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1 Introduction

The North Atlantic Oscillation (NAO) is a large-scale circulation pattern driving climate vari-
ability in north-western Europe (Hurrell et al., 2013). Its in�uence is far reaching, including
impacts on wave height (Trigo et al., 2008), solar energy (Colantuono et al., 2014), rainfall and
hydropower production (Cherry et al., 2005; Munoz-Díaz and Rodrigo, 2003), crop yields (Tian
et al., 2015) and �shery catches (Gamito et al., 2015; Teixeira et al., 2015). There is also a
literature about its impact on the wind resource (Pirazzoli et al., 2010; Jerez and Trigo, 2013;
Jerez et al., 2013; Burningham and French, 2013; García-Bustamante et al., 2013) drawing a
range of conclusions. In an analysis of data from Iceland and northwestern Europe, Pirazzoli
et al. (2010) conclude that while NAO a�ects wind activity, its impact is not uniform. More
speci�cally, Jerez et al. (2013) �nd that negative NAO phases (NAO�) enhance wind speeds,
precipitation and cloud cover on the Iberian Peninsula. Burningham and French (2013) �nd
that positive NAO phases (NAO+) are associated with increased intensity and frequency of
high wind events in the UK and Ireland. These outcomes are not surprising as NAO has simul-
taneous opposite e�ects in the regions a�ected by its northern and southern centres of action.
While the NAO plays a major role it is not the only large-scale circulation pattern that a�ects
local wind conditions, as both the East Atlantic (EA) and the Scandinavian (SCAND) modes
also play a part (Trigo et al., 2008). With NAO known to have an e�ect on wind speeds it
follows that there is likely to be a consequential impact on renewable electricity generation from
wind farms.

In recent years, research on the NAO has investigated the impact on the electricity sector
(e.g. Brayshaw et al. (2011); Ely et al. (2013)). Früh (2013) uses a simple illustrative example
to show how relatively small changes in the wind resource can lead to large deviations in wind
farm incomes. Therefore, a clear understanding of how the wind resource evolves, either due to
NAO or otherwise, is very important, as it can a�ect the pro�tability of existing wind farms,
which in turn can a�ect the level of future investment in renewable energy. Brayshaw et al.
(2011) makes the point that the representation of wind speed data, incorporating either NAO+

or NAO� phases, during investment planning could potentially lead to substantial under or over
estimates of wind power output. Both Brayshaw et al. (2011) and Ely et al. (2013) investigate
technical implications of NAO variability on the operation of the power grid. Brayshaw et al.
(2011) �nd that the NAO state has a noticeable impact on the power output from wind turbines,
which has implications for wind resource forecasting, as well as electricity system planning and
operation. Ely et al. (2013), investigating the implications of NAO variability on interconnected
UK and Norway power grids, �nds that a highly interconnected grid may be more a�ected by
the NAO than a less interconnected network. However, there is no published research about the
impact of NAO on electricity prices, though there is an extensive literature on the wider topic
of the impact of wind energy on electricity prices (e.g., Ketterer (2014); Amor et al. (2014);
Shcherbakova et al. (2014); Woo et al. (2013); Würzburg et al. (2013)).

The literature has clearly established that NAO a�ects wind turbine output, though the
relationship is non-linear, varies by location, is in�uenced by other large-scale circulation pat-
terns, and is subject to further research. What is also of relevance but not well understood
is the NAO's impact on the economics of electricity generation. While NAO a�ects wind tur-
bine output, it is not straightforward or obvious what is the consequential impact, if any, on
electricity prices or generator pro�tability. Electricity market design, the share and type of
thermal generation, as well as fossil fuel prices will all determine wholesale market prices of
electricity. The aim of this paper is to examine the e�ect of NAO on the electricity market, and
particularly wholesale electricity prices, using a simulation analysis case study based on the
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Single Electricity Market (SEM) on the island of Ireland. A motivation for this analysis was
the unusually calm wind speeds experienced in the UK and Ireland in the winter of 2009/2010.
While December through February normally includes some of the windiest times of the year,
during 2009-2010 there were extended periods with very low wind speeds and wind farms were
not productive. The implication for the electricity sector was that it had to call on thermal
generation to a much greater extent than might have been expected in a `normal' year, which
lead to signi�cant additional fuel costs. The impact of low winds was exacerbated by very
low temperatures, leading to a situation of high electricity demand and a consequent spike in
wholesale electricity prices. Thus, basing an analysis on the events of winter 2009/2010 alone
one cannot draw general conclusions about the impact of NAO on the electricity market. A
simulation case-study enables an investigation of many realisations of the e�ect of NAO on
wind, coupled with its interaction with the electricity market (including technical and market
constraints) plus other stochastic variables such as electricity demand, fuel and carbon prices.

The literature on the e�ect of wind on electricity prices has not yet extended to the speci�c
impact of the NAO. In general wind has both positive and negative e�ects on generating system
costs and prices due to the characteristics of wind energy. For example, wind may displace and
cause more frequent cycling of baseload generating plant, which in turn can a�ect system
costs and merit order (in�exible plant may fall down the merit order) (Troy et al., 2010).
Wind displacing thermal plants reduces fuel cost, which contributes to a downward pressure
on electricity prices. Due to its intermittency, wind may also add additional costs associated
with providing reserve, or transfer costs to uplift or capacity payment mechanisms (Felder,
2011; Denny and O'Malley, 2007). A number of previous studies have estimated the impact of
increased wind generation on electricity costs and prices. Studies covering Germany, Austria,
Korea, Canada and the United States �nd that additional wind generation capacity reduces
prices (Ketterer, 2014; Würzburg et al., 2013; Amor et al., 2014; Shcherbakova et al., 2014;
Woo et al., 2013). On the contrary, Swinand and O'Mahoney (2015) summarise the results of
22 studies from Europe and the USA that conclude that additional wind penetration increased
costs. While these studies do not consider NAO, their results may be sensitive to its impact
and may explain why some studies �nd that wind increases prices while others �nd the reverse.
The current analysis compares whether Irish electricity prices under NAO+ phases are less than
prices under NAO� phases.

The contribution of this paper is to determine whether the impact of the NAO on the wind
resource passes through the electricity market into an impact on electricity prices. This has
relevance to wind farm developers because it is likely to a�ect the pro�tability of wind farm
investments or, depending on the design of wind subsidies, a�ect the total costs of government
subsidy support. It also has direct relevance for renewable energy targets and energy policy
makers. The EU's Renewable Energy Directive (2009/28/EC) speci�es a mandatory target of
20% for all energy to come from renewable energy sources by 2020. Ireland has established a
national target of a 40% contribution from renewables to gross electricity consumption (RES-
E) by 2020 as part of its contribution to the EU target. In 2013 20.9% of gross electricity
consumption was from renewable sources, primarily wind (Howley et al., 2014). Ireland, like
other EU countries, is likely to continue its investment in renewable electricity generation into
the future and it is of relevance to both electricity consumers and regulators whether and to
what extent the variability of NAO a�ects electricity prices as wind capacity on the electricity
network increases.

The rest of the paper continues with a review of relevant literature. That is followed by
Section 2, which describes the models used and Monte Carlo inputs. Section 3 presents and
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discusses the simulation results organised by NAO phase and by wind subsidy mechanism,
and also includes a section on preferences for risk. Section 4 concludes the paper with a brief
summary.

2 Methodology

The objective in this section of the paper is to derive a series of wind speed parameters that
are applicable to Ireland and associated with variations in the NAO index. These parameters
will be used in the simulation case study to generate synthetic wind speed data, which will be
used as input into an electricity dispatch model based on the Single Electrictiy market (SEM)
in Ireland.

2.1 NAO and wind speed

Instrumental monthly NAO indices have been calculated and made available on-line by the
Climate Research Unit (CRU) of the University of East Anglia, dating back to 1821. This
index is calculated as the di�erence between normalised sea level pressure over Gibraltar and
South-west Iceland. It was �rst published in Jones et al. (1997) and has since been extended
to the present by Tim Osborn.1 The NAO index cover the range -6.05 to +6.66; we split this
range into 15 `bins', 0.847 units wide each, and calculated the proportion of months that the
NAO index falls within each bin, as shown in Figure 1. The analysis focuses on the extended
winter months, October to March. During simulations we use these distributions to draw an
NAO index bin for each winter month.

The next stage uses the ERA-Interim re-analysis dataset and �ts Irish wind speed data to
a Weibull distribution. ERA-Interim global reanalysis database was released in 2011 by the
European Centre for Medium-Range Weather Forecasts (ECMWF) and has the highest spatial
resolution (0.75 degree horizontal) covering a range of parameters, describing weather as well
as ocean-wave and land-surface conditions, and upper-air parameters covering the stratosphere
and the troposphere. The model results span from 1979 to present and are calculated across
a 0.75 x 0.75 degree spatial grid. Wind data at 10 metre height and 6 hourly resolution
were retrieved covering 51 N to 56 N and 11.25 W to 5.25 W for the period January 1979 to
December 2014. Using this data we �t a Weibull distribution to these wind speed data for each
month. Mean values for the Weibull scale and shape parameters (µ) for each month-NAO bin
combination were estimated and collated by NAO bin as below:

µj
i,m, i = 1 . . . 15, j = c, k (1)

where i is the NAO bin, m refers to the month, c and k are the Weibull scale and shape
parameters. Across all month-NAO bin combinations the calculated relative standard deviation
(RSD) (i.e. ratio of the standard deviation to the mean) for both the shape and scale parameters
were approximately 0.25. Because we are interested in the impact of NAO on wind turbine
power generation we re-scaled the data from 10 metre height to 60 metres using a wind shear
pro�le (Zoumakis and Kelessis, 1991), as show in equation 2:

V60 = V10
log(60/ω)

log(10/ω)
(2)

where V refers to wind speed and ω to roughness length for which we use the European Wind
Atlas roughness class 1.5 (ω = 0.055 metres), de�ned as agricultural land with some houses

1See http://www.cru.uea.ac.uk/ timo/datapages/naoi.htm

3



Figure 1: NAO Index Frequency, Winter Months 1979-2014
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Figure 2: Sample synthetic January wind speed data (+2.431 ≤ NAO index < 3.2711)
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and 8 metre tall sheltering hedgerows with a distance of approximately 1250 metres (Troen and
Petersen, 1989). While newly installed wind turbines can be in excess of 100 metres, rescaling
to 60 metres height allows for the fact that many installed wind turbines are substantially
smaller.

2.2 Synthetic wind speed time series

For each winter month (October�March) we draw a random NAO bin and for that month-NAO
bin combination use the associated Weibull scale and shape parameters, as discussed above. We
use that information to generate hourly synthetic wind speed time series for each month using
a method proposed by Carapellucci and Giordano (2013). Their methodology is based on the
assumption that wind speed comprises deterministic elements incorporating diurnal patterns
and monthly variation through the year, a stochastic component, and a time series component
generated through an autoregressive process. Figure 2 provides an example of the synthetic
wind speed data for the �rst four weeks in January. The NAO bin randomly drawn for the
example in Figure 2 covered the NAO index range +2.431 to +3.2711. The estimated Weibull
scale and shape parameters associated with the month of January and NAO bin +2.431 to
+3.2711 are 15.647 and 2.017 respectively. However, as mentioned earlier, the scale and shape
parameters are estimates with a standard deviation roughly equivalent to 25% of the estimates
of the mean. This is implemented during simulations by independently drawing shape and
scale parameters from a truncated normal distribution, N(µj

i,m, (0.25×µ
j
i,m)

2), with truncation
occurring at +/- 1 standard deviation from the mean. Drawing from a normal distribution
allows for the variance in the shape and scale parameter estimates, whereas truncation seeks
to impose the structure of the 15 NAO bin types during simulation. The scale and shape
parameters drawn to generate the times series in Figure 2 (i.e. January and NAO bin +2.431
to +3.2711) are 13.2785 and 1.7872 respectively.

2.3 Wind power model

A generic wind turbine output model was used to characterize the relation between wind speed
and wind turbine electricity output (Liu, 2012; Hetzer et al., 2008):
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WP =


0, (V < vin or V ≥ vout)

wr, (vr ≤ V < vout)
(V−vin)wr

(vr−vin)
, (vin ≤ V < vr)

(3)

where WP is power generated, vr, vin, and vout are rated, cut-in, and cut-out wind speeds; wr

is the rated power of a wind turbine, and V is wind speed. While a wide range of turbine types
exist, we assume just three, as outlined in Table 1. We assume shares by turbine category are
33%, 38% and 29% respectively. These turbine types and shares broadly match the installed
wind generation capacity in the island of Ireland electricity market in 2012. Within the wind
power model this means that for a low wind speed of eg. 3.5 m/s, only turbine types A
and C operate accounting for 62% of installed wind generation capacity. For wind speeds
25 m/s < V ≤ 34 m/s, only category C turbines are operational, accounting for 29% of
installed capacity.

Table 1: Turbine wind speed characteristics, metres/second
Type A Type B Type C

Cut-in speed 3 4 3
Rated speed 12 14 13
Cut-out speed 25 25 34

Hourly simulation data was generated for the 6 winter months across 10,000 replications
(i.e. 10,000 winters). Probability density estimates produced using a kernal smoothing function
on wind speed, wind resource and wind turbine output data are presented in Figure 3. Similar
to Brayshaw et al. (2011) and Munoz-Díaz and Rodrigo (2003), variability of NAO is divided
into three phases for illustrative purposes: NAO� (NAO < −0.966), NAO neutral (−0.966 ≤
NAO < 0.7287), and NAO+ (NAO≥ 0.7287). Panels (a) and (b) of Figure 3, which show
the distribution of monthly and hourly mean wind speeds, illustrate how positive NAO phases
shifts the distribution of mean wind speeds to the right during winter months compared to
neutral or negative NAO phases. Higher wind speeds invariably mean a greater wind resource.
The available power of wind crossing rotors of a wind turbine, P , is

P =
1

2
Aρv3 (4)

where A is the rotor area, ρ is the air density, and v is the wind speed (Burton et al., 2011).
Assuming constant A and ρ we can plot available power as proportional to v3, as in panel
(c) in Figure 3. The plot in panel (c) assumes that all the available wind resource can be
harnessed and in that sense is the gross wind resource available. However, from the wind
power model (equation (3)) we know that power generation only occurs within speci�ed wind
speed ranges. Panel (d) plots the distribution of the mean nett wind resource that is accessible
for generation using wind turbine type B in Table 1. Panels (c) and (d) illustrate a greater
wind resource associated with NAO+ phases compared to other phases but also show how the
technical constraints of wind turbines limits the wind resource usefully available, especially
higher wind speeds during NAO+ phases. Panel (e) shows the probability density of mean
monthly wind turbine output assuming an installed capacity capacity of 2GW across the three
wind turbine types. Similar to the earlier panels, NAO+ phases are associated with higher
mean turbine output compared to neutral or NAO� phases. We fail to reject the null hypothesis
that mean turbine output under NAO+ is greater than under both neutral and NAO� phases
(p < 0.0001) using t-tests for equality of means. This result on the synthetic data is in line
with earlier research that NAO a�ects wind turbine output (e.g. Jerez et al. (2013).
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Figure 3: Wind Speed, Wind Resource and Wind Turbine Output
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The next stage is to investigate the impact of NAO under stochastic electricity demand,
fuel and carbon prices, within the complexity of a centrally dispatched electricity market. The
methodology for that analysis is described in the remainder of this section.

2.4 Electricity dispatch model

Several approaches are used in the literature to simulate electricity generation schedules de-
pending on the application. Some instances use linear dispatch models, which consider the
output of generation units as a continuous linear variable between zero and the unit's rated
capacity (Hirth, 2013; Chattopadhyay, 2010; Godby et al., 2014; De Jonghe et al., 2012). Some
models add a further simpli�cation, considering demand as a load duration curve (Chaudry
et al., 2013). This approach fails to include the `on-o�' state of units, cannot incorporate
start and no load costs of units, and cannot implement technical restrictions such as minimum
up/down times and minimum outputs. As variability increases from renewable generation such
as wind and solar, the dispatch arrived at by linearised dispatch-only models diverges signi�-
cantly from reality (Shortt et al., 2013). The inclusion of these technical constraints requires
mixed-integer programming (MIP), which is widely utilised in generation planning and op-
eration research (van der Weijde and Hobbs, 2011; Ela and O'Malley, 2012; Hargreaves and
Hobbs, 2012; Pereira et al., 2014). However the computational requirements of mixed-integer
programming tend to rule out running a large number of scenarios of such models.

The Flexible Algorithm for Scheduling Technologies (FAST ) was developed as a response
to this problem of providing electricity generation schedules that mimic system decisions in
real time, while meeting demand and respecting technical constraints. The FAST algorithm
mimics the input-output relationship of a mixed-integer unit commitment model but does so
in orders of magnitude faster, which is of practical relevance when simulating many scenarios.
The algorithm is described in Lynch et al. (2013) and Shortt and O'Malley (2014) and seeks to
determine least-cost schedules for generation dispatch, considering start-up and no load costs, as
well as variable costs and technical constraints. The FAST solution produces unit-commitment
and economic dispatch schedules whose costs are on par with those from the MIP under a
relatively tight optimality gap.

In order to increase computational speed while respecting technical constraints, FAST splits
generation into �exible and in�exible units. In�exible units whose size or cycling characteristics
are such that a linear representation of their costs would not yield accurate schedules have
been given a mixed-integer formulation. Flexible units (which tend to be numerous, small
and more �exible) are represented by linear costs. FAST solutions bear a strong degree of
similarity across a number of metrics with equivalent mixed-integer programmes except for
computation time, where FAST on average determines schedules several thousand times more
quickly (Lynch et al., 2013). FAST 's computational e�ciencies are achieved through a number
of simpli�cations. For instance, it does not include minimum up and down times, start times
or transmission constraints. Unit outages are not considered but uncertainty associated with
unit outages is considered by enforcing a spinning reserve target that at each hour must be at
least as great as the largest installed unit. There is no explicit limit on the maximum level of
instantaneous wind generation but FAST will curtail wind energy where doing so will reduce
total costs. FAST 's quick computational times is particularly important when considering
unit-commitment issues across a long time horizon, such as 4,368 hours (i.e. 6 winter months
of data), for many scenarios (e.g. several thousand).
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2.5 Installed generation capacity

The installed conventional generation capacity modelled is a simpli�cation of the generation
units installed on the Irish system and the total capacities of each technology are given in Table
2. We consider four in�exible types of generation, two coal �red and two Combined Cycle Gas
Turbine (CCGT) technologies. The �exible technologies considered here are Open Cycle Gas
Turbines (OCGTs), one gas-�red and one using distillate. The characteristics of each technology
in terms of the fuel requirements for starting, no load running and incremental output increases
are given in gigajoules in Table 2. These �gures are based on the characteristics of units on
the Irish system at present, as reported in the inputs for the PLEXOS model which has been
validated by the regulatory authorities in the Irish market for modelling the Irish system (CER
and NIAUR, 2013).

Table 2: Parameters for generation capacity based on 2013 installed generation
Fuel Type Start fuel No-load fuel Incremental fuel Total capacity

(GJ) (GJ/hr) (GJ/MWh) (GW)
Coal 1 Coal 6920 193 10.9 1200
Coal 2 Coal 6200 394 8.75 600
CCGT 1 Gas 393 667 4.81 2800
CCGT 2 Gas 1800 592 5.2 2400
OCGT 1 Gas na na 9.82 1000
OCGT 2 Distillate na na 9.21 1500

Note that the FAST model does not allow for load-shedding, and so there must be su�cient
generation capacity installed to meet the demand and reserve requirement at every hour. Thus
the total installed capacity considered here is higher than the total installed on the Irish system
at present, as there are some outlying high-demand hours in the input data considered.

2.6 Electricity demand data

Electricity demand is a function of various factors, such as the season, the weather, the time
of day, day of the week, public holidays and social events. Thus electricity demand has a
predictable pattern and is also subject to unpredictable variations. In addition to wind, the
NAO may also a�ect temperatures (Sen and Ogrin, 2015), which in turn may a�ect electricity
demand for space heating. The e�ect of NAO on electricity demand is not modelled here.
Instead we generated hourly electricity loads based on historical hourly demand from the �ve
years 2008�2012. For each simulation one of the �ve calendar years was randomly selected and
the entire demand series was scaled by a randomly-generated factor of between 0.8 and 1.2.
The high variation in the scaling factor is to examine the impacts of unusually high or low
demand. We also impose hourly random noise of up to +/- 10% variation from the hourly load
pro�le. Consequently, the demand pro�le in each simulation preserves temporal characteristics
of electricity demand as observed in previous years but introduces randomness to allow for
variation in demand that in reality could be attributed to factors such as high/low economic
activity or mild/severe weather.

2.7 Fuel and carbon prices

Fuel and carbon prices are generated from a lognormal distribution. The mean and standard
deviation for each are given in Table 3. We used daily coal, gas and oil price data from
Deane et al. (2014) for the years 2008 to 2011 to estimate the parameters of lognormal price
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distributions, from which we calculate the relative standard deviation (RSD) (i.e. ratio of the
standard deviation to the mean) for each price series. We draw random prices from lognormal
distributions with means equivalent to 2012 fuel and carbon prices from Clancy et al. (2015),
which are in turn obtained from the IEA. We then use the historical RSD to calculate standard
deviation. For carbon we assume an RSD of 0.25. To allow for correlation in fuel prices we
use the variance-covariance matrix of daily fuel prices between 2008 to 2011 given in Table 4.
For the Monte Carlo simulation we draw one vector of fuel and carbon prices for each scenario,
meaning that prices are constant across the 4,368 hours (6 winter months) within each scenario.
This assumption is not unreasonable as generation �rms sign long-term contracts for fuel supply.

Table 3: Statistical parameters of fuel prices based on 2012 Irish prices
Coal (¿/GJ) Gas (¿/GJ) Distillate (¿/GJ) CO2 (¿/tonne)

Mean 2.91 7.99 21.59 7.45
Standard deviation 0.72 2.80 5.78 1.86

Table 4: Fuel price variance-covariance maxtrix
Gas Oil Coal

Gas 2.74 1.16 1.19
Oil 1.16 6.74 0.81
Coal 1.19 0.81 0.73

2.8 Welfare and risk aversion

To examine the welfare implications for electricity generators and consumers we propose using
a utility framework. Electricity generators, whether thermal or wind, derive welfare from
production revenues net of costs but have an aversion to risk. Consumers derive welfare from
their consumption of electricity and disutility from the cost of same, and are also averse to
variation in the payments they make for their electricity. We consider utility, U , per megawatt
(MW) as a linear function of both welfare (W ) and risk (ϑ) measures.

Ui = Wi − βi ∗ ϑi, i ∈ (c, p) (5)

where c is consumers and p is producers, and β is the coe�cient of risk aversion. We calculate
utility per megawatt hour consumed for consumers (MWhc) and per MW installed wind
capacity for producers (MWp). Only short-term e�ects are considered and not the costs or
e�ects of investment.

2.8.1 Welfare measures

We de�ne electricity generators' welfare as their producer surplus, given as the total quantity of
electricity supplied (Generationt) at each time period t multiplied by the price of electricity at
that period (Pricet), minus the production cost of electricity at that period. Production costs
are de�ned as fuel and carbon costs only. Wind generators have production costs of zero and
their Generationt is equivalent to WP in equation 3. Thus producer welfare (Wp), assuming
no market power, is the sum of producer surpluses from electricity production at each time
period.

Wp =
∑
t

Pricet ∗Generationt − Costst (6)
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For our purposes, we de�ne consumer welfare, Wc, as the negative of electricity payments.
Wind generation impacts on consumer payments in two ways. The �rst is any subsidy
consumers must pay to wind generators, and the second is the impact wind generation may
have on electricity prices (both their level and the variance thereof). Thus consumer welfare is
given by

Wc =
∑
t

−(Paymentt ∗Demandt + Subsidyt ∗WPt) (7)

where WPt is the quantity of electricity consumed at time t from equation 3. The value of the
subsidy payment, Subsidyt, varies depending on the design of the wind subsidy and is
discussed later in Section 3.3.

2.8.2 Risk measures

An increasingly popular measure of risk is Conditional Value-at-Risk (CVaR) developed by
Rockafellar and Uryasev (2000). CVaR is an estimate of the expected loss incurred in the
(1 − α)% worse cases of possible outcomes and is a coherent measure of risk in the sense
of Artzner et al. (1999). A particular advantage of CVaR as a measure of risk is that it is
easy to calculate using linear programming and does not require knowledge of the underlying
distribution (Rockafellar and Uryasev, 2000, 2002). For producers we calculate CVaR in relation
to their surplus, ϑ(τp), and for consumers in relation to electricity payments, ϑ(τc).

We perform a Monte Carlo analysis for K realisations of demand, input prices and wind,
de�ning our CVaR variable as

ϑ(τik) = ϑ

(
metricik −

1

K

K∑
k=1

metricik

)
, i ∈ (c, p) (8)

where metricik is either consumer payments or producer surplus in scenario k. By Rockafellar
and Uryasev (2000) equation 8 may be calculated by minimising

ϑ(τik) +
1

K(1− α)

K∑
k=1

uk (9)

subject to constraints uk ≥ 0 and τik + ϑ(τi) + uk ≥ 0, where uk is an auxiliary real variable.
For this study we set K = 10,000 scenarios, where each scenario contains 4,368 hours worth of
data (i.e. 6 winter months), and α = 0.95.

3 Results and discussion

3.1 By Winter

We �rst present results by winter season showing how electricity production costs and prices
vary with installed wind capacity. Figure 4 plots prices and production costs associated with
2GW and 4GW of wind capacity. Production costs relate to thermal generation, as wind gener-
ation has a marginal cost of zero. The plot distributions re�ect the modelled variability in input
prices, electricity demand and wind speed across the 10,000 simulations. On average production
costs are lower with higher wind capacity. With 2GW wind capacity mean monthly production
costs are ¿125 million falling to ¿87 million with 4GW capacity, a 30% reduction. Similarly,
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Figure 4: Total Production Costs and Electricity Prices
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wholesale electricity prices decline from ¿74.6/MWh with 2GW capacity to ¿68.2/MWh when
wind capacity is doubled. Figure 4 shows how greater levels of installed wind capacity can, on
average, reduce electricity costs and prices across a wide range of input cost, load, and wind
scenarios.

3.2 By NAO phase

The question of interest here is the e�ect of varying levels wind resource associated with NAO+

and NAO� phases (for a given level of wind generation capacity). The di�erent coloured plots
in Figure 4 are related to a scaling of the output from the wind power model in section 2.3
(e.g. from 2GW to 4GW), whereas the e�ect of NAO on the wind resource changes the output
from the wind power model for a given wind generation capacity. Consequently, the impact
on electricity costs and prices is likely to be more subtle. Figure 5 plots the distributions of
production costs and electricity prices by NAO phase for two levels of installed wind generation
capacity. On �rst sight the distributions appear graphically similar but they do di�er, as
indicated by the statistics describing the distributions in Table 5. At 2GW installed wind
capacity total thermal production costs are 3% lower under NAO+ compared to NAO�, with
the reduction in the median slightly less. When wind capacity is 4GW there is a proportionately
greater reduction in thermal generation costs, which fall by 8.2% compared to NAO�. Electricity
prices are 1.1% lower in NAO+ compared to NAO� phases at 2GW wind capacity and 2.1%
lower at 4GW wind capacity. Statistical tests on equality of means of electricity prices reject
the null (p = 0.012) in favour of the alternative that mean price during NAO+ phases is less
than mean price under NAO� phases (p = 0.006). The greater wind resource under NAO+

phases is also associated with a lower variance in costs and prices. Previous work shows how
increased wind capacity reduces the mean and the variance of annual production costs (Lynch
and Curtis, 2016). The statistics measuring skewness indicate that the distributions of both
costs and prices are marginally less right-skewed during NAO+ phases or when wind capacity
increases, i.e. the probability of very high prices or costs is lower. A high kurtosis value indicates
a sharper peak (or heavy tails) in the distribution, which is the case under NAO+ phases.

The e�ect of NAO is not usually considered when assessing the impact of additional wind
generation on electricity prices but the results here show that ignoring NAO could lead to
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Figure 5: Monthly Thermal Production Costs and Electricity Prices
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unexpected signi�cant �nancial gains or losses. At 2GW wind generation capacity, which
broadly matches the installed wind capacity in the island of Ireland electricity market in 2012,
there is on average a ¿0.8/MWh di�erence in electricity prices comparing NAO+ and NAO�

phases. The di�erence increases to ¿1.5/MWh with 4GW generation capacity. As indicated
earlier, these di�erences are between 1-2% of the electricity price and therefore could represent
a substantial component of a generator's pro�t margin. Investment decisions in new generation
plant that is not mindful of the distribution of NAO phases and its impact on the wind resource
could lead to unexpected deviations from expected revenue, either positive or negative.

We examine revenue and pro�t streams in Table 6 for two wind generation capacity scenarios
and a stylised thermal generation capacity mix, which was described in section 2.5. The FAST
algorithm only incorporates operational fuel costs, including start costs. Therefore, estimates
of thermal generation plants' pro�t levels represents an approximation of gross pro�ts before
overhead or capital costs. Wind revenues are market revenues and exclude subsidy support.
Across all the wind, fuel cost and demand scenarios, wind generation capacity receives on
average 12% higher remuneration under NAO+ compared to NAO� phases. If wind capacity
doubles from 2GW to 4GW, wind generation revenues will grow by roughly 55%. This re�ects
the curtailment of wind within the model, which does not include interconnection capacity.
As wind has priority dispatch, when wind generation increases thermal plant is displaced, and
consequently fuel costs decline. When comparing positive and negative NAO phases, fuel costs
fall on average by 3.2% under 2GW installed wind capacity, but proportionately more at higher
levels of installed wind capacity. This re�ects lower levels of cycling of thermal plants. Because
the e�ect of NAO is on wind speed, one might assume that its impact is con�ned to wind
generators; however there is an indirect �nancial impact on thermal generators. Their monthly
pro�t levels are on average between 3�7% lower in NAO+ compared to NAO� phases.
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Table 5: Monthly Thermal Production Costs and Electricity Prices
Total Costs, ¿m Price ¿/MWh

2GW 4GW % M 2GW 4GW % M
Mean NAO� 127.7 92.0 -28.0% 75.1 69.2 -7.8%

NAO+ 123.9 84.4 -31.9% 74.2 67.8 -8.7%
%M -3.0% -8.2% -1.1% -2.1%

Median NAO� 115.0 82.3 -28.4% 68.6 64.2 -6.3%
NAO+ 112.1 75.6 -32.6% 68.2 62.6 -8.2%

%M -2.5% -8.2% -0.6% -2.6%

Std Dev NAO� 61.8 46.3 -25.2% 33.7 29.8 -11.7%
NAO+ 59.3 41.6 -29.8% 33.0 29.0 -12.0%

%M -4.1% -10.0% -2.3% -2.7%

Skewness NAO� 1.9 1.9 0.6% 1.6 1.5 -3.9%
NAO+ 1.9 1.9 -1.7% 1.6 1.6 -2.9%

%M -0.3% -2.5% 2.5% 3.5%

Kurtosis NAO� 10.2 10.2 -0.2% 7.8 7.5 -3.3%
NAO+ 11.0 10.7 -2.4% 8.2 8.4 2.8%

%M 7.9% 5.6% 4.7% 11.3%

Table 6: Mean Monthly Revenues and Pro�ts, ¿million
2GW 4GW %M

Wind Revenue NAO� 56.0 86.8 54.9%
NAO+ 62.7 96.7 54.2%

%M 12.0% 11.5%

Thermal Revenue NAO� 192.2 144.6 -24.8%
NAO+ 186.0 133.2 -28.4%

%M -3.2% -7.8%

Thermal Pro�tsa NAO� 64.5 52.6 -18.4%
NAO+ 62.2 48.8 -21.4%

%M -3.6% -7.2%
a Thermal pro�ts equal to electricity price less oper-
ational fuel costs.
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3.3 Wind Generation Subsidies

Most wind generation receives subsidy support. In Ireland a support �oor applies, equivalent
to approximately ¿80/MWh in 2015.2 A consumer's exposure to the cost of wind subsidies is
unknown3, partly due to the vagaries of the wind resource, which includes the NAO, but also
due to the design of wind subsidy support schemes. Using our simulation data we calculate
three types of wind subsidy to gauge the sensitivity of wind generation subsidies to NAO
phases. The �rst is a �oor subsidy similar to that which applies in Ireland (A); the second a
�at premium of ¿26.12 (B); and the third is a �xed price for wind electricity of ¿95.31/MWh
(C). The value of the premium in subsidy type B, ¿26.12/MWh, is equivalent to the mean
subsidy per MWh generated from wind under NAO� wind. Consequently the mean monthly
cost of subsidy types A and B are equal under NAO� phase. In the third option the subsidy is
a �xed price and unlike option A there is no upside for wind generators. The �xed electricity
price of ¿95.31/MWh is such that the total revenue to wind producers (subsidy plus market
revenue) is equivalent to the total revenue to wind producers under subsidy type A or B.

Table 7 reports the results for 2GW of installed wind capacity. With subsidy type A under
NAO+ the cost of the subsidy is 14.5% higher than under NAO�, which is proportionately
more than the increased revenue wind generators receive from the electricity market (12% in
Table 6). Under subsidy type B, which is a �at premium of ¿26.12/MWh, the mean cost of
subsidy scheme is 13% higher under NAO+ versus NAO�. More wind increases the cost of
both subsidy types, but the cost of subsidy �oor in type A is more expensive during windy
periods. This occurs because NAO+ phases lead to lower electricity prices, which means that
the subsidy support to reach the price �oor increases. With a �xed premium, the total subsidy
cost depends on the amount of wind generation and is independent of the electricity price.

Because there is no market up-side for wind producers under subsidy type C, the direct cost
of the subsidy scheme is between ¿9.7�11 million per month higher than subsidy A, depending
on NAO phase. However, as wind producers' price is capped at ¿95.31/MWh, any electricity
prices above the cap can be used to o�set the gross cost of subsidy. The value of the electricity
produced when the price is above ¿95.31/MWh exactly matches the additional direct cost of
the subsidy such that net cost of subsidy type C is equal to the cost of subsidy type A. The
consumer's exposure to additional net subsidy costs in windy periods is equivalent in subsidy
types A and C.

From a wind producers' perspective the mean of total revenue (market+subsidy) is the same
under all three subsidy types under NAO� wind phases. From the consumer's perspective the
net cost of the three subsidy types under NAO� wind phases are also equivalent. However,
under NAO+ phases subsidy type C is most lucrative to wind producers and type B the lease
lucrative, whereas type B is the least costly to consumer and the subsidy type with the lowest
standard error. For more discussion on the issues surrounding subsidy design and exposure to
electricity price uncertainty see Farrell et al. (2013) or Devine et al. (2014).

3.4 Risk

So far discussion has mostly referred to mean values but there is considerable risk inherent in
the analysis. The simulation analysis modelled the stochastic nature of wind, demand, fuel
prices, and carbon price and it would be careless to focus only on the mean values. While

2See http://www.dcenr.gov.ie/Energy/Sustainable+and+Renewable+Energy+Division/REFIT.htm
3We assume all subsidy costs are bourne by the �nal consumer, without going into detail on whether that is

through a levy on electricity bills, through general taxation, or some other means.
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Table 7: Wind Subsidy Scenarios by Month
Subsidy type Mean Subsidy, ¿m Std Dev, ¿m Total Wind Revenue, ¿m

NAO� NAO+ %M NAO� NAO+ NAO� NAO+ %M
A ¿80/MWh �oor 21.1 24.2 14.5% 12.1 13.4 77.1 86.9 12.7%
B ¿26.12 �at premium 21.1 23.9 13.0% 3.7 3.6 77.1 86.6 12.2%
C ¿95.31/MWh �xed price 30.8a 35.2a 14.2%a 14.9 16.5 77.1 87.1 13.0%

a Direct or gross subsidy cost. Net subsidy cost is equivalent to subsidy A. For further details see
text.

Table 6 discussed mean electricity prices in the region of ¿75/MWh, the probability of prices
substantially higher or lower is quite high. For instance, electricity prices within one standard
deviation of the mean vary between ¿40�110/MWh approximately, irrespective of NAO phase.
We employed the simple utility framework and CVaR to assess preferences in the presence of
the risk associated with the electricity market.

3.4.1 Wind producers' utility

The metric taken for wind producers' utility is the total payments they receive for their en-
ergy, which includes the subsidy payment and any market revenues, divided by the total wind
capacity; in other words, we consider the return per MW installed capacity. We consider the
revenues under the three di�erent subsidy mechanisms and calculate the utility of the wind
producer, as a function of both their revenues and their associated Conditional Value at Risk,
according to equations 5 and 6. Figure 6 shows the utility for each level of risk aversion under
the three di�erent subsidy payment mechanisms (i.e. price �oor, �at premium, �xed price) for
both NAO+ and NAO� phases.

From wind producers' perspective, lower installed wind capacity levels yield higher payments
per MW installed, as the output of wind farms inceases nonlinearly with wind capacity. A �xed
price subsidy yields the highest utility per MW for every level of risk aversion. However, wind
producers' preferred order of other subsidy mechanisms di�ers by NAO phase depending on the
level of risk aversion. For example, under NAO+ phases for all levels of risk aversion a price
�oor and a �at premium yield practically equivalent levels of utility. Under NAO� phases utility
under a price �oor or �at premium diverge depending on the level of risk aversion. Above a
risk aversion level of approximately 0.3, a price �oor subsidy yields higher utility irrespective
of installed capacity. Thus NAO changes the order in which wind producers would rank their
preferred subsidy mechanisms, but the most preferred option of a �xed price does not change
irrespective of installed capacity, risk aversion or NAO phase.

3.4.2 Consumers' utility

For consumers we consider the total payment made for electricity, both to thermal and to wind
producers, in order to account for any e�ects wind may have on the market price4. Thus the
metric in question is consumers' disutility, and consumers will wish to minimise their risk-
adjusted payments for a given level of risk aversion, as speci�ed in equations 5 and 7. Figure 7

4Consumers of course are generally shielded from wholesale market price �uctuations, and it is supply
companies who purchase directly from generation companies. Such companies also frequently enter into long
term forward contracts to hedge their risk. We do not model these e�ects here.
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Figure 6: Wind producers' utility under each payment mechanism
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Figure 7: Consumers' risk-adjusted payments under each payment mechanism
(a) NAO+
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shows consumers' disutility for both NAO+ and NAO� phases under the three di�erent subsidy
payment mechanisms (i.e. price �oor, �at premium, �xed price).

Consumers' subsidy mechanism of choice, i.e. the mechanism which minimises their risk-
adjusted payment per MWh of electricity consumed, is the opposite to wind producers' pref-
erence ordering. Consumers' optimal mechanism, under every level of risk aversion and irre-
spective of NAO phase, is a �at premium when 4GW of wind capacity is installed. At 2GW of
installed wind capacity, consumers' preference for subsidy mechanism varies depending on risk
aversion. Under NAO+ phases and low levels of risk aversion, a �at premium subsidy yields
the highest utility, whereas a price �oor yields the highest utility at high levels of risk aversion.
Whether at 2GW or 4GW installed wind capacity and irrespective of NAO phase, a �xed price
is consumers' least preferable subsidy mechanism to support wind producers.

3.4.3 Consumers' and Wind Producers' utility across all wind phases

Finally Figure 8 considers the utility implications for both consumers and producers under all
wind phases, NAO+, NAO neutral and NAO�. Given the fact that NAO+ phases are more
frequent than NAO� phases, the total utility of consumers and producers is similar to that of
NAO+ phases. As the speci�cation of the �at premium subsidy, i.e. ¿26.12/MWh, was designed
to provide wind producers with the same revenue as the price �oor mechanism with 2GW of
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Figure 8: Consumers' and wind producers' utility under each payment mechanism
(a) Consumers' disutility
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(b) Producers' utility
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installed wind, it is unsurprising that the wind producers' utility for the two mechanisms is
the same. However, consumers are not indi�erent between the two, preferring the �oor price
subsidy mechanism, particularly at high levels of risk aversion. Producers' preferred subsidy
mechanism across all NAO phases is a �xed price, though depending on level of risk aversion the
level of preferred installed capacity varies. Consumers' preferred subsidy mechanism across all
NAO phases varies depending on installed wind capacity and the level of risk aversion. At 4GW
installed capacity a �at premium is the subsidy mechanism that gives the lowest risk-adjusted
payment per MWh of electricity consumed. At 2GW installed capacity the �at premium is
preferred at very low levels of risk aversion but a price �oor otherwise.

Across the three subsidy mechanisms the di�erence in utility, whether in NAO+ or NAO�

wind phases, is relatively small in the case of consumers but much larger in the case of wind
producers, which highlights that the e�ects of NAO on electricity prices impacts much more
on wind producers than on consumers. As a consequence a policy-maker, using conditional
value at risk as a measure of risk, may consider a �xed price subsidy as the best policy measure
to support investment in renewable wind generation capacity. Whereas a policy-maker who
wishes to balance the interests of both consumers and producers might select a �oor price
mechanism, as the `second best' option for both consumers and producers. However, this
leaves wind producers exposed to the variation of NAO, which consumers are largely indi�erent
towards (regarding electricity generation). Furthermore, the impact of NAO� phases on a wind
producers' utility depends on their appetite for risk, with wind producers with a low appetite
for risk preferring a �at premium and 2GW installed wind to a �oor price with 4GW installed.

4 Conclusions

The in�uence of NAO on wave power, solar energy, and rainfall among others has been widely
documented. Many studies examine its impact on the wind resource (e.g. Pirazzoli et al. (2010);
Jerez and Trigo (2013); Jerez et al. (2013); Burningham and French (2013); García-Bustamante
et al. (2013)). There is also an extensive literature examining how wind energy a�ects electricity
prices (e.g., Ketterer (2014); Amor et al. (2014); Shcherbakova et al. (2014); Woo et al. (2013);
Würzburg et al. (2013)). But there is no published research that examines the e�ect of NAO
on electricity markets. This paper investigates that speci�c issue by developing a simulation
methodology using synthetic wind speed data and an electricity dispatch model.
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While the magnitude of the empirical results in the paper are speci�c to the model, which
is based on the SEM market in Ireland, they are likely to be indicative of magnitude of the
e�ect of NAO on electricity costs and prices in other similar electricity markets. The results are
also conditional on the level of installed wind capacity. In 2012 there was 2.1GW of installed
wind capacity on the Irish system with instantaneous wind penetration regularly exceeding
40% of demand (Clancy et al., 2015). By 2017 4GW of installed wind capacity is anticipated
(EirGrid and SONI, 2015) and hence the analysis centres around 2GW and 4GW of installed
wind capacity.

The analysis found that NAO phase has a statistically signi�cant e�ect on both thermal
generation costs and wholesale electricity prices. At 2GW installed wind capacity the mean of
total thermal production costs are 3% lower under NAO+ compared to NAO� phases, as wind is
displacing thermal generation. When wind capacity doubles to 4GW there is a proportionately
greater reduction in thermal generation costs, which fall by 8.2% in NAO+ versus NAO� phases.

Mean electricity prices are 1.1% lower in NAO+ compared to NAO� phases at 2GW wind
capacity, equivalent to ¿0.8/MWh. At 4GW wind capacity the di�erence in mean electricity
prices between NAO+ and NAO� phases is 2.1% or ¿1.5/MWh. These di�erences are between
1-2% of the electricity price and therefore could represent a substantial component of a gener-
ator's pro�t margin. Investment decisions in new generation plant that is not mindful of the
distribution of NAO phases and its impact on the wind resource could lead to unexpected de-
viations from expected revenue, either positive or negative. While windier NAO+ phases result
in lower wholesale prices, wind capacity factors increase and the net result is that on average
revenues to wind generators increase by 12%. Revenue and pro�ts of thermal generators decline
inversely proportional to the level of installed wind capacity.

Most wind generation receives subsidy support and the design of the subsidy mechanism
can in�uence the level of capacity deployment (for example, see Farrell et al. (2013); Devine
et al. (2014)). The analysis compared whether NAO had an impact on either the cost of the
subsidy support or wind producers' total revenue. Three subsidy mechanisms were examined
(�oor price, �xed price or �at premium) and speci�ed in such a way that the total subsidy
cost and wind producers' total revenue were equivalent across the three mechanisms during
NAO� phases. During NAO+ phases on average a �xed price subsidy is most lucrative to
wind producers and a �at premium lease lucrative. A �at premium is, on average, the least
expensive from a consumer's perspective. Using Conditional Value at Risk as a measure of
risk we considered how consumers' and producers' preferences for a subsidy mechanism might
vary depending on NAO. From consumers' perspective the di�erence in their utility across the
three wind support subsidy mechanisms is small, irrespective of NAO phase, though in most
circumstances a �at premium is preferred. From wind producers' perspective a �xed price
subsidy yields the highest utility per MW for every level of risk aversion and irrespective of
NAO phase.
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