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Abstract

The challenging task of learning structures of probabilistic graphical models is an im-
portant problem within modern AI research. Recent years have witnessed several major
algorithmic advances in structure learning for Bayesian networks—arguably the most cen-
tral class of graphical models—especially in what is known as the score-based setting. A
successful generic approach to optimal Bayesian network structure learning (BNSL), based
on integer programming (IP), is implemented in the gobnilp system. Despite the re-
cent algorithmic advances, current understanding of foundational aspects underlying the
IP based approach to BNSL is still somewhat lacking. Understanding fundamental aspects
of cutting planes and the related separation problem is important not only from a purely
theoretical perspective, but also since it holds out the promise of further improving the
efficiency of state-of-the-art approaches to solving BNSL exactly. In this paper, we make
several theoretical contributions towards these goals: (i) we study the computational com-
plexity of the separation problem, proving that the problem is NP-hard; (ii) we formalise
and analyse the relationship between three key polytopes underlying the IP-based approach
to BNSL; (iii) we study the facets of the three polytopes both from the theoretical and
practical perspective, providing, via exhaustive computation, a complete enumeration of
facets for low-dimensional family-variable polytopes; and, furthermore, (iv) we establish a
tight connection of the BNSL problem to the acyclic subgraph problem.

1. Introduction

The study of probabilistic graphical models is a central topic in modern artificial intelligence
research. Bayesian networks (Koller & Friedman, 2009) form a central class of probabilistic
graphical models that finds applications in various domains (Hugin Expert A/S, 2016;
Sheehan, Bartlett, & Cussens, 2014). A central problem related to Bayesian networks (BNs)
is that of learning them from data. An essential part of this learning problem is to aim at
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learning the structure of a Bayesian network—represented as a directed acyclic graph—that
accurately represents the (hypothetical) joint probability distribution underlying the data.

There are two principal approaches to Bayesian network learning: constraint-based
and score-based. In the constraint-based approach (Spirtes, Glymour, & Scheines, 1993;
Colombo, Maathuis, Kalisch, & Richardson, 2012) the goal is to learn a network which is
consistent with conditional independence relations which have been inferred from the data.
The score-based approach to Bayesian network structure learning (BNSL) treats the BNSL
problem as a combinatorial optimization problem of finding a BN structure that optimises
a score function for given data.

Learning an optimal BN structure is a computationally challenging problem: even the
restriction of the BNSL problem where only BDe scores (Heckerman, Geiger, & Chicker-
ing, 1995) are allowed is known to be NP-hard (Chickering, 1996). Due to NP-hardness,
much work on BNSL has focused on developing approximate, local search style algo-
rithms (Tsamardinos, Brown, & Aliferis, 2006) that in general cannot guarantee that opti-
mal structures in terms of the objective function are found. Recently, despite its complexity,
several advances in exact approaches to BNSL have surfaced (Koivisto & Sood, 2004; Si-
lander & Myllymäki, 2006; Cussens, 2011; de Campos & Ji, 2011; Yuan & Malone, 2013;
van Beek & Hoffmann, 2015), ranging from problem-specific dynamic programming branch-
and-bound algorithms to approaches based on A∗-style state-space search, constraint pro-
gramming, and integer linear programming (IP), which can, with certain restrictions, learn
provably-optimal BN structures with tens to hundreds of nodes.

As shown in a recent study (Malone, Kangas, Järvisalo, Koivisto, & Myllymäki, 2014),
perhaps the most successful exact approach to BNSL is provided by the gobnilp sys-
tem (Cussens, 2011). gobnilp implements a branch-and-cut approach to BNSL, using
state-of-the-art IP solving techniques together with specialised BNSL cutting planes. The
focus of this work is on providing further understanding of the IP approach to BNSL from
the theoretical perspective.

Viewed as a constrained optimization problem, a central source of intractability of BNSL
is the acyclicity constraint imposed on BN structures. In the IP approach to BNSL—
as implemented by gobnilp—the acyclicity constraint is handled in the branch-and-cut
framework via deriving specialised cutting planes called cluster constraints. These cutting
planes are found by solving a sequence of so-called sub-IPs arising from solutions to linear
relaxations of the underlying IP formulation of BNSL without the acyclicity constraint.
Finding these cutting planes is an example of a separation problem for a linear relaxation
solution, so called since the cutting plane will separate that solution from the set of feasible
solutions to the original (unrelaxed) problem. Understanding fundamental aspects of these
cutting planes and the sub-IPs used to find them is important not only from a purely
theoretical perspective, but also since it holds out the promise of further improving the
efficiency of state-of-the-art approaches to solving BNSL exactly. This is the focus of and
underlying motivation for this article.

The main contributions of this article are the following.

• We study the computational complexity of the separation problem solved via sub-IPs
with connections to the general separation problem for integer programs. As a main
result, in Section 5 we establish that the sub-IPs are themselves NP-hard to solve.
From the practical perspective, this both gives a theoretical justification for applying
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an exact IP solver to solve the sub-IPs within gobnilp, and motivates further work
on improving the efficiency of the sub-IP solving via either improved exact techniques
and/or further approximate algorithms.

• We formalise and analyse the relationship between three key polytopes underlying the
IP-based approach to BNSL in Section 4. Stated in generic abstract terms, starting
from the digraph polytope defined by a linear relaxation of the IP formulation without
the acyclicity constraint, the search progresses towards an optimal BN structure via
refining the digraph polytope towards the family-variable polytope, i.e. the convex
hull of acyclic digraphs over the set of nodes in question. The complete set of cluster
constraints gives rise to the cluster polytope as an intermediate.

• We study the facets of the three polytopes both from the theoretical and practical
perspective (Section 6). As a key theoretical result, we show that cluster constraints
are in fact facet-defining inequalities of the family-variable polytope. From the more
practical perspective, achieved via exhaustive computation, we provide a complete
enumeration of facets for low-dimensional family-variable polytopes. Mapping to prac-
tice, explicit knowledge of such facets has the potential for providing further speed-ups
in state-of-the-art BNSL solving by integrating (some of) these facets explicitly into
search.

• In Section 7 we derive facets of polytopes corresponding to (i) BNs consistent with a
given node ordering and (ii) BNs with specified sink nodes. We then use the results
on sink nodes to show how a family-variable polytope for p nodes can be constructed
from a family-variable polytope for p−1 nodes using the technique of lift-and-project.

• Finally, in Section 8 we provide a tight connection of the BNSL problem to the acyclic
subgraph problem, as well as discussing the connection of the polytope underlying this
problem to the three central polytopes underlying BNSL.

Before detailing the main contributions, we recall the BNSL problem in Section 2 and
discuss the integer programming based approach to BNSL, central to this work, in Section 3.

2. Bayesian Network Structure Learning

In this section, we recall the problem of learning optimal Bayesian network structures in
the central score-based setting.

2.1 Bayesian Networks

A Bayesian network represents a joint probability distribution over a set of random variables
Z = (Zi)i∈V . A Bayesian network consists of a structure and parameters:

• The structure is an acyclic digraph (V,B) over the node set V . For edge i ← j ∈ B
we say that i is a child of j and j is a parent of i, and for a variable i ∈ V , we denote
the set of parents of i by Pa(i, B).
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• The parameters define a distribution for each of the random variables Zi for i ∈ V
conditional on the values of the parents, that is, the values

Pr
(
Zi = zi | Zj = zj for j ∈ Pa(i, B)

)
.

The joint probability distribution of the Bayesian network is defined in terms of the structure
and the parameters as

Pr(Zi = zi for i ∈ V ) =
∏
i∈V

Pr
(
Zi = zi | Zj = zj for j ∈ Pa(i, B)

)
.

As mentioned before, our focus is on learning Bayesian networks from data. Specifically,
we focus on the Bayesian network structure learning (BNSL) problem. Once a BN structure
has been decided, its parameters can be learned from the data. See, for example, the book
by Koller and Friedman (2009) on techniques for parameter estimation for a given BN
structure.

2.2 Score-Based BNSL

In the integer programming based approach to BNSL which is the focus of this work,
the learning problem is cast as a constrained optimisation problem: each candidate BN
structure has a score measuring how well it ‘explains’ the given data and the task is to find
a BN structure which maximises that score. This score function is defined in terms of the
data, but for our purposes, it is sufficient to abstract away the details, which are given, for
example, by Koller and Friedman (2009).

Specifically, in this paper we restrict attention to decomposable score functions, where
the score is defined locally by the parent set choices for each i ∈ V . Specifically, for i ∈ V
and J ⊆ V \ {i}, let i ← J denote the the pair (i, J), called a family. In our framework,
we assume that the score function gives a local score ci←J for each family i← J . A global
score c(B) for each candidate structure (V,B) is then defined as

c(B) =
∑
i∈V

ci←Pa(i,B), (1)

and the task is to find an acyclic digraph (V,B) maximising c(B) over all acyclic digraphs
over V .

In practice, one may want to restrict the set of parent sets in some way, given the
large number of possible parents sets and the NP-hardness of BNSL. Typically this is
done by limiting the cardinality of each candidate parent set, although other restrictions,
perhaps reflecting prior knowledge, can also be used. To facilitate this, we assume that a
BNSL instance also defines a set of permissible parent sets P(i) ⊆ 2V \{i} for each node i.
For simplicity we shall only consider BNSL problems where ∅ ∈ P(i) for all nodes. This
also ensures that the empty graph, at least, is a permitted BN structure. Thus, the full
formulation of the BNSL problem is as follows.

Definition 1 (BNSL). A BNSL instance is a tuple (V,P, c), where

1. V is a set of nodes;
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2. P : V → 22V is a function where, for each vertex i ∈ V , P(i) ⊆ 2V \{i} is the set of
permissible parent sets for that vertex, and ∅ ∈ P(i); and

3. c is a function giving the local score ci←J for each i ∈ V and J ∈ P(i).

Given a BNSL instance (V,P, c), the BNSL problem is to find an edge set B ⊆ V ×V which
maximises (1) subject to the following two conditions.

1. Pa(i, B) ∈ P(i) for all i ∈ V .

2. (V,B) is acyclic.

2.3 BNSL with Small Parent Sets

As mentioned, it is common to put an upper bound on the cardinality of permitted parent
sets. More precisely, a common setting is that we have a constant κ and the BNSL instances
we consider are restricted so that all J ∈ P(i) satisfy |J | ≤ κ. For the rest of the paper we
use the convention that κ denotes this upper bound on parent set size.

In practice, BNSL instances with large node set size can often be solved to optimality
fairly quickly when κ is small. For example, with κ = 2, Sheehan et al. (2014) were able to
solve BNSL instances with |V | = 1614 in between 3 and 42 minutes. Even though BNSL
remains NP-hard unless κ = 1 (Chickering, 1996), such results suggest that in practice the
value of κ is an important determining factor of the hardness of a BNSL instance.

However, we will show in the following that the situation is somewhat more subtle: we
show that any BNSL instance can be converted to a BNSL instance with κ = 2 and the
same set of optimal solutions without significantly increasing the total size |V |+

∑
i∈V |P(i)|

of the instance. This suggests, to a degree, that this total instance size is an important
control parameter for the hardness of BNSL instances; naturally, with larger κ, a smaller
number of nodes is required for a large total size.1

We first introduce some useful notation identifying the set of families in a BNSL instance.
For a given set V of nodes and permitted parent sets P(i), let

F(V,P) := {i← J | i ∈ V, J ∈ P(i)},

so that
∑

i∈V |P(i)| = |F(V,P)| and total instance size is |V |+ |F(V,P)|.

Theorem 2. Given a BNSL instance (V,P, c) with the property that for each i ∈ V , P(i) is
downwards-closed, that is, I ⊆ J ∈ P(i) implies I ∈ P(i), we can construct another BNSL
instance (V ′,P ′, c′) in time poly

(
|V |+ |F(V,P)|

)
such that

1. |V ′| = O
(
|V |+ |F(V,P)|

)
and |F(V ′,P ′)| = O

(
|F(V,P)|

)
,

2. |J | ≤ 2 for all J ∈ P ′(i) and i ∈ V ′, and

3. there is one-to-one correspondence between the optimal solutions of (V,P, c) and
(V ′,P ′, c′).

1. The conversion to a BNSL instance with κ = 2 presented here may influence the runtime performance
of BNSL solvers in practice. For example, we have observed through experimentation that the runtime
performance of the gobnilp system often degrades if the conversion is applied before search.
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i

j1 j2 j3 j4 j5 j6 j7

i

j1 j2 j3 j4 j5 j6 j7

{j1,j2,j3,j4} {j5,j6,j7}

{j1,j2} {j3,j4} {j5,j6}

Figure 1: The basic idea of the reduction in Theorem 2. Selecting the parent set
{j1, j2, j3, j4, j5, j6, j7} for node i in the original instance corresponds to selecting
the parent set

{
{j1, j2, j3, j4}, {j5, j6, j7}

}
in the transformed instance. Note that

the parent sets for the nodes labelled with sets are fixed.

Moreover, the claim holds even when (V,P, c) does not satisfy the downwards-closed prop-
erty, with bounds |V ′| = O

(
|V |+ κ |F(V,P)|

)
and |F(V ′,P ′)| = O

(
κ |F(V,P)|

)
, where κ is

the size of the largest parent set permitted by P.

Proof. Given (V,P, c), we construct a new instance (V ′,P ′, c′) as follows. As a first step,
we iteratively go through the permissible parent sets J ∈ P(i) for each i ∈ V and add
the corresponding new parent set to P ′(i) using the following rules; Figure 1 illustrates the
basic idea.

• If |J | ≤ 2, we add J to P ′(i) with score c′i←J = ci←J .

• If J = {j, k, l}, then we create a new node I ∈ V ′ corresponding to the subset
I = {k, l}, and add the set J ′ = {j, I} to P ′(i) with score c′i←J ′ = ci←J .

• If |J | ≥ 4, we partition J into two sets J1 and J2 with ||J1| − |J2|| ≤ 1 and create
new corresponding nodes J1, J2 ∈ V ′. We then add J ′ = {J1, J2} to P ′(i) with score
c′i←J ′ = ci←J .

In the above steps, new nodes corresponding to subsets of V will be created only once,
re-using the same node if it is required multiple times.

Unless all original parent sets have size at most two, this process will create new nodes
J ∈ V ′ corresponding to subsets J ⊆ V with |J | ≥ 2. For each such new node J , we allow
exactly one permissible parent set (of size 2) besides the empty set, as follows.

• If J = {j, k}, then set P ′(J) = {∅, {j, k}}.

• If J = {j, k, l}, then set P ′(J) =
{
∅, {j, {k, l}}

}
, choosing j arbitrarily and creating a

new node {k, l} if necessary.

• If |J | ≥ 4, then we partition J into some J1 and J2 where ||J1| − |J2|| ≤ 1 and set
P ′(J) = {∅, {J1, J2}}, again creating new nodes J1 and J2 if necessary.
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i

j

k

Figure 2: A digraph with 3 nodes.

However, we want to disallow the choice of ∅ for all new nodes in all optimal solutions, so
we will set c′J←∅ = min

(
− |V |,M |V |

)
, where M is the minimum score given to any family

by c, and set the local score for the other parent set choices to 0.

The creation of these parent sets may require the creation of yet further new nodes.
If so, we create the permissible parent sets for each of them in the same way, iterating
the process as long as necessary. This will clearly terminate, and if (V,P, c) satisfies the
downwards-closed property, this will create exactly one new node in V ′ for each original
permissible parent set, implying the bounds for |V ′| and |F(V ′,P ′)|. If the original instance
does not have the downwards-closed property, the process may create up to |J | new nodes
for each original J ∈ P(i), which in turn implies the weaker bound.

Finally, note that any optimal solution to (V ′,P ′, c′) cannot pick the empty set as a
parent set for a node corresponding to a subset of V . It is now not difficult to see that,
from any optimal solution to our newly created BNSL instance, we can ‘read off’ an optimal
solution to the original instance.

3. An Integer Programming Approach to Bayesian Network Structure
Learning

In this section we discuss integer programming based approaches to BNSL, focusing on the
branch-and-cut approach implemented by the gobnilp system for BNSL which motivates
the theoretical results presented in this article.

3.1 An Integer Programming Formulation of BNSL

Recall, from Section 2, that we refer to a node i together with its parent set J as a family.
In the IP formulation of BNSL we create a family variable xi←J for each potential family.
A family variable is a binary indicator variable: xi←J = 1 if J is the parent set for i and
xi←J = 0 otherwise. It is not difficult to see that any digraph (acyclic or otherwise) with
|V | nodes can be encoded by a zero-one vector whose components are family variables and
where exactly |V | family variables are set to 1. Figure 2 and Table 1 show an example
graph and its family variable encoding, respectively.

Although every digraph can thus be encoded as a zero-one vector, it is clearly not the
case that each zero-one vector encodes a digraph. The key to the IP approach to BNSL
is to add appropriate linear constraints so that all and only zero-one vectors representing
acyclic digraphs satisfy all the constraints.

The most basic constraints are illustrated by the arrangement of the example vector in
Table 1 into three rows, one for each node. It is clear that exactly one family variable for
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i← {} i← {j} i← {k} i← {j, k}
0 1 0 0

j ← {} j ← {i} j ← {k} j ← {i, k}
1 0 0 0

k ← {} k ← {i} k ← {j} k ← {i, j}
0 0 0 1

Table 1: A vector in R12 which is the family variable encoding of the digraph in Figure 2
where all possible parent sets are permitted. Here each of the 12 components is
labelled with the appropriate family and the vector is displayed in three rows.

each child node must equal one. So we have |V | convexity constraints∑
J∈P(i)

xi←J = 1 ∀i ∈ V, (2)

each of which may have an exponential number of terms. It is not difficult to see that
any vector x that satisfies all convexity constraints encodes a digraph. However, without
further constraints, the digraph need not be acyclic. There are a number of ways of ruling
out cycles (Cussens, 2010; Peharz & Pernkopf, 2012; Cussens, Bartlett, Jones, & Sheehan,
2013). In this paper we focus on cluster constraints first introduced by Jaakkola, Sontag,
Globerson, and Meila (2010). A cluster is simply a subset of nodes with at least 2 elements.
For each cluster C ⊆ V (|C| > 1) the associated cluster inequality is∑

i∈C

∑
J∈P(i):J∩C=∅

xi←J ≥ 1. (3)

An alternative formulation, which exploits the convexity constraints, is∑
i∈C

∑
J∈P(i):J∩C 6=∅

xi←J ≤ |C| − 1. (4)

To see that cluster inequalities suffice to rule out cycles, note that, for any cluster C and
digraph x, the left-hand side (LHS) of (3) is a count of the number of vertices in C that in
x have no parents in C. Now suppose that the nodes in some cluster C formed a cycle; it is
clear that in that case the LHS of (3) would be 0, violating the cluster constraint. On the
other hand, suppose that x encodes an acyclic digraph. Since the digraph is acyclic, there
is an associated total ordering in which parents precede their children. Let C ⊆ V be an
arbitrary cluster. Then the earliest element of C in this ordering will have no parents in C
and so the LHS of (3) is at least 1 and the cluster constraint is satisfied. An illustration
of how acyclic graphs satisfy all cluster constraints and cyclic graphs do not is given in
Figure 3.

It follows that any zero-one vector x that satisfies the convexity constraints (2) and
cluster constraints (3) encodes an acyclic digraph. The final ingredient in the IP approach
to BNSL is to specify objective coefficients for each family variable. These are simply the
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c d

a b

c d

a b

Figure 3: An acyclic and a cyclic graph for vertex set {a, b, c, d}. For each cluster of vertices
C where |C| > 1 let f(C) be the number of vertices in C who have no parents
in C (i.e. the LHS of (3)). Abbreviating e.g. {a, b} to ab, for the left-hand graph
we have: f(ab) = 1, f(ac) = 1, f(ad) = 2, f(bc) = 1, f(bd) = 2, f(cd) = 1,
f(abc) = 1, f(abd) = 2, f(acd) = 1, f(bcd) = 1 and f(abcd) = 1. For the right-
hand graph we have: f(ab) = 1, f(ac) = 1, f(ad) = 2, f(bc) = 2, f(bd) = 1,
f(cd) = 1, f(abc) = 1, f(abd) = 1, f(acd) = 1, f(bcd) = 1 and f(abcd) = 0. The
cluster constraint for cluster {a, b, c, d} is violated by the right-hand graph since
these vertices form a cycle.

local scores ci←J introduced in Section 2. Collecting these elements together, we can define
the IP formulation of the BNSL as follows.

Maximise
∑

i∈V,J∈P(i)

ci←Jxi←J (5)

subject to
∑

J∈P(i)

xi←J = 1 ∀i ∈ V (6)

∑
i∈C

∑
J∈P(i):J∩C=∅

xi←J ≥ 1 ∀C ⊆ V, |C| > 1 (7)

xi←J ∈ {0, 1} ∀i ∈ V, J ∈ P(i) (8)

3.2 The gobnilp System

The gobnilp system solves the IP problem defined by (5–8) for a given set of objective
coefficients ci←J . These coefficients are either given as input to gobnilp or computed by
gobnilp from a discrete dataset with no missing values. The gobnilp approach to solving
this IP is fully detailed by Bartlett and Cussens (2015); here we overview the essential ideas.

Since there are only |V | convexity constraints (6), these are added as initial constraints
to the IP. Initially, no cluster constraints (7) are in the IP, so we have a relaxed version of the
original problem. Moreover, in its initial phase gobnilp relaxes the integrality condition (8)
on the family variables into xi←J ∈ [0, 1] ∀i ∈ V, J ∈ P(i), so that only linear relaxations of
IPs are solved. So gobnilp starts with a ‘doubly’ relaxed problem: the constraints ruling
out cycles are missing and the integrality condition is also dropped.

A linear relaxation of an IP is a linear program (LP). gobnilp uses an external LP
solver such as SoPlex or CPLEX to solve linear relaxations. The solution (call it x∗) to the
initial LP will be a digraph where a highest scoring parent set for each node is chosen, a
digraph which will almost certainly contain cycles. Note that this initial solution happens
to be integral, even though it is the solution to an LP not an IP. gobnilp then attempts
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y

x

y

x

Figure 4: Illustration of the cutting plane technique for a problem with 2 integer-valued
variables x and y. In both figures: The 7 large dots indicate the 7 feasible
solutions (x = 1, y = 0), (x = 2, y = 0), (x = 3, y = 0), (x = 2, y = 1),
(x = 3, y = 1), (x = 2, y = 2) and (x = 3, y = 2). The red dot indicates the
optimal solution (x = 2, y = 2). The objective function is −x+y and is indicated
by the arrow. The boundary of the convex hull of feasible solutions is shown. A
relaxation of the problem is indicated by the green region with the orange dot
indicating the optimal solution to the relaxed problem. In the left-hand figure:
The blue line represents a cutting plane—a linear inequality—which separates the
solution to the relaxed problem from the convex hull of feasible solutions. The
yellow dot indicates the optimal solution to the relaxed problem once this cut is
added. In the right-hand figure: Similar to the left-hand figure except that a
better cut has been added. The right-hand yellow dot has a lower objective value
than that on the left and thus provides a better upper bound.

to find clusters C such that the associated cluster constraint is violated by x∗. Since the
cluster constraints are added in this way they are called cutting planes: each one cuts off an
(infeasible) solution x∗ and since they are linear each one defines a (high-dimensional) plane.
These cluster constraints are added to the LP, producing a new LP which is then solved,
generating a new solution x∗. This process is illustrated in Figure 4; since the cutting planes
found by gobnilp are rather hard to visualise, we use a (non-BNSL) IP problem with only
two variables to illustrate the basic ideas behind the cutting plane approach. Note that
the relaxation in Figure 4 contains (infeasible) integer solutions. Many of the relaxations
solved by gobnilp (notably the initial one) also allow infeasible integer solutions—which
correspond to cyclic digraphs.

The process of LP solving and adding cluster constraint cutting planes is continued until
either (i) an LP solution is produced which corresponds to an acyclic digraph, or (ii) this
is not the case, but no further cluster constraint cutting planes can be found. In the first
(rare) case, the BNSL instance has been solved. The objective value of each x∗ that is
produced is an upper bound on the objective value of an optimal digraph (since it is an
exact solution to a relaxed version of the original BNSL instance), so if x∗ corresponds to
an acyclic digraph it must be optimal.

The second (typical) case can occur since even if we were to add all (exponentially-many)
cluster constraints to the LP there is no guarantee that the solution to that LP would be
integral. (This hypothetical LP including all cluster constraints defines what we call the
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cluster polytope which will be discussed in Section 4.3.) However, since we only add those
cluster constraints which are cutting planes (i.e. which cut off the solution x∗ to some linear
relaxation) in practice only a small fraction of cluster constraints are actually added.2

Once no further cluster constraint cutting planes can be found gobnilp stops ignoring
the integrality constraint (8) on family variables and exploits it to make progress. If no
cluster constraint cutting planes can be found, and the problem has not been solved, then
x∗, the solution to the current linear relaxation, must be fractional, i.e. there must be at
least one family variable xi←J such that 0 < x∗i←J < 1. One option is then to branch on
such a variable to create two sub-problems: one where xi←J is fixed to 0 and one where it is
fixed to 1. Note that x∗ is infeasible in the linear relaxations of both sub-problems but there
is an optimal solution in at least one of the sub-problems. gobnilp also has the option
of branching on sums of mutually exclusive family variables. For example, given nodes i,
j, and k, gobnilp has the option of branching on xi←{j} + xi←{j,k} + xj←{i} + xj←{i,k}, a
quantity which is either 0 or 1 in an acyclic digraph. gobnilp then recursively applies the
cutting plane approach to both sub-problems. gobnilp is thus a branch-and-cut approach
to IP solving.

These are the essentials of the gobnilp system, although the current implementation
has many other aspects. In particular, under default parameter values, gobnilp switches to
branching on a fractional variable if the search for cluster constraint cutting planes is taking
too long. gobnilp is implemented with the help of the SCIP system (Achterberg, 2007)
and it uses SCIP to generate many other cutting planes in addition to cluster constraints.
gobnilp also adds in other initial inequalities in addition to the convexity constraints. For
example, if we had three nodes i, j, and k, the inequality xi←{j,k} + xj←{i,k} + xk←{i,j} ≤ 1
would be added. All these extra constraints are redundant in the sense that they do not
alter the set of optimal solutions to the IP (5–8). They do, however, have a great effect in
the time taken to identify a provably optimal solution.

3.3 BNSL Cutting Planes via Sub-IPs

The separation problem for an IP is the problem of finding a cutting plane which is violated
by the current linear relaxation of the IP, or to show that none exists. In this paper we
focus on the special case of finding a cluster constraint cutting plane for an LP solution
x∗, or showing none exists. We call this the weak separation problem. We call it the ‘weak’
separation problem since cluster constraints are not the only possible cutting planes.

In gobnilp this problem is solved via a sub-IP, as described previously by Bartlett and
Cussens (2015). Given an LP solution x∗ to separate, the variables of the sub-IP include
binary variables yi←J for each family such that x∗i←J > 0. In addition, binary variables yi
for each i ∈ V are created. The constraints of the sub-IP are such that yi = 1 indicates
that i is a member of some cluster whose associated cluster constraint is a cutting plane for
x∗. yi←J = 1 indicates that the family variable xi←J appears in the cluster constraint. The
sub-IP is given by

2. We have yet to explore the interesting question of how large this fraction might be.
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Maximise
∑

i,J : x∗i←J>0

x∗i←J · yi←J −
∑
i∈V

yi (9)

subject to yi←J ⇒ yi ∀yi←J (10)

yi←J ⇒
∨
j∈J

yj ∀yi←J (11)

∑
i,J : x∗i←J>0

x∗i←J · yi←J −
∑
i∈V

yi > −1 (12)

yi←J , yi ∈ {0, 1} (13)

The sub-IP constraints (10–11) are displayed as propositional clauses for brevity, but
note that these are linear constraints. They can be written as (1 − yi←J) + yi ≥ 1 and
(1 − yi←J) +

∑
j∈J yj ≥ 1, respectively. The constraint (12) dictates that only solutions

with objective value strictly greater than -1 are allowed. In the gobnilp implementation
this constraint is effected by directly placing a lower bound on the objective rather than
posting the linear constraint (12), since the former is more efficient.

It is not difficult to show—Bartlett and Cussens (2015) provide the detail—that any
feasible solution to sub-IP (9–13) determines a cutting plane for x∗ and that a proof of the
sub-IP’s infeasibility establishes that there is no such cutting plane. Since gobnilp spends
much of its time solving sub-IPs in the hunt for cluster constraint cutting planes, the issue
of whether there is a better approach is important. Is it really a good idea to set up a sub-IP
each time a cutting plane is sought? Is there some algorithm (perhaps a polynomial-time
one) that can be directly implemented to provide a faster search for cutting planes? In
Section 5 we make progress towards answering these questions. We show that the weak
separation problem is NP-hard and so (assuming P 6= NP) there is no polynomial-time
algorithm for weak separation.

4. Three Polytopes Related to the BNSL IP

As explained in Section 3.2, in the basic gobnilp algorithm one first (i) uses only the
convexity constraints, then (ii) adds cluster constraints, and, if necessary, (iii) branches on
variables to solve the IP. These three stages correspond to three different polytopes which
will be defined and analyzed in Sections 4.2–4.4. Before providing this analysis we first give
essential background on linear inequalities, polytopes and polyhedra (Conforti, Cornuéjols,
& Zambelli, 2014). We follow the notation of Conforti et al. (2014), which is standard
throughout the mathematical programming literature: for x, y ∈ Rn, (1) “x ≤ y” means
that xi ≤ yi for all i = 1, . . . , n and (2) “xy” where x, y ∈ Rn is the scalar or ‘dot’ product
(i.e. xT y).
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4.1 Linear Inequalities, Polytopes and Polyhedra

Definition 3. A point x ∈ Rn is a convex combination of points in S ⊆ Rn if there exists
a finite set of points x1, . . . , xp ∈ S and scalars λ1, . . . , λp such that

x =

p∑
j=1

λjx
j ,

p∑
j=1

λj = 1, λ1, . . . , λp ≥ 0.

Definition 4. The convex hull conv(S) of a set S ⊆ Rn is the inclusion-wise minimal convex
set containing S, i.e. conv(S) = {x ∈ Rn | x is a convex combination of points in S}.

Definition 5. A subset P of Rn is a polyhedron if there exists a positive integer m, an
m× n matrix A, and a vector b ∈ Rm such that

P = {x ∈ Rn | Ax ≤ b}.

Definition 6. A subset Q of Rn is a polytope if Q is the convex hull of a finite set of vectors
in Rn.

Theorem 7 (Minkowski-Weyl Theorem for Polytopes). A subset Q of Rn is a polytope if
and only if Q is a bounded polyhedron.

What the Minkowski-Weyl Theorem for Polytopes states is that a polytope can either
be described as the convex hull of a finite set of points or as the set of feasible solutions to
some linear program. It follows that, for a given linear objective, an optimal point can be
found by solving the linear program. This is a superficially attractive prospect since linear
programs can be solved in polynomial time.

Unfortunately, for NP-hard problems (such as BNSL) it is impractical to create, let alone
solve, the linear program due to the size of A and b. Fully characterising the inequalities
Ax ≤ b is also typically difficult. However, it is useful to identify at least some of these
inequalities. These inequalities define facets of the polytope. A facet is a special kind of
face defined as follows.

Definition 8. A face of a polyhedron P ⊆ Rn is a set of the form

F := P ∩ {x ∈ Rn | cx = δ},

where cx ≤ δ (c ∈ Rn, δ ∈ R) is a valid inequality for P , i.e. all points in P satisfy it. We
say the inequality cx ≤ δ defines the face. A face is proper if it is non-empty and properly
contained in P . An inclusion-wise maximal proper face of P is called a facet.

So, for example, a cube is a 3-dimensional polytope (it is also a polyhedron) with 6
2-dimensional faces, 12 1-dimensional faces and 6 0-dimensional faces (the vertices). The 2-
dimensional faces are facets since each of them is proper and not contained in any other face.
The convex hull of the 7 points (x = 1, y = 0), (x = 2, y = 0), (x = 3, y = 0), (x = 2, y = 1),
(x = 3, y = 1), (x = 2, y = 2) and (x = 3, y = 2), whose boundary is represented in Figure 4,
is 2-dimensional and has 4 1-dimensional facets (shown in Figure 4) and 4 0-dimensional
faces. Note that the ‘good’ cut in the right-hand figure of Figure 4 is a facet-defining
inequality.
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Facets are important since they are given by the ‘strongest’ inequalities defining a poly-
hedron. The set of all facet-defining inequalities of a polyhedron provides a minimal rep-
resentation Ax ≤ b of that polyhedron, so any cutting plane which is not facet-defining is
thus ‘redundant’. The formal definition of redundancy is provided by Wolsey (1998, p.141).
Practically, facet-defining inequalities are good inequalities to add as cutting planes since
they, and they alone, are guaranteed not to be dominated by any other valid inequality and
also not by any linear combination of other valid inequalities. Identifying facets is thus an
important step in improving the computational efficiency of an IP approach.

A face of an n-dimensional polytope is a facet if and only if it has dimension n − 1.
(Note that the 6 facets of a 3-dimensional cube are indeed 2-dimensional.) To prove that a
face F has dimension n− 1 it is enough to find n affinely independent points in F . Affine
independence is defined as follows (Wolsey, 1998).

Definition 9. The points x1, . . . xk ∈ Rn are affinely independent if the k−1 directions x2−
x1, . . . , xk − x1 are linearly independent, or alternatively the k vectors (x1, 1), . . . (xk, 1) ∈
Rn+1 are linearly independent.

Note that if x1, . . . xk ∈ Rn are linearly independent they are also affinely independent.

Having provided these basic definitions we now move on to consider three polytopes of
increasing complexity: the digraph polytope (Section 4.2), the cluster polytope (Section 4.3)
and finally, our main object of interest, the family variable polytope (Section 4.4).

4.2 The Digraph Polytope

The digraph polytope is simply the convex hull of all digraphs permitted by P. Before
providing a formal account of this polytope we define some notation. For a given set of
nodes V and permitted parent sets P(i), recall from Section 2.3 that the set of families is
defined as

F(V,P) := {i← J | i ∈ V, J ∈ P(i)}.

Furthermore, we denote the set of families that remain once the empty parent set for each
vertex is removed by

F(V,P) := F(V,P) \ {i← ∅ | i ∈ V }.

In this and subsequent sections F(V,P) will serve as an index set. We will abbreviate
F(V,P) and F(V,P) to F and F unless it is necessary or useful to identify the node set V
and permitted parent sets P(i).

For any edge set A ⊆ V × V , it is clear that any 0-1 vector in RA corresponds to a
(possibly cyclic) subgraph of D = (V,A). However, there are many 0-1 vectors in RF (or
RF) which do not correspond to digraphs, namely those where xi←J = xi←J ′ = 1 for some
i ← J, i ← J ′ ∈ F with J 6= J ′. So clearly inequalities other than simple variable bounds
are required to define the digraph polytope.

Since any digraph (cyclic or acyclic) satisfies the |V | convexity constraints (2), the
digraph polytope if expressed using the variables in F will not be full-dimensional—the
dimension of the polytope will be less than the number of variables. This is inconvenient
since only full-dimensional polytopes have a unique minimal description in terms of their
facets.
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To arrive at a full-dimensional polytope we remove the |V | family variables with empty
parent sets and define the digraph polytope using index set F(V,P). Let PG(V,P) be the
digraph polytope which is the convex hull of all points in RF(V,P) that correspond to digraphs
(cyclic and acyclic).

PG(V,P) :=conv
{
x ∈ RF(V,P)

∣∣∣ ∃B ⊆ V × V s.t. (14)

Pa(i, B) ∈ P(i) ∀i ∈ V and xi←J = 1(J = Pa(i, B)) ∀J ∈ P(i) \ ∅
}
.

We will abbreviate PG(V,P) to PG where this will not cause confusion.

Proposition 10. PG is full-dimensional.

Proof. The digraph with no edges is represented by the zero vector in RF. Each vector in RF

with only one component xi←J set to 1 and all others set to 0 represents an acyclic digraph
(denoted ei←J) and so is in PG. These vectors together with the zero vector are clearly a
set of |F|+ 1 affinely independent vectors from which it follows that PG is full-dimensional
in RF.

PG is a simple polytope: it is easy to identify all its facets.

Proposition 11. The facet-defining inequalities of PG are

1. ∀i← J ∈ F : xi←J ≥ 0 (variable lower bounds), and

2. ∀i ∈ V :
∑

i←J∈F(V,P) xi←J ≤ 1 (‘modified’ convexity constraints).

Proof. We use Wolsey’s third approach to establishing that a set of linear inequalities define
a convex hull (Wolsey, 1998, p.145). Let c ∈ RF be an arbitrary objective coefficient vector.
It is clear that the linear program maximising cx subject to the given linear inequalities
has an optimal solution which is an integer vector representing a digraph: simply choose
a ‘best’ parent set for each i ∈ V . (If all coefficients are non-positive choose the empty
parent set.) Moreover for any digraph x, it easy to see that there is a c such that x is an
optimal solution to the LP. It is also easy to see that each of the given linear inequalities is
necessary—removing any one of them results in a different polytope. The result follows.

Proposition 11 establishes the unsurprising fact that the polytope defined by gobnilp’s
initial constraints is PG(V,P), the convex hull of all digraphs permitted by P. It follows
that we will have x∗ ∈ PG for any LP solution x∗ produced by gobnilp after adding cutting
planes.

4.3 The Cluster Polytope

Although gobnilp only adds those cluster constraints which are needed to separate LP
solutions x∗, it is useful to consider the polytope which would be produced if all were
added. The cluster polytope PCLUSTER(V,P) is defined by adding all cluster constraints
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to the facet-defining inequalities of the digraph polytope PG(V,P), thus ruling out (family
variable encodings of) cyclic digraphs.

PCLUSTER(V,P) :=
{
x ∈ RF(V,P)

∣∣∣ xi←J ≥ 0 ∀i← J ∈ F(V,P), and∑
i←J∈F(V,P)

xi←J ≤ 1 ∀i, and

∑
i∈C

∑
J∈P(i):J∩C 6=∅

xi←J ≤ |C| − 1 ∀C ⊆ V, |C| > 1
}
.

We will abbreviate PCLUSTER(V,P) to PCLUSTER where this will not cause confusion.

Proposition 12. PCLUSTER is full-dimensional.

Proof. Proof is essentially the same as that for Proposition 10.

As with the digraph polytope, we use the index set F to ensure full-dimensionality, and
consequently have to use formulation (4) for cluster constraints. Clearly PCLUSTER ⊆ PG

(and the inclusion is proper if |V | > 1). Since gobnilp only adds some cluster constraints,
the feasible set for each LP that is solved during its cutting plane phase is a polytope P
where PCLUSTER ⊆ P ⊆ PG. More important is the connection between PCLUSTER and the
family variable polytope which we now introduce.

4.4 The Family Variable Polytope

The family variable polytope PF(V,P) is the convex hull of acyclic digraphs with node set
V which are permitted by P. To define PF(V,P) it is first useful to introduce notation for
the set of acyclic subgraphs of some digraph. Let D = (V,A) be a digraph, and

A(D) := {B ⊆ A | B is acyclic in D}. (15)

Now consider the case where D = (V, V × V ). The family variable polytope PF(V,P) is

PF(V,P) := conv
{
x ∈ RF(V,P)

∣∣∣ ∃B ∈ A(D) s.t. Pa(i, B) ∈ P(i) ∀i ∈ V and (16)

xi←J = 1(J = Pa(i, B)) ∀J ∈ P(i) \ ∅
}
.

We will abbreviate PF(V,P) to PF where this will not cause confusion.

Proposition 13. PF is full-dimensional.

Proof. Proof is essentially the same as that for Proposition 10.

It is clear that PF ⊆ PCLUSTER ⊆ PG. We will see in Section 6 that although cluster
constraints turn out to be facet-defining inequalities of PF, they are not the only facet-
defining inequalities, and so (if |V | > 2) PF ( PCLUSTER. We do, however, have that
Z|F| ∩PF = Z|F| ∩PCLUSTER, since acyclic digraphs are the only zero-one vectors to satisfy
all cluster and modified convexity constraints. These facts have important consequences for
the IP approach to BNSL. They show that (i) cluster constraints are a good way of ruling
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out cycles (since they are facet-defining inequalities of PF) and that (ii) one can solve a
BNSL by just using cluster constraints and branching on variables (to enforce an integral
solution). That PF ( PCLUSTER also implies that it may be worth searching for facet-
defining cuts which are not cluster inequalities, for example those discovered by Studený
(2015).

5. Computational Complexity of the BNSL Sub-IPs

In this section we focus on the computational complexity of the BNSL sub-IPs, formalized
as the weak separation problem for BNSL. As the main result of this section, we show that
this problem is NP-hard.

The weak separation problem for BNSL is as follows: given a x∗ ∈ PG, find a separating
cluster C ⊆ V , |C| > 1, for which∑

i∈C

∑
J∈P(i):J∩C 6=∅

x∗i←J > |C| − 1, (17)

or establish that no such C exists. We first give a simple necessary condition on separating
clusters.

Definition 14. Given x∗ ∈ PG define dDe(x∗), the rounding-up digraph for x∗, as follows:
i← j is an edge in dDe(x∗) iff there is a family i← J such that j ∈ J and x∗i←J > 0.

Proposition 15. If C is a separating cluster for x∗, then dDe(x∗)C , the subgraph of the
rounding-up digraph restricted to the nodes C, is cyclic.

Proof. Since x∗ ∈ PG, x∗ is a convex combination of extreme points of PG. So we can write
x∗ =

∑K
k=1 αkx

k where each xk represents a graph and
∑K

k=1 αk = 1. For each graph xk,
let xkC be the subgraph restricted to the nodes C. It is easy to see that if xkC is acyclic,
then

∑
i∈C

∑
J∈P(i):J∩C 6=∅ x

k
Ci←J

≤ |C| − 1. So if xkC is acyclic for all k = 1, . . . ,K, then∑
i∈C

∑
J∈P(i):J∩C 6=∅ x

∗
Ci←J

≤ |C| − 1. But if dDe(x∗)C is acyclic, then so are all the xkC .
The result follows.

Proposition 15 leads to a heuristic algorithm for the weak separation problem (which
is available as an option in gobnilp). Given an LP solution x∗, the rounding up digraph
dDe(x∗) is constructed and cycles in that digraph are searched for using standard techniques.
For each cycle found, the corresponding cluster is checked to see whether it is a separating
cluster for x∗. We now consider the central result on weak separation.

Theorem 16. The weak separation problem for BNSL is NP-hard, even when restricted to
instances (V,P, c) where J ∈ P(i) for all i ∈ V only if |J | ≤ 2.

Proof. We prove the claim by reduction from vertex cover; that is, given a graph G = (V,E)
and an integer k, we construct x∗ ∈ PG(V ′,P ′) over a vertex set V ′ and permitted parent
sets P ′ such that there is a cluster C ⊆ V ′ with |C| > 1 and∑

i∈C

∑
J∈P ′(i):J∩C 6=∅

x∗i←J > |C| − 1
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if and only if there is a vertex cover of size at most k for G.

Specifically, let us denote n = |V | and m = |E|. We construct x∗ ∈ PG(V ′,P ′) as
follows; Figure 5 illustrates the basic idea.

1. The vertex set is V ′ = V ∪ S, where S is disjoint from V and |S| = m.

2. For s ∈ S and {u, v} ∈ E, we set x∗s←{u,v} = 1/m; in particular,
∑
{u,v}∈E x

∗
s←{u,v} = 1

for all s ∈ S.

3. For s ∈ S and v ∈ V , we set

x∗v←{s} =
k

m(k + 1)
.

4. x∗i←∅ = 0 for all i ∈ V ′.

5. For all other choices of i ∈ V ′ and J ⊆ V ′ \ {i}: J 6∈ P ′(i).

Finally, for a cluster C ⊆ V ′, we define the score w(C) as

w(C) =
∑
i∈C

∑
J∈P ′(i):J∩C 6=∅

x∗i←J − |C| .

Now we claim that there is a set C ⊆ V ′ with w(C) > −1 if and only if G has a vertex
cover of size at most k; this suffices to prove the claim.

First, we observe that if U ⊆ V is a vertex cover in G, then

w(U ∪ S) = −|U |+
∑
v∈U

∑
s∈S

xv←{s} − |S|+
∑
s∈S

∑
e∈E

1

m

= −|U |+ |U | mk

m(k + 1)
− |S|+ |S|m

m

= −|U |
(

1− k

k + 1

)
= − |U |

k + 1
,

which implies that w(U ∪ S) > −1 if |U | ≤ k.

Now let C ⊆ V ′, and let us denote CV = C ∩ V and CS = C ∩ S. If |CV | ≥ k + 1, then
we have

w(C) ≤ −|CV |+ |CV |
|CS |k

m(k + 1)

≤ −|CV |+ |CV |
k

k + 1

= −|CV |
(

1− k

k + 1

)
=
|CV |
k + 1

≤ −1 .

On the other hand, let us consider the case where |CV | ≤ k but CV is not a vertex cover
for G; we may assume that CV 6= ∅, as otherwise we would have w(C) = −|C| ≤ −1. Let
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Figure 5: The basic gadget of the reduction in Theorem 16. Each edge u, v ∈ V in the
original instance G = (V,E) is represented by assigning weight x∗s←{u,v} = 1/ |E|
in the new instance, where s is a new node. Clearly, U ⊆ V is a vertex cover in
G if and only if total weight of terms x∗s←{u,v} such that U intersects the parent
set is 1.

us write H = {e ∈ E | CV ∩ e 6= ∅} for the set of edges covered by CV . Since we assume
that CV is not a vertex cover, we have |H| ≤ m− 1. Thus, it holds that

w(C) = −|CV |+ |CV |
|CS |k

m(k + 1)
− |CS |+ |CS |

|H|
m

≤ −|CV |+ |CV |
|CS |k

m(k + 1)
− |CS |+ |CS |

m− 1

m

= −|CV |
(

1− |CS |k
m(k + 1)

)
− |CS |

m

≤ −
(

1− |CS |k
m(k + 1)

)
− |CS |

m

= −1− |CS |
( 1

m
− k

m(k + 1)

)
= −1− |CS |

m(k + 1)
< −1 .

Thus, if CV is not a vertex cover of size at most k, then w(C) ≤ −1.

6. Facets of the Family Variable Polytope

In this section a number of facets of the family variable polytope are identified and certain
properties of facets are given. Section 6.1 provides simpler results, and Sections 6.2–6.4
more substantial ones, including a tight connection between facets and cluster constraints,
liftings of facets, and the influence of restricting parent sets on facets. In Appendix A
we provide a complete enumeration of the facet-defining inequalities over 2–4 nodes and
confirm the enumeration is consistent with the theoretical results presented here.

6.1 Simple Results on Facets

We start by showing that the full-dimensional family variable polytope PF is monotone via
a series of lemmas. Once we have proved this result, we will use it to establish elementary
properties of facets of PF and find the simple facets of the polytope.
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Definition 17. A nonempty polyhedron P ⊆ Rn≥0 is monotone if x ∈ P and 0 ≤ y ≤ x
imply y ∈ P .

Lemma 18. Let x ∈ PF and let the vector y be such that yi′←J ′ = 0 for some i′ ← J ′ and
yi←J = xi←J if i← J 6= i′ ← J ′. Then y ∈ PF.

Proof. Since x ∈ PF, x =
∑
αkx

k where each xk is an extreme point of PF corresponding
to an acyclic digraph. For each xk define the vector yk where yki′←J ′ = 0 and all other
components of yk are equal to those of xk. Each yk is also an extreme point corresponding to
an acyclic digraph (a subgraph of xk). We clearly have that y =

∑
αky

k and so y ∈ PF.

Lemma 19. Let x ∈ PF and let y be any vector such that 0 ≤ yi′←J ′ ≤ xi′←J ′ for some
i′ ← J ′ and yi←J = xi←J if i← J 6= i′ ← J ′. Then y ∈ PF.

Proof. If xi′←J ′ = 0 then y = x and the result is immediate, so assume that xi′←J ′ >
0. Consider z which is identical to y except that zi′←J ′ = 0. We have y =

yi′←J′
xi′←J′

x +(
1− yi′←J′

xi′←J′

)
z. By Lemma 18 z ∈ PF. Since x is also in PF and y is a convex combination

of x and z it follows that y ∈ PF.

Proposition 20. PF(V ) is monotone.

Proof. Suppose x ∈ PF and 0 ≤ y ≤ x. Construct a sequence of vectors x = y0, y1, . . . ,
yk, . . . , y|F| = y by replacing each component xi←J by yi←J one at a time (in any order).
By Lemma 19 each yk ∈ PF, so y ∈ PF.

Hammer, Johnson, and Peled (1975) showed that a polytope is monotone if and only if
it can be described by a system x ≥ 0, Ax ≤ b with A, b ≥ 0. This gives the following result
for PF.

Theorem 21. Each facet-defining inequality of PF(V ) is either (i) a lower bound (of zero)
on a family variable, or (ii) an inequality of the form πx ≤ π0, where π ≥ 0 and π0 > 0.

Proof. From Proposition 20 and the result of Hammer et al. (1975) we have the result but
with π0 ≥ 0. That π0 > 0 follows directly by full-dimensionality.

Proposition 22. The following hold.

1. xi←J ≥ 0 defines a facet of PF(V,P) for all families i← J ∈ F(V,P).

2. For all i ∈ V , if J ′ ∈ P(i′) implies ∃J 6= ∅ ∈ P(i) for all other i′ ∈ V , where i 6∈ J ′ or
i′ 6∈ J , then

∑
J 6=∅,J∈P(i) xi←J ≤ 1 defines a facet of PF(V,P).

Proof. (1) follows from the monotonicity of PF(V,P) (Hammer et al., 1975, Proposition 2).
For (2) first define, for any i← J ∈ F(V,P) the unit vector ei←J ∈ RF(V,P), where ei←Ji←J = 1
and all other components of ei←J are 0. For each i ∈ V define Si = {ei←J | J 6= ∅, J ∈
P(i)} ∪ {ei′←J ′ + ei←J | i′ 6= i, J ′ 6= ∅, J ′ ∈ P(i′), J 6= ∅, and either i 6∈ J ′ or i′ 6∈ J}.

There is an obvious bijection between family variables and the elements of Si so |Si| =
|F(V,P)|. It is easy to see that the vectors in Si are linearly independent (and thus affinely
independent) and that each is an acyclic digraph satisfying

∑
J 6=∅,J∈P(i) xi←J = 1. The

result follows.
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Recall that we use the name modified convexity constraints to describe inequalities of
the form

∑
J 6=∅,J∈P(i) xi←J ≤ 1. That each node can have exactly one parent set in any

digraph is a convexity constraint. If we remove the empty parent set, this convexity con-
straint becomes an inequality, and is thus modified. We have now shown that each modified
convexity constraint defines a facet of PF(V,P) as long as a weak condition is met. In fact,
we have found this weak condition to be almost always met in practice. Note also that it is
always met when all parent sets are allowed (as long as |V | > 2).

We now show that if πx ≤ π0 defines a facet of the family-variable polytope, then, for
each family, there is an acyclic digraph ‘containing’ that family for which πx ≤ π0 is ‘tight’.

Proposition 23. If πx ≤ π0 defines a facet of PF which is not a lower bound on a family
variable, then for all families i ← J ∈ F, there exists an extreme point x of PF such that
xi←J = 1 and πx = π0.

Proof. Recall that by definition each extreme point of PF is a zero-one vector (representing
an acyclic digraph). Now suppose that there were some i← J ∈ F such that xi←J = 0 for
any extreme point x of PF such that πx = π0. Since πx ≤ π0 defines a facet, there is a
set of |F| affinely independent extreme points satisfying πx = π0. By our assumption, each
such extreme point will also satisfy xi←J = 0. xi←J ≥ 0 defines a facet. However, it is not
possible for a set of |F| affinely independent points to lie on two distinct facets. The result
follows.

Proposition 23 helps us prove an important property of facet-defining inequalities of
PF: coefficients are non-decreasing as parent sets increase. The proof of the following
proposition rests on the simple fact that removing edges from an acyclic digraph always
results in another acyclic digraph.

Proposition 24. Let πx ≤ π0 be a facet-defining inequality of PF. Then J ⊆ J ′ implies
πi←J ≤ πi←J ′.

Proof. Since πx ≤ π0 defines a facet, there exists an extreme point x′ such that x′i←J ′ = 1
and πx′ = π0. Note that x′i←J = 0. Since x′ is an extreme point, it encodes an acyclic
digraph. Let y be identical to x′ except that yi←J = 1 and yi←J ′ = 0. Since J ⊆ J ′, y also
encodes an acyclic digraph and so is in PF so πy ≤ π0 = πx′. Thus πy− πx′ ≤ 0. However,
πy − πx′ = πi←J − πi←J ′ , and the result follows.

6.2 Cluster Constraints are Facets of the Family Variable Polytope

In this section we show that each κ-cluster inequality is facet-defining for the family variable
polytope in the special case where the cluster C is the entire node set V and where all parent
sets are allowed for each vertex. The κ-cluster inequalities (Cussens, 2011) are a generali-
sation of cluster inequalities (3). The cluster inequalities (3) are κ-cluster inequalities for
the special case of κ = 1.

In the next section (Section 6.3) we will show how to ‘lift’ facet-defining inequalities.
This provides an easy generalisation (Theorem 29) of the result of this section which shows
that, when all parent sets are allowed, all κ-cluster inequalities are facets, not just those
for which C = V . As a special case, this implies that the cluster inequalities devised by
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Jaakkola et al. (2010) are facets of the family variable polytope when all parent sets are
allowed.

An alternative proof for the fact that κ-cluster inequalities are facet-defining was recently
provided by Cussens et al. (2016, Corollary 4) The proof establishes not only that κ-cluster
inequalities are facet-defining, but also that they are score-equivalent. A face of the family
variable polytope is said to be score-equivalent if it is the optimal face for some score
equivalent objective, where the optimal face of an objective is the face containing all optimal
solutions. An objective function is score equivalent if it gives the same value to any two
acyclic digraphs which are Markov equivalent (encode the same conditional independence
relations). In later work, Studený (2015) went further and showed that κ-cluster inequalities
form just part of a more general class of facet-defining inequalities which can be defined
in terms of connected matroids. However, we believe that our proof, as presented in the
following, is valuable since it relies only on a direct application of a standard technique
for proving that an inequality is facet-defining, and does not require any connection to be
made to score-equivalence, let alone matroid theory. In addition, the general result (our
Theorem 29) further shows how our results on ‘lifting’ can be usefully applied.

First we define κ-cluster inequalities. There is a κ-cluster inequality for each cluster
C ⊆ V , |C| > 1, and each κ < |C| which states that there can be at most |C| − κ nodes in
C with at least κ parents in C. It is clear that such inequalities are at least valid, since all
acyclic digraphs clearly satisfy them. We begin by considering the special case of C = V
where the κ-cluster inequality states that there can be at most |V | − κ nodes with at least
κ parents. We first introduce some helpful notation.

Definition 25. PV is defined as follows: PV (i) := 2V \{i}, for all i ∈ V .

We will now show that κ-cluster inequalities are facet-defining.

Theorem 26. For any positive integer κ < |V |, the following valid inequality defines a
facet of the family variable polytope PF(V,PV ):∑

i∈V

∑
J⊆V \{i},|J |≥κ

xi←J ≤ |V | − κ. (18)

Proof. An indirect method of establishing affine independence is used. It is given, for
example, by Wolsey (1998, p.144). Let x1, . . . , xt be the set of all acyclic digraphs in
PF(V,PV ) satisfying ∑

i∈V

∑
J⊆V \{i},|J |≥κ

xi←J = |V | − κ. (19)

Suppose that all these points lie on some generic hyperplane µx = µ0. Now consider the
system of linear equations∑

i∈V

∑
J 6=∅,J⊆V \{i}

µi←Jx
ι
i←J = µ0 for ι = 1, . . . , t. (20)

Note that dim PF(V,PV ) = |F(V,PV )| = |V |(2|V |−1− 1) and so there are the same number
of µi←J variables. The system (20), in the |V |(2|V |−1 − 1) + 1 unknowns (µ, µ0), is now
solved. This is done in three stages. First we show that µi←J must be zero if |J | < κ. Then
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we show that the remaining µi←J must all have the same value. Finally, we show that this
common value is 1 whenever µ0 is |V | − κ.

To do this it is useful to consider acyclic tournaments on V . These are acyclic digraphs
where there is a directed edge between each pair of distinct nodes. It is easy to see that

1. for any κ < |V |, every acyclic tournament on V satisfies (19), and that

2. for any xi←J there is an acyclic tournament, where xi←J = 1.

Let x be an acyclic tournament on V with xi←J = 1 for some i ∈ V , |J | < κ, i.e. J is
the non-empty parent set for i in x. Now consider x′ which is identical to x except that i
has no parents, so that x − x′ = ei←J . Since x is an acyclic tournament it satisfies (19).
But it is also easy to see that x′ satisfies (19), since no parent set of size at least κ has been
removed. So µi←J = µei←J = µ(x − x′) = µx − µx′ = µ0 − µ0 = 0. µi←J = 0 whenever
|J | < κ. Call this Result 1.

Consider now two distinct parent sets J and J ′ for some i ∈ V where J ≥ κ and J ′ ≥ κ.
Let g be an acyclic tournament on the node set V \ {i}. Let x be the acyclic digraph on
node set V obtained by adding {i} to g and drawing edges from each member of J to i.
Similarly, let x′ be the acyclic digraph obtained by drawing edges from J ′ to i instead, so
that x − x′ = ei←J − ei←J ′ . It is not difficult to see that both x and x′ satisfy (19). So
µi←J − µi←J ′ = µ(ei←J − ei←J ′) = µ(x− x′) = µx− µx′ = µ0 − µ0 = 0. So µi←J = µi←J ′ .
Call this Result 2.

Now consider variables xi←J and xi′←J ′ where i 6= i′, J ∪ {i} = J ′ ∪ {i′} and |J | =
|J ′| = κ. First note that in an acyclic tournament, (i) there is exactly one parent set
of each size 0, . . . , κ, . . . |V | − 1 and so (ii) the nodes of an acyclic tournament can be
totally ordered according to parent set size, and thus (iii) any total ordering of nodes
determines a unique acyclic tournament. Let x be any acyclic tournament where xi←J = 1
and xi′←J(<κ) = 1 for some parent set J (<κ) where |J (<κ)| < κ. Clearly there are many
such acyclic tournaments. Note that since x is an acyclic tournament, J (<κ) ⊆ J \ {i, i′}.
Now consider the acyclic tournament x′ produced by swapping i and i′ in the total order
associated with x. This generates an acyclic tournament x′ where x′i′←J ′ = 1 and x′

i←J(<κ) =
1. Note that components of x and x′ corresponding to family variables with parent set size
strictly above κ are equal. Components of µ corresponding to family variables with parent
set size strictly below κ all equal zero. From this we have that µx − µx′ = µi←J − µi←J ′ .
Since µx− µx′ = µ0 − µ0 = 0, this shows that µi←J = µi′←J ′ Call this Result 3.

Now consider a pair of variables µi←J ′′ and µi′←J ′′′ where i 6= i′, and the only restriction
is that |J ′′|, |J ′′′| ≥ κ. If some other pair of variables µi←J and µi′←J ′ meet the conditions
of Result 3, then µi←J = µi′←J ′ . However, by Result 2 µi←J ′′ = µi←J and µi′←J ′′′ = µi′←J ′ .
Thus µi←J ′′ = µi′←J ′′′ .

So by the transitivity of equality µi←J = µi′←J ′ for any i, i′, J, J ′ where |J | ≥ κ, |J ′| ≥ κ.
Recall that we also have that µi←J = 0 whenever |J | < κ.

Suppose that µ0 = 0. Since all non-zero µi←J are equal and thus have the same sign,
the only possible solution is for all µi←J = 0. Suppose then instead that µ0 6= 0. Then wlog
we can set µ0 = |V | − κ. In each of the t equations (20), after substituting µi←J = 0 for
|J | < κ, we have |V | − κ terms on the left hand side (LHS) which are known to be equal.
On the right hand side (RHS) the value is |V | −κ, so all terms on the LHS must equal one.

207



Cussens, Järvisalo, Korhonen & Bartlett

Each term µi←J where |J | ≥ κ, occurs in at least one of t equations (20), so this is enough
to establish that µi←J = 1 whenever |J | ≥ κ. Thus, unless all µi←J = 0, the only possible
solution to the system of linear equations (20) with RHS |V | − κ is

• µi←J = 0 if |J | < κ, and

• µi←J = 1 if |J | ≥ κ.

These values match those in (19) and so (18) is facet-defining.

6.3 Lifting Facets of the Family Variable Polytope

In this section we show that if all parent sets are allowed, then facet-defining inequalities
for the family variable polytope for some node set V can be ‘lifted’ to provide facets for any
family variable polytope for an enlarged node set V ′ ) V .

Lemma 27. Recall that PV (i) := 2V \{i} for all i ∈ V . Let∑
i∈V

∑
J∈PV (i),J 6=∅

αi←Jxi←J ≤ β (21)

be a facet-defining inequality for the family variable polytope PF(V,PV ) which is not a lower
bound on a variable. Let V ′ = V ∪ {i′} where i′ 6∈ V . Then∑

i∈V

∑
J∈PV (i),J 6=∅

αi←J(xi←J + xi←J∪{i′}) ≤ β (22)

is a facet-defining inequality of PF(V ′,PV ′). Furthermore, this inequality is not a lower
bound on a variable.

Proof. Since (21) is facet-defining, there is a set S0 ⊆ RF(V,PV ) of affinely independent
acyclic digraphs, with node set V , lying on its hyperplane. For each acyclic digraph in
S0, create an acyclic digraph with node set V ∪ {i′} by adding i′ as an isolated node. Let
S1 ⊆ RF(V ′,PV ′ ) be the set of acyclic digraphs so created. Note that all members of S1 lie
on the hyperplane for (22). Each vector in S1 corresponds to a vector in S0 with a zero
vector of length |F(V ′,PV ′)|− |F(V,PV )| concatenated. Since S0 is an affinely independent
set, so is S1.

For each non-empty subset J ⊆ V , construct an acyclic digraph by adding ei
′←J to an

arbitrary member of S1. Clearly the end result is an acyclic digraph lying on the hyperplane
for (22). Let S2 be the set of all such acyclic digraphs.

For each J ⊆ V , i ∈ V , construct an acyclic digraph by finding an acyclic digraph
x ∈ S1 such that xi←J = 1 and adding an arrow from i′ to i. Note that it is always possible
to find an acyclic digraph with xi←J = 1. If this were not the case, then (21) would be
a lower bound on xi←J . It is not difficult to see that any such acyclic digraph lies on the
hyperplane defined by (22). Let S3 be the set of all such acyclic digraphs.

Let S = S1 ∪ S2 ∪ S3. S2 and S3 have exactly one acyclic digraph for each component
xi←J involving the node i′ (either i = i′ or i′ ∈ J). S1 has an acyclic digraph for each
component xi←J not involving i′. So |S| = dim PF(F(V ′,PV ′)) = |F(V ′,PV ′)|. It remains
to be established that the S is a set of affinely independent vectors.
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Suppose
∑

xi∈S αix
i = 0 and

∑
xi∈S αi = 0. Each component xi←J involving i′ is set to

1 in exactly one acyclic digraph in S2∪S3. Thus αi = 0 for xi ∈ S2∪S3. So
∑

xi∈S1
αix

i = 0
and

∑
xi∈S1

αi = 0. The result then follows from the affine independence of the set S1.

Theorem 28. Recall that PV (i) := 2V \{i} for all i ∈ V . Let∑
i∈V

∑
J∈PV (i),J 6=∅

αi←Jxi←J ≤ β (23)

be a facet-defining inequality of the family variable polytope PF(V,PV ) which is not a lower
bound on a variable. Let V ′ be a node set such that V ⊆ V ′. Then

∑
i∈V

∑
J∈PV (i),J 6=∅

αi←J

 ∑
J ′:J⊆J ′⊆V ′\{i}

xi←J ′

 ≤ β (24)

is facet-defining for PF(V ′,PV ′) and is not a lower bound on a variable.

Proof. Repeated application of Lemma 27.

Using Theorem 28, Theorem 26 can now be ‘lifted’ to establish that all k-cluster in-
equalities are facet-defining.

Theorem 29. Recall that PV (i) := 2V \{i} for all i ∈ V . For any C ⊆ V and any positive
integer κ < |C|, the valid inequality∑

i∈C

∑
J⊆V \{i}:|J∩C|≥κ

xi←J ≤ |C| − κ (25)

is facet-defining for the family variable polytope PF(V,PV ).

Proof. By Theorem 26, (25) is facet-defining for the family variable polytope for node set
C. By applying Theorem 28 it follows that it also facet-defining for the family variable
polytope for any node set V ⊇ C.

6.4 Facets When Parent Sets Are Restricted

The results in the preceding sections have all been for the special case PV when all possible
parent sets are allowed for each node. If some parent sets are ruled out, for example by an
upper bound κ on parent set cardinality, then some κ-cluster inequalities and some modified
convexity constraints may not be facets.

To see this, suppose we had V = {a, b, c}. If all parent sets are allowed, then Theorem 29
shows that this 2-cluster inequality for C = {a, b, c},

xa←{b,c} + xb←{a,c} + xc←{a,b} ≤ 1, (26)

is facet-defining. However, if {a, b} is not allowed as a parent set for c, then the inequality
becomes

xa←{b,c} + xb←{a,c} ≤ 1, (27)
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which is not facet-defining since it is dominated by the 1-cluster inequality for C = {a, b},

xa←{b} + xa←{b,c} + xb←{a} + xb←{a,c} ≤ 1. (28)

As another example, suppose {c} were removed from P(a). Then condition 2 of Proposi-
tion 22 is no longer met, and the modified convexity constraint for a becomes

xa←{b} + xa←{b,c} ≤ 1, (29)

which cannot be facet-defining since it is dominated by the inequality (28).
For any P we have that the polytope PF(V,P) is a face of the all-parent-sets-allowed

polytope PF(V,PV ) defined by the valid inequality∑
i∈V

∑
J∈PV (i)\P(i)

xi←J ≥ 0. (30)

The issue then is whether it is possible to determine when a facet of PF(V,PV ) is also
a facet of this face. The issue of determining the facets of a face is of general interest. As
Boyd and Pulleyblank (2009) note “As it is often technically much simpler to obtain results
about facets for a full dimensional polyhedron than one of lower dimension, it would be nice
to . . . know under what conditions an inequality inducing a facet of P also induces a facet
of a face F of P .” They go on to state that “. . . we know of no reasonable general result of
this type”.

However, in the case of the the family variable polytope, there is a strong result which
shows that many facets of a family variable polytope PF(V,P) induce facets of a lower-
dimensional family variable polytope PF(V, P̆) where P̆(i) ⊆ P(i) for all i ∈ V . In partic-
ular, this result shows that some facets of the all-parent-sets-allowed polytope PF(V,PV )
are also facets of the polytope that results by limiting the cardinality of parent sets. To
establish this result we first prove a lemma.

Lemma 30. Let x ∈ PF(V,P). Let i ∈ V and let J, J ′ ∈ P(i) with J ( J ′, J 6= ∅. Define x̆
as follows: x̆i←J = xi←J +xi←J ′, x̆i←J ′ = 0, and x and x̆ are equal in all other components.
Then x̆ is also in the family-variable polytope PF(V,P).

Proof. Since x ∈ PF(V,P), x =
∑K

k=1 αkx
k where each xk is an extreme point of PF(V,P)

corresponding to an acyclic digraph. For each xk define x̆k as follows: x̆ki←J = xki←J +xki←J ′ ,
x̆ki←J ′ = 0 and xk and x̆k are equal in all other components. It is clear that each x̆k

corresponds to an acyclic digraph which differs from xk iff J ′ is the parent set for i in xk, in
which case J becomes the parent set for i in x̆k. The digraph remains acyclic since J ( J ′.
It is also clear that x̆ =

∑K
k=1 αkx̆

k and so x̆ ∈ PF(V,P).

The main result of this section now follows. Our proof makes use of the elementary but
useful fact that the number of linearly independent rows in a matrix (row rank) and the
number of linearly independent columns in a matrix (column rank) are equal.

Theorem 31. Let πx ≤ π0 define a facet for the family-variable polytope PF(V,P). Suppose
that πi←J = πi←J ′ for some i ∈ V , J, J ′ ∈ P(i) with J ( J ′, J 6= ∅. Let π̆ be π with the
component πi←J ′ removed. Let P̆ be identical to P except that J ′ is removed from P(i).
Then π̆x ≤ π0 defines a facet for the polytope PF(V, P̆).

210



Bayesian Network Structure Learning with Integer Programming

Proof. Since πx ≤ π0 is facet-defining for PF(V,P) it is obvious by Theorem 21 that π̆x ≤ π0

is at least a valid inequality for PF(V, P̆). We now show that this valid inequality defines a
facet by proving the existence of |F(V, P̆)| affinely independent points lying in the facet.

Recall that F(V,P) is the set of families determined by vertices V and allowed parent
sets P. Abbreviate |F(V,P)| to m and note that |F(V, P̆)| = m− 1. Since πx ≤ π0 defines
a facet for the family-variable polytope PF(V,P), there are m affinely independent points
x1, . . . , xk, . . . , xm lying in this facet (i.e. πxk = π0, xk ∈ PF(V,P) for k = 1, . . . ,m). Since
these points are affinely independent, the points (x1, 1), . . . , (xk, 1), . . . , (xm, 1) in Rm+1 are
linearly independent.

Let A1 be the m × (m + 1) matrix whose rows are the (xk, 1). Since the rows are
linearly independent, A1 has rank m. Construct a new matrix A2 by adding the column
for family i ← J ′ to that for i ← J . Since this is an elementary operation it does not
change the rank of the matrix (Cohn, 1982), and so A2 has rank m. Now construct an
m × m matrix A3 by removing the column for i ← J ′ from A2. Denote the rows of A3

by (x̆1, 1), . . . , (x̆k, 1), . . . , (x̆m, 1). From Lemma 30 it follows that each x̆k is in PF(V, P̆).
Since πi←J = πi←J ′ , it is not difficult to see that each x̆k satisfies π̆x = π0. Since A2

has rank m, there are m linearly independent columns in A2 and, since A3 is A2 with one
column removed, at least m − 1 linearly independent columns in A3. So A3 has rank of
at least m − 1. But this means that there are m − 1 linearly independent rows in A3, so
there are m − 1 points among the x̆k that are affinely independent. So there are m − 1
affinely independent points in PF(V, P̆) satisfying π̆x = π0 and thus π̆x ≤ π0 defines a facet
of PF(V, P̆).

Given a facet-defining inequality of an all-parent-sets-allowed polytope PF(V,PV ) and
a parent set cardinality limit κ, Theorem 31 states that if the coefficients for all family
variables xi←J ′ with |J ′| > κ are not strictly larger than the coefficient for some family
variable xi←J with J ( J ′ so that |J | ≤ κ, then the inequality also defines a facet for the
polytope with family variables restricted by κ. In Appendix A this is confirmed for the case
where |V | = 4 and κ = 2. It follows that a normal (k = 1) cluster constraint is a facet
for any limit κ on the size of parent sets. This explains why normal cluster constraints are
more useful to look for than k-cluster constraints for k > 1. In gobnilp, although the user
can ask the system to look for k-cluster constraints up to some defined limit k ≤ K, the
default is to only search for normal (k = 1) cluster constraints since this has been observed
to lead to faster solving.

7. Faces of the Family Variable Polytope Defined by Orders and by Sinks

In this section we analyse faces of the all-parent-sets-allowed family variable polytope defined
by total orders and sink nodes, respectively. Faces of a polytope are themselves polytopes,
and in this section we establish a complete characterisation of the facets of both types of
polytope. Moreover, the faces defined by sink nodes lead to a useful extended representation
for the family variable polytope which can be used to relate family variable polytopes for
different numbers of nodes.
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7.1 Order-Defined Faces

Let < be some total order on the node set V . An acyclic digraph (V,B) is consistent with
< if i ← j ∈ B ⇒ j < i, so that parents come before children in the ordering. The valid
inequality

∑
i,J :(∃j∈J s.t. i<j) xi←J ≥ 0 defines a face of the family variable polytope

PF(V,<) =
{
x ∈ PF(V,PV )

∣∣∣ ∑
i,J :(∃j∈J :i<j)

xi←J = 0
}
. (31)

In PF(V,<) each family variable inconsistent with< is set to zero. This is the only restriction
on x. So clearly all acyclic digraphs consistent with < lie on the face PF(V,<) and no
digraphs inconsistent with < do. It is also clear that any acyclic digraph lies on PF(V,<)
for at least one choice of <.

Remark 32. Abbreviate |V | to p. We have that dim(PF(V,<)) = 2p − p− 1. If the family
variables clamped to zero in PF(V,<) are removed, PF(V,<) is full-dimensional in R2p−p−1.
(Recall that dim(PF(V,PV )) = p(2p−1 − 1).)

Remark 33. If x is an extreme point of PF(V,PV ), then x ∈
⋃
< PF(V,<).

Note that exactly one acyclic tournament lies on PF(V,<) for any choice of <.

Proposition 34. The facet-defining inequalities of the full-dimensional polytope PF(V,<)
⊆ R2p−p−1 are

1. the variable lower bounds xi←J ≥ 0, and

2. the modified convexity constraints
∑

J⊆V :J 6=∅,j∈J→j<i xi←J ≤ 1,

where variables xi←J with j ∈ J, i < j have been removed.

Proof. Let c ∈ R2p−p−1 be an arbitrary objective coefficient vector. Consider solving the
LP with objective c subject to the linear inequalities given above. It is clear that an optimal
solution to this LP is obtained by choosing a parent set J for each i ∈ V such that ci←J is
maximal (or choosing none if all ci←J are negative or there are no parent sets available).
This is an integer solution. The result follows.

7.2 Sink-Defined Faces

For some particular j ∈ V , consider the valid inequality
∑

i 6=j,j∈J xi←J ≥ 0. This defines a
face PF(V, j) of the family variable polytope as

PF(V, j) :=
{
x ∈ PF(V,PV )

∣∣∣ ∑
j∈J,i6=j

xi←J = 0
}
. (32)

This face contains all acyclic digraphs for which j is a sink—it has no children. Since every
acyclic digraph has at least one sink, each extreme point of the family variable polytope
PF(V,PV ) lies on a face PF(V, j) for at least one choice of j.
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Remark 35. Abbreviate |V | to p and recall that dim(PF(V,PV )) = p(2p−1 − 1). We have
that dim(PF(V, j)) = dim(PF(V \ {j},PV \{j})) + 2p−1 − 1 = (p− 1)(2p−2 − 1) + 2p−1 − 1 =
(p+ 1)2p−2− p. If the family variables clamped to zero in PF(V, j) are removed, PF(V, j) is
full-dimensional in R(p+1)2p−2−p.

Remark 36. Every acyclic digraph contains at least one sink. So if x is an extreme point
of PF(V,PV ), then x ∈

⋃
j∈V PF(V, j).

Proposition 37. The facet-defining inequalities of the full-dimensional polytope PF(V, j) ⊆
R(p+1)2p−2−p are

1. the facet-defining inequalities of the polytope PF(V \ {j},PV \{j}), and

2. the modified convexity constraint for j, namely
∑

J⊆V \{j},J 6=∅ xj←J ≤ 1.

Proof. Let c ∈ R(p+1)2p−2−p be an arbitrary objective coefficient vector and consider solving
the LP with objective c subject to the linear inequalities given above. Since j is constrained
to be a sink, an optimal solution in PF(V, j) is obtained by choosing a maximally scoring
parent set for j and then an optimal acyclic digraph for V \{j}. Since we have all the facets
of the polytope PF(V \ {j}), the optimal acyclic digraph for V \ {j} is a maximal solution
to the LP restricted to the relevant variables. So the full LP has an integer solution. The
result follows.

7.3 A Sink-Based Extended Representation for the Family Variable Polytope

Since PF(V, j) ⊆ PF(V,PV ), for each j ∈ V we have
⋃
j∈V PF(V, j) ⊆ PF(V,PV ) and

so conv
(⋃

j∈V PF(V, j)
)
⊆ conv (PF(V,PV )) = PF(V,PV ). However, as noted in Re-

mark 36, if x is an extreme point of PF(V,PV ), then x ∈
⋃
j∈V PF(V, j), so PF(V,PV ) ⊆

conv
(⋃

j∈V PF(V, j)
)

, and thus PF(V,PV ) = conv
(⋃

j∈V PF(V, j)
)

. Since there are only

|V | = p sink-defined faces, this leads to a compact extended representation for the family
variable polytope PF(V,PV ) in terms of the polytopes PF(V, j)j∈V . Since by Proposition 37
each PF(V, j) can be defined using PF(V \ {j}), this allows PF(V,PV ) to be defined by
the PF(V \ {j},PV \{j}). In Appendix B we detail how this is done for the specific case of
|V | = 4; here we describe the method for the general case.

A union of polytopes can be modelled by introducing additional variables. We follow
the (standard) approach described by Conforti et al. (2014, §2.11). For each j ∈ V , we
introduce a binary variable xj and add the constraint∑

j∈V
xj = 1, (33)

where xj indicates that node j is a distinguished sink. The constraint states that in each
acyclic digraph we can choose exactly one sink as the distinguished sink for that digraph.

Next, for each j ∈ V , i← J ∈ F(V,PV ), we introduce a new variable xj,i←J indicating
that i has J as its (non-empty) parent set and that j is the distinguished sink. In other
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words xj,i←J = xjxi←J . We add the following constraints linking the xj,i←J to the original
xi←J :

xi←J =
∑
j∈V

xj,i←J . (34)

Denote the vector of xj,i←J components for some j as xj . Then for each j ∈ V and each
facet-defining inequality πx ≤ π0 of PF(V, j) we add the constraint

πjxj ≤ π0xj , (35)

where πjj,i←J = πi←J , and also the variable bounds

0 ≤ xj,i←J ≤ xj . (36)

Equations and inequalities (33–36) define
⋃
j∈V PF(V, j). To formulate PF(V,PV ) =

conv
(⋃

j∈V PF(V, j)
)
, it suffices to merely drop the integrality condition on the xj variables,

thus allowing PF(V,PV ) to be defined in terms of the lower-dimensional PF(V, j).

8. Relating BNSL and the Acyclic Subgraph Problem

As the final contribution of this article, we establish a tight connection between BNSL and
the acyclic subgraph problem.

8.1 BNSL as the Acyclic Subgraph Problem

BNSL is closely related to the well-known acyclic subgraph problem (ASP) (Grötschel,
Jünger, & Reinelt, 1985). An instance of ASP is defined by digraph D = (V,A) with edge
weights c(i← j) ∈ R for every edge i← j ∈ A, and the goal is to find an acyclic subdigraph
D′ = (V,B) of D which maximises ∑

i←j∈B
c(i← j). (37)

In ASP, the objective function is a linear function of (indicators for) the edges of some
digraph; in BNSL, by contrast, the aim is to maximise an objective which is a linear
function of (indicators for) sets of edges. As a Bayesian network structure learning instance
can consist of up to Ω(2n) input values, it is presumably in general not possible to encode
a BNSL instance as a ASP instance over the same node set as the original BNSL instance,
as this would require in the worst case encoding an exponential number of parent set scores
into a quadratic number of edge weights. However, we will next show that we can construct
a BNSL-to-ASP reduction by introducing new nodes to represent all possible parent sets of
the original instances (V,P, c), similarly as in Theorem 2.

Theorem 38. Given BNSL instance (V1,P, c), we can construct an ASP instance D =
(V,A) such that

1. |V | = O
(
|V1|+ |F(V1,P)|

)
, and

2. there is one-to-one correspondence between the optimal solutions of D and (V1,P, c).
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Moreover, given (V1,P, c), the instance D can be constructed in time poly
(
|V1|+|F(V1,P)|

)
.

Proof. Define the digraph D = (V,A) where V = V1 ∪ V2 ∪ V3 and

• V2 = {J ⊆ V1 | J ∈ P(i) for some i ∈ V1},

• V3 = {i← J | i ∈ V, J ∈ P(i)}.

See Figure 6 for an example node set where V1 is on the top row, V2 the middle one and V3

the bottom row.

The edge set for D is the disjoint union of four (colour-coded) edge sets A = A1 ∪A2 ∪
A3 ∪A4 where

• A1 = {(i, J) | i ∈ V1, J ∈ V2, i ∈ J} (blue),

• A2 = {(i← J, i) | i← J ∈ V3, i ∈ V1} (black),

• A3 = {(J, i← J) | J ∈ V2, i← J ∈ V3} (red), and

• A4 = {(i← J, J ′) | i← J ∈ V3, J
′ ∈ V2, i 6∈ J ′, J 6= J ′} (green).

These four edge sets are coloured correspondingly in the example of Figure 6.

Define an ASP instance for D = (V,A) where each (red) edge in A3 (J, i ← J) has
weight ci←J ; we will assume that the scores c(i ← J) are strictly positive for all feasible
parent sets choices, as adding the same value to each score will not change the optimal
structures. All other edges receive a weight sufficiently big to ensure that they are included
in any optimal acyclic edge set. For example, giving each such edge a weight equal to a
sum of all ci←J weights plus 1 will suffice.

Note that (V,A\A3) is acyclic. Recall also the objective coefficients of the ASP instance
have been chosen to ensure that A \ A3 ⊆ B for any optimal edge set B in D. Intuitively,
we will thus only care about how the optimal solution looks on the edge set A3, and use
this information to recover a solution to the original BNSL instance.

Let (V,B) be an optimal solution to ASP instance D and define a digraph (V1, B
′) as

follows: B′ = {i ← j | j ∈ J and (J, i ← J) ∈ B}. We will show (i) there is exactly one
edge of form (J, i ← J) ∈ A3 for each i ∈ V1, (ii) the graph (V1, B

′) graph is acyclic and
(iii) that it is an optimal solution to the given BNSL instance (V1,P, c).

(i) Suppose that (J, i ← J) and (J ′, i ← J ′) were both in B for some i ∈ V1 and
J, J ′ ∈ V2, J 6= J ′. This is not possible because the edges (i ← J, J ′) and (i ← J ′, J) are
both in A4 and thus in B. Having (J, i ← J) and (J ′, i ← J ′) both in B would cause a
cycle (i← J)→ J → (i← J ′)→ J → (i← J) in B, and so is impossible.

(ii) For any i, j, J with i 6= j, j ∈ J , there exist the following edges: the blue edge
(j, J) ∈ A1 and the black edge (i ← J, i) ∈ A2. Note that both of these edges will be in
B. If the red edge (J, i ← J) ∈ A3 is also in B then we have the following path in B:
j → J → (i← J)→ i. So if j is a parent of i in B′, then there is a path from j to i in B.
So if there were a cycle i1 → i2 . . . in → i1 in B′ there would be a cycle from i1 to i1 in B.
Since B is acyclic this is a contradiction and so B′ must also be acyclic.

(iii) We first show that any feasible solution G to the BNSL instance (V1,P, c) corre-
sponds to a feasible solution to the ASP instance D = (V,A). This feasible solution to
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a

{a} {a,b}{a,c}

b

{b}{b,c}

c

{c}

b<-{a} c<-{a}a<-{b} c<-{b}a<-{c} b<-{c} c<-{a,b}b<-{a,c}a<-{b,c}

Figure 6: ASP digraph for the BNSL instance with node set {a, b, c}

D = (V,A) consists of the edges A1 ∪ A2 ∪ A4 together with those red edges in A3 cor-
responding to the parent set choices for G. We need to show that this edge set—call it
B(G)—is acyclic in D = (V,A). Since G is acyclic there is a total order <V1 on the nodes
V1 such that parents always come before children in this order. We show that <V1 deter-
mines a total order <V on the nodes V such that parents always come before children in
B(G) which establishes that B(G) is acyclic.

To aid understanding we first do this for the case where V1 = {a, b, c} and G is such
that a <V1 b <V1 c. The general result is established later. In the special case all red edges
(in A3) which are inconsistent with <V1 will be absent from B(G). In particular, since a is
allowed no parents, the red edges going to the nodes a← {b}, a← {c}, and a← {b, c} will
be absent. This means that these nodes are source nodes in B(G), so put these as the first
3 elements of the order <V . Since a ∈ V1 has only these 3 nodes as parents, put a as the
4th element in <V . Since the only parent for {a} is a, put {a} as the 5th element. Since
c cannot be a parent of b, the red arrows going to b← {c} and b← {a, c} are absent from
B(G), so these nodes are sources in B(G). Also the only arrow going to b ← {a} is from
{a} which is already in the order. This allows us to put b← {a}, b← {c} and b← {a, c} as
the next elements in <V . Having done this b can be placed next, and then {b} and {a, b}.
The final placements are c ← {a}, c ← {b} and c ← {a, b}, then c and then the remaining
nodes {c}, {a, c}, {b, c} and {a, b, c}.

In the general case, suppose we have G with a consistent ordering of its nodes i1 <V1
i2 · · · <Vn in. We construct a total ordering of the nodes of V consistent with B(G) as
follows. Start with the nodes i1 ← J (in any order), and then put i and after that {i}.
Then for k = 2, . . . , n add nodes as follows: the ik ← J nodes, then ik and then each J
such that ik ∈ J and J ⊆ {i1 . . . ik}. It is not difficult to see that this total order contains
all nodes of V and is consistent with B(G), so B(G) is acyclic.

Now suppose B′ were not an optimal solution to the BNSL instance (V1,P, c). In that
case there would be some strictly better solution corresponding to an acyclic graph G for
which B(G) would be a feasible solution to the ASP instance D = (V,A) and this solution
would be strictly better than B. This is a contradiction since B is an optimal solution and
so it follows that B′ is an optimal solution to (V1,P, c).
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Note that, as Mart́ı and Reinelt (2011) show, ASP is equivalent to the linear ordering
problem (LOP). This means that pure LOP approaches can be used to solve ASP and thus
BNSL.

8.2 Relating the BNSL and Acyclic Subgraph Problem Polytopes

There is a polytope naturally associated with any instance of ASP. Let RA be a real vector
space where every component of a vector y ∈ RA is indexed by an edge i← j ∈ A. For every
edge set B ⊆ A, the incidence vector yB ∈ RA of B is defined by yBi←j = 1 if i← j ∈ B and

yBi←j = 0 if i← j 6∈ B. The acyclic subgraph polytope PAC(D) is

PAC(D) := conv
{
yB ∈ RA

∣∣ B ∈ A(D)
}
. (38)

It is not hard to see that the all-parent-sets-allowed family variable polytope PF(V,PV )
can be projected onto the ASP polytope where the ASP edgeset A = V × V . Equivalently,
BNSL is an extended formulation of such ASP instances. Since the ASP has been extensively
studied it is important to investigate which results on ASP ‘translate’ to BNSL.

We can see that the ASP instance is a projection of the BNSL instance by introducing
the edge indicator variables yi←j into BNSL together with the ‘linking’ equations

yi←j =
∑
J :j∈J

xi←J . (39)

The introduction of these variables (dimensions) and equations leaves the family variable
polytope unaltered except that it now ‘lives in’ a higher-dimensional space. ‘Projecting
away’ the xi←J variables from this higher-dimensional family variable polytope then pro-
duces the ASP polytope.

Using this relationship it is easy to map any ASP instance with edgeset A = V ×V into
a BNSL instance: simply set ci←J =

∑
j∈J c(i ← j). A solution to the BNSL instance so

produced will be a solution to the original ASP instance with the same objective value. A
direct reverse mapping is only possible if there are edge weights such that the local score
for each family is the sum of the weights of the edges corresponding to that family.

Proposition 39. If πy ≤ π0 is a valid inequality for ASP, then π′x ≤ π0 is a valid
inequality, where π′i←J =

∑
j∈J πi←j .

Proof. Let x∗ ∈ RF represent an acyclic digraph and let y∗ ∈ RA represent the same
digraph. We have that πy∗ ≤ π0. It is obvious that πy∗ = π′x∗. So all acyclic digraphs
represented by family variables satisfy π′x ≤ π0. The result follows.

9. Conclusions

Integer programming, and specifically the IP-based gobnilp system, offers a state-of-the-
art practical approach to the NP-hard optimization problem of learning optimal Bayesian
network structures, BNSL. Thus providing fundamental insights into the IP approach to
BNSL is important both from the purely scientific perspective—dealing with a central class
of probabilistic graphical models with various applications in AI—and for developing a
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better understanding of the approach in the hope of further improving the current algo-
rithmic approaches to BNSL. With these motivations, in this work we shed light on various
fundamental computational and representational aspects of BNSL. From the practical per-
spective, many of our main contributions have tight connections to IP cutting planes derived
in practice during search for optimal network structures. Specifically, our contributions in-
clude for example the following. We showed that the separation problem which in practice
yields problem-specific BNSL cutting planes within gobnilp is in fact NP-hard, a previ-
ously open problem. We studied the relationship between three key polytopes underlying
BNSL. We analyzed the facets of the three polytopes, and established that the so-called
cluster constraints giving rise to BNSL cutting planes are in fact facet-defining inequali-
ties of the family-variable polytope central to BNSL. We also provide (in Appendix A) a
complete enumeration of facets for low-dimensional family-variable polytopes, connecting
with problem-specific cutting planes ruling out all network structures with short cyclic sub-
structures. In summary, the theoretical results presented in this work deepen the current
understanding of fundamental aspects of BNSL from various perspectives.
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Appendix A. Enumeration of Facets for Low-Dimensional Family
Variable Polytopes

In Section 6 we provided general results on the facets of the family variable polytope. In
this section, we provide a complete listing of all facet-defining inequalities (i.e. a minimal
description of the convex hull by inequalities) of the family variable polytope PF(V,PV )
for |V | = 2, 3, 4. We will observe that all lower bounds on variables, modified convexity
constraints and κ-cluster inequalities are indeed among the facets found, as predicted by our
theoretical results. Proposition 24 and the lifting theorem (Theorem 28) are also consistent
with the list of facets. In the case of |V | = 4, we also see that there are many facets not
given in Section 6. In Section A.4 we enumerate all facet-defining inequalities for |V | = 4,
where at most two parents are allowed and observe that the results are consistent with
Theorem 31.

We use a, b, c and d to label the nodes. To simplify notation, we abbreviate variables
such as xb←{a,c} to xb←ac.
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A.1 Node Set of Size 2

When |V | = 2, there are 3 acyclic digraphs and F(V,PV ) = {a← {b}, b← {a}}. There are
three facets: the two lower bounds and the 1-cluster constraint xa←b + xb←a ≤ 1.

A.2 Node Set of Size 3

When |V | = 3, there are 25 acyclic digraphs and

F(V,PV ) = {a← {b}, a← {c}, a← {b, c},
b← {a}, b← {c}, b← {a, c},
c← {a}, c← {b}, c← {a, b}}.

Using the cdd computer program (Fukuda, 2016), we found all the facets of the convex hull
of the 25 acyclic digraphs. There are 17 facet-defining inequalities:

• 9 lower bounds on the 9 xi←J family variables;

• 3 modified convexity constraints, one for each of a, b and c;

• 4 1-cluster constraints, one for each of the clusters {a, b}, {a, c}, {b, c} and {a, b, c};
and

• 1 2-cluster constraint for the cluster {a, b, c}.

A.3 Node Set of Size 4

When |V | = 4, there are 543 acyclic digraphs and

F(V,PV ) = {a← {b}, a← {c}, a← {d}, a← {b, c}, a← {b, d}, a← {c, d}, a← {b, c, d},
b← {a}, b← {c}, b← {d}, b← {a, c}, b← {a, d}, b← {c, d}, b← {a, c, d},
c← {a}, c← {b}, c← {d}, c← {a, b}, c← {a, d}, c← {b, d}, c← {a, b, d},
d← {a}, d← {b}, d← {c}, d← {a, b}, d← {a, c}, d← {b, c}, d← {a, b, c}}.

Using cdd we discovered that there are 135 facet-defining inequalities of the family variable
polytope:

• 28 lower bounds on the 28 xi←J family variables;

• 4 modified convexity constraints, one for each of a, b, c and d;

• 6 1-cluster constraints for each of the
(

4
2

)
= 6 clusters of size 2;

• 4 1-cluster constraints for each of the
(

4
3

)
= 4 clusters of size 3;

• 1 1-cluster constraint for the
(

4
4

)
= 1 cluster of size 4;

• 4 2-cluster constraints for each of the
(

4
3

)
= 4 clusters of size 3;

• 1 2-cluster constraint for the
(

4
4

)
= 1 cluster of size 4;
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• 1 3-cluster constraint for the
(

4
4

)
= 1 cluster of size 4; and

• 86 other facet-defining inequalities.

We now list these 86 other facet-defining inequalities. These 86 inequalities fall into 9
permutation classes, and we give just one member of each of these 9 classes. By symmetry,
any permutation of the 4 nodes a, b, c and d in a facet-defining inequality will produce
another facet-defining inequality. Some permutations do not change the inequality. We
indicate this, for each permutation class, by showing which nodes can be permuted without
changing the facet. For example, the expression ab|cd indicates that either a and b, or c and
d, can be swapped without altering the inequality, so that there are 4!/(2× 2) = 6 distinct
inequality in such a permutation class.

For each permutation class, we give the (arbitrarily chosen) name for that class that is
used by the gobnilp system. The names run from 4B to 4I—there is no permutation class
called ‘4A’, since, at one time in gobnilp, this was used to designate κ-cluster inequalities.
With the exception of ‘4F’ and ‘4J’ inequalities, if the user wants, gobnilp can search
for these facets as cutting planes for a given LP solution. By default only ‘4B’ cutting
planes are looked for, since these cutting planes have empirically been found to perform
well. Interestingly, 4B facets can be defined in terms of connected matroids, as noted by
Studený (2015).

4B facets ab|cd

xa←b + xa←bc + xa←bd + xa←cd + xa←bcd

+xb←a + xb←ac + xb←ad + xb←cd + xb←acd

+xc←ad + xc←bd + xc←abd

+xd←ac + xd←bc + xd←abc ≤ 2 (40)

6 inequalities

4C facets a|b|cd

xa←c + xa←d + xa←bc + xa←bd + xa←cd + xa←bcd

+xb←cd + xb←acd

+xc←ab + xc←bd + xc←abd

+xd←ab + xd←bc + xd←abc ≤ 2

12 inequalities

4D facets a|b|cd

xa←b + xa←c + xa←d + xa←bc + xa←bd + 2xa←cd + 2xa←bcd

+xb←a + xb←c + xb←d + xb←ac + xb←ad + xb←cd + xb←acd

+xc←a + xc←ab + xc←ad + xc←abd

+xd←a + xd←ab + xd←ac + xd←abc ≤ 3
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12 inequalities

4E facets a|bcd

xa←bc + xa←bd + xa←cd + 2xa←bcd

+xb←ac + xb←ad + xb←acd

+xc←ab + xc←ad + xc←abd

+xd←ab + xd←ac + xd←abc ≤ 2

4 inequalities

4F facets ab|cd

xa←cd + xa←bcd

+xb←cd + xb←acd

+xc←a + xc←b + xc←d + xc←ab + xc←ad + xc←bd + 2xc←abd

+xd←a + xd←b + xd←c + xd←ab + xd←ac + xd←bc + 2xd←abc ≤ 3

6 inequalities

4G facets a|b|c|d

xa←cd + xa←bcd

+xb←c + xb←ac + xb←cd + xb←acd

+xc←b + xc←d + xc←ab + xc←ad + xc←bd + 2xc←abd

+xd←a + xd←b + xd←c + xd←ab + 2xd←ac + xd←bc + 2xd←abc ≤ 3

24 inequalities

4H facets a|b|cd

xa←c + xa←d + xa←bc + xa←bd + xa←cd + 2xa←bcd

+xb←acd

+xc←ab + xc←abd

+xd←ab + xd←abc ≤ 2

12 inequalities

4I facets ab|cd

xa←c + xa←d + xa←bc + xa←bd + xa←cd + 2xa←bcd

+xb←c + xb←d + xb←ac + xb←ad + xb←cd + 2xb←acd

+xc←a + xc←b + xc←d + 2xc←ab + xc←ad + xc←bd + 2xc←abd

+xd←a + xd←b + xd←c + 2xd←ab + xd←ac + xd←bc + 2xd←abc ≤ 4

6 inequalities
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4J facets a|bcd

xa←b + xa←c + xa←d + 2xa←bc + 2xa←bd + 2xa←cd + 2xa←bcd

+xb←a + xb←ac + xb←ad + xb←cd + xb←acd

+xc←a + xc←ab + xc←ad + xc←bd + xc←abd

+xd←a + xd←ab + xd←ac + xd←bc + xd←abc ≤ 3

4 inequalities

A.4 Node Set of Size 4, Parent Set Size At Most 2

By Theorem 31, if we have 4 nodes but only allow acyclic digraphs with at most two parents,
then the following facet-defining inequalities from Section A.3 (with family variables xa←bcd,
xb←acd, xc←abd and xd←abc removed) should be facet-defining inequalities of the resulting
polytope.

• 24 lower bounds on the 24 xi←J family variables;

• 4 modified convexity constraints, one for each of a, b, c and d;

• 6 1-cluster constraints for each of the
(

4
2

)
= 6 clusters of size 2;

• 4 1-cluster constraints for each of the
(

4
3

)
= 4 clusters of size 3;

• 1 1-cluster constraint for the
(

4
4

)
= 1 cluster of size 4;

• 4 2-cluster constraints for each of the
(

4
3

)
= 4 clusters of size 3; and

• 1 2-cluster constraint for the
(

4
4

)
= 1 cluster of size 4.

In addition all facet-defining inequalities of types 4B, 4C, 4D and 4J should remain
facet-defining. There are 6, 12, 12 and 4 of these, respectively. This adds up to a total of
24+4+6+4+1+4+1+6+12+12+4=78 facet-defining inequalities. Using cdd we computed
the facet-defining inequalities of the convex hull of the (family-variable encoded) 443 acyclic
digraphs with 4 nodes and where each node has at most 2 parents. We found, as expected,
that all of these 78 inequalities were included. Moreover, we found that these 78 constitute
the complete set of facet-defining inequalities—there are no others.

Appendix B. Lift-and-Project for Family Variable Polytopes

In this appendix, we apply a ‘lift-and-project’ method based on the sink-based extended rep-
resentation of Section 7.3 to derive a representation of PF({a, b, c, d},P{a,b,c,d}), whose facet-
defining inequalities are given in Section A.3, in terms of the polytopes PF({b, c, d},P{b,c,d}),
PF({a, c, d},P{a,c,d}), PF({a, b, d},P{a,b,d}) and PF({a, b, c},P{a,b,c}), whose facet-defining
inequalities are given in Section A.2. First we have the relevant formulation of (33),

xa + xb + xc + xd = 1, (41)
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stating that exactly one of the four nodes is the distinguished sink in any acyclic digraph
using those four nodes. Recall that xj,i←J indicates that j is the distinguished sink and
that J is the parent set for i so that xj,i←J = 0 if j ∈ J , so that, for example, xb,a←b = 0.
With this observation we can write the linking equations (34) as follows.

xa←b = xa,a←b + xc,a←b + xd,a←b (42)

xa←c = xa,a←c + xb,a←c + xd,a←c (43)

xa←d = xa,a←d + xb,a←d + xc,a←d (44)

xb←a = xb,b←a + xc,b←a + xd,b←a (45)

xb←c = xa,b←c + xb,b←c + xd,b←c (46)

xb←d = xa,b←d + xb,b←d + xc,b←d (47)

xc←a = xb,c←a + xc,c←a + xd,c←a (48)

xc←b = xa,c←b + xc,c←b + xd,c←b (49)

xc←d = xa,c←d + xb,c←d + xc,c←d (50)

xd←a = xb,d←a + xc,d←a + xd,d←a (51)

xd←b = xa,d←b + xc,d←b + xd,d←b (52)

xd←c = xa,d←c + xb,d←c + xd,d←d (53)

xa←bc = xa,a←bc + xd,a←bc (54)

xa←bd = xa,a←bd + xc,a←bd (55)

xa←cd = xa,a←cd + xb,a←cd (56)

xb←ac = xb,b←ac + xd,b←ac (57)

xb←ad = xb,b←ad + xc,b←ad (58)

xb←cd = xb,b←cd + xa,b←cd (59)

xc←ab = xc,c←ab + xd,c←ab (60)

xc←ad = xb,c←ad + xc,c←ad (61)

xc←bd = xa,c←bd + xc,c←bd (62)

xd←ab = xc,d←ab + xd,d←ab (63)

xd←ac = xb,d←ac + xd,d←ac (64)

xd←bc = xa,d←bc + xd,d←bc (65)

xa←bcd = xa,a←bcd (66)

xb←acd = xb,b←acd (67)

xc←abd = xc,c←abd (68)

xd←abc = xd,d←abc (69)

Thirdly we have all equations of type (35). We label all inequalities with xa on the RHS as
follows. The modified convexity constraints for a, b, c and d are labelled a-a, a-b, a-c and
a-d, respectively. All other constraints are cluster constraints which we label as a-C, where
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C is the cluster and κ = 1 and a-2-C, where C is the cluster and κ = 2. Inequalities with
xb, xc and xd on the RHS are labelled analogously. The 36 inequalities of type (35) are now
listed using this labelling convention.

xa,b←c + xa,b←d + xa,b←cd ≤ xa (a-b)

xa,c←b + xa,c←d + xa,c←bd ≤ xa (a-c)

xa,d←b + xa,d←c + xa,d←cd ≤ xa (a-d)

xa,b←c + xa,b←cd + xa,c←b + xa,c←bd ≤ xa (a-bc)

xa,b←d + xa,b←cd + xa,d←b + xa,d←bd ≤ xa (a-bd)

xa,c←d + xa,c←bd + xa,d←c + xa,d←cd ≤ xa (a-cd)

xa,b←c + xa,b←d + xa,b←cd + xa,c←b + xa,c←d + xa,c←bd

+xa,d←b + xa,d←c + xa,d←cb ≤ 2xa (a-bcd)

xa,b←cd + xa,c←bd + xa,d←bc ≤ xa (a-2-bcd)

xa,a←b + xa,a←c + xa,a←d + xa,a←bc

+xa,a←bd + xa,a←cd + xa,a←bcd ≤ xa (a-a)

xb,a←c + xb,a←c + xb,a←cd ≤ xb (b-a)

xb,c←a + xb,c←d + xb,c←ad ≤ xb (b-c)

xb,d←a + xb,d←c + xb,d←ac ≤ xb (b-d)

xb,a←c + xb,a←cd + xb,c←a + xb,c←ad ≤ xb (b-ac)

xb,a←d + xb,a←cd + xb,d←a + xb,d←ac ≤ xb (b-ad)

xb,c←d + xb,c←bd + xb,d←c + xb,d←cd ≤ xb (b-cd)

xb,a←c + xb,a←d + xb,a←cd + xb,c←a + xb,c←d + xb,c←ad

+xb,d←a + xb,d←c + xb,d←ac ≤ 2xb (b-acd)

xb,a←cd + xb,c←ad + xb,d←ac ≤ xb (b-2-acd)

xb,b←a + xb,b←c + xb,b←d + xb,b←ac

+xb,b←ad + xb,b←cd + xb,b←acd ≤ xb (b-b)

xc,a←b + xc,a←d + xc,a←bd ≤ xc (c-a)

xc,b←a + xc,b←d + xc,b←ad ≤ xc (c-b)

xc,d←a + xc,d←b + xc,d←ab ≤ xc (c-d)

xc,a←b + xc,a←bd + xc,b←a + xc,b←ad ≤ xc (c-ab)

xc,a←d + xc,a←bd + xc,d←a + xc,d←ab ≤ xc (c-ad)

xc,b←d + xc,b←ad + xc,d←b + xc,d←ab ≤ xc (c-bd)

xc,a←b + xc,a←d + xc,a←bd + xc,b←a + xc,b←d + xc,b←ad

+xc,d←a + xc,d←b + xc,d←ab ≤ 2xc (c-abd)

xc,a←bd + xc,b←ad + xc,d←ab ≤ xc (c-2-abd)

xc,c←a + xc,c←b + xc,c←d + xc,c←ab

+xc,c←ad + xc,c←bd + xc,c←abd ≤ xc (c-c)
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xd,a←b + xd,a←c + xd,a←bc ≤ xd (d-a)

xd,b←a + xd,b←c + xd,b←ac ≤ xd (d-b)

xd,c←a + xd,c←a + xd,c←ab ≤ xd (d-c)

xd,a←b + xd,a←bc + xd,b←a + xd,b←ac ≤ xd (d-ab)

xd,a←c + xd,a←bc + xd,c←a + xd,c←ab ≤ xd (d-ac)

xd,b←c + xd,b←ac + xd,c←b + xd,c←ab ≤ xd (d-cd)

xd,a←b + xd,a←c + xd,a←bc + xd,b←a + xd,b←c + xd,b←ac

+xd,c←a + xd,c←b + xd,c←ab ≤ 2xd (d-abc)

xd,a←bc + xd,b←ac + xd,c←ab ≤ xd (d-2-abd)

xd,d←a + xd,d←b + xd,d←c + xd,d←ab

+xd,d←ac + xd,d←bc + xd,d←abc ≤ xd (d-d)

Using (66–69) it is possible to eliminate the variables xa,a←bcd, xb,b←acd, xc,c←abd and
xd,d←abc, and (66–69) from the representation. This leaves us with a representation of
PF({a, b, c, d},P{a,b,c,d}) using 4+28+4×(9+6) = 92 variables, 25 equations, 36 inequalities
of type (35), four lower bounds on the variables xj , 56 lower bounds (of 0) on the variables
xi,j←J where |J | < 3 and four lower bounds (of 0) on the variables xi←J where |J | = 3. In
total we have 100 inequalities.

We have given an explicit extended representation of PF({a, b, c, d},P{a,b,c,d}). Here is
that representation described more briefly.

• xa + xb + xc + xd = 1.

• 24/2 = 12 unique permutations of xa←b = xa,a←b + xc,a←b + xd,a←b.

• 24/2 = 12 unique permutations of xa←bc = xa,a←bc + xd,a←bc.

• 24/2 = 12 unique permutations of xa,b←c + xa,b←d + xa,b←cd ≤ xa.

• 24/2 = 12 unique permutations of xa,b←c + xa,b←cd + xa,c←b + xa,c←bd ≤ xa.

• 24/6 = 4 unique permutations of xa,b←c+xa,b←d+xa,b←cd+xa,c←b+xa,c←d+xa,c←bd+
xa,d←b + xa,d←c + xa,d←cb ≤ 2xa.

• 24/6 = 4 unique permutations of xa,b←cd + xa,c←bd + xa,d←bc ≤ xa.

• 24/6 = 4 unique permutations of xa,a←b+xa,a←c+xa,a←d+xa,a←bc+xa,a←bd+xa,a←cd+
xa←bcd ≤ xa.

• 4 lower bounds on the variables xj .

• 56 lower bounds on variables xi,j←J where |J | < 3.

• 4 lower bounds on variables xi←J where |J | = 3.

The crucial point is that the convex hull of solutions to our extended representation can
be found by simply dropping the integrality restrictions on variables. Conforti et al. (2014,
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p. 71) provide the relevant proof. If we ‘project away’ the additional variables from this

convex hull we end up with PF(V,PV ) = conv
(⋃

j∈V PF(V, j)
)

.

We now show explicitly that the facet-defining inequalities of PF({a, b, c, d},P{a,b,c,d})
can be derived by projection from our extended representation. This projection is done
by forming linear combinations of extended representation facet-defining inequalities which
only contain ‘normal’ family variables xi←J .

For example, consider adding the following inequalities: (a-a), (a-2-bcd), (b-b), (b-2-
acd), (c-c), (c-ab), (d-d) and (d-ab). Note that the RHS of this inequality is xa + xa + xb +
xb + xc + xc + xd + xd = 2. So the result is

xa,a←b + xa,a←c + xa,a←d + xa,a←bc + xa,a←bd + xa,a←cd + xa←bcd

+xa,b←cd + xa,c←bd + xa,d←bc

+xb,b←a + xb,b←c + xb,b←d + xb,b←ac + xb,b←ad + xb,b←cd + xb←acd

+xb,a←cd + xb,c←ad + xb,d←ac

+xc,c←a + xc,c←b + xc,c←d + xc,c←ab + xc,c←ad + xc,c←bd + xc←abd

+xc,a←b + xc,a←bd + xc,b←a + xc,b←ad

+xd,d←a + xd,d←b + xd,d←c + xd,d←ab + xd,d←ac + xd,d←bc + xd←abc

+xd,a←b + xd,a←bc + xd,b←a + xd,b←ac ≤ 2.

Using (42-65) we can simplify this to

xa←b + xa,a←c + xa,a←d + xa←bc + xa←bd + xa←cd + xa←bcd

+xa,b←cd

+xb←a + xb,b←c + xb,b←d + xb←ac + xb←ad + xb,b←cd + xb←acd

+

+xc,c←a + xc,c←b + xc,c←d + xc,c←ab + xc←ad + xc←bd + xc←abd

+

+xd,d←a + xd,d←b + xd,d←c + xd,d←ab + xd←ac + xd←bc + xd←abc

+ ≤ 2. (70)

This inequality can then be weakened by adding the lower bounds for the 14 remaining
extended variables which results in the 4B facet (40) of PF({a, b, c, d},P{a,b,c,d}).

We now show how each of the facet classes 4B-4J for PF({a, b, c, d},P{a,b,c,d}) listed in
Section A.3 can be derived by projection from the extended representation. Projection is
achieved by multiplying each facet-defining inequality in the extended representation by a
non-negative scalar. Let the vector of these scalars be denoted u ≥ 0. In the following list
we only provide positive components of u and do not bother to list those components of
u corresponding to variable lower bounds. Note that since these u vectors generate facet-
defining inequalities of PF({a, b, c, d},P{a,b,c,d}), they must be extreme rays of the relevant
projection cone (Balas, 2005).

4B facet
ua−a = 1, ua−2−bcd = 1, ub−b = 1, ub−2−acd = 1, uc−c = 1, uc−ab = 1, ud−d = 1, ud−ab =
1
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4C facet
ua−a = 1, ua−2−bcd = 1, ub−b = 1, ub−a = 1, uc−c = 1, uc−ad = 1, ud−d = 1, ud−ac = 1

4D facet
ua−a = 2, ua−b = 1, ub−b = 1, ub−ac = 1, ub−ad = 1, uc−c = 1, uc−abd = 1, ud−d =
1, ud−abc = 1

4E facet
ua−a = 2, ub−b = 1, ub−2−acd = 1, uc−c = 1, uc−2−abd = 1, ud−d = 1, ud−2−abc = 1

4F facet
ua−a = 1, ua−bcd = 1, ub−b = 1, ub−acd = 1, uc−c = 2, uc−d = 1, ud−d = 2, ud−c = 1

4G facet
ua−a = 1, ua−bcd = 1, ub−b = 1, ub−ad = 1, ub−cd = 1, uc−c = 2, uc−d = 1, ud−d =
2, ud−bc = 1

4H facet
ua−a = 2, ub−b = 1, ub−a = 1, uc−c = 1, uc−ad = 1, ud−d = 1, ud−ac = 1

4I facet
ua−a = 2, ua−bcd = 1, ub−b = 2, ub−acd = 1, uc−c = 2, uc−ad = 1, uc−bd = 1, ud−d =
2, ud−ac = 1, ud−bc = 1

4J facet
ua−a = 2, ua−2−bcd = 1, ub−b = 1, ub−ac = 1, ub−ad = 1, uc−c = 1, uc−ab = 1, uc−ad =
1, ud−d = 1, ud−ab = 1, ud−ac = 1

We have shown how to generate all facets of PF(V,PV ) for |V | = 4 from the |V | = 3 case.
This was done by constructing the desired convex hull using an extended representation
and then projecting away the extraneous variables. Although in this case we already had
the convex hull for |V | = 4 (by direct computation using cdd) it is clear that the same
technique could be used to construct the convex hull for |V | = 5 and above. The difficulty
with this approach is identifying which projections u ≥ 0 generate facets. It was noted
above that we can restrict attention to u which are extreme rays of the relevant projection
cone. However, in general, not all extreme rays generate facets, it also necessary that the
number of dimensions ‘lost’ when projecting the entire polytope matches the number lost
when projecting the face whose projection is the putative facet (Balas, 2005). We do not
investigate this here, leaving this issue for future work.
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Conforti, M., Cornuéjols, G., & Zambelli, G. (2014). Integer Programming. Springer.

Cussens, J. (2010). Maximum likelihood pedigree reconstruction using integer program-
ming. In Proceedings of the Workshop on Constraint Based Methods for Bioinformat-
ics (WCB-10).

Cussens, J. (2011). Bayesian network learning with cutting planes. In Cozman, F. G.,
& Pfeffer, A. (Eds.), Proceedings of the 27th Conference on Uncertainty in Artificial
Intelligence (UAI 2011), pp. 153–160. AUAI Press.

Cussens, J., Bartlett, M., Jones, E. M., & Sheehan, N. A. (2013). Maximum likelihood pedi-
gree reconstruction using integer linear programming. Genetic Epidemiology, 37 (1),
69–83.
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