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1 Introduction

The oil price shock in 1973 first gave centre stage to the debate on whether energy and in particular

capital, but also other factors of production, are complements or substitutes in the production

process. An increase in energy prices only leads to an increase in the demand for new - presumably

less energy-intensive - physical capital if capital and energy are substitutes. Thus, whether energy

and capital are substitutes or complements has important implications for firms’, industries’ and

ultimately countries’ responses to increases in energy prices or to policies that increase energy

prices. Despite the fact that numerous researchers have to date investigated this issue, no consensus

has yet been reached. This lack of consensus combined with the ongoing restructuring of energy

sources1 indicate that any future rises in energy prices, and their knock-on effects on the demand

for other factor inputs, continue to be a real concern. Thompson (2006), emphasizing the need for

further research on this topic, notes that “the empirical literature on energy cross-price elasticities

is thin relative to the economic impact”; he highlights that energy substitution will affect the

outcomes of, for example, environmental policy, capital taxes and labour policy, amongst other

issues.

We contribute to the literature on factor substitution by examining the elasticities of substitu-

tion between different factors of production at the firm level using a census of Irish manufacturing

firms. Thus, we are able to perform the analysis at the level of the decision-making unit, namely

the firm in contrast to earlier studies that relied on industry- or country-level data. Our data

covers a period of nearly 20 years from 1991 to 2009. We estimate factor share equations derived

from a translog cost function using iterated seemingly-unrelated regressions. We calculate both

own- and cross-price elasticities of demand as well as Morishima elasticities of substitution across

the average of all manufacturing firms. To allow for heterogeneity across firms, we further com-

1For example the International Energy Agency (IEA, 2012) notes that around the world many aging power
plants will need to be replaced in coming years, which will put pressure on energy prices. Increased promotion of
renewable energy sources and potentially more stringent CO2 pricing in the future are other possible factors that
could drive energy prices up.
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pare elasticities of substitution for firms of different sizes, energy intensity, ownership and trade

orientation. We also investigate changes over the sample period.

A large number of papers have examined whether energy and capital, as well as other factors

of production, are substitutes or complements. However, most studies have been at the country

or industry-level. Berndt and Wood (1975) were first to use the translog model initially developed

by Christensen et al. (1973) to estimate a factor demand model on US industry-level data. They

find energy and labour to be substitutes but energy and capital to be complements. Griffin and

Gregory (1976) find capital and energy to be substitutes in their study using aggregate cross-

country data. Solow (1987) argues that ultimately the question of whether capital and energy

are substitutes or complements can only be satisfactorily settled at the micro level as aggregation

will bias any measured elasticities at more aggregate levels. Despite these insights, there have

been few studies based on micro data: Woodland (1993) finds strong substitution between factors

of production including different types of energy and capital in a panel of firms in New South

Wales, Australia 1977-1985. Arnberg and Bjørner (2007) using a panel of Danish manufacturing

firms for four years between 1993 and 1997, find complementarity between energy and capital.

Nguyen and Streitwieser (2008) find that capital and energy are substitutes in a cross-section of

US manufacturing plants in 1991.

We add to this literature in four ways. First, we use a census of Irish manufacturing firms; an

analysis based on micro data is less likely to suffer from aggregation bias.2 Second, we consider

two alternative measures of substitution: cross-price elasticities and Morishima elasticities of sub-

stitution. Third, we examine whether these elasticities differ for firms of different types and sizes;

this gives us insight into which types of firms are better able to respond to changing factor prices

by adjusting their input mix. Finally, in contrast to the earlier literature our panel covers nearly

20 years, which allows us to also examine whether substitution patterns change over time.

2We should add the caveat, however, that our data are at firm level, rather than product level to which Solow’s
argument (Solow, 1987) specifically referred.
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Our results show that all factor inputs are substitutes in the production process. We find

that energy is the most elastic factor input and that labour is the least elastic. According to

the cross-price elasticities energy and capital are weak substitutes, but the Morishima elasticities

reveal a stronger technical substitution potential. We do find variation in the substitutability

between energy and capital depending on firm types: larger, more capital-intensive, foreign-owned

and more export-oriented firms all tend to be less responsive to increases in the prices of energy.

We also observe a sharp decline in the cross-price elasticity of substitution between energy and

capital from the first half of the sample period (the 1990s) to the second half (the 2000s). The

technical substitution potential does not vary significantly across firm types, but the decline from

the first half of the sample period to the second half is confirmed by the Morishima elasticities of

substitution.

The remainder of this paper is structured as follows. Section 2 summarises the related literature.

The econometric model is outlined in Section 3; this section also includes a brief discussion of

alternative measures of elasticity. Section 4 describes the dataset and provides summary statistics.

Section 5 presents our results. Section 6 briefly concludes.

2 Related Literature

Berndt and Wood (1975) analyse industry-level data from US manufacturing for 1947-1971. They

employ a translog model using four inputs - capital, labour, energy and intermediate materials

and find energy and capital to be complements. These results are supported by other industry-

or national-level studies for a single country such as Fuss (1977) and Magnus (1979). Griffin and

Gregory (1976) use aggregate data from several countries throughout the 1950s and 1960s. They

too utilise a translog model although they only use three inputs - capital, labour and energy. In

contrast to Berndt and Wood (1975), they find energy and capital to be substitutes. Pindyck

(1979) in his multi-country study also finds capital and energy to be substitutes. A more recent

paper using industry-level data is that of Tovar and Iglesias (2013) who estimate a five-factor
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model in which capital is split into working and physical capital. The authors find that energy is

complementary to both types of capital in the long run, and that the relationship between these

inputs is not significant in the short run.

Various explanations have been put forward to reconcile the fact that some papers show energy

and capital to be substitutes while other studies show them to be complements. One suggestion is

that the substitution results typically found in cross-section studies capture the long-run industry

response while time-series studies pick up the short-run complementary relationship between the

two inputs (Griffin and Gregory, 1976; Apostolakis, 1990). However, there are exceptions to this

rule, e.g. Chung (1987) uses the same data employed by Berndt and Wood and finds that all

inputs, including energy and capital, are substitutes. Other explanations relate to differences in

model specification, differences in the definition of inputs and differences in the aggregation of

energy inputs. In fact, Koetse et al. (2008) conduct a meta-analysis of capital-energy substitution

elasticities on the basis of a large number of studies at industry and country-level. Their analysis

suggests that the differences between results can be explained largely by differences in model

specification, type of data, regions and time periods analysed. Based on this they conclude that

capital and energy are substitutes in the production process.

Solow (1987) shows analytically that estimates of factor substitutability at the aggregate level

capture more than just technological substitution. He concludes that the question can ultimately

only be settled at the micro (product) level as differences in energy intensities are large and aggreg-

ate results will be driven by composition effects. Similarly, Miller (1986) argues that substitution

effects in production can only be estimated precisely if the output vector is truly held constant,

i.e., the product mix is held fixed. As the scope for the product mix to change is greater in

cross-section studies (even at 2- or 3-digit industry level) the findings from these studies are biased

toward finding high elasticities of substitution. In contrast, time-series studies essentially pick up

cyclical movements where energy prices and investment moved in the same direction and hence

are more likely to show complementarity.
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There have been a small number of studies using micro data. Woodland (1993) focuses on

energy and factor substitution among manufacturing firms in New South Wales, Australia, using

a panel for the period 1977-1985. He finds that substitution between fuel and the other factors

of production, including capital, is significantly larger than interfuel substitution. Nguyen and

Streitwieser (2008) estimate elasticities of substitution in a cross section of U.S. manufacturing

firms in 1991. They use four factor inputs - capital, labour, materials and energy. They find

energy and capital to be substitutes. In an earlier paper (Nguyen and Streitwieser, 1999) they

use the same dataset to show that the the degree of factor substitution does not differ markedly

between firms grouped into different firm-size classes. Arnberg and Bjørner (2007) estimate input

substitution among Danish manufacturing firms in the mid-1990s using panel data. This model

has four inputs - capital, labour, electricity and other energy. Using both translog and linear-logit

approaches, they find that electricity and other energy are both complements with capital.

3 The empirical model

Elasticities of substitution can be obtained from the estimation of a production function, or its dual

cost function (Berndt and Wood, 1975; Thompson, 2006). We choose to estimate a cost function

as it is based on the prices of factor inputs, as opposed to the inputs themselves, and thus is less

likely to suffer from simultaneity. In order to estimate a cost function it is necessary to specify

a functional form. We follow Berndt and Wood (1975) and Woodland (1993), amongst others,

and estimate a translog cost function as it is a flexible functional form which does not place any

a-priori restrictions on the relationships between factor inputs, which is important as this is what

we wish to estimate. In order to improve estimation efficiency (as discussed by Diewert (1974))

we augment the cost function with factor share equations which, following Shepard’s lemma, are

obtained by differentiating the cost function with respect to price.
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The basic cost function is:

ln(Cf ) = b0 +
∑n

i=1 ai ln(Pif ) + 1
2

∑n
i=1

∑n
j=1 bij ln(Pif ) ln(Pjf )

+
∑n

i=1 ciln(Pif )ln(yf ) + γln(yf ) +
∑n

i=1 uif ln(Pif ), i 6= j
(1)

where ln is the natural log; f indexes firms and i factors of production, namely capital, labour,

materials and energy. C is cost; y is output; and Pi refers to the price of each of the four factor

inputs; ui is the residual. Differentiating with respect to price gives the factor share equations:

Sif = ai +
n∑
j=1

bijln(Pjf ) + ciln(yf ) + uif , i = k, l,m, e (2)

Firms differ from each other in important ways and there is a long time dimension to our

panel. We take account of heterogeneity across firms in different sectors by including NACE 2-

digit industry dummies. In total there are 22 NACE 2-digit industries. These are included in such

a way that the ai are allowed to vary across sectors. Note that trying to model heterogeneity at

the firm level in this way is not feasible computationally, when jointly estimating the cost function

and factor share equations. In addition, in the cost function we also include a dummy variable

indicating whether a firm has multiple production units, a dummy variable indicating whether the

firm is foreign owned, and a categorical variable to indicate its trade status (no trade, exports

only, imports only, exports and imports). These are all comprised in the vector Zt. To capture

differences over time we include time dummies (λt. This allows us to directly take account of

the fact that the cost function is not homogeneous across all firms in our data, and that firms in

different industries will be characterised by different production technologies. In order to further

identify how patterns of substitution between factors of production vary across different firms, we

also estimate the cost function and evaluate the elasticities separately for different types and sizes

of firms.
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Thus, the basic translog cost function is modified as follows:

ln(Cf ) = b0 +
∑n

i=1 ai ln(Pif ) + 1
2

∑n
i=1

∑n
j=1 bij ln(Pif ) ln(Pjf ) +

∑n
i=1 ciln(Pif )ln(yf )

+γln(yf ) +
∑n

i=1 ln(Pi)
∑G

g=1 digINDgf +
∑n

i=1 uif ln(Pif ) + Zf + λt, i 6= j
(3)

And the resulting factor-share equations are now:

Sif = ai +
n∑
j=1

bijln(Pjf ) + ciln(yf ) +
G∑
g=1

digINDgf + uif , i = k, l,m, e (4)

where IND is a dummy variable equal to one if firm f is in industry g, and zero otherwise. We

impose the following constraints on the model to ensure that the production function is symmetric

and homogeneous of degree one:

∑n
i=1 ai = 1;

∑n
i=1 bij = 0, j = 1, . . . , n;

∑n
i=1 ci = 0;

∑n
i=1 di = 0 (homogeneity)

bij = bji, i, j = k, l,m, e; i 6= j (symmetry)
(5)

These equations are estimated jointly using Zellner’s seemingly unrelated regression (SUR)

technique, to account for potential correlation between the errors from the equations. Standard

errors are adjusted for clustering at the firm level. As the four factor shares must sum to one, we

arbitrarily drop one of the factors (materials) from the estimation and compute it as a residual.

The elasticities can be computed directly from the estimated parameters of the cost function

and the observed cost shares, using the delta method to compute the standard errors. We first

estimate the own- and cross-price elasticities of demand (PED). The own-price elasticities give

the percentage change in the demand for a factor of production given a one percent change in

its own price. The cross-price elasticities give the percentage change in demand for one factor of

production in response to a one percent change in the price of another factor of production. The

PED is computed as follows from the estimated parameters of the cost function is:

ηxipj = σij ∗ Si =
bij + Si ∗ Sj

Si
(6)
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The own- and cross-price elasticities may be useful to policymakers who wish to know what the

potential impact of, for example, a carbon tax would be on the demand for energy as well as the

demand for other factors of production. Indeed, many papers to date which have focused on factor

substitution have estimated own- and cross-price elasticities, and Allen elasticities of substitution,

σ - which is simply the cross-price elasticity divided by the factor share. However, it has been

argued that the PED is not the best measure of factor substitutability, as it does not measure the

curvature of the production isoquant and thus is not a measure of substitutability as defined by

Hicks (1932). Nguyen and Streitwieser (2008) argue that the Morishima elasticity of substitution

(MES) is a theoretically superior measure of substitution and is closer to the original definition of

substitution as outlined in Hicks (1932). The MES is calculated as follows:

MESij = ηxipj − ηxjpj =
∂ln(Xi/Xj)

∂ln(Pj)
(7)

Where Xi and Xj are the demand for inputs i and j, and ηxipj and ηxjpj are the cross- and own-

price elasticities. Thus, the MES adjusts the cross-price elasticities for changes in the demand

for a factor input when its own price changes. It captures the change in the ratio of two inputs

(Xi/Xj) when the price of one of the inputs (Pj) changes. According to this measure, factors i

and j are substitutes if the i/j input ratio increases in response to an increase in (Pj). Thus, if

in the face of rising energy prices, the demand for both capital and energy falls, but the demand

for capital falls by less, capital and energy would be classified as Morishima substitutes, reflecting

the fact that the production process is now more capital intensive. This is outlined by Bettin et

al. (2011) who note that the MES may also be considered a superior measure of substitutability

in a multi-input case.

In this paper we present estimates of substitution based on both measures, as both may be

useful depending on the question being asked. While the cross-price elasticity between energy and

capital measures the actual change in the demand for capital in response to an increase in the

price of energy, the Morishima elasticity measures the percentage change in the capital/energy
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input ratio, and illustrates the technical substitution potential between the inputs. Blackorby

and Russell (1989) note that the MES preserves the salient features of Hicks’ original definition,

and that it is an exact measure of the ease of substitution between two inputs. On the other

hand, Frondel (2004) argues that for any practical purposes, the cross-price elasticity of demand

is preferable to the Morishima elasticity of substitution.

4 Data and Descriptive Statistics

4.1 Data

Our data set is the Census of Industrial Production (CIP) for the Republic of Ireland. The CIP is

conducted annually by the Central Statistics Office (CSO); response to the survey is compulsory.

In its current format it has been in place since 1991; we use the data from 1991-2009. The

purpose of the census is to produce structural information on various accounting measures such as

industry classification, location, sales, employment, intermediate inputs, capital acquisitions and

trade. The CIP covers all firms with 3 or more persons engaged in the mining, manufacturing

and utilities sectors. The analysis here focuses on the core manufacturing NACE Rev. 1.1 sectors

15-36. The CIP is conducted at enterprise (firm) level and requires firms with multiple production

units to break some of their aggregate figures down to the level of the local unit (plant). Since the

information at the firm level is more comprehensive, we use data at the firm level. Only 3% of Irish

manufacturing firms are multi-unit firms, and we control for multi-unit status in our regressions.

The data are checked for digit issues and outliers and cleaned where appropriate. The industry

classification changed between 2007 and 2008 from NACE rev. 1.1 to NACE rev. 2. More detailed

information on data cleaning and how we deal with the change in industry classification is provided

in the Appendix. Further, the CSO estimate or impute data for non-respondents and incomplete

returns. We exclude firms where 50% or more of the observations in the census are imputed or

estimated.
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We examine substitution between four inputs, namely capital, labour, energy and materials.

Estimation of the translog model requires quantities and prices. The labour input is the number of

employees; the price of labour is the firm’s expenditure on wages and salaries as well as other labour

costs (i.e. social insurance, employers’ pension contributions and training costs), per employee. The

CIP records investments in capital assets. We obtain capital stocks using the perpetual inventory

method for industrial buildings and machinery and equipment as described in the Appendix. The

price of capital we use in our model is the market cost of capital as estimated by Žnuderl and

Kearney (2013). The authors calculate the price for two different types of capital: machinery and

equipment, and industrial buildings. The cost of capital estimated by the authors is derived from

a model of investment behaviour based on the neoclassical theory of optimal capital accumulation,

according to which the cost of capital is the implied rental rate of the capital services that a firm

supplies to itself. As we have information on the stock of capital for each firm, we weigh the cost

of the two types of capital by each firm’s relevant capital stock. This gives a price of capital which

varies at the firm level.

Expenditure on materials is recorded directly in the CIP. To obtain the price of materials we

weigh the prices of intermediate inputs (mostly at the 2-digit level) obtained from EU-KLEMS

(EUKLEMS (2009), for a detailed description see O’Mahony and Timmer (2009)) by each in-

dustry’s input mix according to the input-output tables. For more details on the construction of

this, and other variables, please refer to the Appendix.

Expenditure on energy is recorded in the CIP as purchases of fuel and power. We construct

an industry-level energy price based on the price of oil, electricity and gas to industrial users in

Ireland, as given by the International Energy Agency’s “Energy Prices and Taxes” publication

(IEA, 2011), weighted by industry-level fuel consumption data for Ireland, available from the

Sustainable Energy Authority of Ireland (SEAI, n.d.).

Thus, the prices for labour and capital are at the firm level whereas the prices for materials

and energy are at the industry level. Finally, output is measured as sales.
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4.2 Descriptive Statistics

Table 1 presents annual descriptive statistics. The average firm in our dataset employs 51 people,

utilizes e3.4 million worth of capital, spends e7.1 million on materials and e275,000 on fuel per

year. The average wage is approximately e23,600 and the average price of a tonne of oil equivalent

(TOE) of fuel is e553. On average across the sample, approximately 3% of firms are multi-unit

firms, and 14% of firms are foreign owned. The table also reports standard deviation, the quartiles

of the distribution of these variables and their variation over time. Not surprisingly we observe

differences across firms and changes over time.

Table 1: Descriptive Statistics

Mean SD 1st 2nd 3rd Mean
Quartile 1991 2000 2009

Capital (e1000) 3421.3 46913.9 57.3 194.8 955.4 966.3 3378.5 5753.7
Labour (Employees) 51.0 145.4 7.0 15.0 39.0 47.6 56.0 42.1
Material (e1000) 7093.8 89611.1 175.5 521.1 2117.4 4020.9 8648.5 7928.7
Energy (e1000) 274.6 2011.2 9.5 29.5 109.9 281.2 238.0 267.9
Price capital 17.9 3.6 15.5 18.0 20.5 17.7 13.0 22.1
Price labour (e1000) 23.6 17.4 13.9 20.8 30.2 14.6 22.8 34.0
Price material (index) 0.8 0.5 0.4 0.8 1.0 0.6 0.7 1.0
Price energy (e/TOE) 553.1 234.3 387.5 465.1 674.1 388.0 436.9 938.5
Output (e1000) 18556.5 194070.0 503.5 1310.0 4765.8 8842.4 19985.3 24423.6
Multi-unit dummy 0.03 0.16 0.03 0.03 0.02
Foreign-owned dummy 0.14 0.35 0.16 0.14 0.11

The sample comprises of 81,042 observations.

Figure 1 below shows the average share of each of the four factor inputs over time. It shows

that, on average, the share of capital in manufacturing firms’ inputs was increasing over time. This

is accompanied by a corresponding decrease in the share of the other inputs, mainly of materials

and energy.

Figure 2 shows the changes in factor prices over the sample period. All factor prices increased

relative to 1991. The most striking increases are for the prices of energy and labour. The price of

energy inputs increased almost 2.5 fold over the sample period. Most of this increase took place

in the second half of the sample. As discussed by SEAI (2012) increases in the price of energy in
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Figure 1: Factor shares 1991-2009
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Ireland have been driven by rising oil and gas prices; these have a particularly strong knock-on

effect in Ireland due to a high level of dependence on fossil fuels.

Žnuderl and Kearney (2013) note that the market cost of capital for machinery and equipment

was relatively flat and in fact fell towards the end of the period; however the market cost of

investing in industrial buildings increased more than two-fold over the period of our anlysis. The

increase in the market cost of investing in industrial buildings was particulary high from 2006-2009.

However as machinery and equipment account for the majority of the overall capital stock of the

firms in our data (approximately 65%), a large portion of the overall price of capital was unaffected

by the increasing costs of investing in buildings.
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Figure 2: Input price index 1991-2009 (1991 = 100)
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5 Results

As the estimated parameters of the cost function have little intuitive sense given the complexity

of the translog functional form, they are relegated to Table 5 in the appendix. All the coefficients

reported in Table 5 are significant. Of those that are not reported in Table 5 (of which there

are many due to the high number of dummy variables), only 13 are not statistically significant; as

discussed in the Appendix. In this section we discuss the estimated elasticities which are calculated

from the estimated parameters as described in Section 3.

Before discussing the elasticity estimates, it is important to test the performance of the cost

function. To check the validity of the model estimates we first compare the estimated cost shares
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with the observed cost shares. Table 2 shows that across the sample the estimated cost shares are

close to the cost shares observed in the data.

Table 2: Comparison of the estimated and sample average shares

Estimated Observed
Mean SD Mean SD

Capital 0.208 0.049 0.200 0.148
Labour 0.317 0.074 0.315 0.153
Materials 0.444 0.062 0.454 0.189
Energy 0.031 0.013 0.030 0.031

Secondly, if our estimated cost function is well-behaved, conditions of monotonicity and quasi-

concavity should not be violated. Monotonicity implies that the estimated cost shares are non-

negative; 99% of observations in our data satisfy monotonicity, and those observations that do not

satisfy the monotonicity condition are dropped from our estimation. Quasi-concavity is satisfied

if the Hessian matrix from the estimation is negative semi-definite; thus, the estimated own-price

elasticities, evaluated at the mean of the sample, should be non-positive, which is generally satisfied

in our case.3 In total only 0.2% of the observations in our sample violated the quasi-concavity

conditions.

Table 3 below presents the own- and cross-price elasticities estimated across all firms. We

find that energy is the most elastic input, with an estimated price elasticity of demand of -1.5%;

and that labour, with an elasticity of -0.45% is least responsive to changing prices.4 Comparing

these results to previous estimates based on micro data, our results are broadly in line with the

literature. Nguyen and Streitwieser (1999) also find that energy is the most elastic factor input,

while Arnberg and Bjørner (2007) find that materials is the most elastic, followed by (non-electric)

energy. As suggested by our results, Arnberg and Bjørner (2007) also find that labour is the least

elastic input, whereas Nguyen and Streitwieser (1999) find that capital is the least elastic factor,

followed by labour.

3We also validated these at the median and quasi-concavity was maintained.
4This is similar to estimates based on macro data for Ireland; Bergin et al. (2013) estimate an own elasticity of

demand for labour of -0.4.
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Our results show that for Irish manufacturing firms, all factor inputs are substitutes in the

production process, as indicated by the positive cross-price elasticities. The substitutability varies

notably from factor to factor. For example, capital responds strongly to a change in the price

of material inputs. Indeed with a cross-price elasticity of 0.88 (ηKM) the relationship is almost

one for one. Another notably high elasticity is that of energy inputs with respect to the price of

capital; this elasticity (ηEK) is 0.74. In general the elasticities are asymmetric; while the demand

for energy exhibits a strong response to changing capital prices, the demand for capital is relatively

unresponsive to changing energy prices (ηKE = 0.11).

Table 3: Own and cross-price elasticities of demand

Capital Labour Materials Energy

ηKK -1.177*** ηLK 0.125*** ηMK 0.413*** ηEK 0.736***
[0.0135] [0.00633] [0.00541] [0.0189]

ηKL 0.191*** ηLL -0.451*** ηML 0.221*** ηEL 0.164***
[0.00963] [0.00781] [0.00472] [0.0170]

ηKM 0.878*** ηLM 0.309*** ηMM -0.674*** ηEM 0.574***
[0.0115] [0.00660] [0.00703] [0.0204]

ηKE 0.109*** ηLE 0.0160*** ηME 0.0399*** ηEE -1.474***
[0.00279] [0.00165] [0.00142] [0.0260]

Notes: Elasticities are based on coefficient estimates from Equation 3, the results of which are presented in Table

5, and the estimated factor shares. Standard errors, calculated using the delta method, are in parentheses. ***

p < 0.01, ** p < 0.05, * p < 0.1

The other factors of production are relatively unresponsive to changing energy prices. This

is perhaps not very surprising given that the share of energy in total inputs is small (see Figure

1). While the cross-price elasticities with respect to energy are small, none of the factors are

complements to energy, indicating that rising energy prices will not cause a reduction in capital

investment, nor will they have a negative impact on employment.

The estimated Morishima elasticities of substitution (henceforth, MES), presented in Table 4,

confirm the substitutability between all factor inputs; however, they reveal a stronger technical

substitution potential than the cross-price elasticities would suggest. According to the MES es-

timates, a 1% increase in the price of energy causes the capital-energy input ratio to increase by
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1.6%. The MES adjusts the cross-PED for changes in the demand for a factor when its own price

changes; given that energy is the most elastic input it is not surprising that the MES estimates

for changing energy prices are significantly larger than the cross-PED estimates.

Table 4: Morishima elasticity of substitution estimates

Capital Labour Materials Energy

σmKL 0.641*** σmLK 1.302*** σmMK 1.590*** σmEK 1.913***
[0.0156] [0.0178] [0.0178] [0.0233]

σmKM 1.551*** σmLM 0.983*** σmML 0.672*** σmEL 0.615***
[0.0173] [0.0121] [0.0112] [0.0200]

σmKE 1.583*** σmLE 1.490*** σmME 1.514*** σmEM 1.248***
[0.0272] [0.0269] [0.0268] [0.0232]

Notes: Elasticities are computed as per Equation 7. Standard errors, calculated using the delta method, are in

parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

Elasticities by firm type

In the following we assess whether the estimated elasticities vary for different groups of firms and

over time. We examine differences between firms in terms of size, energy intensity, ownership and

trading status. For this purpose we estimate the model described in Section 3 separately for each

of the subsamples and calculate the elasticities of substitution based on these subsamples. In the

following we focus on the elasticity of substitution between capital and energy. The elasticities

for all factors of production in the different subsamples are presented in Tables 6 to 10 in the

Appendix, and show that the patterns of substitution vary across the factor inputs. In Figure 3 we

present the elasticity estimates for capital with respect to the price of energy graphically together

with their 95% confidence intervals. The left-most estimate in the figure is that which is reported

in Table 3 for all firms.

We start by splitting the sample into four firm-size groups. Firms are assigned to size classes

based on their median employment over their period in the sample. The question of whether small

or large firms are more responsive in terms of adjusting their input use to changes in prices is

ultimately an empirical one. Larger firms may be more responsive if they are less likely to be
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financially constrained and more innovative than small firms. In turn, if smaller firms are more

flexible in their organisation or more price sensitive they may be more responsive. Figure 3 shows

that the elasticity of capital with respect to the price of energy tends to decrease with firm size.

However, for all firm size classes except the firms with between 50 and 249 employees the estimated

elasticities are not significantly different to those of the dataset comprising all firms. For firms

in the 50-249 size group the elasticity is about 0.019 percentage points smaller than in the full

sample. This finding concurs with the results of (Nguyen and Streitwieser, 1999), who find that

the degrees of substitution do not vary notably by firm size in a cross section of US manufacturing

firms for 1991.

Next we compare firms by energy intensity. Firms are classified as energy intensive if they are

in a NACE 2-digit sector in which the median share of energy inputs in total inputs across the

time period is in the top quartile of the distribution. Being in the top quartile of the distribution

equates to having an average sector-level energy share greater than 3%. The sectors classified as

energy intensive are NACE rev. 1.1 sectors 15 (Manufacture of food, beverages and tobacco), 25

(Manufacture of rubber and plastic products) and 26 (Manufacture of other non-metallic mineral

products). Figure 3 shows that those firms in sectors with a relatively high level of energy intensity

adjust their capital demand much more in the face of rising energy-prices.

We also split our sample into domestic and foreign-owned firms as well as by firms’ trading

status. Foreign-owned firms have been shown to be larger, more productive and more technology

intensive than domestic firms (for Ireland see e.g. Barry et al. (1999)). As a consequence they

may be using more advanced production technologies and upgrade their production facilities and

machinery more frequently. If this is the case they should also embody more energy-efficient

technologies. A similar argument holds for firms that are engaged in international trade. Firms

that both export and import tend to be larger and more capital intensive than firms that serve

only the domestic market, import only or export only (for Ireland see e.g. Haller (2012)). The

estimated elasticities for the sample of foreign-owned and the sample of Irish-owned firms show

that the elasticity of substitution of capital with respect to energy in the sample of domestic firms
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is not significantly different from that of all firms whereas the elasticity of substitution between

energy and capital is significantly lower for foreign-owned firms. When we split the sample by

firms’ trading status, we find that the responsiveness to increases in energy prices is strongest for

firms that do not trade and for firms that import only. The elasticity of substitution between

capital and energy for firms that export only is estimated with a large standard error and is not

significantly different from that of the full sample. In turn, the elasticity of substitution for firms

that both export and import - the largest group of firms in this sample split - is significantly

lower by about .02 percentage points. This is consistent with more internationally-oriented firms

producing with technologies that already embody more energy-efficient technologies.

The final two bars in Figure 3 show results of the elasticities over time. They indicate a sharp

decline in substitutability between capital and energy over time. On the one hand this is surprising;

the real price of energy has increased significantly over the time period of our data, which may

lead us to expect a higher degree of cross substitution. On the other hand, Figure 1 shows that

the energy share of inputs has been falling over time in our sample, which would lead us to expect

a declining responsiveness to energy prices.5.

Figure 4 presents the Morishima elasticities of substitution for the same sample splits. For

the majority of subsamples the estimated elasticities are not significantly different from those of

the full sample. This is true for the splits by firm size, country of ownership and trade status.

Interestingly, while the cross-PED estimates showed that energy-intensive firms adjusted their

demand for capital in response to rising energy prices more than non-energy intensive firms; the

MES estimates indicate that the technical substitution potential is lower for energy-intensive firms.

The lower estimate for the energy-intensive firms is due to the fact that the own-price elasticity

of demand for energy inputs (ηEE) is lower for these firms. This could be a result of the fact that

some energy-intensive firms may have negotiated contracts for the purchase of energy inputs and

thus respond less to changes in the market price of energy inputs, faced by other firms.

5We observe this decline also if we restrict the second period to the years from 2000-2006 - thereby excluding
the period of the financial crisis, results are available on request
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Figure 3: PED for all firms and by subsample; point estimates and 95% confidence intervals
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The results for the two time periods confirm those from the PED estimates: the responsiveness

of the demand for capital to changing energy prices is significantly lower in the later time period.

Robustness

To further verify the validity of our results we exploit additional information in the data set.

While the above estimates are based on an energy price which only varies at the industry level,

the Census of Industrial Production data contains a detailed breakdown of firms’ energy use by

fuel type from enterprises with 20 or more employees collected every three years. We use these

energy use data for the firms and years when it is available (1992, 1995, 1998, 2001, 2005, 2008)
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Figure 4: MES for all firms and by subsample; point estimates and 95% confidence intervals
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to re-create the energy price variable based on firm-level as opposed to industry-level energy use,

and re-estimate the own- and cross-price elasticities for these firms. Comparing these results to

those reported above shows that our estimates are not notably compromised by using industry-

rather than firm-level energy use data to compute energy prices.6

6 Concluding remarks

In this paper we contribute to the literature on the substitutability between factors of production

by providing new estimates of the elasticities of substitution between energy and other inputs.

6Results, not presented for brevity, are available from the authors on request.
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To do so we use a richer data source than has been applied to the issue to date. We use a

census of manufacturing firms in Ireland for the period 1991-2009. We estimate a translog cost

function in which we model firm heterogeneity directly by including additional firm characteristics

in our equations. Furthermore, rather than basing our results on a single measure of elasticity,

we compute both the price elasticities of demand and Morishima elasticities of substitution. Both

measures have merit depending on the policy inference in question. Koetse et al. (2008) note that

policy makers considering, ex-ante, the likely effect of a carbon tax on the demand for capital

will be interested in the cross-price elasticities, whereas engineers may be more interested in the

technological substitution potential between energy and capital, as given by the MES.

Our results indicate that, on average, across all Irish manufacturing firms a 1% increase in the

price of energy raises the demand for capital by 0.1%. The Morishima elasticities, which reflect

the technological substitution potential, indicate that a 1% increase in the price of energy causes

the capital/energy input ratio to increase by 1.6%. In terms of the price elasticities of demand, we

find that the demand for capital in larger firms tends to be less responsive to increases in energy

prices. However, the difference to the full sample is significant only for the medium-large firms

with 50-249 employees. We find stronger differences when we split the sample according to other

firm characteristics. The demand for capital in foreign-owned and export-oriented firms is less

responsive to increases in energy prices. We also find a sharp decline in the price elasticity of

demand for capital with respect to energy prices between the first half of the sample period (the

1990s) and the second half (the 2000s).

There is less variation in the Morishima elasticities of substitution across different types of firms,

with two exceptions: we find that non-energy intensive firms are more responsive in adjusting their

capital/energy ratios to increases in energy prices than energy-intensive firms. As discussed, this

may be due to the existence of negotiated contracts for energy inputs for energy-intensive firms

which make them less responsive to changes in the market price for energy. We also find that

the sharp decline from the first half of the sample period to the second half is confirmed by this

measure of technological substitution. The decline may well reflect that in the second half of the
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sample period firms already responded to the increase in energy prices by improving the energy

efficiency of their production facilities and machinery, a conclusion that the observed decline of

the factor share of energy would support.

To summarise, despite some differences in the size of the elasticities when we split the data,

in all cases the substitutability between capital and energy holds. We also find that, across all

subsamples, labour and material inputs are substitutable with energy. The policy implications are

important - the imposition of a carbon tax, or other polices likely to increase the price of energy,

are not expected to be associated with a reduction in the demand for capital, labour or material

inputs.
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HERMES-13 macroeconomic model of the Irish Economy.’ ESRI Working Paper No. 460

Berndt, Ernst R., and David O. Wood (1975) ‘Technology, prices, and the derived demand for

energy.’ The Review of Economics and Statistics 57(3), 259–268

22



Bettin, Giulia, Alessia Lo Turco, and Daniela Maggioni (2011) ‘A firm level perspective on migra-

tion.’ Universita Politecnica dellle Marche, Dipartimento di Economia, Quaderni di Ricerca, n.

360

Blackorby, Charles, and R. Robert Russell (1989) ‘Will the real elasticity of substitution please

stand up? (A comparison of the Allen/Uzawa and Morishima elasticities).’ American Economic

Review 79(4), 882 – 888

Christensen, Laurits R., Dale W. Jorgenson, and Lawrence J. Lau (1973) ‘Transcendental logar-

ithmic production frontiers.’ The Review of Economics and Statistics 55(1), 28–45

Chung, Jae Wan (1987) ‘On the estimation of factor substitution in the translog model.’ The

Review of Economics and Statistics 69(3), 409–417

CSO (2004) 1998 Supply and Use and Input-Output Tables for Ireland

(2006) 2000 Supply and Use and Input-Output Tables

(2009a) Estimates of the capital stock of fixed assets (Stationary Office)

(2009b) Supply and Use and Input-Output Tables for Ireland 2005

Diewert, W. E. (1974) ‘Application of duality theory.’ In Frontier of Quantitative Economics, Vol

II, ed. M. Intriligator and D.A. Kendrick (Amsterdam: North Holland) pp. 106–206

ESRI (2012) www.esri.ie/irish economy/databank, accessed on 16.01.2013

EUKLEMS (2009) www.euklems.net, accessed on 16.06.2010

Frondel, Manuel (2004) ‘Empirical assessment of energy-price policies: the case for cross-price

elasticities.’ Energy Policy 32(8), 989–1000

Fuss, Melvyn A. (1977) ‘The demand for energy in Canadian manufacturing: An example of the

estimation of production structures with many inputs.’ Journal of Econometrics 5(1), 89–116

23



Griffin, James M., and Paul R. Gregory (1976) ‘An intercountry translog model of energy substi-

tution responses.’ The American Economic Review 66(5), 845–857

Haller, Stefanie A. (2012) ‘Intra-firm trade, exporting, importing, and firm performance.’ Canadian

Journal of Economics 45(4), 1397–1430

Hicks, John R. (1932) Theory of wages (Macmillan)

IEA, International Energy Agency (2011) Energy Prices and Taxes: Quarterly Statistics

(2012) ‘World energy outlook 2012’

Koetse, Mark J., Henri L.F. de Groot, and Raymond J.G.M. Florax (2008) ‘Capital-energy sub-

stitution and shifts in factor demand: A meta-analysis.’ Energy Economics 30(5), 2236–2251

Magnus, Jan R. (1979) ‘Substitution between energy and non-energy inputs in the Netherlands,

1950-1976.’ International Economic Review 20(2), 465–84

Miller, Edward M. (1986) ‘Cross-sectional and time-series biases in factor demand studies: Ex-

plaining energy-capital complementarity.’ Southern Economic Journal 52(3), 745–762

Nguyen, Sang V., and Mary L. Streitwieser (1999) ‘Factor substitution in u.s. manufacturing: Does

plant size matter?’ Small Business Economics 12(1), 41–57

(2008) ‘Capital-energy substitution revisted: New evidence from micro data.’ Journal of Eco-

nomic and Social Measurement 33(2-3), 129–153

O’Mahony, Mary, and Marcel P. Timmer (2009) ‘Output, input and productivity measures at the

industry level: the EU KLEMS database.’ Economic Journal 119(538), F374–F403

Pindyck, Robert S. (1979) ‘Interfuel substitution and the industrial demand for energy: An inter-

national comparison.’ The Review of Economics and Statistics 61(2), 169–79

SEAI (2012) ‘Energy in ireland 1990 - 2011’

24



Energy Statistics Databank, www.seai.ie/Publications/Statistics Publications/Energy Balance/Previous

Energy Balances, accessed on 11.12.2012

Solow, John L. (1987) ‘The capital-energy complementarity debate revisited.’ The American Eco-

nomic Review 77(4), 605–614

Thompson, Henry (2006) ‘The applied theory of energy substitution in production.’ Energy Eco-

nomics 28, 410–425

Tovar, Miguel A., and Emma M. Iglesias (2013) ‘Capital-energy relationships: An analysis when

disaggregating by industry and different types of capital.’ 34(4), 129 – 150

Woodland, Alan Donald (1993) ‘A micro-econometric analysis of the industrial demand for energy

in NSW.’ The Energy Journal 14(2), 57–90
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Appendix

Detailed tables

Table 5: Translog cost function estimates: main variables

Dependent variable: total cost
ln(Pk) 0.339*** (0.0126)
ln(Pk)ln(Pk) -0.080*** (0.0028)
ln(Pl) 0.475*** (0.0092)
ln(Pl)ln(Pl) 0.074*** (0.0025)
ln(Pm) 0.072*** (0.0142)
ln(Pm)ln(Pm) -0.052*** (0.0031)
ln(Pe) 0.114*** (0.0044)
ln(Pe)ln(Pe) -0.016*** (0.0008)
ln(Pk)ln(Pl) -0.026*** (0.0020)
ln(Pk)ln(Pm) 0.091*** (0.0024)
ln(Pk)ln(Pe) 0.016*** (0.0006)
ln(Pl)ln(Pm) -0.043*** (0.0021)
ln(Pl)ln(Pe) -0.005*** (0.0005)
ln(Pm)ln(Pe) 0.004*** (0.0006)
ln(y) 1.018*** (0.0069)
ln(y)ln(Pk) 0.012*** (0.0011)
ln(y)ln(Pl) -0.043*** (0.0009)
ln(y)ln(Pm) 0.032*** (0.0015)
ln(y)ln(Pe) -0.001*** (0.0002)
Observations 81,042

Note: Standard errors, adjusted for clustering at the firm level, are in parentheses. *** p < 0.01, ** p < 0.05,

* p < 0.1. Due to the high number of dummy variables in the model, not all coefficients are presented but are

readily available from the authors on request. Out of the 127 variables in the full cost function equation, all

but 13 are statistically significant. Those variables which were not significant are: the interaction of the capital

price with the dummies for NACE sectors 16 (manufacture of tobacco products), 17 (manufacture of textiles), 20

(manufacture of wood and wood products, excluding furniture) and 22 (publishing, printing and reproduction of

recorded media); the interaction of the labour price with dummies for sectors 21 (manufacture of pulp and paper)

and 25 (manufacture of rubber and plastics); the interaction of the materials price with sectors 22, 23 (manufacture

of coke, refined petroleum products and nuclear fuel), 31 (manufacture of electrical machinery) and 35 (manufacture

of other transport equipment); the interaction of the energy price variable with sector dummies 23 and 25; and

trade status exporting only.
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Table 6: PED and MES estimates by firm size

<20 empl 20-49 empl 50-250 empl >250 empl
PED
ηKK -1.193*** (0.0176) -1.244*** (0.0263) -1.242*** (0.0324) -1.173*** (0.0526)
ηKL 0.137*** (0.0123) 0.166*** (0.0247) 0.305*** (0.0241) 0.398*** (0.0407)
ηKM 0.942*** (0.0154) 0.968*** (0.0218) 0.847*** (0.0278) 0.687*** (0.0523)
ηKE 0.114*** (0.0040) 0.111*** (0.0052) 0.090*** (0.0060) 0.088*** (0.0133)
ηLL -0.362*** (0.0087) -0.406*** (0.0229) -0.532*** (0.0225) -0.559*** (0.0398)
ηLK 0.079*** (0.0071) 0.118*** (0.0176) 0.250*** (0.0197) 0.461*** (0.0472)
ηLM 0.271*** (0.0068) 0.270*** (0.0137) 0.240*** (0.0195) 0.055 (0.0468)
ηLE 0.012*** (0.0017) 0.018*** (0.0044) 0.042*** (0.0074) 0.043*** (0.0114)
ηMM -0.669*** (0.0081) -0.712*** (0.0146) -0.588*** (0.0176) -0.496*** (0.0499)
ηMK 0.417*** (0.0068) 0.485*** (0.0109) 0.411*** (0.0135) 0.448*** (0.0341)
ηL 0.209*** (0.0053) 0.190*** (0.0096) 0.142*** (0.0116) 0.031 (0.0263)
ηME 0.044*** (0.0018) 0.037*** (0.0030) 0.035*** (0.0033) 0.017*** (0.0057)
ηEE -1.470*** (0.0285) -1.462*** (0.0580) -1.618*** (0.0739) -1.463*** (0.1400)
ηEK 0.712*** (0.0250) 0.766*** (0.0362) 0.686*** (0.0451) 0.849*** (0.1290)
ηEL 0.133*** (0.0189) 0.179*** (0.0426) 0.387*** (0.0681) 0.360*** (0.0952)
ηEM 0.626*** (0.0259) 0.517*** (0.0420) 0.545*** (0.0507) 0.254*** (0.0847)
MES
σmKL 0.499*** (0.0190) 0.573*** (0.0451) 0.837*** (0.0417) 0.957*** (0.0698)
σmKM 1.612*** (0.0221) 1.680*** (0.0340) 1.435*** (0.0423) 1.183*** (0.0977)
σmKE 1.583*** (0.0307) 1.573*** (0.0593) 1.708*** (0.0744) 1.551*** (0.1490)
σmLK 1.272*** (0.0220) 1.363*** (0.0399) 1.492*** (0.0465) 1.634*** (0.0836)
σmLM 0.940*** (0.0130) 0.982*** (0.0252) 0.828*** (0.0329) 0.551*** (0.0896)
σmLE 1.482*** (0.0290) 1.480*** (0.0608) 1.660*** (0.0794) 1.506*** (0.1470)
σmMK 1.610*** (0.0231) 1.730*** (0.0330) 1.654*** (0.0426) 1.620*** (0.0790)
σmML 0.571*** (0.0125) 0.596*** (0.0293) 0.674*** (0.0300) 0.590*** (0.0552)
σmME 1.514*** (0.0292) 1.499*** (0.0598) 1.653*** (0.0755) 1.480*** (0.1400)
σmEK 1.905*** (0.0321) 2.011*** (0.0447) 1.928*** (0.0553) 2.021*** (0.1470)
σmEL 0.495*** (0.0224) 0.585*** (0.0549) 0.919*** (0.0744) 0.919*** (0.0994)
σmEM 1.295*** (0.0285) 1.229*** (0.0492) 1.133*** (0.0593) 0.750*** (0.1180)
Obs 46,468 18,307 13,143 3,124

Notes: Elasticities are based on coefficient estimates from Equation 3, estimated separately for each

subsample, and the estimated factor shares. Standard errors, calculated using the delta method, are in

parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 7: PED and MES estimates by country of ownership

Foreign owned Irish owned
PED
ηKK -1.198*** (0.0303) -1.218*** (0.0144)
ηKL 0.346*** (0.0221) 0.189*** (0.0105)
ηKM 0.781*** (0.0277) 0.916*** (0.0123)
ηKE 0.071*** (0.0053) 0.113*** (0.0032)
ηLL -0.636*** (0.0240) -0.437*** (0.0082)
ηLK 0.322*** (0.0205) 0.118*** (0.0065)
ηLM 0.281*** (0.0232) 0.304*** (0.0066)
ηLE 0.033*** (0.0067) 0.015*** (0.0017)
ηMM -0.666*** (0.0227) -0.677*** (0.0074)
ηMK 0.450*** (0.0159) 0.415*** (0.0056)
ηML 0.174*** (0.0144) 0.221*** (0.0048)
ηME 0.043*** (0.0035) 0.041*** (0.0015)
ηEE -1.684*** (0.0963) -1.446*** (0.0251)
ηEK 0.661*** (0.0488) 0.725*** (0.0206)
ηEL 0.333*** (0.0671) 0.151*** (0.0173)
ηEM 0.691*** (0.0567) 0.571*** (0.0213)
MES
σmKL 0.982*** (0.0401) 0.626*** (0.0167)
σmKM 1.447*** (0.0472) 1.593*** (0.0184)
σmKE 1.756*** (0.0976) 1.559*** (0.0266)
σmLK 1.520*** (0.0444) 1.336*** (0.0188)
σmLM 0.947*** (0.0419) 0.981*** (0.0125)
σmLE 1.718*** (0.1010) 1.461*** (0.0259)
σmMK 1.648*** (0.0429) 1.634*** (0.0187)
σmML 0.809*** (0.0343) 0.658*** (0.0117)
σmME 1.727*** (0.0984) 1.486*** (0.0259)
σmEK 1.859*** (0.0561) 1.943*** (0.0256)
σmEL 0.968*** (0.0726) 0.588*** (0.0207)
σmEM 1.357*** (0.0667) 1.248*** (0.0244)
Obs 11,205 69,837

Notes: Elasticities are based on coefficient estimates from Equation 3, estimated separately for each

subsample, and the estimated factor shares. Standard errors, calculated using the delta method, are in

parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 8: PED and MES estimates by trade status

Don’t trade Only export Only import Export&Import
PED
ηKK -1.150*** (0.0269) -1.177*** (0.0530) -1.283*** (0.0250) -1.170*** (0.0174)
ηKL 0.152*** (0.0176) 0.245*** (0.0414) 0.103*** (0.0161) 0.278*** (0.0124)
ηKM 0.860*** (0.0221) 0.817*** (0.0480) 1.057*** (0.0208) 0.805*** (0.0160)
ηKE 0.138*** (0.0064) 0.115*** (0.0116) 0.123*** (0.0051) 0.088*** (0.0040)
ηLL -0.348*** (0.0116) -0.442*** (0.0360) -0.400*** (0.0105) -0.553*** (0.0127)
ηLK 0.086*** (0.0099) 0.170*** (0.0287) 0.057*** (0.0089) 0.218*** (0.0097)
ηLM 0.250*** (0.0106) 0.236*** (0.0261) 0.338*** (0.0098) 0.311*** (0.0112)
ηLE 0.013*** (0.0023) 0.035*** (0.0074) 0.0055** (0.0022) 0.024*** (0.0035)
ηMM -0.662*** (0.0135) -0.587*** (0.0280) -0.714*** (0.0104) -0.645*** (0.0112)
ηMK 0.413*** (0.0106) 0.387*** (0.0228) 0.423*** (0.0083) 0.408*** (0.0081)
ηML 0.212*** (0.0090) 0.161*** (0.0178) 0.245*** (0.0071) 0.201*** (0.0072)
ηME 0.037*** (0.0026) 0.039*** (0.0052) 0.046*** (0.0023) 0.036*** (0.0021)
ηEE -1.527*** (0.0380) -1.549*** (0.0861) -1.395*** (0.0396) -1.482*** (0.0495)
ηEK 0.884*** (0.0409) 0.723*** (0.0726) 0.691*** (0.0284) 0.685*** (0.0309)
ηEL 0.147*** (0.0260) 0.319*** (0.0664) 0.056** (0.0225) 0.242*** (0.0351)
ηEM 0.496*** (0.0349) 0.508*** (0.0684) 0.648*** (0.0322) 0.556*** (0.0323)
MES
σmKL 0.501*** (0.0256) 0.687*** (0.0714) 0.503*** (0.0232) 0.831*** (0.0221)
σmKM 1.522*** (0.0331) 1.404*** (0.0717) 1.771*** (0.0293) 1.449*** (0.0254)
σmKE 1.665*** (0.0415) 1.665*** (0.0908) 1.518*** (0.0425) 1.570*** (0.0511)
σmLK 1.236*** (0.0336) 1.348*** (0.0727) 1.340*** (0.0307) 1.388*** (0.0237)
σmLM 0.911*** (0.0214) 0.823*** (0.0465) 1.052*** (0.0180) 0.955*** (0.0203)
σmLE 1.540*** (0.0388) 1.585*** (0.0903) 1.400*** (0.0404) 1.506*** (0.0518)
σmMK 1.563*** (0.0354) 1.565*** (0.0703) 1.706*** (0.0318) 1.578*** (0.0239)
σmML 0.561*** (0.0184) 0.603*** (0.0481) 0.645*** (0.0158) 0.754*** (0.0180)
σmME 1.564*** (0.0388) 1.588*** (0.0880) 1.441*** (0.0409) 1.518*** (0.0506)
σmEK 2.034*** (0.0505) 1.900*** (0.0846) 1.974*** (0.0401) 1.855*** (0.0360)
σmEL 0.495*** (0.0292) 0.761*** (0.0820) 0.456*** (0.0260) 0.795*** (0.0398)
σmEM 1.158*** (0.0405) 1.095*** (0.0845) 1.362*** (0.0350) 1.200*** (0.0370)
Obs 19,089 4,983 22,059 34,911

Notes: Elasticities are based on coefficient estimates from Equation 3, estimated separately for each

subsample, and the estimated factor shares. Standard errors, calculated using the delta method, are in

parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 9: PED and MES estimates by energy intensity

Energy intensive Non energy intensive
PED
ηKK -1.129*** (0.0217) -1.168*** (0.0167)
ηKL 0.274*** (0.0168) 0.160*** (0.0117)
ηKM 0.690*** (0.0200) 0.918*** (0.0141)
ηKE 0.165*** (0.0068) 0.090*** (0.0028)
ηLL -0.464*** (0.0160) -0.447*** (0.0088)
ηLK 0.224*** (0.0137) 0.098*** (0.0072)
ηLM 0.208*** (0.0148) 0.338*** (0.0070)
ηLE 0.032*** (0.0050) 0.011*** (0.0016)
ηMM -0.420*** (0.0125) -0.758*** (0.0084)
ηMK 0.289*** (0.0084) 0.450*** (0.0069)
ηML 0.107*** (0.0076) 0.271*** (0.0056)
ηME 0.024*** (0.0046) 0.038*** (0.0017)
ηEE -1.211*** (0.0578) -1.532*** (0.0343)
ηEK 0.765*** (0.0315) 0.742*** (0.0232)
ηEL 0.184*** (0.0282) 0.152*** (0.0221)
ηEM 0.263*** (0.0514) 0.638*** (0.0285)
MES
σmKL 0.738*** (0.0286) 0.608*** (0.0185)
σmKM 1.110*** (0.0300) 1.676*** (0.0211)
σmKE 1.376*** (0.0608) 1.622*** (0.0352)
σmLK 1.353*** (0.0307) 1.266*** (0.0215)
σmLM 0.628*** (0.0244) 1.096*** (0.0135)
σmLE 1.244*** (0.0594) 1.543*** (0.0351)
σmMK 1.419*** (0.0279) 1.618*** (0.0223)
σmML 0.571*** (0.0211) 0.718*** (0.0128)
σmME 1.235*** (0.0613) 1.570*** (0.0353)
σmEK 1.894*** (0.0402) 1.909*** (0.0285)
σmEL 0.648*** (0.0348) 0.600*** (0.0255)
σmEM 0.683*** (0.0579) 1.397*** (0.0309)
Obs 21,751 59,291

Notes: Elasticities are based on coefficient estimates from Equation 3, estimated separately for each

subsample, and the estimated factor shares. Standard errors, calculated using the delta method, are in

parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 10: PED and MES estimates over time

1990-2000 2001-2009
PED
ηKK -1.363*** (0.0176) -0.805*** (0.0191)
ηKL 0.159*** (0.0138) 0.245*** (0.0121)
ηKM 1.090*** (0.0166) 0.527*** (0.0157)
ηKE 0.113*** (0.0058) 0.033*** (0.0036)
ηLL -0.478*** (0.0104) -0.398*** (0.0101)
ηLK 0.094*** (0.0081) 0.177*** (0.0087)
ηLM 0.373*** (0.0101) 0.202*** (0.0094)
ηLE 0.011*** (0.0024) 0.019*** (0.0021)
ηMM -0.758*** (0.0082) -0.464*** (0.0099)
ηMK 0.428*** (0.0065) 0.281*** (0.0084)
ηML 0.249*** (0.0068) 0.149*** (0.0070)
ηME 0.080*** (0.0029) 0.034*** (0.0020)
ηEE -1.704*** (0.0569) -1.154*** (0.0316)
ηEK 0.574*** (0.0292) 0.305*** (0.0334)
ηEL 0.099*** (0.0206) 0.248*** (0.0271)
ηEM 1.032*** (0.0373) 0.601*** (0.0342)
MES
σmKL 0.637*** (0.0207) 0.643*** (0.0193)
σmKM 1.848*** (0.0229) 0.991*** (0.0238)
σmKE 1.818*** (0.0606) 1.187*** (0.0328)
σmLK 1.457*** (0.0226) 0.982*** (0.0250)
σmLM 1.131*** (0.0166) 0.666*** (0.0170)
σmLE 1.716*** (0.0582) 1.173*** (0.0322)
σmMK 1.791*** (0.0224) 1.086*** (0.0261)
σmML 0.727*** (0.0156) 0.547*** (0.0153)
σmME 1.784*** (0.0592) 1.188*** (0.0324)
σmEK 1.937*** (0.0357) 1.111*** (0.0396)
σmEL 0.577*** (0.0246) 0.645*** (0.0304)
σmEM 1.789*** (0.0368) 1.065*** (0.0367)
Obs 41,734 39,308

Notes: Elasticities are based on coefficient estimates from Equation 3, estimated separately for each

subsample, and the estimated factor shares. Standard errors, calculated using the delta method, are in

parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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Variable definitions

foreignf Dummy equal to 1 if the firm’s ultimate beneficial owner is located outside Ireland.

INDgf Dummy variable equal to 1 if firm f is in NACE 2-digit industry g, and zero otherwise.

Tradef Trade orientation. We control for a firm’s trade orientation based on whether it does not

trade (i.e. neither exports nor imports), exports only, imports only, or both exports and

imports.

Kf Capital stocks. Capital stocks are calculated based on capital investments using the perpetual

inventory method, where firm i’s stock of capital asset x at time t is obtained from invest-

ments I and depreciation δx as: CSxit = (1 − δx
2

)[Ixt + (1 − δx)Ixt−1 + (1 − δx)2Ixt−2 + . . .].

Assets are buildings, machinery and equipment and transport equipment. Asset lives, im-

plied depreciation rates and deflators are those underlying CSO’s calculations of industry

level capital stocks (CSO, 2009a). Total capital stock for each firm is the sum over indi-

vidual assets. Capital stocks are calculated from 1985 onwards to make sure that they are

driven as much as possible by firm’s capital acquisitions rather than by starting stocks. The

sampling frame in the Census of Industrial Production was different until 1990, however,

for the mostly larger firms that are still in operation after 1991 the data are comparable.

Starting stocks in 1985 and for firms that entered after 1985 are obtained by breaking down

the previous year’s end-of-year industry-level capital stock obtained from CSO to the firm

level using the firm’s share in industry-level fuel use.7

Pk Price of capital. This is the aggregate price of capital for each firm which comes from the

market cost of capital, as measured by (Žnuderl and Kearney, 2013) for two types of capital:

machinery and equipment, and industrial buildings. We weight these two capital costs based

on the share of the respective types of capital each year to create an aggregate firm-level

price of capital.

7We thank Kieran Culhane of the CSO for providing capital stocks at NACE 2-letter level.
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Ef Energy use. This is firm-level expenditure on fuel. It is calculated as the total firm-level

expenditure on fuel per year deflated by the Wholesale Price Index for fuels.

Pe Price of energy. We create an aggregate energy price variable by weighting the price of oil,

gas and electricity, as given by the IEA (IEA, 2011) for Ireland, by industry-level energy use

data (in TOE), by energy type, from SEAI’s Energy Balances (SEAI, n.d.).

Lf Labour inputs. This is the firm-level number of employees, recorded in the CIP.

Pl Price of labour. This is the total wage bill deflated using the Consumer Price Index, divided

by the number of employees.

Mf Material inputs. Expenditure on materials is recorded directly into the CIP. The variable we

use to deflate expenditure on materials comes from the ESRI Databank (ESRI, 2012). It is

calculated as a weighted index of various price deflators, weighted by the input share from

the 1998 Input-Output table produced by the CSO. Weights based on the 1998 I-O table

should be appropriate for our purposes as this is approximately mid-way through the data

period we use. The formula used to calculate the deflator for material inputs (ESRI, 2012)

is as follows:

PriceDeflatorMaterials = PriceDeflatorAgri ∗ IOWeightAgri + PriceDeflatorHiTech∗

IOWeightHiTech + PriceDeflatorTrad ∗ IOWeightTrad + PriceDeflatorFood ∗ IOWeightFood+

V ADeflatorDistribution ∗ IOWeightDistribution + V ADeflatorT&C ∗ IOWeightT&C+

V ADeflatorP&FServices ∗ IOWeightP&F +DeflatorImports ∗ IOWeightImports

(8)

Where T&C refers to transport and communication services, and P&F refers to professional

and financial services. Dividing materials expenditure data from the CIP by this deflator

gives us the total real expenditure on material inputs.

Pm Price of materials. The price of materials we use is an index that varies at the industry

level. We weight the prices of intermediate inputs (mostly at the 2-digit level) obtained
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from EU-KLEMS by each industry’s input mix according to the input-output tables. We

have three input-output tables for our sample period, we use the input-output table for 1998

(CSO, 2004) for the period up to and including 1998. We use the input-output table for 2000

(CSO, 2006) for the period 1999-2002 and the input-output table for 2005 (CSO, 2009b) from

2003 onwards. As the EU-KLEMS data are available only up to 2007, for 2008 and 2009

we use two additional data sources; the price index for manufacturing produce comes from

the Industrial Price Index, and for the price index for services used by the manufacturing

sector we use value-added deflators for agriculture, construction and the marketed and non-

marketed services sectors, available from the ESRI Databank (ESRI, 2012).

Yf Log Turnover (sales) in e1000 deflated using wholesale/producer price indices at the 2-3 digit

NACE (Rev. 1.1/Rev. 2) level.

Note: All price indices are obtained from CSO and the base year is 2007.
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Data checking and cleaning

Variables in the CIP data are checked for a number of different measurement issues: industry

(NACE), county and ownership changes are ignored if they revert in the following year. A similar

procedure applies where first or last observations differ from those after or before. Since the

employment variable refers to employment in the first week of September this may be zero whereas

wages may be positive. Where this is the case only in a single year, employment is estimated based

on previous or following observations. Sales are checked for digit issues based on large changes in

sales per employee and deviations from the mean. Fuels, materials and wages are checked for large

changes from one year to the next and whether they exceed turnover both individually as well as

taken together. Export and import shares are checked for big changes from year to year as well as

for once-off zero observations.

Change in industry classification

The official European industry classification changed from NACE rev. 1.1 to NACE rev. 2 between

2007 and 2008. Parts of our analysis require a classification that is consistent over time, thus we

bring all firms to the NACE rev. 1.1 classification. For the year 2008 the firms in the CIP were

coded according to both classifications. We use this information for firms that are present in both

2008 and 2009 if their NACE rev. 2 classification did not change between the two years. Using this

method we are able to obtain NACE rev. 1.1. codes for 95.6% of firms in 2009. For the remaining

firms we use the concordance table provided by Eurostat. For a further 2.2% of firms there is a

one-to-one match between the old and the new classification. For the few remaining firms there are

up to 21 potential matches from the new to the old classification; however, for most of these firms

there are only two or three possible matches. To these firms we assign the NACE rev. 1.1. code

that firms with this NACE rev. 2 code are most frequently matched to based on the observations

that have both codes assigned in 2008.
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