
HIGHLY CONCURRENT VS. CONTROL FLOW COMPUTING MODELS

by

ROBERT CLARENCE MARSHALL

B.S., University of Rochester, 1972

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS -STATE UNIVERSITY
Manhattan, Kansas

1982

Approved by:

A11200 188744

37 ACKNOWLEDGEMENTS

Thanks are due to my major professor, Dr. David

Gustafson, for his guidance and encouragement. Al-

though I am solely responsible for final form and

content, Dave suggested the general organization of

the report. I would also like to thank NCR Corporation

who contributed many resources during report preparation.

I would like to give special thanks to my wife,

Mary Ann, for her patience, love, and understanding,

and for typing the manuscript.

TABLE OF CONTENTS

PAGE

LIST OF TABLES iii

LIST OF FIGURES iv

CHAPTER 1

Introduction 1

1.1 Introductory Remarks 1

1.2 Structural Impacts of LSI/VLSI Technology 5

1.2.1 Impact on Hardware Structures 7

1.2.2 Impact on Software Structures 12

1.2.3 Impact on Design 13

CHAPTER 2

Abstract Computing Models 16

2.1 Highly Concurrent Computing Models 16

2.1.1 The Data Flow Model 16

2.1.2 The Functional Model 30

2.2 The von Neumann (Control Flow) Model 54

2.2.1 The Structure of Conventional Programming
Languages 63

2.2.2 Synchronization Primitives 66

2.2.3 Monitors 68

2.3 Comparing Highly Concurrent and Control Flow
Models 70

CHAPTER 3

Implementations of Computing Models 76

3.1 Data Flow Implementations 76

3.2 A Functional Implementation 86

3.3 Parallel Taxonomies 98

3.3.1 A Control Flow Taxonomy 98

3.3.2 An Extended Taxonomy 99

3.4 Comparing Highly Concurrent and Control Flow
Computing Implementations 109

CHAPTER 4

Conclusion 113

4.1 The Emperor's Old Clothes 117

REFERENCES

APPENDICES

PAGE

APPENDIX A
Some Details of Operation and an Example of MagO's
Functional Architecture

APPENDIX B
The Algebra of Functional Programs

B.1 Laws of the Algebra of Programs B-1
B.2 Foundations B-4

B.2.1 Expansion Theorem B-5
B.2.2 Linear Expansion Theorem B-6

B.3 Recursion and Iteration B-7
B.3.1 Recursion Theorem B-7
B.3.2 Iteration Theorem B-7

B.4 Proofs for Functional Programs B-8
B.5 Example of a Recursive Program and its Proof B-8

B.5.1 Recursive Factorial Function B-8
B.5.2 Proof for Recursive B-10

ii

LIST OF TABLES

PAGE

Table 1

Some FP Functional Forms [BACK78] 43

Table 2

A Chart Illustrating Backus' Classification Scheme
[BACK78] 56

Table 3

Basic Types of Global Control Units (Taxonomies)
[KUCK78] 100

Table 4
Some Types of Array GCU's [KUCK78] 101

Table 5

Example of (Partial) Highly Concurrent Taxonomy 108

Table 6

Speedup Factors (n Processors) [MEAD80] 115

Table B.1
Example of Application of Recursive Factorial

Function B-9

iii

LIST OF FIGURES

PAGE

Figure 1

Control Flow Design Hierarchy [SCHN79] 15

Figure 2

VLSI Design Hierarchy [SCHN79] 15

Figure 3

Language -Based Design Hierarchy for Data Flow Compu-
ters [DENN80] 18

Figure 4

Segment of a Data Flow Program Graph 20

Figure 5

Firing Rules [DENN80] 21

Figure 6

Examples of Program Graphs 22

Figure 7

Switch and Merge Actors [DENN80] 23

Figure 8

Multiply Activity Template 24

Figure 9

Composition of Operators Using Activity Templates
[DENN80] 25

Figure 10
Example Data Flow Program Representation [TREL79] 29

Figure 11
Inner Product Functional Program Application [BACK78]..53

Figure 12
Typical Control Flow Assignment Statements 57

Figure 13
Basic Structure of a Control Flow Computer [BACK78]....59

Figure 14
Example of Fork and Join Synchronization Primitives

in [TREL79] 67

iv

Figure 15
Rumbaugh's Conceptual Data Flow Model [RUMB77] 80

Figure 16
Rumbaugh's Activation Processor [RUMB77] 81

Figure 17
Dennis' Instruction Execution Mechanism [DENN80] 83

Figure 18
Mag6's Binary Tree Structure [MAG080] 89

Figure 19
Global Control Unit [KUCK78] 99

Figure 20

Speedup Curve for Data Flow Speedup Experiments of
[GOST80] 115

Figure A.la
Interconnection of Cells [MAG080] A-14

Figure A.lb
A Possible Layout Scheme [MAG080] A-14

Figure A.2
Fragment of a Partitioned Network [MAG080] A-15

Figure A.3
Microprogram for AA (Apply to All) [MAG080] A-16

CHAPTER 1

Introduction

This report reviews, contrasts, and compares two

classes of computing models:

highly concurrent models, in which concurrent

operation is implicitly assumed;

control flow models, in which sequential oper-

ation is implicitly assumed.

The highly concurrent class is represented in the

report by two models: the data flow and functional

models. Highly concurrent models are being made practi-

cal for commercial implementation by advancing technology.

The control flow model is represented by von Neumann

computing principles. This model has been identified

with digital computers since the inception of discrete

computing machines.

The next section will summarize the organization of

the report. Two key properties which significantly shape

the form of the report will also be briefly introduced.

1.1 Introductory Remarks

The control flow model has had a dominant influence

on digital computers. Until the advent of Large Scale

Integration and Very Large Scale Integration (LSI/VLSI),

it had literally become synonomous with "computers."

-1-

Recently, the importance of formalizing the study of

models has become more apparent as LSI/VLSI techniques

have introduced technological and economic changes in

design that favor non -control -flow models.

The data flow and functional models are different

in two important respects from the control flow model:

- they are designed for implicitly concurrent

operation;

they are not history sensitive.

The first property has evolved as a natural consequence

of the improving technology and is highly advantageous,

but the second is more a product of our current scienti-

fic position and is not always a desirable property.

History sensitivity is just the ability for data values

to be stored internally for indefinite periods and

utilized whenever desired.

History sensitivity is at once a strength and a

weakness of the control flow model. Internal storage of

data values enhances high -volume commercial and data file

processing capabilities, but it also introduces the side

effects so well known to commercial computing. These side

effects result in unexpected, additional values of vari-

ables assigned to memory locations which are multiply

named. The multiple naming occurs in global portions of

procedures. Global and common storage areas require

synchronization primitives to be used in multiprocessed

-2-

sections of code. This severely restricts the ability

of the control flow model to be used well in the design

of concurrent routines.

Models that eliminate unwanted side effects by re-

stricting or eliminating history sensitivity allow easy

and efficient concurrent design, but only at the expense

of internal storage capabilities. Examples of such models

include the data flow and functional models. Functional

models have the capability of being extended to add a

history -sensitive property (FFP model in Section 2.1.2).

Together, concurrency and history sensitivity pre-

sent the best opportunity to compare and contrast the

highly concurrent models with the control flow model.

The report will return to considerations of these two

properties frequently, particularly in Section 2.3.

Chapter 2 will present discussions of the abstract

highly concurrent models and of the abstract control

flow model. Some key points of comparison between the

two types of models will be discussed in Section 2.3.

Chapter 3 will consider implementations of the data

flow and functional models. A discussion of parallel

taxonomies will close the chapter.

Chapter 4 concludes the report. Included is an

allegory representing the fallacy of designing do -every-

thing programming languages without due consideration for

the attributes of programmer ease of use, algorithm com-

plexity, and underlying technological advances. Complex

-3-

von Neumann designs may someday find it difficult to

locate an architecture for implementation. Languages

of the future must never lose sight of architectures

upon which they can be realized.

A third significant area of difference between high-

ly concurrent and control flow models is not so apparent

until one attempts a comparison between them. Highly

concurrent models, such as the data flow and functional

models, are much easier to consider apart from their

implementations, simply because their abstract structures

(i.e., their "models" as opposed to their "implementations")

were developed separately from any fixed ideas about

specific hardware realizations. During the early develop-

ment years of control flow computing, the concept of

"model" was rarely considered separately from implementation,

and the development of hardware realizations drove the

structure of the model. As a result, no separate theoreti-

cal structure now exists for the control flow "model" which

can rival the comparable highly concurrent models. This

report considers the von Neumann "model" in Chapter 2, and

many von Neumann concepts will be seen to require some

reference to hardware concepts, such as "registers" and

"memory locations". Since so much is known of von Neumann

implementations, little would be gained by presenting one

in Chapter 3; therefore, Chapter 3 concentrates on data flow

-4-

and functional implementations, while von Neumann

implementations are discussed only during Sections 3.3

(on parallel taxonomies) and Section 3.4 (comparison of

control flow and highly concurrent implementations).

The next section summarizes the impacts of LSI/

VLSI technology which are bringing highly concurrent

models to the forefront. Impacts on hardware, software,

and design will be discussed.

1.2 Structural Impacts of LSI/VLSI Technology

The control flow model was the model for almost all

digital computers in the early 1970's, and few designers

had given much thought to any other. The cost functions

of computing included expensive (global) memory, expen-

sive discrete components, and a "medium" scale of inte-

gration allowing chips fabricated with, perhaps, 1000

transistors per chip. Control flow models tended to

minimize the total cost of computing. At about that

time, techniques for Large Scale Integration (LSI) and

Very Large Scale Integration (VLSI) began to emerge.

VLSI and LSI techniques were revolutionary and would

offer the promise of fabricating chips containing 105

individual transistors by 1980 and 107 or 108 transis-

tors by 1990 [NECH79], [SCHW80]). Meanwhile, the cost

of memory was decreasing substantially. With VLSI

-5-

technology, it became easy to implement interconnecting

networks of vast numbers of processing and memory elements

on single silicon chips. The cost functions for these

kinds of chips were dramatically changed from all that

had gone before; now, cost (and efficiency) of a device

was more dependent on the total lengths of interconnecting

paths between elements than on the elements themselves

UMEAD80], [MAG080], [SCHW80]). The global memory struc-

tures of control flow computing were no longer acceptable,

since local memory with each processing element minimized

interconnections and improved processing efficiency.

The primary problem posed to computer scientists

and engineers by VLSI became one of how to best exploit

this technology. Sugarman in [SUGA80] envisions VLSI

design tasks falling into two categories:

- structuring control flow designs into VLSI;

- abandoning control flow designs totally to

utilize the full power of VLSI.

Only in the latter category can the full promise of con -

currency available in VLSI systems be tapped. However,

as Rem notes in [SUGA80], computer scientists are only

now mastering the theory of sequential programming, and

they are currently ill -prepared to supply programming

techniques to make VLSI structures a reality. Computer

design engineers have discovered that design times of

fifty man years could be required to design and fabricate

-6-

a 100K device chip without improved computer -aided

design techniques [NECH79]. (Remember, a 100K device

chip is feasible today; by 1990, 105K device chips

may be feasible!) The challenges inherent to VLSI

design are many, but the rewards could be very great.

Section 1.2.1 discusses some impacts of LSI/VLSI

technology on hardware structures, while section 1.2.2

discusses impacts on languages and software. Section

1.2.3 presents a change in viewpoint for total system

design that is necessary for VLSI design.

1.2.1 Impact on Hardware Structures

How will VLSI affect conventional hardware struc-

tures? Mead and Conway [MEAD80] provide some inter-

esting insights. This section is a summary of their

findings.

Both processing and memory elements can easily be

implemented in VLSI: "A human brings to an organization

what VLSI brings to a circuit: both combine processing

and memory effortlessly." Long interconnecting wires

which impede communications are eliminated. The resultant

systems support very high degrees of concurrent operations

Mead reviews processor/memory architectures

(control flow machines) in terms of resource usage.

For large global memory systems most memory and memory

wiring is idle most of the time. A four megabyte memory

of 32 bits/word width, for example, may access only one

-7-

word of four million 32 -bit words at one time. Many

resources are expended by communication of data words

over relatively large distances (buses, etc.). A

discussion of memory locality and how it's implemented

in a memory hierarchy illustrates an inverse relation-

ship between memory size (M) and speed of access. The

access time, T, is proportional to the square root of

memory size, M. For register memory (Mr), cache memory

(Mc), primary memory (Mp), and secondary memory (Ms)

(i.e., disks), a model for memory access time is presented

Tavg = Fr (Mr) 1/2 Fc (Mc) 1/2

Typical frequency values are:

Fr = 0.6

Fc = 0.38

F = 0.02

Fs = 5 x 10-6

Access to secondary storage dominates.

Two other methods have been used to increase speed:

- pipeline structures;

- multiprocessor structures.

Pipeline structures with local memory increase processing

power to a greater factor than just by the number of

processors provided because each processor can have a

smaller local memory. For example, a two -processor

pipeline more than doubles available processing power:2

1[MEAD80], pp. 266-7.

2[MEAD80], p. 267.

Fp (Mio) + 100 Fs (Ms)1/2

-8-

Te = 1/2 (M/2)1

Te, execution time, is about 1/3 the time for one

processor (note that this formula ignores intercon-

nection costs). This effect occurs as the result of

two factors:

- doubling number of processors doubles speed;

- localizing memory to each processor and re-

ducing memory size for each increases speed.

Effective multiprocessor systems in VLSI will

probably be hierarchical structures, such as binary

trees of processors (see section 3.2). Simple systems

are combined into large, complex structures consisting

of perhaps hundreds or thousands of elemental processor

and memory combinations. The binary tree is a structure

with some ability to utilize all processors concurrently.

In general, trees also have other advantages:

- can be tested comparatively easily;

general computing structures for a general class

of problems are well -represented by trees.

On VLSI chips it is extremely important to minimize wire

length to minimize both time delay and energy dissipation.

There is a definite tradeoff between increasing processor/

memory combinations and the resultant area required for

wires:

hierarchical structures improve performance to a

point;

-9-

if a hierarchical structure gets too large,

it begins to require too much interconnecting

wire area.

With the emergence of VLSI problems must be framed

from the beginning in terms of concurrency. In this

environment communication is expensive and computation

is not. VLSI presents a challenge to computer science:

"Develop a theory of computation that accommodates a

more general model of the costs involved in computing.

The current VLSI revolution has revealed weaknesses of

a theory too solidly attached to the cost properties of

a single sequential machine." [MEAD80]

Summarizing these considerations in [MEAD80] we

can list some properties advantageous to VLSI hardware

structures:

- large numbers of fairly simple processors connec-

ted together in complex hierarchies, such as

binary tree structures;

small amounts of local memory associated with

each processor;

- pipeline structures;

- techniques to optimize wire area (minimum)

versus hierarchy size;

concurrency implicit to the model;

- new theories of computation embracing concurrent

rather than sequential operation.

-10-

Finally, the huge area of parallel algorithms

is still in its early developmental stages. Kung

ifKUNG80] and [MEAD80]) reviews this field. Because

so many of these new algorithms will be implemented in

hardware structures, there is going to be a major impact

on computer scientists to interact with other disciplines

during computer design. Lattin ([NECH79] and [SUGA80])

cites a growing crisis in VLSI design in which the sheer

numbers of devices in a structure such as a microprocessor

can require inordinate design times. This affects com-

puter science in two ways:

- more must be known about parallel algorithms in

general, so structures can be designed using

standard devices and/or techniques, rather than

custom -designed devices, etc.;3

- much more of the design process must be done by

utilizing computers (computer -aided design - CAD).

The area of parallel algorithms is so large it would

require a separate report to cover it adequately.

3In [SUGA80] Lattin maintains the ratio
D = DT/DC

Where DT = devices of all kinds,
and DC = custom designed devices
for the intel 8086 was such that D = 4.4. He feels D= 20

must be attained to cut a 60 man-year effort to 5 man-years.

-11-

The ultimate impact upon conventional control flow

computing will obviously be very large.

1.2.2 Impact on Software Structures

The impact on sequential programming languages

consists in part of techniques to translate conventional

high level language programs to equivalent parallel

representations as in [ALLA76], or to compile conven-

tional language programs into code for one of the par-

allel architectural models, as in ([JOHN80], [KUCK79]).

Kuck discusses compiling techniques for structures con-

sisting of arrays of microprocessors. This report will

not examine these techniques in detail.

Newer highly concurrent languages and processing

techniques are also appearing. Brock and Montz [BROC79],

Gurd and Watson [GUR680], and Treleaven [TREL79] all

discuss some of these language structures. Treleaven

includes an example program written in a data flow

language which will be examined in chapter 2 (Section

2.1.1). This kind of language will require programmers

to alter their views of machine communications and

structures to fit the highly concurrent models. Gurd

and Watson contains an excellent discussion of some

flow -graph techniques for structuring parallel software.

-12-

1.2.3 Impact on Design

Section 1.2.1 ended with a discussion of parallel

algorithms and the impact these would have on the de-

sign of software structures. An important additional

consideration for these algorithms in the VLSI environ-

ment was that many would also affect hardware design

structures. In control flow computing the hardware

design activity was distinctly separate from both the

language and application design activities. Hardware

design actually drove the other two activity areas,

and, to a great extent, language design drove applica-

tion design. Thus, a design hierarchy with hardware

design at the top and application design at the bottom

was typical. In the era of expensive discrete hardware

components, expensive banks of global memory, and the

sequential emphasis on computing structures, this made

some sense. In VLSI design it is becoming a much less

relevant approach.

Schneck [SCHN79] outlines a new design approach in

which the application, design, and implementation areas

of algorithms, hardware, and software are very intertwined.

In this approach the algorithm design activity for the

application, not hardware design, drives the total effort.

Hardware and software design activity areas will be at the

same level in this hierarchy and will be nearly indistin-

guishable in some important ways. See Figures 1 and 2 for

illustrations of the old and new design hierarchies.

-13-

In the control flow environment, computer scien-

tists have unfortunately grown too accustomed to their

niche in the old hierarchy Feature laden, complex,

von Neumann based "new" languages such as PL/1 and Ada

are always appearing, while comparatively little has

been done on the design of truly innovative languages

which would fit other existing models more satisfactor-

ily, or help to define new models. This design attitude

will have to change, since the inputs of computer sci-

entists will affect machine design much more directly

in the VLSI era. Chapter 4 will return to this subject.

-14-

Engineer

Computer
Scientist

Processor
(Hardware)

Application
Specialist

Programming
Language
(Software)

Application
Solution
(Algorithms)

Figure 1

Control Flow Design Hierarchy

[SCHN79]

Problem
Application Foundations
Specialist (Algorithms)

Engineer Parallel Programming
Computer Processor Language

Scientist (Hardware) (Software)

Problem
Solution

Figure 2

VLSI Design Hierarchy

[SCHN79]
-15-

CHAPTER 2

Abstract Computing Models

This chapter will examine two implicitly concurrent

models: the data flow and functional models. Section 2.2

will examine some properties of the implicitly sequential

control flow model, and some programming primitives necessary

to realize concurrency in this model. Section 2.3 will then

present a brief comparison of some key properties of highly

concurrent and control flow models.

2.1 Highly Concurrent Computing Models

Section 2.1.1 will examine the data flow model, and

Section 2.1.2 the functional model. Chapter 3 will discuss

implementations for these abstract models.

2.1.1 The Data Flow Model

Dennis I.DENN80] advocates language -based computer

design, which ensures the programmability of a radical

architecture. He describes a language -based design to be

one in which the computer hardware serves as an interpreter

for a specific base language. Programs written for the

computer must be expressed in the base language.

Future supercomputers must support massive concurrency

in order to achieve significant performance increases;

therefore, a base language for such machines must necessar-

ily allow simple, implicit expression of concurrency on a

very large scale.
-16-

Dennis feels that conventional control flow languages

have an intrinsic, fatal design flaw: they are based on

a global state model of operation. In the next computer

generation, at least for large scale scientific computa-

tion, he believes this flaw will force abandonment of

control flow languages. At this time he recognizes only

two alternatives: the functional (applicative) languages

to be discussed in Section 2.1.2 and the data flow models.

Dennis' subsequent explanation of the data flow model

is now reviewed. His discussion has a simplicity and

precision which makes the topic easy to understand.

In data flow models machine -level programs present

a new view of instruction execution which departs radically

from the sequential one. An instruction is automatically

ready for execution when all operands have arrived. Rela-

tive positions of instructions are irrelevant, and data

flow computers do not have location counters. A direct

consequence of data -activated instruction execution is

that many instructions may be ready to execute at once.

Therefore, highly concurrent operation is an integral

part of the data flow concept.

The base language for most data flow architectures

is a representation called data flow program graphs. In

most cases data flow computers are a form of language -

based architecture in which these graphs are the base

language. Thus, the language and the architectural

concepts of data flow models are explicitly bound together

-17-

at design time, and architectural concepts do not force

language representation as happened in control flow

computing. Data flow program graphs are a formally

specified set of interfaces bridging system architec-

ture.and the user source programming language. Figure

3 illustrates the concept.

Programming
Language

Data Flow
Program
Graphs

System
Architecture

Figure 3

Language -Based Design Hierarchy for Data Flow Computers

DENN80]

-18-

In the design environment implied by Figure 3,

the computer architect and language implementor have

sharply defined tasks:

the architect must define a computing machine

which implements the formal behavior of pro-

gram graphs;

- the language implementor must devise translators

for source language programs which translate

source into equivalent data flow program graphs.

The cooperating nature of the design process is clear

when the role of the program graphs in the scheme is

understood.

Data flow graphs are represented by collections of

activity templates, which are information packets stored

in memory. The role and structure of activity templates

will become clear as the discussion proceeds. Basically,

an activity template represents an action entity, such as

an operator, which requires a finite number of operands

in order to execute. The template records all operand

fields and their readiness to be used in an operation.

After execution, template fields are utilized to record

and forward results to succeeding templates.

Data flow program graphs are composed of actors and

arcs. Actors are connected by arcs and consist of both

input and output arcs which carry data values in the form

of tokens. Thus, arcs are communication paths between

actors, and values travel upon these paths as tokens.

-19-

Figure 4 shows two actors connected by an arc upon which

a token is being transmitted from actor 1 to actor 2.

Actors

To en
(Data Value)

Figure 4

Segment of a Data Flow Program Graph

Firing rules for tokens govern the placement onto

and removal from input and output arcs of tokens and

their associated values. For an actor to be enabled,

a token must be present on each input arc, and no tokens

can be present on any output arcs. An enabled actor may

be fired. If the actor is an operator, firing entails

applying the specified actor function to each input token

value and placing the resultant tokens with computed

values on the output arcs. Figure 5 illustrates the

firing process.

-20-

(a) Input
Arcs

(b)

(c)

Figure 5

Firing Rules

[DENN80]

-21-

Actor
Output

Arc

.>Z Z = X+Y

Firing Rule:

(a) In General

(b) Before

(c) After

An arbitrary number of operators (or actors) may

be connected to form program graphs. Figure 6 presents

some examples of program graphs.

(a) 'Z = X+Y)* (X -Y) [DENN80]

(b) Z = X*Y - 4*A*(X+Y)

Figure 6

Examples of Program Graphs

-22-

There are many different types of actors: actors

for each arithmetic operator, actors for copying data

values to arbitrary numbers of output arcs, actors for

merging data values, etc. The natures of these actors

make conditional executions, iterations, and recursive

computations fairly easy to implement. For a complete

discussion of different types of actors, refer to

[GUR680]. For the purposes of this report only simple

switch and merge actors will be discussed.

Switch and merge actors control conditional execu-

tions and iterations. They do this by controlling the

routing and selection of data values. An actor of one

of these types operates by testing a boolean input value

on one of its input arcs. The switch actor selects an

output arc according to a true or false boolean control

input value. The merge actor forwards one of two input

data values according to an input (control) boolean.

Figure 7 shows switch and merge actors and arcs.

(a) Switch Actor

Figure 7

Switch and Merge Actors

(b) Merge Actor

[DENN80]

-23-

At the machine level, data flow programs are repre-

sented by activity templates. A program is a collection

of these templates. Each activity template corresponds to

one or more actors of a data flow program graph. An activity

template consists of a collection of data value fields.

For example a multiply template consists of four fields:

an operation code (Multiply);

- two receiver fields to receive input operand values

from previous operations;

one destination field to store and forward the

resultant product value to succeeding operations.

Figure 8 displays a multiply template. Figure 9 shows the

corresponding composite structure of templates for one of

the data flow program graphs in Figure 6.

Z = X*Y

Multiply (*)

Figure 8

Multiply Activity Template

-24-

Z = (X+Y)*(X-Y)

ih

Figure 9

Composition of Operators using Activity Templates

[DENN80]

-25-

Activity templates control the execution of a

machine program. Execution of a template is activated

by the presence of an operand value in each receiver

field. An operation packet of the form

<OPCODE,OPERANDS,DESTINATIONS>

is operated upon, and a result packet of the form

<VALUE,DESTINATION>

is passed on for each destination field. When the re-

sult packet is generated, each result value is placed

into the receiver field designated by its destination

field.

It is possible to analyze, control flow programs

and produce data flow machine object programs ([ALLA76],

[JOHN80]). Indeed, conventional compilers with optimi-

zing phases seem fairly easy to adapt in this way, since

many of these compilers represent programs as directed

graphs, and such representations are very close to the

machine language of a data flow computer. A prototype

computer of this kind has been successfully built, and

the optimizing phase of a conventional compiler has been

modified to generate code for it [JOHN80]. This approach

holds much promise, since the underlying data flow model

should be fairly transparent to the high level language

programmer.

However, the semantics of data flow and control flow

languages differ greatly [TREL79]. In data flow models

-26-

the order of assignment statements is irrelevant, and

these are interchangeable since they are activated only

by the availability of input data. To insure determinate

operation, assignment statements must obey a single -

assignment rule: an identifier can be assigned values

at only one point in a program. This is necessary since

an identifier is mapped to an arc, or data path, in data

flow models and not to a memory location. History sensi-

tivity is not a property of the model.

Side effects are not present in data flow languages.

In the control flow model, mappings of multiple identifiers

to the same storage location can cause unexpected results

to occur. This happens ordinarily through subroutine

parameter mappings and common storage shared by multiple

modules. This phenomenon depends upon the property of

history sensitivity, and thus it cannot occur in data flow

languages. Because there is no necessity to coordinate

common storage areas, side effects are absent from the data

flow model and concurrency is highly enhanced. However,

the price of eliminating history sensitivity from the model

is not all positive; Chapter 4 will return to this subject.

One reason data flow is a popular research area is

that textual data flow programming languages may be developed

that share a few properties with control flow languages.

For example, they can utilize assignment statements,

arithmetic expressions, conditional statements, iteration,

recursion, and function declaration FREL79].

-27-

Representation in data flow languages is straight-

forward. Data identifiers are mapped to data paths and

operations to data flow instructions. The von Neumann

principle of program -data indistinguishability is lost,

since these mappings are not to memory locations. One

author reached the conclusion that this indistinguish-

ability principle should be re-established in the data

flow model [SLEE80]. This would probably entail the

establishment of a history sensitivity property.

Since the data flow model supports concurrency

at a low level, this model will support the optimal

data flow language directly and allow individual oper-

ations to be initiated as soon as input data are avail-

able. Studies of speed-up ratios show the best ones are

linear in P, where P is the resource replication factor

fSTON73]. In a data flow model with large P (i.e., a

very large number of processing units), the best way to

achieve this speed-up is by supporting concurrency at

as low a level as possible, since all higher level con -

currency will then be automatically supported. Intro-

duction of explicit statements, such as CALL and WAIT,

to support concurrency will cause a negative effect on

the linearity of P. When represented at a low enough

level, there is the possibility of achieving a better

increase in performance for a broad class of problems,

since the system can then utilize the detailed repre-

sentation of a program to maintain a very high overall

resource utilization ITREL79].

-28-

Figure 10 illustrates a data flow representation

of a quadratic roots program in a Pascal -like form

[TREL79]. Recall that there is no relevance to the

relative placements of the assignment statements in

the QUAD -ROOTS function.

Due to time constraints, this report does not

discuss many of the more advanced data flow concepts.

Where appropriate, references are made to papers dis-

cussing recursion, acknowledge processing, and data

flow multiprocessors. [DENN79] discusses another

important concept: concurrent computation with streams.

It is intended, here, only to discuss the basic concepts

of the data flow model. The great potential for con-

current computation should be very clear.

function QUAD -ROOTS input (a,b,c:real)
output (x1,x2:real) ;

var temp: real;

begin
temp := SQRT(b*b-4*c);
xl := (-b+temp)/(2*a);
x2 := (-b-temp)/(2*a);

end;

"main program..."
var i1,i2,i3: real; ri,r2: real;

begin

end;

(ri,r2):= QUAD -ROOTS (i1,i2,i3);

Figure 10

Example Data Flow Program Representation

[TREL79]

-29-

2.1.2 The Functional Model

Backus introduced a functional model of programming

languages which is highly mathematical. He describes his

functional structure in two different ways [BACK78]:

informal discussion of functional programming,

or FP, systems;

formal functional programming (FFP) systems.

The FFP systems can be studied in detail in [BACK78].

In general, this section concentrates on FP systems.

Backus recognizes two parts of a programming language:

framework: defines the overall rules of the system;

- changeable parts: existence is provided for by

language framework, but specific behavioral aspects

are not specified.

An example of changeable parts portions of control flow

languages is the CALL/RETURN procedure mechanism, which

in many languages is used to invoke modules of arbitrary

function. The language framework always describes its

fixed features and provides the minimal features and

environment for its changeable features.

Backus strives to define a minimal framework which

could generate most other features as changeable parts.

His exact quotation follows: "if a language had a small

framework which could accommodate a great variety

-30-

of powerful features entirely as changeable parts,

then such a framework could support many different

features and styles without being changed itself."

According to Backus, von Neumann languages have

large frameworks and limited changeable parts. Two

properties of the von Neumann model seem to dictate

this:

- word -at -a -time programming in which semantics

are closely coupled to state, and every detail

of computation changes the state;

- semantics closely coupled to state transitions

implies every detail of every feature must be

built into the state and its transition rules.

As an example of the rigidity of von Neumann langu-

ages, consider the primary techniques used for passing

control to subroutines. The expression itself, "passing

control," reveals the only real purpose of the techniques

which never evolved as expressive parts to alter the

structure of a language to fit a problem. The purpose

of such constructs are only to "modularize" large

portions of program code. Typical CALL/RETURN mechanisms

function as tying statements used only to glue sequenti-

ally -related but functionally independent portions of

logic together. In themselves, they contribute little

meaning to the language.

-31-

Functional techniques, such as the FORTRAN

function defining and manipulating statements, are

better in von Neumann computing than are their CALL/

RETURN cousins. They can be utilized in a more

expressive manner, since they can be embedded into

complex arithmetic expressions. However, the nature

of a function in the von Neumann model demands that

a single -word result value always be computed and

returned. This restriction keeps such techniques

from having the power to

very significantly.

A CALL/RETURN

concurrency in von

these languages is

is not consciously

expand von Neumann languages

scheme is often used to implement

Neumann languages. Concurrency in

not "fine grain" (i.e., concurrency

built into the von Neumann model at

the lowest levels). Thus, some explicit technique is

needed to implement a grosser kind of concurrency at

the language level. It seems to follow that CALL/RETURN,

the basic statements for "passing control," would often

be extended to serve as concurrency controlling state-

ments. Much problem continuity and clarity is lost by

the usage of such constructs for concurrency, particularly

since the original purpose of CALL/RETURN was for sequen-

tial passing of control, a technique which opposes a

concurrent view.

-32-

In terms of problem clarity and understanding,

CALL/RETURN mechanisms tend to detract from langu-

ages. Such compensating techniques as extensive

English -language commentaries in the source code are

necessary to maintain logical continuity of under-

standing. Very complex features must be added to

these languages to strengthen them significantly

and allow the language statements themselves to main-

tain logical clarity at the problem level. The re-

sulting structure is very rigid and large.

Two of the basic problems with von Neumann

languages seem to be:

- word -at -a -time programming;

- changeable parts have too little expressive

power.

Backus' goal is to provide a language framework which

can be expanded naturally, while simultaneously in-

creasing the expressive power of the language. He

approaches the problem at the point where new proce-

dures must be created to solve a problem. A goal of

his functional style is to allow this process of

procedure creation to happen within this basic frame-

work of the language while leaving the language prob-

lem oriented, and not construct oriented.

In order to provide powerful combining parts in

a language, good combining forms must be available

which can be used to fabricate new procedures from
-33-

old ones. The control flow model provides primitive

combining forms and makes using them difficult.

Backus notes the split between what he refers to as

the "expression world" and the "statement world" in

the von Neumann model. "Functional forms naturally

belong to the world of expressions; but no matter how

powerful they are, they can only build expressions

that produce a one -word result. It is in the statement

world that these one -word results must be combined into

the overall result."

As an example, consider the sequence of FORTRAN

statements

A = SQRT(B*B+C*C+EPS(W-U))

D = X+Y*Y+A**3

Certainly, the expression to compute A does not lack

elegance. It involves numerous arithmetic and func-

tional applications; yet, its primary purpose is to

produce a sequential result value to store in the

location associated with A. This value can then be

used in the following statement. No computation can

be performed on the expression associated with D until

the value for A is available, although the values for

the subexpression X+Y*Y are independent of A and avail-

able for use while A is being computed.

The constant combining operations of single words

necessary in control flow languages is something which

detracts from the power attainable if the split between
-34-

statements and expressions were not present. One

goal of the functional model is to eliminate this

arbitrary split.

Backus also aims to eliminate the usage of

elaborate naming conventions in his functional model.

Naming conventions require complicated mechanisms in

the language framework which interfere with the use of

simple combining forms. For example, subroutines require

dummy arguments which must be mapped to the storage

locations corresponding to the arguments of the invoking

procedure.

Finally, Backus wants to provide powerful mathemati-

cal properties in his functional language framework which

aid program proof and construction tasks. Control flow

languages generally lack these properties; hence, they

are difficult to reason about and prove. In functional

programs "... programs can be expressed in a language

that has an associated algebra. (The) algebra can be used

to transform programs and to solve equations whose 'un-

knowns' are programs, in much the same way one solves

equations in high school algebra." In the FP style

algebraic transformations and proofs can utilize the

language of programs directly, rather than the (extra)

language of logic (which only talks "about" programs).

Iverson demonstrated that there can be programs

which are neither word -at -a -time nor dependent on lambda

expressions. With APL Iverson introduced new functional

forms. Since APL assignment statements can store entire

-35-

arrays at once, the functional forms are greatly

extended beyond those of von Neumann languages.

However, Backus notes three problems with APL:

- the split into expressions and statements is

still there, albeit on a larger scale for

expressions;

- APL has only three functional forms (inner

product, outer product, reduction) which are

not sufficient and are difficult to use;

- APL semantics is still too closely coupled to

machine states.

As the experience of APL suggests, matrix operators

introduce more powerful functional forms, but they do

not (in themselves) solve all the problems of von

Neumann languages. For example, Backus feels the

effort to write one -line programs in APL by using the

powerful matrix combining forms is partially motivated

by the desire to remain in the "more orderly world of

expressions."

Backus' eventual goal with FP systems is to utilize

them in the design of applicative state transition (AST)

systems. AST systems have the following properties:

history sensitivity;

loosely -coupled state -transition semantics in

which a state transition occurs only once in

each major computation;

simple states and state transitions;

-36-

- dependence upon an underlying applicative

system to provide the basic programming

language and to describe state transitions.

An AST system is composed of three elements:

1) an applicative subsystem (i.e., an FFP system);

2) a state D that is the set of definitions of

the applicative subsystem;

3) a set of transition rules that describe how

inputs are transformed into outputs and how

the state D is changed.

The programming language of an AST system is defined:

it is that of the applicative subsystem (i.e., can be

FFP system). The FP programming style described later

can be used. The state D cannot change except at output

time. The old state is replaced by the new state at

output time. State transitions can have useful mathematical

properties. Programming is not divided into expressions

and statements.

Some other key advantages of AST systems are as

follows:

- since the state cannot change during a major compu-

tation, side effects are eliminated, and independent

applications can be evaluated concurrently;

- major new features are introduced by utilizing the

common language framework;

-37-

- the framework is minimal and is the only fixed

part of the system;

- the functional nature of names is exploited.

Backus feels that the new classes of history -sensi-

tive. models utilizing applicative styles and languages

are key developments. If their superiority over conven-

tional languages can be proven, the economic basis for

developing new kinds of computers to best implement them

will be established. The full power of large scale

integration can then be better utilized in computer de-

signs to produce more concurrent and efficient machines.

With this final goal for AST systems in mind, Backus

outlines an approach for designing non -von Neumann

languages:

an (informal) functional style of programming

(FP) without variables based upon the usage of

combining forms for constructing programs;

- an algebra of functional programs;

a formal functional programming system (FFP) to

serve as the basis for AST systems;

- AST systems.

Mag6's [MAG080] cellular architecture in Section 3.2 is

based upon this approach, and the resultant FFP.

FP systems are members of a class of simple appli-

cative programming systems in which the only operation

is that of "application." Programs in this type of

system are functions without variables. In the

language framework, a fixed set of combining forms
-38-

called functional forms are defined. To these fixed

functional forms are added some simple definitions:

the combinations of fixed functional forms and defini-

tions are the only building blocks available to con-

struct new functions from existing ones. Variables

and substitution rules are specifically excluded from

the system. New functions become new operations in

an associated algebra of programs.

The functions of an FP system map objects into

objects and always require one single argument, or a

tuple of arguments. These simple, highly -structured

forms define the behavior of FP programs unambiguously

and allow program proofs by algebraic methods.

An FP system is constructed of the following sets:

a set 0 of objects;

a set F of functions that map objects into objects

a (single) operation called "application";

a set FF of functional forms used to form new

functions in f;

- a set D of definitions that define some functions

in F and assign a name to each.

Backus provides examples of these entities. Some

examples from [BACK78] follow:

- objects

1 (1) 7.8 CDX <X,1,4.7>

<xy,w,«x>,h>,wz> 1.

-39-

applications

+:<1,2> = 3

2:<A,B,C> = B

These are read "+ applied to the sequence <1,2>
yields 3, and"the selector 2 applied to the
sequence <A,B,C> yields B."

primitive functions

These functions are supplied with the basic FP
system.

selector functions

1:x = x = <xi , ,xn> + x1; 1

This is read "the selector function 1 applied
to x is defined as the first element in the
sequence (x1) when x = <xl,...,xn> and is unde-
fined otherwise."

identity

a x

- reverse

reverse:x E X = -0' 0;

X=<X1,...,Xn> <Xn,...,X1>; I

functional forms

These are basic forms which are used to produce

other functions by combination.

composition

(f-g):x = f: (g:x)

f and g are preexisting forms.

apply to all

af:x 1 x = 4- 4);

4- f:xl,f:x2,...,f:xn>; 1

-40-

- definitions

A definition in an FP system is an expression
of the form

def r

where Z is an unused function symbol and r is
a functional form.

- def IP=(/+)(ax)transp

This is Backus' definition of inner product,
IP, using the following functions: insert (/),
apply to all (a), and transpose (transp).

An object x (in 0) is either an atom, a sequence

<xx2'...'xn>' where xi is an object, or 1 ("bottom"

or "undefined"). The set A of atoms determines the set

0 of objects. The empty sequence is denoted by and

is the only object which is both an atom and a sequence.

The atoms T and F denote the familiar boolean values

"true" and "false". An important constraint in the

construction of objects is associated with 1: if x is

a sequence with 1 as an element, then x=1. That is,

the "sequence constructor" is "1 -preserving." A proper

sequence never has 1 as an element.

An FP system is not burdened with a large number

of operations; it has exactly one: application. If

f (in F) is a function and x (in 0) is an object, then

f:x

is an application which denotes the object resulting from

applying f to x. f is called the operator of the appli-

cation and x is the operand. Functions f (in F) are

bottom -preserving:

-41

f: 1 = 1 (all f in F).

Every function in F is either primitive (i.e., supplied),

defined, or a functional form.

f: x = 1. has some properties which are important in

talking about the mapping:

- if the computation for f:x terminates and yields

the object 1, f is said to be undefined at x.

f terminates but has no meaningful value at x.

- when f does not terminate, it is said to be non

terminating. at x.

A functional form (FF) is an expression denoting a

basic function which is supplied with the model. The

function depends on the functions or objects which are

the parameters of the expression. As an example, for f

and g in F, f -g is a functional form called the composi-

tion of fund g. The composition denotes the function

such that, for arbitrary x in 0,

(f.g):x = f:(g:x).

Table 1 lists some FP functional forms [BACK78].

A definition in an FP system is an expression of

the form

def

Where the left side .e is an unused function symbol and

the right side r is a functional form which may depend

on t. It means that symbol £ is to denote the function

represented by r. A defined symbol is applied by replacing

it by the right side of its definition. A definition may

-42-

Functional Form Notation

(FF)

Composition (f-g):x E f: (g:x)

Construction [fl,.,.,fn]:x E <fi:x,...,fn:x>

Condition (p-*f;g):x E (p:x)=T+f:x

(p:x)=F÷g:x; 1

Constant 3F:y E y = 1+1;x(x an object parameter)

Insert

Apply to All

/f:x E x = <Xi> + xl; x = <xl,...,xn>

(n.L2)

f:<xl,/f:<x2,...,xn»;

af:x E x = (1) -> 4;

X = <X1,X2,...,Xn>

<f:x fx >. 1 1,-, . n '

Table 1

Some FP Functional Forms

PACK78]

-43-

be a non -terminating function. The set D of definitions

is well formed if all left sides are unique symbols.

For examples of definitions, see Table 1 on page 43.

Backus presents an example of a functional program

for inner product [BACK78]. This example will now be

discussed.

The definition of the functional program for inner

product is:

DEF Inner product E (Insert+)(Apply to All*)

Transpose.

In more symbolic form:

DEF IPE (/+).(a*). Trans.

The set FF of functional forms is determined by:

combinations of existing (primitive) functions

to form new ones;

Composition ""
Insert "/";

Apply to All "a".

Figure 11 shows IP and the steps involved as it is

applied to the vector pair (<l,2,3>,<6,5,4>).

The semantics of an FP system are determined by

the choice of four sets and the manner of computing

functions from them. The FP system itself is determined

by the four sets:

the set of atoms A, which determine the set of

objects;

- the set of primitive functions P;

-44-

- the set of functional forms FF;

- a well formed set of definitions D.

There are only four possibilities for computing f:x:

- f is a primitive function, and is computed from

its description;

f is a complex function produced using functional

forms, and the description of the forms define how

f is to be computed in terms of parameters and rules;

f is defined in the set D;

none of the above, or f:x E 1

If f does not terminate for a given rule, then f:x E 1.

The definition of expansion and the Expansion Theorem

stated in Appendix B will prove whether f terminates. If

it does not, f will be undefined and will not produce a

predictable value when applied to x.

FP systems can be viewed as programming languages,

but they are very minimal in terms of conventional langu-

ages. When so viewed, f is a program, object x is the

initial contents of the store, and f:x is the final con-

tents of the store. The set D of definitions is the pro-

gram library. The primitive functions and functional forms

provided in the language framework are the basic statements

of a specific programming language. Depending upon the

choice of primitive functions and functional forms, the

FP -language framework provides for a large class of

languages with varying styles and capabilities. The

algebra of programs associated with each is dependent upon

-45-

its particular set of functional forms.

Backus states the limitations of FP systems as follows:

a given FP system is a fixed language;

FP systems are not history sensitive;

input and output can be treated only in the sense

that x is an input and f:x is an output;

if the sets of primitive functions and functional

forms are weak, all computable functions may not

be expressible.

As an example of a major weakness of FP systems, an

FP system cannot be used to compute a new program, since

functions are kept distinctly separate from objects. The

process of computing new functions would require the "apply"

operator such that

apply:<x,y> Ex:y

where x is an object on the left and a function on the

right. A second major weakness with FP systems is that

new functional forms cannot be defined within the system.

Lack of history sensitivity is the primary limitation.

FP systems must be extended before they become practically

useful; FFP and AST systems do this.

The advantages of FP systems are as follows:

- they use names only to name functions in definitions,

and names can only be treated as functions that

can be combined with other functions;

they are based on reduction semantics which eliminate

the need for word -at -a -time constructs which are too

closely tied to machine states;
-46-

- they offer a core of primitive constructs from

which higher level constructs and techniques can

be naturally developed.

FFP systems are developed from the consideration of

FP systems. Backus defines the primary goal of FFP

systems as follows: "FFP systems develop a foundation

for the algebra of programs that disposes of the theoreti-

cal issues, so that a program can use simple algebraic

laws and one or two theorems from the foundations to solve

problems and create proofs in the same mechanical style

used to solve high school algebra problems." See Appendix

B for a discussion of the algebra of programs and proofs

and an example of a correctness proof.

In FP systems the set FF of functional forms is fixed.

In FFP systems this restriction is lifted and new func-

tional forms can be created. In FFP systems objects are

used to represent functions; otherwise, FFP systems are

very much like FP systems. In FFP systems

Apply: <x,y> = (x:y)

is a legal construct, but not in FP systems.

To end this section, we will review the definition

of applicative state transition systems (AST) and use

Table 1 and Figure 11 to step through the definition

of a new function called "inner product", or "IP". The

discussion will reveal the natural extensibility of

such systems.

-47-

Definition: An AST system is composed of three

elements:

1) an applicative subsystem, such as Backus'

FFP system;

2) a state D that is the set of definitions

of the applicative subsystem;

3) a set of transition rules that describe how

inputs are transformed into outputs and how

the state D is changed.

"Applicative" implies the application of definitions

and functions (supplied and derived) to arguments to

produce results. For example, some definitions in

FFP are related to the basic functions, "+" and "*".

The results of applying these functions are defined by

the language framework as follows:

+:<x,y> x + y

*. .<x,y> x*y.

Table 1 defines some functional forms that are supplied

in the basic language framework: Composition, Construc-

tion, Apply to All, etc. These basic definitions and

supplied functional forms can be combined within the

basic language framework to define more complex func-

tions, which can be used with the basic definitions

and functional forms to define still more complex

functions, ad infinitum. The line -by-line detail

-48-

of the transition rules and states obtained by

successive applications of the definitions and

supplied functional forms in FFP to define a more

complex function,IP, is now given. Figure 11 sum-

marizes the discussion.

- DEF IP

The new function (defined function) IP is

defined in terms of supplied forms and

definitions:

DEF IP E. (/+).(a*)*TRANS.

This being an applicative subsystem, it is

meant that the new function IP can be applied

to a sequence of vectors in the system:

IP:<xl,x2>

where

xl = <x110(12"'"xln>

x2 = <x21,x22,-/x2n>

xmn e R (m=[1,2]).

For the sake of example, suppose IP is to be applied

to the vector pair «1,2,3>,<6,5,4». The application

implied by the definition is then

(/+)*(a*)*TRANS:<<1,2,3>,<6,5,4>>.

This is the initial state of the application.

-49-

- Composition ()

By the rule of Composition from Table 1, the

last result is equivalent to

(/+).(a*):(TRANS:«1,2,3>,<6,5,4»)

Or

(/+):((a*):(TRANS:«1,2,3>,<6,5,4»))

Transpose (TRANS)

TRANS is not defined in Table 1: In FFP, it

is defined for two sequences as follows:

TRANS:«al,a2,...,an>,<bi,b2,...,bn»

«al,bi>Y <a b >
2Y 2 ,-../<a-n'bn>>

Hence

TRANS:«1,2,3>,<6,5,4» 4-

«1,6>,<2,5>,<3,4».

Substituting the expression resulting from the

application of TRANS to the vector pair back

into the original string derived by applying

Composition, above, we get

(/+):((a*):(TRANS:«1,2,3>,<6,5,4»))

+ (/+):((a*):«1,6>,<2,5>,<3,4»).

This latter expression defines the next state of

the system, following the application of TRANS.

Apply to All (a)

Referring to Table 1,

(a*):«1,6>,<2,5>,<3,4»

is equivalent to

<*:<1,6>,*:<2,5>,*:<3,4»

-50-

where "*" is applied to all members of the

outer sequence. Using this result, we obtain

the next state of the system as follows:

(/+):(Ca*):«1,6>,<2,5>,<3,4»)->

(/+):<*:<1,6>,*:<2,5>,*: 3,4».

- Apply (*)

In an AST system, innermost applications are

always performed first. In the last expression,

three innermost applications are present:

*:<1,6>,

*:<2,5>,

*:<3,4>.

is applied to these as follows:

*:<1,6> 1*6 = 6,

*:<2,5> 2*5 = 10,

*:<3,4> 3*4 = 12.

Substituting, we obtain the next state of the

system:

(/+):<*:<1,6>,*:<2,5>,*:<3,4»

(/+):<6,10,12>.

Insert (/)

Here, apply the functional form from Table 1

to obtain the next system state:

(/+):<6,l0,12> +:<6,+:<l0,12>>.

Apply (+)

Applying the innermost application first:

+:<10,12> -> 10+12 = 22.

-51-

The state transition is given by

+:<6,+:<10,12» +:<6,22>.

Apply (+)

The final application yields the final system

state and the final result:

+:<6,22> 6+22 = 28.

Some small liberties were taken with this example,

as a comparison of the state transition for the "Insert"

step will show. But basically, all state transitions

to the final result are shown. Notice how the set of

basic definitions and supplied functional forms are

combined to define more complex functions. Each defined

function in the system can then be applied to arguments

without using any naming conventions, except for names

attached to functions. Once IP is defined as outlined,

we can write

IP:«1,2,3>,<6,5,4» 28

and utilize IP to define progressively higher functions

all within the language context. The language is thus

naturally extended, accordingly.

Many details of FP, FFP, and AST systems are

omitted, or discussed only briefly in this section.

Refer to [BACK78] for full details.

-52-

DEF IP (/+)*(a*).Trans:«1,2,3>,<6,5,4»

Composition () (/+):((a*):(Trans:«1,2,3>,<6,5,4»)

Transpose - (/+):((a*):«1,6>,<2,5>,<3,4»)

Apply to All (a) - (/+):<*:<1,6>,*:<2,5>,*:<3,4»

Apply (*) 4- (/+):<6,10,12>

Insert (/)

Apply (+)

Apply (+)

+:<6,+:<10,12»

+:<6,22>

- 28

Figure 11

Inner Product Functional Program Application

[BACK78]

-53-

2.2 The von Neumann (Control Flow) Model

This section examines the model reflected by

conventional computers and programming languages,

the von Neumann, or as Treleaven calls it, the control

flow model [TREL79]. A model can be studied by com-

paring its properties with those of other models, by

examining its properties in detail, and by examining

its structures. This section studies the control flow

model from all three of these perspectives.

Backus studies the control flow model by comparing

it to others [BACK78]. He presents a theoretician's

classification of computing models. The data flow model

discussed in Section 2.1.1 does not fit well into this

scheme, which was presented in Backus' 1977 ACM turing

award lecture. However, the classification highlights

some relevant properties of control flow machines. It

also provides a good comparison of control flow and

applicative models.

Backus presents a list of criteria to classify

computing models:

1) foundations - is there a useful mathematical

description of the model?

2) history sensitivity - can information be

passed from one program to a successor at

runtime?

3) semantics - does a program in the model use

state transition semantics or reduction

-54-

semantics? If state transitions are used,

are these simple or complex?

4) program clarity - are source representations

clear and conceptually useful in that they

embody concepts that can be used to reason

about processes?

Using these criteria, he defines three classes of com-

puting system models:

1) simple operational models;

2) applicative models;

3) control flow models.

Table 2 summarizes these classifications in chart form

with an example of each.

It is difficult to fit data flow languages into

Backus' scheme (the data flow line listed in Table 2

was not in Backus' original table). They seem to

partially fit the class of operational models, but with

much clearer programs than other members of the class.

Backus believes that some data flow languages could even

be considered to possess the beginnings of reduction

semantics [BACK78]. Certainly, data flow languages are

not ordinarily history sensitive.

The general properties of the control flow model

as charted in Table 2 summarize Backus' view of this

model. As these properties are studied, one should

not forget that Backus has been one of the innovators

of the young science of electronic computation and,

-55-

BACKUS MODEL CLASSIFICATIONS

History Program

Class Example Foundations Sensitivity Semantics Clarity

Operational Turing Machines Concise Sensitive State Transitions Unclear

Useful Simple States Not Conceptually
Useful

Applicative Functional Concise Not Sensitive Reduction Semantics Clear

Programming Useful (No States) Conceptually
Useful

Control Flow Conventional Complex Sensitive State Transitions Clear

(von Neumann) Computers and Bulky Complex States Not Conceptually

Programming Not Useful Useful

Languages

Data Flow Figure 10 Concise Not Sensitive (Beginnings of) Clear

Useful Reduction Semantics

Table 2

A Chart Illustrating Backus' Classification Scheme

[BACK78)

due to his role as an original developer of the FORTRAN

programming language, one of those most responsible for

the current primary position of the control flow model in

practice.

The foundations of the control flow model are judged

to be complex, bulky, and not useful. Backus notes the

lack of a satisfactory mathematical description of the

model. He feels it to be so complex and bulky that its

description has scant mathematical value.

Programs in the control flow model are history

sensitive. That is, one program can pass information

to another that can affect the behavior of the latter.

This may well be at once a primary strong point and yet

a concurrency-limiting property of the model.

Z = X*Y-4*A*(X+Y)

Move B to A

Figure 12

Typical Control Flow Assignment Statements

-57-

The semantics of control flow programs involve

complex machine state transitions. Observe the typi-

cal control flow assignment statement involving a

moderately complex arithmetic expression as shown in

Figure 12. Some idea of state -transition complexity

can be gained by "mentally -executing" this statement.

If this is done, a rapid series of memory fetches of

literal values and values associated with named vari-

ables are "seen" passing from memory to the arithmetic -

logic unit for arithmetic combination as the arithmetic

expression is evaluated. When this sequence of oper-

ations is complete, the final computed value passes

from the ALU to memory (i.e., it is "stored" in a loca-

tion associated with the named variable "Z").

Each passage of a value between memory and the

ALU defines a state transition, and each combination

of sets of values in ALU and memory cells defines a

state of the control flow machine. Even the simplest

assignment, such as the simple COBOL "MOVE" of Figure

12, involves multiple state transitions.

Consider state transitions in the functional

model discussed in section 2.1.2 in contrast to this

situation. State transition rules in the functional

model are entirely defined within the model and depend

only upon the manner in which inputs are transformed

into outputs and the subsequent change in the state D

representing the set of definitions of the underlying

-58-

FFP system. Thus, a state transition in this system

is not related to any complex rules involving machine

operations on any physical' entity such as global memory.

Finally, the control flow program clarity property

is deemed "clear but not conceptually useful" by Table

2. Generally, programs of the model do provide clear

expressions of a process or computation,

not provide concepts that help people to

about processes.

but they do

reason easily

One need only reflect on the excessive

requirements of the simplest program proof to

that some inherent properties of control flow

understand

programs

seem to make formal reasoning about them very difficult.

Reasons for this will become clear as we consider the

structures and properties in greater detail.

VON NEUMANN BOTTLENECK

CPU MEMORY

Figure 13

Basic Structure of a Control Flow Computer

[BACK78]

-59-

In the ensuing discussion, it can be argued that

we are discussing implementation and not model, since

we must speak of the control flow model in terms of

registers, global memory accesses, etc. Indeed, this

seems to be a failing of our current views of von Neumann

computing, where many aspects of model and implementation

have become almost interchangeable. Nevertheless, pro-

gram counters, hidden registers and register transfers

involving state transitions, CPU -to -memory paths, vari-

able naming conventions equated with memory mappings,

etc., are all at this point in history intimately associ-

ated with the von Neumann "model."

Backus does not consider one obvious alternative to

replacing the von Neumann model with another that has a

better theoretical structure: the alternative of separ-

ating the von Neumann model itself from its many histori-

cal implementations and strengthening its theoretical

structure. His purpose does not seem to fit that parti-

cular approach. Without pretending to assume anything

about what he thinks about this matter, it is possible

he believes the alternative to be not particularly viable.

Perhaps the alternative approach could be the subject

of other reports. In this report we must consider the

concept of the "von Neumann model" as it now exists in

theory and practice. Certainly, a definite strength of

-60-

this view is the history sensitivity property, which

makes commercial and business computing pragmatic. One

contrast between the von Neumann model and later models

does seem to arise simply because the conceptual environ-

ment in which they have arisen and evolved is much differ-

ent than that which spawned von Neumann computing.

Conceptually, a von Neumann, or control flow compu-

ter is composed of the three parts illustrated in Figure 13:

1) central processing unit (CPU);

2) memory store;

3) connecting tube.

The connecting tube can transmit a single computer word

between the CPU and the memory, or vice versa. One memory

cell, for example, can only be moved to another by traver-

sing the tube from the memory to the CPU and back again.

The CPU contains central storage cells, called "registers":

- central registers available to the programmer;

- central registers "hidden" from the programmer;

- special register(s) called the "memory address

register(s)" (MAR) ;

- special register called the "program counter" (PC).

-61-

Only one value at a time can flow on the connecting

tube. A machine state transition is initiated by

placing a word on the tube for transmission to or from

the store. A machine state is represented by each

successive set of values of cells in memory and in the

CPU registers during operation.

[BACK78] outlines the task of a program in the

control flow environment: It must change the contents

of memory in some major way. This task can only be

done by shipping one word at a time through the connec-

ting tube, or von Neumann bottleneck. Variable names

are always associated with memory locations, and much

of the activity on this avenue is in addition to the

main task the program is designed to accomplish and is

related to manipulating and computing names, etc. The

PC and MAR registers, for example, simply provide data

names for instructions themselves and their operands,

respectively, during operation. Each instruction must

be fetched (by name) from memory to the CPU (across the

bottleneck) to begin its execution cycle. Each of its

operand names must then be fetched into the CPU using

the same mechanism. "Programming" a control flow machine

consists primarily of managing the enormous flow of

words across the connecting tube, and much of that flow

concerns not only data relevant to the problem, but

also data names in the form of memory addresses.

-62-

Backus believes the connecting tube to be both a

literal and an intellectual bottleneck:

- literal bottleneck for problem traffic;

- intellectual bottleneck that has kept computer

engineers and scientists tied to word -at -a -time

thinking.

The intellectual bottleneck has blocked designers from

thinking in terms of the larger, conceptual units of

the problem to be solved.

All control flow computers of this sort possess

the CPU register called the "PC", above. Machines based

on this model tend to be very serialized, step -at -a -time

mechanisms admitting no real concepts of concurrent oper-

ation. This property of control flow machines will be-

come more obvious when the control flow language struc-

tures are discussed in the next section.

2.2.1 The Structure of Conventional Programming Languages

The control flow model existed first in hardware

and was programmed in machine language. Conventional

symbolic assembly languages evolved as aids to the

machine programmer, and high-level languages were devel-

oped solely for the same reason at a point in time fol-

lowing the development of assembly language concepts.

In the case of the control flow model, the hardware

development drove the language interface, as symbolic

languages were viewed strictly as man -machine communica-

tion aids.
-63-

Treleaven states the result of the evolution

very well in [TREL79]: "Conventional programming

languages, which are often called 'high level', dis-

play a model of computation that is, in some impor-

tant respects, actually at a very low level, not far

'removed from the von Neumann machine. These languages

are based on the processor/memory model of program

execution in which a processor performs operations

on values stored in a memory (a sharable and modifi-

able resource)."

Treleaven isolates the basic structure of all

programs based on the control flow model. Whether

the language is PASCAL, FORTRAN, BASIC, COBOL, ALGOL,

PL/1, etc., a program for this model has three basic

parts:

1) a set of sharable, memory cells called variables;

2) a set of data instructions that modify variables;

3) a set of control instructions that determine

the order of instruction execution.

In a program,"normal" flow of control between the

execution of control instructions is determined by

assuming that each non -control instruction execution

sequentially follows that instruction execution for

the instruction stored immediately preceding it (by

memory location). This is an obvious result of the

primary hardware control register mechanism, the program

counter (PC). "Programming" then consists in specifying

-64-

the various sequences of instruction execution to

solve a problem. Data instructions involved with

solving the problem are intermingled among control

instructions.

[TREL79] defines variables as follows: "vari-

ables" are named memory cells that serve two roles

within a program:

provide a technique to communicate partial

results within instruction executions;

provide semipermanent data storage, which

allows multiple references to (named) data

values.

The control flow program structure has two proper-

ties which will be important later:

- the flow of control mechanism results in program

executions which are explicitly time sequential

by instruction with sequence specified by the

programmer;

- the variable/memory location mapping is at once

a strength and a weakness of the model.

The mapping is a strength in that storage can be re-

tained and reused. It's a weakness in that it causes

great implementation overhead for manipulating names

and allows a phenomenon called "side effects," which

will be discussed later.

-65-

2.2.2 Synchronization Primitives

[TREL79] reviews the problem of representing

concurrency in the conventional control flow model.

Treleaven notes that an important requirement for a

new computing model is that it support concurrency

at a low (preferably hardware) level. This require-

ment is basically incompatible with the control flow

model:

overspecification of sequence in the model;

concept of a variable as a shared memory cell.

These two properties demand the usage of explicit

control and synchronization statements in the programs

of the model.

Synchronization primitives are of two types:

- concurrency initiating statements, to activate

parallel instruction streams (processes);

- synchronization statements, to synchronize

multiple process terminations and resume

processing in a resultant stream.

They are necessary because multiple instruction

streams may modify shared memory cells, and the effects

of such modifications are time -dependent and must be

controlled. Some examples of concurrency initiating

statements are "CALL", "FORK", "ATTACH", etc. Some

examples of synchronization statements are "WAIT",

"JOIN". Figure 14 shows an example of FORK and JOIN

in [TREL79].

-66-

FOR J:= PIVOT ROW + 1 TO NO COLUMNS DO

"ACTIVATE PARALLEL INSTRUCTION STREAM:"

FORK PARA;

N := NO COLUMNS - PIVOT ROW;

" WHEN N = NO COLUMNS - PIVOT ROW, THE ABOVE

SPAWNS N-1 INDEPENDENT PROCESSES, EACH

WITH DIFFERENT VALUE OF J."

PARA: FOR K := COLUMN TO NO COLUMNS DO

AIJ,K] := AIJ,K] - AIJ, COLUMN]

*AIPIVOT ROW,K]/APIVOT ROW, COLUMN];

JOIN N;

Figure 14

Example of Fork and Join Synchronization

Primitives in [TREL79]

-67-

[TREL79] lists disadvantages of synchronization

primitives:

- the programmer's task is further complicated by

the need to encode extra information;

- extra information detracts from program readability;

- the present style of architecture cannot utilize

the extra parallelism well unless each concurrent

element is represented as a process.

The last point stresses the fact that parallelism in the

control flow model is not fine grain.

2.2.3 Monitors

The development of the monitor concept was one of the

more interesting efforts originating in control flow

computing. Three eminent computer scientists, E. W.

Dijkstra; C.A.R. Hoare; and per Brinch Hansen, contributed

in some measure to this effort. Two of these men published

numerous papers and books dealing with concurrency in

control flow computing ([DIJ168], [DIJ268], [DIJK71],

[HANS77], [HANS79]).

Hoare's chief contribution is noted in [HANS79].

He noted that concurrent operations have predictable

effects only if statements within each of them operate

on different variables; otherwise, effects of concurrent

operations will be time dependent. This would prove to

be a key observation in the development of the monitor

concept.

-68-

The truly creative aspect of the monitor concept

stemmed from the way in which Dijkstra and Hansen in-

vented language and compiler constructs to solve con -

currency problems within the control flow model. Fin-

ally, someone realized the advantages of approaching

the concurrency problem from language and data struc-

ture viewpoints. Dijkstra [DIJI68] invented a "concur-

rent statement" to initiate concurrent processes from

a high-level language and suggested combining all oper-

ations on a shared data structure into one program

module. Hansen proposed a language notation for this

"monitor" concept and developed a compiler to support

it JHANS77]. The idea to utilize the compiler in this

way had novel goals which were beyond simply improving

the man -machine communication interface:

- replace hardware protection mechanisms by compil-

ation checks;

improve program testability;

solve the problem of controlled access to shared

variables by providing an easy -to -use modular

language interface to handle synchronization

and racing conditions;

allow the compiler to verify many of the shared

memory accesses, allowing execution checks to be

omitted.

The last goal was done both in the,interests of program

efficiency and the desire to prevent (rather than simply

avoid) problems.
-69-

Despite the amount of work done by these men,

Hansen states in [HANS79] that the theoretical under-

standing of concurrency is still in its infancy.

2.3 Comparing Highly Concurrent and Control Flow Models

Before proceeding with the functional comparison,

we need to briefly review the new cost/performance goals

introduced by LSI/VLSI technology. These goals in them-

selves present a marked contrast with those of control

flow computing.

Why do computer scientists and engineers consider

the property of implicitly concurrent operation at the

hardware level to be so important? A large part of the

answer seems to be that LSI/VLSI implementations will

radically alter control flow concepts of cost/performance.

Implementing highly concurrent operation at the hardware

level introduces the potential for realizing a perfor-

mance increase over "equivalent" control flow implemen-

tations of huge magnitudes [GOST80].

Dennis [DENN80] lists three goals which he feels

future computer architects must meet in the next super-

computer generation:

1) extremely high performance at acceptable cost;

2) something approaching the full potential of

LSI/VLSI technology must be exploited;

3) architectures must admit concurrency without

requiring explicit programming techniques.

-70-

In order to compete successfully in the next generation,

he believes new LSI/VLSI implementations must be capable

of doing such things as executing floating point in-

structions on the order of magnitude of billion(s) per

second. Control flow models cannot realistically

approach this goal with reasonable cost expectations.

With such cost/performance goals in mind, how do

highly concurrent and control flow models currently

compare? Section 2.1 examined two implicitly, highly

concurrent models: the data flow and functional ones.

Section 2.2 examined structures and properties of the

implicitly sequential control flow model. The present

structure of concurrent models differs in some key ways

from the structure represented by control flow models.

The remainder of this section discusses a few of the

most important properties which differ appreciably

between the models.

Probably the most important way in which the

control flow model differs is in the philosophy and

evolution of the model itself. Both concurrent models

have stronger abstract structures than does the control

flow model. These theoretical structures distinctly

preceded any implementations. This level of abstraction

clearly allows the abstract models to stand distinct

and separate from their various implementations. The

more pragmatic evolution of von Neumann computing does not

-71-

so clearly allow this differentiation between model

and implementation. In fact, it's very difficult to

separate a distinct theoretical structure of control

flow computing from its implementations.

In the highly concurrent models, concurrent

operation is the assumption at the hardware design

levels. The models are structured to implicitly

account for the presence of multiple processing ele-

ments, each of which can execute when all processor

inputs and required resources are available. Adding

additional processors will often raise the level of

concurrency with no need for external programming

support. Conversely, the control flow model assumes

sequential, statement -by -statement operation in

external programming support is necessary in order to

support increased processor levels.

In highly concurrent models, only the availability

of operands and resources determines a processor's

availability for execution. At the programming level,

the concept of flow of control between statements is

not a determinant of expression execution. For example,

a sequence such as

X = 3

A = 5

B.= 4

C = A*B+6
D = C+4*B
E = X+17

-72-

is not bound at execution time by statement bound-

aries. Computation of E can proceed in parallel with

that for C, and the value for D may be partially com-

puted by the time the value for C is determined. The

value for E may be available before either of the

values for C or D are computed. In the control flow

model, assumptions governing sequential execution of

statements rigidly determine the sequence in which

values for each variable will be available. The

further need for control statements to transfer

control within sequences of statements in the control

flow model is not needed in highly concurrent models,

although current understanding of structured techniques

the control flow model reveals that this need

has been highly exaggerated in the past.

Control flow models have the property of history

sensitivity, or the ability to store and retrieve many

data values at will during program execution. Data flow

and functional models do not normally have this property

(without extending the models). In the control flow

model, once a value for a variable named A is defined,

it is available in subsequent computations until re-

defined through a new assignment. Data flow programs

require the extremely restrictive single -assignment

rule, since they cannot "remember" stored values in

this way. Functional programs do not even associate

-73-

names with ordinary values, except at the highest func-

tional level. The lack of history sensitivity is prob-

ably the largest handicap of highly concurrent models as

they now exist.

As an example of the power of history sensitivity,

imagine a pure data flow or functional program trying to

compute a large set of one thousand homogeneous values,

which a control flow program could easily store in a

memory array. Once stored in a control flow array, the

values are individually referencable and retrievable

until modified by program assignment. Because of the

single assignment rule and the equating of names to arcs,

it is very difficult to deal with such arrays in data

flow. Research is being conducted in this area [DENN79].

A functional program does very well when using multiple

processors to compute a single value, which is just the

reverse of the control flow case. Much research is still

needed to introduce satisfactory properties of history

sensitivity ([BACK78], [MAG080]).

Highly concurrent models eliminate global mappings

of variable names to memory locations. This eliminates

complex, hardware -bound concepts of state transitions as

contents of memory locations are modified, and it also

minimizes such things as subroutine side effects. Thus,

simpler, non -hardware associated concepts of state transi-

tions are possible, but only after the important property

of history sensitivity has been compromised.

-74-

Thus, in terms of comparable execution timings,

it's possible to attain very high performance gains

over traditional control flow implementations at

acceptable costs with LSI/VLSI technology by utilizing

highly concurrent models. However, performance in-

cludes something more than simple execution timings

on scalar structures: it also includes versatility,

as exemplified by the history sensitivity property

utilized in control flow computing. It's hard to

imagine anyone referring to a highly concurrent,

business -oriented system with no history sensitivity

as being "high performance."

,75-

Chapter 3

Implementations of Computing Models

Section 3.1 will introduce data flow models by

considering Rumbaugh's IRUMB77] conceptual model from

an architectural viewpoint. Dennis' abstract implemen-

tation will then be considered [DENN80]. Most of the

important concepts of data flow computing are expressed

in these works; very good additional readings can be

found in (IGOST80], [GUR680], [GUR780], [KELL80], and

[TREL79]).

Section 3.2 will consider a functional implementa-

tion from [MAG080], which is based on Backus' work

[BACK78]. Section 3.3 will consider parallel taxonomies,

and how these will have to be extended for the highly

concurrent model.

3.1 Data Flow Models

Proponents of data flow architectures believe data

flow models will one day displace control flow models as

more important structures. They note common properties

of data flow models which seem stronger than their control

flow counterparts. Some examples of data flow implementa-

tions are discussed in this section.

Rumbaugh [RUMB77] defines a data flow multiprocessor

which is defined in terms of a set of activation processors.

-76-

Activation processors perform a single invocation of

a small data flow procedure held in its local memory.

The terms procedure activation and procedure invocation

are used interchangeably and refer to the moment when

operands arrive and execution of the local procedure is

initiated. Each activation processor is defined in terms

of a pipeline of other logical units, so concurrency is

obtained among and within activation processors.

Data are stored and processed within the system in

tree structures. The results are value oriented; identi-

fying names or addresses are not associated with each

value. Rather, the data are grouped functionally, ac-

cording to operation, into result packets. Hardware units

called structure controllers and structure memory process

and store the data structures.

Rumbaugh's model is conceptual: no implementation

currently exists. He intended it to be considered as a

standalone multiprocessor, but it could be imbedded in a

larger system (e.g., a large control flow processor).

Rumbaugh's conceptual model consists of a number of

major modules (i.e., hardware units at the same level of

implementation as activation processors, which can operate

concurrently). The major modules are:

Activation Processors

each holds and executes a single procedure activa-

tion;

-77-

- Scheduler

coordinates and assigns activations to processors;

- Structure Memory

holds data structures too large to fit in activation

processors;

- Structure Controllers

operate on structures for the processors;

- Program Memory

holds procedures which can be called;

Swap Memory

holds procedure activations which are temporarily

dormant;

- Swap Network

transfers procedure activations between Swap and

Program Memories and Activation Processors;

Peripheral Processors

connect the machine to the outside world.

The major modules are further subdivided into the

basic modules, where a basic module is an asynchronous

finite state machine which executes concurrently with

and independently of all other modules. These are pipe -

lined within the major modules. A similarity among all

data flow hardware designs reviewed is the fundamental

pipeline structure used to interconnect the various pro-

cessors of the machine. An arbitrary major module (e.g.,

an Activation Processor) is broken down into a fairly

-78-

large collection of basic modules (such as Add, Multi-

ply, Copy, Decoder, etc., in an Activation Processor),

which are independent, pipelined units. Pipelining at

this basic level assures a very high degree of concur-

rency. Figure 15 is Rumbaugh's conceptual model, and

Figure 16 is an example of the pipelined basic modules

connected to form a major module (an Activation Processor).

Rumbaugh feels the advantages of such a structure

are related to simple, independent construction of the

basic modules. Simplicity enables him to prove that

the machine correctly implements the associated data flow

language. Because the basic modules are simple, finite

state, asynchronous, without side effects and interdepen-

dencies, and guaranteed by proof fRUMB75] to execute well -

formed data flow programs, they can be verified to do so

without processor -memory interdependencies, deadlocks,

and race conditions.

Rumbaugh's conceptual model is an excellent reference

for gaining a high-level view of data flow structures. How-

ever, Dennis' IDENN80] tutorial report is better for a

novice to data flow computing studying the detailed concepts

for the first time. Hence, Dennis' paper will be utilized

as a base reference to present the basic details of the

data flow model. We will now terminate consideration of

Rumbaugh's conceptual model (Figures 15 and 16) and study

Dennis' data flow machine (Figure 17).

-79-

Swap
Memory

1

Program
Memory

Activation
Processor 1

Swap
Network

Activation
Processor 2

ACtivation
Processor 3

Local
°'

Memory
Pipeline
Status

, Bulk Data
.07 Transfer

Memory Access

Control Fltw

Structure
Controller

2

V

Sched-
uler

Structure
Controller

1

Structure Memory

Figure 15

Rumbaugh's Conceptual Data Flow Model [RUMB77]

Periphqral
Processor

To
Outside
World

Local Memory Control Units Functional Units

rallMmr

Swap el
Net-ed.-
work

00

MIMMUMMMIMMIMMMMI

MIMM WOMMWo.M.M10 MAMMI.

Decode
in-
struc-
tion
Mem-
ory

Struc-
ture
Unit

Acti-
Data
Mem-
ory

vity
List

Add Multi Copy

Ena-

bling
Count

Call'
Unit Up -

dater <I-
Mem-
ory

I

Structure

Controller

Activity Coiinter

1111=1001111Or !//0

Figure 16

Rumbaugh's Activation Processor [RUMB77]

Proc.
Calls

Scheduler

I> Status.

Dennis' basic instruction execution mechanism is de-

fined as a series of six steps. The structure upon which

the instruction cycle operates is a circular pipeline archi-

tecture as illustrated in Figure 17. In terms of the struc-

ture, the highest level of concurrency is obtained from the

circular pipeline connecting the units. Lower levels of

concurrency are obtained by pipelining each unit within the

structure separately, particularly the operation units.

1) the data flow program describing computation to

be performed is held as a collection of activity

templates in Activity Store;

2) each activity template has a unique address which

is entered in FIFO order in the Instruction Queue

Unit;

3) the Fetch Unit takes the instruction address from

the Instruction Queue and reads the activity tem-

plate from Activity Store, forms it into an operation

packet, and passes it on to the Operation Unit;

4) the Operation Unit performs the operation specified

by the operation code on operand values and gener-

ates one result packet for each destination field

of the operand packet;

5) the Update Unit receives result packets and enters

the values they carry into receiver operand fields

of activity templates as specified by destination

fields;

6 the Update Unit tests whether all operand and

-82-

acknowledge) packets required to activate

destination instructions have been received;

if so, it enters the instruction address into

the Instruction Queue.

Result
Packet

Update

Operation
Unit (s)

Instruc-
tion

Queue

Activity
Store

Operation
Packet

Fetch

Read
Only

Figure 17

Dennis' Instruction Execution Mechanism

[DENN80]

Circular
Pipeline

IAcknowledge signals and packets are discussed in
[DENN80]. They are required by the need to verify
that output arcs of an actor are free of tokens
before firing.

-83-

The accesses to Activity Store are for the purposes

of retrieving and updating activity templates, each of

which holds all information required for a given computa-

tion. Each activity template is addressable as a unit by

address from the Instruction Queue Unit. All computation

is performed within the operation units, separately and

in parallel with accesses to the store. Although memory

bottlenecks are still present among the Activity Store and

each of the Update and Fetch Units, memory contention is

minimized when compared to the method of mapping variable

names to storage locations and intermixing each access to

a variable's location with computation operations.

As an example of memory accessing in Dennis' data flow

machine versus a control flow machine, consider a simple

addition operation. A typical addition operation in a

high level control flow language will look as follows:

A := B + C

The following memory accesses will be required to calculate,

store, and use this value across the connecting tube between

the store and the CPU:

the address of B;

- the value of B;

- the address of C;

the value of C;

- the address of A;

the value of A (the result).

-84-

Additionally, each succeeding operation that requires

the result will have to access A (two memory accesses

per reference). This totals 6+2*n memory references to

perform the operation and supply the result value to n

succeeding operations. In Dennis' architecture, the

Fetch Unit will access the Activity Store to obtain a

packet of information including the operation code, the

B -value, the C -value, and a field to

of the operation. The add operation

the operation without

date Unit will update

which are waiting for

Activity Store. This

n accesses, depending

further access

contain the result

unit will perform

to memory. The Up -

destination fields in other packets

the result of this operation in

totals one access plus a minimum of

upon the way in which result -packets

are "addressed". Since destination fields are carried by

the original packet, a total of l+n memory references

should be accurate. The factor of 2 in the control flow

value representing number of references is a direct result

of mapping names in that model to memory locations. The

linear factor in the corresponding data flow value is due

to the value -oriented approach of that model.

Concurrency can be obtained from this structure in

many ways. Basically, however, the number of entries in

the Instruction Queue measures the degree of concurrency

in the program. The basic instruction execution mechanism

can exploit concurrency immediately, since an entry may
-85-

be read from the Instruction Queue without waiting, just

after the Fetch Unit has sent an operation packet to the

Operation Unit. There is no need to wait until the pro-

cessing for the instruction previously fetched is complete.

A continuous flow of operation packets may flow from fetch

unit to operation unit as long as entries remain in the

Instruction Queue.

Concurrency is also obtained from the circular pipe-

line construction of the system. All its units may

process concurrently. Here, the degree of concurrency

obtainable is limited only by the degree of pipelining

within each unit.

Additional concurrency may be obtained by splitting

units in the ring into multiple units which can operate

concurrently. Eventually, the level of concurrency will

be limited by the capacity of data paths between units

of the ring.

Finally, the data flow processor itself may be joined

in a data flow multiprocessor system with others of its

kind. This increases concurrency enormously, [DENN80]

discusses a data flow multiprocessor and a supporting

communication network system.

3.2 A Functional Implementation

Dennis' data flow structure in Section 3.1 utilized

a circular pipeline, or ring communication network struc-

ture. Though very popular, rings have the disadvantages
-86-

that delay grows linearly with size, and capacity is

bounded in a fixed way [DENN80].

MagS's functional structure discussed in this section

will be a tree -structured network for communication among

processors [MAG080]. Specifically, a binary tree structure

will be described. Advantages of such a tree are that the

worst -case distance between leaves grows only as 2log2N,

and many pairs of nodes are connected by relatively short

data paths. A disadvantage is that traffic density at the

root node may be too high [DENN80].

A further advantage of tree -structured networks is

ease of extensibility; new processor elements may be

absorbed and utilized rather easily into an existing

structure. This is discussed in MagO's paper.

For MagO's architecture, the programming language

actually preceded and inspired the architecture. The

architecture was devised to execute Backus' formal Func-

tional Programming (FFP) language [BACK78]. Here is a

case where the language design drove the architectural

design.

Backus [BACK78] blames the lack of programming power

in conventional systems on current programming languages.

He suggests an alternative: functional programming.

Mago [MAG080] notes two reasons for the current difficulty

in building high performance computers:

- dominance of von Neumann languages and lack of

computing models;
-87-

- practice of designing hardware and software

separately.

Mago then proposes an approach to the design of a high per-

formance computer by basing it on the following properties:

- highly concurrent, cellular architecture;

- Formal Functional Programming Language (FFP) of

Backus [BACK78];

- direct FFP-execution hardware.

By directly executing the FFP source language, complex

software, such as compilers and schedulers, are eliminated.

These can be exceedingly complex for parallel computers,

since the scheduling of parallel resources is a very complex

task at the relatively high software level. In the function-

al implementation, the responsibility for scheduling concur-

rent operation is designed into the lowest hardware levels,

and the responsibility for resource scheduling at software

levels is eliminated. Eliminating these scheduler and com-

piler resource responsibilities from the software level and

designing them into the hardware enormously increases chances

for a successful highly concurrent operation [MAG080]. In

order to maximize concurrency, it should be implicit to the

model and should be designed in the hardware level.

magOls machine [MAG080] is a binary tree of cells (Fig-

ure 18). Leaf cells are called L cells (Leaf, or Linear),

and collectively are called the L array. Non -leaf cells are

called T cells (Tree). All L cells are identical structures.

All T cells are identical except for those connected as I/O

ports.
-88-

Figure 18

MagO's Binary Tree Structure

IMAG080]

-89-

The number of cells is a linear function of the

length of the L array. There is approximately one T

cell for each L cell. The regularity of the construc-

tion reduces hardware complexity and cost. The network

can be expanded easily by adding new cells and enlarging

the L array accordingly. Advancing VLSI technology

favors this type of construction: larger and larger

subtrees of cells can be put on a single chip as the

technology improves.

The L and T cells are kept small and simple. L cells

have homogeneous architectures, and so do T cells (except

for I/O ports). The architectural needs of each cell are

meager: only a few dozen registers are required for local

storage.

Since FFP is the machine language of the conglomerate

device, something must be said about the language and its

relationship to the architecture. FFP is an applicative

language: language expressions consist of nested appli-

cations and sequences. An application is composed of

an operator and an operand which specify computations

to be performed. For example,

<5,(*:<7,3>)>

is a sequence consisting of two elements:

- number 5;

- nested application: *:<7,3>.

-90-

The nested application is called the innermost appli-

cation, since no other applications are contained with-

in it. the application consists of:

- an operator, * ;

- a sequence, <7,3>.

In FFP, innermost applications are eligible for execution,

and the execution of an innermost application is called

a reduction, or a reducible application (RA). To execute

an application, it is evaluated according to its operator

and operands and replaced with a result expression. In

the example:

*:<7,3> is replaced by 7*3=21.

Thus, the original sequence is reduced from <5,(*:<7,3>)>

to <5,21>.

FFP languages possess an important property which

enhances their ability to incorporate concurrency: the

final result of computation is independent of the order

in which innermost applications are executed. This is

called the Church -Rosser Property.

An FFP program is a linear string of symbols which

are mapped onto the L array from left to right. One

symbol is assigned to each L cell, and empty cells can

be interspersed. Expression separators (parentheses,

etc.) can be omitted, since that function is satisfied

by cell boundaries, integers are stored in place of closing

application and sequence brackets to indicate nesting levels

of symbols.

-91-

Since the FFP program is mapped onto the L array

only, the L array serves as a store (without address

registers, etc.). The T cells serve as a set of proces-

sing elements. Their rules are somewhat interchangeable,

since L cells have processing capabilities, and T cells

may hold symbols temporarily during processing. Several

consequences follow from the capability to place at most

one FFP symbol in an L cell:

L and T cells may be small and simple;

- a network of practical size comprises many cells;

sequences and applications are held by collections

of cells, and reducing an RA involves the cooperation

of several cells;

parallelism can be exploited at both the FFP language

level (among different RA's), and below the language

level at the level of language primitives (such as

operations).

Appendix A discusses the execution mechanisms and shows an

example of a mapping into the L and T cells. The parti-

tioning of the machine for RA's is illustrated. An example

of the apply -to -all (AA) operator is also shown.

Placing FFP symbols together in their natural order

groups all symbols in the L array into advantageous leaves

on binary subtrees for processing. Operator, operand, and

any two different elements of a sequence occupy disjoint

segments of the L array. This distribution allows the

processors to locate subexpressions easily, without the

-92-

need for complicated addressing schemes or software des-

criptors. Since two different RA's occupy disjoint segments

of the L array, independent execution of each is enhanced.

How is the concept of "machine state" related to this

structure? Certainly, the concept of states cannot be

applied at the language statement and expression level as

it is with control flow languages. Cells are coordinated

by granting each cell finite -state control of its own oper-

ations. The state of the cell is then determined by its

communication events with its immediate neighbors. Since

the state of the cell changes whenever its parent or both

its children change states, the entire network is controlled

by state changes which sweep up and down the tree structure

based upon problem events during execution. A cell change -

of -state is represented by the completion of its operation

(e.g., add, multiply, etc.), and the subsequent signal sent

to its parent (or child) that the result is ready. As one

scans down the tree, the L cells will seem quite out of

step with each other. But as the operations progress, up-

sweeps in the tree will introduce higher and higher levels

of synchronization. When the last change reaches the root

node, the entire network is fully synchronized. However,

even when fully synchronized, individual cells could be in

any of a number of possible states, and a global state of

the network cannot be defined.

Mago discusses many additional properties of the

structure. He includes one example which depends on a

-93-

specific FFP microprogram for the "Apply to All"

operator. Since this example includes both a

microprogram and some examples of copying operations

to bring operators and operands together, which will

increase concurrency, it seems worthwhile to include

it as Appendix A, along with the description of some

details of operation in which the example is embedded.

No other examples (nor definitions) of microprogram

operation were available. The remainder of this

section merely summarizes the detail of Appendix A.

Some of the additional properties discussed by

Mag5 are:

understandability in terms of the FFP language

alone, without reference to machine detail;

tradeoffs of simpler operation versus faster

execution speeds when electing whether to

divide the machine operation into well-defined

cycles (see Appendix A and MagO's paper);

- comparative ease of debugging FFP programs;

- dynamic repartitioning of the network of

T cells;

-94-

- microprogramming language (Appendix A);

communication during processing;

- resource and storage management;

fundamental issues of program efficiency;

problems remaining before the structure could

be implemented into a full, history -sensitive

computing system.

Only a few highlights of these areas are discussed in

the remainder of this section. MagO's paper IMAG080]

should be referenced for complete details.

Dynamically repartitioning the network for

optimum usage of L and T cells is an interesting

problem. Yet, Magi) points out that the entire

process of repartitioning is unnecessary and in

general may not be worth the effort. At the

initiation of execution, each RA has a subtree of

-95-

the entire network automatically allocated to it. The

subtree is defined by the L subarray containing the RA.

Efforts to repartition the T part of the network to ob-

tain "optimal" subtrees can never diminish the initial

allocation of resources available to RA's, and a set of

subtrees with "optimal" properties for problem solution

should exist. However, actually performing this reparti-

tioning does not seem possible at the present time. More-

over, the natural partitioning process of the entire net-

work (itself a "tree machine") into a set of disjoint sub -

trees is easily accomplished:

- it is automatic: it's completely determined by the

FFP expression and its position in the L array;

- it is dynamic: it's done once in each machine cycle

and marks the changes in FFP program text;

- it is fast: only one upsweep and one downsweep is

required.

The mode of communication among L cells during proces-

sing is based on the tree structure. Information "climbs"

the tree limbs to the roots of the subtrees of the RA's.

From these roots information is broadcast to other L cells

of each RA. L cells need only specify what to send and

what must be received; the rest of the communication pro-

cess is automatic.

Communication among L cells is also related to the

logarithmic distance properties of the tree, since com-

munication eventually is accomplished at the root nodes

of RA's. Queuing occurs at higher and higher levels, so

-96-

that movement through the root nodes is eventually

sequential.

The only kind of resource management needed in

the system is a form of "storage" management. This

occurs only when additional L cells may be needed for

an RA result. The L cells are obtained by moving L cell

contents around to reposition empty cells, since the whole

machine participates, this is a global process. The T

network functions as an agent with global perspective.

Storage management is highly concurrent, dynamic, automatic,

and integrated: it is exclusively a function of the hardware.

Efficient parallelism is aided by the representation

of the FFP expression in the L array. Representation

provides the opportunity for parallelism both at and below

the FFP level. Parallelism is maintained during execution

by copying expressions, a process which is not advantage-

ous on control flow machines. In this case, copying opti-

mizes parallelism, which will then regain all the lost

copying time many times over, or, at least, so Mag45 claims

in Appendix A.

Many problems remain to be solved for a functional

architecture such as Ma,6's. Among those are the following:

- suitable I/O and file systems are needed;

- a method for transparently using auxiliary memory

is needed;

- suitable parallel algorithms need to be found.

-97-

3.3 Parallel Taxonomies

Parallel taxonomies in control flow models classify

computing structures and provide a rough gauge to measure

concurrent operation. These taxonomies will have to be

extended to encompass highly concurrent models. An ex-

tended taxonomy will need to retain the property of

serving as a measure of concurrency.

3.3.1 A Control Flow Taxonomy

Both [FLYN72] and [KUCK78] discuss parallel taxonomies

for the control flow model. [KUCK78] is more useful, since

it was originally derived from [FLYN72] and more carefully

defined the control element and its input and output

streams. The taxonomy discussed here is Kuck's [KUCK78].

Kuck defines an abstract processing unit called a

"global control unit" (GCU): This is a hardware structure

used to prepare instructions for sequencing the system.

The GCU inputs an arbitrary number of undecoded instruc-

tion streams and outputs an arbitrary number (independent

of the number of inputs) of decoded execution streams.

Only "instantaneous descriptions" of the GCU are considered,

or time intervals of just a very few clocks. Input and

output lines refer to (practically) physically simultane-

ous events. Figure 19 graphically illustrates a GCU.

-98-

(undecoded)
Instruction
Streams

01

Global
Control
Unit
(GCU)

Figure 19

Global Control Unit [KUCK78]

(decoded)
Execution
Streams

Kuck categorizes GCU's into four types as shown

in Table 3. He then extends these four types to

sixteen by considering combinations of scalar and array

inputs and outputs. Table 4 lists a few of the scalar/

array classifications. All are ultimately based on the

control flow model. Kuck states the point of such a

categorization is two -fold:

it is useful to categorize machines based on

GCU organizations;

- system capacity is strongly related to taxonomical

categories.

3.3.2 An Extended Taxonomy

Kuck's taxonomy assumes instruction and execution

streams in the conventional sense of multi -threaded

instruction streams and lock -step data streams. Each

computer in the system is assumed to be some form of

control flow processor. Eventually, each computer is

assumed to operate sequentially on a conventional control

flow instruction stream using conventional control flow

-99-

GCU Type

SISE

Meaning Example(s)

Single Instruction conventional

Single Execution uniprocessor

SIME Single Instruction CDC 6600 CPU

Multiple Execution (multifunction

processor)

MISE Multiple Instruction CDC 6600 PPU's

Single Execution (uniprocessor with

instruction -level

multiprocessing)

MIME Multiple Instruction conventional

Multiple Execution multiprocessor

system

Table 3

Basic Types of Global Control Units (Taxonomies)

[KUCK78]

-100-

GCU Type Meaning Example(s)

SISSES Single Instruction, Scalar uniprocessor
(same as SISE)

SISSEA

Single Execution, Scalar

Single Instruction, Scalar ILLIAC IV

Single Execution, Array

SIASEA Single Instruction, Array Burroughs BSP

Single Execution, Array TI ASC

CDC STAR

Table 4

Some Types of Array GCU's

[KUCK78]

-101-

techniques. Concurrency is usually primarily derived

from the whole. of the computer grouping, as opposed to

the actual groupings of processors within each computer

of the external network. Each atomic machine usually

doesn't contribute too much concurrency, unless a rela-

tively expensive CPU is involved that pipelines parts

of the control system and/or possibly operates on multi-

ple data streams as an array processor does.

In highly concurrent models no atomic computer in

any machine configuration can be assumed to be configured

as a conventional control flow machine. Any single com-

puter can be expected to consist of multiple processing

elements, usually a comparatively large number when con-

trasted with conventional control flow machines. In

some sense, each computer could itself be considered to

be an MIME machine in Kuck's sense, but the ideas of

"multiple instruction streams" and "multiple data streams"

are much different in highly concurrent systems, where

the concept of machine states are not at all the same.

Whereas Kuck's taxonomy dealt primarily with two variables

(instruction streams and execution streams) in a rela-

tively limited sense, highly concurrent taxonomies will

have to deal with a very large number of variables.

Kuck's taxonomy also contents itself with vague

categorizations, differentiating only between "single"

and "multiple" configurations. For the type of architec-

-102-

tures it classifies, this is wholly adequate. But for

highly concurrent architectures, even a rough classifi-

cation is often going to require a more enumerative

approach. For example, there can be a wide difference

between a "multiple binary tree processor network" con-

taining three processors and another containing fifteen.

An extended taxonomy embracing highly concurrent

architectures should divide the implicitly sequential

and implicitly concurrent single computer configurations

into disjoint sets. Conventional control flow systems

are adequately described by a scheme such as Kuck's.

A more embracing scheme is needed for highly concurrent

machine configurations. In the highly concurrent category,

the problem then reduces to one of identifying performance

parameters and classifying configurations using these

parameters.

The remainder of this section will discuss a few

parameters that might prove important in determining the

performances of highly concurrent machines. A simple

classification will be suggested based upon the parameters.

The set of parameters is in no way implied to be complete.

It is clear from the literature that much work needs to

be done in this area, and it could well be found that a

"complete," or even a "preferred," set of parameters can-

not be identified. For our purposes, we will assume the

five parameters chosen are somehow "best" in the sense of

identifying an optimum set of parameters.

-103-

Following is a list of parameters that seem impor-

tant in classifying performance on a single highly con-

current computer:

a simple statistical enumeration of the number of

processors in the internal computer network;

the type of internal network organization utilized

(assume pipelined or binary tree organizations

for our purposes);

the degree of internal processor interconnectedness;

- whether the internal network consists of homogeneous

or nonhomogeneous processors in terms of instruction

rates, etc.;

some roughly quantitative measure of local to global

memory in the internal network.

A simple statistical enumeration of the number of pro-

cessors in a network reveals something about the processing

power of a network. Adding processors to a network will

usually increase processing power up to some point, depen-

ding upon the nature of the network.

The type of network organization utilized in the

computer will be important. Binary tree organizations

have properties not shared by pipelined organizations,

for example. Depending on the computing situation, the

choice of network organization could be very important.

For example, binary tree organizations experience in-

creased queuing and processor contention problems for

-104-

processors higher in the tree, near the root node.

An important set of subparameters for binary tree

organizations would include such things as depth

of the tree and the way in which the application

would be implemented to use the tree.

The degree of processor interconnectedness

is a measure of the number of other processors

in a network with which a typical processor can

directly communicate. In a binary tree network,

a typical processor can directly communicate with

three others, its parent and two children. In

a pipelined network, a typical processor can

communicate with two others. Of course, the

root node in a binary tree network can only

communicate with its two children, and certain

processors in a pipelined network will only be

able to communicate with one other processor;

however, the degree of interconnectedness will

measure statistical mode values and ignore the

exceptions.

-105-

Measurements of interconnectedness will

also have to account for increased complexity

caused by adding interconnections. This effect

can often negate any gains from increased

interconnectedness.

Whether the network processors are all of

equal types, with equivalent processing power in

equivalent networks, may be a parameter of

importance. The effects of varying such things

as differing processor levels within a network

configuration will need to be understood.

Local versus global memory accesses will

be an important measure, since memory contention

on such a computer will need to be understood.

Perhaps one measure could be something as simple

as a ratio of local to total memory words,

where the total number of memory words in

-106-

the computer is the sum of local and global memory word

counts:

where

Then,

have:

r =
L+g-

= count of local words;

g = count of global words

a machine with only local processor memory would

=
ZTg'

g = 0;

r = 1.

A computer with only global memory would have:

r = 0.

There could be many different levels of "global" memory

in a system (i.e., memory accessible to all processors in

the network versus memory accessible to more than one but

less than all processors).

Finally, in a highly concurrent system, multiple

highly concurrent computers can be connected to an exter-

nal multiprocessing network. A whole set of new parameters

can be determined for this second network. Many authors

discuss this possibility of extensible machines and net-

works (i.e., [GUR780]). To simplify this section, the

example to follow will consider only a single highly

concurrent computer.

As an example, one possible type of taxonomy might

consist of strings of text identifying combinations of

-107-

the five parameters discussed previously. Suppose a

series of highly concurrent computers were available

with combinations of the parameters as follows:

three, seven, or fifteen processors;

- binary tree organization;

degree of interconnectedness = 3;

processors of two levels will be available, with

Level 2 "more powerful" than Level 1 (assume,

however, that a given internal computer network

will be composed of processors of either Level 1

or Level 2 types);

no global memory in the computer, so

r = 1.

Table 5 lists the kind of rough taxonomy that would result

from these considerations.

Processors
Processor Level
1 2

3

7

15

3T311 3T321

7T311 7T321

15T311 15T321

Table 5

Example of (Partial) Highly Current Taxonomy

-108-

In Table 5, each taxonomical string in the table

at the intersection of a row and column identifies a

highly concurrent computer configuration, based on

the variance of just two parameters (number of pro-

cessors and processor level). A 7T311 configuration,

for example, consists of 7 processors, binary tree

configuration, degree of interconnectedness = 3, Level

1 processors, and no global memory (r=1).

In highly concurrent computers and networks

there are going to be many interacting factors which

will determine performance classifications. Taxonomies

will probably be covered by statistical tables in

book -sized publications. It will require many years

of research with these networks to be able to make

meaningful analytical generalizations about the

performance within a given taxonomical family when

the external network and internal network parameters

are varied. In fact, just the determination of a

relevant set of parameters will be a very difficult task.

3.4 Comparing Highly Concurrent and Control Flow Computing
Implementations

This report previously compared highly concurrent and

control flow models in terms of concurrency and history

sensitivity. This section will compare the models in a

-109-

few implementation areas. A little reflection in each

area will convince the reader that each area relates in

some way to the properties of concurrency and history

sensitivity in the underlying computing models. Some

important differences between the implementations which

will be briefly reviewed in this section are:

- naming conventions;

flow of data values;

- side effects;

parallel taxonomies.

A control flow implementation equates variable names

with storage locations. This is quite different from

methods used in any highly concurrent implementation. A

data flow machine assigns variable names to arcs on the

program graph, and the functional machine avoids names

completely by assigning values to processors in the L -Array,

initially, and allowing subsequent subtree partitioning

operations to keep intermediate and final values separately

identified.

A control flow machine has a distinct disadvantage

when compared to highly concurrent machines since its

method of naming variables necessitates constant processing

of two types of values: names (or addresses) and data

values. This becomes quite costly and complex since each

of these types must be processed through the von Neumann

bottleneck. None of the highly concurrent machines suffers

such redundancy; they process all data values directly.

-110-

However, none is history sensitive, either. For a data

flow machine the naming convention is highly restrictive,

since a (receiving) variable name can be used at only one

place in a source program (the single -assignment rule).

In a control flow machine named data variables "stand

still" in static memory locations, while a sequence of

operations are performed upon these names and the associ-

ated data values. In highly concurrent machines the vari-

ables "move" through the computing networks and processors

dynamically, and no static memory mapping is done to

establish named locations for values. This is not as

different from control flow computing as it may appear at

first glance. Values also "move" from memory, to registers,

to arithmetic processors, etc., during computation in a

control flow machine. During computations, there are

sequences of time periods when values associated with

named variables in assigned memory locations are undefined,

as computation proceeds with associated variables in (remote)

processors. But control flow computing demands that final

values be stored in memory; no highly concurrent machine

requires this.

Only a control flow machine experiences the phenomenon

known as "side effects". Since naming and storage of data

values is distinctly separate from associated processing,

shared and multiply -mapped memory locations can be changed

unexpectedly from the perspective of one machine routine by

-111-

the processing of another. This occurs in parajlel

processing of storage locations shared among routines, in

subroutine parameter -name mappings to variables in loca-

tions common to both calling and called routines, and in

other types of common storage mappings. Highly concurrent

machines do not display these types of side effects.

Taxonomies in control flow computing classify the

quantity of concurrency in parallel operations. The types

of hardware structures, data streams, data flow, etc., are

all important in these classifications. Control flow com-

puting is implicitly sequential, so a parallel taxonomy

of this sort is extremely important. In implicitly con-

current machines, however, many more parameters are in-

volved, and highly concurrent taxonomies will probably

ordinarily consist of multiple tables of statistical values

and enumerations.

-112-

CHAPTER 4

Conclusion

Most authors feel as Treleaven [TREL79] does:

"data flow systems are a fundamentally new style of

(tightly coupled, distributed) computer which could

eventually supersede the conventional general purpose

(von Neumann) computer." Yet, in the conclusion of

that report, a painfully obvious note is taken of the

current state of the art in highly concurrent computing:

"most research has concentrated on the programming and

evaluation of numerical algorithms. Little study has

been made of how activities such as I/O (or) semi-

permanent storage (file storage) should be controlled

or programmed in a data flow computer, using a data flow

language. It is unclear whether it will be possible to

practically widen applicability of data flow computers.

The data flow approach may be restricted to parallel

(numerical) algorithms, or it may prove possible to find

a suitable synthesis of the data and control flow approaches."

The history sensitivity property of control flow

computing is like a two-edged sword. The undesirable

properties of side effects, memory accessing bottlenecks,

etc., are there largely because of the control flow

implementation of this property. Yet, commercial business

computing, text handling applications, efficient file

-113-.

handling, etc., would not be possible today without

this property. It would seem that much research remains

to be done on models, properties of models, and data

operations in models in general before any conclusion

about the property can be reached. Perhaps a satisfac-

tory mix of history sensitivity, concurrency, and non -

numerical data operations has yet to be combined in the

right kind of model.

The very lack of history sensitivity may be the

primary reason for the strengths of the properties of

algebraic representation and concurrency in the data flow

and applicative models of this report. Certainly in the

data flow model, the assigning of a variable name to an

arc aids concurrency and representation at

sensitivity. In numerical processing it may be worth the

price to trade these properties off in this way, but in

non -numerical processing history sensitivity seems essential.

The Functional Programming Language of Backus illus-

trates the strength of the algebraic representation pro-

perty very well. This kind of power for numerical pro-

cessing certainly can't be obtained with traditional

approaches. However, the need for this kind of symbology

in more pragmatic commercial areas of computing is question-

able. If the language were too mathematical for file

processing, for example, it might discourage a large pro-

portion of users.

-114-

Table 6 [MEAD80] combined with memory locality and

improved parallel algorithms for highly concurrent struc-

tures illustrates concurrency and its obvious advantages.

The figures were derived from Mead's model for memory

access time (Section 1.2.1). Gostelow and Thomas [GOST80]

present a performance study of data flow architectures.

Figure 20 summarizes their findings by plotting number of

processing elements versus time.

Techniue Tyical Seedu Factor

Memory Hierarchy

Pipelining

Instruction Overlap

Special -Purpose

Multiprocessors

Table 6

10

2

n

<n

Speedup Factors (n Processors) [MEAD80]

Time

(MIN)

Figure 20

Speedup Curve for Data Flow Speedup Experiments of [GOST80]

-115-

Number of PE's

If there is one central message the author of this

paper would like to convey, it is that research of com-

puting models for all areas of computing (i.e., numerical,

non -numerical) is going to be necessary in the VLSI era.

The problems of language definition and development in this

era will not be restricted to control flow models, and

language developers will have to assume a more innovative

niche in the total computer design process than they have

in the past. This problem is discussed in Chapter 1.

The 1977 Turing Award Lecture of Backus [BACK77]

provides an important framework for this report. It seems

fitting to end the report by referring to another such

lecture, the 1980 Turing Award Lecture of C.A.R. Hoare

[HOAR81]. Professor Hoare was hired by one of the most

powerful and influential organizations in the world, the

United States Department of Defense, in 1975 to provide

consultation on their ADA language. His warnings of im-

mense complexity and too much feature in ADA have since

gone ignored, though as he says, his consultant's pay goes

on. He issues warnings of technical catastrophies that

could happen due to the unreliability of such a language

implementation. But the originators and designers of ADA

seem destined to commit the same mistakes that language

designers have made in the past when they lost their ways

in the trees of language details and features while ig-

noring the advances of the forest of machine architecture

and language representation. In frustration and protest

-116-

he ends his lecture with the allegory which will end this

report. The following section is quoted from [HOAR81].

4.1 The Emperor's Old Clothes [HOAR81]

Many years ago, there was an emperor who was so ex-

cessively fond of clothes that he spent all his money on

dress. He did not trouble himself with soldiers, attend

banquets, or give judgment in court. Of any other king or

emperor one might say, "he is sitting in council," but it

was always said of him, "the emperor is sitting in his

wardrobe." And so he was. On one unfortunate occasion,

he had been tricked into going forth naked to his chagrin

and the glee of his subjects. He resolved never to leave

his throne, and to avoid nakedness, and he ordered that

each of his many new suits of clothes should be simply

draped on top of the old.

Time passed away merrily in the large town that was

his capital. Ministers and courtiers, weavers and tailors,

visitors and subjects, seamstresses and embroiderers, went

in and out of the throne room about their various tasks,

and they all exclaimed, "how magnificent is the attire of

OUT emperor."

One day the emperor's oldest and most faithful minister

heard tell of a most distinguished tailor who taught at an

ancient institute of higher stitchcraft, and who had devel-

oped a new art of abstract embroidery using stitches so

-117-

refined that no one could tell whether they were actually

there at all. "These must indeed be spendid stitches,"

thought the minister. "If we can but engage this tailor

to advise us, we will bring the adornment of our emperor

to such heights of ostentation that all the world will

acknowledge him as the greatest emperor there has ever been."

So the honest old minister engaged the master tailor

at vast expense. The tailor was brought to the throne room

where he made obeisance to the heap of fine clothes which

now completely covered the throne. All the courtiers waited

eagerly for his advice. Imagine their astonishment when

his advice was not to add sophistication and more intricate

embroidery to that which already existed, but rather to

remove layers of finery, and strive for simplicity and

elegance in place of extravagant elaboration. "This tailor

is not the expert that he claims," they muttered. "His

wits have been addled by long contemplation in his ivory

tower and he no longer understands the sartorial needs of

a modern emperor." The tailor argued loud and long for

the good sense of his advice but could not make himself

heard. Finally, he accepted his fee and returned to his

ivory tower.

Never to this very day has the full truth of this

story been told: that one fine morning, when the emperor

felt hot and bored, he extricated himself carefully from

under his mountain of clothes and is now living happily

as a swineherd in another story. The tailor is canonized

-118-

as the patron saint of all consultants, because in spite

of the enormous fees that he extracted, he was never

able to convince his clients of his dawning realization

that their clothes have no emperor.

-119-

REFERENCES

ALLA76 Allan, S. and Oldehoeft, A., "A Flow Analysis
Procedure for the Translation of High Level
Languages to a Data Flow Language", Proceedings
of the 1979 International Conference on Parallel
Processing, August 1979, pages 26-34.

BACK78 Backus, J., "Can Programming be Liberated from
the von Neumann Style? A Functional Style and
its Algebra of Programs", CACM, Vol. 21, No. 8,

August 1978, pages 613-641.

BROC79 Brock, J., and Montz, L., "Translation and Optimi-
sation of Data Flow Programs", Proceedings of the
1979 International Conference on Parallel Proces-
sing, August 1979, pages 46-54.

COMT74 Comtre Corp., Multiprocessors and Parallel Proces-
sing, Philip H. Enslow, Ed., John Wiley and Sons,
New York, 1974.

DENN79 Dennis, J., and Weng, K., "An Abstract Implementa-
tion for Concurrent Computation with Streams", Pro-
ceedings of the 1979 International Conference on
Parallel Processing, August 1979, pages 35-45.

DENN80 Dennis, J., "Data Flow Supercomputers", Computer,
Vol. 13, No. 11, November 1980, pages 48-56.

DIJ168 Dijkstra, E.W., "Cooperating Sequential Processes",
Programming Languages, F. Genuys, Ed., Academic
Press, New York, 1968, pages 43-112.

DIJ268 Dijkstra, E.W., "The Structure of THE Multiprog-
ramming System", CACM, Vol. 11, No. 5, May 1968,
pages 341-346.

DIJK71 Dijkstra, E.W., "Hierarchical Ordering of Sequential
Processes", ACTA INFORMATICA, Vol. 1, 1971, pages
115-138.

FENN77 Fennell, R.D., and Lesser, V.R., "Parallelism in
Artificial Intelligence Problem Solving: A Case
Study of Hearsay II", IEEE TOC, Vol. C-26, No. 2,

February 1977, pages 98-111.

FINN77 Finnila, C.A., and Love, H.H., Jr., "The Associ-
ative Linear Array Processor", IEEE TOC, Vol. C-

26, No. 2, February 1977, pages 112-125.

FLYN72 Flynn, M.J., "Some Computer Organizations and
Their Effectiveness", IEEE TOC, Vol. C-21, No. 9,

September 1972, pages 948-960.

GOST80 Gostelow, K.P., and Thomas, R.E., "Performance
of a Simulated Dataflow Computer", IEEE TOC, Vol.
C-29, No. 10, October 1980, pages 905-919.

GUR680 Gurd, J., and Watson, I., "Data Driven System for
High Speed Parallel Computing - Part 1: Structur-
ing Software for Parallel Execution", Computer De-
sign, June 1980, pages 91-100.

GUR780 Gurd, J., and Watson, I., "Data Driven System for
High Speed Parallel Computing - Part 2: Hardware
Design", Computer Design, July 1980, pages 97-106.

HANS77 Hansen, P.B., The Architecture of Concurrent Prog-
rams, Prentice -Hall, Englewood Cliffs, N.J., 1977.

HANS79 Hansen, P.B., "A Keynote Address on Concurrent Pro-
gramming", Computer, Vol. 12, No. 5, May 1979,
pages 50-56.

HOAR81 Hoare, C.A.R., "The Emperor's Old Clothes", CACM,
Vol. 24, No. 2, February 1981, pages 75-83.

JOHN80 Johnson, D., et al, "Automatic Partitioning of
Programs in Multiprocessor Systems", VLSI: New
Architectural Horizons, IEEE COMCON, Spring 1980,
pages 175-178.

KAMI79 Kaminsky, W.J., and Davidson, E.S., "Developing a

Multiple -Instruction -Stream Single -Chip Processor",
Computer, Vol. 12, No. 12, December 1979, pages 66-76.

KELL80 Keller, R.M., Linstrom, G., and Patil, S., "Dataflow
Concepts for Hardware Design", VLSI: New Architec-
tural Horizons, IEEE COMCON, Spring 1980, pages 105-
111.

KUCK78 Kuck, D.J., The Structure of Computers and Computa-
tions, John Wiley and Sons, New York, 1978.

KUCK79 Kuck, D.J., and Padua, D.A., "High Speed Multi-
processors and Their Compilers", Proceedings of
the 1979 International Conference on Parallel
Processing, August 1979, pages 5-16.

KUNG80 Kung, H.T., "The Structure of Parallel Algorithms",
Advances in Computers, Marshall C. Yovitts, Ed.,
Academic Press, New York, Vol. 19, 1980, pages 65-112.

LIP077 Lipovski, G.J., "On a Varistructured Array of
Microprocessors", IEEE TOC, Vol. C-26, No. 2

February 1977, pages 125-138.

MAG080 Ma.g5, D., "A Cellular Computer Architecture for
Functional Programming", VLSI: New Architectural
Horizons, IEEE COMCON, Spring 1980, pages 179-185.

MEAD80 Mead, C., and Conway, L., "Highly Concurrent
Systems", Chapter 8, Introduction to VLSI Systems,
Addison-Wesley, Reading, Mass., 1980, pages 263-332.

NECH79 Neches, P.M., "Conference Report: VLSI Architecture,
Design, and Fabrication", Computer, Vol. 12, No. 5,
May 1979, pages 76-78.

RALS76 Ralston, A., and Meek, C.L., Eds., Encyclopedia of
Computer Science, Petrocelli/Charter, New York, 1976.

RUMB75 Rumbaugh, J., "A Parallel Asynchronous Computer
Architecture for Data Flow Programs", MIT Project
MAC, TR-150, May 1975.

RUMB77 Rumbaugh, J., "A Data Flow Multiprocessor", IEEE
TOC, Vol. C-26, No. 2, February 1977, pages 138-146.

SCHN79 Schneck, P., "Issues in Parallel Computing: A Non-
Euclidean Examination", Proceedings of the 1979
International Conference on Parallel Processing,
August 1979, pages 1-4.

SCHW80 Schwartz, J.T., "Ultracomputers", ACM Transactions
on Programming Languages and Systems, Vol. 2, No.
4, October 1980, pages 484-521.

SLEE80 Sleep, M.R., "Applicative Languages, Dataflow, and
Pure Combinatory Code", VLSI: New Architectural
Horizons, IEEE COMCON, Spring 1980, pages 112-115.

STON73 Stone, H.S., "Problems of Parallel Computation",
Complexity of Sequential and Parallel Numerical
Algorithms, J.F. Traub, Ed., Academic Press, New
York, 1973, pages 1-6.

SUGA80 Sugarman, R., "VLSI Computing: A Tough Nut to
Crack", IEEE SPECTRUM, January 1980, pages 34-35.

TREL79 Treleaven, P.C., "Exploiting Program Concurrency
in Computing Systems", Computer, Vol. 12, No. 1,
January 1979, pages 42-50.

APPENDIX A

Some Details of Operation and an Example of Mag6's
Functional Architecture

This appendix reproduces two sections of [MAG080]

in their entirety: "Some Details of Operation," and

"Efficiency of Program Execution: Fundamental Issues."

The first section includes an example microprogram

(Apply to All). It's very difficult to summarize these

sections, and the example cannot be replaced without

further knowledge of the microprogram architecture, which

was not available to the author of this report. For

those desiring better detail than the sketchy summary

in Section 3.2, this appendix will provide full expl4n-

ations from the source document. The remainder of this

appendix is taken directly from [MAG080].

Some Details of Operation

Decomposition of FFP Programs.

As the computation unfolds, each RA produces changes,

often large ones, in the FFP expression. Consequently,

it is imperative that the machine be able to decompose

anew in each machine cycle this ever-changing FFP text.

The need for decomposition arises in two different situ-

ations. First, at the beginning of each machine cycle

the whole FFP expression held by the L array is considered,

and all RAs in it must be located. Later, in the process

of executing RAs, certain subexpressions of these appli-

cations, such as their operators, operands, or subex-

pressions thereof, must be located.

Partitioning the Network.

Once an FFP expression is placed in the L array, L

cells (or collections of L cells) may be thought of as

being dedicated to FFP symbols (or FFP subexpressions),

at least for the duration of one machine cycle. The idea

of also dedicating entire T cells to computations is quite

an obvious next step, but setting up a correspondence be-

tween L and T cells with just the right properties does

not seem possible.

The example in Figure A.2 shows how the machine

dedicates the resources of T cells to computations by

breaking each T cell into at most four parts, and allocating

-A-1-

these parts to computations. The example reveals two

properties of the partitioning: (1) different RAs "own"

disjoint sets of resources (L cells and parts of T cells);

and (2) these resources are always connected to form

binary trees, with L cells as their leaves. The first

property makes a practical possibility out of a theore-

tical one: now all RAs have the necessary resources to

begin their execution simultaneously, as permitted by the

Church -Rosser property of FFP languages. The second pro-

perty means that each RA has a small "tree machine" all

to itself (with all the advantages this implies), just

as if it were alone in the original processor --parti-

tioning the original network never diminishes the quality

of resources made RAs.

The process of partitioning the original network

(itself a "tree machine") into a collection of disjoint,

smaller "tree machines" is (1) automatic --it is completely

determined by the FFP expression and its placement in the

L array; (2) dynamic --it is done once in each machine cycle,

to keep up with the changing FFP program text; (3) fast --

it takes one upsweep and one downsweep.

Programming a Collection of Cells.

Having been located in the L array and given all the

resources it needs, the RA is now ready to begin execution.

The definition of the FFP language gives little guidance

-A-2-

here: it only specifies what the result expression

should be, given the operator and the operand expres-

sions. The problem is to devise a way to cause a col-

lection of cells (more precisely: L cells and parts of

T cells) to transform the RA into the result expression.

This collection of cells, allocated to reduce the RA, is

itself a cellular computer: its processing resources are

evenly distributed over the cells, and no cell in it can

ever have complete information about what is going on

during execution.

What is needed is a suitable programming language.

The programmer, writing programs in this language, would

prepare a plan for all the cells involved to act in con-

cert. When executing such a program, the elementary

actions of the cells (each cell using local information

only).would combine harmoniously and effectively to bring

about the desired (global) transformation of the RA.

A programming language capable of serving such a

purpose, and able to define a large class of transforma-

tions of FFP expressions, has been described. It is

referred to as the microprogramming language partly because

it is below the level of the FFP language (which is the

"machine language" of the network), and partly because it

does resemble conventional microprogramming languages.

The following are important characteristics of this micro-

programming language:

1. Microprograms normally reside outside the network of

cells, and are brought in only on demand. This helps
-A-3-

keep both L and T cells small. It also provides for

flexibility: FFP language primitives are easier to

change, different users may have different sets of

primitives, and so on.

2. Once a microprogram is brought into the processor, it

is placed in the L cells holding the RA. Each L cell

receives only a fraction of the microprogram: just

what is necessary to make its own contribution to the

total computation. (Subexpressions of an RA are found

by the relevant parts of the microprogram through,

again, a form of program decomposition.)

3. The purpose of the microprogram is to transform the

RA into the result expression. Therefore, the micro-

program is aimed explicitly at contents

of L cells, and uses the T cells (or parts thereof)

only implicitly, mostly for purposes of communicating

among L cells. For example, if one of the L cells

wants to broadcast some information to all other L

cells involved in reducing the same RA, it executes

a SEND instruction, explicitly identifying the infor-

mation item to be broadcast. As a result, the infor-

mation item is moved automatically to the root of the

RA's tree, and from there it is broadcast to all L

cells of the RA, again automatically.

4. The microprogramming language is able to exploit the

potentials for low-level parallelism offered by the

fact that there is at most one FFP symbol per L cell.

-A-4-

When writing a microprogram, one decomposes the

required transformation into elementary computations,

many of which can then be executed concurrently by

different cells. As an.example, consider the execu-

tion of an FFP primitive whose purpose is to normalize

a vector of numbers by dividing each component of the

vector by the Euclidean length of that vector. Assuming

that the vector is represented as an FFP sequence of

numeric atoms, a microprogram can prescribe the follow-

ing execution sequence: (a) for each i the cell holding

xi computes (xi)**2--these computations are done simul-

taneously for every i; (b) for each i the L cell holding

xi sends(xi)**2 up into the tree --these are done simul-

taneously for every i; (c) in one upsweep the sum of

squares is produced in the root cell of the RA's tree

(whenever a T cell receives two numbers from its chil-

dren, it performs an addition, and sends the sum to

its father); (d) the sum of squares is broadcast to

every L cell of the RA, and each L cell holding xi for

some i accepts this sum; (e) each L cell' holding xi

for some i computes the square root of the sum just

received, and finally divides xi by this number. These

computations can again be carried out simultaneously,

producing the desired normalized vector.

5. The microprogram is written before execution begins

(the FFP language does not allow changing the set of

primitives during execution), and consequently it must

be able to deal with aspects qf the computation that

-A-5-

become known only at run-time. For example, the

primitive may want to copy a subexpression of the

operand whose size becomes known only at run-time,

or it may want to select the ith element of a se-

quence where i is a parameter supplied at run-time.

As an example, Figure A.3 shows the innermost application

(<AA,+>:«1,11>,<2,12>,<3,13>,<4,14»), which produces,

as its result expression, <(+:<1,11>),(+:<2,12>),(+:<3,13>)

(+:<4,14>)>. (AA stands for "Apply to All.") It also

shows, in an informal manner, how the microprogram speci-

fies the result of reducing this application. The micro-

program is written in five separate parts. Parts 1 and

2 (received by cells 3 and 5, respectively) rewrite the

FFP symbol and leave the nesting level number unchanged.

Part 3 (received by cell 8) keeps the contents of the

cell unchanged. In addition, the FFP symbol contained

in this cell is marked with a symbol chosen by the writer

of the microprogram (in this case with "x"). With the

help of "x", Part 5 will be able to refer to the contents

of this cell.

Part 5 is received by all occupied cells between 9

and 23, inclusive. These cells hold the operand of the

innermost application in question. First, the whole

expression is marked with the symbol "y" (this symbol

must be different from the one used in Part 4, which

was "x"). Among the effects of marking (executing a

-A-6-

MARK statement in the microprogram) is placing the number

i in all L cells holding the ith element expression of

the marked sequence. Thus, although every occupied cell

between 9 and 23 receives exactly the same microprogram,

the microprogram can test the value of the integer gener-

ated by marking, and can thereby ascertain what part of

the operand expression it is working on. Hence the micro-

program can do different things to different parts of the

operand expression --again an example of program decompos-

ition. In this particular case, the results of marking

are used to pinpoint cells 14, 18 and 21, and execute in

each a so-called INSERT statement of the microprogramming

language, the effect of which is a declaration of what

should be inserted on the left or

held by the cell in question. In

insert an application symbol with

right of the FFP symbol

our example, we want to

level number 1, followed

by the parameter of AA. Since only at run-time will it be

known what the parameter of AA is (in our example it is

"+"), we mark this parameter with "x" so that the INSERT

statement can refer to it symbolically. The INSERT state-

ment simply initiates a sequence of events, which then

take place automatically: getting the length of the ex-

pression to be inserted (which is determined by the MARK

statement) to the place of insertion, requesting that

number of empty cells, producing the required number of

empty cells by moving the contents of L cells, and finally

moving the expression to its final destination.
-A-7-

Communication during Processing.

The pattern of communication among L cells during

processing is simple and always the same: information

items are sent to the root of the RA's tree, and from

there they are broadcast, one after another, to every L

cell of the RA. The L cells have to specify only what

they want to send and what they want to accept, and the

rest of the machinery operates automatically. Sending

every information item through the root node of the tree

means that the logarithmic distance characteristics of

the tree are well utilized, especially when L cells far

from each other have to communicate. It also means that

the time taken to move a large number of items is propor-

tional to the number of items moved through the root node.

The tree used this way is a very simple routing network:

the upward moving items queue up throughout the tree,

waiting to move through the root node sequentially. In-

vestigations have been done into ways of using cross con-

nections in the tree network to speed up communication in

this kind of machine (i.e., without the use of addresses).

Resource Management.

It often happens that the result expression cannot be

produced in the L cells that held the initial RA, because,

for example, the result expression is too long. In such

cases execution can continue only if sufficiently many

empty L cells are made available to the RA in question.

-A-8-

If the required number of empty cells is available some-

where in the L array, they can be made available to the

RA in question by moving the contents of occupied L cells,

thereby repositioning the empty cells. This process is

called storage management. This is the only kind of re-

source management needed in the processor because whenever

an RA has all the L cells it needs, it is guaranteed to

receive, with the help of the partitioning mechanism, all

the T cells (or parts thereof) it needs.

Storage management in the machine is global, meaning

that the whole machine participates in it, so that as many

requests for insertions can be satisfied as possible, and

all empty cells in L can be utilized to satisfy these re-

quests. The T network is used to determine how far and

in what direction each FFP symbol should be moved in L to

position the required number of empty cells in the right

places relative to the FFP symbols. Although each T cell

works with local information only, on this occasion the

T network as a whole acts as an agent with a "global under-

standing" of the situation in L.

Storage management in the machine is highly concurrent:

all FFP symbols move simultaneously, under local control,

to their destinations in L. (If the connections between

L cells are used, the process of repositioning the FFP sym-

bols is similar to, although more general than, the oper-

ation of a shift -register: different FFP symbols may move

in different directions and by differing amounts before

coming to a halt.) -A-9-

Storage management in the machine is dynamic: it

is done once in each machine cycle. Thus, the L cells

released in one machine cycle can immediately be reallo-

cated to other subcomputations for the next cycle, and

the processor can immediately attempt to satisfy requests

for empty L cells made during the current machine cycle.

Storage management in the machine is automatic:

initiating it requires no action on the part of the FFP

programmer, only on the part of the writer of the micro -

programs. Moreover, no system software is involved:

storage management is exclusively the function of the

hardware.

Finally, storage management in the machine is inte-

grated: being the only resource management mechanism in

the machine, it manages storage at once among different

user programs, among different subcomputations (RAs) of

the same user program, and also on the lowest level, among

subexpressions and individual symbols of a single RA.

-A-10-

Efficiency of Program Execution: Fundamental Issues

In trying to grasp the peculiar qualities that set

this machine apart from all others proposed to date, one

is led to consider two issues, both of which seem to have

a decisive influence on the operational characteristics

of the machine.

The first peculiarity is the representation of the

FFP expression in the L array. It almost inevitably

leads to the patterns of communication employed in the

machine, and most of these communications may be viewed

as efforts to maintain the representation. For example,

some of the most time-consuming aspects of executing an

RA are the rearranging of the FFP expression (e.g, copy-

ing a subexpression from one place to another) and the

often accompanying storage management. These are always

aimed at bringing the operator and operand expressions

together, or producing operand expressions in the syntac-

tic form required by some operator to be applied later.

(There is never any need to explicitly communicate the

result of an RA --it is just left in L wherever it is

produced.) The primitive operator AA, used in Figure A.3

illustrates one means of forming new applications by

bringing operator and operand expressions together. Of

course, the machine needs no special planning to accom-

plish this (other than faithfully executing RAs): the

FFP programmer simply composes FFP operators in such a

way that the intended expressions are brought together.

-A-11-

The representation also plays a crucial role by

providing opportunity for parallelism both on and below

the FFP level. The connection seems inherent: parallel-

ism is made possible by the representation, which, in

turn, is maintained by copying expressions. Therefore

literal copying, eschewed on the von Neumann computer,

is tolerated here: it unlocks parallelism, which can be

used to regain, often many times over, the time "lost"

in copying. This remark is not based on vague hopes of

being eventually justified by some future implementation.

Credible statements about the complex interaction between

the positive forces of parallelism and the negative forces

of literal copying --pitted against each other in every

machine cycle --can be substantiated by detailed quanti-

tative reasoning about programs executing on the machine.

The second peculiarity of the machine is its ability

to handle complex operands (i.e., data structures) within

innermost applications. (In this respect, the machine

appears to differ greatly even from the data flow computers

recently surveyed by Dennis.) The FFP language places no

limitations on what a language primitive can do to its

operand. The machine, on the other hand, does have some

inherent limitations. Because of the finiteness of its

cells, for example, it cannot "see" the details of sub -

expressions nested too deeply in the operand and operator.

Despite such limitations, the machine can efficiently

implement, and the microprogramming language can express

-A-12-

as FFP primitive operations, a large class of transfor-

mations on operand expressions. This class includes

transposing a square matrix of atoms, performing an n -

point Fourier transformation, finding the kth largest

element of a set, and determining whether two arbitrary

expressions are the same. The key to this ability of

the machine is that RAs, regardless of their size, are

handled by the same cellular machinery: a sufficiently

large assembly of cells (L cells and parts of T cells)

is organized, and this assembly, under the control of

the applicable microprogram, brings about the required

transformation of the operand (and possibly also of the

operator) expression.

-A-13-

Figure A.la

Interconnection of Cells

[MAG080]

Figure A.lb

A Possible Layout Scheme

IMAG080]

-A-14-

A / 0 ID CO 0 0 ID

011)lDD1) tO0 44 0 11 0 11ID0
+ <

4 4

RA

2 12

5 5 3

< 3

4 5

RA

13

5 3

+ <

4 4

4 14

5 3 4

< 5

4 5

RA

15 (

5 3

+ <

4 4

RA

61 16

51 5

+

31 4

<17

4 5

RA

Figure A.2

Fragment of a Partitioned Network

IMAG080]

7 (

5 3

+ <

4 4

RA

5

RA

-A-15-

L offer reduction
< (+ < 1 11 (+ < 2 12 (+ < 3 13 (+ < 4 14
0 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3

L before reduction
(< AA + < < 1 11 < 2 12 < 3 13 < 4 14
0 1 2 2 1 2 3 3 2 3 3 2 3 3 2 3 3

2 3 4 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24

Part 4: MARK with'x'
keep

Part 3: erose

Part 2, rewrite < with

Part 1: rewrite (with <

Part 5: 1. MARK with 'y'

2. erase leftmost symbol

3. INSERT on left of symbols
in cells 14,18, and 21:

3a. (with level number 1

3b. the expression marked with 'x'
with level number 2

Figure A.3

Microprogram for AA (Apply to ALL)

fMAG080]

-A-16-

APPENDIX B

The Algebra of Functional Programs

This appendix summarizes the algebraic structure

of Backus' FP system IBACK78]. Backus' paper should

be consulted for full details. The appendix is

organized into topics as follows:

B.1 Laws of the Algebra of Programs

B.2 Foundations

B.2.1 Expansion Theorem

B.2.2 Linear Expansion Theorem

B.3 Recursion and Iteration

B.3.1 Recursion Theorem

B.3.2 Iteration Theorem

B.4 Proofs for Functional Programs

B.5 Example of a Recursive Program and its Proof

B.5.1 Recursive Factorial Function

B.5.2 Proof for Recursive Factorial Function.

B.1 Laws of the Algebra of Programs

Backus presents some definitions and a list of

algebraic laws for the algebra of programs. These

definitions and laws are listed, here, so that they

can be used later to help illustrate examples and

proofs.

Definition. "defined"

The "defined" definition is used to define the domain

of a function. Many laws have a domain that is only a

proper subset of the domain of all objects. For example,

lojf,g]sf is true only when g is properly defined. If

g:x=.L,then the law does not hold. The notation

definedog lolf,g]Ef

indicates the law (or theorem) on the right holds only

within the domain of objects x for which definedog:x=T.

A qualified functional equation is written

p fEg

and means that, for any object x, whenever p:x=T, then

f:x=g:x.

The following definitions specify ordering on func-

tions and functional equivalence in terms of the ordering

Definition. f<g iff for all objects x, either f:x=1, or

f:x=g:x.

Definition. fEg iff f<g and g<f.

-B-1-

The list of algebraic laws is organized by the

two principal functional forms involved. This list

follows and is copied verbatim from Backus.

I Composition and construction

I:1 [fl, ,fn]og = 'flog, ,fnog]

1.2 afo[gi, ,gn] E [fog1, .. ,fogn]

1.3 if°[gl'

f°[g12 if°1g2' *** 'gni]
when n>2

f°[gi' f°Ig22 *** 'f°Ign-l'gn]-

/fo[g] E g

1.4 fo[x,g] E (bu f x) °g

1.5 1° [fl, ,fn] <fi

so [f1, ,fs, ,fn] <fsfor any selector s, s<n

]]

definedofi(for all is, 1<i<n) ÷÷ so [f1,

1.5.1 [fiol, ,fnon]o[gi,.

"' 9f11] E fS

" gn] E [f1°g12 'fn°g11]

1.6 tloffi] < 0 and tlo[fl, ,fn] < [f2, ,fn] for n>2

definedofi ÷± tlo[fi] E (I)

and tlo[fl,

1.7 distlo[f,[gi,

,fn] E [f2, ,fn] for n>2

,gn]] E [[f'gl]' *** '[f'gn]]

definedof distlojf,(b] E.1)

The analogous law holds for distr.

1.8 apndlorf,fgl,
* ** grill If/g1, *** ,gn]

nullog ÷± apndlo[f,g] = [f]

And so on for apndr, reverse, rotl, etc.

1.9 [... i"..] E

1.10 apndlo [fog, afoh] afoapndlojg,h]

1.11 pair & notonullol apnd101[101,2], distro[t101,2]]

-B-2- E distr

Where f&g E ando[f,g]; pair E atom ;ecio[length,2]

II Composition and condition (right associated parentheses

omitted).

(p4-f;g)oh

ho(p-o-f;g)

oro[a,not0q]

poh 4- f°h; goh

p hof; hog

4- 4- ando[p,q] 4-f;

ando[p,notoq] g; h E p (c1-0-f;g);h

P (P'f;g); h E P f;11

III Composition and miscellaneous

III.1 iof < x

definedof 4- 4-
_ -

xof = x

111.1.1 iof E foi E

111.2 foid E idof E f

111.3 pair 4-4. lodistr E [101,2] also:

pair 4-4- 10t1 E 2 etc.

111.4 n(fog) E of o ag

111.5 nullog 4-+ afog

IV Condition and construction

IV.1

IV.1.1

[f1,

[f 1 ,

P

(p g; h),

p [fl,

,h, ,fn]

, (1)1 gl;

,g1,

fn]

g ,fn]; [fl, -

;pn.+ gn; h), ,fm]

,fm];

,gn, ,fm]; [fl,

-B-3-

This concludes the present list of algebraic laws:

it is by no means exhaustive, there are many others.

B.2 Foundations

Backus' goal is to develop a foundation for the

algebra of programs that is based on a sufficient

theoretical base to allow the programmer to use simple

algebraic laws plus some theorems from the foundations

to solve problems and prove functions (programs). The

proofs will be algebraically mechanical and will be

written directly in the programming language. The latter

point is very important: the logical system used by

program proofs is identical to that used for writing the

program.

An expansion theorem, a linear expansion theorem,

and a corollary to the latter are stated and proved as

part of the foundations. These results are used later in

conjunction with the algebraic laws to establish recursion

and iteration theorems. Recursion and iteration theorems

are stated in section B.3; they allow looping and iter-

ation in the language.

The Expansion Theorem also provides a method to

prove "termination". In the statement of the theorem and

its associated definition, there is the following stipula-

tion:

f:x is defined if and only if there is an n such

that, for every i less than n, pi:x=F, Pn:x=T, and

-B-4-

qn:x is defined.

This stipulation is sufficient to establish termination.

The following sections (B.2.1 and B.2.2) state the

definitions for "expansive" and "linearly expansive,"

and the Expansion and Linear Expansion Theorems, plus

the corollary. Proofs can be found in Backus [BACK78].

B.2.1 Expansion Theorem

Definition. Expansion. Suppose we have an equation of

the form

f E E(f)

where E(f) is an expression involving f. Suppose further

that there is an infinite sequence of functions fi for

i=0,1,2,..., each having the following form:

fo E 1

fi+1 E Po go Pi gi

where the pi's and qi's are particular functions, so

that E has the property:

E(fi) E fi+1 for i=0,1,2,

Then we say that E is expansive and has the fi's as

approximating functions.

Expansion Theorem. Let E(f) be expansive with approxi-

mating functions as given in the definition of expansion.

Let f be the least function satisfying

f E E(f).

-B-5 -

Then

f Po go ; Pn gn

B.2.2 Linear Expansion Theorem

Definition. Linear Expansion. Let E(f) be a function

expression satisfying the following:

E(h) E 130 go ; E1 (h) for all heF

where pieF and qieF exist such that

E1 (pi qi ; h) E pi+1 qi+1 ; El (h)

for all heF and i=0,1,2,...

and

E(i) E 1.

Then E is said to be linearly expansive with respect to

these pi's and qi's.

Linear Expansion Theorem. Let E be linearly expansive

with respect to pi and qi, i=0,1,2,... . Then E is

expansive with approximating functions

fo E

f1+1 E PO CIO ; ; Pi qi ; 1.

Corollary. If E is linearly expansive with respect to

pi and qi, i=0,1,..., and f is the least function

satisfying f E E(f) , then

f E PO ; "' ; Pn qn
;

-B-6-

B.3 Recursion and Iteration

Backus uses three laws and the definition of linear

expansion to prove a recursion theorem. A simple expan-

sion is thus made available for many recursively defined

functions. A corollary to The Recursion Theorem is then

stated and proved as The Iteration Theorem. The Iteration

Theorem gives an expansion for many iterative programs.

Sections B.3.1 and B.3.2 state the Recursion and Iteration

Theorems, respectively.

B.3.1 Recursion Theorem

Let f be a solution of

f E p -4- g;Q(f)

where

Q(k) E ho[i,koj] for any function k

and p,g,h,i,j are any given functions. Then

f E p 4- g; poj Q(g); ; poj
n
(g);

(where Qn(g) is ho[1, Qn-1(g)o , and jn is
join -1

for n>2) and

Qn(g) E /ho[i,i0j,
.nn io3-1 ,goj].

B.3.2 Iteration Theorem

Let f be the least solution of

f Ep g ; hofok

Then

fEp±g; pok hogok ; ; pokn

no
n

h gok ;

-B-7-

B.4 Proofs for Functional Programs

The definitions and theorems stated in Sections

B.2 and B.3 plus the laws stated in Section B.1 are

used to prove functional programs correct. An example

is given in Section B.5.

B.5 Example of a Recursive Program and its Proof

Section B.5.1 gives a detailed example of a recursive

factorial function and its step-by-step application to

an object. Section B.5.2 lists the correctness proof

for this program. This example is taken from Backus

[BACK78].

B.5.1 Recursive Factorial Function

Tlef ! Eeci0 1 ; Xo[id,!os]

Def eq0 ecio[id,8]

Def s = -o[id,l] (i.e., subtract 1)

As an example of the application and reduction of

the function "!", consider the step-by-step application

and reduction of the function when applied initially to

the object "2". This is detailed in Table B.1. The

"Justification" column lists laws and primitive

operations that justify the reduction from the previous

line. Let f = !, p=e0, E(f) = Xo[id,!os]. Then

fEp-)-q; E(f)

is the abstract form of_it34_program.

Step
Number Function Expression Justification

1

2

3

4

5

!:2

(eq0÷i;Xo[id,!os]):2

Xojid,!os]:2

Xo<id:2,!os:2>

X:<id:2,!os:2>

Apply f

Substitute right side

Condition when p:x=F

Construction

Composition

6 X:<id:2,1:1> s:2=:2-1=1

7 X:<2,1:1> Apply id

8 X:<2,Xolid,los]:1> Apply f,
Substitute right side,
Condition when p:x=F

9 X:<2,X:<id:1,!os:1» Construction,
Composition

10 X:<2,X:<1,!00» Apply id;s

11 X: <2,X: <1,1:0>> Condition when p:x=T

12 X: <2,X: <1,1>> Apply constant

13 X: <2,1> Apply X

14 2 Apply X

Table B.1

Example of Application of Recursive Factorial Function

B-9

B.5.2 Proof for Recursive Factorial Function

Let f be a solution of

f E eq0 1; Xo[id,fos]

where eq0 and s are defined in Section B.5.1. Then f

satisfies the hypothesis of the Recursion Theorem with

p E eq0, gEi, hEX, iEid, and jEs. Therefore f can be

written

fE eg0 1; ; eq0osn4Qn(i);

and

Qn(i)E /Xo[id, idos,
n-1 n

idos n-1, los].

By 111.2 and III.1 from Section B.1, respectively.

_k k
idos Es

and egOosn 4-* iosn=l

since egOosn:x => definedosn:x

and egOosn:x E eq0:(x-n)E x=n.

Thus, if eq0osn: x=T, then x=n and

Qn(1):n
= (/Xo[id, idos, ,idosn-1, Tosn]):n

-
= /X:<n, n°s, ... , nosn-1 , losn>

= nX(n-1)X...X(n-(n-1)) X (1:(n -n))

= n!

Using these results for iosn, eciflosn, and Qn (1) in

the expansion for f, we obtain

f:x E X=0 -0- 1; .. x=n nX(n-1)X...X1X1; .

This proves that f terminates on precisely the set of non -

negative integers and represents the factorial function

upon them.

-B-10-

HIGHLY CONCURRENT VS. CONTROL FLOW COMPUTING MODELS

by

ROBERT CLARENCE MARSHALL

B.S., University of Rochester, 1972

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

ABSTRACT

This report reviews the properties of two highly

concurrent (data flow and functional) computing models,

and compares them to the control flow (von Neumann)

model. A highly concurrent model is one in which con -

currency is designed into the model at the primitive

hardware implementation level. A highly concurrent

model is also implicitly concurrent, since no explicit

concurrency primitives need be coded by the programmer

of an implementation in order to allow concurrency.

Conversely, implicitly sequential model implementations

require the coding of such concurrency primitives to

unlock concurrency. The properties of implicitly con-

current models are contrasted with the implicitly se-

quential control flow model.

The impact of Large Scale Integration (LSI) and

Very Large Scale Integration (VLSI) on computing models

and subsequent levels of concurrent operation is dis-

cussed. VLSI and LSI technologies are seen to be the

catalysts which make highly concurrent computing systems

practical. The impact on computer design is reviewed:

VLSI and LSI are found to be changing the conventional

views in which hardware design activities drive software

and algorithm design.

The most important distinguishing property among

the models presented is found to be the relative level

of concurrency which the model can exhibit. The models

are compared on the basis of potential (or actually

exhibited) concurrency. Taxonomies are discussed as

presented in the literature for the control flow model.

The form for an extended taxonomy to embrace the highly

concurrent models is suggested.

After concurrency, the most important property of

the models is seen to be history sensitivity, or the

ability to store data values internally during proces-

sing. In the control flow model, a very high level of

history sensitivity is built into the model, but a very

low level of concurrency is available. In the data flow

and functional models, the reverse is true. History

sensitivity seems to be a key property: the degree to

which it is present in highly concurrent models is pro-

portional to the applicabilities of these models. Pre-

sently, the highly concurrent models are applicable

primarily only to numerical processing implementations,

due to the lack of extensive internal storage capabilities.

Implementations of the highly concurrent models are

reviewed, and some relevant properties of control flow

implementations are discussed. Pipeline hardware struc-

tures are found to be common in data flow implementations;

the single functional implementation reviewed is a binary

tree structure.

In the concluding chapter an attempt is made to

identify some of the potential weaknesses of the newer

highly concurrent models. A common language design

fallacy, which has manifested itself in recent years,

is discussed, and an allegory is presented from the

literature to dramatically highlight this fallacy.

