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How to make more out of community data? A conceptual
framework and its implementation as models and software

Abstract

Community ecology aims to understand what factors determine the assembly and dynamics of
species assemblages at different spatiotemporal scales. To facilitate the integration between con-
ceptual and statistical approaches in community ecology, we propose Hierarchical Modelling of
Species Communities (HMSC) as a general, flexible framework for modern analysis of community
data. While non-manipulative data allow for only correlative and not causal inference, this frame-
work facilitates the formulation of data-driven hypotheses regarding the processes that structure
communities. We model environmental filtering by variation and covariation in the responses of
individual species to the characteristics of their environment, with potential contingencies on spe-
cies traits and phylogenetic relationships. We capture biotic assembly rules by species-to-species
association matrices, which may be estimated at multiple spatial or temporal scales. We opera-
tionalise the HMSC framework as a hierarchical Bayesian joint species distribution model, and
implement it as R- and Matlab-packages which enable computationally efficient analyses of large
data sets. Armed with this tool, community ecologists can make sense of many types of data,
including spatially explicit data and time-series data. We illustrate the use of this framework
through a series of diverse ecological examples.
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abundances of the species from local to global spatiotemporal

INTRODUCTION scales (Agrawal et al. 2007; Logue et al. 2011). During the last

Ecology has been described as the scientific understanding of
factors determining the abundance and distribution of species
(Smith 1966; Begon et al. 1986). This understanding can
hardly be achieved by studying species one by one since their
abundances and distributions depend not only on their indi-
vidual responses to the abiotic environment, but also on their
interactions (Wisz et al. 2013). Thus, a key aim in modern
community ecology is to gain an integrative understanding of
how biotic and abiotic factors mould local species pools at
different spatiotemporal scales.

Community ecology began as a descriptive science in which
communities were classified based on the identities and sizes
of local species pools (e.g. Clements 1936; Elton 1966). Mod-
ern community ecology is progressing from the description of
patterns towards a mechanistic perspective, which seeks to
understand the processes determining the identities and

few decades, experimental ecologist have used observations
and experiments to assess the relative influences of stochastic-
ity, competition and niche differentiation (see Logue et al.
2011), theoretical ecologists have developed models for pre-
dicting community dynamics (e.g. Tilman 1990, 2004; Holt
et al. 1994; Bolker et al. 2003; Leibold et al. 2004; Holyoak
et al. 2005), and statistical ecologists have developed metrics
for assessing compositional changes among local communities
(e.g. Gauch 1982; ter Braak & Prentice 1988; Legendre &
Legendre 2012).

While a general theory to explain how communities are
assembled across space and time is still lacking, community
ecologists have converged towards a synthesis acknowledging
that local species communities are a result of both stochastic
and deterministic processes, henceforth called assembly pro-
cesses (Gravel er al. 2006; Leibold & McPeek 2006; Stokes &
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Archer 2010; Weiher ez al. 2011; Gotzenberger et al. 2012).
These forces encompass neutral processes, historical contin-
gencies such as speciation, dispersal, abiotic environmental
factors and biotic interactions (Vellend 2010; Weiher ez al.
2011; Gotzenberger et al. 2012).

As proposed by Zobel (1997) and illustrated in Fig. 1, the
assembly processes can be envisaged as ‘filters’ operating at
different scales. In this scheme, the ‘global species pool’ con-
sists of all existing species, the ‘regional pool’ of all species
able to colonise a given area, and the ‘local species pool” of
the set of species found at the finest scale considered (Cornell
& Harrison 2014). Clearly, the species pools found at finer
scales are filtered also by assembly processes acting at broader
scales (Cornell & Lawton 1992). Of these hierarchical sieves,
‘environmental filters’ correspond to those abiotic factors
which prevent the establishment or persistence of species in
local communities (Kraft er al. 2015), and thus outline the
fundamental niche of a species. ‘Biotic filters’ refer to inter-
specific and intraspecific competitive and facilitative interac-
tions that determine the set of species in local communities
(Wisz et al. 2013; Garnier et al. 2016), and thus determine
their realised niches. These two types of forces may interact,
as environmental filters may modify biotic interactions (e.g.
Callaway & Walker 1997).

Beyond the deterministic processes selecting species from
regional to local scales, stochastic processes create additional
variation in the local communities. These processes — related
to colonisation, extinction, ecological drift and environmental
stochasticity — generate divergence among communities occu-
pying identical environments (Chase & Myers 2011). The
responses of the species to abiotic and biotic filters vary
depending on species-specific characteristics known as the
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Figure 1 A conceptual diagram of the assembly processes influencing
ecological communities at different spatiotemporal scales. The
composition and dynamics of local, regional and global communities are
influenced by the combined effects of environmental filters, biotic
interactions and neutral processes. The responses of the species to these
factors depend on their traits, which are ultimately shaped by
evolutionary history and therefore constrained by phylogenetic
relationships.

response traits, including e.g. their dispersal propensity and
competitive abilities (Lavorel & Garnier 2002) (Fig. 1). Thus,
they will determine what species reach and colonise given
areas, and what species succeed in securing adequate resources
(McGill et al. 2006; Bolnick et al. 2011).

As a net outcome of the assembly processes outlined above,
we find variation in the number, abundance, identities, and
traits of the species present over a set of replicate communities
observed in space and/or time (Fig. 2). While faced with a
variety of data types, community ecologists have so far been
armed with rather disparate statistical tools for connecting
them with theories on community assembly. In particular, we
lack a statistical frameworks that would enable us to infer
actual assembly processes from community samples (Logue
et al. 2011), and thus, a gap remains between theoretical pre-
dictions and data. Currently, the most popular tools used to
study community structure are distance-based ordinations
(e.g. Gauch 1982; ter Braak & Prentice 1988; Legendre &
Legendre 2012) and diversity measures (see Magurran 2004).
While such approaches provide insights into patterns of diver-
sity and community composition at different spatiotemporal
scales (Legendre et al. 2005; Dray et al. 2012; Legendre &
Gauthier 2014), they provide little quantitative insight into the
relative contributions of different assembly processes. To
overcome these limitations, community ecologists are showing
increasing interest in model-based approaches (Warton et al.
2015a,b).

Single-species distribution models have been widely used to
explain and predict how different taxa respond to environ-
mental variation (Guisan & Thuiller 2005; Elith & Leathwick
2009). To capitalise on this success, there is a growing
interest in extending species distribution models to commu-
nity-level models (Guisan & Rahbek 2011). One way of pre-
dicting community-level properties is simply to add
predictions of single-species models into ‘stacked’ species dis-
tribution models (Guisan & Rahbek 2011; Calabrese et al.
2014). Another way is the use of joint species distribution
models, which explicitly acknowledge the multivariate nature
of species assemblages, allowing one to gather more mecha-
nistic and predictive insights into assembly processes (Warton
et al. 2015b). By simultaneously drawing on the information
from multiple species, these models allow one to seek com-
munity-level patterns in how species respond to their envi-
ronment (e.g. Ovaskainen & Soininen 2011; Wang et al.
2012; Hui et al. 2015; Ovaskainen et al. 2016b), to relate
such patterns to species traits and phylogenies (Pollock et al.
2012; Brown et al. 2014; Abrego et al. 2017a) and to quan-
tify co-occurrence patterns among species (Pollock ez al.
2014; Ovaskainen et al. 2016a). Recent method development
has made it possible to apply joint species distribution mod-
els e.g. to presence—absence data or abundance data (Hui
et al. 2015; Clark et al. 2017), as well as to study designs of
spatial (Thorson et al. 2015; Ovaskainen et al. 2016b), tem-
poral (Sebastian-Gonzalez et al. 2010) or spatio-temporal
(Thorson et al. 2016) nature.

Owing to the ongoing revolution in sequencing technology,
the development of statistical methodology for macro-organ-
isms (reviewed above) has been paralleled by the rapid devel-
opment of statistical methodology for microbial community

© 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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Observational data

How to link the data to ecological questions?

Signals of environmental filtering: Are species (b)

associated to habitat characteristics?

e . ki

Signals of biotic filtering: Do species co-occur? ()
Signals of response traits: Are traits (here colour) (d)

associated to habitat characteristics? Here dark-
coloured species are associated with green habitat.

Signals of niche conservatism: Are habitat associations (e)
and traits correlated with phylogeny?

T 1

Figure 2 A conceptual illustration of some key questions in community ecology. The green and white colours represent differences in the environmental
conditions, the butterflies with different colours represent different species, and the small boxes represent sampling units. In this paper, we ask how species
occurrence data (a) can be used to understand how the processes depicted in Fig. 1 structure the community under study, and how one can predict
communities under new conditions (the sampling unit with question mark). In terms of species niches and environmental filtering (b), the black-coloured
species only occurs under green environmental conditions and the lightest-coloured species under white environmental conditions, whereas the red coloured
species occurs under both kind of environmental conditions. In terms of biotic interactions (c), some species pairs are found to co-occur more or less often
by random. However, part of this variation can be explained simply by habitat associations, whereas in some cases there is non-random co-occurrence also
beyond that explained by habitat association. In this example, the black-coloured species appears to dominate the local communities when present,
indicating that it may be a competitively superior species. In terms of response traits, species colour appears to co-vary with environmental conditions, with
the dark-coloured species being associated with the green habitat and the light-coloured species with the white habitat (d). As colour does not appear to be
phylogenetically structured (e), the species provide essentially independent data points about the influence of colour on occurrence, suggesting an adaptive

response rather than an artefact due to phylogenetic constraints.

ecology. Here, much of the focus has been on inferring associ-
ation networks from sequence count data (Steele ez al. 2011;
Weiss et al. 2016), and on asking how such association net-
works relate to environmental conditions or ecosystem pro-
cesses (e.g. Guidi et al. 2016). An important challenge with
the analysis of such data is that the information is in relative
rather than in absolute sequence counts. If not properly
accounted for, this feature will lead to spurious correlations
(Friedman & Alm 2012). As is the case with macro-organisms,
inferring association-networks from sparse data on species
rich communities is one of the main methodological chal-
lenges in current microbial community ecology (Weiss et al.
2016).

The aim of this paper is to facilitate the integration of the-
oretical and empirical approaches in community ecology, and
of methods previously developed separately for micro- and
macro-organisms. We suggest that recent advances in joint

species distribution models can be transformed into a general
framework for modern statistical analysis of community data.
As the framework is based on a hierarchical joint species dis-
tribution approach, we call it Hierarchical Modelling of Spe-
cies Communities (HMSC). HMSC integrates much of the
recent methodological progress on joint species distribution
models, and provides a unified platform which we hope will
facilitate further amalgamation. To help community ecolo-
gists select a specific model which fits the nature of their data
and the aims of their study, we offer a practical guide: we
first describe the typical data types collected by empirical
community ecologists, subsequently introduce the statistical
HMSC framework, and then show with examples how the
framework can be used to address topical questions in com-
munity ecology. Finally, we discuss some limitations of the
framework, as well as challenges to be targeted by future
research.

© 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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A STATISTICAL FRAMEWORK FOR HIERARCHICAL
MODELLING OF SPECIES COMMUNITIES (HMSC)

Typical community data include observations on the occur-
rence of species in a set of temporal and/or spatial replicates,
henceforth called occurrence data and referred to as the Y
matrix (Fig. 3). Depending on the study/experimental design,
on our objectives and the subject organisms, the occurrence of
the species can be recorded in various ways, such as through
direct visual or audial encounters, indirect cues such as tracks
or droppings, or molecular identification of environmental
samples. The occurrence matrix may thus describe e.g. pres-
ences and absences of the species, species counts, a percentage
covered by each species or an estimate of its biomass. The
amount and nature of observation error also depends on the
method used. Common problems of species surveys are imper-
fect detection, creating false negatives, and misidentification,
creating false positives (Guillera-Arroita 2017).

The occurrence data are usually accompanied by environ-
mental data consisting of a set of measured covariates that
the ecologist hypothesised to be important in explaining com-
munity composition (X matrix, Fig. 3). Beyond the effects of
these environmental covariates, the spatiotemporal context
may generate a structure to the data. In studies where the
data have been collected in a hierarchical way (e.g. plots
within sites), we call the finest scale (i.e., each row of the data
matrices X and Y) the ‘sampling unit’. In studies treating
space and/or time as continuous, the study design may be
described by spatial or temporal coordinates.

To relate community-level responses to environmental varia-
tion to response traits, one may wish to include data on

species-specific traits (T matrix, Fig. 3). These data may range
from morphological traits such as body size, or physiological
traits such as tolerance to salinity, to functional traits such as
feeding type, or to the actual position of the species within
the surrounding food web. Furthermore, we may combine
trait data with phylogenetic data (C matrix, Fig. 3). The avail-
ability of phylogenetic data is rapidly increasing, allowing the
construction of quantitative matrices of phylogenetic correla-
tions within many organisms groups. Where quantitative phy-
logenies are lacking, data on taxonomic identity (at the level
of genus, family, order, class, phylum...) can be used as a
proxy of phylogenetic relatedness (but see Whitfeld ez al.
2012).

The statistical HMSC framework is illustrated graphically
in Fig. 4 and described in more detail below. We start by
modelling the occurrence (e.g. presence—absence, count or bio-
mass) of each species (denoted as j, where j = 1,...,m) in each
sampling unit (denoted as i, where i =1,...,n), i.e. the data
summarised by matrix Y in Fig. 3. For this, we use a gener-
alised linear model,

yi/ND(L@/'»Ug)- (1)

Here, D is a statistical distribution tailored to the kind of
data being used, L; is the linear predictor, and 0_12 is a
variance term, which is excluded for some distributions (e.g.
probit or Poisson) and included for others (e.g. normal or
over-dispersed Poisson).

The linear predictor L; is modelled with the help of fixed
(F) and random (R) parts as Ly = Lf; + L. The fixed effects
are modelled as the regression
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Figure 3 Data typically collected in community ecology. The occurrence data (denoted as the Y matrix) includes the occurrences of the species recorded in
a set of temporal and/or spatial sampling units. The environmental data (denoted as the X matrix) consists of the environmental covariates measured over
the sampling units. The traits data (denoted as the T matrix) consists of a set of traits measured for the species present in the Y matrix. To account for the
phylogenetic dependencies among the species, we can include a fourth matrix consisting of the phylogenetic correlations among the species (denoted as the
C matrix). The spatiotemporal context includes location and time information about the samples.
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Figure 4 A graphical summary of the HMSC statistical framework. In this Directed Acyclic Graph (DAG), the orange boxes refer to data, the blue ellipses
to parameters to be estimated, and the arrows to functional relationships described with the help of statistical distributions.

LE=>"xuBy. (2)
k

where the term x; denotes the environmental covariate k
measured at site i (i.e., the information summarised in matrix
X, Fig. 3; with x;; =1 modelling the intercept), and the
regression parameter B, denotes the response of species j to
covariate k. As the regression parameters measure how the
occurrence of the species depends on the environmental condi-
tions, we interpret these as describing species’ environmental
niches. To allow the statistical framework to generate a com-
munity-level synthesis of how species respond to their envi-
ronment, we assume that their responses to the environment
(i.e. their regression parameters) adhere to a multivariate nor-
mal distribution,

B;- NN(”WV) (3)

We use a dot to single out a row or a column in a matrix,
so that P;. denotes the vector of regression coefficients for spe-
cies j. As P;. describes how species j responds to environmental
covariates, it characterises its environmental niche. The
expected environmental niche of species j is denoted by vector
., and variation around this expectation is captured by the
variance-covariance matrix V (Ovaskainen & Soininen 2011).
The expected niche p;. can either be assumed to be the same
for all species, or alternatively it can model the influence of
species-specific traits on species’ responses. In the latter case,
we write py = ) 4y, where #; is the value of trait / for spe-

cies j (matrix T, Fig. 3; with #; =1 modelling the intercept)
and the parameter vy, measures the effect of trait / on
response to covariate k (Abrego et al. 2017a). We may use

this model also to ask what percentage of variation in species’
environmental niches can be attributed to species’ traits (see
Supporting Information for details).

To account for phylogenetic relationships (summarised by
matrix C, Fig. 3), we model the covariance structure of the
multivariate normal distribution as

B..~ N(p..,V&[pC+ (1 - p)I)), (4)

where the symbol ® stands for the Kronecker product and
0 < p <1 measures the strength of the phylogenetic signal.
From eqn 4 it follows that for p =0 the residual variance is
independent among the species (as described by the identity
matrix I), implying that closely related species do not have
more similar environmental niches than do distantly related
ones. When p approaches p = 1, species’ environmental niches
are fully structured by their phylogeny, with related species
having more similar niches than expected by random, imply-
ing niche conservatism.

Let us then turn to the random term L{f, which models the
variation in species occurrences and co-occurrences that can-
not be attributed to the responses of the species to the mea-
sured covariates. If the study design consists of sampling units
without any hierarchical, spatial or temporal structure, L,-’f
will simply be Lf = &3, where the superscript S refers to a
random effect ¢ that operates at the level of the sampling unit.
These random effects are modelled as 5. ~ N(0,Q5), where Q°
is a residual species-to-species variance-covariance matrix. Here,
the word ‘residual’ refers to the fact that we have removed the
influences of environmental covariates by the fixed effect part
of the model. The diagonal element Q5 describes the amount of

i
random variation that species j shows at the level of the

© 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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sampling unit, whereas the off-diagonal element Qﬁ ;, describes
the amount of covariation among the two species j; and j,.
For hierarchical study designs, the model may include several
association matrices Q (see Ovaskainen et al. 2016a), each of
which may have a spatial or temporal structure.

With m species, an association matrix Q has m(m+1)/2
parameters, making its parameterisation with sparse data on
species-rich communities challenging. To facilitate the estima-
tion of such matrices, we use a latent variable approach,
which allows a parameter-sparse representation of the matrix
Q through latent factors and their loadings (for mathematical
details see Warton et al. 2015b; Ovaskainen et al. 2016a,b).
The factor loadings themselves do not have a straightforward
interpretation in terms of ecological interactions, but are use-
ful in revealing patterns where two species either co-occur
more often than expected by chance: if the factor loadings
have the same sign, the species respond to the latent variable
in the ‘same’ way and thus increase in concert, whereas if the
factor loadings have opposite signs, the species respond in
‘different’ ways, and thus one species declines when the other
increases. We represent the species-to-species association net-
work by the correlation matrix R  defined Dby
Rijy = Qi / /7 Q- The correlation R;;, measures to
what extent species j; and j, are found together more or less
often than expected by chance, after controlling for the envi-
ronmental covariates. We note that one could alternatively
measure species-to-species associations based on the precision
matrix (inverse of Q), which is more likely to identify direct
links among species than the correlation matrix, as the latter
one is also influenced by indirect links (Biswas et al. 2016;
Ovaskainen et al. 2016a). As a further alternative, we note
that instead of the latent variable approach, the correlation
matrix could be parameterised through a mixture modelling
approach (Pledger & Arnold 2014).

Let us note at this point that the much-used multivariate
ordination approaches (Legendre & Legendre 2012) are also
based on patterns of species co-occurrences. If we exclude
the environmental covariates X from the analysis, then the
latent variables behind an association matrix can be viewed
as a model-based ordination (Warton et al. 2015b). Species
close to each other in the ordination space show positive
co-occurrence in the association matrix, whereas species at
the opposite ends of the ordination space show negative co-
occurrence. If environmental covariates are included in the
analysis, then an association matrix corresponds to a resid-
ual ordination, which describes those co-occurrences that
cannot be explained by shared responses to environmental
covariates (Hui et al. 2015; Warton et al. 2015b).

The mathematical structure of the current model provides a
convenient mapping from environmental similarity to commu-
nity similarity. If the environmental covariates for sites 1 and 2
are described by the vectors x; and x,, then the covariance
between species occurrences (at the level of the linear predictor)
is given by

Cov(L(x,),L(xg)) = xIT("{TCOV(T)’Y + (1 - pm(C))V)xZ (5)

where m(C) denotes the mean value of the off-diagonal ele-
ments of the matrix C (see Supporting Information for the

derivation of eqn 5). In eqn 5, the terms y”Cov(T)y and (1-pm
(C))V partition interspecific variation in responses to environ-
mental covariates to components that can and cannot be
explained by the measured traits, respectively.

Let us finally note that, as with any statistical model, it is
important to validate the above-described model in terms of its
structural assumptions as well as the generality of the parameter
estimates. In particular, to exclude the possibility of spurious
inference due to model overfitting, we recommend examining
the model’s predictive power through a cross-validation
approach, as we will illustrate below in some of the examples.

In the Supporting Information, we provide a Bayesian
approach for parameterising the model in a computationally
efficient manner which allows the analyses of large data sets.
We also provide an implementation of the statistical framework
as R- and Matlab-packages, which include a user manual.

APPLYING HMSC TO TOPICAL QUESTIONS IN
COMMUNITY ECOLOGY

The key value of the modelling framework laid out above
(Fig. 4) is in how its different components relate to processes
of community assembly (Figs 1 and 2). To illustrate how they
can be extracted from real data sets, and how they can be
interpreted in relation to key questions in community ecology,
we next turn to three contrasting case studies. These studies
were specifically chosen to bring out the different strengths
and uses of HMSC. The design of the first study is spatially
hierarchical, the second study is spatially explicit, and the
third study involves time-series data. The first case study also
illustrates the utility of HMSC in addressing applied ques-
tions. To illustrate the comprehensiveness of the HSMC
approach, we frame our treatise as a series of topical ques-
tions in community ecology which relate to the general theory
outlined in the Introduction as well as a series of applied
questions. These questions are summarised in Table 1, which
also describes how HMSC can been applied to derive an
answer. We note that this list is not exhaustive, and that the
line between fundamental and applied questions in Table 1 is
somewhat blurred. Furthermore, we remind the reader that
the statistical framework of HMSC is correlative, and that the
possibility of confounding effects should always be consid-
ered. Most importantly, the framework assumes (1) that envi-
ronmental filtering is properly captured by the environmental
covariates included in the model, (2) that biotic filtering is
properly captured by residual species-to-species correlation
matrices, or — in the case of time-series data — by matrices
modelling the influence of each species in the previous year on
the occurrence of each other species in the following year, (3)
that any residual variation (i.e., variation not predicted by
environmental or biotic filtering) can be attributed to random
processes, such as dispersal limitation, environmental stochas-
ticity or ecological drift. In the Discussion, we return to these
assumptions and limitations of the modelling framework, and
describe future challenges for its further development.

While all our examples are based on published studies, the
novelty of this section is in illustrating how a wide range of
questions and data types can be analysed with the help of the
encompassing statistical framework of HMSC. More

© 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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Table 1 A summary of topical questions in community ecology and an outline of how they can be addressed within the HMSC framework

How to address the question statistically?

Tllustration

Question

FQl How much variation in species occurrence is due to environmental
filtering, biotic interactions and random processes, and how do
these impacts vary across spatial and temporal scales?

FQ2 How do species’ traits and phylogenetic relationships
correlate with ecological niches?

FQ3 What are the structures of species interaction networks?

FQ4 How does community similarity depend on environmental
similarity and/or geographic distance?

FQ5 How does community structure change over time due to
predictable succession or stochastic ecological drift?

AQIl Do some species indicate the presence of others?

AQ2 How can geographic areas be classified into communities
of common profile?

AQ3  Which processes have been central in determining the response
of a community to environmental change

AQ4 How can species be classified in terms of their response to
abiotic environment?

AQS5 How is community structure predicted to change under

various scenarios of e.g. environmental change

By assessing the explanatory power of models and
by variance partitioning among fixed and random

effects at different scales (see Supporting
Information for details)

By modelling responses to environmental covariates

(B) as a function of species’ traits (T) and
phylogenetic correlations (C)

By estimating the species-to-species association
matrices Q or A

By decomposing community similarity into
similarity due to responses to environmental
covariates and/or spatial covariance, eqn 5

By including time since environmental
perturbation as a predictor, or by including
temporally varying random effects

By testing how much the predictive power of
the model increases for a focal species when
accounting for the occurrences of other species

By clustering predicted communities based
on their similarity

By decomposing the response to environmental
change to components related to species niches
and random effects

By clustering parameters or predictions
measuring the species responses to
environmental covariates

By use of scenario simulations

All case studies

Bryophyte, butterfly and
fungal case studies

All case studies

Bryophyte and butterfly
case studies

Bryophyte and water
bird case studies

Butterfly and fungal
case studies

Butterfly case study

Bryophyte case study

Bryophyte case study

Bryophyte case study

All questions relate to variation in the number, abundance, identities and traits of the species present over a set of replicate communities observed in space
and/or time (Fig. 2). The questions have been grouped into fundamental questions in basic science (FQI-5) and questions of applied interest (AQ1-5),

though we note that these two categories overlap. See text for further details. The fungal case study is presented in Supporting Information.

information on all case studies, including on their ecological
context, can be found in the primary publications referred to
below.

A spatially hierarchical study design: how do epiphytic bryophytes
respond to forest management?

As community ecologists, a fundamental question to ask is
what processes create observed variation in community struc-
ture (Fig. 2): what proportion of variance in species occur-
rence can be attributed to environmental filtering, biotic
filtering and random processes, respectively (Table 1). If repli-
cate samples are available in space or time, we may further
ask how the relative importance of different assembly pro-
cesses change over spatial or temporal scales. In general, bio-
tic interactions are likely to be more important at the finest
scales, where species physically meet, whereas environmental
covariates (such as macroclimate and soil types) are likely to
be more important at broader scales (Araujo & Rozenfeld
2014).

In a study of epiphytic bryophytes, the species were sur-
veyed on aspen trees on a set of forest sites (Fig. 5a, for origi-
nal study see Oldén er al. 2014). The fitted model explained
10% of species occurrences at the tree level (measured by
Tjur’s R? (Tjur 2009), averaged over species) and 60% at the
site level (measured as correlation in abundance, averaged

over species). Thus, while it is difficult to predict which spe-
cies are present or absent on a particular tree, more pre-
dictable patterns emerge at the level of the forest site. With
the intent of identifying the strength of different processes
shaping the local communities, we partitioned the explained
variation into components attributable to the environmental
covariates vs. variation assigned to random effects operating
at different spatial scales (Fig. Sb; see Supporting Information
for how this was technically done). Forest management type
and age had a major influence on epiphytic bryophyte compo-
sition, as on average almost half of the variation was attribu-
ted to these forest site-level covariates (Fig. 5b). These
environmental aspects proved to be the main agents in struc-
turing epiphytic bryophyte assemblages at the level of forests,
since once the effects of these covariates were accounted for,
the species no longer showed strong associative patterns
(Fig. 5c; forest site level). In contrast, the covariate measured
at the tree level (tree diameter), explained only about half of
the variation (Fig. 5b; fixed vs. random effects at the tree
level), and thus much of the community variation was cap-
tured by the random effects (Fig. 5c; tree level).

Species vary in their morphology, life-history, behaviour
and other traits. Relating this variation to community-level
responses is a key challenge in community ecology (Weiher
et al. 2011) (Table 1, Fig. 2). Thus, we may wish to address
the fourth corner problem (Legendre et al. 1997), i.e. to ask
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Figure 5 A case study on bryophytes, showing how the HMSC statistical framework can be applied to a spatially hierarchical study design and to questions
related to biodiversity-oriented forest management. Panel (a) describes the study design. Panel (b) shows results on variance partitioning. Variation in
species occurrence is partitioned into responses to covariates measured at the level of the site (natural or logged, stand age for natural and time since
logging for logged sites) and the tree (diameter), as well as to random effects at these two levels. The bar-plot shows species-specific results (species ordered
according to increasing prevalence so that species 1 is the rarest one) whereas the legend shows averages over species. Panel (c) shows estimates of species
associations measured by residual correlation. Species-to-species association matrices identify species pairs showing a positive (red) or negative (blue)
association, shown only if association has either sign with at least 75% posterior probability (the remaining cases are shown by white). The species have
been ordered in a way that emphasizes the network structure. (Panel d) shows the results from scenario simulations. Here, we generated predictions for an
aspen tree with a diameter of 30 cm, growing in a forest with a stand age of 80 years. We then considered two scenarios: one where the site was logged so
that the aspen became a retention tree (red lines), and the other where it remained within the forest (black lines). We assumed that the aspen grows linearly
so that its diameter reaches 60 cm in 70 years. The solid (dashed) lines show the mean (interquartile range) prediction for species richness and the similarity
to a reference community, which we defined as the community predicted to occur on a 60 cm aspen in a natural forest with an age of 150 years. Panel (e)
classifies the species into categories based on their responses to forest management, quantified with the help of the scenario simulations shown in panel (d).
The x-axis reflects how much more likely the species is to be found in a natural forest of stand age 110 years than in a retention site 30 years after logging
a forest of stand age 80 years. The y-axis shows how much more likely the species is to be found at a retention site 30 years after logging than immediately
after logging (i.e. how quickly its occurrence probability recovers after logging). Unit: log-transformed odds ratio, absolute value truncated to two if
greater than that. The boxes illustrate a classification of species into old growth forest specialists (OG), disturbance specialists (D), and species benefitting
from retention trees through life-boating (LB) or re-colonization (RC).

to what extent and in which way some traits influence the further evolutionary insights, as it allows one to examine
responses of the community to environmental variation. In niche evolution by asking whether related species have more
such an analysis, each species is essentially one data point. similar niches than expected by chance (Warren et al. 2008).

Due to phylogenetic relationships, related species are expected To assess how the traits of the bryophytes influenced their
to be similar both concerning their traits and occurrence pat- responses to the environmental covariates, we classified species
terns, making the data points not independent (Harvey & by their life-form, a trait which has been previously suggested
Pagel 1991) (Fig. 2). Thus, to ask about the adaptive signifi- to be of functional importance (Bates 1998). However, this
cance of traits, it is necessary to account for phylogenetic con- trait explained only 9% of the variation among species’ envi-
straints. Accounting for phylogenetic signal can also yield ronmental niches. The analysis yielded no strong support for
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the hypothesis of niche conservatism, with the posterior mean
of the phylogenetic correlation parameter p being 0.26 (with a
95% credible interval from 0 to 0.77). These results suggest
that in this particular study, the niches of bryophytes are to a
limited extent related to their life-form, but mainly structured
by some other traits that are not strongly correlated with their
phylogeny, pointing out a knowledge gap in their functional
ecology.

To determine how biotic filters structure communities, the
first step is to know which species interact with each other
and how, i.e. to determine the structure of the network of
interspecific  interactions (Morales-Castilla et al.  2015)
(Table 1). Such an interaction network can be used, e.g. to
examine whether the links among species within the commu-
nity are organised in modular or nested ways (Fortuna et al.
2010). While non-manipulative data on species occurrence do
not allow conclusive inference on ecological interactions, the
HMSC framework makes it possible to infer residual species-
to-species associations, which can be considered as hypotheses
of such interactions. To examine how epiphytic bryophytes
respond to each other, we included community-level random
effects at the two hierarchical spatial scales included in our
study (tree and site), and consequently estimated the species-
to-species association networks at each of these scales
(Fig. 5¢). The resultant networks showed clear structure espe-
cially at the tree scale, where the species sorted essentially into
three groups. The first group of species (species 11-31 in
Fig. 5¢) tend to occur together but not with species from the
second group (species 32-45); the second group of species
tend to occur together but not with species from the first
group, and the third group of species (the remaining species)
occur essentially independent of the other species. The esti-
mated association networks differed between the two spatial
scales, suggesting scale-dependent assembly mechanisms.

For applied ecologists dealing with the management or con-
servation of ecological communities, there is a need to identify
the processes behind community responses to environmental
change (Table 1). For example, a delayed response to habitat
loss may indicate an extinction debt, whereas species lacking
from areas with a suitable climate may indicate dispersal limi-
tation and thus a colonisation credit (Hanski 2000). Another
primary goal of applied community ecology is to classify spe-
cies in relation to their vulnerability to environmental changes
such as climate warming, habitat fragmentation and pollution
— as that allows one to identify species requiring special atten-
tion in conservation management (e.g. Pacifici et al. 2015). In
this case study, we were interested in testing the potential of
Green-Tree Retention cutting (GTR) for conserving epiphytic
bryophytes. GTR is a modification of traditional clear-cutting,
aimed at mitigating effects on biodiversity (Rosenvald &
Lohmus 2008). To evaluate its success, we fitted the statistical
framework to data on epiphytic bryophytes growing on
aspens found in natural forests of varying stand age, as well
as on retention aspens in logged forest with variation in time
since logging. The model-based approach then allowed us to
predict the influence of GTR through scenario simulation
(Fig. 5d). After logging, species richness is predicted to drop
temporarily, but then to quickly recover to the level of uncut
forests. However, community composition is unlikely to

return to the state typical of old-growth forest, but rather to
follow a different trajectory (Fig. 5d). Thus, while retention
aspens in old loggings may host as many species as aspen
trees in natural forests, the identities of these species are likely
to differ.

Based on the predicted responses of the bryophyte species
to forest type and age, we may identify species groups of rele-
vance to forest management and restoration (Fig. 5e). Some
species predominantly occur in natural forests and thus bene-
fit only little from retention trees, whereas others are primarily
found in logged forests, and can thus be considered as distur-
bance specialists of little concern for conservation. In between,
there are two groups of species that benefit from retention
trees: Some species (called recolonising species in Fig. 5e)
appear on retention aspens only once forest has re-grown
around the retention tree. Other species (called life-boated
species in Fig. 5e) can persist on the retention trees immedi-
ately after logging.

A spatially explicit study design: classifying Great Britain based on
butterfly communities

When comparing local communities, we may be interested in
how community similarity depends on the similarity of envi-
ronmental conditions, and on the distance between the com-
munities (Soininen et al. 2007). In addition to repeating the
questions already addressed with the bryophyte data, we next
illustrate questions on community similarity with data from a
butterfly survey conducted in Great Britain. From the larger
survey, we utilise presence—absence data for 55 species
acquired at a 10 x 10 km resolution (Fig. 6a, for original
study see Ovaskainen et al. 2016b).

In a spatial study, the species occurrences can be expected
to be spatially autocorrelated, with the similarity of observa-
tions decreasing with distance. To account for this possibility,
we assumed for the butterfly data that the underlying latent
factors have a spatial covariance structure, and consequently
that also the species-to-species association matrix Q(d)
depends on the distance d between the sampling units (see
Supporting Information for details). Thus, we assumed that
species share the same set of spatially structured latent vari-
ables, but differ in their factor loadings, i.e. in their responses
to the latent variables. The latent factors may represent hid-
den environmental covariates, and are thus also interesting
per se (see Ovaskainen et al. 2016b for illustrations of such
maps).

A partitioning of variance among fixed effects (Fig. 6¢)
revealed that on average, environmental filters related to cli-
matic conditions were somewhat more important than those
related to habitat characteristics in explaining species occur-
rences, but that species differed substantially in their individ-
ual responses. More than half of the variation explained was
attributed to the spatially structured random effects, suggest-
ing that location and distance have strong effects on patterns
of species occurrence and co-occurrence. To examine how spe-
cies’ traits influence their responses to environmental factors
and thus their distributions within Britain, we classified spe-
cies into those that are habitat specialists vs. those that are
not, and to those that are migrants vs. those that are not.
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Figure 6 A case study on butterflies, illustrating the application of the HMSC statistical framework to a spatially explicit study design. Panel (a) describes
the study design. Panel (b) shows analyses of predictive power, measured by Tjur (2009) R* for validation sites. We selected randomly 300 training sites
and left the remaining 2309 sites for validation. The table shows averages over species, whereas the plots show species specific R* values against prevalence.
Results are shown for models where the spatially structured latent factors underlying the estimation of species association matrices are excluded (Non-

spatial; empty dots) or included (Spatial; black dots). Panel (c) shows results on
to climatic and habitat variables. Panel (d) shows estimates on species associatio

variance partitioning, with metrics as in Fig. 5, and the covariates related
ns, with contents as in Fig. 5. Panel (e) illustrates patterns of community

similarity. The map classifies Great Britain into seven regions of common profiles, i.e. area with distinct butterfly communities, obtained by clustering
communities based on their similarity (see Supporting Information for details). The plot shows how community similarity (eqn 5) decays with distance. The

blue dots and line show the result based on the full model. For the red dots

and line the environmental conditions (climate and habitat) have been

standardized to their mean values, and thus they show the distance decay based on spatial variables only (see Supporting Information for details).

These categorical traits explained 19% of variation in species’
environmental niches. As with the bryophyte study, there was
no strong evidence for niche conservatism (posterior mean of
p=0.41, 95% credible interval 0.00-0.78). Association pat-
terns among species were predominantly positive (Fig. 6d).
This implies more variation in species richness than one would
expect from independent occurrences, as species are either
simultaneously present or absent from sampling units. Consid-
ering the general ecology of butterflies, where strong competi-
tion is unlikely but habitat specialisation frequent, these
patterns are more likely due to shared responses to missing
environmental covariates (or variation in sampling effort)
than to true ecological interactions among them.

For applied purposes, we may wish to classify entire com-
munities, to e.g. produce maps of distinct vegetation types, or

more generally to define regions of common profile in terms
of their community structure (Foster ef al. 2013). Such
regions can then be considered as management units, or be
used in reserve selection (Margules & Pressey 2000). For the
butterfly survey, regions characterised by similar communities
(Foster et al. 2013) are shown in Fig. 6e, suggesting that Bri-
tish butterfly communities are primarily structured along the
North—South gradient. To address how community similarity
depends on the similarity of environmental conditions, and
on the distance between the communities (Soininen et al.
2007), we may decompose the distance decay in community
similarity into components that can and cannot be explained
by similarity in environmental covariates (Fig. 6e). Impor-
tantly, the decay in similarity with distance gets steeper when
we account for not only spatial distance but also for
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decreasing similarity in environmental conditions, again sup-
porting the role of the environment in structuring these com-
munities across space.

As applied ecologists, we may also wish to predict the com-
munity composition under different environmental conditions
(Table 1), which may be either within the training data (inter-
polation) or outside it (extrapolation). For example, a scientist
working with species distribution maps may wish to predict
the ranges of all species based on the data points available
(Guisan et al. 2013). The inclusion of spatially structured
latent factors greatly improved the model’s ability to predict
butterfly communities at the validation sites (prediction for
spatial model vs. prediction for non-spatial model in Fig. 6b),
and thus of interpolating species distribution maps from
sparse observations. This is because with spatial latent factors,
the predictions are based both on measured environmental
covariates and on interpolated species occurrences. Further-
more, as the spatial latent factors include information about
species co-occurrence, the improved predictions not only
account for the occurrences of the focal species in the nearby
training sites, but also for the occurrences of all the other spe-
cies at those sites.

In conservation biology, we frequently use indicator,
umbrella and keystone species to indicate the presence of
other species or of specific environmental conditions (Caro
2010). To identify such marker species, we should ask how
well their occurrences predict the occurrences of target species
or conditions. As shown in Fig. 6b (spatial vs. non-spatial
prediction) and discussed above, the inclusion of other species
in the model greatly increases the model’s predictive power.
As we may use any subset of the species as predictors and
any other subset as response variables, the modelling frame-
work permits the systematic identification of indicator species,
i.e. species which are relatively common and easy to survey,
but whose occurrence correlates with the occurrence of species
of particular interest (Caro 2010).

A temporally explicit study design: heterospecific attraction in
water birds

When replicate samples are available in time, we may also
wish to address if and how local communities change, either
through predictable successional pathways such as priority
effects, or through stochastic ecological drift — both of which
may either create new niches or result in extinctions (Dickie
et al. 2012) (Table 1). Our third case study consists of a time-
series containing data on birds’ presence vs. absence across a
set of 215 water ponds (Fig. 7a, for original study see
Sebastian-Gonzélez et al. 2010). Temporally replicated data
provide an additional dimension for quantifying the extent to
which communities are structured by biotic interactions, as we
may use the occurrences of the species in the previous year as
predictors of their occurrences in the following year. Such pre-
dictors can simply be included in the environmental covariate
matrix X (Fig. 3), in which case their influences are estimated
by the regression parameters p. However, to separate species’
responses to other species from species’ responses to the
shared environment, we denote by oy the influence of occur-
rence of species k in the previous year on the occurrence of

species j in the present year. In this study, variation in species
occurrence is explained almost equally much by biotic filters,
i.e. by the occurrences of the species in the previous year, as
by environmental filters, i.e., by the environmental covariates
measured (Fig. 7b). Among the random effects, the most
important is the one associated with the level of the sampling
unit (a pond-year combination), representing heterospecific
(i.e. between species) aggregation of the birds within the
ponds.

To evaluate species associations over time, we examine the
temporal association matrix A = (o). As illustrated in
Fig. 7c, this matrix is not necessarily symmetric, unlike the
association networks measured by the covariance matrices Q.
The diagonal elements of the temporal association matrix A
are positive, signalling that same species tend to return to the
same ponds year after year. The estimated matrices also show
strong support for the heterospecific attraction hypothesis (see
review by Monkkonen & Forsman 2002) both within and
among years. Within a sampling unit, all species pairs are pos-
itively associated. Moreover, for many species pairs the occur-
rence of a species in one year increases the occurrence
probability of another species in the next. For example, the
Common shelduck is particularly likely to be found at the
ponds where the Black-winged stilt was breeding in the previ-
ous year (Fig. 7c). Associations among species both between
years and within a year may be due to unmeasured aspects of
habitat quality or to the benefits that water birds may obtain
from settling in sites already occupied by heterospecifics.

FUTURE DIRECTIONS AND CHALLENGES

As we have illustrated by the above three examples and a fur-
ther example on wood-decaying fungi (see Supporting Infor-
mation), Hierarchical Modelling of Species Communities
(HMSC) offers a coherent framework for addressing a wide
range of questions in community ecology, with its key advan-
tages summarised in Box 1. However, as we discuss in this
section, the core framework outlined here should be consid-
ered just a starting point, as it comes with important caveats
and incitements for future work.

While conceptually our modelling framework focuses on the
mechanisms behind community assembly (Figs 1-4), it is tech-
nically a hierarchical generalised linear mixed model. Hence,
the results are of correlative nature, not directly implying cau-
sation. For example, we emphasise that species association
networks should not be interpreted as proven ecological inter-
actions, but that ecological interactions may have a major
influence on the associations. As another example, niche or
interaction-based processes do not necessarily always cause
predictable community patterns (Munoz & Huneman 2016).
These and other confounding issues are not a limitation of the
statistical model, but of the nature of the data as such. For
instance, data on species occurrence do not allow one to
establish conclusively whether co-occurrences are due to eco-
logical interactions or to other confounding factors, such as
missing environmental covariates or sampling biases (Kissling
et al. 2012). Only experimental data can bring conclusive evi-
dence on this issue. Having said that, our modelling approach
offers a particularly efficient avenue for deriving data-driven
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Figure 7 A case study on water birds, exemplifying the application of the HMSC statistical framework to time series data. Panel (a) describes the study
design. Panel (b) shows results on variance partitioning, with metrics as in Fig. 5, except that species are not ordered according to prevalence (for order,
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year gives the regression coefficients measuring how the presence of a species in the previous year influences the occurrence of the focal species in the
present year. The contents of the other species-to-species association matrices match those of Fig. 5, except that here, the species are shown in the same

order across all panels (for order, see panel a).

hypotheses on ecological interactions, as it decomposes the
observed co-occurrences into those that can be explained by
the environmental covariates explicitly measured vs. those that
cannot.

While the framework presented here already allows one to
address some of the most fundamental questions in commu-
nity ecology (Table 1), it should clearly be seen as a starting
point for building the next generation of joint species distribu-
tion models. As we have based HMSC on hierarchical gener-
alised linear mixed models, adding additional layers is both
conceptually and technically straightforward. Below, we dis-
cuss four perspectives that we consider especially fruitful in
this context.

The first perspective relates to the need to explicitly account
for the observation process when modelling the data, thus
allowing one to separate the processes of interest from biases
introduced by the observer (Guillera-Arroita 2017; Beissinger
et al. 2016; Warton et al. 2016). As the simplest solution, one
may include covariates reflecting observational error (such as
variation in sampling effort) in the X matrix. However, for
many kinds of data there is a need to incorporate a more
elaborate observation model, as is commonly done in e.g. sin-
gle-species occupancy modelling (Guillera-Arroita 2017).
Within the HMSC framework, the observed data yf,o ) could

be modelled as a function of the underlying true occurrences

yij as e.g. yl(j(’bs) ~ D(°bs) (yij, G?(Obs)), where the statistical distri-

bution D©") describes the observation process. For example,
much data on species distributions consist of presences only.
Within the HMSC framework, such data could be analysed
e.g. by linking the linear predictor to a spatially varying
intensity of an underlying point process reflecting the sam-
pling effort (Renner et al. 2015). As another example,
sequence data that are commonly utilised in microbial com-
munity ecology are constrained by the total sequence count,
which can create spurious correlations if not accounted for
(Friedman & Alm 2012). Within the HMSC framework, such
data could be modelled e.g. through multinomial logistic
regression. With such an extension, HMSC would help merg-
ing the statistical methods developed thus far partly sepa-
rately for micro-organisms and macro-organisms (see
Introduction).

The second perspective relates to the need for more versatile
treatments of association networks. One of the key strengths
of the HMSC approach is that it allows us to estimate species
association networks at different spatial or temporal scales,
and to utilise the inferred associations in predictions and sim-
ulated scenarios. In the examples above, we have estimated

© 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd



Idea and Perspective

Making more out of community data 573

)
@
3)
4
(©)

(6)

(N
®)
©)

Box 1 Ten reasons for applying Hierarchical Modelling of Species Communities (HMSC)

(10) HMSC is computationally efficient, being able to analyse small data sets (with a few hundreds of sampling units and a

HMSC is a unifying framework which encompasses classic approaches such as single-species distribution models and
model-based ordinations as special cases.

HMSC provides simultaneous inferences at the species and community levels.

HMSC offers the general advantages of model-based approaches, such as tools for model validation and prediction.

HMSC overcomes previous problems of modelling communities with sparse data.

HMSC overcomes the long-standing challenge in species distribution modelling of how to account for species interactions
in explaining and predicting species occurrences.

HMSC allows one to partition observed variation in species occurrences into components related to environmental varia-
tion measured vs. random processes (or unmeasured variation) at different spatial scales — both at the species and commu-
nity levels.

HMSC tackles the fourth corner problem (the influence of species traits to their occurrences, see Legendre ef al. 1997) in a
way which accounts for the phylogenetic signal in the data.

HMSC can be applied to many kinds of study designs (including hierarchical, temporal or spatial) and many types of data
(such as presence—absence, counts and continuous measurements).

HMSC can generate predictions at the species, community or trait levels, while propagating uncertainty in parameter values
to the level of the prediction.

few tens of species) in seconds, and large data sets (with some tens of thousands of sampling units and a few thousands of

species) in few days.

the association matrices solely from the occurrence data.
However, community ecologists will oftentimes hold interac-
tion matrices constructed from other types of data, arising
e.g. from experiments (Wootton & Emmerson 2005) or infor-
mation on species traits which might influence species interac-
tions (e.g. Schob er al. 2013). In the present formulation of
the model, we have assumed that species traits T and phyloge-
netic correlations C influence the species responses to the abi-
otic environment, but ignored the link from these matrices to
co-occurrence. Finding the best statistical approaches to utilis-
ing such data in the HMSC framework remains a challenge.
One possible solution would be to model the factor loadings
underlying species co-occurrences as functions of the T and
the C matrices in the same way that we have done for species
niches described by the B parameters. Linking species
co-occurrences to traits, phylogenies, and their responses to
environmental variation would provide new tools for address-
ing several intriguing questions, e.g. whether species with few
strong interactions are more vulnerable to disturbances than
species with many weak interactions (Fortuna & Bascompte
2006; Aizen et al. 2012; Abrego et al. 2017b), or whether the
extent to which prey species within communities are coupled
by predators translate into correlated abundances in space or
time (Morris et al. 2004; Tack et al. 2011; Kaartinen & Roslin
2013).

We also note that the estimated association networks are
conditional on species occurrence: even if two species show
a strong positive co-occurrence, the association is not rea-
lised in areas where neither of the species occurs. Less triv-
ially, we have assumed the structure of association networks
to be constant across all areas where they are realised.
However, the type and strength of ecological interactions
may be context-dependent (e.g. Poisot et al. 2015). For
example, the stress-gradient hypothesis predicts that positive
interactions are accentuated under stressful abiotic

environmental conditions (Callaway & Walker 1997). In the
context of HMSC, context dependence of the association
matrices can be incorporated by modelling the underlying
latent variable structure as a function of environmental
covariates (Tikhonov et al. 2017), or more generally as func-
tions of space or time.

The third perspective relates to the need of utilising the
full potential of community-level time-series data. With our
case study on water birds (Fig. 7), we illustrated time-series
modelling in the context of presence—absence data — but note
that abundance data are likely to yield much stronger signals
on heterospecific interactions. With abundance data, one
option for seeking for the effect of such interactions is to
use Gompertz-type models, which account for the intraspeci-
fic interactions through density dependence (Mutshinda ez al.
2009). One technical challenge when dealing with species rich
communities is that interaction matrices between years have
very high dimensionality. In close analogy with our approach
to high-dimensional association matrices Q, this problem
could be solved by a latent variable approach. Here, the
latent factors would correspond to community level sum-
maries of species abundances, whereas factor loadings would
model how the dynamics of individual species depend on
those summaries.

The fourth and final perspective is a merger of genetic and
evolutionary perspectives on community assembly. While the
relevance of eco-evolutionary feedbacks is increasingly recog-
nised in studies of single species, the quantification of such
feedbacks in studies targeting the community level is still
scarce (Johnson & Stinchcombe 2007). In the HMSC frame-
work presented above, we have only touched upon evolution-
ary aspects by asking whether species’ niches show a
phylogenetic signal. An important challenge is to adopt a
more micro-evolutionary perspective, e.g. by asking if and
how the amount and type of genetic variation influences

© 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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variation in species occurrence, either among species, or in
space or through time. A related challenge is bringing the
analyses to the individual level rather than operating only at
the species level — as, for example, traits are often measured
at the individual level (McGill et al. 2006). While the HMSC
framework will in principle allow for this through its hierar-
chical structure, developing a general and computationally
feasible approach that builds up communities from the indi-
vidual level is not straightforward.

Having identified a need for integrating individual- and
genetic-level perspectives with community ecology, we end by
highlighting the status quo: for merging perspectives from genes,
individuals and communities, the largest challenge is currently in
the lack of appropriate data. But for the kind of community data
illustrated in Fig. 3, we believe that the opposite is true: here we
have data in ample supply, whereas progress has been hampered
by a lack of integrative modelling frameworks to synthesise these
data. We hope that the HMSC approach provides a partial solu-
tion to this problem, and that it inspires future research to over-
come some of the caveats listed above.
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