive than Trinity, a widely used full-length tran-

scriptome assembler, for calling AS events. The recent

developments [18] in KISSPLICE show a particular sensi-

tivity enhancement compared to Trinity in the case where
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there is still some pre-mRNA in the sample to be ana-

lyzed. The presence of pre-mRNA can in practice vary

from 5 – 15% depending on the protocol to isolate mRNA

(total RNA vs nuclear, polyA+ vs polyA-). This can have

a large impact on the assembly since introns are usually

repeat-rich and the repeats are currently poorly handled

by transcriptome assemblers.

Assessing DISCOSNP recall on real read sets from
Saccharomyces cerevisiae
DISCOSNP was applied to a set of biologically validated

SNPs predicted from an artificial evolution study on

S. cerevisiae [26]. Twenty-four read sets (correspond-

ing to three populations) were downloaded from the

NCBI Sequence Read Archive (with the accession num-

ber SRA054922) and processed to remove barcode and

adapter sequences as in the initial study. DISCOSNP was

run independently on the three populations studied. For

each population, DISCOSNP was applied to the eight read

sets corresponding to eight time points, with the default

parameters and c = 11. In this framework, DISCOSNP

recall could be evaluated on real read datasets. As shown

Table 3, among the 29 reference-validated isolated SNPs,

27 were predicted by DISCOSNP, thus giving an estimated

recall of 93.1 %. Overall, this experiment demonstrates the

good performance of DISCOSNP at discovering SNPs from

pooled samples, even those with low allelic frequencies:

most of the reference SNPs were reported in the initial

study with a minor allele frequency (MAF) lower than

20 %. Note that no SNP with a MAF lower than 10 % was

experimentally validated, so we could not assess the recall

on these very low frequency SNPs.

Targeted assembly of S. cerevisiae usingMAPSEMBLER2

MAPSEMBLER2 was applied to the S. cerevisiae dataset

previously described in the DISCOSNP section. Biological

validation of several identified SNPs is presented

in a recent study [26]. As a starter, we selected a

sequence fragment of length 63 bp, occurring at posi-

tion 1,014,600 on chromosome 4. This starter, GGGG

TTTTTCAACTGAATGTTCTTCAATAAAGCCTTTTT

CAGAAGCGATTTTGTTTCTGTGCT, occurs near a

set of SNPs validated in the [26] study. The graph pro-

duced (Fig. 7) enables the retrieval of these validated

SNPs, and also allows a check of the coverages of their

two alleles in each of the 16 input read sets. Additionally,

this graph also enables the detection of three SNPs and an

indel that were not detected in the mapping pipeline used

in [26].

Metagenomics global similarity overview of five gut
metagenomes withCOMMET

The MetaSoil study focuses on untreated soils of the Park

Grass Experiment, Rothamsted Research, Hertfordshire,

Table 3 Isolated SNPs found in S. cerevisiae and validated in [26]

First population studied

(5 found among 6)

Chromosome Position Ref Alt Predicted by DISCOSNP

1 39425 A G Yes

3 235882 C A Yes

4 1014740 G C Yes

6 71386 G C Yes

12 200286 C T Yes

15 438512 A C No

Second population studied

(9 found among 9)

Chromosome Position Ref Alt Predicted by DISCOSNP

1 39261 G A Yes

4 1014763 T G Yes

4 1014850 T A Yes

6 71813 A C Yes

7 146779 T C Yes

10 179074 C A Yes

12 162304 A T Yes

14 681026 T G Yes

15 412148 G T Yes

Third population studied

(13 found among 14)

Chromosome Position Ref Alt Predicted by DISCOSNP

1 191184 A G No

2 521881 C T Yes

4 1014981 A T Yes

4 1015077 G T Yes

6 70913 C T Yes

9 401526 G A Yes

10 250988 G A Yes

10 619870 G T Yes

11 64697 T C Yes

11 434707 A G Yes

12 404866 G T Yes

15 174575 T G Yes

15 1013813 C A Yes

16 79761 T G Yes

chr16:581589 mutation in experiment E2, originally presented in [26], is not

reported in this table, as it could not be validated

UK. One of the goals of this study is to assess the influ-

ence of depth, seasons, and extraction procedure on the

sequencing [27]. To achieve this, the 13 metagenomes

from MetaSoil, two additional soil metagenomes, and

a seawater metagenome were compared at the func-

tional level using MG-RAST [28]. This approach iden-

tified 835 functional subsystems present in at least
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Fig. 7MAPSEMBLER2 output graph obtained from the Saccharomyces cerevisiae dataset visualized usingGSV. A zoom is proposed for visualizing

first nodes. The grey node is the starter. Node size depicts the length of the sequence stored by the node. The node and edge colors depict the read

coverage (here for one among all datasets) of the sequence stored by the node. The ‘bubbles’ seen on the right of the starter witness the presence

of SNPs and small indels in the datasets. Note that by changing the choice of the read set selected for visualizing the coverage (node and edge

colors), one can deduce the heterozygous or homozygous nature of these variants

one of the metagenomes that were used for clustering

samples.

This study was reproduced with COMMET on all avail-

able metagenomes. The generated bit vectors total 68MB,

while the explicit representation of the FASTA results

requires 6.4GB. The storage footprint is thus divided by

a factor of 100. This ratio is even higher if using FASTQ

format or if dealing with larger read files. The COMMET

computation time was 828 min.

Although COMMET uses another metric, the dendro-

gram produced is highly similar to the MetaSoil one (see

Fig. 8), and enables us to reach the conclusion that two

metagenomic samples processed with the same extrac-

tion procedure share more similarities at the functional

level than two samples processed with different extraction

procedures [29].

LORDEC: impact of read correction on genome assembly
To summarize, experiments on real data taken from bac-

terial and yeast species, up to the case of a vertebrate

genome, show that LORDEC achieves a quality at least as

high as that of available state-of-the-art methods, while

usually being an order of magnitude faster. Exploiting the

GATB implementation of the dBG makes it by far the

most scalable and economical option in terms of memory

usage: LORDEC can process large datasets on a standard

computer.

To assess the impact on the assembly quality of the

PacBio reads correction performed with LoRDEC, we

compared the assemblies obtained from corrected reads

to those computed from uncorrected reads. For this

purpose, we used public datasets from the Escherichia coli
and S. cerevisiae genomes (see Table 4). For each genome,

we corrected with LoRDEC the PacBio reads using a set

of short reads (with parameters k = 19 and s = 3, and

default values for the other parameters). We then sepa-

rately assembled corrected and uncorrected PacBio reads

using the ABySS assembler with different values of k [30]

(see the details in Additional file 1). The results are given

in Table 5.

With uncorrected reads, and whatever the value of

k, ABySS (v1.3.2) yields an assembly whose N50 value

is close to k on both genomes, and with the longest

contig below 400 bp. With PacBio reads corrected using

LoRDEC, ABySS assemblies cover respectively 98 and

91 % of E. coli and S. cerevisiae genomes with respec-

tively 321 and 1,657 contigs larger than 1 kbp (k = 64 and

k = 51). Their N50 values reach 23 and 6.9 kbp respec-

tively, while the largest contigs are 93 and 52 kbp long.

Moreover, when aligning (using BLASTN, NCBI-BLAST-

2.2.29+, with a reward of 1 and a penalty of−3) the contigs

longer than 1 kbp against the reference genome, only 2.6 %

of yeast contigs lack similarity, while all contigs of E. coli
could be aligned.

The genome coverage and N50 values show that ABySS

did not succeed in assembling any of the uncorrected

PacBio datasets, while it yields satisfactory assemblies (i.e.

sets of contigs) with the same PacBio reads that were cor-

rected with LoRDEC [7]. Without correction, an assembly

obtained from a traditional program is useless; clearly,



Le Bras et al. GigaScience  (2016) 5:9 Page 11 of 14

Fig. 8 Dendrograms from MetaSoil study. a Fig. from [29] showing the cluster tree, constructed using Euclidean distances, confronting 13 samples

others soil metagenomes (Puerto Rican Forest soil and Italian Forest Soil) and a metagenome from Sargasso Sea (SargassoSea). DNA extraction

methods are indicated. Thus, “MP BIO 101” means Fast prep MP Bio101 Biomedical, Eschwege, Germany, “In plugs” means indirect lysis in plug, “DNA

Tissue” means Nucleospin Tissue kit, “MoBio” means MoBio Powersoil DNA Isolation Kit (Carlsbad, CA, USA) and finally “Gram positive” for the

Gram-positive kit b COMMET analyses, comparing the same 15 samples

LoRDEC correction has a strong impact on the assembly

quality of PacBio reads. Moreover, the correction is faster

than the assembly and simplifies the latter. Importantly,

the results suggest that hybrid correction using LoRDEC

makes PacBio reads amenable to a classical de Bruijn

graph assembly approach. LoRDEC has also been applied
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Table 4 Datasets used to evaluate the efficiency and impact of

LoRDEC read correction on the assembly

E. coli Yeast

Reference organism

Name Escherichia coli Saccharomyces
cerevisiae

Strain K-12 substr. MG1655 W303

Reference sequence NC_000913 S288C

Genome size 4.6Mbp 12Mbp

PacBio Data

Accession number PacBio reads DevNet PacBio

Number of reads 75152 261964

Average read length 2415 5891

Max. read length 19416 30164

Number of bases 181Mbp 1.5 Gbp

Coverage 30× 129×
Illumina Data

Accession number Illumina reads SRR567755

Number of reads (millions) 11 2.25

Read length 114 100

Number of bases 1.276 Gbp 225Mbp

Coverage 277× 18×
For the short read data of yeast, we used only half of the available reads. The

reference yeast genome is available from [40]

to MinION reads obtained with Oxford Nanopore tech-

nology and we observed a strong improvement in the

mapability of the reads once corrected. More precisely,

mapping the reads of an E. coli dataset on the reference

genome with NucMer/Quast [31], we found that, while

none of the raw MinION reads could be fully aligned,

2383 out of 2749 corrected reads were fully aligned on

the genome, thereby covering 96 % of the genome. In

Table 5 Comparison of the assemblies obtained for E. coli and S.
cerevisiae from either uncorrected or corrected PacBio reads

E. coli (k = 64) S. cerevisiae (k = 51)

Statistical metrics Corrected Uncorrected Corrected Uncorrected

Number of contigs 2349 1721 61496 39127

Number of contigs ≥1 kbp 321 0 1657 0

Genome coverage (%) 98 0 91 0

Total length (Mbp) 4.71 0.12 15.00 2.39

Largest contig (bp) 93000 127 52444 378

GC (%) 50.19 3.77 38.75 40.00

N50 23473 69 6943 57

The genome coverage accounts only for contigs longer than 1 kbp. With

uncorrected reads, the N50 remains close to the k-mer length (whatever the value

of k); this strongly suggests that ABySS fails to assemble uncorrected reads. On the

contrary, the metrics with corrected PacBio reads indicate that it yields satisfactory

assemblies for both genomes

addition, corrected reads could also be assembled with a

de Bruijn-based approach.

Galaxy integration

Tools integration was made following Galaxy [8–11] team

recommendations on tool configuration syntax [32] as

well as on tool shed administration and use [33]. For

each Galaxy tool repository, two packages are defined,

one for dependencies, the other for descriptor and wrap-

per if required. We used the GenOuest Galaxy devel-

opment tool shed and development Galaxy instance to

create and test the tools. GSV was originally a standalone

web tool for MAPSEMBLER2 output graph visualization.

Adding this tool as a visualization tool on Galaxy [34] was

done following Galaxy [8–11] team instructions. Briefly,

an XML configuration file is first created for the visu-

alizer to define a link between a dataset and GSV. This

GSV.xml file calls a Python GSV.mako template allow-

ing dynamic generation of HTML and javascript codes.

Finally, a GSV.js script is called to manage Galaxy file

dependencies, objects, and visualization library.

Tool suite sharing

GUGGO Tool Shed [12, 13] was used to disseminate

Colib’read Galaxy repositories. Corresponding tools are

installed on our production Galaxy instance [35, 36],

allowing scientists to use Colib’read tools freely after reg-

istration on the GenOuest core facility [37]. As we join

a dependencies package to our tools, Galaxy instance

administrators can easily install either Galaxy tools (i.e.

description files and wrappers) or Colib’read binaries and

dependencies without any command line typing.

Conclusion
We propose bioinformatics tools dedicated to raw NGS

data analyses for DNA-seq, RNA-seq and metagenomics

studies. Thanks to the Galaxy platform, we easily made

this tools suite available to life scientists, regardless their

level of programming skills. Colib’read tools thus inherit

reproducibility and accessibility support from Galaxy.

Moreover, with the growing number of bioinformatics

core facilities hosting Galaxy servers, tool shed usage

enhances tools descriptors, binaries and dependencies

sharing. This tools suite allows life scientists to find can-

didates that cannot be found with classical assembly-

based approaches. Moreover, the algorithm developments

described in this paper enhance the optimization and the

management of the use of computing resources, in a time

where these resources can not match the pace imposed by

the NGS data deluge. Applications presented in this paper

illustrate the low memory footprint of the six tools devel-

oped within the Colib’read framework, as well as their

scalability. In replacement or combination with classical

approaches, we thus propose to deal with higher amounts
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of information by using efficient computation strategies

for NGS data.

Availability and requirements
Project name: Colib’read project

Project home page: [38]
Operating system(s): Platform independent

Programming language: C++
Other requirements: GATB core

License: A-GPL and CeCILL

Any restrictions to use by non-academics: None

Availability of supporting data
All data sets supporting the analyses are available from the

GigaScience GigaDB repository [39].

Additional file

Additional file 1: Evaluation of the efficiency and the impact of the

LoRDEC correction on E. coli and S. cerevisiae genome public data.

(PDF 131 kb)
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