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CHAPTER 1 

Introduction 

This report reviews, contrasts, and compares two 

classes of computing models: 

highly concurrent models, in which concurrent 

operation is implicitly assumed; 

control flow models, in which sequential oper- 

ation is implicitly assumed. 

The highly concurrent class is represented in the 

report by two models: the data flow and functional 

models. Highly concurrent models are being made practi- 

cal for commercial implementation by advancing technology. 

The control flow model is represented by von Neumann 

computing principles. This model has been identified 

with digital computers since the inception of discrete 

computing machines. 

The next section will summarize the organization of 

the report. Two key properties which significantly shape 

the form of the report will also be briefly introduced. 

1.1 Introductory Remarks 

The control flow model has had a dominant influence 

on digital computers. Until the advent of Large Scale 

Integration and Very Large Scale Integration (LSI/VLSI), 

it had literally become synonomous with "computers." 
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Recently, the importance of formalizing the study of 

models has become more apparent as LSI/VLSI techniques 

have introduced technological and economic changes in 

design that favor non -control -flow models. 

The data flow and functional models are different 

in two important respects from the control flow model: 

- they are designed for implicitly concurrent 

operation; 

they are not history sensitive. 

The first property has evolved as a natural consequence 

of the improving technology and is highly advantageous, 

but the second is more a product of our current scienti- 

fic position and is not always a desirable property. 

History sensitivity is just the ability for data values 

to be stored internally for indefinite periods and 

utilized whenever desired. 

History sensitivity is at once a strength and a 

weakness of the control flow model. Internal storage of 

data values enhances high -volume commercial and data file 

processing capabilities, but it also introduces the side 

effects so well known to commercial computing. These side 

effects result in unexpected, additional values of vari- 

ables assigned to memory locations which are multiply 

named. The multiple naming occurs in global portions of 

procedures. Global and common storage areas require 

synchronization primitives to be used in multiprocessed 
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sections of code. This severely restricts the ability 

of the control flow model to be used well in the design 

of concurrent routines. 

Models that eliminate unwanted side effects by re- 

stricting or eliminating history sensitivity allow easy 

and efficient concurrent design, but only at the expense 

of internal storage capabilities. Examples of such models 

include the data flow and functional models. Functional 

models have the capability of being extended to add a 

history -sensitive property (FFP model in Section 2.1.2). 

Together, concurrency and history sensitivity pre- 

sent the best opportunity to compare and contrast the 

highly concurrent models with the control flow model. 

The report will return to considerations of these two 

properties frequently, particularly in Section 2.3. 

Chapter 2 will present discussions of the abstract 

highly concurrent models and of the abstract control 

flow model. Some key points of comparison between the 

two types of models will be discussed in Section 2.3. 

Chapter 3 will consider implementations of the data 

flow and functional models. A discussion of parallel 

taxonomies will close the chapter. 

Chapter 4 concludes the report. Included is an 

allegory representing the fallacy of designing do -every- 

thing programming languages without due consideration for 

the attributes of programmer ease of use, algorithm com- 

plexity, and underlying technological advances. Complex 
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von Neumann designs may someday find it difficult to 

locate an architecture for implementation. Languages 

of the future must never lose sight of architectures 

upon which they can be realized. 

A third significant area of difference between high- 

ly concurrent and control flow models is not so apparent 

until one attempts a comparison between them. Highly 

concurrent models, such as the data flow and functional 

models, are much easier to consider apart from their 

implementations, simply because their abstract structures 

(i.e., their "models" as opposed to their "implementations") 

were developed separately from any fixed ideas about 

specific hardware realizations. During the early develop- 

ment years of control flow computing, the concept of 

"model" was rarely considered separately from implementation, 

and the development of hardware realizations drove the 

structure of the model. As a result, no separate theoreti- 

cal structure now exists for the control flow "model" which 

can rival the comparable highly concurrent models. This 

report considers the von Neumann "model" in Chapter 2, and 

many von Neumann concepts will be seen to require some 

reference to hardware concepts, such as "registers" and 

"memory locations". Since so much is known of von Neumann 

implementations, little would be gained by presenting one 

in Chapter 3; therefore, Chapter 3 concentrates on data flow 

-4- 



and functional implementations, while von Neumann 

implementations are discussed only during Sections 3.3 

(on parallel taxonomies) and Section 3.4 (comparison of 

control flow and highly concurrent implementations). 

The next section summarizes the impacts of LSI/ 

VLSI technology which are bringing highly concurrent 

models to the forefront. Impacts on hardware, software, 

and design will be discussed. 

1.2 Structural Impacts of LSI/VLSI Technology 

The control flow model was the model for almost all 

digital computers in the early 1970's, and few designers 

had given much thought to any other. The cost functions 

of computing included expensive (global) memory, expen- 

sive discrete components, and a "medium" scale of inte- 

gration allowing chips fabricated with, perhaps, 1000 

transistors per chip. Control flow models tended to 

minimize the total cost of computing. At about that 

time, techniques for Large Scale Integration (LSI) and 

Very Large Scale Integration (VLSI) began to emerge. 

VLSI and LSI techniques were revolutionary and would 

offer the promise of fabricating chips containing 105 

individual transistors by 1980 and 107 or 108 transis- 

tors by 1990 [NECH79], [SCHW80]). Meanwhile, the cost 

of memory was decreasing substantially. With VLSI 
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technology, it became easy to implement interconnecting 

networks of vast numbers of processing and memory elements 

on single silicon chips. The cost functions for these 

kinds of chips were dramatically changed from all that 

had gone before; now, cost (and efficiency) of a device 

was more dependent on the total lengths of interconnecting 

paths between elements than on the elements themselves 

UMEAD80], [MAG080], [SCHW80]). The global memory struc- 

tures of control flow computing were no longer acceptable, 

since local memory with each processing element minimized 

interconnections and improved processing efficiency. 

The primary problem posed to computer scientists 

and engineers by VLSI became one of how to best exploit 

this technology. Sugarman in [SUGA80] envisions VLSI 

design tasks falling into two categories: 

- structuring control flow designs into VLSI; 

- abandoning control flow designs totally to 

utilize the full power of VLSI. 

Only in the latter category can the full promise of con - 

currency available in VLSI systems be tapped. However, 

as Rem notes in [SUGA80], computer scientists are only 

now mastering the theory of sequential programming, and 

they are currently ill -prepared to supply programming 

techniques to make VLSI structures a reality. Computer 

design engineers have discovered that design times of 

fifty man years could be required to design and fabricate 
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a 100K device chip without improved computer -aided 

design techniques [NECH79]. (Remember, a 100K device 

chip is feasible today; by 1990, 105K device chips 

may be feasible!) The challenges inherent to VLSI 

design are many, but the rewards could be very great. 

Section 1.2.1 discusses some impacts of LSI/VLSI 

technology on hardware structures, while section 1.2.2 

discusses impacts on languages and software. Section 

1.2.3 presents a change in viewpoint for total system 

design that is necessary for VLSI design. 

1.2.1 Impact on Hardware Structures 

How will VLSI affect conventional hardware struc- 

tures? Mead and Conway [MEAD80] provide some inter- 

esting insights. This section is a summary of their 

findings. 

Both processing and memory elements can easily be 

implemented in VLSI: "A human brings to an organization 

what VLSI brings to a circuit: both combine processing 

and memory effortlessly." Long interconnecting wires 

which impede communications are eliminated. The resultant 

systems support very high degrees of concurrent operations 

Mead reviews processor/memory architectures 

(control flow machines) in terms of resource usage. 

For large global memory systems most memory and memory 

wiring is idle most of the time. A four megabyte memory 

of 32 bits/word width, for example, may access only one 
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word of four million 32 -bit words at one time. Many 

resources are expended by communication of data words 

over relatively large distances (buses, etc.). A 

discussion of memory locality and how it's implemented 

in a memory hierarchy illustrates an inverse relation- 

ship between memory size (M) and speed of access. The 

access time, T, is proportional to the square root of 

memory size, M. For register memory (Mr), cache memory 

(Mc), primary memory (Mp), and secondary memory (Ms) 

(i.e., disks), a model for memory access time is presented 

Tavg = Fr (Mr) 1/2 Fc (Mc) 1/2 

Typical frequency values are: 

Fr = 0.6 

Fc = 0.38 

F = 0.02 

Fs = 5 x 10-6 

Access to secondary storage dominates. 

Two other methods have been used to increase speed: 

- pipeline structures; 

- multiprocessor structures. 

Pipeline structures with local memory increase processing 

power to a greater factor than just by the number of 

processors provided because each processor can have a 

smaller local memory. For example, a two -processor 

pipeline more than doubles available processing power:2 

1[MEAD80], pp. 266-7. 

2[MEAD80], p. 267. 

Fp (Mio) + 100 Fs (Ms)1/2 
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Te = 1/2 (M/2)1 

Te, execution time, is about 1/3 the time for one 

processor (note that this formula ignores intercon- 

nection costs). This effect occurs as the result of 

two factors: 

- doubling number of processors doubles speed; 

- localizing memory to each processor and re- 

ducing memory size for each increases speed. 

Effective multiprocessor systems in VLSI will 

probably be hierarchical structures, such as binary 

trees of processors (see section 3.2). Simple systems 

are combined into large, complex structures consisting 

of perhaps hundreds or thousands of elemental processor 

and memory combinations. The binary tree is a structure 

with some ability to utilize all processors concurrently. 

In general, trees also have other advantages: 

- can be tested comparatively easily; 

general computing structures for a general class 

of problems are well -represented by trees. 

On VLSI chips it is extremely important to minimize wire 

length to minimize both time delay and energy dissipation. 

There is a definite tradeoff between increasing processor/ 

memory combinations and the resultant area required for 

wires: 

hierarchical structures improve performance to a 

point; 
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if a hierarchical structure gets too large, 

it begins to require too much interconnecting 

wire area. 

With the emergence of VLSI problems must be framed 

from the beginning in terms of concurrency. In this 

environment communication is expensive and computation 

is not. VLSI presents a challenge to computer science: 

"Develop a theory of computation that accommodates a 

more general model of the costs involved in computing. 

The current VLSI revolution has revealed weaknesses of 

a theory too solidly attached to the cost properties of 

a single sequential machine." [MEAD80] 

Summarizing these considerations in [MEAD80] we 

can list some properties advantageous to VLSI hardware 

structures: 

- large numbers of fairly simple processors connec- 

ted together in complex hierarchies, such as 

binary tree structures; 

small amounts of local memory associated with 

each processor; 

- pipeline structures; 

- techniques to optimize wire area (minimum) 

versus hierarchy size; 

concurrency implicit to the model; 

- new theories of computation embracing concurrent 

rather than sequential operation. 
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Finally, the huge area of parallel algorithms 

is still in its early developmental stages. Kung 

ifKUNG80] and [MEAD80]) reviews this field. Because 

so many of these new algorithms will be implemented in 

hardware structures, there is going to be a major impact 

on computer scientists to interact with other disciplines 

during computer design. Lattin ([NECH79] and [SUGA80]) 

cites a growing crisis in VLSI design in which the sheer 

numbers of devices in a structure such as a microprocessor 

can require inordinate design times. This affects com- 

puter science in two ways: 

- more must be known about parallel algorithms in 

general, so structures can be designed using 

standard devices and/or techniques, rather than 

custom -designed devices, etc.;3 

- much more of the design process must be done by 

utilizing computers (computer -aided design - CAD). 

The area of parallel algorithms is so large it would 

require a separate report to cover it adequately. 

3In [SUGA80] Lattin maintains the ratio 
D = DT/DC 

Where DT = devices of all kinds, 
and DC = custom designed devices 
for the intel 8086 was such that D = 4.4. He feels D= 20 

must be attained to cut a 60 man-year effort to 5 man-years. 
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The ultimate impact upon conventional control flow 

computing will obviously be very large. 

1.2.2 Impact on Software Structures 

The impact on sequential programming languages 

consists in part of techniques to translate conventional 

high level language programs to equivalent parallel 

representations as in [ALLA76], or to compile conven- 

tional language programs into code for one of the par- 

allel architectural models, as in ([JOHN80], [KUCK79]). 

Kuck discusses compiling techniques for structures con- 

sisting of arrays of microprocessors. This report will 

not examine these techniques in detail. 

Newer highly concurrent languages and processing 

techniques are also appearing. Brock and Montz [BROC79], 

Gurd and Watson [GUR680], and Treleaven [TREL79] all 

discuss some of these language structures. Treleaven 

includes an example program written in a data flow 

language which will be examined in chapter 2 (Section 

2.1.1). This kind of language will require programmers 

to alter their views of machine communications and 

structures to fit the highly concurrent models. Gurd 

and Watson contains an excellent discussion of some 

flow -graph techniques for structuring parallel software. 
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1.2.3 Impact on Design 

Section 1.2.1 ended with a discussion of parallel 

algorithms and the impact these would have on the de- 

sign of software structures. An important additional 

consideration for these algorithms in the VLSI environ- 

ment was that many would also affect hardware design 

structures. In control flow computing the hardware 

design activity was distinctly separate from both the 

language and application design activities. Hardware 

design actually drove the other two activity areas, 

and, to a great extent, language design drove applica- 

tion design. Thus, a design hierarchy with hardware 

design at the top and application design at the bottom 

was typical. In the era of expensive discrete hardware 

components, expensive banks of global memory, and the 

sequential emphasis on computing structures, this made 

some sense. In VLSI design it is becoming a much less 

relevant approach. 

Schneck [SCHN79] outlines a new design approach in 

which the application, design, and implementation areas 

of algorithms, hardware, and software are very intertwined. 

In this approach the algorithm design activity for the 

application, not hardware design, drives the total effort. 

Hardware and software design activity areas will be at the 

same level in this hierarchy and will be nearly indistin- 

guishable in some important ways. See Figures 1 and 2 for 

illustrations of the old and new design hierarchies. 
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In the control flow environment, computer scien- 

tists have unfortunately grown too accustomed to their 

niche in the old hierarchy Feature laden, complex, 

von Neumann based "new" languages such as PL/1 and Ada 

are always appearing, while comparatively little has 

been done on the design of truly innovative languages 

which would fit other existing models more satisfactor- 

ily, or help to define new models. This design attitude 

will have to change, since the inputs of computer sci- 

entists will affect machine design much more directly 

in the VLSI era. Chapter 4 will return to this subject. 
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Engineer 

Computer 
Scientist 

Processor 
(Hardware) 

Application 
Specialist 

Programming 
Language 
(Software) 

Application 
Solution 
(Algorithms) 

Figure 1 

Control Flow Design Hierarchy 

[SCHN79] 

Problem 
Application Foundations 
Specialist (Algorithms) 

Engineer Parallel Programming 
Computer Processor Language 

Scientist (Hardware) (Software) 

Problem 
Solution 

Figure 2 

VLSI Design Hierarchy 

[SCHN79] 
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CHAPTER 2 

Abstract Computing Models 

This chapter will examine two implicitly concurrent 

models: the data flow and functional models. Section 2.2 

will examine some properties of the implicitly sequential 

control flow model, and some programming primitives necessary 

to realize concurrency in this model. Section 2.3 will then 

present a brief comparison of some key properties of highly 

concurrent and control flow models. 

2.1 Highly Concurrent Computing Models 

Section 2.1.1 will examine the data flow model, and 

Section 2.1.2 the functional model. Chapter 3 will discuss 

implementations for these abstract models. 

2.1.1 The Data Flow Model 

Dennis I.DENN80] advocates language -based computer 

design, which ensures the programmability of a radical 

architecture. He describes a language -based design to be 

one in which the computer hardware serves as an interpreter 

for a specific base language. Programs written for the 

computer must be expressed in the base language. 

Future supercomputers must support massive concurrency 

in order to achieve significant performance increases; 

therefore, a base language for such machines must necessar- 

ily allow simple, implicit expression of concurrency on a 

very large scale. 
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Dennis feels that conventional control flow languages 

have an intrinsic, fatal design flaw: they are based on 

a global state model of operation. In the next computer 

generation, at least for large scale scientific computa- 

tion, he believes this flaw will force abandonment of 

control flow languages. At this time he recognizes only 

two alternatives: the functional (applicative) languages 

to be discussed in Section 2.1.2 and the data flow models. 

Dennis' subsequent explanation of the data flow model 

is now reviewed. His discussion has a simplicity and 

precision which makes the topic easy to understand. 

In data flow models machine -level programs present 

a new view of instruction execution which departs radically 

from the sequential one. An instruction is automatically 

ready for execution when all operands have arrived. Rela- 

tive positions of instructions are irrelevant, and data 

flow computers do not have location counters. A direct 

consequence of data -activated instruction execution is 

that many instructions may be ready to execute at once. 

Therefore, highly concurrent operation is an integral 

part of the data flow concept. 

The base language for most data flow architectures 

is a representation called data flow program graphs. In 

most cases data flow computers are a form of language - 

based architecture in which these graphs are the base 

language. Thus, the language and the architectural 

concepts of data flow models are explicitly bound together 
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at design time, and architectural concepts do not force 

language representation as happened in control flow 

computing. Data flow program graphs are a formally 

specified set of interfaces bridging system architec- 

ture.and the user source programming language. Figure 

3 illustrates the concept. 

Programming 
Language 

Data Flow 
Program 
Graphs 

System 
Architecture 

Figure 3 

Language -Based Design Hierarchy for Data Flow Computers 

DENN80] 
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In the design environment implied by Figure 3, 

the computer architect and language implementor have 

sharply defined tasks: 

the architect must define a computing machine 

which implements the formal behavior of pro- 

gram graphs; 

- the language implementor must devise translators 

for source language programs which translate 

source into equivalent data flow program graphs. 

The cooperating nature of the design process is clear 

when the role of the program graphs in the scheme is 

understood. 

Data flow graphs are represented by collections of 

activity templates, which are information packets stored 

in memory. The role and structure of activity templates 

will become clear as the discussion proceeds. Basically, 

an activity template represents an action entity, such as 

an operator, which requires a finite number of operands 

in order to execute. The template records all operand 

fields and their readiness to be used in an operation. 

After execution, template fields are utilized to record 

and forward results to succeeding templates. 

Data flow program graphs are composed of actors and 

arcs. Actors are connected by arcs and consist of both 

input and output arcs which carry data values in the form 

of tokens. Thus, arcs are communication paths between 

actors, and values travel upon these paths as tokens. 
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Figure 4 shows two actors connected by an arc upon which 

a token is being transmitted from actor 1 to actor 2. 

Actors 

To en 
(Data Value) 

Figure 4 

Segment of a Data Flow Program Graph 

Firing rules for tokens govern the placement onto 

and removal from input and output arcs of tokens and 

their associated values. For an actor to be enabled, 

a token must be present on each input arc, and no tokens 

can be present on any output arcs. An enabled actor may 

be fired. If the actor is an operator, firing entails 

applying the specified actor function to each input token 

value and placing the resultant tokens with computed 

values on the output arcs. Figure 5 illustrates the 

firing process. 
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(a) Input 
Arcs 

(b) 

(c) 

Figure 5 

Firing Rules 

[DENN80] 
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An arbitrary number of operators (or actors) may 

be connected to form program graphs. Figure 6 presents 

some examples of program graphs. 

(a) 'Z = X+Y)* (X -Y) [DENN80] 

(b) Z = X*Y - 4*A*(X+Y) 

Figure 6 

Examples of Program Graphs 
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There are many different types of actors: actors 

for each arithmetic operator, actors for copying data 

values to arbitrary numbers of output arcs, actors for 

merging data values, etc. The natures of these actors 

make conditional executions, iterations, and recursive 

computations fairly easy to implement. For a complete 

discussion of different types of actors, refer to 

[GUR680]. For the purposes of this report only simple 

switch and merge actors will be discussed. 

Switch and merge actors control conditional execu- 

tions and iterations. They do this by controlling the 

routing and selection of data values. An actor of one 

of these types operates by testing a boolean input value 

on one of its input arcs. The switch actor selects an 

output arc according to a true or false boolean control 

input value. The merge actor forwards one of two input 

data values according to an input (control) boolean. 

Figure 7 shows switch and merge actors and arcs. 

(a) Switch Actor 

Figure 7 

Switch and Merge Actors 

(b) Merge Actor 

[DENN80] 
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At the machine level, data flow programs are repre- 

sented by activity templates. A program is a collection 

of these templates. Each activity template corresponds to 

one or more actors of a data flow program graph. An activity 

template consists of a collection of data value fields. 

For example a multiply template consists of four fields: 

an operation code (Multiply); 

- two receiver fields to receive input operand values 

from previous operations; 

one destination field to store and forward the 

resultant product value to succeeding operations. 

Figure 8 displays a multiply template. Figure 9 shows the 

corresponding composite structure of templates for one of 

the data flow program graphs in Figure 6. 

Z = X*Y 

Multiply (*) 

Figure 8 

Multiply Activity Template 
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Z = (X+Y)*(X-Y) 

ih 

Figure 9 

Composition of Operators using Activity Templates 

[DENN80] 
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Activity templates control the execution of a 

machine program. Execution of a template is activated 

by the presence of an operand value in each receiver 

field. An operation packet of the form 

<OPCODE,OPERANDS,DESTINATIONS> 

is operated upon, and a result packet of the form 

<VALUE,DESTINATION> 

is passed on for each destination field. When the re- 

sult packet is generated, each result value is placed 

into the receiver field designated by its destination 

field. 

It is possible to analyze, control flow programs 

and produce data flow machine object programs ([ALLA76], 

[JOHN80]). Indeed, conventional compilers with optimi- 

zing phases seem fairly easy to adapt in this way, since 

many of these compilers represent programs as directed 

graphs, and such representations are very close to the 

machine language of a data flow computer. A prototype 

computer of this kind has been successfully built, and 

the optimizing phase of a conventional compiler has been 

modified to generate code for it [JOHN80]. This approach 

holds much promise, since the underlying data flow model 

should be fairly transparent to the high level language 

programmer. 

However, the semantics of data flow and control flow 

languages differ greatly [TREL79]. In data flow models 
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the order of assignment statements is irrelevant, and 

these are interchangeable since they are activated only 

by the availability of input data. To insure determinate 

operation, assignment statements must obey a single - 

assignment rule: an identifier can be assigned values 

at only one point in a program. This is necessary since 

an identifier is mapped to an arc, or data path, in data 

flow models and not to a memory location. History sensi- 

tivity is not a property of the model. 

Side effects are not present in data flow languages. 

In the control flow model, mappings of multiple identifiers 

to the same storage location can cause unexpected results 

to occur. This happens ordinarily through subroutine 

parameter mappings and common storage shared by multiple 

modules. This phenomenon depends upon the property of 

history sensitivity, and thus it cannot occur in data flow 

languages. Because there is no necessity to coordinate 

common storage areas, side effects are absent from the data 

flow model and concurrency is highly enhanced. However, 

the price of eliminating history sensitivity from the model 

is not all positive; Chapter 4 will return to this subject. 

One reason data flow is a popular research area is 

that textual data flow programming languages may be developed 

that share a few properties with control flow languages. 

For example, they can utilize assignment statements, 

arithmetic expressions, conditional statements, iteration, 

recursion, and function declaration FREL79]. 
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Representation in data flow languages is straight- 

forward. Data identifiers are mapped to data paths and 

operations to data flow instructions. The von Neumann 

principle of program -data indistinguishability is lost, 

since these mappings are not to memory locations. One 

author reached the conclusion that this indistinguish- 

ability principle should be re-established in the data 

flow model [SLEE80]. This would probably entail the 

establishment of a history sensitivity property. 

Since the data flow model supports concurrency 

at a low level, this model will support the optimal 

data flow language directly and allow individual oper- 

ations to be initiated as soon as input data are avail- 

able. Studies of speed-up ratios show the best ones are 

linear in P, where P is the resource replication factor 

fSTON73]. In a data flow model with large P (i.e., a 

very large number of processing units), the best way to 

achieve this speed-up is by supporting concurrency at 

as low a level as possible, since all higher level con - 

currency will then be automatically supported. Intro- 

duction of explicit statements, such as CALL and WAIT, 

to support concurrency will cause a negative effect on 

the linearity of P. When represented at a low enough 

level, there is the possibility of achieving a better 

increase in performance for a broad class of problems, 

since the system can then utilize the detailed repre- 

sentation of a program to maintain a very high overall 

resource utilization ITREL79]. 
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Figure 10 illustrates a data flow representation 

of a quadratic roots program in a Pascal -like form 

[TREL79]. Recall that there is no relevance to the 

relative placements of the assignment statements in 

the QUAD -ROOTS function. 

Due to time constraints, this report does not 

discuss many of the more advanced data flow concepts. 

Where appropriate, references are made to papers dis- 

cussing recursion, acknowledge processing, and data 

flow multiprocessors. [DENN79] discusses another 

important concept: concurrent computation with streams. 

It is intended, here, only to discuss the basic concepts 

of the data flow model. The great potential for con- 

current computation should be very clear. 

function QUAD -ROOTS input (a,b,c:real) 
output (x1,x2:real) ; 

var temp: real; 

begin 
temp := SQRT(b*b-4*c); 
xl := (-b+temp)/(2*a); 
x2 := (-b-temp)/(2*a); 

end; 

"main program..." 
var i1,i2,i3: real; ri,r2: real; 

begin 

end; 

(ri,r2):= QUAD -ROOTS (i1,i2,i3); 

Figure 10 

Example Data Flow Program Representation 

[TREL79] 
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2.1.2 The Functional Model 

Backus introduced a functional model of programming 

languages which is highly mathematical. He describes his 

functional structure in two different ways [BACK78]: 

informal discussion of functional programming, 

or FP, systems; 

formal functional programming (FFP) systems. 

The FFP systems can be studied in detail in [BACK78]. 

In general, this section concentrates on FP systems. 

Backus recognizes two parts of a programming language: 

framework: defines the overall rules of the system; 

- changeable parts: existence is provided for by 

language framework, but specific behavioral aspects 

are not specified. 

An example of changeable parts portions of control flow 

languages is the CALL/RETURN procedure mechanism, which 

in many languages is used to invoke modules of arbitrary 

function. The language framework always describes its 

fixed features and provides the minimal features and 

environment for its changeable features. 

Backus strives to define a minimal framework which 

could generate most other features as changeable parts. 

His exact quotation follows: "if a language had a small 

framework which could accommodate a great variety 

-30- 



of powerful features entirely as changeable parts, 

then such a framework could support many different 

features and styles without being changed itself." 

According to Backus, von Neumann languages have 

large frameworks and limited changeable parts. Two 

properties of the von Neumann model seem to dictate 

this: 

- word -at -a -time programming in which semantics 

are closely coupled to state, and every detail 

of computation changes the state; 

- semantics closely coupled to state transitions 

implies every detail of every feature must be 

built into the state and its transition rules. 

As an example of the rigidity of von Neumann langu- 

ages, consider the primary techniques used for passing 

control to subroutines. The expression itself, "passing 

control," reveals the only real purpose of the techniques 

which never evolved as expressive parts to alter the 

structure of a language to fit a problem. The purpose 

of such constructs are only to "modularize" large 

portions of program code. Typical CALL/RETURN mechanisms 

function as tying statements used only to glue sequenti- 

ally -related but functionally independent portions of 

logic together. In themselves, they contribute little 

meaning to the language. 
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Functional techniques, such as the FORTRAN 

function defining and manipulating statements, are 

better in von Neumann computing than are their CALL/ 

RETURN cousins. They can be utilized in a more 

expressive manner, since they can be embedded into 

complex arithmetic expressions. However, the nature 

of a function in the von Neumann model demands that 

a single -word result value always be computed and 

returned. This restriction keeps such techniques 

from having the power to 

very significantly. 

A CALL/RETURN 

concurrency in von 

these languages is 

is not consciously 

expand von Neumann languages 

scheme is often used to implement 

Neumann languages. Concurrency in 

not "fine grain" (i.e., concurrency 

built into the von Neumann model at 

the lowest levels). Thus, some explicit technique is 

needed to implement a grosser kind of concurrency at 

the language level. It seems to follow that CALL/RETURN, 

the basic statements for "passing control," would often 

be extended to serve as concurrency controlling state- 

ments. Much problem continuity and clarity is lost by 

the usage of such constructs for concurrency, particularly 

since the original purpose of CALL/RETURN was for sequen- 

tial passing of control, a technique which opposes a 

concurrent view. 
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In terms of problem clarity and understanding, 

CALL/RETURN mechanisms tend to detract from langu- 

ages. Such compensating techniques as extensive 

English -language commentaries in the source code are 

necessary to maintain logical continuity of under- 

standing. Very complex features must be added to 

these languages to strengthen them significantly 

and allow the language statements themselves to main- 

tain logical clarity at the problem level. The re- 

sulting structure is very rigid and large. 

Two of the basic problems with von Neumann 

languages seem to be: 

- word -at -a -time programming; 

- changeable parts have too little expressive 

power. 

Backus' goal is to provide a language framework which 

can be expanded naturally, while simultaneously in- 

creasing the expressive power of the language. He 

approaches the problem at the point where new proce- 

dures must be created to solve a problem. A goal of 

his functional style is to allow this process of 

procedure creation to happen within this basic frame- 

work of the language while leaving the language prob- 

lem oriented, and not construct oriented. 

In order to provide powerful combining parts in 

a language, good combining forms must be available 

which can be used to fabricate new procedures from 
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old ones. The control flow model provides primitive 

combining forms and makes using them difficult. 

Backus notes the split between what he refers to as 

the "expression world" and the "statement world" in 

the von Neumann model. "Functional forms naturally 

belong to the world of expressions; but no matter how 

powerful they are, they can only build expressions 

that produce a one -word result. It is in the statement 

world that these one -word results must be combined into 

the overall result." 

As an example, consider the sequence of FORTRAN 

statements 

A = SQRT(B*B+C*C+EPS(W-U)) 

D = X+Y*Y+A**3 

Certainly, the expression to compute A does not lack 

elegance. It involves numerous arithmetic and func- 

tional applications; yet, its primary purpose is to 

produce a sequential result value to store in the 

location associated with A. This value can then be 

used in the following statement. No computation can 

be performed on the expression associated with D until 

the value for A is available, although the values for 

the subexpression X+Y*Y are independent of A and avail- 

able for use while A is being computed. 

The constant combining operations of single words 

necessary in control flow languages is something which 

detracts from the power attainable if the split between 
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statements and expressions were not present. One 

goal of the functional model is to eliminate this 

arbitrary split. 

Backus also aims to eliminate the usage of 

elaborate naming conventions in his functional model. 

Naming conventions require complicated mechanisms in 

the language framework which interfere with the use of 

simple combining forms. For example, subroutines require 

dummy arguments which must be mapped to the storage 

locations corresponding to the arguments of the invoking 

procedure. 

Finally, Backus wants to provide powerful mathemati- 

cal properties in his functional language framework which 

aid program proof and construction tasks. Control flow 

languages generally lack these properties; hence, they 

are difficult to reason about and prove. In functional 

programs "... programs can be expressed in a language 

that has an associated algebra. (The) algebra can be used 

to transform programs and to solve equations whose 'un- 

knowns' are programs, in much the same way one solves 

equations in high school algebra." In the FP style 

algebraic transformations and proofs can utilize the 

language of programs directly, rather than the (extra) 

language of logic (which only talks "about" programs). 

Iverson demonstrated that there can be programs 

which are neither word -at -a -time nor dependent on lambda 

expressions. With APL Iverson introduced new functional 

forms. Since APL assignment statements can store entire 
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arrays at once, the functional forms are greatly 

extended beyond those of von Neumann languages. 

However, Backus notes three problems with APL: 

- the split into expressions and statements is 

still there, albeit on a larger scale for 

expressions; 

- APL has only three functional forms (inner 

product, outer product, reduction) which are 

not sufficient and are difficult to use; 

- APL semantics is still too closely coupled to 

machine states. 

As the experience of APL suggests, matrix operators 

introduce more powerful functional forms, but they do 

not (in themselves) solve all the problems of von 

Neumann languages. For example, Backus feels the 

effort to write one -line programs in APL by using the 

powerful matrix combining forms is partially motivated 

by the desire to remain in the "more orderly world of 

expressions." 

Backus' eventual goal with FP systems is to utilize 

them in the design of applicative state transition (AST) 

systems. AST systems have the following properties: 

history sensitivity; 

loosely -coupled state -transition semantics in 

which a state transition occurs only once in 

each major computation; 

simple states and state transitions; 
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- dependence upon an underlying applicative 

system to provide the basic programming 

language and to describe state transitions. 

An AST system is composed of three elements: 

1) an applicative subsystem (i.e., an FFP system); 

2) a state D that is the set of definitions of 

the applicative subsystem; 

3) a set of transition rules that describe how 

inputs are transformed into outputs and how 

the state D is changed. 

The programming language of an AST system is defined: 

it is that of the applicative subsystem (i.e., can be 

FFP system). The FP programming style described later 

can be used. The state D cannot change except at output 

time. The old state is replaced by the new state at 

output time. State transitions can have useful mathematical 

properties. Programming is not divided into expressions 

and statements. 

Some other key advantages of AST systems are as 

follows: 

- since the state cannot change during a major compu- 

tation, side effects are eliminated, and independent 

applications can be evaluated concurrently; 

- major new features are introduced by utilizing the 

common language framework; 
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- the framework is minimal and is the only fixed 

part of the system; 

- the functional nature of names is exploited. 

Backus feels that the new classes of history -sensi- 

tive. models utilizing applicative styles and languages 

are key developments. If their superiority over conven- 

tional languages can be proven, the economic basis for 

developing new kinds of computers to best implement them 

will be established. The full power of large scale 

integration can then be better utilized in computer de- 

signs to produce more concurrent and efficient machines. 

With this final goal for AST systems in mind, Backus 

outlines an approach for designing non -von Neumann 

languages: 

an (informal) functional style of programming 

(FP) without variables based upon the usage of 

combining forms for constructing programs; 

- an algebra of functional programs; 

a formal functional programming system (FFP) to 

serve as the basis for AST systems; 

- AST systems. 

Mag6's [MAG080] cellular architecture in Section 3.2 is 

based upon this approach, and the resultant FFP. 

FP systems are members of a class of simple appli- 

cative programming systems in which the only operation 

is that of "application." Programs in this type of 

system are functions without variables. In the 

language framework, a fixed set of combining forms 
-38- 



called functional forms are defined. To these fixed 

functional forms are added some simple definitions: 

the combinations of fixed functional forms and defini- 

tions are the only building blocks available to con- 

struct new functions from existing ones. Variables 

and substitution rules are specifically excluded from 

the system. New functions become new operations in 

an associated algebra of programs. 

The functions of an FP system map objects into 

objects and always require one single argument, or a 

tuple of arguments. These simple, highly -structured 

forms define the behavior of FP programs unambiguously 

and allow program proofs by algebraic methods. 

An FP system is constructed of the following sets: 

a set 0 of objects; 

a set F of functions that map objects into objects 

a (single) operation called "application"; 

a set FF of functional forms used to form new 

functions in f; 

- a set D of definitions that define some functions 

in F and assign a name to each. 

Backus provides examples of these entities. Some 

examples from [BACK78] follow: 

- objects 

1 (1) 7.8 CDX <X,1,4.7> 

<xy,w,«x>,h>,wz> 1. 
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applications 

+:<1,2> = 3 

2:<A,B,C> = B 

These are read "+ applied to the sequence <1,2> 
yields 3, and"the selector 2 applied to the 
sequence <A,B,C> yields B." 

primitive functions 

These functions are supplied with the basic FP 
system. 

selector functions 

1:x = x = <xi , ,xn> + x1; 1 

This is read "the selector function 1 applied 
to x is defined as the first element in the 
sequence (x1) when x = <xl,...,xn> and is unde- 
fined otherwise." 

identity 

a x 

- reverse 

reverse:x E X = -0' 0; 

X=<X1,...,Xn> <Xn,...,X1>; I 

functional forms 

These are basic forms which are used to produce 

other functions by combination. 

composition 

(f-g):x = f: (g:x) 

f and g are preexisting forms. 

apply to all 

af:x 1 x = 4- 4); 

4- f:xl,f:x2,...,f:xn>; 1 
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- definitions 

A definition in an FP system is an expression 
of the form 

def r 

where Z is an unused function symbol and r is 
a functional form. 

- def IP=(/+)(ax)transp 

This is Backus' definition of inner product, 
IP, using the following functions: insert (/), 
apply to all (a), and transpose (transp). 

An object x (in 0) is either an atom, a sequence 

<xx2'...'xn>' where xi is an object, or 1 ("bottom" 

or "undefined"). The set A of atoms determines the set 

0 of objects. The empty sequence is denoted by and 

is the only object which is both an atom and a sequence. 

The atoms T and F denote the familiar boolean values 

"true" and "false". An important constraint in the 

construction of objects is associated with 1: if x is 

a sequence with 1 as an element, then x=1. That is, 

the "sequence constructor" is "1 -preserving." A proper 

sequence never has 1 as an element. 

An FP system is not burdened with a large number 

of operations; it has exactly one: application. If 

f (in F) is a function and x (in 0) is an object, then 

f:x 

is an application which denotes the object resulting from 

applying f to x. f is called the operator of the appli- 

cation and x is the operand. Functions f (in F) are 

bottom -preserving: 
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f: 1 = 1 (all f in F). 

Every function in F is either primitive (i.e., supplied), 

defined, or a functional form. 

f: x = 1. has some properties which are important in 

talking about the mapping: 

- if the computation for f:x terminates and yields 

the object 1, f is said to be undefined at x. 

f terminates but has no meaningful value at x. 

- when f does not terminate, it is said to be non 

terminating. at x. 

A functional form (FF) is an expression denoting a 

basic function which is supplied with the model. The 

function depends on the functions or objects which are 

the parameters of the expression. As an example, for f 

and g in F, f -g is a functional form called the composi- 

tion of fund g. The composition denotes the function 

such that, for arbitrary x in 0, 

(f.g):x = f:(g:x). 

Table 1 lists some FP functional forms [BACK78]. 

A definition in an FP system is an expression of 

the form 

def 

Where the left side .e is an unused function symbol and 

the right side r is a functional form which may depend 

on t. It means that symbol £ is to denote the function 

represented by r. A defined symbol is applied by replacing 

it by the right side of its definition. A definition may 

-42- 



Functional Form Notation 

(FF) 

Composition (f-g):x E f: (g:x) 

Construction [fl,.,.,fn]:x E <fi:x,...,fn:x> 

Condition (p-*f;g):x E (p:x)=T+f:x 

(p:x)=F÷g:x; 1 

Constant 3F:y E y = 1+1;x(x an object parameter) 

Insert 

Apply to All 

/f:x E x = <Xi> + xl; x = <xl,...,xn> 

(n.L2) 

f:<xl,/f:<x2,...,xn»; 

af:x E x = (1) -> 4; 

X = <X1,X2,...,Xn> 

<f:x fx >. 1 1,-, . n ' 

Table 1 

Some FP Functional Forms 

PACK78] 
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be a non -terminating function. The set D of definitions 

is well formed if all left sides are unique symbols. 

For examples of definitions, see Table 1 on page 43. 

Backus presents an example of a functional program 

for inner product [BACK78]. This example will now be 

discussed. 

The definition of the functional program for inner 

product is: 

DEF Inner product E (Insert+)(Apply to All*) 

Transpose. 

In more symbolic form: 

DEF IPE (/+).(a*). Trans. 

The set FF of functional forms is determined by: 

combinations of existing (primitive) functions 

to form new ones; 

Composition "" 
Insert "/"; 

Apply to All "a". 

Figure 11 shows IP and the steps involved as it is 

applied to the vector pair (<l,2,3>,<6,5,4>). 

The semantics of an FP system are determined by 

the choice of four sets and the manner of computing 

functions from them. The FP system itself is determined 

by the four sets: 

the set of atoms A, which determine the set of 

objects; 

- the set of primitive functions P; 
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- the set of functional forms FF; 

- a well formed set of definitions D. 

There are only four possibilities for computing f:x: 

- f is a primitive function, and is computed from 

its description; 

f is a complex function produced using functional 

forms, and the description of the forms define how 

f is to be computed in terms of parameters and rules; 

f is defined in the set D; 

none of the above, or f:x E 1 

If f does not terminate for a given rule, then f:x E 1. 

The definition of expansion and the Expansion Theorem 

stated in Appendix B will prove whether f terminates. If 

it does not, f will be undefined and will not produce a 

predictable value when applied to x. 

FP systems can be viewed as programming languages, 

but they are very minimal in terms of conventional langu- 

ages. When so viewed, f is a program, object x is the 

initial contents of the store, and f:x is the final con- 

tents of the store. The set D of definitions is the pro- 

gram library. The primitive functions and functional forms 

provided in the language framework are the basic statements 

of a specific programming language. Depending upon the 

choice of primitive functions and functional forms, the 

FP -language framework provides for a large class of 

languages with varying styles and capabilities. The 

algebra of programs associated with each is dependent upon 
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its particular set of functional forms. 

Backus states the limitations of FP systems as follows: 

a given FP system is a fixed language; 

FP systems are not history sensitive; 

input and output can be treated only in the sense 

that x is an input and f:x is an output; 

if the sets of primitive functions and functional 

forms are weak, all computable functions may not 

be expressible. 

As an example of a major weakness of FP systems, an 

FP system cannot be used to compute a new program, since 

functions are kept distinctly separate from objects. The 

process of computing new functions would require the "apply" 

operator such that 

apply:<x,y> Ex:y 

where x is an object on the left and a function on the 

right. A second major weakness with FP systems is that 

new functional forms cannot be defined within the system. 

Lack of history sensitivity is the primary limitation. 

FP systems must be extended before they become practically 

useful; FFP and AST systems do this. 

The advantages of FP systems are as follows: 

- they use names only to name functions in definitions, 

and names can only be treated as functions that 

can be combined with other functions; 

they are based on reduction semantics which eliminate 

the need for word -at -a -time constructs which are too 

closely tied to machine states; 
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- they offer a core of primitive constructs from 

which higher level constructs and techniques can 

be naturally developed. 

FFP systems are developed from the consideration of 

FP systems. Backus defines the primary goal of FFP 

systems as follows: "FFP systems develop a foundation 

for the algebra of programs that disposes of the theoreti- 

cal issues, so that a program can use simple algebraic 

laws and one or two theorems from the foundations to solve 

problems and create proofs in the same mechanical style 

used to solve high school algebra problems." See Appendix 

B for a discussion of the algebra of programs and proofs 

and an example of a correctness proof. 

In FP systems the set FF of functional forms is fixed. 

In FFP systems this restriction is lifted and new func- 

tional forms can be created. In FFP systems objects are 

used to represent functions; otherwise, FFP systems are 

very much like FP systems. In FFP systems 

Apply: <x,y> = (x:y) 

is a legal construct, but not in FP systems. 

To end this section, we will review the definition 

of applicative state transition systems (AST) and use 

Table 1 and Figure 11 to step through the definition 

of a new function called "inner product", or "IP". The 

discussion will reveal the natural extensibility of 

such systems. 
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Definition: An AST system is composed of three 

elements: 

1) an applicative subsystem, such as Backus' 

FFP system; 

2) a state D that is the set of definitions 

of the applicative subsystem; 

3) a set of transition rules that describe how 

inputs are transformed into outputs and how 

the state D is changed. 

"Applicative" implies the application of definitions 

and functions (supplied and derived) to arguments to 

produce results. For example, some definitions in 

FFP are related to the basic functions, "+" and "*". 

The results of applying these functions are defined by 

the language framework as follows: 

+:<x,y> x + y 

*. .<x,y> x*y. 

Table 1 defines some functional forms that are supplied 

in the basic language framework: Composition, Construc- 

tion, Apply to All, etc. These basic definitions and 

supplied functional forms can be combined within the 

basic language framework to define more complex func- 

tions, which can be used with the basic definitions 

and functional forms to define still more complex 

functions, ad infinitum. The line -by-line detail 
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of the transition rules and states obtained by 

successive applications of the definitions and 

supplied functional forms in FFP to define a more 

complex function,IP, is now given. Figure 11 sum- 

marizes the discussion. 

- DEF IP 

The new function (defined function) IP is 

defined in terms of supplied forms and 

definitions: 

DEF IP E. (/+).(a*)*TRANS. 

This being an applicative subsystem, it is 

meant that the new function IP can be applied 

to a sequence of vectors in the system: 

IP:<xl,x2> 

where 

xl = <x110(12"'"xln> 

x2 = <x21,x22,-/x2n> 

xmn e R (m=[1,2]). 

For the sake of example, suppose IP is to be applied 

to the vector pair «1,2,3>,<6,5,4». The application 

implied by the definition is then 

(/+)*(a*)*TRANS:<<1,2,3>,<6,5,4>>. 

This is the initial state of the application. 
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- Composition () 

By the rule of Composition from Table 1, the 

last result is equivalent to 

(/+).(a*):(TRANS:«1,2,3>,<6,5,4») 

Or 

(/+):((a*):(TRANS:«1,2,3>,<6,5,4»)) 

Transpose (TRANS) 

TRANS is not defined in Table 1: In FFP, it 

is defined for two sequences as follows: 

TRANS:«al,a2,...,an>,<bi,b2,...,bn» 

«al,bi>Y <a b > 
2Y 2 ,-../<a-n'bn>> 

Hence 

TRANS:«1,2,3>,<6,5,4» 4- 

«1,6>,<2,5>,<3,4». 

Substituting the expression resulting from the 

application of TRANS to the vector pair back 

into the original string derived by applying 

Composition, above, we get 

(/+):((a*):(TRANS:«1,2,3>,<6,5,4»)) 

+ (/+):((a*):«1,6>,<2,5>,<3,4»). 

This latter expression defines the next state of 

the system, following the application of TRANS. 

Apply to All (a) 

Referring to Table 1, 

(a*):«1,6>,<2,5>,<3,4» 

is equivalent to 

<*:<1,6>,*:<2,5>,*:<3,4» 
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where "*" is applied to all members of the 

outer sequence. Using this result, we obtain 

the next state of the system as follows: 

(/+):(Ca*):«1,6>,<2,5>,<3,4»)-> 

(/+):<*:<1,6>,*:<2,5>,*: 3,4». 

- Apply (*) 

In an AST system, innermost applications are 

always performed first. In the last expression, 

three innermost applications are present: 

*:<1,6>, 

*:<2,5>, 

*:<3,4>. 

is applied to these as follows: 

*:<1,6> 1*6 = 6, 

*:<2,5> 2*5 = 10, 

*:<3,4> 3*4 = 12. 

Substituting, we obtain the next state of the 

system: 

(/+):<*:<1,6>,*:<2,5>,*:<3,4» 

(/+):<6,10,12>. 

Insert (/) 

Here, apply the functional form from Table 1 

to obtain the next system state: 

(/+):<6,l0,12> +:<6,+:<l0,12>>. 

Apply (+) 

Applying the innermost application first: 

+:<10,12> -> 10+12 = 22. 
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The state transition is given by 

+:<6,+:<10,12» +:<6,22>. 

Apply (+) 

The final application yields the final system 

state and the final result: 

+:<6,22> 6+22 = 28. 

Some small liberties were taken with this example, 

as a comparison of the state transition for the "Insert" 

step will show. But basically, all state transitions 

to the final result are shown. Notice how the set of 

basic definitions and supplied functional forms are 

combined to define more complex functions. Each defined 

function in the system can then be applied to arguments 

without using any naming conventions, except for names 

attached to functions. Once IP is defined as outlined, 

we can write 

IP:«1,2,3>,<6,5,4» 28 

and utilize IP to define progressively higher functions 

all within the language context. The language is thus 

naturally extended, accordingly. 

Many details of FP, FFP, and AST systems are 

omitted, or discussed only briefly in this section. 

Refer to [BACK78] for full details. 
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DEF IP (/+)*(a*).Trans:«1,2,3>,<6,5,4» 

Composition () (/+):((a*):(Trans:«1,2,3>,<6,5,4») 

Transpose - (/+):((a*):«1,6>,<2,5>,<3,4») 

Apply to All (a) - (/+):<*:<1,6>,*:<2,5>,*:<3,4» 

Apply (*) 4- (/+):<6,10,12> 

Insert (/) 

Apply (+) 

Apply (+) 

+:<6,+:<10,12» 

+:<6,22> 

- 28 

Figure 11 

Inner Product Functional Program Application 

[BACK78] 
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2.2 The von Neumann (Control Flow) Model 

This section examines the model reflected by 

conventional computers and programming languages, 

the von Neumann, or as Treleaven calls it, the control 

flow model [TREL79]. A model can be studied by com- 

paring its properties with those of other models, by 

examining its properties in detail, and by examining 

its structures. This section studies the control flow 

model from all three of these perspectives. 

Backus studies the control flow model by comparing 

it to others [BACK78]. He presents a theoretician's 

classification of computing models. The data flow model 

discussed in Section 2.1.1 does not fit well into this 

scheme, which was presented in Backus' 1977 ACM turing 

award lecture. However, the classification highlights 

some relevant properties of control flow machines. It 

also provides a good comparison of control flow and 

applicative models. 

Backus presents a list of criteria to classify 

computing models: 

1) foundations - is there a useful mathematical 

description of the model? 

2) history sensitivity - can information be 

passed from one program to a successor at 

runtime? 

3) semantics - does a program in the model use 

state transition semantics or reduction 
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semantics? If state transitions are used, 

are these simple or complex? 

4) program clarity - are source representations 

clear and conceptually useful in that they 

embody concepts that can be used to reason 

about processes? 

Using these criteria, he defines three classes of com- 

puting system models: 

1) simple operational models; 

2) applicative models; 

3) control flow models. 

Table 2 summarizes these classifications in chart form 

with an example of each. 

It is difficult to fit data flow languages into 

Backus' scheme (the data flow line listed in Table 2 

was not in Backus' original table). They seem to 

partially fit the class of operational models, but with 

much clearer programs than other members of the class. 

Backus believes that some data flow languages could even 

be considered to possess the beginnings of reduction 

semantics [BACK78]. Certainly, data flow languages are 

not ordinarily history sensitive. 

The general properties of the control flow model 

as charted in Table 2 summarize Backus' view of this 

model. As these properties are studied, one should 

not forget that Backus has been one of the innovators 

of the young science of electronic computation and, 
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BACKUS MODEL CLASSIFICATIONS 

History Program 

Class Example Foundations Sensitivity Semantics Clarity 

Operational Turing Machines Concise Sensitive State Transitions Unclear 

Useful Simple States Not Conceptually 
Useful 

Applicative Functional Concise Not Sensitive Reduction Semantics Clear 

Programming Useful (No States) Conceptually 
Useful 

Control Flow Conventional Complex Sensitive State Transitions Clear 

(von Neumann) Computers and Bulky Complex States Not Conceptually 

Programming Not Useful Useful 

Languages 

Data Flow Figure 10 Concise Not Sensitive (Beginnings of) Clear 

Useful Reduction Semantics 

Table 2 

A Chart Illustrating Backus' Classification Scheme 

[BACK78) 



due to his role as an original developer of the FORTRAN 

programming language, one of those most responsible for 

the current primary position of the control flow model in 

practice. 

The foundations of the control flow model are judged 

to be complex, bulky, and not useful. Backus notes the 

lack of a satisfactory mathematical description of the 

model. He feels it to be so complex and bulky that its 

description has scant mathematical value. 

Programs in the control flow model are history 

sensitive. That is, one program can pass information 

to another that can affect the behavior of the latter. 

This may well be at once a primary strong point and yet 

a concurrency-limiting property of the model. 

Z = X*Y-4*A*(X+Y) 

Move B to A 

Figure 12 

Typical Control Flow Assignment Statements 
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The semantics of control flow programs involve 

complex machine state transitions. Observe the typi- 

cal control flow assignment statement involving a 

moderately complex arithmetic expression as shown in 

Figure 12. Some idea of state -transition complexity 

can be gained by "mentally -executing" this statement. 

If this is done, a rapid series of memory fetches of 

literal values and values associated with named vari- 

ables are "seen" passing from memory to the arithmetic - 

logic unit for arithmetic combination as the arithmetic 

expression is evaluated. When this sequence of oper- 

ations is complete, the final computed value passes 

from the ALU to memory (i.e., it is "stored" in a loca- 

tion associated with the named variable "Z"). 

Each passage of a value between memory and the 

ALU defines a state transition, and each combination 

of sets of values in ALU and memory cells defines a 

state of the control flow machine. Even the simplest 

assignment, such as the simple COBOL "MOVE" of Figure 

12, involves multiple state transitions. 

Consider state transitions in the functional 

model discussed in section 2.1.2 in contrast to this 

situation. State transition rules in the functional 

model are entirely defined within the model and depend 

only upon the manner in which inputs are transformed 

into outputs and the subsequent change in the state D 

representing the set of definitions of the underlying 
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FFP system. Thus, a state transition in this system 

is not related to any complex rules involving machine 

operations on any physical' entity such as global memory. 

Finally, the control flow program clarity property 

is deemed "clear but not conceptually useful" by Table 

2. Generally, programs of the model do provide clear 

expressions of a process or computation, 

not provide concepts that help people to 

about processes. 

but they do 

reason easily 

One need only reflect on the excessive 

requirements of the simplest program proof to 

that some inherent properties of control flow 

understand 

programs 

seem to make formal reasoning about them very difficult. 

Reasons for this will become clear as we consider the 

structures and properties in greater detail. 

VON NEUMANN BOTTLENECK 

CPU MEMORY 

Figure 13 

Basic Structure of a Control Flow Computer 

[BACK78] 
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In the ensuing discussion, it can be argued that 

we are discussing implementation and not model, since 

we must speak of the control flow model in terms of 

registers, global memory accesses, etc. Indeed, this 

seems to be a failing of our current views of von Neumann 

computing, where many aspects of model and implementation 

have become almost interchangeable. Nevertheless, pro- 

gram counters, hidden registers and register transfers 

involving state transitions, CPU -to -memory paths, vari- 

able naming conventions equated with memory mappings, 

etc., are all at this point in history intimately associ- 

ated with the von Neumann "model." 

Backus does not consider one obvious alternative to 

replacing the von Neumann model with another that has a 

better theoretical structure: the alternative of separ- 

ating the von Neumann model itself from its many histori- 

cal implementations and strengthening its theoretical 

structure. His purpose does not seem to fit that parti- 

cular approach. Without pretending to assume anything 

about what he thinks about this matter, it is possible 

he believes the alternative to be not particularly viable. 

Perhaps the alternative approach could be the subject 

of other reports. In this report we must consider the 

concept of the "von Neumann model" as it now exists in 

theory and practice. Certainly, a definite strength of 
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this view is the history sensitivity property, which 

makes commercial and business computing pragmatic. One 

contrast between the von Neumann model and later models 

does seem to arise simply because the conceptual environ- 

ment in which they have arisen and evolved is much differ- 

ent than that which spawned von Neumann computing. 

Conceptually, a von Neumann, or control flow compu- 

ter is composed of the three parts illustrated in Figure 13: 

1) central processing unit (CPU); 

2) memory store; 

3) connecting tube. 

The connecting tube can transmit a single computer word 

between the CPU and the memory, or vice versa. One memory 

cell, for example, can only be moved to another by traver- 

sing the tube from the memory to the CPU and back again. 

The CPU contains central storage cells, called "registers": 

- central registers available to the programmer; 

- central registers "hidden" from the programmer; 

- special register(s) called the "memory address 

register(s)" (MAR) ; 

- special register called the "program counter" (PC). 
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Only one value at a time can flow on the connecting 

tube. A machine state transition is initiated by 

placing a word on the tube for transmission to or from 

the store. A machine state is represented by each 

successive set of values of cells in memory and in the 

CPU registers during operation. 

[BACK78] outlines the task of a program in the 

control flow environment: It must change the contents 

of memory in some major way. This task can only be 

done by shipping one word at a time through the connec- 

ting tube, or von Neumann bottleneck. Variable names 

are always associated with memory locations, and much 

of the activity on this avenue is in addition to the 

main task the program is designed to accomplish and is 

related to manipulating and computing names, etc. The 

PC and MAR registers, for example, simply provide data 

names for instructions themselves and their operands, 

respectively, during operation. Each instruction must 

be fetched (by name) from memory to the CPU (across the 

bottleneck) to begin its execution cycle. Each of its 

operand names must then be fetched into the CPU using 

the same mechanism. "Programming" a control flow machine 

consists primarily of managing the enormous flow of 

words across the connecting tube, and much of that flow 

concerns not only data relevant to the problem, but 

also data names in the form of memory addresses. 
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Backus believes the connecting tube to be both a 

literal and an intellectual bottleneck: 

- literal bottleneck for problem traffic; 

- intellectual bottleneck that has kept computer 

engineers and scientists tied to word -at -a -time 

thinking. 

The intellectual bottleneck has blocked designers from 

thinking in terms of the larger, conceptual units of 

the problem to be solved. 

All control flow computers of this sort possess 

the CPU register called the "PC", above. Machines based 

on this model tend to be very serialized, step -at -a -time 

mechanisms admitting no real concepts of concurrent oper- 

ation. This property of control flow machines will be- 

come more obvious when the control flow language struc- 

tures are discussed in the next section. 

2.2.1 The Structure of Conventional Programming Languages 

The control flow model existed first in hardware 

and was programmed in machine language. Conventional 

symbolic assembly languages evolved as aids to the 

machine programmer, and high-level languages were devel- 

oped solely for the same reason at a point in time fol- 

lowing the development of assembly language concepts. 

In the case of the control flow model, the hardware 

development drove the language interface, as symbolic 

languages were viewed strictly as man -machine communica- 

tion aids. 
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Treleaven states the result of the evolution 

very well in [TREL79]: "Conventional programming 

languages, which are often called 'high level', dis- 

play a model of computation that is, in some impor- 

tant respects, actually at a very low level, not far 

'removed from the von Neumann machine. These languages 

are based on the processor/memory model of program 

execution in which a processor performs operations 

on values stored in a memory (a sharable and modifi- 

able resource)." 

Treleaven isolates the basic structure of all 

programs based on the control flow model. Whether 

the language is PASCAL, FORTRAN, BASIC, COBOL, ALGOL, 

PL/1, etc., a program for this model has three basic 

parts: 

1) a set of sharable, memory cells called variables; 

2) a set of data instructions that modify variables; 

3) a set of control instructions that determine 

the order of instruction execution. 

In a program,"normal" flow of control between the 

execution of control instructions is determined by 

assuming that each non -control instruction execution 

sequentially follows that instruction execution for 

the instruction stored immediately preceding it (by 

memory location). This is an obvious result of the 

primary hardware control register mechanism, the program 

counter (PC). "Programming" then consists in specifying 
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the various sequences of instruction execution to 

solve a problem. Data instructions involved with 

solving the problem are intermingled among control 

instructions. 

[TREL79] defines variables as follows: "vari- 

ables" are named memory cells that serve two roles 

within a program: 

provide a technique to communicate partial 

results within instruction executions; 

provide semipermanent data storage, which 

allows multiple references to (named) data 

values. 

The control flow program structure has two proper- 

ties which will be important later: 

- the flow of control mechanism results in program 

executions which are explicitly time sequential 

by instruction with sequence specified by the 

programmer; 

- the variable/memory location mapping is at once 

a strength and a weakness of the model. 

The mapping is a strength in that storage can be re- 

tained and reused. It's a weakness in that it causes 

great implementation overhead for manipulating names 

and allows a phenomenon called "side effects," which 

will be discussed later. 
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2.2.2 Synchronization Primitives 

[TREL79] reviews the problem of representing 

concurrency in the conventional control flow model. 

Treleaven notes that an important requirement for a 

new computing model is that it support concurrency 

at a low (preferably hardware) level. This require- 

ment is basically incompatible with the control flow 

model: 

overspecification of sequence in the model; 

concept of a variable as a shared memory cell. 

These two properties demand the usage of explicit 

control and synchronization statements in the programs 

of the model. 

Synchronization primitives are of two types: 

- concurrency initiating statements, to activate 

parallel instruction streams (processes); 

- synchronization statements, to synchronize 

multiple process terminations and resume 

processing in a resultant stream. 

They are necessary because multiple instruction 

streams may modify shared memory cells, and the effects 

of such modifications are time -dependent and must be 

controlled. Some examples of concurrency initiating 

statements are "CALL", "FORK", "ATTACH", etc. Some 

examples of synchronization statements are "WAIT", 

"JOIN". Figure 14 shows an example of FORK and JOIN 

in [TREL79]. 
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FOR J:= PIVOT ROW + 1 TO NO COLUMNS DO 

"ACTIVATE PARALLEL INSTRUCTION STREAM:" 

FORK PARA; 

N := NO COLUMNS - PIVOT ROW; 

" WHEN N = NO COLUMNS - PIVOT ROW, THE ABOVE 

SPAWNS N-1 INDEPENDENT PROCESSES, EACH 

WITH DIFFERENT VALUE OF J." 

PARA: FOR K := COLUMN TO NO COLUMNS DO 

AIJ,K] := AIJ,K] - AIJ, COLUMN] 

*AIPIVOT ROW,K]/APIVOT ROW, COLUMN]; 

JOIN N; 

Figure 14 

Example of Fork and Join Synchronization 

Primitives in [TREL79] 
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[TREL79] lists disadvantages of synchronization 

primitives: 

- the programmer's task is further complicated by 

the need to encode extra information; 

- extra information detracts from program readability; 

- the present style of architecture cannot utilize 

the extra parallelism well unless each concurrent 

element is represented as a process. 

The last point stresses the fact that parallelism in the 

control flow model is not fine grain. 

2.2.3 Monitors 

The development of the monitor concept was one of the 

more interesting efforts originating in control flow 

computing. Three eminent computer scientists, E. W. 

Dijkstra; C.A.R. Hoare; and per Brinch Hansen, contributed 

in some measure to this effort. Two of these men published 

numerous papers and books dealing with concurrency in 

control flow computing ([DIJ168], [DIJ268], [DIJK71], 

[HANS77], [HANS79]). 

Hoare's chief contribution is noted in [HANS79]. 

He noted that concurrent operations have predictable 

effects only if statements within each of them operate 

on different variables; otherwise, effects of concurrent 

operations will be time dependent. This would prove to 

be a key observation in the development of the monitor 

concept. 
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The truly creative aspect of the monitor concept 

stemmed from the way in which Dijkstra and Hansen in- 

vented language and compiler constructs to solve con - 

currency problems within the control flow model. Fin- 

ally, someone realized the advantages of approaching 

the concurrency problem from language and data struc- 

ture viewpoints. Dijkstra [DIJI68] invented a "concur- 

rent statement" to initiate concurrent processes from 

a high-level language and suggested combining all oper- 

ations on a shared data structure into one program 

module. Hansen proposed a language notation for this 

"monitor" concept and developed a compiler to support 

it JHANS77]. The idea to utilize the compiler in this 

way had novel goals which were beyond simply improving 

the man -machine communication interface: 

- replace hardware protection mechanisms by compil- 

ation checks; 

improve program testability; 

solve the problem of controlled access to shared 

variables by providing an easy -to -use modular 

language interface to handle synchronization 

and racing conditions; 

allow the compiler to verify many of the shared 

memory accesses, allowing execution checks to be 

omitted. 

The last goal was done both in the,interests of program 

efficiency and the desire to prevent (rather than simply 

avoid) problems. 
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Despite the amount of work done by these men, 

Hansen states in [HANS79] that the theoretical under- 

standing of concurrency is still in its infancy. 

2.3 Comparing Highly Concurrent and Control Flow Models 

Before proceeding with the functional comparison, 

we need to briefly review the new cost/performance goals 

introduced by LSI/VLSI technology. These goals in them- 

selves present a marked contrast with those of control 

flow computing. 

Why do computer scientists and engineers consider 

the property of implicitly concurrent operation at the 

hardware level to be so important? A large part of the 

answer seems to be that LSI/VLSI implementations will 

radically alter control flow concepts of cost/performance. 

Implementing highly concurrent operation at the hardware 

level introduces the potential for realizing a perfor- 

mance increase over "equivalent" control flow implemen- 

tations of huge magnitudes [GOST80]. 

Dennis [DENN80] lists three goals which he feels 

future computer architects must meet in the next super- 

computer generation: 

1) extremely high performance at acceptable cost; 

2) something approaching the full potential of 

LSI/VLSI technology must be exploited; 

3) architectures must admit concurrency without 

requiring explicit programming techniques. 
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In order to compete successfully in the next generation, 

he believes new LSI/VLSI implementations must be capable 

of doing such things as executing floating point in- 

structions on the order of magnitude of billion(s) per 

second. Control flow models cannot realistically 

approach this goal with reasonable cost expectations. 

With such cost/performance goals in mind, how do 

highly concurrent and control flow models currently 

compare? Section 2.1 examined two implicitly, highly 

concurrent models: the data flow and functional ones. 

Section 2.2 examined structures and properties of the 

implicitly sequential control flow model. The present 

structure of concurrent models differs in some key ways 

from the structure represented by control flow models. 

The remainder of this section discusses a few of the 

most important properties which differ appreciably 

between the models. 

Probably the most important way in which the 

control flow model differs is in the philosophy and 

evolution of the model itself. Both concurrent models 

have stronger abstract structures than does the control 

flow model. These theoretical structures distinctly 

preceded any implementations. This level of abstraction 

clearly allows the abstract models to stand distinct 

and separate from their various implementations. The 

more pragmatic evolution of von Neumann computing does not 
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so clearly allow this differentiation between model 

and implementation. In fact, it's very difficult to 

separate a distinct theoretical structure of control 

flow computing from its implementations. 

In the highly concurrent models, concurrent 

operation is the assumption at the hardware design 

levels. The models are structured to implicitly 

account for the presence of multiple processing ele- 

ments, each of which can execute when all processor 

inputs and required resources are available. Adding 

additional processors will often raise the level of 

concurrency with no need for external programming 

support. Conversely, the control flow model assumes 

sequential, statement -by -statement operation in 

external programming support is necessary in order to 

support increased processor levels. 

In highly concurrent models, only the availability 

of operands and resources determines a processor's 

availability for execution. At the programming level, 

the concept of flow of control between statements is 

not a determinant of expression execution. For example, 

a sequence such as 

X = 3 

A = 5 

B.= 4 

C = A*B+6 
D = C+4*B 
E = X+17 

-72- 



is not bound at execution time by statement bound- 

aries. Computation of E can proceed in parallel with 

that for C, and the value for D may be partially com- 

puted by the time the value for C is determined. The 

value for E may be available before either of the 

values for C or D are computed. In the control flow 

model, assumptions governing sequential execution of 

statements rigidly determine the sequence in which 

values for each variable will be available. The 

further need for control statements to transfer 

control within sequences of statements in the control 

flow model is not needed in highly concurrent models, 

although current understanding of structured techniques 

the control flow model reveals that this need 

has been highly exaggerated in the past. 

Control flow models have the property of history 

sensitivity, or the ability to store and retrieve many 

data values at will during program execution. Data flow 

and functional models do not normally have this property 

(without extending the models). In the control flow 

model, once a value for a variable named A is defined, 

it is available in subsequent computations until re- 

defined through a new assignment. Data flow programs 

require the extremely restrictive single -assignment 

rule, since they cannot "remember" stored values in 

this way. Functional programs do not even associate 
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names with ordinary values, except at the highest func- 

tional level. The lack of history sensitivity is prob- 

ably the largest handicap of highly concurrent models as 

they now exist. 

As an example of the power of history sensitivity, 

imagine a pure data flow or functional program trying to 

compute a large set of one thousand homogeneous values, 

which a control flow program could easily store in a 

memory array. Once stored in a control flow array, the 

values are individually referencable and retrievable 

until modified by program assignment. Because of the 

single assignment rule and the equating of names to arcs, 

it is very difficult to deal with such arrays in data 

flow. Research is being conducted in this area [DENN79]. 

A functional program does very well when using multiple 

processors to compute a single value, which is just the 

reverse of the control flow case. Much research is still 

needed to introduce satisfactory properties of history 

sensitivity ([BACK78], [MAG080]). 

Highly concurrent models eliminate global mappings 

of variable names to memory locations. This eliminates 

complex, hardware -bound concepts of state transitions as 

contents of memory locations are modified, and it also 

minimizes such things as subroutine side effects. Thus, 

simpler, non -hardware associated concepts of state transi- 

tions are possible, but only after the important property 

of history sensitivity has been compromised. 
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Thus, in terms of comparable execution timings, 

it's possible to attain very high performance gains 

over traditional control flow implementations at 

acceptable costs with LSI/VLSI technology by utilizing 

highly concurrent models. However, performance in- 

cludes something more than simple execution timings 

on scalar structures: it also includes versatility, 

as exemplified by the history sensitivity property 

utilized in control flow computing. It's hard to 

imagine anyone referring to a highly concurrent, 

business -oriented system with no history sensitivity 

as being "high performance." 
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Chapter 3 

Implementations of Computing Models 

Section 3.1 will introduce data flow models by 

considering Rumbaugh's IRUMB77] conceptual model from 

an architectural viewpoint. Dennis' abstract implemen- 

tation will then be considered [DENN80]. Most of the 

important concepts of data flow computing are expressed 

in these works; very good additional readings can be 

found in (IGOST80], [GUR680], [GUR780], [KELL80], and 

[TREL79]). 

Section 3.2 will consider a functional implementa- 

tion from [MAG080], which is based on Backus' work 

[BACK78]. Section 3.3 will consider parallel taxonomies, 

and how these will have to be extended for the highly 

concurrent model. 

3.1 Data Flow Models 

Proponents of data flow architectures believe data 

flow models will one day displace control flow models as 

more important structures. They note common properties 

of data flow models which seem stronger than their control 

flow counterparts. Some examples of data flow implementa- 

tions are discussed in this section. 

Rumbaugh [RUMB77] defines a data flow multiprocessor 

which is defined in terms of a set of activation processors. 
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Activation processors perform a single invocation of 

a small data flow procedure held in its local memory. 

The terms procedure activation and procedure invocation 

are used interchangeably and refer to the moment when 

operands arrive and execution of the local procedure is 

initiated. Each activation processor is defined in terms 

of a pipeline of other logical units, so concurrency is 

obtained among and within activation processors. 

Data are stored and processed within the system in 

tree structures. The results are value oriented; identi- 

fying names or addresses are not associated with each 

value. Rather, the data are grouped functionally, ac- 

cording to operation, into result packets. Hardware units 

called structure controllers and structure memory process 

and store the data structures. 

Rumbaugh's model is conceptual: no implementation 

currently exists. He intended it to be considered as a 

standalone multiprocessor, but it could be imbedded in a 

larger system (e.g., a large control flow processor). 

Rumbaugh's conceptual model consists of a number of 

major modules (i.e., hardware units at the same level of 

implementation as activation processors, which can operate 

concurrently). The major modules are: 

Activation Processors 

each holds and executes a single procedure activa- 

tion; 
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- Scheduler 

coordinates and assigns activations to processors; 

- Structure Memory 

holds data structures too large to fit in activation 

processors; 

- Structure Controllers 

operate on structures for the processors; 

- Program Memory 

holds procedures which can be called; 

Swap Memory 

holds procedure activations which are temporarily 

dormant; 

- Swap Network 

transfers procedure activations between Swap and 

Program Memories and Activation Processors; 

Peripheral Processors 

connect the machine to the outside world. 

The major modules are further subdivided into the 

basic modules, where a basic module is an asynchronous 

finite state machine which executes concurrently with 

and independently of all other modules. These are pipe - 

lined within the major modules. A similarity among all 

data flow hardware designs reviewed is the fundamental 

pipeline structure used to interconnect the various pro- 

cessors of the machine. An arbitrary major module (e.g., 

an Activation Processor) is broken down into a fairly 
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large collection of basic modules (such as Add, Multi- 

ply, Copy, Decoder, etc., in an Activation Processor), 

which are independent, pipelined units. Pipelining at 

this basic level assures a very high degree of concur- 

rency. Figure 15 is Rumbaugh's conceptual model, and 

Figure 16 is an example of the pipelined basic modules 

connected to form a major module (an Activation Processor). 

Rumbaugh feels the advantages of such a structure 

are related to simple, independent construction of the 

basic modules. Simplicity enables him to prove that 

the machine correctly implements the associated data flow 

language. Because the basic modules are simple, finite 

state, asynchronous, without side effects and interdepen- 

dencies, and guaranteed by proof fRUMB75] to execute well - 

formed data flow programs, they can be verified to do so 

without processor -memory interdependencies, deadlocks, 

and race conditions. 

Rumbaugh's conceptual model is an excellent reference 

for gaining a high-level view of data flow structures. How- 

ever, Dennis' IDENN80] tutorial report is better for a 

novice to data flow computing studying the detailed concepts 

for the first time. Hence, Dennis' paper will be utilized 

as a base reference to present the basic details of the 

data flow model. We will now terminate consideration of 

Rumbaugh's conceptual model (Figures 15 and 16) and study 

Dennis' data flow machine (Figure 17). 
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Dennis' basic instruction execution mechanism is de- 

fined as a series of six steps. The structure upon which 

the instruction cycle operates is a circular pipeline archi- 

tecture as illustrated in Figure 17. In terms of the struc- 

ture, the highest level of concurrency is obtained from the 

circular pipeline connecting the units. Lower levels of 

concurrency are obtained by pipelining each unit within the 

structure separately, particularly the operation units. 

1) the data flow program describing computation to 

be performed is held as a collection of activity 

templates in Activity Store; 

2) each activity template has a unique address which 

is entered in FIFO order in the Instruction Queue 

Unit; 

3) the Fetch Unit takes the instruction address from 

the Instruction Queue and reads the activity tem- 

plate from Activity Store, forms it into an operation 

packet, and passes it on to the Operation Unit; 

4) the Operation Unit performs the operation specified 

by the operation code on operand values and gener- 

ates one result packet for each destination field 

of the operand packet; 

5) the Update Unit receives result packets and enters 

the values they carry into receiver operand fields 

of activity templates as specified by destination 

fields; 

6 the Update Unit tests whether all operand and 
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acknowledge) packets required to activate 

destination instructions have been received; 

if so, it enters the instruction address into 

the Instruction Queue. 

Result 
Packet 

Update 

Operation 
Unit (s) 

Instruc- 
tion 

Queue 

Activity 
Store 

Operation 
Packet 

Fetch 

Read 
Only 

Figure 17 

Dennis' Instruction Execution Mechanism 

[DENN80] 

Circular 
Pipeline 

IAcknowledge signals and packets are discussed in 
[DENN80]. They are required by the need to verify 
that output arcs of an actor are free of tokens 
before firing. 
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The accesses to Activity Store are for the purposes 

of retrieving and updating activity templates, each of 

which holds all information required for a given computa- 

tion. Each activity template is addressable as a unit by 

address from the Instruction Queue Unit. All computation 

is performed within the operation units, separately and 

in parallel with accesses to the store. Although memory 

bottlenecks are still present among the Activity Store and 

each of the Update and Fetch Units, memory contention is 

minimized when compared to the method of mapping variable 

names to storage locations and intermixing each access to 

a variable's location with computation operations. 

As an example of memory accessing in Dennis' data flow 

machine versus a control flow machine, consider a simple 

addition operation. A typical addition operation in a 

high level control flow language will look as follows: 

A := B + C 

The following memory accesses will be required to calculate, 

store, and use this value across the connecting tube between 

the store and the CPU: 

the address of B; 

- the value of B; 

- the address of C; 

the value of C; 

- the address of A; 

the value of A (the result). 

-84- 



Additionally, each succeeding operation that requires 

the result will have to access A (two memory accesses 

per reference). This totals 6+2*n memory references to 

perform the operation and supply the result value to n 

succeeding operations. In Dennis' architecture, the 

Fetch Unit will access the Activity Store to obtain a 

packet of information including the operation code, the 

B -value, the C -value, and a field to 

of the operation. The add operation 

the operation without 

date Unit will update 

which are waiting for 

Activity Store. This 

n accesses, depending 

further access 

contain the result 

unit will perform 

to memory. The Up - 

destination fields in other packets 

the result of this operation in 

totals one access plus a minimum of 

upon the way in which result -packets 

are "addressed". Since destination fields are carried by 

the original packet, a total of l+n memory references 

should be accurate. The factor of 2 in the control flow 

value representing number of references is a direct result 

of mapping names in that model to memory locations. The 

linear factor in the corresponding data flow value is due 

to the value -oriented approach of that model. 

Concurrency can be obtained from this structure in 

many ways. Basically, however, the number of entries in 

the Instruction Queue measures the degree of concurrency 

in the program. The basic instruction execution mechanism 

can exploit concurrency immediately, since an entry may 
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be read from the Instruction Queue without waiting, just 

after the Fetch Unit has sent an operation packet to the 

Operation Unit. There is no need to wait until the pro- 

cessing for the instruction previously fetched is complete. 

A continuous flow of operation packets may flow from fetch 

unit to operation unit as long as entries remain in the 

Instruction Queue. 

Concurrency is also obtained from the circular pipe- 

line construction of the system. All its units may 

process concurrently. Here, the degree of concurrency 

obtainable is limited only by the degree of pipelining 

within each unit. 

Additional concurrency may be obtained by splitting 

units in the ring into multiple units which can operate 

concurrently. Eventually, the level of concurrency will 

be limited by the capacity of data paths between units 

of the ring. 

Finally, the data flow processor itself may be joined 

in a data flow multiprocessor system with others of its 

kind. This increases concurrency enormously, [DENN80] 

discusses a data flow multiprocessor and a supporting 

communication network system. 

3.2 A Functional Implementation 

Dennis' data flow structure in Section 3.1 utilized 

a circular pipeline, or ring communication network struc- 

ture. Though very popular, rings have the disadvantages 
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that delay grows linearly with size, and capacity is 

bounded in a fixed way [DENN80]. 

MagS's functional structure discussed in this section 

will be a tree -structured network for communication among 

processors [MAG080]. Specifically, a binary tree structure 

will be described. Advantages of such a tree are that the 

worst -case distance between leaves grows only as 2log2N, 

and many pairs of nodes are connected by relatively short 

data paths. A disadvantage is that traffic density at the 

root node may be too high [DENN80]. 

A further advantage of tree -structured networks is 

ease of extensibility; new processor elements may be 

absorbed and utilized rather easily into an existing 

structure. This is discussed in MagO's paper. 

For MagO's architecture, the programming language 

actually preceded and inspired the architecture. The 

architecture was devised to execute Backus' formal Func- 

tional Programming (FFP) language [BACK78]. Here is a 

case where the language design drove the architectural 

design. 

Backus [BACK78] blames the lack of programming power 

in conventional systems on current programming languages. 

He suggests an alternative: functional programming. 

Mago [MAG080] notes two reasons for the current difficulty 

in building high performance computers: 

- dominance of von Neumann languages and lack of 

computing models; 
-87- 



- practice of designing hardware and software 

separately. 

Mago then proposes an approach to the design of a high per- 

formance computer by basing it on the following properties: 

- highly concurrent, cellular architecture; 

- Formal Functional Programming Language (FFP) of 

Backus [BACK78]; 

- direct FFP-execution hardware. 

By directly executing the FFP source language, complex 

software, such as compilers and schedulers, are eliminated. 

These can be exceedingly complex for parallel computers, 

since the scheduling of parallel resources is a very complex 

task at the relatively high software level. In the function- 

al implementation, the responsibility for scheduling concur- 

rent operation is designed into the lowest hardware levels, 

and the responsibility for resource scheduling at software 

levels is eliminated. Eliminating these scheduler and com- 

piler resource responsibilities from the software level and 

designing them into the hardware enormously increases chances 

for a successful highly concurrent operation [MAG080]. In 

order to maximize concurrency, it should be implicit to the 

model and should be designed in the hardware level. 

magOls machine [MAG080] is a binary tree of cells (Fig- 

ure 18). Leaf cells are called L cells (Leaf, or Linear), 

and collectively are called the L array. Non -leaf cells are 

called T cells (Tree). All L cells are identical structures. 

All T cells are identical except for those connected as I/O 

ports. 
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Figure 18 

MagO's Binary Tree Structure 

IMAG080] 
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The number of cells is a linear function of the 

length of the L array. There is approximately one T 

cell for each L cell. The regularity of the construc- 

tion reduces hardware complexity and cost. The network 

can be expanded easily by adding new cells and enlarging 

the L array accordingly. Advancing VLSI technology 

favors this type of construction: larger and larger 

subtrees of cells can be put on a single chip as the 

technology improves. 

The L and T cells are kept small and simple. L cells 

have homogeneous architectures, and so do T cells (except 

for I/O ports). The architectural needs of each cell are 

meager: only a few dozen registers are required for local 

storage. 

Since FFP is the machine language of the conglomerate 

device, something must be said about the language and its 

relationship to the architecture. FFP is an applicative 

language: language expressions consist of nested appli- 

cations and sequences. An application is composed of 

an operator and an operand which specify computations 

to be performed. For example, 

<5,(*:<7,3>)> 

is a sequence consisting of two elements: 

- number 5; 

- nested application: *:<7,3>. 
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The nested application is called the innermost appli- 

cation, since no other applications are contained with- 

in it. the application consists of: 

- an operator, * ; 

- a sequence, <7,3>. 

In FFP, innermost applications are eligible for execution, 

and the execution of an innermost application is called 

a reduction, or a reducible application (RA). To execute 

an application, it is evaluated according to its operator 

and operands and replaced with a result expression. In 

the example: 

*:<7,3> is replaced by 7*3=21. 

Thus, the original sequence is reduced from <5,(*:<7,3>)> 

to <5,21>. 

FFP languages possess an important property which 

enhances their ability to incorporate concurrency: the 

final result of computation is independent of the order 

in which innermost applications are executed. This is 

called the Church -Rosser Property. 

An FFP program is a linear string of symbols which 

are mapped onto the L array from left to right. One 

symbol is assigned to each L cell, and empty cells can 

be interspersed. Expression separators (parentheses, 

etc.) can be omitted, since that function is satisfied 

by cell boundaries, integers are stored in place of closing 

application and sequence brackets to indicate nesting levels 

of symbols. 
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Since the FFP program is mapped onto the L array 

only, the L array serves as a store (without address 

registers, etc.). The T cells serve as a set of proces- 

sing elements. Their rules are somewhat interchangeable, 

since L cells have processing capabilities, and T cells 

may hold symbols temporarily during processing. Several 

consequences follow from the capability to place at most 

one FFP symbol in an L cell: 

L and T cells may be small and simple; 

- a network of practical size comprises many cells; 

sequences and applications are held by collections 

of cells, and reducing an RA involves the cooperation 

of several cells; 

parallelism can be exploited at both the FFP language 

level (among different RA's), and below the language 

level at the level of language primitives (such as 

operations). 

Appendix A discusses the execution mechanisms and shows an 

example of a mapping into the L and T cells. The parti- 

tioning of the machine for RA's is illustrated. An example 

of the apply -to -all (AA) operator is also shown. 

Placing FFP symbols together in their natural order 

groups all symbols in the L array into advantageous leaves 

on binary subtrees for processing. Operator, operand, and 

any two different elements of a sequence occupy disjoint 

segments of the L array. This distribution allows the 

processors to locate subexpressions easily, without the 
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need for complicated addressing schemes or software des- 

criptors. Since two different RA's occupy disjoint segments 

of the L array, independent execution of each is enhanced. 

How is the concept of "machine state" related to this 

structure? Certainly, the concept of states cannot be 

applied at the language statement and expression level as 

it is with control flow languages. Cells are coordinated 

by granting each cell finite -state control of its own oper- 

ations. The state of the cell is then determined by its 

communication events with its immediate neighbors. Since 

the state of the cell changes whenever its parent or both 

its children change states, the entire network is controlled 

by state changes which sweep up and down the tree structure 

based upon problem events during execution. A cell change - 

of -state is represented by the completion of its operation 

(e.g., add, multiply, etc.), and the subsequent signal sent 

to its parent (or child) that the result is ready. As one 

scans down the tree, the L cells will seem quite out of 

step with each other. But as the operations progress, up- 

sweeps in the tree will introduce higher and higher levels 

of synchronization. When the last change reaches the root 

node, the entire network is fully synchronized. However, 

even when fully synchronized, individual cells could be in 

any of a number of possible states, and a global state of 

the network cannot be defined. 

Mago discusses many additional properties of the 

structure. He includes one example which depends on a 
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specific FFP microprogram for the "Apply to All" 

operator. Since this example includes both a 

microprogram and some examples of copying operations 

to bring operators and operands together, which will 

increase concurrency, it seems worthwhile to include 

it as Appendix A, along with the description of some 

details of operation in which the example is embedded. 

No other examples (nor definitions) of microprogram 

operation were available. The remainder of this 

section merely summarizes the detail of Appendix A. 

Some of the additional properties discussed by 

Mag5 are: 

understandability in terms of the FFP language 

alone, without reference to machine detail; 

tradeoffs of simpler operation versus faster 

execution speeds when electing whether to 

divide the machine operation into well-defined 

cycles (see Appendix A and MagO's paper); 

- comparative ease of debugging FFP programs; 

- dynamic repartitioning of the network of 

T cells; 
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- microprogramming language (Appendix A); 

communication during processing; 

- resource and storage management; 

fundamental issues of program efficiency; 

problems remaining before the structure could 

be implemented into a full, history -sensitive 

computing system. 

Only a few highlights of these areas are discussed in 

the remainder of this section. MagO's paper IMAG080] 

should be referenced for complete details. 

Dynamically repartitioning the network for 

optimum usage of L and T cells is an interesting 

problem. Yet, Magi) points out that the entire 

process of repartitioning is unnecessary and in 

general may not be worth the effort. At the 

initiation of execution, each RA has a subtree of 
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the entire network automatically allocated to it. The 

subtree is defined by the L subarray containing the RA. 

Efforts to repartition the T part of the network to ob- 

tain "optimal" subtrees can never diminish the initial 

allocation of resources available to RA's, and a set of 

subtrees with "optimal" properties for problem solution 

should exist. However, actually performing this reparti- 

tioning does not seem possible at the present time. More- 

over, the natural partitioning process of the entire net- 

work (itself a "tree machine") into a set of disjoint sub - 

trees is easily accomplished: 

- it is automatic: it's completely determined by the 

FFP expression and its position in the L array; 

- it is dynamic: it's done once in each machine cycle 

and marks the changes in FFP program text; 

- it is fast: only one upsweep and one downsweep is 

required. 

The mode of communication among L cells during proces- 

sing is based on the tree structure. Information "climbs" 

the tree limbs to the roots of the subtrees of the RA's. 

From these roots information is broadcast to other L cells 

of each RA. L cells need only specify what to send and 

what must be received; the rest of the communication pro- 

cess is automatic. 

Communication among L cells is also related to the 

logarithmic distance properties of the tree, since com- 

munication eventually is accomplished at the root nodes 

of RA's. Queuing occurs at higher and higher levels, so 
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that movement through the root nodes is eventually 

sequential. 

The only kind of resource management needed in 

the system is a form of "storage" management. This 

occurs only when additional L cells may be needed for 

an RA result. The L cells are obtained by moving L cell 

contents around to reposition empty cells, since the whole 

machine participates, this is a global process. The T 

network functions as an agent with global perspective. 

Storage management is highly concurrent, dynamic, automatic, 

and integrated: it is exclusively a function of the hardware. 

Efficient parallelism is aided by the representation 

of the FFP expression in the L array. Representation 

provides the opportunity for parallelism both at and below 

the FFP level. Parallelism is maintained during execution 

by copying expressions, a process which is not advantage- 

ous on control flow machines. In this case, copying opti- 

mizes parallelism, which will then regain all the lost 

copying time many times over, or, at least, so Mag45 claims 

in Appendix A. 

Many problems remain to be solved for a functional 

architecture such as Ma,6's. Among those are the following: 

- suitable I/O and file systems are needed; 

- a method for transparently using auxiliary memory 

is needed; 

- suitable parallel algorithms need to be found. 
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3.3 Parallel Taxonomies 

Parallel taxonomies in control flow models classify 

computing structures and provide a rough gauge to measure 

concurrent operation. These taxonomies will have to be 

extended to encompass highly concurrent models. An ex- 

tended taxonomy will need to retain the property of 

serving as a measure of concurrency. 

3.3.1 A Control Flow Taxonomy 

Both [FLYN72] and [KUCK78] discuss parallel taxonomies 

for the control flow model. [KUCK78] is more useful, since 

it was originally derived from [FLYN72] and more carefully 

defined the control element and its input and output 

streams. The taxonomy discussed here is Kuck's [KUCK78]. 

Kuck defines an abstract processing unit called a 

"global control unit" (GCU): This is a hardware structure 

used to prepare instructions for sequencing the system. 

The GCU inputs an arbitrary number of undecoded instruc- 

tion streams and outputs an arbitrary number (independent 

of the number of inputs) of decoded execution streams. 

Only "instantaneous descriptions" of the GCU are considered, 

or time intervals of just a very few clocks. Input and 

output lines refer to (practically) physically simultane- 

ous events. Figure 19 graphically illustrates a GCU. 
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Figure 19 

Global Control Unit [KUCK78] 

(decoded) 
Execution 
Streams 

Kuck categorizes GCU's into four types as shown 

in Table 3. He then extends these four types to 

sixteen by considering combinations of scalar and array 

inputs and outputs. Table 4 lists a few of the scalar/ 

array classifications. All are ultimately based on the 

control flow model. Kuck states the point of such a 

categorization is two -fold: 

it is useful to categorize machines based on 

GCU organizations; 

- system capacity is strongly related to taxonomical 

categories. 

3.3.2 An Extended Taxonomy 

Kuck's taxonomy assumes instruction and execution 

streams in the conventional sense of multi -threaded 

instruction streams and lock -step data streams. Each 

computer in the system is assumed to be some form of 

control flow processor. Eventually, each computer is 

assumed to operate sequentially on a conventional control 

flow instruction stream using conventional control flow 
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GCU Type 

SISE 

Meaning Example(s) 

Single Instruction conventional 

Single Execution uniprocessor 

SIME Single Instruction CDC 6600 CPU 

Multiple Execution (multifunction 

processor) 

MISE Multiple Instruction CDC 6600 PPU's 

Single Execution (uniprocessor with 

instruction -level 

multiprocessing) 

MIME Multiple Instruction conventional 

Multiple Execution multiprocessor 

system 

Table 3 

Basic Types of Global Control Units (Taxonomies) 

[KUCK78] 
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GCU Type Meaning Example(s) 

SISSES Single Instruction, Scalar uniprocessor 
(same as SISE) 

SISSEA 

Single Execution, Scalar 

Single Instruction, Scalar ILLIAC IV 

Single Execution, Array 

SIASEA Single Instruction, Array Burroughs BSP 

Single Execution, Array TI ASC 

CDC STAR 

Table 4 

Some Types of Array GCU's 

[KUCK78] 
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techniques. Concurrency is usually primarily derived 

from the whole. of the computer grouping, as opposed to 

the actual groupings of processors within each computer 

of the external network. Each atomic machine usually 

doesn't contribute too much concurrency, unless a rela- 

tively expensive CPU is involved that pipelines parts 

of the control system and/or possibly operates on multi- 

ple data streams as an array processor does. 

In highly concurrent models no atomic computer in 

any machine configuration can be assumed to be configured 

as a conventional control flow machine. Any single com- 

puter can be expected to consist of multiple processing 

elements, usually a comparatively large number when con- 

trasted with conventional control flow machines. In 

some sense, each computer could itself be considered to 

be an MIME machine in Kuck's sense, but the ideas of 

"multiple instruction streams" and "multiple data streams" 

are much different in highly concurrent systems, where 

the concept of machine states are not at all the same. 

Whereas Kuck's taxonomy dealt primarily with two variables 

(instruction streams and execution streams) in a rela- 

tively limited sense, highly concurrent taxonomies will 

have to deal with a very large number of variables. 

Kuck's taxonomy also contents itself with vague 

categorizations, differentiating only between "single" 

and "multiple" configurations. For the type of architec- 
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tures it classifies, this is wholly adequate. But for 

highly concurrent architectures, even a rough classifi- 

cation is often going to require a more enumerative 

approach. For example, there can be a wide difference 

between a "multiple binary tree processor network" con- 

taining three processors and another containing fifteen. 

An extended taxonomy embracing highly concurrent 

architectures should divide the implicitly sequential 

and implicitly concurrent single computer configurations 

into disjoint sets. Conventional control flow systems 

are adequately described by a scheme such as Kuck's. 

A more embracing scheme is needed for highly concurrent 

machine configurations. In the highly concurrent category, 

the problem then reduces to one of identifying performance 

parameters and classifying configurations using these 

parameters. 

The remainder of this section will discuss a few 

parameters that might prove important in determining the 

performances of highly concurrent machines. A simple 

classification will be suggested based upon the parameters. 

The set of parameters is in no way implied to be complete. 

It is clear from the literature that much work needs to 

be done in this area, and it could well be found that a 

"complete," or even a "preferred," set of parameters can- 

not be identified. For our purposes, we will assume the 

five parameters chosen are somehow "best" in the sense of 

identifying an optimum set of parameters. 
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Following is a list of parameters that seem impor- 

tant in classifying performance on a single highly con- 

current computer: 

a simple statistical enumeration of the number of 

processors in the internal computer network; 

the type of internal network organization utilized 

(assume pipelined or binary tree organizations 

for our purposes); 

the degree of internal processor interconnectedness; 

- whether the internal network consists of homogeneous 

or nonhomogeneous processors in terms of instruction 

rates, etc.; 

some roughly quantitative measure of local to global 

memory in the internal network. 

A simple statistical enumeration of the number of pro- 

cessors in a network reveals something about the processing 

power of a network. Adding processors to a network will 

usually increase processing power up to some point, depen- 

ding upon the nature of the network. 

The type of network organization utilized in the 

computer will be important. Binary tree organizations 

have properties not shared by pipelined organizations, 

for example. Depending on the computing situation, the 

choice of network organization could be very important. 

For example, binary tree organizations experience in- 

creased queuing and processor contention problems for 
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processors higher in the tree, near the root node. 

An important set of subparameters for binary tree 

organizations would include such things as depth 

of the tree and the way in which the application 

would be implemented to use the tree. 

The degree of processor interconnectedness 

is a measure of the number of other processors 

in a network with which a typical processor can 

directly communicate. In a binary tree network, 

a typical processor can directly communicate with 

three others, its parent and two children. In 

a pipelined network, a typical processor can 

communicate with two others. Of course, the 

root node in a binary tree network can only 

communicate with its two children, and certain 

processors in a pipelined network will only be 

able to communicate with one other processor; 

however, the degree of interconnectedness will 

measure statistical mode values and ignore the 

exceptions. 
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Measurements of interconnectedness will 

also have to account for increased complexity 

caused by adding interconnections. This effect 

can often negate any gains from increased 

interconnectedness. 

Whether the network processors are all of 

equal types, with equivalent processing power in 

equivalent networks, may be a parameter of 

importance. The effects of varying such things 

as differing processor levels within a network 

configuration will need to be understood. 

Local versus global memory accesses will 

be an important measure, since memory contention 

on such a computer will need to be understood. 

Perhaps one measure could be something as simple 

as a ratio of local to total memory words, 

where the total number of memory words in 

-106- 



the computer is the sum of local and global memory word 

counts: 

where 

Then, 

have: 

r = 
L+g- 

= count of local words; 

g = count of global words 

a machine with only local processor memory would 

= 
ZTg' 

g = 0; 

r = 1. 

A computer with only global memory would have: 

r = 0. 

There could be many different levels of "global" memory 

in a system (i.e., memory accessible to all processors in 

the network versus memory accessible to more than one but 

less than all processors). 

Finally, in a highly concurrent system, multiple 

highly concurrent computers can be connected to an exter- 

nal multiprocessing network. A whole set of new parameters 

can be determined for this second network. Many authors 

discuss this possibility of extensible machines and net- 

works (i.e., [GUR780]). To simplify this section, the 

example to follow will consider only a single highly 

concurrent computer. 

As an example, one possible type of taxonomy might 

consist of strings of text identifying combinations of 
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the five parameters discussed previously. Suppose a 

series of highly concurrent computers were available 

with combinations of the parameters as follows: 

three, seven, or fifteen processors; 

- binary tree organization; 

degree of interconnectedness = 3; 

processors of two levels will be available, with 

Level 2 "more powerful" than Level 1 (assume, 

however, that a given internal computer network 

will be composed of processors of either Level 1 

or Level 2 types); 

no global memory in the computer, so 

r = 1. 

Table 5 lists the kind of rough taxonomy that would result 

from these considerations. 

# Processors 
Processor Level 
1 2 

3 

7 

15 

3T311 3T321 

7T311 7T321 

15T311 15T321 

Table 5 

Example of (Partial) Highly Current Taxonomy 
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In Table 5, each taxonomical string in the table 

at the intersection of a row and column identifies a 

highly concurrent computer configuration, based on 

the variance of just two parameters (number of pro- 

cessors and processor level). A 7T311 configuration, 

for example, consists of 7 processors, binary tree 

configuration, degree of interconnectedness = 3, Level 

1 processors, and no global memory (r=1). 

In highly concurrent computers and networks 

there are going to be many interacting factors which 

will determine performance classifications. Taxonomies 

will probably be covered by statistical tables in 

book -sized publications. It will require many years 

of research with these networks to be able to make 

meaningful analytical generalizations about the 

performance within a given taxonomical family when 

the external network and internal network parameters 

are varied. In fact, just the determination of a 

relevant set of parameters will be a very difficult task. 

3.4 Comparing Highly Concurrent and Control Flow Computing 
Implementations 

This report previously compared highly concurrent and 

control flow models in terms of concurrency and history 

sensitivity. This section will compare the models in a 
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few implementation areas. A little reflection in each 

area will convince the reader that each area relates in 

some way to the properties of concurrency and history 

sensitivity in the underlying computing models. Some 

important differences between the implementations which 

will be briefly reviewed in this section are: 

- naming conventions; 

flow of data values; 

- side effects; 

parallel taxonomies. 

A control flow implementation equates variable names 

with storage locations. This is quite different from 

methods used in any highly concurrent implementation. A 

data flow machine assigns variable names to arcs on the 

program graph, and the functional machine avoids names 

completely by assigning values to processors in the L -Array, 

initially, and allowing subsequent subtree partitioning 

operations to keep intermediate and final values separately 

identified. 

A control flow machine has a distinct disadvantage 

when compared to highly concurrent machines since its 

method of naming variables necessitates constant processing 

of two types of values: names (or addresses) and data 

values. This becomes quite costly and complex since each 

of these types must be processed through the von Neumann 

bottleneck. None of the highly concurrent machines suffers 

such redundancy; they process all data values directly. 
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However, none is history sensitive, either. For a data 

flow machine the naming convention is highly restrictive, 

since a (receiving) variable name can be used at only one 

place in a source program (the single -assignment rule). 

In a control flow machine named data variables "stand 

still" in static memory locations, while a sequence of 

operations are performed upon these names and the associ- 

ated data values. In highly concurrent machines the vari- 

ables "move" through the computing networks and processors 

dynamically, and no static memory mapping is done to 

establish named locations for values. This is not as 

different from control flow computing as it may appear at 

first glance. Values also "move" from memory, to registers, 

to arithmetic processors, etc., during computation in a 

control flow machine. During computations, there are 

sequences of time periods when values associated with 

named variables in assigned memory locations are undefined, 

as computation proceeds with associated variables in (remote) 

processors. But control flow computing demands that final 

values be stored in memory; no highly concurrent machine 

requires this. 

Only a control flow machine experiences the phenomenon 

known as "side effects". Since naming and storage of data 

values is distinctly separate from associated processing, 

shared and multiply -mapped memory locations can be changed 

unexpectedly from the perspective of one machine routine by 
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the processing of another. This occurs in parajlel 

processing of storage locations shared among routines, in 

subroutine parameter -name mappings to variables in loca- 

tions common to both calling and called routines, and in 

other types of common storage mappings. Highly concurrent 

machines do not display these types of side effects. 

Taxonomies in control flow computing classify the 

quantity of concurrency in parallel operations. The types 

of hardware structures, data streams, data flow, etc., are 

all important in these classifications. Control flow com- 

puting is implicitly sequential, so a parallel taxonomy 

of this sort is extremely important. In implicitly con- 

current machines, however, many more parameters are in- 

volved, and highly concurrent taxonomies will probably 

ordinarily consist of multiple tables of statistical values 

and enumerations. 
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CHAPTER 4 

Conclusion 

Most authors feel as Treleaven [TREL79] does: 

"data flow systems are a fundamentally new style of 

(tightly coupled, distributed) computer which could 

eventually supersede the conventional general purpose 

(von Neumann) computer." Yet, in the conclusion of 

that report, a painfully obvious note is taken of the 

current state of the art in highly concurrent computing: 

"most research has concentrated on the programming and 

evaluation of numerical algorithms. Little study has 

been made of how activities such as I/O (or) semi- 

permanent storage (file storage) should be controlled 

or programmed in a data flow computer, using a data flow 

language. It is unclear whether it will be possible to 

practically widen applicability of data flow computers. 

The data flow approach may be restricted to parallel 

(numerical) algorithms, or it may prove possible to find 

a suitable synthesis of the data and control flow approaches." 

The history sensitivity property of control flow 

computing is like a two-edged sword. The undesirable 

properties of side effects, memory accessing bottlenecks, 

etc., are there largely because of the control flow 

implementation of this property. Yet, commercial business 

computing, text handling applications, efficient file 
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handling, etc., would not be possible today without 

this property. It would seem that much research remains 

to be done on models, properties of models, and data 

operations in models in general before any conclusion 

about the property can be reached. Perhaps a satisfac- 

tory mix of history sensitivity, concurrency, and non - 

numerical data operations has yet to be combined in the 

right kind of model. 

The very lack of history sensitivity may be the 

primary reason for the strengths of the properties of 

algebraic representation and concurrency in the data flow 

and applicative models of this report. Certainly in the 

data flow model, the assigning of a variable name to an 

arc aids concurrency and representation at 

sensitivity. In numerical processing it may be worth the 

price to trade these properties off in this way, but in 

non -numerical processing history sensitivity seems essential. 

The Functional Programming Language of Backus illus- 

trates the strength of the algebraic representation pro- 

perty very well. This kind of power for numerical pro- 

cessing certainly can't be obtained with traditional 

approaches. However, the need for this kind of symbology 

in more pragmatic commercial areas of computing is question- 

able. If the language were too mathematical for file 

processing, for example, it might discourage a large pro- 

portion of users. 
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Table 6 [MEAD80] combined with memory locality and 

improved parallel algorithms for highly concurrent struc- 

tures illustrates concurrency and its obvious advantages. 

The figures were derived from Mead's model for memory 

access time (Section 1.2.1). Gostelow and Thomas [GOST80] 

present a performance study of data flow architectures. 

Figure 20 summarizes their findings by plotting number of 

processing elements versus time. 

Techniue Tyical Seedu Factor 

Memory Hierarchy 

Pipelining 

Instruction Overlap 

Special -Purpose 

Multiprocessors 

Table 6 

10 

2 

n 

<n 

Speedup Factors (n Processors) [MEAD80] 

Time 

(MIN) 

Figure 20 

Speedup Curve for Data Flow Speedup Experiments of [GOST80] 
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If there is one central message the author of this 

paper would like to convey, it is that research of com- 

puting models for all areas of computing (i.e., numerical, 

non -numerical) is going to be necessary in the VLSI era. 

The problems of language definition and development in this 

era will not be restricted to control flow models, and 

language developers will have to assume a more innovative 

niche in the total computer design process than they have 

in the past. This problem is discussed in Chapter 1. 

The 1977 Turing Award Lecture of Backus [BACK77] 

provides an important framework for this report. It seems 

fitting to end the report by referring to another such 

lecture, the 1980 Turing Award Lecture of C.A.R. Hoare 

[HOAR81]. Professor Hoare was hired by one of the most 

powerful and influential organizations in the world, the 

United States Department of Defense, in 1975 to provide 

consultation on their ADA language. His warnings of im- 

mense complexity and too much feature in ADA have since 

gone ignored, though as he says, his consultant's pay goes 

on. He issues warnings of technical catastrophies that 

could happen due to the unreliability of such a language 

implementation. But the originators and designers of ADA 

seem destined to commit the same mistakes that language 

designers have made in the past when they lost their ways 

in the trees of language details and features while ig- 

noring the advances of the forest of machine architecture 

and language representation. In frustration and protest 

-116- 



he ends his lecture with the allegory which will end this 

report. The following section is quoted from [HOAR81]. 

4.1 The Emperor's Old Clothes [HOAR81] 

Many years ago, there was an emperor who was so ex- 

cessively fond of clothes that he spent all his money on 

dress. He did not trouble himself with soldiers, attend 

banquets, or give judgment in court. Of any other king or 

emperor one might say, "he is sitting in council," but it 

was always said of him, "the emperor is sitting in his 

wardrobe." And so he was. On one unfortunate occasion, 

he had been tricked into going forth naked to his chagrin 

and the glee of his subjects. He resolved never to leave 

his throne, and to avoid nakedness, and he ordered that 

each of his many new suits of clothes should be simply 

draped on top of the old. 

Time passed away merrily in the large town that was 

his capital. Ministers and courtiers, weavers and tailors, 

visitors and subjects, seamstresses and embroiderers, went 

in and out of the throne room about their various tasks, 

and they all exclaimed, "how magnificent is the attire of 

OUT emperor." 

One day the emperor's oldest and most faithful minister 

heard tell of a most distinguished tailor who taught at an 

ancient institute of higher stitchcraft, and who had devel- 

oped a new art of abstract embroidery using stitches so 
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refined that no one could tell whether they were actually 

there at all. "These must indeed be spendid stitches," 

thought the minister. "If we can but engage this tailor 

to advise us, we will bring the adornment of our emperor 

to such heights of ostentation that all the world will 

acknowledge him as the greatest emperor there has ever been." 

So the honest old minister engaged the master tailor 

at vast expense. The tailor was brought to the throne room 

where he made obeisance to the heap of fine clothes which 

now completely covered the throne. All the courtiers waited 

eagerly for his advice. Imagine their astonishment when 

his advice was not to add sophistication and more intricate 

embroidery to that which already existed, but rather to 

remove layers of finery, and strive for simplicity and 

elegance in place of extravagant elaboration. "This tailor 

is not the expert that he claims," they muttered. "His 

wits have been addled by long contemplation in his ivory 

tower and he no longer understands the sartorial needs of 

a modern emperor." The tailor argued loud and long for 

the good sense of his advice but could not make himself 

heard. Finally, he accepted his fee and returned to his 

ivory tower. 

Never to this very day has the full truth of this 

story been told: that one fine morning, when the emperor 

felt hot and bored, he extricated himself carefully from 

under his mountain of clothes and is now living happily 

as a swineherd in another story. The tailor is canonized 
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as the patron saint of all consultants, because in spite 

of the enormous fees that he extracted, he was never 

able to convince his clients of his dawning realization 

that their clothes have no emperor. 
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APPENDIX A 

Some Details of Operation and an Example of Mag6's 
Functional Architecture 

This appendix reproduces two sections of [MAG080] 

in their entirety: "Some Details of Operation," and 

"Efficiency of Program Execution: Fundamental Issues." 

The first section includes an example microprogram 

(Apply to All). It's very difficult to summarize these 

sections, and the example cannot be replaced without 

further knowledge of the microprogram architecture, which 

was not available to the author of this report. For 

those desiring better detail than the sketchy summary 

in Section 3.2, this appendix will provide full expl4n- 

ations from the source document. The remainder of this 

appendix is taken directly from [MAG080]. 



Some Details of Operation 

Decomposition of FFP Programs. 

As the computation unfolds, each RA produces changes, 

often large ones, in the FFP expression. Consequently, 

it is imperative that the machine be able to decompose 

anew in each machine cycle this ever-changing FFP text. 

The need for decomposition arises in two different situ- 

ations. First, at the beginning of each machine cycle 

the whole FFP expression held by the L array is considered, 

and all RAs in it must be located. Later, in the process 

of executing RAs, certain subexpressions of these appli- 

cations, such as their operators, operands, or subex- 

pressions thereof, must be located. 

Partitioning the Network. 

Once an FFP expression is placed in the L array, L 

cells (or collections of L cells) may be thought of as 

being dedicated to FFP symbols (or FFP subexpressions), 

at least for the duration of one machine cycle. The idea 

of also dedicating entire T cells to computations is quite 

an obvious next step, but setting up a correspondence be- 

tween L and T cells with just the right properties does 

not seem possible. 

The example in Figure A.2 shows how the machine 

dedicates the resources of T cells to computations by 

breaking each T cell into at most four parts, and allocating 
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these parts to computations. The example reveals two 

properties of the partitioning: (1) different RAs "own" 

disjoint sets of resources (L cells and parts of T cells); 

and (2) these resources are always connected to form 

binary trees, with L cells as their leaves. The first 

property makes a practical possibility out of a theore- 

tical one: now all RAs have the necessary resources to 

begin their execution simultaneously, as permitted by the 

Church -Rosser property of FFP languages. The second pro- 

perty means that each RA has a small "tree machine" all 

to itself (with all the advantages this implies), just 

as if it were alone in the original processor --parti- 

tioning the original network never diminishes the quality 

of resources made RAs. 

The process of partitioning the original network 

(itself a "tree machine") into a collection of disjoint, 

smaller "tree machines" is (1) automatic --it is completely 

determined by the FFP expression and its placement in the 

L array; (2) dynamic --it is done once in each machine cycle, 

to keep up with the changing FFP program text; (3) fast -- 

it takes one upsweep and one downsweep. 

Programming a Collection of Cells. 

Having been located in the L array and given all the 

resources it needs, the RA is now ready to begin execution. 

The definition of the FFP language gives little guidance 
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here: it only specifies what the result expression 

should be, given the operator and the operand expres- 

sions. The problem is to devise a way to cause a col- 

lection of cells (more precisely: L cells and parts of 

T cells) to transform the RA into the result expression. 

This collection of cells, allocated to reduce the RA, is 

itself a cellular computer: its processing resources are 

evenly distributed over the cells, and no cell in it can 

ever have complete information about what is going on 

during execution. 

What is needed is a suitable programming language. 

The programmer, writing programs in this language, would 

prepare a plan for all the cells involved to act in con- 

cert. When executing such a program, the elementary 

actions of the cells (each cell using local information 

only).would combine harmoniously and effectively to bring 

about the desired (global) transformation of the RA. 

A programming language capable of serving such a 

purpose, and able to define a large class of transforma- 

tions of FFP expressions, has been described. It is 

referred to as the microprogramming language partly because 

it is below the level of the FFP language (which is the 

"machine language" of the network), and partly because it 

does resemble conventional microprogramming languages. 

The following are important characteristics of this micro- 

programming language: 

1. Microprograms normally reside outside the network of 

cells, and are brought in only on demand. This helps 
-A-3- 



keep both L and T cells small. It also provides for 

flexibility: FFP language primitives are easier to 

change, different users may have different sets of 

primitives, and so on. 

2. Once a microprogram is brought into the processor, it 

is placed in the L cells holding the RA. Each L cell 

receives only a fraction of the microprogram: just 

what is necessary to make its own contribution to the 

total computation. (Subexpressions of an RA are found 

by the relevant parts of the microprogram through, 

again, a form of program decomposition.) 

3. The purpose of the microprogram is to transform the 

RA into the result expression. Therefore, the micro- 

program is aimed explicitly at contents 

of L cells, and uses the T cells (or parts thereof) 

only implicitly, mostly for purposes of communicating 

among L cells. For example, if one of the L cells 

wants to broadcast some information to all other L 

cells involved in reducing the same RA, it executes 

a SEND instruction, explicitly identifying the infor- 

mation item to be broadcast. As a result, the infor- 

mation item is moved automatically to the root of the 

RA's tree, and from there it is broadcast to all L 

cells of the RA, again automatically. 

4. The microprogramming language is able to exploit the 

potentials for low-level parallelism offered by the 

fact that there is at most one FFP symbol per L cell. 
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When writing a microprogram, one decomposes the 

required transformation into elementary computations, 

many of which can then be executed concurrently by 

different cells. As an.example, consider the execu- 

tion of an FFP primitive whose purpose is to normalize 

a vector of numbers by dividing each component of the 

vector by the Euclidean length of that vector. Assuming 

that the vector is represented as an FFP sequence of 

numeric atoms, a microprogram can prescribe the follow- 

ing execution sequence: (a) for each i the cell holding 

xi computes (xi)**2--these computations are done simul- 

taneously for every i; (b) for each i the L cell holding 

xi sends(xi)**2 up into the tree --these are done simul- 

taneously for every i; (c) in one upsweep the sum of 

squares is produced in the root cell of the RA's tree 

(whenever a T cell receives two numbers from its chil- 

dren, it performs an addition, and sends the sum to 

its father); (d) the sum of squares is broadcast to 

every L cell of the RA, and each L cell holding xi for 

some i accepts this sum; (e) each L cell' holding xi 

for some i computes the square root of the sum just 

received, and finally divides xi by this number. These 

computations can again be carried out simultaneously, 

producing the desired normalized vector. 

5. The microprogram is written before execution begins 

(the FFP language does not allow changing the set of 

primitives during execution), and consequently it must 

be able to deal with aspects qf the computation that 
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become known only at run-time. For example, the 

primitive may want to copy a subexpression of the 

operand whose size becomes known only at run-time, 

or it may want to select the ith element of a se- 

quence where i is a parameter supplied at run-time. 

As an example, Figure A.3 shows the innermost application 

(<AA,+>:«1,11>,<2,12>,<3,13>,<4,14»), which produces, 

as its result expression, <(+:<1,11>),(+:<2,12>),(+:<3,13>) 

(+:<4,14>)>. (AA stands for "Apply to All.") It also 

shows, in an informal manner, how the microprogram speci- 

fies the result of reducing this application. The micro- 

program is written in five separate parts. Parts 1 and 

2 (received by cells 3 and 5, respectively) rewrite the 

FFP symbol and leave the nesting level number unchanged. 

Part 3 (received by cell 8) keeps the contents of the 

cell unchanged. In addition, the FFP symbol contained 

in this cell is marked with a symbol chosen by the writer 

of the microprogram (in this case with "x"). With the 

help of "x", Part 5 will be able to refer to the contents 

of this cell. 

Part 5 is received by all occupied cells between 9 

and 23, inclusive. These cells hold the operand of the 

innermost application in question. First, the whole 

expression is marked with the symbol "y" (this symbol 

must be different from the one used in Part 4, which 

was "x"). Among the effects of marking (executing a 
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MARK statement in the microprogram) is placing the number 

i in all L cells holding the ith element expression of 

the marked sequence. Thus, although every occupied cell 

between 9 and 23 receives exactly the same microprogram, 

the microprogram can test the value of the integer gener- 

ated by marking, and can thereby ascertain what part of 

the operand expression it is working on. Hence the micro- 

program can do different things to different parts of the 

operand expression --again an example of program decompos- 

ition. In this particular case, the results of marking 

are used to pinpoint cells 14, 18 and 21, and execute in 

each a so-called INSERT statement of the microprogramming 

language, the effect of which is a declaration of what 

should be inserted on the left or 

held by the cell in question. In 

insert an application symbol with 

right of the FFP symbol 

our example, we want to 

level number 1, followed 

by the parameter of AA. Since only at run-time will it be 

known what the parameter of AA is (in our example it is 

"+"), we mark this parameter with "x" so that the INSERT 

statement can refer to it symbolically. The INSERT state- 

ment simply initiates a sequence of events, which then 

take place automatically: getting the length of the ex- 

pression to be inserted (which is determined by the MARK 

statement) to the place of insertion, requesting that 

number of empty cells, producing the required number of 

empty cells by moving the contents of L cells, and finally 

moving the expression to its final destination. 
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Communication during Processing. 

The pattern of communication among L cells during 

processing is simple and always the same: information 

items are sent to the root of the RA's tree, and from 

there they are broadcast, one after another, to every L 

cell of the RA. The L cells have to specify only what 

they want to send and what they want to accept, and the 

rest of the machinery operates automatically. Sending 

every information item through the root node of the tree 

means that the logarithmic distance characteristics of 

the tree are well utilized, especially when L cells far 

from each other have to communicate. It also means that 

the time taken to move a large number of items is propor- 

tional to the number of items moved through the root node. 

The tree used this way is a very simple routing network: 

the upward moving items queue up throughout the tree, 

waiting to move through the root node sequentially. In- 

vestigations have been done into ways of using cross con- 

nections in the tree network to speed up communication in 

this kind of machine (i.e., without the use of addresses). 

Resource Management. 

It often happens that the result expression cannot be 

produced in the L cells that held the initial RA, because, 

for example, the result expression is too long. In such 

cases execution can continue only if sufficiently many 

empty L cells are made available to the RA in question. 
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If the required number of empty cells is available some- 

where in the L array, they can be made available to the 

RA in question by moving the contents of occupied L cells, 

thereby repositioning the empty cells. This process is 

called storage management. This is the only kind of re- 

source management needed in the processor because whenever 

an RA has all the L cells it needs, it is guaranteed to 

receive, with the help of the partitioning mechanism, all 

the T cells (or parts thereof) it needs. 

Storage management in the machine is global, meaning 

that the whole machine participates in it, so that as many 

requests for insertions can be satisfied as possible, and 

all empty cells in L can be utilized to satisfy these re- 

quests. The T network is used to determine how far and 

in what direction each FFP symbol should be moved in L to 

position the required number of empty cells in the right 

places relative to the FFP symbols. Although each T cell 

works with local information only, on this occasion the 

T network as a whole acts as an agent with a "global under- 

standing" of the situation in L. 

Storage management in the machine is highly concurrent: 

all FFP symbols move simultaneously, under local control, 

to their destinations in L. (If the connections between 

L cells are used, the process of repositioning the FFP sym- 

bols is similar to, although more general than, the oper- 

ation of a shift -register: different FFP symbols may move 

in different directions and by differing amounts before 

coming to a halt.) -A-9- 



Storage management in the machine is dynamic: it 

is done once in each machine cycle. Thus, the L cells 

released in one machine cycle can immediately be reallo- 

cated to other subcomputations for the next cycle, and 

the processor can immediately attempt to satisfy requests 

for empty L cells made during the current machine cycle. 

Storage management in the machine is automatic: 

initiating it requires no action on the part of the FFP 

programmer, only on the part of the writer of the micro - 

programs. Moreover, no system software is involved: 

storage management is exclusively the function of the 

hardware. 

Finally, storage management in the machine is inte- 

grated: being the only resource management mechanism in 

the machine, it manages storage at once among different 

user programs, among different subcomputations (RAs) of 

the same user program, and also on the lowest level, among 

subexpressions and individual symbols of a single RA. 
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Efficiency of Program Execution: Fundamental Issues 

In trying to grasp the peculiar qualities that set 

this machine apart from all others proposed to date, one 

is led to consider two issues, both of which seem to have 

a decisive influence on the operational characteristics 

of the machine. 

The first peculiarity is the representation of the 

FFP expression in the L array. It almost inevitably 

leads to the patterns of communication employed in the 

machine, and most of these communications may be viewed 

as efforts to maintain the representation. For example, 

some of the most time-consuming aspects of executing an 

RA are the rearranging of the FFP expression (e.g, copy- 

ing a subexpression from one place to another) and the 

often accompanying storage management. These are always 

aimed at bringing the operator and operand expressions 

together, or producing operand expressions in the syntac- 

tic form required by some operator to be applied later. 

(There is never any need to explicitly communicate the 

result of an RA --it is just left in L wherever it is 

produced.) The primitive operator AA, used in Figure A.3 

illustrates one means of forming new applications by 

bringing operator and operand expressions together. Of 

course, the machine needs no special planning to accom- 

plish this (other than faithfully executing RAs): the 

FFP programmer simply composes FFP operators in such a 

way that the intended expressions are brought together. 

-A-11- 



The representation also plays a crucial role by 

providing opportunity for parallelism both on and below 

the FFP level. The connection seems inherent: parallel- 

ism is made possible by the representation, which, in 

turn, is maintained by copying expressions. Therefore 

literal copying, eschewed on the von Neumann computer, 

is tolerated here: it unlocks parallelism, which can be 

used to regain, often many times over, the time "lost" 

in copying. This remark is not based on vague hopes of 

being eventually justified by some future implementation. 

Credible statements about the complex interaction between 

the positive forces of parallelism and the negative forces 

of literal copying --pitted against each other in every 

machine cycle --can be substantiated by detailed quanti- 

tative reasoning about programs executing on the machine. 

The second peculiarity of the machine is its ability 

to handle complex operands (i.e., data structures) within 

innermost applications. (In this respect, the machine 

appears to differ greatly even from the data flow computers 

recently surveyed by Dennis.) The FFP language places no 

limitations on what a language primitive can do to its 

operand. The machine, on the other hand, does have some 

inherent limitations. Because of the finiteness of its 

cells, for example, it cannot "see" the details of sub - 

expressions nested too deeply in the operand and operator. 

Despite such limitations, the machine can efficiently 

implement, and the microprogramming language can express 
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as FFP primitive operations, a large class of transfor- 

mations on operand expressions. This class includes 

transposing a square matrix of atoms, performing an n - 

point Fourier transformation, finding the kth largest 

element of a set, and determining whether two arbitrary 

expressions are the same. The key to this ability of 

the machine is that RAs, regardless of their size, are 

handled by the same cellular machinery: a sufficiently 

large assembly of cells (L cells and parts of T cells) 

is organized, and this assembly, under the control of 

the applicable microprogram, brings about the required 

transformation of the operand (and possibly also of the 

operator) expression. 
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Figure A.la 

Interconnection of Cells 

[MAG080] 

Figure A.lb 

A Possible Layout Scheme 

IMAG080] 
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L offer reduction 
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APPENDIX B 

The Algebra of Functional Programs 

This appendix summarizes the algebraic structure 

of Backus' FP system IBACK78]. Backus' paper should 

be consulted for full details. The appendix is 

organized into topics as follows: 

B.1 Laws of the Algebra of Programs 

B.2 Foundations 

B.2.1 Expansion Theorem 

B.2.2 Linear Expansion Theorem 

B.3 Recursion and Iteration 

B.3.1 Recursion Theorem 

B.3.2 Iteration Theorem 

B.4 Proofs for Functional Programs 

B.5 Example of a Recursive Program and its Proof 

B.5.1 Recursive Factorial Function 

B.5.2 Proof for Recursive Factorial Function. 



B.1 Laws of the Algebra of Programs 

Backus presents some definitions and a list of 

algebraic laws for the algebra of programs. These 

definitions and laws are listed, here, so that they 

can be used later to help illustrate examples and 

proofs. 

Definition. "defined" 

The "defined" definition is used to define the domain 

of a function. Many laws have a domain that is only a 

proper subset of the domain of all objects. For example, 

lojf,g]sf is true only when g is properly defined. If 

g:x=.L,then the law does not hold. The notation 

definedog lolf,g]Ef 

indicates the law (or theorem) on the right holds only 

within the domain of objects x for which definedog:x=T. 

A qualified functional equation is written 

p fEg 

and means that, for any object x, whenever p:x=T, then 

f:x=g:x. 

The following definitions specify ordering on func- 

tions and functional equivalence in terms of the ordering 

Definition. f<g iff for all objects x, either f:x=1, or 

f:x=g:x. 

Definition. fEg iff f<g and g<f. 

-B-1- 



The list of algebraic laws is organized by the 

two principal functional forms involved. This list 

follows and is copied verbatim from Backus. 

I Composition and construction 

I:1 [fl, ,fn]og = 'flog, ,fnog] 

1.2 afo[gi, ,gn] E [fog1, .. ,fogn] 

1.3 if°[gl' 

f°[g12 if°1g2' *** 'gni] 
when n>2 

f°[gi' f°Ig22 *** 'f°Ign-l'gn]- 

/fo[g] E g 

1.4 fo[x,g] E (bu f x) °g 

1.5 1° [fl, ,fn] <fi 

so [f1, ,fs, ,fn] <fsfor any selector s, s<n 

] ] 

definedofi(for all is, 1<i<n) ÷÷ so [f1, 

1.5.1 [fiol, ,fnon]o[gi,. 

"' 9f11] E fS 

" gn] E [f1°g12 'fn°g11] 

1.6 tloffi] < 0 and tlo[fl, ,fn] < [f2, ,fn] for n>2 

definedofi ÷± tlo[fi] E (I) 

and tlo[fl, 

1.7 distlo[f,[gi, 

,fn] E [f2, ,fn] for n>2 

,gn]] E [[f'gl]' *** '[f'gn]] 

definedof distlojf,(b] E.1) 

The analogous law holds for distr. 

1.8 apndlorf,fgl, 
* ** grill If/g1, *** ,gn] 

nullog ÷± apndlo[f,g] = [f] 

And so on for apndr, reverse, rotl, etc. 

1.9 [... i"..] E 

1.10 apndlo [fog, afoh] afoapndlojg,h] 

1.11 pair & notonullol apnd101[101,2], distro[t101,2]] 
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Where f&g E ando[f,g]; pair E atom ;ecio[length,2] 

II Composition and condition (right associated parentheses 

omitted). 

(p4-f;g)oh 

ho(p-o-f;g) 

oro[a,not0q] 

poh 4- f°h; goh 

p hof; hog 

4- 4- ando[p,q] 4-f; 

ando[p,notoq] g; h E p (c1-0-f;g);h 

P (P'f;g); h E P f;11 

III Composition and miscellaneous 

III.1 iof < x 

definedof 4- 4- 
_ - 

xof = x 

111.1.1 iof E foi E 

111.2 foid E idof E f 

111.3 pair 4-4. lodistr E [101,2] also: 

pair 4-4- 10t1 E 2 etc. 

111.4 n(fog) E of o ag 

111.5 nullog 4-+ afog 

IV Condition and construction 

IV.1 

IV.1.1 

[f1, 

[ f 1 , 

P 

(p g; h), 

p [fl, 

,h, ,fn] 

, (1)1 gl; 

,g1, 

fn] 

g ,fn]; [fl, - 

;pn.+ gn; h), ,fm] 

,fm]; 

,gn, ,fm]; [fl, 
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This concludes the present list of algebraic laws: 

it is by no means exhaustive, there are many others. 

B.2 Foundations 

Backus' goal is to develop a foundation for the 

algebra of programs that is based on a sufficient 

theoretical base to allow the programmer to use simple 

algebraic laws plus some theorems from the foundations 

to solve problems and prove functions (programs). The 

proofs will be algebraically mechanical and will be 

written directly in the programming language. The latter 

point is very important: the logical system used by 

program proofs is identical to that used for writing the 

program. 

An expansion theorem, a linear expansion theorem, 

and a corollary to the latter are stated and proved as 

part of the foundations. These results are used later in 

conjunction with the algebraic laws to establish recursion 

and iteration theorems. Recursion and iteration theorems 

are stated in section B.3; they allow looping and iter- 

ation in the language. 

The Expansion Theorem also provides a method to 

prove "termination". In the statement of the theorem and 

its associated definition, there is the following stipula- 

tion: 

f:x is defined if and only if there is an n such 

that, for every i less than n, pi:x=F, Pn:x=T, and 
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qn:x is defined. 

This stipulation is sufficient to establish termination. 

The following sections (B.2.1 and B.2.2) state the 

definitions for "expansive" and "linearly expansive," 

and the Expansion and Linear Expansion Theorems, plus 

the corollary. Proofs can be found in Backus [BACK78]. 

B.2.1 Expansion Theorem 

Definition. Expansion. Suppose we have an equation of 

the form 

f E E(f) 

where E(f) is an expression involving f. Suppose further 

that there is an infinite sequence of functions fi for 

i=0,1,2,..., each having the following form: 

fo E 1 

fi+1 E Po go Pi gi 

where the pi's and qi's are particular functions, so 

that E has the property: 

E(fi) E fi+1 for i=0,1,2, 

Then we say that E is expansive and has the fi's as 

approximating functions. 

Expansion Theorem. Let E(f) be expansive with approxi- 

mating functions as given in the definition of expansion. 

Let f be the least function satisfying 

f E E(f). 
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Then 

f Po go ; Pn gn 

B.2.2 Linear Expansion Theorem 

Definition. Linear Expansion. Let E(f) be a function 

expression satisfying the following: 

E(h) E 130 go ; E1 (h) for all heF 

where pieF and qieF exist such that 

E1 (pi qi ; h) E pi+1 qi+1 ; El (h) 

for all heF and i=0,1,2,... 

and 

E(i) E 1. 

Then E is said to be linearly expansive with respect to 

these pi's and qi's. 

Linear Expansion Theorem. Let E be linearly expansive 

with respect to pi and qi, i=0,1,2,... . Then E is 

expansive with approximating functions 

fo E 

f1+1 E PO CIO ; ; Pi qi ; 1. 

Corollary. If E is linearly expansive with respect to 

pi and qi, i=0,1,..., and f is the least function 

satisfying f E E(f) , then 

f E PO ; "' ; Pn qn 
; 
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B.3 Recursion and Iteration 

Backus uses three laws and the definition of linear 

expansion to prove a recursion theorem. A simple expan- 

sion is thus made available for many recursively defined 

functions. A corollary to The Recursion Theorem is then 

stated and proved as The Iteration Theorem. The Iteration 

Theorem gives an expansion for many iterative programs. 

Sections B.3.1 and B.3.2 state the Recursion and Iteration 

Theorems, respectively. 

B.3.1 Recursion Theorem 

Let f be a solution of 

f E p -4- g;Q(f) 

where 

Q(k) E ho[i,koj] for any function k 

and p,g,h,i,j are any given functions. Then 

f E p 4- g; poj Q(g); ; poj 
n 
(g); 

(where Qn(g) is ho[1, Qn-1(g)o , and jn is 
join -1 

for n>2) and 

Qn(g) E /ho[i,i0j, 
.nn io3-1 ,goj ]. 

B.3.2 Iteration Theorem 

Let f be the least solution of 

f Ep g ; hofok 

Then 

fEp±g; pok hogok ; ; pokn 

no 
n 

h gok ; 
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B.4 Proofs for Functional Programs 

The definitions and theorems stated in Sections 

B.2 and B.3 plus the laws stated in Section B.1 are 

used to prove functional programs correct. An example 

is given in Section B.5. 

B.5 Example of a Recursive Program and its Proof 

Section B.5.1 gives a detailed example of a recursive 

factorial function and its step-by-step application to 

an object. Section B.5.2 lists the correctness proof 

for this program. This example is taken from Backus 

[BACK78]. 

B.5.1 Recursive Factorial Function 

Tlef ! Eeci0 1 ; Xo[id,!os] 

Def eq0 ecio[id,8] 

Def s = -o[id,l] (i.e., subtract 1) 

As an example of the application and reduction of 

the function "!", consider the step-by-step application 

and reduction of the function when applied initially to 

the object "2". This is detailed in Table B.1. The 

"Justification" column lists laws and primitive 

operations that justify the reduction from the previous 

line. Let f = !, p=e0, E(f) = Xo[id,!os]. Then 

fEp-)-q; E(f) 

is the abstract form of_it34_program. 



Step 
Number Function Expression Justification 

1 

2 

3 

4 

5 

!:2 

(eq0÷i;Xo[id,!os]):2 

Xojid,!os]:2 

Xo<id:2,!os:2> 

X:<id:2,!os:2> 

Apply f 

Substitute right side 

Condition when p:x=F 

Construction 

Composition 

6 X:<id:2,1:1> s:2=:2-1=1 

7 X:<2,1:1> Apply id 

8 X:<2,Xolid,los]:1> Apply f, 
Substitute right side, 
Condition when p:x=F 

9 X:<2,X:<id:1,!os:1» Construction, 
Composition 

10 X:<2,X:<1,!00» Apply id;s 

11 X: <2,X: <1,1:0>> Condition when p:x=T 

12 X: <2,X: <1,1>> Apply constant 

13 X: <2,1> Apply X 

14 2 Apply X 

Table B.1 

Example of Application of Recursive Factorial Function 
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B.5.2 Proof for Recursive Factorial Function 

Let f be a solution of 

f E eq0 1; Xo[id,fos] 

where eq0 and s are defined in Section B.5.1. Then f 

satisfies the hypothesis of the Recursion Theorem with 

p E eq0, gEi, hEX, iEid, and jEs. Therefore f can be 

written 

fE eg0 1; ; eq0osn4Qn(i); 

and 

Qn(i)E /Xo[id, idos, 
n-1 n 

idos n-1, los ]. 

By 111.2 and III.1 from Section B.1, respectively. 

_k k 
idos Es 

and egOosn 4-* iosn=l 

since egOosn:x => definedosn:x 

and egOosn:x E eq0:(x-n)E x=n. 

Thus, if eq0osn: x=T, then x=n and 

Qn(1):n 
= (/Xo[id, idos, ,idosn-1, Tosn]):n 

- 
= /X:<n, n°s, ... , nosn-1 , losn> 

= nX(n-1)X...X(n-(n-1)) X (1:(n -n)) 

= n! 

Using these results for iosn, eciflosn, and Qn (1) in 

the expansion for f, we obtain 

f:x E X=0 -0- 1; .. x=n nX(n-1)X...X1X1; . 

This proves that f terminates on precisely the set of non - 

negative integers and represents the factorial function 

upon them. 
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ABSTRACT 

This report reviews the properties of two highly 

concurrent (data flow and functional) computing models, 

and compares them to the control flow (von Neumann) 

model. A highly concurrent model is one in which con - 

currency is designed into the model at the primitive 

hardware implementation level. A highly concurrent 

model is also implicitly concurrent, since no explicit 

concurrency primitives need be coded by the programmer 

of an implementation in order to allow concurrency. 

Conversely, implicitly sequential model implementations 

require the coding of such concurrency primitives to 

unlock concurrency. The properties of implicitly con- 

current models are contrasted with the implicitly se- 

quential control flow model. 

The impact of Large Scale Integration (LSI) and 

Very Large Scale Integration (VLSI) on computing models 

and subsequent levels of concurrent operation is dis- 

cussed. VLSI and LSI technologies are seen to be the 

catalysts which make highly concurrent computing systems 

practical. The impact on computer design is reviewed: 

VLSI and LSI are found to be changing the conventional 

views in which hardware design activities drive software 

and algorithm design. 



The most important distinguishing property among 

the models presented is found to be the relative level 

of concurrency which the model can exhibit. The models 

are compared on the basis of potential (or actually 

exhibited) concurrency. Taxonomies are discussed as 

presented in the literature for the control flow model. 

The form for an extended taxonomy to embrace the highly 

concurrent models is suggested. 

After concurrency, the most important property of 

the models is seen to be history sensitivity, or the 

ability to store data values internally during proces- 

sing. In the control flow model, a very high level of 

history sensitivity is built into the model, but a very 

low level of concurrency is available. In the data flow 

and functional models, the reverse is true. History 

sensitivity seems to be a key property: the degree to 

which it is present in highly concurrent models is pro- 

portional to the applicabilities of these models. Pre- 

sently, the highly concurrent models are applicable 

primarily only to numerical processing implementations, 

due to the lack of extensive internal storage capabilities. 

Implementations of the highly concurrent models are 

reviewed, and some relevant properties of control flow 

implementations are discussed. Pipeline hardware struc- 

tures are found to be common in data flow implementations; 

the single functional implementation reviewed is a binary 

tree structure. 



In the concluding chapter an attempt is made to 

identify some of the potential weaknesses of the newer 

highly concurrent models. A common language design 

fallacy, which has manifested itself in recent years, 

is discussed, and an allegory is presented from the 

literature to dramatically highlight this fallacy. 


