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Abstract 

Limb blood flow increases linearly with exercise intensity; however, invasive 

measurements of microvascular muscle blood flow during incremental exercise have 

demonstrated submaximal plateaus. Diffuse correlation spectroscopy (DCS) noninvasively 

quantifies relative changes in microvascular blood flow at rest via a blood flow index (BFI). The 

purpose of this study was to quantify relative changes in tissue blood flow during exercise using 

DCS, compare the BFI of the flexor digitorum superficialis (BFIFDS) muscle to brachial artery 

blood flow (Q̇BA) measured via Doppler ultrasound, and employ near infrared spectroscopy 

(NIRS) alongside DCS to simultaneously measure perfusive and diffusive oxygen transport 

within a single volume of exercising skeletal muscle tissue. We hypothesized Q̇BA would 

increase with increasing exercise intensity until task failure, BFIFDS would plateau at a 

submaximal work rate, and muscle oxygenation characteristics (total-[heme], deoxy-[heme], and 

% saturation) measured with NIRS would demonstrate a plateau at a similar work rate as BFIFDS. 

Sixteen subjects (23.3 ± 3.9 yrs; 170.8 ± 1.9 cm; 72.8 ± 3.4 kg) participated in this study. Peak 

power (Ppeak) was determined for each subject (6.2 ± 1.4W) via an incremental handgrip exercise 

test to task failure. Measurements of Q̇BA, BFIFDS, total-[heme], deoxy-[heme], and % saturation 

were made during each stage of the incremental exercise test. Q̇BA increased with exercise 

intensity until the final work rate transition (p < 0.05). No increases in BFIFDS or muscle 

oxygenation characteristics were observed at exercise intensities greater than 51.5 ± 22.9% of 

Ppeak and were measured simultaneously in a single volume of exercising skeletal muscle tissue. 

Differences in muscle recruitment amongst muscles of the whole limb may explain the 

discrepancies observed in Q̇BA and BFIFDS responses during incremental exercise and should be 

further investigated.
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Chapter 1 - Introduction 

 

A wealth of evidence exists demonstrating that bulk limb blood flow is tightly coupled to 

exercise intensity (2, 67). Measurements of bulk limb blood flow have been combined with 

blood gas measurements and estimates of fractional oxygen extraction to estimate muscle oxygen 

consumption during exercise using the Fick principle (2, 20, 36, 38). While informative, these 

measurements may not be indicative of tissue oxygen consumption and hemodynamic 

relationships at the level of gas exchange, i.e., tissue microvasculature.    

 Microvascular hemodynamics and muscle oxygen pressure dynamics following the onset 

of, and in recovery from, muscle contractions have been independently observed in in situ rat 

spinotrapezius muscle preparations (7, 35, 49). These observations were later combined to 

estimate muscle oxygen uptake dynamics following the onset of, and in recovery from, muscle 

contractions (5, 6). While these studies provide valuable insight into the mechanisms behind 

skeletal muscle oxygen uptake, limitations exist. The measurements of microvascular 

hemodynamics and oxygen pressure were collected at a single, relatively low, contraction 

intensity and were unable to be collected simultaneously in the same muscle preparation, or at 

moderate-to-severe contraction intensities. Further, the invasive nature of these techniques does 

not allow them to be directly translated into a human research model.    

  Near-infrared spectroscopy (NIRS) has been used to noninvasively observe the 

oxygenation characteristics of exercising skeletal muscle (9, 19, 20, 23, 27, 28, 36, 37, 42, 72). 

Plateaus in muscle oxygenation measurements using NIRS have been observed during 

incremental cycling exercise (13, 24, 50). The lack evidence for increases in measurements 

related to determinants of perfusive and diffusive oxygen delivery suggests an upper limit to 
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oxygen delivery prior to a maximal work rate (13). Plateaus in muscle oxygenation also appear 

to be muscle specific, as it has been observed to occur in some, but not all, of muscle in the 

quadriceps (24). These differences in muscle oxygenation patterns among muscles have been 

related to differences in fiber-type recruitment patterns (24, 50). 

More recently, NIRS has been used in combination with a tracer dye, indocyanine green 

(ICG), to quantify muscle microvascular blood flow during exercise in humans (15-17, 41, 76). 

In order to calculate absolute tissue blood flow, NIRS-ICG methodology requires arterial blood 

sampling for the continuous measurement of ICG concentration (15-17). To circumvent this 

invasive requirement, an algorithm has recently been developed to estimate relative tissue 

perfusion and calculate a blood flow index (ICG-BFI) using only the appearance of ICG as 

detected by NIRS following the venous injection, making the technique less invasive (41). In 

contrast to the well-established linear relationship between limb blood flow and exercise 

intensity, both absolute and relative NIRS-ICG methods have demonstrated plateaus in tissue 

microvascular blood flow at submaximal work intensities (15, 41, 76). The occurrence of a 

plateau in tissue blood flow would potentially have significant consequence in our current 

paradigm of oxygen delivery and exercise tolerance at higher exercise intensities.       

 The physical properties of light employed by NIRS technology to assess tissue 

oxygenation have been utilized in the development of diffuse correlation spectroscopy (DCS) 

(11, 12, 31). The movement of light scatterers cause temporal intensity fluctuations in reflected 

speckle patterns of coherent light sources. DCS measures these temporal intensity fluctuations 

within reflected near-infrared light patterns caused specifically by the movement of RBCs within 

tissue (11, 12, 31, 79). As such, DCS provides a noninvasive estimate of tissue microvascular 

blood flow as a blood flow index (BFI). DCS measurements of BFI have been validated with 
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several well established methods for measuring blood flow including laser Doppler flowmetry 

(30), Doppler ultrasound (21, 69), arterial-spin labeled (22, 80) and phase contrast MRI (46), and 

fluorescent microsphere (81) measurements at rest in both cerebral and skeletal muscle 

microcirculations. Further, cerebral blood flow measurements made with DCS have 

demonstrated a strong correlation, and a near 1-to-1 ratio, with measurements made with the 

NIRS-ICG technique (29). These studies demonstrate that BFI measured using DCS is reliable at 

rest; however, DCS is highly susceptible to artifact which poses a challenge to its application to 

skeletal muscle during exercise (10, 71). Still, the potential noninvasive assessment of skeletal 

muscle tissue blood flow warrants further investigation into the feasibility of using this 

technology during exercise.  

 The noninvasive simultaneous measurement of tissue oxygenation (NIRS) and 

microvascular hemodynamics (DCS) during exercise would provide unique insight into the 

mechanisms which determine tissue oxygen delivery and utilization. To our knowledge, only one 

previous study combined NIRS and DCS measurements during exercise, however movement 

artifacts led to unrealistic blood flow estimates (79). Therefore, the aims of this study were to 1) 

develop an exercise protocol in which movement artifact was minimized so as to determine if 

DCS could be used to quantify relative changes in tissue blood flow during exercise intensities 

ranging from rest to peak work rate, 2) compare DCS-derived BFI of the flexor digitorum 

superficialis (BFIFDS) muscle to brachial artery blood flow (Q̇BA) measured via Doppler 

ultrasound, and 3) simultaneously measure perfusive and diffusive oxygen transport within a 

single volume of exercising skeletal muscle tissue. We hypothesized that 1) exercising Q̇BA 

would increase with increasing exercise intensity until task failure, but 2) based on data from 

NIRS- ICG protocols, the DCS-derived BFIFDS would plateau at a submaximal work rate. In 
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addition, we hypothesized that 3) muscle oxygenation characteristics measured with NIRS would 

demonstrate a plateau at a similar work rate to the hypothesized plateau in BFIFDS. We chose to 

test these hypotheses in a forearm model of incremental exercise to minimize the relative 

contribution of subcutaneous adipose tissue and cutaneous circulation to the NIRS and DCS 

signals. 
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Chapter 2 - Methods 

 

Twelve men and four women (Mean ± SD; 23.3 ± 3.9 yrs; 170.8 ± 1.9 cm; 72.8 ± 3.4 kg) 

volunteered to participate in this study. No attempt was made to control for stages of the 

menstrual cycle in the women. Previous studies showed that muscle blood flow during exercise 

is not modulated by the menstrual cycle (52, 73). A medical health history evaluation was 

completed by each subject to confirm the absence of any known cardiovascular or metabolic 

disease. All experimental procedures were approved by the Institutional Review Board of Kansas 

State University and conformed to the standards set forth by the Declaration of Helsinki. 

Subjects were informed of all testing procedures and potential risks of participation prior to 

providing written informed consent. Subjects were instructed to abstain from vigorous activity 

24 h prior, and caffeine or food consumption 2 h prior, to the scheduled testing time. 

 

 Experimental design 

 Each subject performed an incremental handgrip exercise test to task failure on a 

previously described, custom-built handgrip ergometer (20), which had been modified for single-

arm exercise. Briefly, the handle of the ergometer was attached to a pneumatic cylinder by a 

cable and allowed a fixed linear displacement of 4 cm. Resistance was set by pressurizing the 

pneumatic cylinder and work was accomplished by compressing the air within the cylinder when 

the handle was moved. Power output was calculated as P = Rdf · k−1, where P is power in Watts 

(W), R is resistance in kg, d is displacement in meters, f is contraction frequency, and k is the 

constant 6.12 for the conversion of kg·m·min−1 to W. Alterations in power output were 

accomplished via alterations in resistance (air pressure), as d and f were held constant. 
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Subjects lay in the supine position with the exercising arm outstretched perpendicular to 

the body. Two minutes of rest were followed by a three minute warm-up at 1W to establish an 

exercising baseline. Each stage thereafter, the power was increased by 1 W every two minutes 

until task failure. Task failure was determined as the inability of the subject to displace the 

handle of the ergometer the full 4 cm for three consecutive contraction cycles. Peak power (Ppeak) 

was determined as the power output during the final stage of exercise lasting a minimum 30s in 

duration. To eliminate any motion artifact within the DCS measurements, subjects were 

instructed to remain completely still during the final 10 s of each exercising stage. Previous 

observations by Lutjemeier et al. (55) found no differences between limb blood flow during 

exercise and during the first four cardiac cycles following the final contraction of exercise. These 

findings were subsequently confirmed in the current study. Exercise was performed using a 50% 

contraction duty cycle (1.5 s contraction: 1.5 s relaxation) at a rate of 20 contractions per minute. 

An audio recording provided feedback to the subject so that contraction and relaxation timing 

remained consistent.   

 

Measurements 

Doppler ultrasound 

 Brachial artery mean blood velocity (Vmean) and vessel diameter were measured 

simultaneously using a two-dimensional Doppler ultrasound system (Logiq S8; GE Medical 

Systems, Milwaukee, WI). The ultrasound system was operated in duplex mode with a phased 

linear array transducer probe operated at an imaging frequency of 10.0 MHz. To avoid the 

bifurcation of the brachial artery, all measurements were made 2-5 cm proximal to the 

antecubital fossa (1). All Doppler velocity measurements were performed at a Doppler frequency 
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of 4.0 MHz and corrected for an angle of insonation less than 60°. Vmean was defined as the time-

averaged mean velocity across each complete cardiac cycle. Brachial artery vessel diameter was 

analyzed at a perpendicular angle along the central axis of the vessel. Cross-sectional area (CSA) 

of the vessel was then calculated as CSA = πr2. Limb blood flow (Q̇BA) was calculated during the 

10s end-stage resting period during the protocol as the product of CSA and Vmean. 

Near-infrared and diffuse correlation spectroscopies 

 A system equipped to simultaneously employ frequency-domain multidistance NIRS and 

DCS was used to measure oxygenation characteristics and BFIFDS during handgrip exercise 

(MetaOx, ISS, Champaign, IL, USA). A NIRS system (Oxiplex TS, ISS, Champaign, IL, USA) 

has been utilized previously by our laboratory to characterize the oxygenation of skeletal muscle 

(19, 20, 34, 36, 72). This previously used system consisted of eight laser diodes operating at 

wavelengths of 690 and 830 nm (4 laser diodes per wavelength) with one detector fiber bundle 

and detector separation distances of 2.0, 2.5, 3.0, and 3.5 cm. The NIRS component of the dual 

spectroscopy (NIRS and DCS) system used in the current study consisted of eight laser diodes 

operating at wavelengths of 660, 690, 705, 730, 760, 785, 810, 830 nm with power outputs of 5-9 

mW. Four detector fiber bundles were positioned with detector separation distances of 2.5, 3.0, 

3.5, and 4.0 cm, allowing for an estimated tissue penetration depth of 2.0 cm, approximately half 

of the maximal separation distance.  

The NIRS system measures and incorporates the dynamic reduced scattering coefficients 

(µs’) to provide absolute concentrations (µM) for deoxygenated [Hb+Mb] (deoxy-[Hb+Mb]), 

oxygenated [Hb+Mb] (oxy-[Hb+Mb]), total-[Hb+Mb], and % saturation (oxy-

[Hb+Mb]×100/total-[Hb+Mb]). Changes in total-[Hb+Mb] are thought to reflect changes in 

microvascular hematocrit (an index of diffusive conductance) (25, 62). Changes in deoxy-
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[Hb+Mb] concentrations have been used to estimate fractional oxygen extraction (an index of 

perfusive conductance) (19, 20, 26-28, 33, 34, 37, 56). The principles and algorithms of the 

NIRS technology have been reviewed by Gratton et al. (39) and were previously described 

by Ferreira et al. (34). The original deoxy-[Hb+Mb], oxy-[Hb+Mb], and total-[Hb+Mb] 

concentrations were multiplied by a factor of four to convert from units of hemoglobin 

concentration into units of heme concentrations and are hereby denoted as deoxy-[heme], oxy-

[heme], and total-[heme], respectively.   

DCS measures temporal intensity fluctuations in a reflected near-infrared light pattern, 

caused primarily by moving RBCs (11, 12, 79), to provide a microvascular BFI in units of cm2/s. 

The correlation equations and algorithms used for DCS have been described in detail by 

Durduran et al. (31). Relative changes in BFI have been used to quantify relative changes in 

cerebral and skeletal muscle tissue blood flow (29, 32, 46, 53, 79-81). The DCS module of the 

dual spectroscopy system used in the current study was comprised of four photon-counting 

photodiode detectors located 3.1 cm from a single, long coherence length, laser diode operating 

at a wavelength of 850 nm with an intensity of 50 mW. Tissue penetration depth of the DCS 

probe is estimated as half of the laser-detector serperation distance (~1.5 cm). All components of 

the NIRS and DCS system were housed within the same sensor so that measures of tissue 

oxygenation and BFI could be made of the same volume of tissue.  

The belly of the FDS was located using electromyography (EMG) and tissue palpations 

as previously described (20). The NIRS/DCS sensor was secured over the belly of the FDS and 

wrapped with an elastic bandage to prevent movement of the sensor and to prevent any ambient 

light from reaching the detectors. NIRS and DCS measurements were collected at 10 Hz during 

the entire experimental protocol. Tissue oxygenation measurements using NIRS were averaged 
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during resting baseline and the final 10s of exercise during each stage of the protocol. BFIFDS 

measurements were averaged during the 10s end-stage resting period i.e., during the 10s 

subsequent to the 10s window used for NIRS measurements (Figure 2). 

 

 Statistical analysis 

Statistical analysis was performed using SigmaStat (Systat Software, Point Richmond, 

CA). Data are expressed as mean ± SD unless otherwise noted. Q̇BA and the NIRS/DCS variables 

(BFI, total-[heme], deoxy-[heme], and % saturation) were compared across work rates using a 

one-way repeated measures analysis of variance (ANOVA). To identify differences between Q̇BA 

and BFIFDS, data were expressed as a percent change from resting baseline and compared using a 

two-way repeated measures ANOVA (measurement × work rate). When a significant overall 

effect was detected, a Tukey’s post hoc analysis was performed to determine where significant 

differences existed. Statistical significance was defined as p < 0.05 for all analyses. Finally, a 

plateau was considered present in a response when a minimum of two consecutive work rate 

transitions elicited no significant increase and the value of the signal was not different than at 

Ppeak. 
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Chapter 3 - Results 

 

The average Ppeak achieved by subjects was 6.2 ± 1.4W with Ppeak ranging from 4 to 8W. Figure 1 

provides the raw signals of BFIFDS, total-[heme], and deoxy-[heme] measured using the 

combined NIRS/DCS system of a single representative subject during the entire experimental 

protocol. Figure 2 provides detail of the raw BFIFDS, total-[heme], and deoxy-[heme] signals of 

the same representative subject during an exercise-rest-exercise transition during the 

experimental protocol.  

The responses of Q̇BA and BFIFDS from rest to 3W and at Ppeak are illustrated in Figures 

3A and 3C, respectively. Q̇BA was greater at Ppeak (617 ± 271 ml/min) than at work rates from rest 

to 3W (p < 0.001). Likewise, BFIFDS was greater at Ppeak (1.91 ± 1.42 cm2/s × 10-8) than at work 

rates from rest to 3W (p < 0.05). However, the wide range in Ppeak among subjects resulted in a 

discrepancy in the submaximal-to-maximal work rate difference from which end-exercise 

comparisons were made. For example, a subject having achieved the highest observed Ppeak (8W) 

demonstrates a 5W difference between Ppeak and the highest submaximal work rate achieved by 

all subjects (3W). A subject having achieved the lowest observed Ppeak (4W) demonstrates only a 

1W difference between Ppeak and 3W. Therefore, in order to compare any changes in Q̇BA or 

BFIFDS between work rates immediately preceding the final stage of exercise, the 3 work rates 

preceding Ppeak (Ppeak-3, Ppeak-2, Ppeak-1) as well as Ppeak were compared and presented in Figures 3B 

and 3D.   

The average exercise intensity at Ppeak-2 was 65.8 ± 8.26% of Ppeak. Q̇BA increased with 

increases in work rate from Ppeak-3 to Ppeak-1 (p < 0.05). However, no significant difference was 

detected in Q̇BA between Ppeak-1 and Ppeak (p = 0.38). BFIFDS did not increase with work rate at 
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any intensity greater than Ppeak-2, demonstrating a submaximal plateau (Figure 3D), in contrast to 

the visual implication inferred in Figure 3C. In addition, the percent increase from rest in Q̇BA 

was greater than the percent increase from rest in BFIFDS at Ppeak-1 and Ppeak (p < 0.05) (Figure 4).   

The average changes in total-[heme], deoxy-[heme], and % saturation from rest to 3W 

and at Ppeak are illustrated in Figures 5A-5C. Total-[heme] and deoxy-[heme] concentrations 

increased with exercise intensity (p < 0.001) while % saturation decreased with increases in 

exercise intensity (p < 0.001). As described previously with regard to Q̇BA and BFIFDS, average 

total-[heme], deoxy-[heme], and % saturation for the 3 work rates preceding Ppeak (Ppeak-3, Ppeak-2, 

Ppeak-1) as well as Ppeak were compared and presented in Figures 5D-5F. Total-[heme] at Ppeak and 

Ppeak-1 was greater than total-[heme] at Ppeak-3 (p < 0.001). Deoxy-[heme] and % saturation were 

greater at Ppeak than at Ppeak-3 (p < 0.05). However, there were no differences in total-[heme], 

deoxy-[heme], or % saturation between succeeding exercise intensities from Ppeak-2 to Ppeak 

suggesting a plateau in the responses.  
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Figure 1. Raw diffuse correlation and near-infrared spectroscopy signals  

 BFIFDS (top), total-[heme] (middle), and deoxy-[heme] (bottom) signals of a single 

representative subject through the entire incremental handgrip exercise test performed to task 

failure. Note the large amount of motion artifact in the BFIFDS signal during muscular 

contractions (top).   
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Figure 2. Detailed diffuse correlation and near-infrared spectroscopy signals 

Detailed figure of the raw BFIFDS, total-[heme], and deoxy-[heme] signals during an exercise-

rest-exercise transition of the same subject represented in Figure 1. Highlighted portions in red 

indicate the time interval of data analysis for each respective signal. Note the lack of reduction in 

the BFIFDS signal between the relaxation phases of contractions and the 10s end-stage resting 

period. 
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Figure 3. Bulk conduit artery and microvascular hemodynamic responses 

Mean responses for Q̇BA (top) and BFIFDS (bottom) from rest to Ppeak (left) and from Ppeak-3 to 

Ppeak (right) during the incremental hand grip exercise test performed until task failure. Shared 

symbols indicate no significant difference between/among work rates (p > 0.05). Note that no 

increase was observed in BFIFDS beyond Ppeak-2 (D). 

̇ 
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Figure 4. Percent change in conduit artery and microvascular hemodynamics 

Bulk conduit artery and microvascular hemodynamic responses to the incremental hand grip 

exercise as a percent change from rest. The mean percent change from rest for Q̇BA (●) and 

BFIFDS (○) from Ppeak-3 to Ppeak. *Significantly greater than BFIFDS (p < 0.05). 

 

 

 

 

 

 

 

̇ 
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Figure 5. Muscle oxygenation responses  

The mean responses for total-[heme] (top), deoxy-[heme] (middle), and % saturation (bottom) 

from rest to Ppeak (left) and from Ppeak-3 to Ppeak (right) during the incremental hand grip exercise 

test performed until task failure. Shared symbols indicate no significant difference 

between/among work rates (p > 0.05). Note that no increases were observed in any of the NIRS 

measurements beyond Ppeak-2.  
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Chapter 4 - Discussion 

 

 This study examined the responses of conduit artery blood flow and skeletal muscle 

hemodynamics during incremental forearm exercise. As has been demonstrated previously (2, 

67), and in agreement with of our first hypothesis, Q̇BA increased with exercise intensity until the 

final work rate transition (Figure 3B). In contrast, BFIFDS plateaued at a submaximal work rate 

(Ppeak-2) (Figure 3D), consistent with previous findings using NIRS-ICG (15, 41, 76) and our 

second hypothesis. In addition, muscle oxygenation characteristics (total-[heme], deoxy-[heme], 

and % saturation) measured with NIRS demonstrated a plateau at the same work rate as BFIFDS 

measured with DCS (Figures 5D-5F). Importantly, the perfusive (BFIFDS and deoxy-[heme]) and 

diffusive (total-[heme]) measurements of oxygen transport were collected simultaneously during 

exercise within the same volume of tissue.  

 

Diffuse correlation spectroscopy signal analysis 

 A considerable amount of motion artifact existed in the BFIFDS signal during exercise 

(Figure 1). The protocol implemented during the present study allowed BFIFDS to be collected 

with little to no motion artifact present, without compromising the integrity of the measurement, 

i.e., no reductions in the BFIFDS signal were observed between the final relaxation phases of 

contractions and the 10s end-stage resting periods (Figure 2). This observation allowed for 

confidence in the BFI measurements of the current study, specifically, to their physiological 

significance to microvascular hemodynamics during exercise. Further, this observation is 

consistent with the findings of Lutjemeier et al. (55) who found no differences between limb 
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blood flow during exercise and in the first four cardiac cycles of early recovery and provides 

detailed rational for this approach.       

 

Comparison of hemodynamic responses to exercise 

 Increases in exercise intensity were met with appropriate increases in Q̇BA (Figures 3A 

and 3B) to increase oxygen supply to the working skeletal muscles. However, BFIFDS did not 

increase beyond Ppeak-2 (~66% of Ppeak on average) (Figure 3D). These findings are consistent 

with studies using the NIRS-ICG methods for muscle blood flow assessment during incremental 

exercise in muscles of the thigh (15, 41, 76). Although NIRS-ICG and DCS share the 

employment of near-infrared light, these techniques determine muscle blood flow through 

measurement of very different physiological phenomena.  

 ICG is a florescent dye that binds to plasma proteins and is used as an additional light 

absorber within the microcirculation. The appearance of a reduction in the NIRS signal can be 

attributed to the movement of ICG through the microcirculation allowing for the calculation of 

tissue blood flow. In contrast to the NIRS-ICG technique, DCS measures temporal intensity 

fluctuations in near-infrared light caused directly by the movement of light scatterers (primarily 

RBCs) (11, 12, 79). Changes in the frequency and amplitude of intensity fluctuations can be used 

to quantify relative changes in microvascular blood flow as a BFI. Thus, the observation of a 

submaximal plateau in microvascular muscle blood flow using two unique measurement 

techniques, which reflect different components of whole blood, provides additional confidence 

as to its occurrence. Further, the submaximal plateau in microvascular muscle blood flow has 

now been observed in muscles of the forearm (present study) and of the thigh (15, 41, 76), 

suggesting a common physiological phenomenon across muscle groups.  
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We speculate the disconnect between increases in Q̇BA and BFIFDS can be explained by 

differences in muscle activation, and therefore oxygen demand, among finger and wrist flexor 

skeletal muscles as exercise intensity was increased. It is likely that the FDS, the muscle 

primarily responsible for finger flexion, is recruited proportionally more during handgrip 

exercise performed at lower work rates; hence the initial matching of BFIFDS to increases in work 

rate (Figure 3C). However, as exercise intensity increases, other finger and wrist flexor muscles 

were likely recruited to meet the force requirements of the exercise. The recruitment of 

additional muscles or greater activation of already contributing ones, would require an increase 

in Q̇BA to increase total oxygen supply to the whole limb. 

 Heterogeneity of muscle blood flow within and among exercising skeletal muscles has 

been demonstrated numerous times in both animals (3, 45, 50, 51, 60, 61, 64) and humans (43, 

44, 47, 48, 50). The distribution of blood flow within and among synergistic muscle groups 

permits closer matching of oxygen delivery to the specific oxygen demands of individual motor 

units. Closer matching of oxygen supply and demand facilitates the maintenance of a sufficient 

oxygen pressure gradient required for diffusive oxygen delivery from the microvasculature to the 

muscle (58, 77, 78). As exercise intensity increases, blood flow heterogeneity within a muscle 

group decreases (44). This observation reflects the distribution of increases in blood flow toward 

newly recruited motor units as exercise intensity progresses (66). Thus, if the FDS was 

maximally activated at submaximal work rates, we would not expect to see an increase in oxygen 

delivery to that muscle with further increases in work rate. 
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Noninvasive oxygen transport measurements 

 In the present study, optical spectroscopy techniques employing near infrared light 

allowed both perfusive (BFIFDS and deoxy-[heme]) and diffusive (total-[heme]) oxygen transport 

to be measured noninvasively in a single volume of tissue during exercise (Figures 1 & 2). These 

measurements are required, in concert, to assess muscle oxygen consumption. Many innovative 

techniques for measuring individual components of oxygen delivery have been previously 

developed for use in animal models; notably, microscopy (49, 68, 70) and radiolabeled 

microspheres (3, 4, 45, 51) for measurements of microvascular hemodynamics and tissue blood 

flow, respectively, and phosphorescent quenching for measurements of changes in microvascular 

oxygen pressures (indicative of oxygen extraction) (7, 8, 57). These techniques have provided 

fundamental insights into muscle metabolism during rest and exercise but are extremely invasive 

and can be used with only mild contraction intensities, and thus are not suited for research in 

humans.  

In humans, NIRS has allowed for noninvasive measurement of diffusive (total-[Hb+Mb]) 

(25, 62) and perfusive oxygen conductance (deoxy-[Hb+Mb]) (19, 20, 27, 28, 36) within skeletal 

muscle. However, measurement of blood flow at the level of tissue gas exchange has remained 

fairly evasive. The combination of DCS and NIRS, as employed by this study, to measure 

perfusive and diffuse oxygen transport across exercise intensities, is a unique approach to 

potentially assess oxygen consumption of exercising skeletal muscles. Importantly, this 

technique is completely noninvasive and allows for measurements to be made simultaneously 

during exercise.  

 Plateaus in the NIRS signals observed during this study have been reported previously 

during cycling exercise (13, 63, 74). Changes in total-[heme] are reflective of changes in 
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microvascular hematocrit, a primary determinant of diffusive microvascular oxygen delivery (25, 

62). Changes in deoxy-[heme] are reflective of microvascular oxygen extraction and indicate 

changes in perfusive microvascular oxygen delivery (19, 20, 27, 28, 36).The observation of 

plateaus in BFIFDS and deoxy-[heme] (indices of perfusive oxygen conductance), and total-

[heme] (an index of diffusive oxygen conductance) at the same submaximal work rate (Ppeak-2) 

suggests similar mechanisms leading to a potential upper limit in both the diffusive capacity and 

delivery for microvascular oxygen uptake. Further, the identification of discrepancies in the 

patterns of increase in muscle oxygenation characteristics (total-[Hb+Mb] and deoxy-[Hb+Mb]) 

among muscles within the quadriceps during incremental cycling exercise (24, 63) emphasizes 

the need for further investigation of oxygen characteristics as they relate to muscle activation 

patterns during incremental exercise. 

Laughlin and Armstrong observed differences in the blood flow responses among, and 

within, the exercising skeletal muscles of rats during treadmill running (51). The variability in 

blood flow responses were attributed, in part, to differences in muscle fiber type and recruitment 

patterns. Additionally, it was noted that differences in blood flow responses among, and within, 

muscles were magnified with increased exercise intensity. These observations compliment the 

findings of the current study in that plateaus were similarly observed in individual muscles of a 

limb while exercise intensity was increased.       

 

Limitations 

 Appropriate interpretation of the data from this study requires the acknowledgement of 

several limitations. The NIRS/DCS probe was placed on the forearm prior to exercise and was 

not removed until exercise had ceased. While this was advantageous in assuring a single volume 
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of tissue was interrogated during the testing protocol, it presents the question of reproducibility 

of the NIRS/DCS signals. Location of the FDS muscle was confirmed using EMG, as has been 

done previously in our lab (19, 20). However, it is possible that other finger and wrist flexor 

muscles contributed to the overall NIRS-DCS signals, especially at higher power outputs. 

Contributions from muscles other than the FDS to the power output of the whole limb would 

pose a challenge to the interpretation of both the BFIFDS signal and any NIRS-derived 

measurements.  

EMG was not collected during the exercise protocol. The single-arm handgrip mode of 

exercise only allowed for placement of one measurement probe (NIRS/DCS) over the targeted 

area of the forearm (FDS). Therefore, conclusions made of relative changes in tissue blood flow 

during incremental exercise related to muscle recruitment patterns are only speculative. 

However, subjects were observed engaging wrist flexion during the later stages of the exercise 

test, as opposed to finger flexion alone. This observation requires confirmation with EMG. 

However, it has been demonstrated that muscles are recruited in a non-linear fashion during 

incremental forearm exercise (59). Further, during incremental cycling exercise, muscles of the 

quadriceps demonstrated markedly different deoxy-[Hb+Mb] (an index of perfusive oxygen 

delivery) responses which were directly related to differences in muscle recruitment patterns 

(24). These differences in muscle contribution between work rates could be due to differences in 

fiber-type recruitment patterns and mechanical efficiencies among these muscles.  

 DCS and NIRS measurements are entirely noninvasive. The indirect nature of these 

measurements permits influence, to some degree, by other tissues such as the skin and 

subcutaneous adipose tissue. In particular, the strength of the optical spectroscopic signals are 

influenced by adipose tissue thickness and accuracy of probe placement (14, 18, 75). Further, the 
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relative contribution of arterioles, venules and capillaries to the optical signals across exercise 

intensities is not clear and pose question to their validity as measures of purely microvascular 

oxygen transport. However, capillaries comprise the majority of the muscle microvascular 

volume (65) and, therefore, changes in the optical signals likely represent changes in the 

respective oxygen transportation measurements at this level of the microcirculation (34, 54).  

Previously, absolute values of muscle oxygen uptake (mV̇O2) have been estimated using 

Q̇BA and deoxy-[Hb+Mb] during handgrip exercise (20). However, the DCS technique does not 

provide absolute quantification of tissue blood flow as has been accomplished through several 

other more invasive techniques such as radiolabeled microspheres (3, 4, 45, 51) or microscopy 

(49, 68, 70) in animals and NIRS-ICG (15, 17, 41, 76) in humans. Therefore, at the present time, 

changes in BFI can only be interpreted as relative changes in tissue blood flow from a resting 

baseline signal. As such, estimates of absolute mV̇O2 using purely microvascular oxygen 

delivery measurements were unable to be made. 

 The BFI signal is a result of the movement of RBCs relative to the DCS light detector. At 

rest, the detector remains still, therefore, any signal is the result of RBC movement in the field of 

view of the DCS probe. Note the fidelity of the BFI signal at rest (Figure 2), even to the point of 

demonstrating a notch in the waveform similar to the dicrotic notch observed in the arterial 

pressure waveform. However, during exercise movement of the probe in relation to tissues below 

it causes artifact in the BFI signal. Thus, muscle contraction itself produces substantial noise in 

the BFI signal and must be accounted for during analysis. Previously, motion artifact in DCS 

data was successfully reduced during single-intensity dynamic exercise by analyzing DCS data 

only during the relaxation phase of muscular contraction cycles, through the employment of 

gating algorithms (40, 71). However, substantial variability in individual responses suggests 
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some degree of motion artifact remained in the analyzed signals. Further, DCS measurements 

were constrained to short collection time windows due to either low DCS sampling frequencies 

(71) or relatively short relaxation times (40).  

The protocol of the current study allowed for motion-artifact-free DCS measurements by 

only analyzing the signals during the 10s end-stage resting period (Figure 2). This approach 

allowed for a much longer window of DCS data collection while assuring minimal introduction 

of motion artifact. It should be noted that the signal analysis of NIRS and DCS measurements 

were conducted during different time intervals of the protocol (Figure 2). Thus, any conclusions 

made by the combination of perfusive (BFIFDS and deoxy-[heme]) and diffusive (total-[heme]) 

oxygen transport measurements may require additional caution. However, these measurements 

were each analyzed at time intervals that were only 10s apart and which most accurately 

reflected their values observed during exercise while permitting signals uncompromised by limb 

movement, i.e., motion-artifact-free BFIFDS data.     

  

Conclusions 

 DCS was demonstrated to be a powerful, noninvasive tool for quantifying relative 

changes in microvascular skeletal muscle blood flow during incremental handgrip exercise. 

Strategic experimental methodology was incorporated to minimize complications due to the 

susceptibility of DCS for motion artifact. While Q̇BA increased linearly with exercise intensity, 

perfusive (BFIFDS and deoxy-[heme]) and diffusive (total-[heme]) oxygen transport 

measurements of the FDS plateaued at a common submaximal work rate. Further studies are 

required to investigate whether muscle recruitment differences amongst muscles of the whole 

limb can explain the discrepancies observed in Q̇BA and BFIFDS responses during incremental 
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exercise. Finally, future studies employing DCS should aim to challenge oxygen delivery to 

skeletal muscles to further solidify the utility of DCS for robust investigation of muscle 

microvascular blood flow responses to exercise. 
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