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Abstract:  

 

Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of myeloid progenitors that can play 

a major role in tumour development and chronic inflammation. The importance of the suppressive function of 

MDSCs was first suggested by studies involving cancer patients and cancer-bearing mice. In addition, recent 

studies have demonstrated that MDSCs can also be involved in many other pathological conditions. MDSCs 

have unique ways of abrogating an immune response in addition to those utilised by other immune-suppressive 

cell types, for example via the induction of arginase-1 and consequent upregulation in reactive oxygen species 

(ROS) production. Due to their heterogeneity, they further can express a variety of lineage markers, which 

overlap with other myeloid cell types such as Gr1, CD11b, MHCIIlo, Ly6C and Ly6G, making it difficult to 

identify them by surface phenotype alone. The disparity between mouse and human MDSCs further complicates 

the identification of these elusive cell populations. In this review, we will summarise the recent updates on the 

methods for eliciting and studying different MDSC subsets, including newly proposed surface phenotypes, as 

well as insights into how their function is being characterised in both mice and humans. In addition, exciting 

new discoveries suggesting their involvement across a number of different pathological settings, such as sepsis, 

autoimmunity and Leishmaniasis, will be discussed. 
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1. INTRODUCTION 

Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of early myeloid progenitors, 

which includes immature granulocytes, macrophages, and dendritic cells (DCs) [1-3]. MDSCs are often 

generated and expanded and acquire their suppressive abilities during pathological conditions such as traumatic 

injuries, tumour development and pathogenic infections [4-8].  

MDSCs can play a major role in tumour development and chronic inflammation due to their potent 

regulatory roles in immune responses [9-11]. For example, upon activation by tumour-derived mediators or 

host-induced cytokines, these cells express immunosuppressive factors such as arginase-1, inducible nitric oxide 

synthase (iNOS) or reactive oxygen species (ROS), which can initiate programmed cell death and apoptosis in T 

cells and other effector cells [12, 13]. In this review, we will summarise the recent updates on diverse 

phenotypes and functions of MDSCs, as well as new insights recently gained into their involvement in different 

pathological settings. 

2. ORIGIN AND SUBSETS OF MDSCs 

At normal steady-state conditions, MDSCs are commonly found in naïve mouse bone marrow (20-30%), and 

are scarce in the spleen (2-4%), blood (2-4%), pancreas (1-2%), liver (2-5%) and lymph nodes (<1%) [14, 15]. 

As a heterogeneous population of cells, MDSCs can often express a variety of markers, which overlap with 

other myeloid lineage cells such as dendritic cells (DCs), granulocytes and monocytes (Figure 1) [1-3]. 

Although MDSCs are not a defined subset of cells, in mice they are characterised by the co-expression of 

myeloid lineage differentiation antigen Gr-1, myeloid cell marker, CD11b and low levels of major 

histocompatibility complex class II (MHCII), which are expressed on antigen-presenting cells to present 

antigens and activate the adaptive immunity [16] (Table 1). 

 Gr-1 is expressed on mature granulocytes in bone marrow and peripheral tissues and also transiently on 

monocytes during their differentiation in the bone marrow. Furthermore, it is an epitope expressed on Ly6C 

(monocytic/macrophage marker) and Ly6G (granulocytic/neutrophil marker). Studies have shown that MDSCs 

can be further divided into two different subsets based on the expression of Ly6C and Ly6G molecules [17]. 

Cells that have a monocytic MDSC phenotype express CD11b, high levels of Ly6C but no Ly6G. They are less 

granular (low side-scatter when assessed by flow cytometry) and express higher levels of monocytic markers 

such as F4/80, ICAM-1, and CCR2 when compared to the granulocytic subset of MDSCs [1, 18, 19]. Monocytic 

MDSCs (Mo-MDSCs), characterised as CD11b+Ly6ChiLy6G- cells express arginase-1 and exert their 

suppression on antigen-specific CD8+ T-cell activation via a NOS-mediated mechanism [19]. Granulocytic 

MDSCs (G-MDSCs) are described as CD11b+Ly6Clo/intLy6Ghi and are more granular (high side-scatter when 

assessed by flow cytometry) when compared to Mo-MDSCs [19]. These cells also express high levels of 

arginase-1, but unlike Mo-MDSCs, they mediate suppression of CD8+ T-cell activation and proliferation via a 

ROS-mediated mechanism [17]. Although both subsets of MDSCs initiate suppression of CD8+ T-cell activity 

via different mechanisms, both populations generally express CD115 (M-CSF receptor), CD16/32 (Fc receptor), 

CD124 (IL-4 receptor) and low levels of CD80 [20-22]. However, these molecules appear not to be involved in 

the immunosuppressive roles of MDSCs [17]. 



Fig. (1).  Comparison of marker expression on dendritic cells and MDSCs  

 

 

  Phenotype Functional Markers Functional Proteins 

Mouse 

Mo-MDSCs 
CD11b+ 
CD16+ 
CD31+ 

CD115+/- 

CD120blo 
CD124+/-  

SSClo CD49dhi 
F4/80+ Ly6C+ 

Ly6G- CD40+ 
CD80+ 

MHCII-/lo 

  S100A8+ 
S100A9+ 

Arginase-1 
IL-10 

iNOS 

G-MDSCs 
SSChi CD49dlo 
F4/80- Ly6Clo/int 

Ly6G+ 
CCR2+ 

ICAM-1+  ROS 

Human 
Mo-MDSCs 

CD11b+ 
CD66hi 
CD124+ 
CD125+ 
VEGFR+ 

SSClo CD14+ 
CD15- CD33hi  

CD40-  
CD80-  
CD83-  

HLA DR-/lo 

S100A9+ 

Arginase-1 

iNOS 
Il-10 
IL-13 
TGFβ 

G-MDSCs SSChi CD14- 
CD15+ CD33int  ROS 

Table 1. Phenotypic and functional markers of murine and human MDSCs. 



Unlike murine MDSCs, human MDSCs are often identified as lineage- CD11b+ HLA DR-/lo [23, 24]. Several 

recent studies have shown that subsequent characterisation of human MDSC subsets can be done with the 

expression of CD14 and CD15 molecules [25-28]. Identification of a CD11b+ CD14- CD15+ population with 

granulocyte morphology in renal cell carcinoma patients has been described as the human equivalent to G-

MDSCs in mice [29] (Table 1). These cells have been shown to be a subpopulation of activated granulocytic 

cells expressing high levels of CD66b and VEGFR1. They have low to no expression of classic activation 

markers such as CD80, CD83, CD86 and MHCII, but are capable to secrete high levels of arginase-1, which can 

be released through degranulation of intracellular granules upon activation [29, 30]. Depletion of CD11b+ cells 

and not CD14+ cells has shown to re-establish T-cell proliferation, cytokine secretion and expression of CD3ζ 

chain, suggesting that G-MDSCs are the main source of arginase-1 secretion in these patients [29]. Human Mo-

MDSCs on the other hand can be identified as CD11b+ CD14+ HDR-/lo in melanoma patients [27, 31]. These 

cells promote immunosuppression by spontaneously expressing transforming growth factor-ß (TGF-ß) [31]. 

Depletion of CD14+ cells restores T-cell proliferation and interferon-γ (IFN-γ) secretion. Although it is 

generally agreed that murine MDSCs are identified as CD11b+ Gr-1+ cells, and various studies have attempted 

to investigate human MDSCs with various combinations of lineage markers [32-36], until a definitive marker is 

found, the phenotypic definition of MDSCs will remain ambiguous. 

3. GENERATION AND ACTIVATION OF MURINE MDSCs 

 Murine MDSCs can be generated in in vitro cultures from bone marrow cells using granulocyte/macrophage 

colony stimulating factor (GM-CSF). Depending on the concentration of GM-CSF, MDSCs can be generated 

between 3-10 days [3]. Higher concentration of GM-CSF leads to a more rapid development of MDSCs within 

the culture, but will also generate neutrophils. In contrast, at lower concentrations of GM-CSF in culture 

MDSCs can be generated within 8-10 days. However, DCs are generated simultaneously in those cultures [37]. 

GM-CSF can be secreted at a high concentration by T-cells, DCs and natural killer (NK) cells in the presence of 

an immune response [38-40] leading to an accumulation of MDSCs within the site of inflammation. 

 In addition to GM-CSF, several soluble factors such as granulocyte colony-stimulating factor (G-CSF) [41], 

macrophage colony-stimulating factor (M-CSF) [42], stem cell factor [43] and vascular endothelial growth 

factor (VEGF) [44] can directly induce the expansion of MDSCs.  

 VEGF is secreted by macrophages [45], DCs [46], T-cells [47] and renal tubular epithelial cells [48] and is 

often found after injury or in tumour-related diseases. It is also an important factor for differentiation of 

haematopoietic progenitor cells [49, 50]. VEGF suppresses DC generation and activation in favour of increased 

production of immature myeloid progenitor cells [49, 50]. Furthermore, recent studies have shown that 

inhibiting VEGF interaction with its receptors can prevent infiltration of MDSCs and regulatory T-cells (T-regs) 

while simultaneously increasing DC differentiation [51]. 

 G-CSF often plays a vital role in neutrophil generation and mobilisation in inflammatory conditions [41]. 

However G-CSF have also been shown to induce G-MDSC proliferation and accumulation in the presence of 

tumour [52-54]. M-CSF and stem cell factor are generally found secreted in tumour microenvironment. M-CSF 

were found to be secreted in conjunction with IL-6 by in human renal cell carcinoma cell line, which have 

prevented DC generation from hematopoietic stem cells (HSCs) and triggered their commitment to monocytic 

cells [42]. Stem cell factor have been shown to be secreted by murine and human tumour cell lines, and tumour-



bearing mice, and blockade of stem cell factor function have greatly reduced MDSC expansion and enhanced 

tumour regression [43].  

 PGE2 is also often associated with inflammatory responses and tumour-related diseases [32, 51, 55]. Tumour 

cells were found to express PGE2, which can directly interact with HSCs through PGE2 receptors to induce 

proliferation into MDSCs, thus promoting tumour survival [32, 51, 55]. PGE2 can also induce indirect MDSC 

proliferation and accumulation by inducing secretion of factors such as VEGF, cyclooxygenase 2 (COX2) and 

IL-6 [32]. 

In addition to these growth factors, MDSCs can also be exposed to factors such as IFN-γ to induce activation. 

IFN-γ is secreted by a number of different immune cells to influence T-cell and MDSC functions [12, 13]. 

When exposed to IFN-γ, MDSCs express arginase-I and iNOS, which in turn prevent T-cell activation and 

promote T-cell apoptosis [12, 13]. Several studies have also shown that other cytokines such as IL-1ß, IL-4, IL-

6, IL-10 and TGF-ß can also play a role in promoting MDSC generation and may enhance their suppressive 

function [20, 56, 57].  

4. MECHANISMS OF MDSC-MEDIATED IMMUNE SUPPRESSION 

 MDSC-induced suppression requires cell-to-cell contact due to interaction of cell surface markers and 

secretion of transitory mediators [30, 58, 59]. The main suppressive activity of MDSCs is associated with 

secretion of arginase-I, iNOS and ROS [12, 60] (Figure 2). iNOS breaks down L-arginine into nitric oxide (NO) 

while arginase-I breaks down L-arginine into urea and L-ornithine. Depleting L-arginine prevents CD3 

generation on T-cells [61]. NO inhibits effector T-cell activation through Janus-Kinase (JAK) 3 and signal 

transducer and activator of transcription (STAT) 5 pathways and also abrogates MHCII molecule expression on 

antigen presenting cells (APCs) [60, 62]. MDSCs can also induce effector T-cell apoptosis [12, 13, 60, 62].  

ROS expression plays an important role in MDSC-mediated suppression. Its production by MDSCs can be 

induced in response to T-cell interaction or by exposure to cytokines such as TGF-ß IL-6, IL-10 and GM-CSF 

[57]. Hydrogen peroxide, a common form of ROS, prevents cytokine secretion by T-cells and induces T-cell 

apoptosis [63]. Earlier studies have also shown that IFN-γ produced by immune cells at the site of injury can 

induce ROS and NO production in MDSCs [64]. 

 Peroxynitrite is produced by a reaction of NO with hydrogen peroxide and is one of the most damaging 

oxidants in the body [65]. Secretion of peroxynitrite has been observed at sites of inflammation and where 

MDSCs and immune cells accumulate [66]. Different types of cancers have also been shown to induce high 

levels of peroxynitrite in their microenvironment, which renders T-cells unresponsive to antigen-specific 

stimulation [67, 68].  

 Recent findings have shown that MDSCs also secrete S100 calcium binding protein A8 and A9 (S100A8 

and S100A9) [36]. Expression of these functional proteins is often associated with inflammatory conditions such 

as rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, cystic fibrosis and psoriasis [69-73]. 

However, STAT3-dependent upregulation of S100A9 can be initiated by tumour-derived factors, preventing DC 

differentiation while promoting MDSC accumulation [74]. S100A8 and S100A9 secreted within a tumour 

microenvironment can promote MDSC migration to tumour sites by inducing an autocrine pathway through 

activation of carboxylated N-glycan receptors on these cells [75]. 

 Furthermore, MDSCs can induce T-reg expansion in the presence of IFN-γ and IL-10, disrupt innate 

immunity by interacting with macrophages, NK cells and NK T-cells, thus enhance tumour progression [76].  



 

Figure 2. Different mechanisms employed by MDSCs to mediate immunosuppression. 



5. MDSCs IN DISEASES 

The importance of the suppressive roles of MDSCs was initially characterised in studies involving cancer 

patients and cancer-bearing mice [66, 77]. However, recent studies have shown that MDSCs are also involved in 

other pathological settings. 

5.1    MDSCs in cancer 

 Most patients with advanced cancer are immunosuppressed, and the cause of immunosuppression can be 

instigated by a variety of immune cells such as tumour-associated macrophages, suppressive type II NK T-cells, 

T-regs and MDSCs, which in turn can promote tumour survival and expansion [11]. Although a variety of 

immunosuppressive cell types can be present in a tumour microenvironment, it was noted that MDSCs are 

consistently found in most cancer patients [78]. In fact, MDSCs were increased up to tenfold in the blood of 

cancer patients when compared to healthy individuals [78]. Similarly, in murine tumour models, 20-40% of 

nucleated splenocytes (in contrast to 2-4% in healthy mice) and 30–70% of tumour-infiltrating leukocytes were 

found to be MDSCs [79-81].  Accumulation and activation of MDSCs has been further associated with 

immunosuppression by abrogating effector T-cell response and mediating T-reg responses [21]. Collectively, 

these findings suggest that the suppressive effects of MDSCs play a major role in tumour survival by assisting 

tumour to escape immunosurveillance and recruiting other regulatory cells such as T-regs. While studies have 

shown that cancer progression can be retarded or reversed with the removal of MDSCs [82, 83], more studies 

are needed in procuring an effective way of mitigating their suppressive effects in cancer. 

5.2    MDSCs in other pathological conditions  

Although most knowledge on MDSCs and their role in the immune system has been gained from studies in 

cancer, recent findings suggest that these cells are also involved in pathogenic infections [10], sepsis [7], 

autoimmune diseases [9] and transplantation [84]. For example, the inflammatory heart infiltrate from mice 

infected with Trypanosoma cruzi consisted mainly of CD11b+ Ly6G- Ly6C+ MDSCs [85]. These cells exhibited 

a monocytic phenotype and expressed arginase-1 and iNOS, both of which can suppress T-cell proliferation and 

prevented clearance of the parasite. In another study, looking at Leishmania major infection, NO expressing 

CD11b+ Gr-1+ (Ly6Chi) MDSCs circulated within the blood and infiltrated skin lesions [10]. These cells could 

suppress effector T-cell proliferation through NO expression. However, upon treatment with IFN-γ and IL-4, 

they could eliminate the parasites in a NO-dependent manner. A similar expansion of MDSCs was also seen in 

Hepatitis C virus (HCV) infections in humans, where T-cell proliferation was suppressed through a ROS-

mediated mechanism [86]. 

During polymicrobial sepsis, CD11b+ Gr-1+ MDSCs increased dramatically in the spleen, lymph nodes and 

bone marrow and remained elevated for an extended period of time [7]. These cells supressed IFN-γ secretion 

by CD8 T-cells, skewing the immune response from a Th1 to a Th2 profile.  

Immunosuppression is often depicted as the bane of the immune system. However, it can be beneficial in the 

context of autoimmune diseases and in transplantation settings. In autoimmune diseases such as the 

inflammatory bowel disease (IBD) mouse model, a substantial population of CD11b+ Gr-1+ MDSCs was 

detected in the spleen and the intestine upon adoptive transfer of haemagglutinin (HA)-specific CD8+ T cells. 

These MDSCs released NO-synthase-2 and arginase-1 to prevent T-cell proliferation and induced T-cell 

apoptosis [9]. MDSCs also prevent the onset of autoimmune diabetes by inducing antigen-specific T-reg 



expansion and suppressing effector T-cell proliferation through an MHCII-dependent processes in diabetic 

mouse models [87]. Similarly, in transplantation settings, investigators have made use of the suppressive effects 

of MDSCs. In a recent study by Chou and colleagues, MDSCs mixed with islet allografts were transplanted into 

diabetic mice [88]. This effectively protected the islet, by preventing a CD8 T-cell response and inducing 

expansion of T-regs within the graft. This effect was also seen in other cases, where MDSCs were used to 

prolong graft survival by inducing allograft tolerance [84, 89, 90]. Collating these recent findings, it is clear that 

the immune regulatory properties of MDSCs are playing an important role in many pathological conditions, 

albeit their properties are detrimental in cancer and pathogenic infections. This evidence also suggests that not 

only is it important to remove MDSCs in diseases such as cancer and pathological infections, it is also crucial to 

learn how to generate these cells so that their properties can be exploited for future treatments for autoimmune 

diseases and transplantation settings. 

6. CONCLUSION 

Recent studies have been able to distinguish inflammatory neutrophils, monocytes and DCs from 

immunosuppressive MDSCs, a heterogeneous population of myeloid cells with distinctly different function. The 

increased interest in the elusive MDSCs over the recent years has shed new light on how immunity is regulated 

in different pathological conditions, particularly in animal models. More in-depth research is required to clearly 

define MDSCs in humans. Also, little is known about the molecular mechanisms which trigger the generation 

and expansion of these cells from the progenitor cell populations. Deeper understanding of these cells and their 

function within the immune system is likely to open opportunities for new therapeutic interventions in cancer 

and autoimmune diseases. 
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