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Abstract
This paper discusses the methods used by
the team from the German Aerospace Center
(DLR) for solving the 9th Global Trajectory
Optimization Competition (GTOC) problem.
The GTOC is an event taking place every year
lasting roughly one month during which the
best aerospace engineers and mathematicians
world wide challenge themselves to solve a
nearly-impossible problem of trajectory de-
sign.

1 Introduction
The paper is organized as follows: section 2
recaps the relevant figures of the problem
statement; section 3 points out how the over-
all strategy was developed; section 4 focuses
on the combinatorial part of the problem and
5 on the transfer between two debris. Finally,
in sections 6 and 7 we discuss the results and
draw some conclusions.

∗E-mail: Marcus.Hallmann@dlr.de

2 Problem Statement
The task was to design a scenario with n mis-
sions which collect a given set of 123 space
debris on Sun-synchronous Low Earth Orbits.
The following cost function has to be mini-
mized:

J =
n

∑
i=1

ci +α(m0i −mdry)
2 (1)

where ci is the base cost (increasing lin-
early during the competition time frame from
45 MEUR to 55 MEUR). Each spacecraft ini-
tial mass m0 is the sum of dry mass, pro-
pellant mass and N times the deorbit pack-
age mass: m0 = mdry + mp + Nmde, with
mde = 30kg. The α parameter is set to be
2.0 ·10−2 MEUR/kg2.

In order to control the spacecraft five impul-
sive manoeuvres are allowed during the debris
to debris transfer. In addition to an impulsive
manoeuvre at departure and at arrival. The
overall time between two successive debris
rendezvous, within the same mission, must not
exceed 30 days. The deorbit package deploy-
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ment takes 5 days. That results in a maximum
transfer time of 25 days. The time between
two missions must be at least 30 days. And
the mission must take place between 23467
MJD2000 and 26419 MJD2000. The radius of
pericenter rp is constrained to be smaller than
rm = 6600km.

The spacecraft dynamics is described by the
following set of Ordinary Differential Equa-
tions:
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which describes a Keplerian motion perturbed
by an oblate Earth. The orbital elements of the
space debris are given for a certain epoch and
are propagated via a more simplified model
than equation (2):

Ω̇ =−3
2J2

(
req
p

)2
ncos i

ω̇ = 3
4J2

(
req
p

)2
n
(
5cos2i−1

) (3)

It can be seen that the ascending node is the or-
bital element which encounters the most vari-
ations caused by J2. That will have an im-
pact on our overall strategy. For more de-
tails on the problem statement refer to the
GTOC 9 problem statement [1] or visit
https://kelvins.esa.int/gtoc9-kessler-run/.

3 Overall Strategy
The problem we have to solve can be classi-
fied as Time Dependent Traveling Salesman
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Figure 1: Ω̇ over height

Problem, with a nested optimal control prob-
lem for each transfer. One way to solve the
combinatorial part would be to explicitly eval-
uate all possible combinations. That approach
is only applicable for small dimensions. In our
case we have 123 debris to sort for the best se-
quence (which gives 123! permutations) and
than we have to chop them into n missions,
which causes another dimension. Even with
the most powerful computers and the smartest
approach to calculate the ∆V for transfer from
one debris to the next one it would take years
to determine the entire tree. Section 4 deals
about how we solved the combinatorial part of
the problem.

Before we look into the transfer we ana-
lyze the design space to get some reasonable
boundaries for our design variables like trans-
fer time, delta v range, number of missions we
need and so on. The first important question
to answer is how are the debris pieces spread
out regarding inclination i, eccentricity e and
semi major axis a. Figure 2 shows the range
of the orbital elements for the debris pieces. It
can be seen that the orbits are nearly circular,
inclination ranges from 96◦ to 102◦ and the or-
bital height (or a− req) goes from 600 km to
900 km. These elements do not change over
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Figure 2: Debris orbital elements

time for the dynamic model which is used for
the debris.

If we only consider the change in inclina-
tion and semimajor axis during a transfer, the
problem can be treated as a simple Traveling
Salesman Problem (TSP). The ∆V which is
needed to travel from debris A to debris B is
the sum of the inclination change ∆Vinc plus
the ∆Vsma for the Hohmann transfer:

∆Vinc = 2V sin((iA − iB)/2)

∆Vsma =
√

µ/r1(
√

2k/(1+ k)−1)+ ...√
µ/(r1k)(1−

√
2/(1+ k))

∆VAB = ∆Vinc +∆Vsma

Where k is the ratio between aA and aB, as-
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Total Distance = 2654.9208, Iteration = 77756

Figure 3: Optimal Path in the i and a TSP

suming circular orbits. With that equations we

can set up a cost matrix which gives us the cost
for going from one debris to the next debris,
ignoring the phasing in true anomaly and right
ascension, and we can apply a genetic algo-
rithm implemented in Matlab to find the op-
timal route. Figure 3 shows the result of one
run with 500 populations and 1 ·105 iterations.
The total distance we get is around 2654 m/s,
so an average ∆V of 21.7 m/s for one transfer.
In theory and with no constraints on the mis-
sion time, this result would equal to a J value
below 100 MEUR. In practice we have to ful-
fill the 8 years mission time constraint and the
25 day transfer time constraint.

That forces us to invest some reasonable ∆V
for changing the right ascension. That can be
done in two ways:

• a direct plane change

• an indirect plane change via a change in
semi major axis

Let us compare the ∆V for both cases. If all
other elements besides Ω are the same we can
use a similar equation like we used for the in-
clination change for the direct plane change:

∆VΩ = 2V sin((ΩA −ΩB)/2) (4)

Like the inclination change its a quite cost
intensive maneuver. If there is enough time

3



available an indirect transfer maybe cheaper.
An important figure to look at is the change
in right ascension for the debris which is plot-
ted in figure 1 over height (with an inclination
equal to 98 deg). Out of that we can see that
the orbits are drifting between 1.2 deg/day
and 0.2 deg/day. Depending on our initial
height value we can get a differential drift
around 0.5 deg/day. Assuming a 20 day trans-
fer time we could overcome a delta of 10 deg
in Ω. For the indirect change we perform two
Hohmann like transfers, the first one to reach
the desired drift orbit, the second one to get
the semi major axis of the arrival debris.

Let us compare some use cases to see if the
drift approach is better or not. Our orbital ele-
ments for both debris are: a = 600km+ req,
e = 0, i = 98deg. So we only consider a
change in Ω. On Figure 4 we can see that the
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Figure 4: ∆V over ∆Ω

∆V needed for a direct change goes nearly lin-
ear with ∆Ω (dashed line). The other curves
in the figure are representing an indirect trans-
fer for different transfer times (5:5:25 days).
We can conclude that for transfer times larger
than 15 days it is always better to make an in-
direct transfer. And that does even not take
into account that we may save some ∆V cause
of different semi major axis and inclination

of the departing and arrival debris. The in-
clination change we can either perform before
or after the drift change maneuvers. And the
choice has an impact on the required ∆V for
the drift change as it can be seen when look-
ing at equation 3, cause its a function of incli-
nation. With that thoughts we have a good set
up for our combinatorial problem, which will
be discussed later.
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Figure 5: J over n and ∆Vaverage

The next interesting question to look at is
how many missions we may need (do we stack
one launcher full as possible) and what’s the J
looks like. Assuming a range of different av-
erage transfer ∆V s and number of missions(n)
we get figure 5, which shows the J function
in MEUR. It can be seen that we should not
use the maximum propulsion available, cause
if we analyze the J value for an average ∆V of
300 m/sec, the J value would be for 9 starts
904.1 MEUR, 12 starts 827.6 MEUR and af-
ter that it goes up again. Although we would
have 12 times the base cost for the launcher in-
stead of only 9 times, the used propellant mass
goes in quadratic. And if we use the total al-
lowed 5000 kg we are not optimal. So we have
to reduce the total allowed fuel or ∆V per mis-
sion by 10 % to 20 %, depending on how many
missions we need. The issue is that we do not
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know that before hand.

4 Combinatorial Problem
In section 3 we set up our strategy how to
tackle the problem. We can estimate the cost
or ∆V to perform a debris to debris transfer.
The issue is, the problem is time variant, cause
our cost matrix depends on at which epoch we
perform the transfer. Or using the TSP syn-
tax its not a city to city routing problem, its a
boat to boat one, where the boats are sailing
around.
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Figure 6: Maximum transfer time over n

Before we go into detail of the graph imple-
mentation we have to look a bit deeper into the
handling of the transfer time. We have seen
for the drift change maneuver, it would be bet-
ter to have a large transfer time available. So
it looks obvious to use the maximum allowed
25 days. But if we use that for all of the trans-
fers, we are ending up having a total mission
time which is larger than the allowed 8 years.
And that is even dependent on how many mis-
sions we need. Figure 6 shows the maximum
allowed transfer times over the number of mis-
sions we need, which is again not known be-
fore we have solved the graph problem. In

fact we can only use average transfer times be-
tween 15 and 19 days. In that case the next
question is, if we let the transfer time be a de-
sign variable in the combinatorial problem or
if we keep it to an average fixed value. We de-
cided to keep it fixed, cause the permutation
space is large already. That approach allows
us also to use a look up table for all possi-
ble transfers with a 1 day grid size, which is
precalculated and loaded into the graph algo-
rithm. In the cost matrix we can also handle
the radius of periapsis constraint, by setting
the ∆V = ∞ for all transfers where rp < rpm .

For solving the routing we tried to use the
same genetic algorithm, which was deliver-
ing good results for the inclination-sma rout-
ing problem, on the time dependent one, but
it didn’t brought any good results. Instead we
developed a graph algorithm which uses a cer-
tain beam width.

Each mission can be represented as a graph
or tree (see figure 7). For the first mission
we have 123 nodes or debris as an option to
start from. Keeping in mind that the J-function
doesn’t give any penalty at which debris we
start our mission, it’s a free design parameter.
So our initial beam width would be 123. Than
we can calculate for each of that 123 debris
122 possible debris transfers, cause each de-
bris should be only visited ones. That gives
us 123 times 122 possible options. There are
many methods to explore such kind of trees or
graphs:

• Depth First Search

• Breadth First Search

• Beam Search

• Greedy Search
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Figure 7: Mission Graph

The Depth First Algorithm travels along the
left or right side of the tree. In our case it
would just visit the debris either in the se-
quence 1:1:123 or 123:-1:1. We could add
some backtracking if we get stuck somewhere
or if we apply some heuristic, like average ∆V
is getting to worth along the current path.

Breadth First in the opposite explores the
tree first horizontal and than continues to the
next level with all possible permutations.In
our case like mentioned already a full breadth
first search would not be possible cause the
permutation would be to large.

Greedy search is like depth first, but it
makes a decision on some heuristic which path
to take. The easiest implementation is to make
the decision on the next shortest (lowest ∆V )
path. Thats the first method we used to find
a proper sequence and it brought results for J
around 2500. The Greedy search has the typ-
ical tree drawback that the best cookies are
eaten first and the bad ones are left over in
the end, and we still have to eat them, cause
we have to collect the entire set and not only
a subset. And that’s something we observed
when running a greedy search on the tree. The
last transfers had a quite high ∆V and that
caused a high number of missions and a re-
sulting high J Value.

In order to overcome that we can apply a
beam search. Instead of only traveling along
one path we select k best options and take
them with us. Depending on the beam width
k the computational time of course grows in
that case. In our case we have an initial beam
width of 123 for the first mission. On the next
level we would have 123 · 122 = 15006 max-
imum beam width and so on. We limited our
beam width for the first runs to 2000 and got
already good results for J around 1000. The
entire idea behind that method is, that we can
not look into the future, so we have to take also
some bad paths with us to hope that they turn
into the golden paths in the end.

At each level we check each possible so-
lution for uniqueness. That can also be ex-
plained when looking again at figure 7, the
sequence 1-3-2 is equal to 3-1-2, because for
the next level we would have the same node,
in that case node 2, to start from and the left
over debris-set is the same. So we only take
the best sequence out of that two, because our
beam width is limited and we want as many
different permutations to find the golden path.

The graph algorithm is implemented in mat-
lab and takes roughly 1 hr computation time
on a Intel Xeon CPU E3 3.50GHz, with a
beam width set to 20000. When we run the
tree after the first mission we have the advan-
tage that the left nodes are getting less and the
computation time goes down.

With the 5000 kg propellant we can roughly
achieve a maximum ∆V of 5000 m/s. But
with the results we had from our qualitative J-
function analysis we set our maximum to 4500
m/s and we also made runs with lower values.
For the first mission we were able to perform
23 transfers. But the beam width at that point
was only around 10 to 20. So in that case we
don’t have enough permutations for the next
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missions. So instead of taking the maximum
transfer solution we took the one with a higher
beam width. Our algorithm is setup in a way
that the number of transfers is the same for all
beams, that may not be the optimal choice and
some further investigation may be performed
to see if a free number of transfers brings a
significant improvement.

Our final sequence will be discussed in the
Results section 6

5 Transfer Problem
Before we solve the debris to debris final
transfer we re-optimize the sequence coming
out of the beam search algorithm. Like we dis-
cussed in section 4 already we kept the trans-
fer time for all transfers to a fixed value. That
will be re-optimized using the local optimizer
fmincon in matlab. The Cost function in that
case is the sum of the ∆V s for all transfers in
that particular mission. Our design variables
are the transfer times. The upper bound is set
to 25 days, constrained by the problem state-
ment. The lower bound to 1 day, cause we may
need some time for the final phasing of the true
anomaly, which we have ignored completely
so far. In the combinatorial part we used a
fixed grid size for the transfer time (e.g. al-
ways 17 days for the first 6 missions and than
19 or 20 for the remaining, depending how
many debris is left to collect). We also have to
introduce an inequality constraint that the sum
of the transfer times is not larger than the old
sum of the fixed transfer times (That means
we can only shift some transfer time from one
transfer to the other). For the re-optimizer we
will not use a look up table for the ∆V , we
will calculate it during the fmincon call. That
gives us the advantage of having a real value

for the transfer time. With that approach we
saved between 10 % and 25 % ∆V per mission.
For each transfer we know the following infor-
mation:

• departure epoch

• arrival epoch

• transfer time

• estimated ∆V

We used again matlab fmincon with an inte-
rior point method to tackle that problem. The
control parameters are the times between ma-
neuvers and the 5 maneuvers itself in Carte-
sian form. The cost function is quite easy
in our case, it’s just the sum of all 5 ∆V s
we applied. We have 3 deep space maneu-
vers, one at departure and one at arrival. The
more demanding part is the constraint func-
tion we pass to fmincon. Here we integrate
the equation of motion between the maneu-
vers until we reach our final state. Than the
final state should equal the arrival debris state
at that time. We have a global parameter in
order to activate or deactivate the constraints,
and we can choose between the cartesian state
vector, keplerian elements, or a mixture, or a
subset. Another inequality constraint is also
in the game, because we have to take care that
the sum off all transfer times between maneu-
vers is not larger than the transfer time we got
out of the tree, otherwise we would mess up
the following transfers.

When using an ode-solver in fmincon we
have the issue that integration errors we get
from the ode solver may disturb the Jacobian
or Hessian. And that was the case for the
first runs we performed and we had to inves-
tigate which ode solver brings reasonable re-
sults. We came to the conclusion that a fixed
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Figure 8: Evolution of orbital elements for mission 1

step size is more stable than a variable step
size solver. In the end we used a RK8 imple-
mented in c++ with a step size of 50 sec(the
RK4 needed 1 sec step size), cause the mat-
lab implementation was to slow. An interest-
ing observation was also when using the de-
bris dynamic model first and rerunning the op-
timizer with the spacecraft ode we achieved
faster and better results.

For the initial guess we set the first and last
two maneuvers to the Hohmann like maneu-
vers coming out of our drift strategy. The
maneuver in the middle is set to 0. We
didn’t touched the inclination change or phas-
ing change and left that for the optimizer to
solve. The first and last transfer times where
set to a half orbital period. And the remaining
two transfer times where chopped up equally
(kind off mid course maneuver).

What we found out is that scaling our state
vector x, the constraints and the cost function
all close to 1 is crucial for success. Although
you could assume that this techniques should
be handled by optimizers automatically, that
seems not to be the case.

With the RK8 the algorithm took roughly
5 minutes on a Intel Xeon CPU E3 3.50GHz.
And all transfers converged proper. The
achieved ∆V was even lower than the esti-
mated one out of the tree search, cause in

the tree search we added scalar the inclina-
tion change and the drift maneuver. In practice
they can be combined and the optimizer seems
to have taken care of that.

6 Results
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Figure 9: Mission Graph

Our submitted solution had a total of n =
14 missions and a performance index J =
949.85MEUR. Figure 9 shows the number of
transfers we have per mission. For the first
mission the evolution of Ω, a and i are plot-
ted over time (see figure 8). It can be seen
that mainly the inclination and semi major axis
was changed by the ∆V and the right ascension
just drifts along to the next target.
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7 Conclusion
For the combinatorial part genetic algorithms
are suitable when the problem is time invari-
ant. But for time variant problems graph algo-
rithms seem to be the better choice. The Beam
search algorithm brought reasonable results,
but still suffers a bit from the greedy effect,
that we have the good sequences in the begin-
ning and we obtain bad once in the end. One
option to improve that may be to select some
feasible continuation beams randomly. In the
transfer problem we may use a multiple shoot-
ing method to get rid off our ode-integration
issue.
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