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Abstract 

Non-alcoholic fatty liver disease (NAFLD), a disorder associated with abnormal lipid 

accumulation within hepatocytes, is considered benign disorder in nature. However, in some 

cases it may progress to inflammation, nonalcoholic steatohepatitis (NASH), then cirrhosis, 

precancerous nodules and finally to hepatocellular carcinoma (HCC). NAFLD and NASH are 

both reversible with appropriate clinical intervention and lifestyle changes. In developed 

countries, the non-alcoholic fatty liver disease (NAFLD) is becoming one of the most common 

causes of precancerous and HCC lesions [1]. Unfortunately, most nodular lesions are detected 

too late with a poor prognosis. The discovery of markers that can predict which livers may 

progress to HCC would allow early intervention and potentially halting progress to HCC. This 

would be of great benefit at any stage up to precancerous lesions, however the earlier the better.  

Development of end stage liver malignancy would be decreased, resulting in decreased 

mortality from this disease. 

Histology is considered the reference standard for the assessment of fatty disease and 

nodular lesion in liver. However, there are significant drawbacks including invasiveness, small 

sample size and observer-dependence which limits its usefulness in evaluating liver disease.  

Magnetic resonance imaging is a non-invasive modality that can provide information on 

anatomical and physiological changes in the liver (e.g. fatty liver disease and HCC). MRI 

images are primarily assessed visually by expert radiologists looking for anatomical and 

contrast changes in the images compared to normal tissue. This qualitative method requires 

inspection of all datasets for abnormalities. Visual interpretation is subjective, labour intensive, 

and depends on the experience of the radiologist. This can introduce inter-observer variation 

and is suitable only when the pathology leads to sufficient contrast changes in the images 

acquired.  

MRI also allows the calculation of quantitative parameters like T1, T2 and diffusion 

values.  These parameters are dependent on physical, chemical and microstructural properties 

of the tissue. When standard protocols are used, the calculation of these parameters should be 

independent of the observer. This has the potential for more precise characterization of changes 

that occur over time. Clinically, here has been limited utilization of these methods, as they 

generally require longer acquisition times and significant post processing of the images. 

However, with each release of new scanners, hardware and software updates are making 

quantitative imaging more accessible in the clinical setting.  

This thesis investigates changes in multi-exponential derived T2 components and the 
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fat fraction (FF) in the liver during progression of liver disease in a rat model. The choline-

deficient L-amino acid (CDAA) rat model of liver cancer exhibits the same progression of liver 

disease as in humans including NAFLD to NASH, fibrosis, cirrhosis, precancerous lesions and 

finally full HCC.  This allows longitudinal characterisation of T2 components and FF during 

the progression through various stages of liver disease. Changes in these components 

individually and/or the relationship between these components may provide an indication for 

tissue regions that are at risk of progressing to the next stage and ultimately to HCC.  After 

completion of in vivo MR experiments, all rats were sacrificed and livers taken for ex vivo 

imaging on a 16.4T scanner and histologic evaluation.  This thesis aims to develop new MR 

biomarkers to assess progression of liver disease. 
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Abbreviations 

MRI            Magnetic resonance imaging 

MRS           Magnetic resonance spectroscopy 

DW-MRI    Diffusion-weighted magnetic resonance imaging 

HCC           Hepatocellular carcinoma 

SPIO          Super paramagnetic iron oxide 

RF              Radiofrequency 

TE              Echo time 

TR             Repetition time 

T1              Longitudinal relaxation time 

T2              Transverse relaxation time constant 

Bi-T2         Bi-component T2 

S0             Bulk signal intensity 

T2L            T2 long 

T2S            T2 short 

ρL              Fractional contribution of the long decaying compartment to S0     

ρS              Fractional contribution of the short decaying compartment to S0 

FF             Fat fraction 

C               Amplitude of baseline signal 

ADC         Apparent Diffusion Coefficient 

SD            Standard deviation 

                      Gyromagetic ratio 

B0             Static magnetic field 

             Difference in chemical shift between water and lipid resonances 

FA            Flip angle 
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2D            Two-dimensional 

3D            Three-dimensional 

9.4T          Operating magnetic field strength of 9.4 Tesla 

16.4T        Operating magnetic field strength of 16.4 Tesla 

MHz         Mega Hertz 

rBW          Receiver bandwidth 

ROI           Region of interest 

ms             Milliseconds 

SE             Spin echo 

SNR          Signal to noise ratio 

FLASH     Fast low angle shot gradient echo sequence 

MESE       Multi-slice multi-echo spin echo sequence 

ANOVA   Analysis of variance 

r                Pearson correlation coefficient 

AIC          Akaike information criterion 

r2                   Coefficient of variation 
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Chapter 1 : Background 

1.1 Introduction 

Hepatocellular carcinoma (HCC) is a liver malignant tumour usually developing from a 

cirrhotic background [2]. The incident rate of HCC in the United States had tripled from 1975 

through 2005 [3]. In Australia, the HCC was increased (tripled) between 1982 and 2007 (from 

1.8 to 5.2 cases per 100,000 population) [4].  Risk factors for HCC mainly include hereditary 

haemochromatosis, hepatitis B and C, aflatoxin, drugs, and alcohol [5]. Pathologically, 

hepatocarcinogenesis is a stepwise development from regenerative nodule (RN) through 

dysplastic nodules  (DN) to early HCC and then moderate to progressive HCC [6]. RN is 

considered a benign lesion and gives rise to hyperplastic nodules. DN is a premalignant nodule 

that contains atypical hepatic cells, without definite histological features of malignancy, which 

are thought to be the direct precursor of HCC.  Currently most HCC are detected late leading 

to a poor prognosis. Early detection gives the opportunity for patients to receive potentially 

curative treatments. The five-year survival rate of 70%  can be achieved with resection or 

transplant by detecting early stage of HCC [7, 8]. Diagnosis of HCC is no longer limited to 

invasive biopsy. Non-invasive imaging methods such as magnetic resonance imaging (MRI), 

ultrasound (US) and computer tomography (CT) are all being applied to detect late stage HCCs 

[9]. However, they are not highly sensitive for the early (premalignant stage) detection of HCC. 

Detection of hepatocarcinogenesis at earlier stages might help improve the clinical outcomes 

of HCC patients. 

MR images can be sensitised to many biological characteristics of tissue using multiple 

sequences with and without MR contrast agents.  Conventional T2- or T1-weighted MRI 

highlight anatomical changes to characterize hepatic nodules within a cirrhotic background 

[10, 11]. MR angiography using gadolinium agent contrast enhancement (CE) is a clinical 

imaging standard tool for evaluating and detection HCC based on blood supply and vascular 

integrity. Hepatocyte specific gadolinium contrast agents are concentrated in healthy 

hepatocytes increasing the contrast between healthy hepatocytes and nodules. 

Superparamagnetic iron oxides (SPIOs) accumulate in non-malignant lesions leading to 

decrease signal. Together these agents show potential to improve early detection of HCC [12].  
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Diffusion weighted imaging (DWI) has been applied with moderate success allowing 

better differentiation between solid benign and malignant lesions. DWI relies on differences in 

water diffusion and can provide quantitative (apparent diffusion coefficient; ADC) and 

qualitative information of cell membrane integrity and tissue cellularity which may help to 

differentiate between liver lesions [13].  

MR spectroscopy (MRS) is a non-invasive technique that provides physiological and 

chemical information rather than anatomy in the living tissue, and is used diagnostically in 

brain [14], breast [15], and prostate [16]. In hepatic diseases, fatty changes and steatosis in a 

lipid-induced rat model have been intensively examined by MRS with few studies in patients 

and proven to be successful [17]. It has been reported that in an animal model of HCC 

metabolite signals including saturated and unsaturated lipids as well as choline play important 

roles in the process of hepatocarcinogenesis [18, 19]. These metabolites are potential 

biomarkers for evaluating HCC and are observable by MRS. 

T2 and T1 relaxation times are sensitive to tissue structure, water freedom and tissue 

composition. The T2 is determined by acquiring a series of images with increasing TE times. 

The T1 value can be determined by acquiring a series of images with varying TR times, 

inversion times or pulse angles. Animal models of liver cancer suggest relaxation times are 

sensitive to tumour microenvironment. [20]. However, studies of relaxation time in animal liver 

cancer are still few and need further research.   

             It is important to understand the capabilities and limitations of current preclinical and 

clinical magnetic resonance (MR) protocols to identify gaps and opportunities for adding new 

methods to address unmet needs. A review of the development of hepatocellular carcinoma and 

an overview of the most currently available animal models of HCC will be presented. This will 

be followed by the current status of diagnostic MR methods including relaxation times, DWI, 

and MRS to evaluate hepatocarcinogenesis on the basis of several MR criteria using animal 

model of HCC.  

 

1.2 Basic histopathological characteristic of hepatocellular 

carcinoma 

Hepatocellular carcinoma (HCC) mainly develops in the setting of chronic liver 

disease and has an established pathway of hepatocarcinogenesis.  The pathway of 
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hepatocarcinogenesis shows various degrees of cytological atypia. Cells differ from normal 

cells beginning from precancerous nodules, including regenerative nodules (RN) and 

dysplastic nodules (DN), to early HCC and then moderate to progressive HCC [6]. The 

terminology of precancerous nodules is now standardised by International Working Party 

Classification (IWP) [21] which considers DNs, usually high grade, as a precursor of HCC and 

thus the confirmed gradual evolution of this carcinogenesis step is from DN to HCC. During 

this pathway unpaired arteries, due to angiogenesis, increases as the nodule develops [6, 22]. 

Histopathologically, the progression of HCC includes gradual diminution of portal tracts 

(hepatic artery and portal vein) which eventually become absent and is accompanied with with 

sinusoidal capillarization and growth of unpaired arteries (hypervascular tumor), whereas 

precancerous nodules are mainly supplied by the portal vein (hypovascular lesion) [23].  HCC 

can develop directly from non-malignant hepatocytes as opposed to DNs, and so called de novo 

hepatocarcinogenesis [24]. Both multistep and de novo hepatocarcinogenesis are shown in 

figure 1-1.  

 

Figure 1-1: A simplified representation of the pathway of hepatocarcinogenesis. Unpaired 

arteries due to angiogenesis increases as nodules progress from high grade dysplastic nodule 

to HCC. 

Small or early HCCs are characterised by well-differentiated lesions (closely resembling 

their tissue of origin), growing without substantial destruction of hepatic framework, and less 

chance of showing stromal invasion [25]. Small HCC in cirrhotic liver is usually preceded by 

the appearance of precancerous lesions including DN [6, 26].  Small HCCs have been classified 
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into two types: early vaguely nodular with indistinct margins, and progressed nodule with 

distinct margins [27]. In early vague nodules, the nodular margins are indistinct owing to the 

lack of a tumour capsule.  Other characteristics include increased nuclear to cytoplasmic ratio, 

and pseudoglandular structure [6, 26].  

Fatty changes are frequently also observed in early HCC lesions [6, 28]. These fatty 

changes are mostly triglycerides and may be a biomarker of membrane breakdown (figure 1-

2) [29]. Progressed small HCCs contain well to moderate differentiated cells rimmed often by 

fibrotic capsule. Fibrous capsule may be seen helping to differentiate HCC from DNs. Other 

abnormal changes such as hemorrhage, necrosis,  fibrous septa and invasion of veins and bile 

ducts can also occur [30].  

 

Figure 1-2: Early HCC nodule shows an irregular thin trabecular in the area where fatty 

change is located (right half image) [28]. 

1.3 Non-alcoholic fatty liver disease and HCC 

The detection of fatty lesions is crucial during liver cancer development because 

it is considered to be a biomarker for malignant transformation of a DN  to early HCC 

[31]. It has been observed that fatty change is frequently associated with small HCC in 

early stage development [32].  Fatty lesion is defined as an excess of fat accumulation 

(>5%), primarily as triglycerides, in the liver [33] which is associated with metabolic 

disorders that are related to insulin resistance and central obesity [34]. Moreover, non-

alcoholic fatty liver disease (NAFLD) can increase the risk for HCC. NAFLD ranges from 
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steatosis (simple fatty liver) to steatohepatitis (NASH). NASH involves steatosis and a 

specific form of inflammation with hepatocellular injury, which is commonly followed 

by progression to fibrosis, cirrhosis and hepatocellular carcinoma [35]. In simple 

steatosis, the rate of fatty acid accumulation that are imported or synthesised by 

hepatocytes will exceed the rate of export or catabolism, resulting in liver cells filled with 

multiple fat droplets [36, 37]. In NASH, the increase in fat accumulation is accompanied 

by various degrees of inflammation and fibrosis. Although non-alcoholic fatty 

accumulation generally is considered as benign, NASH increases the risk of  cirrhosis and 

hepatocellular carcinoma [38]. HCC can develop in NAFLD without cirrhosis [39]. In 

human, a study reported that HCC can be associated with NAFLD in the absence of 

advanced hepatic fibrosis or cirrhosis [40]. The mechanisms responsible for this 

association are unknown, and more research are required to investigate mechanisms that 

promote HCC in NAFLD. Although, the progression of steatosis to cirrhosis through 

NASH and fibrosis has been characterized, no imaging-biomarkers have been found to 

accurately distinguish developmental stages of HCC, making liver biopsy the only 

reliable method of assessing the degree of NAFLD. 

 

 Histo-pathologically, the estimation of fat in liver relies on visual assessment of the 

percentage of hepatocytes with visible fat droplets. There are five typical grading scale (0%, 1-

5%, 6-33%, 34-66%, or >67%). However, less than 5% of fatty accumulation is not usually 

considered as a true pathologic abnormality [41]. Even though histology is considered the 

reference standard for the assessment of fatty lesion in liver, it has drawbacks; mostly including 

invasiveness, small sample size and observer-dependence which limits its usefulness in 

evaluating fatty fraction [42]. In addition, the distribution of fat droplets in the fatty liver lesion 

might be heterogeneous leading to insufficient information of the fat burden in the entire liver 

when using single biopsy from one location [43, 44]. For these reasons, histology with biopsy 

is a suboptimal modality and thus imaging has become to the forefront for the diagnosis of 

hepatic steatosis. MRI is a non-invasive imaging technique that can quantify fat accumulation 

for grading [45]. In- and out-phase (IP/OP) MR imaging developed by Dixon [46] is an 

attractive modality, and the most common MR imaging method to estimate and evaluate 

hepatic fat accumulation. This method is highly sensitive to signal differences between fat and 

water; and has become a superior and new reference standard in quantifying fat fraction (FF), 

when compared with non-invasive methods [47]. This technique will be discussed later in this 
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chapter in section 1.5 on magnetic resonance imaging of hepatocarcinogenesis. 

 

1.4 Animal models of hepatocarcinogenesis  

Most human patients are diagnosed with malignant lesions which are irreversible with 

poor prognosis [48]. Given that carcinogenesis has multiple steps starting with benign 

(initiation) to precancerous (promotion) and finally to malignant lesion (progression), there is 

a strong mandate for using experimental hepatocarcinogenesis models including mice and rats 

to give a deep insight into the pathological characteristics during liver cancer development 

under controlled conditions [49]. Preclinical experimental animal models of HCC enables 

longitudinal studies that include monitoring of the tumour growth as well as drug uptake and 

response to treatment.  In addition, preclinical experiments enable correlation of 

histopathological results at various time points with imaging and serum biomarkers, which 

cannot be performed in HCC patients [50].  

HCC is preceded in both humans and animals by the development of precancerous 

lesions including DNs, which exhibit a higher risk for HCC development [51, 52].  Similar to 

in humans, the cytological criteria of DN in rodents such as nuclear to cytoplasmic changes, 

nuclear crowding, and hyperchromasia are commonly seen suggesting that DN is the 

intermediate step to early HCC [49, 53].  Rat models of HCC are commonly used because they 

share features with human carcinomas at different time points [54]. For example, eosinophilia 

and basophilic alterations in rats are the counterparts of DN in humans [49, 55]. This 

introduction highlights the most currently used animal models for HCC with emphasis on 

chemical carcinogenesis induced by diethylnitrosamine, diet-induced carcinogenesis (choline 

deficient amino acid diet), and genetically modified models (Table 1-1). These models of HCC 

were chosen based on their usual MR imaging features of tumorigenesis that are observed in 

human HCC. This sequence includes fibrosis, cirrhosis, fatty lesion, angiogenesis, 

precancerous nodules, and finally HCC. 

 

 

       Table 1-1. The common MR experimental models for HCC 
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Model 
Liver Disease before HCC 

incidence 
HCC development References 

Diethylnitrosamine (DEN) 

- 10 mg/kg of body weight 

of DEN dose induce 

fibrosis 

 

- Varies based on species, dose, 

and way of administration. For 

example, DEN injection to 

mice model usually induces a 

multiple HCC nodules within 

40 weeks 

[5] 

[56] 

Choline-deficient, L-

amino acid (CDAA) diet 

- Fatty lesion by 1 week 

- Regeneration after 2 

weeks 

- fibrosis by 12 weeks 

- cirrhosis by 30 weeks 

- 100% incidence by 52 

weeks 
[57] 

C-myc transgenic mice - 

- 40% incidence by 45 weeks 

- 80% incidence by 65 weeks 

 

[58] 

 

1.4.1 Chemical carcinogenesis induced by Diethylnitosamine 

 

Diethylnitrosamine (DEN) is the most frequently used chemical carcinogen, which 

has the potential to cause malignant lesion, specifically HCC [59, 60]. Diethylnitrosamine can 

be found in water, tobacco smoke, pharmaceutical agents, agricultural chemicals, cosmetics, 

and fried meals [61].  DEN occurs under the genotoxic chemical carcinogens category, causing 

cancer by forming DNA adducts, and defined as DNA reactive due to the reaction of multiple 

enzymes of P450 including cytochrome (Cy) p2E1 [62]. This reaction leads to DNA damages 

and genetic changes of the target cell and in consequence tumours. DEN-induced 

carcinogenesis has been tested in animal species including mice and rats and showed hepatic 

cellular alterations similar to those found in human tissues [63] which eventually lead to 

multifocal HCC  in the background  of  varying degrees of cirrhosis [64]. Laboratory analyses 

revealed that most juvenile mouse strains reflects human HCC associated with poor prognosis 

[65].  The liver pathology is dependent on the dose of DEN.  For example, liver fibrosis will 

be induced at dose 10 mg/kg of body weight [66]; however, at doses above 25–30 mg/kg, it 

induces stages of multistep hepatocarcinogenesis starting from precancerous nodules through 

to the development of HCC [67]. DEN injection in mice usually induces multiple HCC nodules 
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within 40 weeks, which provides gene expression profiles similar to those found in in human 

HCC [65, 68]. A study in the DEN-rat model showed that the development of fibrosis and HCC 

were seen after 12 weeks and 16 weeks, respectively, from receiving DEN intraperitoneally 

(50 mg/kg body weight). Thus, the induction of HCC varies based on species, dose, and method 

of administration. DENs can be administered to animals by inhaled gas, oral gavage, 

intraperitoneal injection, or in drinking water [5]. DEN is typically injected intraperitoneally 

in mice between 12 and 15 days of age [60]. A single dose of DEN administration 

intraperitoneally is the simplest and most effective way to reduce the time of HCC development 

[69]. For example, mice at the age of 14 days injected by a single dose of DEN will form multi-

neoplastic nodules in the liver within 40 to 50 weeks in 80 to 100% of the animal [56]. Another 

study showed that HCC developed in B6C3F1 mice 44 weeks from DEN-intraperitoneal 

injection [60]. Administering the DEN to older mice (e.g. 4 weeks of age) is less efficient in 

inducing  HCCs, compared to the previously mentioned, and thus it less frequently used [70].  

Morphologically, DEN induces variable numbers of tumours, generally up to 10 

multifocal lesions per rat with different sizes ranging from millimetre to centimetre. A full 

range of angiogenesis can be evident from hypo- to hyper- or avascular tumours. Various 

carcinogenesis pathways including benign dysplastic to early HCC and a range of grades of 

HCC can develop. This closely resembles human hepatocarcinogenesis [71].  

 

1.4.2 Diet-induced carcinogenesis (choline deficient amino acid diet)  

Dietary choline is required for some mammals including human and rats. Choline is a 

key component of phosphatidylcholine and sphingomyelin (phospholipid classes) that are 

required for all cell membranes. It is also important for the synthesis of the neurotransmitter 

acetylcholine as well as a methyl group donor in methionine metabolism [72, 73]. Choline 

deficiency is the only nutrient diet that causes cancer in the absence of any additional known 

carcinogen [74]. Choline deficient diet (CDD) has been developed in mice and rats to induce 

steatosis, fibrosis and cirrhosis [75, 76].   

Methionine is an amino acid and considered as a good source for synthesising the 

methyl groups of choline. The low intake of methionine is required for choline deficient diet 

preparation [77]. Choline deficient rats on a low methionine diet develop HCC in the absence 

of any other carcinogens. There are several mechanisms that occur in rat livers during this diet 

including fatty infiltration, cell necrosis and death, increase in cell proliferation, cirrhosis, and 
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finally HCC [77]. Choline deficient amino acid (CDAA) diet given for 3 to 12 weeks, induces 

cirrhosis and HCC in mice and rats [52].  Nakae et al. reported the progression to 

hepatocarcinogenesis of Fisher rats fed by CDAA. Histologically, regeneration with hepatocyte 

death are seen after two weeks and oval cell proliferation was observed after 4 weeks. Fibrosis 

and cirrhotic multiple nodules were observed by week 12. By 30 weeks, cirrhosis was 

developed. Around 30 weeks, HCC begins to develop and reaches 100% incidence by 52 weeks 

[57]. Male rats are more sensitive to choline deficiency than female rats [78].  

 

1.4.3 Genetic-modified mouse HCC 

Genetic methods can be used to induce tumorigenesis in liver and show similar 

molecular features of HCC [79]. There are two types of transgenic mice: conditional and 

constitutive expressions. In conditional expression, only liver express the genetic alteration; 

while in constitutive expression, the alteration is in all organs [80]. The C-myc transgenic 

mouse (conditional expression) is the most established and well characterized transgenic model 

of hepatocarcinogenesis [58]. Myc acts as a transcription factor that controls  expression of 

genes which are important in the normal cell cycle including differentiation processes [81]. C-

myc, L-myc, and N-myc are genes belonging to the myc gene family which have neoplastic 

potential. When these three genes are overexpressed and aberrant, the development of tumours 

follow [82]. Liver tumours can be induced in c-myc transgenic mice  by selecting the c-myc 

expression of the liver directed by the  alpha 1-antitrypsin promoter or the albumin enhancer 

(alb )/promoter [83, 84]. The HCC lesion incidence in these c-myc transgenic mice is relatively 

slow and corresponds to the development of HCC in humans associated with better survival 

[58, 85]. The HCC incidence of alb-myctg mice are less than 40% in 45 weeks, while they can 

be seen by week 65 in 80% of animals with a minimum of one HCC nodule [58]. 

 

1.5 Magnetic resonance imaging for hepatocarcinogenesis  

The MR imaging protocols for evaluating pathologic changes during 

hepatocarcinogensis include: anatomical imaging including fast spin echo T2 (FSE) and T1-

weighted gradient-recalled echo (GRE) in-phase and opposed-phase (Dixon method, IP/OP) 

sequences; contrast agent enhancement imaging using T1 weighted images before and after a 
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bolus injection [86]; and advanced sequences such as spectroscopy and diffusion weighted 

imaging. 

 

1.5.1 Anatomical imaging 

 

1.5.1.1 Dixon method and T2 weighted imaging 

In-phase/Out-phase (IP/OP) imaging utilizes T1-weighted dual gradient echoes to 

control the phase of fat proton signal relative to water protons. The relative phase of the water 

and fat signals can be selected by varying the echo time (TE) according to the chemical shift 

difference of 3.5 ppm between water and the methylene peak (-CH2-) of fat. Two images are 

acquired, one in-phase (IP) and one out-phase (OP). Since two images are acquired, it is called 

a "two-point Dixon method". Addition of the IP and OP images gives signal intensity in the 

liver proportional to the water content since the fat signal is canceled. Subtraction of the IP and 

OP images cancels water signal resulting in liver signal intensity relative to the fat content. To 

achieve maximum contrast of lipid, the TE should be optimised to acquire IP and OP images, 

and other MR parameters kept consistent.  

IP/OP imaging can contribute to the diagnosis of fatty lesions in the liver and help 

characterize liver tumors [87]. Microscopic lipid accumulation during HCC development 

results in a signal drop due to water-fat signal cancelation in the out-phase image [88]. 

An illustrative case of IP/OP showing HCC with fatty content is provided in figure 1-3. 

Hyperintensity in early HCC may appear due to the presence of copper, glycogen, protein 

[89], or related to the degree of histological differentiation [90]. Distinguishing between 

DNs and early HCC based on T1 images alone is difficult since both lesions may appear 

as hyperintense [91, 92].   
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Figure 1-3: Axial IP (a) and OP (b) MRI images of patient showing focal HCC with fat 

content (arrows). IP shows HCC slightly iso-intense signal compared to the surrounding liver 

parenchyma (arrows). OP shows signal loss in HCC, indicating HCC with fat content [93] 

 

Variable accumulation of fat in the surrounding hepatocytes also complicates the use 

of IP/OP for detection of early HCC. Accurate quantitative biomarkers of fatty lesions in liver 

may contribute to grading, prognosis, and treatment decisions. Qualitative diagnostic methods 

are insufficient for accurate detection, increasing the need to use a quantitative threshold to 

estimate fat percentage relative to a pathologic threshold [94, 95].  

 

1.5.1.2 T2 weighted imaging 

T2 weighted images can distinguish most early HCCs as hypointense [92, 96] 

becoming hyperintense with increasing degree of histological differentiation [90, 97, 98]. 

Signal intensity in T2 images increases with the grade of malignancy and appear more 

hyperintense in advanced HCC [99].  DNs are rarely if ever hyperintense on T2 images 

[100]. Infarction may associate with DNs leading to hyperintensity signal on T2 images 

and can be mistaken for HCC [101].  The classical MR appearance of a central HCC 

within a DN “a nodule within a nodule” on T2-weighted images is high signal intensity 

within a hypo-signal intensity nodule [102].   

 

Detection of early HCC remains challenging using T2 weighted imaging. It is variable 

in signal intensity and HCC is difficult to distinguish from premalignant DN. A preclinical 
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study in the DEN-rat model of HCC performed on 1.5T scanner reported that HCC lesions had 

variable signal appearance compared to normal parenchyma tissues on T2 images: smaller 

HCCs were iso- to slightly hyperintense, whereas larger HCC (1-1.6 cm in diameter) were 

observed as mosaic signal intensity patterns [103]. Another study in transgenic mice showed 

that among 67 histologically confirmed HCC lesions, 62 were detected by MRI.   Among these 

62 HCCs, 52 (83.9%) were hyperintense signal on T1 images, while 10 (16.1%) were 

isointense. 46 tumours (74.2%) were hyperintense signal on T2 images compared to hepatic 

parenchyma background and 16 were isointense.  [104]. A preclinical study by Schmid et al. 

in DEN-treated mice indicated that liver tumours became detectable by T2-weighted 3D 

imaging when they exceeded approximately 1 mm in diameter and showed signal 

hyperintensity (figure 1-4). However, tumors less than 1 mm in diameter were difficult to 

observe by the MR protocol [105].  

 

Figure 1-4: A representative 3D T2 image of hepatic tumour in a mouse model after DEN 

treatment. Tumours (arrows) were shown as hyperintense signal with a minimum size of ~ 1 

mm (St: stomach) [105]. 
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1.5.2 Contrast Agent Enhancement 

1.5.2.1 Vascular Agents 

Gadolinium contrast agents are commonly used as vascular contrast agent that shorten 

T1 relaxation time and provides information about vascularity of hepatic nodules [106]. 

Gadobenate dimeglumine (Gd-BOPTA) is classified as a vascular agent, mostly used clinically 

for dynamic contrast enhanced imaging. This contrast agent is more useful in the progressed 

HCC rather than the early stage HCC due to the predominant vascular supply to HCCs from 

unpaired hepatic arteries and the absence of the portal vein supply.  

Repeated acquisition of 3D T1-weighted gradient echo images after a bolus injection of 

contrast media enables assessment of the arterial-phase, portal-phase, and the equilibrium 

phase of signal intensity changes.  The different phases of gadolinium contrast enhancement 

can be used as a characteristic feature in the diagnosis of hepatocarcinogenesis [23, 107].  

Arterial enhancement phase and washout in the 2 late phases (high signal appearance) is 

regarded as a characteristic feature of HCC [108].  

1.5.2.2 Hepatocellular Agents 

Recently, gadoxetate acid (gadolinium ethoxybenzyl diethylene-triamine pentaacetic 

acid, Gd-EOB-DTPA) has become available for evaluating HCC.  Gd-EOB-DTPA works as  a 

liver-specific contrast agent allowing for both dynamic imaging and hepatobiliary phase 

imaging [109]. Gd-EOB-DTPA is taken up by hepatocytes and undergoes hepatobiliary 

excretion. The hepatobiliary phase can be acquired 20 minutes after intravenous injection in 

addition to the 3 early uptake phase images [110]. Consequently, dysfunctional hepatocytes in 

the hepatocyte-specific phase will show hypointense signal compared to hyperintense 

background liver and thus improves the diagnosis for liver-HCC [111, 112].  Frericks et al. 

reported a significant improvement in the HCC diagnostic performance, from 69.8% to 

80%, by adding hepatobiliary phase imaging [113].  Another study showed an improvement in 

detection and characterization of small HCC (≤1 cm in diameter) in the cirrhotic liver between 

dynamic phase and hepatobiliary phase imaging (85.3% versus 96.0%) [114].  

 

          The hepatobiliary phase imaging for differentiating between early HCC and DN is quite 

challenging. This is because the small early HCCs are often hypovascular and may mimic the 

DN appearance. In human beings, Kogita et al. reported that some DNs were hypointense and 

some early HCCs were isointense in the hepatobiliary phase [115]. Another study showed that 
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approximately 70% of DNs and 97% early HCCs were hypointense on hepatobiliary phase 

images [116]. In animals, a study of 20 c-myc/TGFa transgenic mice with HCC showed that 

12 out of 20 HCC nodules were seen as hyperintense and the other 8 appeared as hypointense 

compared to the liver parenchyma background [117].  

 

1.5.2.3 Iron oxide agents 

Superparamagnetic iron oxide (SPIO) agents have been investigated for detection of 

cirrhosis-associated HCC. SPIO particles target the Kupffer cells of the reticuloendothelial 

system. They increase the local field inhomogeneities leading to a decrease in the signal 

intensity of liver tissue on T2 and T2* weighted images [118]. The degree of uptake of SPIO 

relies on the functionality of Kupffer cells, which are rarely seen in HCCs. Thus, the detection 

of HCCs is improved due to little or no uptake of SPIO, whereas DN shows a significant loss 

of signal due to the significant uptake of SPIO [99, 119]. Guo et al. used both SPIO and 

gadolinium to differentiate HCCs from benign nodules in a rat model induced by DEN in the 

presence of cirrhosis. Among 82 HCC nodules, gadolinium arterial phase imaging detected 73 

nodules as hyperintense enhancing nodules. Combining SPIO with gadolinium increased the 

detection up to 79 nodules. An additional 6 HCC nodules detected were isointense in all three 

dynamic phases in gadolinium-enhanced imaging with moderate hyperintensity in SPIO-

enhanced imaging [120]. However, some hypervascular early HCCs, have been reported to 

accumulate SPIO, while other hypovascular HCC lesion may have reduced uptake. Therefore, 

diagnosis of early HCC with SPIO still remains a challenging issue [117]. 

 

1.5.3 Relaxation times 

Contrast in MR images is based primarily on the contribution of water proton T2 and 

T1 relaxation times in various tissues within biological systems. In addition, these relaxation 

times can be exploited to provide useful quantitative assessment of pathology and help 

differentiate between normal and abnormal tissues [121]. Relaxation times have been used to 

evaluate rodents with infarction [122] and tumour malignancy [123]. To the best of our 

knowledge, most of the MR studies for malignant liver diagnosis using relaxation times were 

performed on liver metastasis [124] . However, even in liver metastasis, there have been limited 

studies.  
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Transverse relaxation is a reduction in the magnitude of net transverse magnetization 

due to spin-spin interactions (loss of phase coherence) and has a time constant, T2. Immediately 

after the application of a selective RF pulse, the transverse magnetization is in phase resulting 

in maximum transverse magnitude. The magnitude will then decrease as spins precess out of 

phase. The characteristic time representing the decay of the signal is called the T2 relaxation 

time [125]. T2 is a key source of MRI contrast representing changes in molecular mobility, 

commonly interpreted in terms of tissue water or lipid distribution changes.  

T2 relaxation times have been used to assess tumours of experimental animal models 

[126]. It has been reported that superior differentiation between benign and malignant liver 

lesions is possible using T2 relaxation data compared to visual signal intensity assessment 

[127]. In liver tumour with metastasis, higher T2 relaxation times were reported compared to 

normal liver [124]. For HCC, the values of T2 relaxation time calculated using 2 echo times 

(TE) were used to differentiate non-solid (such as haemangioma and abscesses) from solid liver 

( such as, focal hyperplasia,  metastases and  HCC) lesions [128].  Both malignant and benign 

solid lesions showed similar T2 values. This result was in agreement with a preclinical study in 

DEN-rat model of which showed that the mean T2 value of cysts was significantly higher than 

those of DN and HCC. However, there was no significant difference in T2 values between DN 

and HCC. In general, T2 information is not frequently used in the clinical setting [124].  

 

Longitudinal relaxation is the process whereby the net magnetisation is re-established 

along the direction of the B0 field following the application of an RF pulse. The exponential 

recovery has a rate constant known as the relaxation time, T1.  Limited studies have been 

reported investigating T1 relaxation times in malignant liver. These studies have been 

performed mostly in metastases in the liver, and increased T1 with tumour growth has been 

demonstrated [129]. Clinically, the use of T1 relaxation times to differentiate and characterize 

liver malignancy has been less useful and not reliable for liver characterization. An early study 

by Goldberg et al showed that T1 values cannot be used to discriminate between fluid–filled 

lesions and solid lesions (e.g. HCC) [130]. Another clinical study showed no difference 

between T1 values for cysts and HCC. It reported that the mean T1 values for cysts and 

malignant lesion were 691 ± 215 ms and was 609 ± 133, respectively [131].  
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1.5.4 Diffusion Weighted Imaging 

Diffusion refers to the random microscopic motion of molecules owing to the thermal 

energy they carry (Brownian motion).  Conventional MRI (e.g. T2 weighted imaging) is well 

known for its ability to display deep and superficial tissue with high contrast and resolution. 

Conventional MRI sequences tend to minimise the contribution of diffusion to the image 

contrast and MR parameters such as T2 or T1. [132]. Diffusion weighed imaging (DWI) targets 

the effect of micro-molecular motion on the final echo signal [133]. It offers contrast 

enhancement between areas with high and low diffusion rates on MR images by inserting 

strong diffusion gradients into MR sequences leading to higher sensitivity to microscopic 

motion [134] and therefore, to tissue structure.  Diffusion weighted imaging (DWI) has 

diagnostic potential because it allows investigation of tissue microstructural changes, 

quantified as the apparent diffusion coefficient (ADC). The ADC is obtained by acquiring 

images with multiple diffusion gradient strengths (b values) which decreases signal intensity 

relative to the diffusion rates of water molecules [135].  

 

Cellular density and membrane permeability changes modify the diffusion 

characteristics of tissue water. This may result from pathologic processes following 

regeneration or obliteration of cell membranes or as a consequence of inflammation or 

neoplastic lesion formation. These aspects affect the extent and directionality of proton 

diffusivity which can be imaged and quantified by DWI [136, 137]  and thus adds  microscopic 

information to the structural information provided by conventional MR sequences [138]. In 

tumours, the cell density increases leading to a decrease in the extracellular space which is 

characterised by decreased mobility and restricted diffusion [139].  

 

Early human studies have shown potential for ADC quantification to add information 

to MR protocols for differentiating fluid-filled lesions, such as cysts and haemangioma, from 

solid lesions such as HCC [140, 141]. For example, Kim et al. reported that neoplastic tumours 

have a significant lower ADC than benign nodules such as cyst and haemangioma, thus ADC 

has good potential for characterizing liver tumor [142]. This is in agreement with an animal 

study in a DEN-rat model of hepatocarcinogensis where the mean ADC of cysts was 

significantly higher than that found in early HCCs [103]. 
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The pathway from DN to early HCC has some degree of increased nucleo-cytoplasmic 

ratio and cell density which is difficult to distinguish histologically [143]. The ADC in early 

HCCs is not significantly different to solid benign tumour, despite a slight increased cellularity 

[144]. Xu et al. also reported no significant difference in ADC value for the DEN-rat model in 

early HCC compared to DN; suggesting that the ADC alone may not be sufficient for tumour 

characterization [145]. This corresponds with another study with another DEN-rat model of 

HCC: an overlap of ADC between DN and HCC was observed [103]. In a patient study, the 

mean ADC of HCC was significantly lower than DN in the cirrhotic liver group [146]. 

However, there was no histological characterization of HCC grades in these patients.  

 

The ADC values show large variation within each of the different HCC grades (well, 

moderately, and poorly differentiated HCCs).  For example, studies have reported that early 

HCCs have higher ADC values than that of more aggressive grades [147, 148]. Others have 

shown the ADCs in early HCC is slightly lower than those in moderated HCC [149]. The 

variation of the ADC may be explained by biologic variations and/or errors in the 

measurements of ADCs. Some studies have reported that ADC was not related to cell density 

[150, 151].   A preclinical study of chemically induced experimental HCCs in rat liver showed 

that moderated and progressed HCC have higher ADC values than in early HCC [145]. This 

higher ADC can be explained by the presence of necrotic regions within these tumours which 

leads to loss of cell membranes and thus increases extracellular diffusion [152, 153].  

      An increase in the number and magnitude range of b values acquired increases the 

accuracy of the calculated ADC value. This may improve differentiation between benign and 

malignant liver lesions and reduce the T2 shine through effect [154].   Applying small b values 

has been reported to improve the detection of focal lesion [142], while applying high b values 

will provide better characterization for tumours such as HCC [155]. However, the optimum 

higher b value has to be carefully selected to avoid loss of SNR [154]. The contribution of 

perfusion to the ADC measurement is larger when using small b values compared with high b 

values. This was demonstrated in a VX2 rabbit model of liver tumour reporting a decrease in 

calculated ADC as b values increased (0-100 s/mm2 vs 0-1000 s/mm2) [156] and in rat livers 

where the effect of perfusion on ADC measurement decreased with b values (0, 50, and 100 

s/mm2) compared to high b values (500, 750, and 1000 s/mm2) [157].  

In summary, ADC measurement is helpful in differentiating fluid-filled lesions from 

solid lesion such as DN and HCC. Given the wide variation of ADC among HCC grades, and 
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the significant overlap distribution of ADC values between DN and HCC in both animal and 

human, ADC measurements are currently not a definitive marker for hepatocarcinogenesis 

characterization. Improved methods for determining the ADC value and a greater 

understanding of the biological variability in HCC progression, may improve the applicability 

of ADC in HCC diagnosis and grading.   

  

1.5.4 MR spectroscopy 

In vivo MRS is a non-invasive technique that provides physiological and chemical 

information rather than anatomy in the living tissue, and is used diagnostically in brain [14], 

breast [15], and prostate [16]. In hepatic diseases, fatty changes and steatosis in a lipid-induced 

rat model have been intensively examined by MRS with few studies in patients and proven to 

be successful [17]. It has been reported that in an animal model of HCC metabolite signals 

including saturated and unsaturated lipids as well as choline play important roles in the process 

of hepatocarcinogenesis [18, 19]. These metabolites are potential biomarkers for evaluating 

HCC and are observable by MRS. Signals obtained from saturated lipid include methyl protons 

(–CH3; 0.9 ppm) and methylene protons ((–CH2–)n; 1.3 ppm). Unsaturated lipid also contains 

diallylic protons (=C–CH2–C=; 2.8 ppm), and vinyl protons (–CH=CH–; 5.3 ppm).  Choline 

has a characteristic N-CH3 resonance at 3.2 ppm.  

The most dominant fat protons arise from methylene and methyl protons and are used 

in tumour spectroscopy as biomarker of membrane breakdown [29].  Choline containing 

compounds are a marker of cellular membrane turnover. Choline levels correspond to the 

degree of malignancy, cellular proliferations [19, 158, 159], and represents elevation of 

membrane phospholipid biosynthesis [160]. Therefore, elevation of the choline peak is used as 

marker for cellular proliferation during the progression of HCC. 

Unfortunately, in vivo MR spectroscopy is not applied often in a clinical setting for 

evaluating liver due to technical challenges, long scan times, low signal to noise ratio, and the 

need for expertise in spectral interpretation.  

Research using in vivo MRS has been carried out on experimental HCC animal models 

to demonstrate these metabolite changes and a correlation with HCC staging.  Towner et al. 

used a DEN-rat HCC model to show alterations of lipid alterations from weeks 0 to week 24 

after DEN induction. The methyl and methylene group increased from week 0 to week 6 

compared with control rats and decreased by week 12. The vinyl hydrogens showed a gradual 
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increase at week 12 peaking at week 18 and decreasing at week 24 [161].   Another study 

performed on the DEN-rat model HCC with different scan time-points showed that the methyl 

and methylene groups did not increase in the early stage (week 7 to 13) but they decreased in 

late stages. Choline was increased in the late group [19]. Xu et al. found that the choline to 

lipid ratio in DEN-rat model HCC increased significantly with the progression of HCC [162]. 

  

Conclusion 

Currently there is not a single or a combination of MR techniques that definitively 

allow the detection and grading of HCC tumours. The goal is to be able to accurately grade 

HCC with non-invasively measured MR parameters. In addition, it is important to be able to 

assess precancerous lesions such as fatty lesions, cirrhosis, and DN. Further work is required 

to advance MR methods and build a better understanding of the relationship between MR 

parameters and liver pathology. 

1.2 Thesis aims 

The overall aim of this thesis is to improve MR methods used to assess liver pathology. 

In particular, for early detection of HCC and therefore providing an opportunity for early 

interventional treatment strategies to limit the development of end stage liver malignancy. The 

quantitative analysis MR protocol to be developed and assessed will include:  

1) in-phase (IP) and out-phase (OP) Dixon MRI to estimate fat fraction (FF), 

2) multi-slice-multi echo sequence (MSME) to obtain T2 weighted imaging for T2 

relaxation measurements,  

3) Diffusion weighted imaging to produce images for ADC measurements.   

 

The imaging experiments will be conducted at 9.4 T in choline deficient amino acid 

modified (CDAA) diet induced liver cancer in the rat model to study the development of HCC 

in vivo with accurate diagnosis of HCC. We will investigate the potential of this quantitative 

information as imaging biomarkers of tumour development and grading. We hypothesize that 

quantitative multi-parametric MR parameters, T2 relaxation times in combination with ADC 

values, as well as quantifying fat fraction (FF), will be powerful biomarkers of characterization 

and early detection of carcinogenesis in the liver.  
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Aims: 

 Optimization of the MR protocol for in- and out-phase T2-weighted 

imaging, and diffusion-weighted imaging sequences for in vivo CDAA-rat model of 

liver HCC imaging (chapter 3).   

 Develop image analysis methods for liver segmentation and 

quantification of MR parameters including: mono and bi-exponential T2 calculation and 

fat fraction. Apply these methods to obtain image maps of the calculated parameters 

(chapter 4). 

 Apply and assess the performance of mono- and bi-exponential models 

in fatty liver disease (chapter 5)  

 Investigate the correlation between FF and T2 values during a sustained 

period of CDAA diet induced hepatocellular carcinogenesis to monitor the diffuse fatty 

liver and nodular lesion over time (Chapter 6). 

 Compare in vivo MRI with MR ex vivo and histopathologic findings at 

final scan time point for conforming lesions purposes (chapter 6).  

 

Approach: 

There are numerous functions which have been applied to parameter estimation of T2 

decay data. These can be mono- and multi-exponential functions and some non-exponential 

functions. Each makes assumptions of some underlying biological function. We have chosen 

two model candidates for comparison including mono- and bi-exponential decay functions. In 

the mono-exponential decay function, it is implicitly assumed that within a pixel there exists 

only a single spin type contributing to relaxation and that T2 is only modulated by tissue 

characteristics (or chemical environment). In other words, there is an assumption that within 

each pixel there is one dominant spin and thus one T2 value. In fatty tissue, this is not true and 

thus inclusion of another spin-type logically leads to a double exponential function. For 

example, a T2 bi-exponential fit model has been shown to distinguish between water and fat in 

living tissue [163].   In liver, Dixon's two-point MRI technique assumes that fatty lesion has 

two main components contributing to the total MR signal. These two components are derived 

from two signal sources; water and fat spins [46]. Moreover, fat-suppressed T2-weighted 

imaging sequences are used in fatty liver disease to suppress fat signal, which decreases the 

overall liver signal in fatty liver, and then a comparison is made with T2-weighted imaging 
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without fat suppression.  Signal loss indicates the presence of a significant fat component.  

Hence, a T2 decay will exhibit a bi-exponential function yielding two T2 decay times (short and 

long). Fat is known to have a longer average T2 than liver water [164], suggesting that the long 

and short T2 relaxation times originate from liver fat and water components, respectively.   

Because our animal model is well known to induce early diffuse fatty liver, and later, 

heterogeneous nodules, we compared mono- and bi-exponentially calculated T2 values for 

characterizing changes in T2 relaxation times in healthy and CDAA rats during development of 

hepatocarcinogenesis over time and assessed their potential diagnostic capability.  

Most studies model the T2 signal decay by applying a mono-exponential model.  It 

would be expected that T2 would increase as the fat fraction increases, since the fat signal has 

a longer T2 than liver water.  

It has not been reported how mono- and bi-exponential components may change in 

diffuse fatty liver and nodular lesions.  To characterize the T2 parameters in our animal model, 

we proposed to assess the correlation between percent fat fraction (% FF) as measured by IP/OP 

imaging and ADC with transverse relaxation times determined from mono- and bi-exponential 

decay functions.   
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Chapter 2 : Method  

The CDAA rat model was used to investigate progressive changes leading to HCC 

development. Figure 2-1 illustrates the general time line of the experiments that were 

performed in this work.  

 

Figure 2-1: Animal preparation, in/ex vivo MR imaging, imaging processing, and the 

histology processing pipeline 

 

In vivo quantitative MRI was performed at 12, 24, 32, 40, 48, 52, and 57 weeks at 

9.4T scanner after CDAA administration. Following the in vivo MR experiments, rats were 

sacrificed and livers taken for ex vivo imaging at 16.4T and histologic evaluation.  The overall 

schedule of the experiment is shown in figure 2-2. 

 

Figure 2-2: Schedule of CDAA and CSAA for in male Fisher rats for in/ex-vivo MRI and 

histology. 
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2.1 Animal model and experimental design 

2.1.2 Animal model and Diet  

         Animal models of HCC have been successfully established for several purposes including 

evaluate malignant-host reactions, staging carcinogenesis process, understanding the 

pathophysiological mechanism, and examine therapeutic medication.  However, not all animal 

are ideal for all these purpose. Therefore, investigators should be well-informed of what animal 

model should be selected and is it going to match their aims and final results? [165].  In our 

project, we found that the suitable and ideal animal model of HCC is CDAA-rat model for the 

following reasons: 

 CDAA-rat model is affordable and easy to handle 

 provides reliable experimental proof of multistep carcinogenesis; from diffuse fatty 

liver to HCC.  

 the model mimics the human HCC behaviour 

 time point stage for HCC development has been addressed in a histology paper. 

 Fisher rats proved to be ideal for experimental MRI purposes 

 

               CDAA and CSAA (Choline sufficient l-amino acid) were obtained in pellet form 

(Diet SF13-103, Specialty Feeds, Glen Forrest, WA, Australia). The compositions of these diets 

are described previously [57]. The amount of choline in CDAA and CSAA diets were 6.5 mg/kg 

and 14.48 g/kg, respectively. CDAA diet was mixed with a small amount of peanut butter to 

increase appetite.  

2.1.4 Numbers of experimental rats 

To determine the minimum number of animals which can provide scientific validity 

of results we used the “resource equation” method [166].  This method is mostly appropriate 

for quantitative outcome studies.  It is also used when there uncertainty about significant 

difference between groups from previously published studies [167]. Because our project is 

mainly concerned with MR imaging quantitative measurements and to our best of knowledge 
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no similar studies have been published, the resource equation method is the most appropriate.  

The equation is: 

        E = Total number of animals − Total number of groups                   (1) 

Where E is the degree of freedom and should be approximately between 10 and 20. 

When the E is lower than 10 or higher than 20, the number of animals is either not enough or 

more than necessary, respectively. In our project, we have selected 12 animals divided into 2 

groups (six in control and six in CDAA groups). In this case E is 10 and hence an acceptable 

statistical limit and adequate sample number while minimizing animal use.  

Besides the resource equation, we also considered two analytic points of view for 

selecting the number and type of rats in our project. Firstly, repetitive measurement of the same 

rat at specific time points will allow a longitudinal observation of HCC in non-invasive MR 

without the need to sacrifice animals in cohorts at the specific time points for organ analysis. 

Repeating the MR scans repeatedly over time reduces the inter-animal variability and improves 

data comparability, thus reducing the number of required rats. Secondly, using high magnetic 

fields will increase the signal-to-noise ratio and thus improve visualisation of lesions and 

accuracy of measurements. 

2.1.5 Animal preparation  

Experiments were approved by the University of Queensland Animal Ethics 

committee. Eight-week old Fisher 344 rats (n = 6) were placed on a choline deficient L-amino 

acid modified diet (CDAA) diet and compared with 8 age and sex matched control rats placed 

on choline sufficient chow.  

Both groups receive diet continuously to the end of the in vivo MR experiment (57 

weeks). All rats were on water ad libitum. They were housed in cages in a room with controlled 

humidity, light and temperature; and kept on a 12:12-hour light/dark cycle. The rats were 

regularly monitored for any signs of discomfort or severe illness. Animal weights were 

recorded at each of the MR scan time points.  
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2.2 MRI equipment and techniques 

2.2.1 In vivo MR imaging acquisition 

During MRI examination, animals were anaesthetized with up to 3% isoflurane in a flow 

of 1.5 L/min medical grade oxygen. MRI experiments were conducted with a Bruker Biospec 

9.4T/30cm MRI spectrometer. The gradient set used could produce fields of up to 14G/cm. An 

86mm quadrature radio-frequency (RF) resonator tuned and matched for protons was used for 

all studies. Animals were placed head first in the prone position with the liver positioned at the 

magnet isocenter.  Constant body temperature was maintained throughout the experiment using 

circulating warming water to keep the temperature at approximately 36o. The temperature was 

monitored by a rectal probe connected to the physiological monitoring system (SA Instruments, 

CA, USA). The prone position was found to be optimal to reduce diaphragmatic motion 

artefacts. The liver region was located in the centre of the coil.  A pneumatic pillow was placed 

on the rat’s abdomen to monitor the respiratory rate. The respiration rate ranged from 40 to 60 

beats per minute during MRI scans. Each rat was examined with a total experiment time of 

approximately 40 minutes. Briefly, scout images in the axial, sagittal and coronal planes were 

collected with a 120 mm field of view, TE/TR=6/100 ms, flip angle=30, and matrix size= 

128*128. The subsequent MR protocols (Dixon method, T2, and DWI) are addressed in chapter 

3.  

 

2.2.2 Ex vivo MR imaging  

The animals were sacrificed immediately after the final in vivo imaging time point 

(week 57) and livers were excised and cut into 7 lobes. Livers were fixed in RCL2 fixative 

solution (3:5 v/v RCL2/Ethanol) [168] and stored at 40 C in a refrigerator prior to use. The 

RCL2 fixative liver lobes were used for MR ex vivo imaging and then histopathological 

examinations.  

For ex vivo MR acquisition, the 7 lobes were placed separately in a 50 mm falcon tube 

and MR imaging was performed with a Bruker 700 WB Avance NMR spectrometer using a 

multi-echo gradient-recalled echo sequence (MGE). The scanner is equipped with a 16.4 T 

vertical magnet with a bore diameter of 89 mm and a 30-mm-diameter RF coil.  Pulse sequence 

parameters were: TR/TE = 40/4.2ms, FOV = 55*27.5*27.5mm, matrix 512*256*256, NEX=8, 
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FA=180, and total imaging time was approximately 4 hours, yielding a spatial resolution of 

107x107x107 μm3. 

2.3 Histology 

Following ex vivo imaging, the tissues were embedded in paraffin wax. Sections (5 

μm) were stained with haematoxylin and eosin (H&E) and examined by a veterinary 

pathologist.  Histological lesions were classified according to Thoolen et al. [169]. Numerous 

pathologies were found with two common in all tissue analysed; microvesicular fatty change 

where hepatocytes were filled with numerous small lipid vacuoles and macrovesicular fatty 

change with hepatocytes containing a large single vacuole.  These photomicrographs were 

further compared with the corresponding MR images at the end of the study.   



50 

 

Chapter 3 MR sequence optimization  

3.1 Optimization of IP/OP imaging 

3.1.1 Fast low angle shot sequence for IP/OP acquisition  

A Fast Low Angle Shot (FLASH) sequence was used to generate IP/OP images. This 

sequence allows shorter repetition times (TR) and therefore faster scan times are possible. A 

rewind phase encoding gradient used to eliminate steady state transverse magnetization before 

the next RF excitation  [170].  

3.1.2 Phantom and pre-cohort animal for IP/OP validation at 9.4T 

To quantify the optimal echo times (TE) for IP/OP in the FLASH sequence, a margarine 

phantom (mixture of fat and water) contained in a 5.0ml vial was used. Margarine was chosen 

to mimic the overlap of water and fat signal in fatty liver tissue. This methodology was applied in 

an established pre-cohort fatty liver rat and compared to the margarine results to test whether 

IP/OP imaging is a robustly quantitative method for liver fat quantification. 

3.1.3 TE optimization for IP/OP at 9.4T  

The difference between resonances (Δf, Hz) at any magnetic field can be given by: 

Δf 



 is the gyromagetic ratio (42.6MHz/T for 1H), B0 is the applied magnetic field in 

Tesla (T) and  is the difference in chemical shift between water and lipid resonances in ppm, 

typically 4.8 and 1.3 ppm respectively.   

The periods or TEs at which the spins return to in-phase is given by, 

                                            Period (TE) = 1/ Δf                                                    (3) 

 

Therefore, water and lipid spins are in-phase initially, neglecting any spin-spin dispersion 

during the pulse, and out-phase at half of this period. 

 

From equation 3, the signals at 9.4 T will be out-phase at 0.357 ms (half of 0.714ms) 
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and back in-phase at TE=0.714 ms. If the selected TE is 0.357 plus 0.714 ms (and further 

multiples thereof), lipid and water within the same pixel will be out-phase, destructively 

interfere and so a hypo-intense signal will be observed. 

The details of the IP/OP parameters used for the phantom are summarised in Table 3-

1.  

   Table 3-1. MR IP/OP parameters for phantom 

 

 

After the phantom test was completed, the IP/OP parameters were also applied in a 

pre-established rat model of liver fat lesion with only two echo times (IP= 2.856, OP= 4.641 

ms). The FLASH sequence diagram and MR parameters to obtain Dixon images in animal at 

9.4T scanner is shown in figure 3-1.  

 

Figure 3-1: FLASH pulse sequence diagram with a variable TEs (IP= 2.85ms and 

OP=4.64ms), TR (250ms), RF (radiofrequency pulse), and the gradients (GS: slice gradient, 

GP: phase gradient, and GF: frequency gradient) 
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3.1.4 IP/OP optimisation results 

The results of the phantom experiment with four IP and three OP TEs are presented in 

figure 3-2.  Oscillation of signal intensity demonstrates the chemical shift difference between 

the fat and water protons during in- and out-phase cycle.  

 

Figure 3-2: A periodic oscillation of signal intensity between IP and OP echo times resulting 

in overlap and void signal intensity of axial margarine phantom, respectively.  IP TEs show 

hyperintensity signal (upper); while signal cancelation in out-phase images (lower) at OP 

TEs. 

Figure 3-3 shows the fatty lesion with a homogeneous signal intensity in the liver area 

on IP images (TE= 2.856 ms) and signal cancelation on OP images (TE= 4.640 ms) compared 

with surrounding parenchyma.  These two echo times (TEIP/OP = 2.856/4.640 ms) were used for 

IP/OP imaging in vivo. The choice of other imaging parameters in Table 3-1 was a balance 

between scan time, resolution, and signal to noise ratio (SNR). 
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Figure 3-3: Axial images of a Fisher rat liver with fatty changes. A, signal of hepatic 

parenchyma is homogeneous on axial in-phase FLASH image (TE= 2.856 ms).  The signal 

cancellation effect in pixels that contain both water and fat (B, arrows) was clearly apparent 

on the OP image (TE= 4.640 ms). 

 

3.1.5 Discussion of Dixon method optimization  

Protons of water and fat in living tissue have  different Larmor frequencies (different 

chemical shifts) due to their different electron shielding [171]. In our project, we used a Dixon 

gradient-echo (GRE) sequence that relies on this chemical shift difference between water and 

fat to generate two images; in-phase (IP) and out-phase (OP) images. This is accomplished by 

acquiring two different suitable echo times (TEs) [46].  

The efficacy of in-/out-phase parameters for overlap and signal void between fat and 

water was tested at 9.4 T by comparing the results of our phantom with animals. A good 

correspondence between theory and experiment using margarine phantom was demonstrated, 

and our preliminary results in rat liver in vivo also showed excellent results in areas involving 

fatty changes seen in the liver. The signal cancellation effect in pixels that contain fat and water 

was clearly apparent on the OP image in both phantom and animals. 

For IP/OP phantom set up, the TEs chosen for IP and OP, 2.856 ms and 4.640 ms, 

respectively, were tested on the phantom using the FLASH sequence. These TEs were 

calculated from the chemical shift difference of 1401 Hz (determined from equation 3) at 9.4T 

between lipid and water. These TEs also produced good images for IP/OP imaging of the rat 

liver. IP images alone often miss detection of liver lesions due to the amount of intracellular fat 



54 

 

[172]. OP images are more helpful in detecting lesions that contain around 50% or less lipid 

than the surrounding liver tissue [171].  

 

3.2 T2 weighted imaging 

3.2.1 Multi-slice multi-echo sequence for T2 acquisition  

Accurate estimation of T2 values requires acquisition of multiple images acquired 

with a series of TE times. The T2 weighted images were obtained using a multi-slice multi-

echo sequence (MSME). MSME is made up of a series of selective 90° RF pulse – 180° 

refocusing pulses to generate echoes with different TEs and same phase encoding step (figure 

3-4). This series is repeated at each repetition time (TR) interval with incremented phase 

encoding gradient (GP) to fill one line of k-space for each TE image during one TR. and, 

thus, images with consecutive T2 weighting are obtained from which the T2 value for each 

pixel or ROI can be determined. A phase rewind gradient is applied before the next selective 

RF pulse to obtain a coherent superposition of signals. This sequence generates T2-weighted 

images for T2 calculation and T2 maps. 

  

Figure 3-4: Schematic of multi‐slice multi-echo (MSME) pulse sequence for acquiring 
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multiple T2 images. In this sequence a slice is excited once followed by a 180° refocusing 

pulses. With the same phase encoding step (GP), multiple echoes can be recorded by applying 

subsequent 180 degree pulses. 

 

3.2.2 Phantom and pre-cohort animal for T2 validation at 9.4T 

A phantom containing pure water was used to investigate the effect of the number of 

echo times (TEs) acquired using the MSME sequence at 9.4 T for T2 data fitting. The sequence 

was then tested in control and pre-cohort fatty liver rat (same animals used for IP/OP 

optimization) for validation and set up the mono- and bi-exponential analysis methodology. 

 

3.2.3 T2 echo time and other parameter selection 

The goal of designing echo times (TEs) for T2 mapping is to find a set of TEs that has 

sufficient range to cover possible T2 values in liver and minimize the total scan time. The TEs 

were selected based on the expected range of our pre-clinical T2 values of control animals, such 

that T2 values can be reliably estimated. The first echo time was chosen to be as small as 

possible (5 ms) and the last was as long as reasonable to allow for sufficient decay of liver 

signal, whilst avoiding the expense of extended imaging time and motion degradation. TE times 

were initially selected based on the observed decay curves of a control animal. By TE= 50 ms, 

about 85 % of the signal had decayed and this was selected as the maximum echo time. In the 

initial time points acquired with rat with fatty liver, we re-evaluated echo times based on 

observed decay curves of the fatty liver animals. Due to excess diffuse fat content, substantial 

signal remained at 50 ms (about 40 %), so echo times were extended to 130 ms, at which time 

(about 23%) of signal remained (figure 3-5).  
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Figure 3-5: Axial T2 images of control and CDAA rat livers show a reduction in signal 

intensity with increasing echo times (10, 50, and 130 ms; respectively).  The percentage of 

signal intensity remained in the ROIs (red circles) at 50 and 130 ms of control liver compared 

to 10ms were 14.8% and 4%, respectively; while, 43% and 23.2 in CDAA liver rat. 

 

Therefore, 13 echoes were collected and spaced uniformly every 5 ms from 5 to 50 

ms, and then uniformly spaced every 20 ms to 130 ms. (i.e. TE =5, 10, 15, 20, 25, 30, 35, 40, 

45, 50, 70, 90, 110, and, 130 ms). The first echo (5 ms) was not included in curve fitting because 

the signal was low in MSME sequence for all subjects and phantoms. A graph of signal 

intensity against TE in the water phantom is shown in figure 3-6. The first echo time (5 ms) 

consistently gave lower signal than the second TE value which is not consistent with mono- or 

bi-exponential decay. This TE point was discarded from all data sets for T2 calculations. The 

rest of the parameters are shown in table 3-2. The slice selective 90° and 180° RF pulses were 

Gaussian pulses. The MSME was performed with one average giving a total scan time about 

20 minutes.  
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Figure 3-6: A graph of MR signal decays for the water phantom (axial slices) which shows 

lower signal in the first echo time (5 ms) compared to the next TE (10 ms) which is not 

consistent with mono- or bi-exponential decay. 

Table 3-2. T2 parameters for phantom and animal  
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3.2.4 T2 Optimization discussion 

An important component of this study was to move beyond estimating the average T2 

relaxation of the liver tissue determined using a T2 mono-exponential fit. A bi-exponential 

model to characterize the two major T2 components T2 of the rat liver in vivo.   

Accurate T2 mapping relies on acquisition of a series of echoes during a series of 

refocusing pulses.  The assumption is that the signal decay occurs only due to the T2 decay. 

However, imperfection of RF refocusing pulses due to transmit field (B1) inhomogeneity, 
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nonrectangular slice profiles, static (B0), and a B1 calibration errors can contribute to signal 

intensity changes along with stimulated echo formation that constructively interferes with all  

echoes except the first echo. This systematic error is accounted for by removing the first echo, 

5ms in this case. [173]. Removing the first echo (TE=5 ms) improved the fit of the mono- and 

bi-exponential signal decay functions.  

The accuracy of a measured T2 value is related to the number and range of the echo 

times acquired [174].  Increasing the number of data points and ensuring the long TE images 

approach the noise level, increases the accuracy of the curve fit.  This is shown in the case for 

the liver with diffuse fat infiltration, as the T2 relaxation times were longer than the T2 times 

for the normal liver parenchyma. This resulted in the signal intensity at TE = 50 not 

approaching the noise level and an underestimation of the T2 values. This contributed to the 

average of T2 values not being significantly different for the control and CDAA rats in the first 

two scan times when only 9 TEs ranging from 5-50 ms were used. Therefore, we extended the 

number of echo times up to 130 ms (total 13 TEs) to cover the complete T2 range in rat liver 

and to yield more accurate T2 measurement. 

3.3 Diffusion weighted imaging 

Diffusion weighted imaging, including echo planer-spin echo (SE) imaging (EPI-SE) 

and SE-DWI sequences, was tested at 9.4T to investigate diffusion image quality with 

respiratory gating in the liver. The SE-DWI sequence generally leads to increase the signal 

intensity and decreased image distortion, while the EPI-SE allows reduced total scan time. 

However, the physiological constrains such as respiratory and cardiac motion in a living animal 

degraded the quality images of both sequences. These sources of motion resulted in localisation 

artefacts due to phase errors in k-space, which were particularly evident at tissue boundaries.  

Furthermore, EPI-SE suffered from severe blurring and distortion images in high b values. 

These susceptibility artefacts (distortion image) were very severe at air–tissue boundaries such 

as liver-stomach interfaces. One way of reducing the distortion artefact in EPI images is to 

decrease the echo train length by increasing the number of segments or blocks in which the k-

space data is acquired. Therefore, repeating the acquisitions with 2 and 4 segments was tested. 

Increasing the segments leads to an increase the total scan time, from approx. 1 hour to approx. 

2 and 3.45 hours for 2 and 4 segments respectively, because each segment requires separate 

excitation pulses. The multiple blocks of data introduce new and severe motion artefact to the 
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images. Saturation bands were applied to null signal surrounding the liver, to potentially reduce 

the motion artefacts and image ghosting. The saturation bands did not eliminate the artefacts. 

SE-DWI sequence took 35 minutes to acquire only 2 slices. Artefacts and image inhomogeneity 

were still not reduced to an acceptable level.  Figure 3-7 presents an example from our work, 

showing DWI images acquired as follows: 1) SE-DWI sequence; 2) EPI-SE sequence 3) 

changing phase encoding direction, 2) increasing number of segments, 3) different b-values; 

and 4) adding saturation band pulse on unwanted area to avoid motion artefact.  

In conclusion, all DWI images produced by different methods and parameters 

displayed low image quality due to susceptibility effects, chemical shift and motion artefacts. 

This resulted in unreliable determination of diffusion parameters in the liver. Therefore, DWI 

was cancelled in our study.  

 

Figure 3-7: An in vivo DW images acquired with EPI-SE and SE-DWI sequences (with b-

value = 0, 50, 100, and 300 s/mm2) showing the effect of motion artefacts on images (red 

arrows). Motion artefact are more evident when the phase encoding direction is oriented left 

to right (middle images) compared to anterior to posterior direction (top images). Note that 

the motion artefact gets worse with higher b values in EPI-SE sequences. Marked distortion 

artefact on EPI images at liver-stomach margin are detectable in EPI-SE sequence (white 

arrows).   
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Chapter 4 : Image analysis  

4.1 Qualitative evaluation and lesion detection  

The qualitative evaluation (visual assessment) of images required obvious contrast 

differences between different tissue types and normal and pathological tissue. Differences in 

liver image intensity was evident between control and CDAA livers in T2 and IP/OP images. 

For fatty liver disease, there were marked differences in signal intensity of the fatty lesion on 

IP and OP images, due to the signal cancellation in the OP phase images compared to the high 

signal on IP images, suggesting the presence of fat.  Focal lesions were detected, defined (size 

and shape), and located due to the difference of their signals in T2 and IP/OP compared to the 

surrounding liver tissue in the CDAA group. While visual qualitative assessment can detect 

difference from normal tissue, it performs poorly when changes are required to be tracked with 

time or comparisons between different groups or animals are necessary. This requires 

quantitative analysis of MRI parameters that allow tracking with time and statistical assessment 

of changes.  

4.2 Quantitative in vivo analysis 

4.2.1 Method for liver segmentation  

The first task for quantitative assessment of images is to define how and where the 

measurements will be taken in the images. The simplest case would be to record the intensity 

of a selected number of pixels in the organ or region of interest. This has the potential to 

introduce variability. An alternative method would be to place a larger regular shaped region 

of interest in the organ. This samples a larger proportion of the organ. However, the greatest 

reproducibility can be achieved by segmenting out the whole organ or pathology.    

Segmentation of liver and pathological regions has an important role in the detection, 

classification and quantitation of focal lesions [175]. However, accurate MR segmentation of 

liver is difficult due to its complex shape and because the MR signal intensity distribution of 

surrounding tissue can be of similar image intensity resulting in poor segmentation. For 

example, the boundaries between liver and adjacent organs such as kidneys generally have 
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similar MR intensity, which often leads to over segmentation of the liver [176]. In addition, 

MR liver imaging may be affected by artifacts such as abdominal motion which leads to 

blurring of tissue boundaries making accurate liver segmentation difficult.  

Different methods can be used to segment medical images. Not all methods are 

suitable for MR liver images due to MR signal inhomogeneity, weak delineation of  boundary, 

and noise [177]; also, the liver shape changes during respiratory movements in a complex way 

[178].  All these obstacles lead the segmentation of MR liver to be a complex and challenging 

task [177]. The methods of segmentation discussed in this chapter compared Medical Image 

Processing, Analysis and Visualization (MIPAV) and ITK-SNAP software. All Bruker format 

(2dseq) images were first converted to NIfTI format images in MIPAV before further analysis 

in MIPAV or analysis in ITK-SNAP. 

  

 

4.2.1.1 MIPAV segmentation 

 The MIPAV application allows quantitative analysis and visualization of medical 

images. For liver segmentation purposes, we performed a thresholding on T2, OP, and IP images 

to generate colour maps for better liver visualization and boundary delineation.  Then, we 

manually outlined liver boundaries by freehand in a slice by slice manner using the polygon 

ROI tool.  This method of manual liver segmentation used image contrast together with 

anatomical knowledge of liver and its surrounding tissues in OP, IP and T2 images at each slice. 

The manual segmentation consisted of placing polygon points around the boundary of the liver. 

However, the outlines of the liver are not always clearly defined in our animals, which may 

lead to a degree of imprecision and error in the manual delineation of the boundary. Some areas 

of the liver boundary were drawn by the operator using areas of the liver boundary that were 

obvious as markers. This step requires significant time and required greater knowledge of the 

liver anatomy, software and operator training to achieve consistent results. An example of 

manually outlined liver segmentation is shown in figure 4-1. 
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Figure 4-1: A rat liver with using a free hand segmentation (yellow outline) in one slice around 

the border of the coloured liver. 

 

4.2.1.2 ITK-SNAP software 

Semi-automatic segmentation using ITK-SNAP software was then tested for liver 

segmentation. The method is grey level-based controlled growth from seed points.  This 

method started by adjusting the image contrast and image blur to maximise contrast of the liver. 

The seed points (bubbles) are placed in the target (liver). The bubbles were drawn randomly 

throughout the liver (figure 4-2).  
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Figure 4-2: MR sagittal (left top), coronal (left middle), and axial (left lower) of a rat liver. 

The ITK-snap segmentation begins with adjusting the settings of the intensity region filter to 

the liver tissues (right images) and then create volumes with “bubbles” that expand to fill the 

entire liver. 

 

Then we ran the region growing method automatically so the bubbles expanded and 

propagated to the neighbourhood pixels, which had a defined range of grey level intensities to 

all liver slices to obtain the mask. The ITK-SNAP intensity growth method did not prove to be 

an accurate method for liver segmentation in our work for two main reasons. Firstly, the image 

intensity within the liver was not homogeneous and the contrast difference between the liver 

and surrounding tissue was variable. This resulted in an area of liver tissue not being selected, 

and the ROI extending outside the liver to adjoining tissue, such as kidney (figure 4-3).  

 

Figure 4-3: Two different slices with ITK-SNAP segmentation (red colour) after the bubbles 



64 

 

spread out. Segmentation was not appropriate since it covers part of the kidney (left image; 2 

arrows), and did not cover part of the liver (right image; an arrow). 

 

Segmentation summary, full manual segmentation using MIPAV software was used to 

segment the liver.  This required greater input by the operator to include all the liver tissue and 

avoid neighbouring organs with similar grey scale intensity. It requires a trained operator and 

required significant time for each animal ( 20 min), but gave superior segmentation of the 

liver.  

4.2.1.3 Liver parenchyma  

After the boundary of the liver was segmented manually, further segmentation was 

required to ensure only liver parenchymal tissue was selected. This required segmentation and 

subtraction of regions containing vascular tissue in the liver.  This is done by using a histogram 

of the liver and visually selecting high intensity pixels that represent vascular regions. These 

vascular regions were then subtracted from the whole liver ROI to liver parenchyma, as 

illustrated in figure 4-4.  

 

Figure 4-4: Axial MR image of a rat liver (left).  The histogram is applied to exclude the 

intensity of the major blood vessels (red pixels on the middle image) and then liver 

parenchyma is defined (right image). 

4.2.2 T2 mapping 

Mono- and bi-exponential T2 fitting of the data was investigated in this study. For mono-

exponential fitting the following equation was used: 

 

                                                  𝑆(𝑇𝐸) = 𝑆0𝑒−TE/𝑇2M + 𝐶,                                                  (4) 
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where S is the observed signal, TE is the echo time, S0 is the signal intensity at TE = 0 ms, T2M 

is the mono-exponential decay constant and C is a constant baseline term.  

For bi-exponential analysis of the data, the following equation was used:  

 

                    𝑆(𝑇𝐸) = 𝑆0 (𝑓. 𝑒−TE/𝑇2S + (1 − 𝑓)𝑒−TE/𝑇2L) + 𝐶.                        (5) 

Where T2L is the long component of the spin-spin relaxation time corresponding to the 

slowly decaying compartment of the dual component pool (i.e. fat), T2S is that of the fast 

decaying component, f is the fractional contribution of the fast decaying component 

contributing to S0, and 1- f is the long decaying compartment contributing to S0. The f and (1- 

f) are symbolised in this paper as ρS  and ρL, respectively [8].   

Curve fitting of the data to equations 4 and 5 were performed with MatLab software 

(version – R2013A, MathWorks, Natick, MA) on a Dell Precision T7910 Workstation running 

Ubuntu 14.04.5 LTS 64-bit operating system. These workstations are equipped with Dual Intel 

Xeon processors (14C HT, 35MB Cache, 2.3Ghz Turbo), 192 GB of RAM, and NVIDIA 

Quadro K4200 4GB graphics cards. All curve fitting was applied using the “fit” function from 

Matlab’s curvefit toolbox, using the Trust-Region optimisation algorithm. The script written 

for the T2 mapping is addressed in the appendix.  

Three statistical measures were used to determine the appropriateness of the model. 

These were, the fit correlation coefficient r2, F test, and Akaike’s Information Criteria (AIC). 

The coefficient of determination (r2; equation. 6) is used to evaluate the goodness of fit from 

least squares regression, with values close to one indicating strong correlation between the 

fitted curve and experimental data. 

                                                                𝑟2 = 1 −
𝑆𝑆𝑟

𝑆𝑆𝑡
                                                      (6) 

In equation 6,  𝑆𝑆𝑟 is the sum of squares due to error from best-fit curve and SSt the total sum 

of squares.   

The second criteria for estimation of the goodness of fit was F test statistics where 

                                   F test =
(𝑆𝑆𝑟𝑚𝑜𝑛𝑜−𝑆𝑆𝑟𝑏𝑖)/(𝑑𝑓𝑚𝑜𝑛𝑜−𝑑𝑓𝑏𝑖)

(𝑆𝑆𝑟𝑏𝑖/𝑑𝑓𝑏𝑖)
                                (7) 

 

and 𝑆𝑆𝑟𝑚𝑜𝑛𝑜 and 𝑆𝑆𝑟𝑏𝑖 are the residual sum of squares for mono- and bi-exponential models, 
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respectively - each having 𝑑𝑓𝑚𝑜𝑛𝑜  and 𝑑𝑓𝑏𝑖  degrees-of-freedom. The degrees of freedom for 

each model is equal to the number of data points (i.e. number of TEs) minus the number of 

parameters (i.e. 2 for mono and 4 for the bi-exponential model). If the associated P value is 

less than 0.05 then the bi-exponential model fits the data significantly better than the mono-

exponential model. 

 

The final criteria used to assess the relative performance of mono- and bi-exponential 

models was the AIC. The AIC is a measure which balances the goodness of fit of a model, with 

the model complexity. Models with more parameters will always fit the data better, hence r2 

approaches unity, than a nested model with fewer parameters. To penalise model complexity, 

AIC increases with the number of free parameters in the model. Thus AIC is lower for models 

with smaller residuals, and models with lower AIC are considered to have greater model 

parsimony, and are thus preferred. The AIC is defined as,  

                                                  AIC = −4 𝑛log (
RSS

𝑛
) 𝑘                                             (8) 

where n = number of echo images, RSS = residual sum of squares, and k is the number of free 

model parameters. There are three free parameters in the mono-exponential model (S0, T2M, 

and C) and five in the bi-exponential model (S0, ρS, T2L, T2S, and C). 

 

After the T2 liver images were segmented, a mask (binary map) was created using 

MIPAV software for T2 mono- and bi-exponential fitting procedure using equation 4 and 5 in 

Matlab.  The T2 mappings were then calculated on the NIfTI format images in MIPAV 

software. Nine maps were generated including: mono-exponential (T2M) maps, the long 

component of the bi-exponential (T2L) maps, the short component of the bi-exponential (T2S) 

maps, signal fraction contribution from T2S (ρS), signal fraction contribution from T2L (ρL), two 

coefficient of determination (r2, fit precision) maps for the mono- and bi-exponential 

procedures, and the estimated bulk signal intensity from mono- and bi-exponential procedures 

(figure 4-5) 
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Figure 4-5: Example of mono- and bi-component T2 analysis of a rat liver. The mask is created 

first from the T2 images for T2 mono- and bi-exponential mapping and then apply equations 4 

and 5 to generate three maps for mono- and six maps for bi-exponential. The bi-exponential T2 

analysis includes r2-Bi map for bi-exponential T2 calculation; the long component of the bi-

exponential (T2L) maps, the short component of the bi-exponential (T2S) maps, signal fraction 

contribution from T2S (ρS), signal fraction contribution from T2L (ρL), and the maximum signal 

intensity at TE=0, from bi-exponential procedures. For mono-exponential T2 analysis: r2-Mono 

map for mono-exponential T2 calculation; mono-exponential (T2M) map, and the maximum 

signal intensity at TE=0 from mono -exponential procedures.  

4.2.3 FF estimation using the Dixon method 

The fat fraction can be determined using the Dixon method using the following 

equation. 

                                              100 ∗
 (SIIP −SIOP)

2∗SIIP
                                                       (9) 

where SIIP is the signal intensity measured in the SIIP image and SIOP is the signal 

intensity derived from OP image. The mean signal intensity of FF (in arbitrary units) was 

calculated from the whole liver. 

 

Using the two point Dixon  method is only valid up to fat fraction values of less than 
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50%. When the fat intensity becomes greater than 50% it becomes the dominant signal, and the 

calculated value begins to decrease to zero. We assumed the calculated T2 long value 

represented liver fat component, the T2L fraction did not exceed 40%, so we assume the livers 

did not exceed a fat load of > 50%.   

 

This equation was applied pixel-by-pixel on the image using MIPAV software to 

generate a FF map and thus estimates the fat fraction intensity with dynamic range of 0–50%.  

Figure 4-6 shows an example of FF map obtained from IP and OP images using equation 9.  

 

Figure 4-6: Diffuse fatty lesion in the whole CDAA liver rat in IP and OP imaging. Fat 

fraction (FF) map is calculated on a pixel-by-pixel basis using dual Dixon method (IP/OP 

imaging) using equation 9. 

 

4.2.4 FF and T2 quantitative analysis of whole liver and nodules  

The pixel-wise method was used to generate FF and T2 images for the segmented 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177109/#FD4
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parenchyma regions. These parameter images were used to calculate mean FF and T2 values 

for the whole liver. 

When nodules were detected, they were segmented using the IP, OP and T2 images to 

guide manual selection of the nodule using the free-hand drawing tool in MIPAV, as illustrated 

in figure 4-7. The ROI was then transferred into the FF and T2 parameter images to determine 

the FF and T2 parameters for the nodule. The nodules were not always clearly defined in the 

FF and T2 parameter images. This allowed the FF and T2 parameters to be determined for the 

nodules. 

 

Figure 4-7: A CDAA animal at week 24 time point. Axial images of T2, IP, and OP images show 

a small nodular lesion (red rectangular). ROI (black and white lines in magnified images) was 

outlined to cover only a homogenous intensity using a free hand drawing.  

 

4.3 Statistical analysis 

All statistical calculations were performed for in vivo data using SigmaPlot software 

(version 11, Systat Software Inc., CA, USA). 

4.3.1 Mono- Vs bi-exponential goodness-of-fit statistic  

To determine if a mono- or bi-exponential fit best represents the livers in control and 

CDAA animals, the goodness of fit was tested using r2 (equation 6), F test (equation 7) and 

AIC (equation 8) on a pixel by pixel basis. For each pixel, the best fit was determined and 

assigned to that model, e.g., bi-exponential. Then the percentage of pixels assigned to mono- 

or bi-exponential was determined. The model with the highest percentage of pixels was 

assumed to be the preferable model for that liver.  This was applied to each group at each time 
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point and used as summary statistics to assess which model is the best fit for the T2 signal of 

the whole liver and nodules. 

 

4.3.2 Between groups and nodules versus surrounding tissue 

Statistical analyses were performed using SigmaPlot software. MR parameters were 

averaged over all liver pixels to give a summary statistic for each subject.  The mean and 

standard deviations of these summary statistics were calculated for each group. All liver-

averaged MR parameters were tested for normality using Shapiro–Wilk tests. Independent 

Student’s t test was used to compare liver-averaged MR parameters between groups (control 

versus CDAA groups) as well as nodules versus surrounding liver tissue in CDAA group. A P 

value less than 0.05 was considered to indicate a statistically significant difference.  

 

4.3.3 MR parameter changes over time 

The changes of each MR parameters over time (e.g. increased or decreased during diet 

period) in the CDAA group were examined using repeated measures ANOVA followed by a 

two-tailed multiple comparison procedure (student’s t test method); a P value < 0.05 was 

considered statistically significant. For repeated measures analysis, the dependent variables 

were MR parameters at scan time points: week 12, 24, 32, 40, 48, 52, and 57  

4.3.4 Correlation 

Correlation between the mean MR parameters was evaluated using the Pearson 

correlation coefficient (r) on the basis of time point of MR scan. Correlations were considered 

statistically significant with P < 0.05. The mean T2 parameters were correlated and plotted 

against FF to investigate whether FF has influence on these parameters. 
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Chapter 5 : Mono- Vs Bi- exponential T2 

relaxometry. 

Introduction  

Most quantitative analysis methods in MRI, particularly in clinical application, including 

relaxometry or diffusion apply a single fit to the data. This results in an average value for the 

region, region-of-interest or pixel being analysed. This may mask changes of anatomy or 

chemical composition of the region being analysis. If there are changes in the values of different 

components in addition to changes in the rations of the different components, this may be also 

mask by an averaged value. In this chapter we explore the application of mono- and bi 

exponential T2 analysis to rat steatotic livers. The liver fat fraction will be measured using 

Dixon imaging. Multiple TE experiments will be acquired and analysed with mono- and bi-

exponential analysis. The separate components will be correlated with the fat fractions to 

investigate which is the best T2 model to analyse livers with different grades of steatosis.  

Published as “Sami Alghamdi, Benjamin Sinclair, Gary Cowin, Ian Brereton and Yasvir 

Tesiram.  Magnetic resonance spin-spin relaxation time estimation in a rat model of fatty liver 

disease. Journal of Magnetic Resonance Imaging, revised submission March 2017. 

* The paper has been replicated here. The contents have been altered only slightly to reflect 

formatting changes. 
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ABSTRACT 

Purpose: Compare mono- and bi-exponential relaxation model equations in order to 

discriminate between normal and fatty liver disease. 

Materials and Methods: Six rats on a choline deficient amino acid modified (CDAA) diet and 

six rats on normal chow were included in the study. Pixel – wise T2 maps were generated using 

mono-exponential decay function to calculate T2M, and a bi-exponential to calculate, short T2 

component (T2S), long T2 component (T2L), and fraction of the short and long decaying 

compartment signal (ρS, ρL), respectively. Statistical F tests and Akaike’s Information Criterion 

mailto:yas.tesiram@cai.uq.edu.au
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(AIC) values were used to assess the relative performance of mono- and bi-exponential models. 

Results: The F test and AIC showed that, in the CDAA group, the T2 bi-exponential model 

describes the signal of T2 weighted imaging in the liver better than the mono-exponential 

model. In contrast, the control was best described by the mono-exponential model. Mean values 

for T2M, T2L, T2S, ρS, ρL were 31.2 ± 0.7ms, 72.8 ± 3.3ms, 8.2 ± 0.6ms,71.2 ± 2.1%, 30.4 ± 1.3% 

respectively in CDAA rats, compared to 18.8 ± 0.5ms, 32.3 ± 0.7ms, 9.2 ± 1.8ms, 79 ± 2%, 

21.0 ± 1.1% in controls. All MR parameters were significantly different (P < 0.01), compared 

to controls; except T2S (P > 0.05).  

Conclusion: In the fatty liver of CDAA rats it was found that 84.8 ± 4.6% (AIC) and 61.74% 

±5.11(F test) of pixels in T2 weighted images fit the bi-exponential model (r2 > 0.99) better 

than mono-exponential decays.  In control rats, <45% (AIC) and <20% (F test) of pixels fit the 

bi-exponential model better with r2 > 0.98. 

KEYWORDS 

MRI, fatty liver disease, T2, mono- & bi-exponential 

 

Introduction 

The normal healthy liver has less than 5% fat [95] and fatty liver disease is defined as 

an abnormal accumulation of fat (mainly triglyceride) in hepatocytes exceeding 5% of liver 

weight [179]. Elevated liver fat is relatively benign, but can contribute to further complications 

such as inflammation, fibrosis [180-182] and cirrhosis, which is a predisposing risk factor for 

hepatocellular carcinoma (HCC) [182-185]. Accurate determination of liver fat and 

characterisation of clinical markers as a risk factor for HCC would be extremely valuable. The 

current standard of fat quantitation by magnetic resonance imaging (MRI)  is by in / out-phase 

(IPOP) Dixon imaging, multiple-point Dixon, or localized spectroscopy [186, 187]. Clinically, 

the IPOP technique is often used for fat fraction determination due to it being widely available 

and relatively rapid acquisition times. When T2
*   decay is significant, the three echo Dixon 

method can be used to estimate hepatic fat fraction with the added advantage of yielding a 

rough estimate of T2
* and thus iron load but may be affected by T1 longitudinal relaxation [188, 

189]. MR spectroscopy can provide accurate quantitative measurements of liver fat, but it is 

limited to single or coarse multiple voxels and in the liver can be of low sensitivity and spectral 

resolution [190-192].  

Magnetic resonance imaging (MRI) can yield useful parameters, such as longitudinal 
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T1 and transverse spin-spin T2 relaxation times. These quantitative biomarkers have been used 

in preclinical and clinical research for quantifying liver iron and fat [128, 193, 194]. T2 image 

contrast is dependent on the sequence echo time TE and  depends on the chemical environment 

of the tissue at a given location [195].  These can be estimated using spin echo pulse sequences 

where images are collected with a series of TE times neglecting any contributions from T1 

relaxing mechanisms (i.e. TR > 5T1).  

Extraction of T2 values requires data fitting. Typically, tissue relaxation is modelled by 

a mono-exponential decay function [196] though tissue is heterogeneous and may have 

contributions from multiple T2 components – at least eight resonances in fatty tissue. Analysis 

of T2 decay curves could thus benefit from multi-exponential data fitting of signal intensity 

decay [197]. 

In patients with fatty liver disease, T2 weighted images appear bright compared to 

normal liver, owing to the higher concentration of slowly relaxing lipid resonances present in 

liver parenchyma [164]. The liver tissue T2 characteristics would vary with the percentage of 

fat and the ultra-structural alterations in fatty liver disease due to the long T2 relaxation time of 

the fat in fatty liver disease than that in healthy liver tissue. In order to investigate the changes 

and diversity of spin-spin relaxation times in fatty liver, mono- and bi-exponential fitting of T2 

relaxation data was investigated in control and fatty liver rats, hypothesising that when lipids 

become a major component of the liver (i.e. > 5%) MR detectable signal, a single exponential 

T2 fit is a poor representation of the tissue characteristics and thus fatty liver disease can be 

described by at least a bi-exponential model. 

 

Materials and Methods 

Animal model 

All experiments were approved by the Institutional Animal Care and Use Committee. 

Six, 8-week old male Fisher 344 rats were placed on a choline deficient L-amino acid modified 

diet (CDAA) diet (manufacturer withheld for double blinded review purpose) for 12 weeks and 

compared control rats placed on normal diet (choline sufficient L-amino acid, CSAA).  Animals 

were housed in cages in a room with control of humidity, light and temperature (21 °C); and 

kept on a 12/12-hour light/dark cycle. The compositions of CDAA and CSAA diets have been 

described previously [57]. The amount of choline in CDAA and CSAA diets was 6.5 mg/kg 

and 14.48 g/kg, respectively. The CDAA diet induces non-alcoholic fatty liver disease in rodent 

models and has been used to generate fatty liver disease within the first 12 weeks of CDAA 
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administration [57]. 

In vivo MR imaging acquisition  

MRI experiments were performed on CDAA and control groups 12 weeks after the start 

of diet administration. During MRI examinations, animals were anaesthetized with up to 3% 

isoflurane in a flow of 1.5 L/min oxygen. All MRI experiments were carried out on a Bruker 

Biospec 9.4T MRI spectrometer with BGA12 gradient set (~14G/cm), in an 86mm quadrature 

radio-frequency (RF) coil tuned and matched for protons (400MHz).  

Slice selected 2-dimensional coronal T2 multi-spin-echo weighted images were 

acquired with multiple echo times spaced uniformly every 5ms from 5 to 50ms, and then every 

20ms from 50 to 130ms. The first echo time at TE = 5ms was not used in T2 fitting due to the 

formation of indirect echoes [173].  Other parameters were, repetition time TR = 3300ms, field 

of view 80×80 mm, resolution = 417×417 µm, slice thickness = 1.5 mm, and number of slices 

= 24. The total time for T2 weighted imaging was ~11 minutes increasing to 20 minutes with 

respiratory triggering. The various parameters returned from curve fitting as described below 

were compared with fat fractions determined by Dixon’s two-point method and as summarized 

in reference [198]. 

At 9.4T with TE = 2.86ms, the resonance line from aliphatic methylene groups of lipids 

are in-phase with water proton resonances and with TE = 4.64ms opposed phase. Neglecting 

relaxation due to T2
*, water only and fat only images can be determined according equations 

10 & 11 [198]. 

𝑊 = 0.5 ∙ |𝑆𝐼𝑃 + 𝑆𝑂𝑃|     (10) 

𝐹 = 0.5 ∙ |𝑆𝐼𝑃 − 𝑆𝑂𝑃|     (11) 

The reader is referred to detailed discussions of methods of fat fraction determination in various 

recent articles [95, 191, 198]. In this study, fat fraction determination is limited to 50% and 

since we are only interested in liver fat fraction at an early stage, this limit is of little 

consequence in comparisons with spin-spin densities determined from T2 maps. 

 

Phantom Experiments 

 In order to validate experimental results, a series of oil/water emulsions similar to the 
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method as presented in [199] were prepared. Briefly, commercially available olive oil was dried 

over sodium sulfate and 0 to 100% v/v mixtures (in 10% increments) of oil and water were 

combined to a total volume of 5mL in 10mL conical centrifuge tubes. To this, ~0.02g of sodium 

dodecyl sulfate (SDS) was added, briefly mixed by shaking and sonicated using an ultrasonic 

processor (SONICS, Vibra-Cell 500W) equipped with a tapered micro-tip. This mixture was 

pulsed for 5/10 second on/off cycle for a total duration of 180 seconds with the tube immersed 

in ice to minimise oxidation of the oil. The resulting emulsions were packed into 2mL 

Eppendorf vials and imaged at 9.4T with imaging protocols as described above, but with 128 

echoes from 6ms in 6ms increments. Dixon images were collected with the same echo times 

as above. 

 

Image analysis and statistical analysis 

Two model candidates were chosen for comparison, mono- and bi-exponential decay 

functions where the mono-exponential decay function assumes that within a pixel, there is only 

a single spin type contributing to relaxation (e.g. water). In other words, within a pixel there is 

only a dominant spin of liver water and thus one T2 value.  In fatty tissue, this is not true and 

the presence of another spin type leads to a dual exponential decay.  For example, Dixon's two-

point MRI technique assumes that a fatty lesion has two main components contributing to the 

total MR signal. These two components are derived from two signal sources, water and fat 

spins [46] (specifically methylene groups of aliphatic lipid species with chemical shift at 

1.3ppm) and give rise to a natural signal cancellation when the two resonances are anti-phase. 

Collecting an additional image with signals in-phase allows determination of fat fraction. 

Unlike Dixon imaging, T2 weighted images are collected with a balanced spin-echo 

sequence where the delay either side of the refocusing pulse is equal. With these sequences, 

comparison of fat suppressed images with non-suppressed images can yield similar information 

on fat fraction. Neglecting any chemical shift artefacts, the relaxation decay profile of non-

suppressed T2 images will be modulated by decay characteristics arising from fat and water 

resonances. Thus a bi-exponential decay function would be a relevant model yielding two T2 

decay constants representative of the two molecular species. Generally, lipids have longer T2 

decay constants than liver water [164]. Thus it is assumed that short and long decay constants 

are representative of liver water and fat components respectively. The contribution to the signal 

decay from the other resonances of lipid moieties (e.g. allyl, vinyl, carbonyl and methyl groups) 

have been neglected, considering that their magnitudes are generally much smaller than 
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aliphatic methylene groups [163] and their T2 relaxation times are also significantly less [200]. 

T2 data were fitted to the mono-exponential decay function,  

                                      𝑆(𝑇𝐸) = 𝑆0𝑒−TE/𝑇2M + 𝐶,                                                  (4) 

where S is the observed signal, TE is the echo time, S0 is the bulk signal intensity (i.e. when TE 

= 0), T2M is the mono-exponential decay constant and C is a constant baseline term. The bi-

exponential function is given in equation 4 comprising 5 parameters, S0, f, T2S, T2L, and C. Here 

T2L is the long component of the spin-spin relaxation time corresponding to the slowly decaying 

compartment of the dual component pool (i.e. fat), T2S is that of the fast decaying component, 

f is the fractional contribution of the fast decaying component to S0, and 1‐ f is the long decaying 

compartment to S0. The f and (1‐ f) are symbolised in this paper as ρS and ρL, respectively.  

          𝑆(𝑇𝐸) = 𝑆0 (𝑓. 𝑒−TE/𝑇2S + (1 − 𝑓)𝑒−TE/𝑇2L) + 𝐶.                                       (5) 

Curve fitting of the data to equations 4 & 5 were performed with MATLAB software 

(version – R2013A, MathWorks, Natick, MA), using the built-in Trust-Region method 

installed on a Dell Precision T7910 Workstation operated with Ubuntu (version 14.04.5) 64-

bit operating system. These workstations are equipped with Dual Intel Xeon processors (14C 

HT, 35MB Cache, 2.3Ghz Turbo), 192 GB of RAM, and NVIDIA Quadro K4200 4GB 

graphics cards. 

Mono- and bi-exponential models were fitted to randomly selected regions of interest 

(ROI) in different lobes of the liver (150 pixels), first without constraints on parameter values 

and second with constraints. In a first pass estimate, parameter values were determined without 

constraints and showed that the bi-exponential model fitted the data very well in some ROI’s, 

but in others (35% of the total pixels) curve fitting did not converge and showed nonsense 

values (e.g. negative or very large values) . Constraints were thus introduced in a second pass, 

utilizing first pass values from pixels which fit the data well. In this way nonsense values were 

excluded. Preliminary mono- and bi-exponential fitting showed fatty livers contained values 

ranging between, 25 < T2M < 100ms, 4 < T2S < 50ms, and 30 < T2L < 210ms. Based on these, 

upper bounds were set to 50ms for T2S, and 210ms for T2M and T2L. The lower bound on all 

parameters were set to 0ms, as relaxation times must be positive. The offset parameter C in 

equations 4, and 5 accounted for baseline drift, where the T2 decay tends towards zero but 

accounts for Rician noise. Upper bounds of infinity and 100 were set for S0 and C, respectively, 

and were chosen based on the observed distribution of these parameters in preliminary mono-
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exponential fitting. The lower and upper bounds on ρS for bi-exponential fitting were set to 0 

and 1, respectively, as ρS represents a fraction of short T2. This wide range of constraints could 

handle most physiologically possible values of T2 in liver parenchyma. In clinical practice, 

these may need revision. The initial value of parameters T2, S0, and C for fits to equation 4 were 

20ms, 4000ms and 0 respectively. For the bi-exponential fitting, a subject-specific and pixel-

specific set of starting points was implemented, setting S0 = S(TE=10ms) and C = S(TE=130ms). The 

starting points of T2S and T2L were estimated using the mono-exponential fit, with the starting 

point for T2S set as T2M, and the starting point for T2L set as 2*T2M.  

 

Three statistical measures were used to determine the appropriateness of the model. 

These were, the fit correlation coefficient r2, F test, and Akaike’s Information Criteria (AIC). 

The coefficient of determination (r2; equation 6) is used to evaluate the goodness of fit from 

least squares regression, with values close to one indicating strong correlation between the 

fitted curve and experimental data. 

                                                   𝑟2 = 1 −
𝑆𝑆𝑟

𝑆𝑆𝑡
                      (6) 

In equation 7,  𝑆𝑆𝑟 is the sum of squares due to error from best-fit curve and SSt the total sum 

of squares.  The second criteria for estimation of the goodness of fit was F statistics where 

                             F =
(𝑆𝑆𝑟𝑚𝑜𝑛𝑜−𝑆𝑆𝑟𝑏𝑖)/(𝑑𝑓𝑚𝑜𝑛𝑜−𝑑𝑓𝑏𝑖)

(𝑆𝑆𝑟𝑏𝑖/𝑑𝑓𝑏𝑖)
,                  (7) 

and 𝑆𝑆𝑟𝑚𝑜𝑛𝑜 and 𝑆𝑆𝑟𝑏𝑖 are the residual sum of squares for mono- and bi-exponential models, 

respectively - each having 𝑑𝑓𝑚𝑜𝑛𝑜  and 𝑑𝑓𝑏𝑖  degrees-of-freedom. The degrees of freedom for 

each model is equal to the number of data points (i.e. number of TEs) minus the number of 

parameters (i.e. 2 for mono and 4 for the bi-exponential model). If the associated p value is less 

than 0.05 then the bi-exponential model fits the data significantly better than the mono-

exponential model. 

The final criteria used to assess the relative performance of mono- and bi-exponential 

models was AIC. The AIC is a measure which balances the goodness of fit of a model, with the 

model complexity. Models with more parameters will always fit the data better, hence r2 

approaches unity, than a nested model with fewer parameters. To penalise model complexity, 

AIC increases with the number of free parameters in the model. Thus AIC is lower for models 

with smaller residuals, and models with lower AIC are considered to have greater model 

parsimony, thus preferred. The AIC is defined as,  
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                                   𝐴𝐼𝐶 = −4 𝑛log (
RSS

𝑛
) 𝑘                         (8) 

where n = number of echo images, RSS = residual sum of squares, and k is the number of free 

model parameters. There are three free parameters in the mono-exponential model (S0, T2M, 

and C) and five in the bi-exponential model (S0, ρS, T2L, T2S, and C). 

In order to determine the spatial variation of mono-component and bi-component 

tissue, each of these three criteria was assessed at each pixel of the liver. A heuristic of overall 

liver composition was then calculated as the percentage of pixels in which the bi-exponential 

model was preferred. To achieve this, masks (binary maps) were generated by manually 

segmenting the whole liver from the T2 weighted images using Medical Image Processing, 

Analysis and Visualization (MIPAV) software for each animal and each slice. The major 

vessel pixels were separated and subtracted from the liver parenchyma by applying a 

visually-determined intensity threshold. Mono-exponential and bi-exponential models were 

then fitted to all pixels within the subject-specific liver mask. Eight maps were generated. 

These were T2M, T2L, T2S, ρS, ρL, r2, F-statistic and AIC maps. 

Statistical analyses and significance tests were performed using SigmaPlot software 

(version 11, Systat Software Inc., CA, USA). Model parameters were averaged over all liver 

pixels to give a summary statistic for each subject.  The mean and standard deviations of these 

summary statistics were calculated for each group. All liver-averaged T2 parameters were tested 

for normality using Shapiro–Wilk tests. Independent Student’s t test was used to compare liver-

averaged T2 parameters between groups. A P value less than 0.05 was considered to indicate a 

statistically significant difference.  

Results 

 Shown in Figure 5-1 are images of the oil/water emulsions using the 2-point Dixon 

method and T2 decay curves of the corresponding vials also shown in Fig.1. For clarity, not all 

curves are shown, but as fat fraction increases the correlation coefficient, r2 (as a measure of 

the goodness of fit) decreases. From this data, the mono-exponential fit shows poorer 

correlation when %FF > 20%. The bi-exponential fit, however yield excellent fits across the 

full range of fat fractions, but since a mono-exponential function also yields excellent results 

for %FF < 20%, we have investigated the utility of model testing to via additional statistics 

test to determine if these are of any additional diagnostic value. 

http://mipav.cit.nih.gov/
http://mipav.cit.nih.gov/
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Figure 5-1: In-phase (i) and out-phase (ii) images of emulsion with varying ratios of oil and 

water. Using equations 10 & 11water only (iii) and fat only (iv) images can be retrieved, 

while fat fraction (v) can also be determined, the 2-point Dixon method using magnitude 

gradient echo images limits the fat fraction calculation to 50% fat, and >50% FF cannot be 

distinguished from water signals. Plotted are T2 decay curves from mean pixel intensity from 

ROI’s around the vials labelled in yellow. The white vials are labelled for convenience 

indicating the direction of %FF increase. Error bars from standard deviations of the mean 

from ROI’s are not shown. The thick grey dashed line is the mono-exponential fit to the 

sample with 0% fat (i.e. water only) and is indistinguishable from the bi-exponential fit to 

equation 5. The black dots are the mean intensities from the ROI’s of every second echo 

collected using a multi-spin echo sequence. Even echoes and points for the, 40, 80 and 100% 

curves are not shown for clarity. As fat fraction increases the goodness of fit decreases as 

shown in the plot of %FF versus r2 and the subtle difference between mono and bi-

exponential function fits. 

Shown in figure 5-2 are calculated images from the Dixon method. Control animals had 

much lower fat accumulation (5.07 ± 1.42%, n = 6) at this early stage, but CDAA animals had 

accumulated fat to an average of 24.66 ± 1.1%, but heterogeneously distributed as shown in 

figure 5-1. As mentioned above, figure 5-3 shows the quality of data fitting based on regions 
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of interest and pixel-wise fitting and figure 5-4 shows coronal T2 weighted images of control 

and CDAA livers. Diffuse fatty liver is evident in the CDAA animal liver with higher intensity 

(figure 5-4a) compared to the control (figure 5-4b). 

 

Figure 5-2: Water only, fat only, and fat fraction (%Fat) maps of CDAA and control rat livers 

12 weeks after diet administration. These images are determined from to equations 10 & 11 

and are presented in the integer scale (0 to 32,767). The bottom two panels of percent fat 

determined as 100 F / (W + F) is limited to 50%. Compared to the control, CDAA animals have 

a much higher fat content even at this early stage during diet administration and the difference 

can be easily determined. However, the heterogeneity of the distribution is not so evident and 

contributed to by various mechanisms in gradient echo images, including B0 and T2
* relaxation 

effects. 
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Figure 5-3: Mono- and bi-exponential T2 fits from region of interests (ROI) and a single pixel 

within the ROI in a control and CDAA rat. The line fitting represents the bi-exponential fit of 

the data and the dashed lines represents the mono-exponential fit. (SI is the mean signal 

intensity and TE is the echo time).  

 

Figure 5-4: Comparison of coronal T2 weighted images (TE/TR =50/3300 ms) between CDAA 

(a) and control liver (b) in Fisher 344 rats.  Note the higher signal intensity in the rat with fatty 

disease, compared to lower signal intensity in the control rat. 

 

Models’ goodness-of-fit 

Typical parametric images of the statistical parameters (r2, F test, and AIC) resulting 

from the in vivo data are shown in figure 5-5.  
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Figure 5-5: r2 (mono- and bi-exponential) maps, F test, and AIC maps and coronal T2 images 

of control and CDAA livers. The r2 maps show that the mean overall pixels of bi-exponential 

fitting function in CDAA and control groups had higher precision than that with a mono-

exponential fitting function. The F test and AIC maps suggest that the bi-exponential (grey 

pixels) fit was the preferred model rather than the mono-exponential (red pixels) for the 

majority of pixels across the entire liver in the CDAA animals. However, the mono-exponential 

model was a more appropriate model in control animals. All maps are overlaid on the T2 image 

and pseudo-color-coded with the corresponding colour bar below each image. 

 

Shapiro–Wilk test showed that the liver-averaged r2, F test, and AIC statistical 

parameters were normally distributed across subjects in each group. The mean r2 for the bi-

exponential fitting function in CDAA and control groups was slightly higher 

(r2 = 0.990 ± 0.001 and 0.984 ± 0.001, respectively) than with a mono-exponential fitting 

function (r2 = 0.980 ± 0.002 and 0.979 ± 0.002, respectively).  For the bi-exponential fits to the 

CDAA group, 63% ± 7.9 of the pixels had r2 values greater than or equal to 0.99 while for 

mono-exponential fits it was 11.90% ± 2.41.  In controls, 29.66% ±15.2 of the pixels were 

greater or equal to 0.99; and 14.7 % ± 8 for mono-exponential fits. The result of F test and AIC 

are summarized in figure 5-6. The F test for CDAA group showed 61.74% ± 5.11 of the pixels 

to be of bi-exponential behaviour, whilst for controls the proportion was 15.63 % ± 1.44. 

Similarly, the AIC indicated that bi-exponential model was preferred in 84.79 % ± 4.58 of the 

pixels in CDAA group, while in controls, more pixels (59.03 % ± 6.17) were best described by 

the mono-exponential model. While tissue samples were not collected in this longitudinal study 

until the end at 57 week’s post-diet administration, previous studies have shown the 
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accumulation of fat in hepatocytes as well as the formation of lipid droplets among other 

pathologies at similar time points [201]. 

 

 

Figure 5-6: The liver-averaged AIC and F test measures showing the percentage of pixels were 

bi-exponential function is preferred and better from control and CDAA groups.  The bi-

exponential model was preferred in most of the pixels in CDAA group, while in controls, more 

pixels were best described by the mono-exponential model. 

 

Between-Group Differences in T2 

Examples of T2 maps for a control and a CDAA fatty liver are depicted in figure 5-7. 

The results from descriptive statistics for all T2 parameters are summarized in Table 5-1. Using 

Shapiro–Wilk tests, all average T2 parameters were normally distributed across subjects in each 

group. The mean T2M and T2L were significantly higher for CDAA compared to controls. The 

mean CDAA whole liver ρS and ρL were significantly lower and higher, respectively, for CDAA 

than controls. The significant difference between groups indicates that fatty disease affects the 

measurement of T2M, T2L, ρS, and ρL. Conversely, no significant difference was seen in T2S 

between groups.  
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Figure 5-7: Example of mono- and bi-component T2 analysis of a control and CDAA livers. 

The maps are of T2 (T2M) from mono-exponential fitting; short component (T2S), long 

component (T2L), and T2 short and long fractions (ρS, ρL) from bi-exponential fitting. All maps 

are overlaid on the T2 image and pseudo-color-coded with the corresponding colour bar below 

each image. 

Table 5-1: Summary of MR parameters in control (n=6) and CDAA (n=6) group, and 

statistical significance of the mean difference between groups (P value). 

ID and T2 parameters Mean SD P value 

T2M (ms) 

Control 18.81 0.5 

< 0.01 
CDAA 31.18 

0.69 

 

T2L (ms) 

Control 32.29 1.33 

< 0.01 
CDAA 72.82 

3.28 

 

T2S (ms) 
Control 9.2 0.9 

> 0.05 
CDAA 8.23 0.6 

ρS (%) 
Control 79 

2 

 < 0.01 

CDAA 71.2 2.14 

ρ L (%) 
Control 21 1.1 

< 0.01 
CDAA 30.39 1.28 

FF (%) 
Control 5.07 1.42 

< 0.01 CDAA 24.66 1.1 

  

CDAA, choline deficient L-amino acid; T2M, T2 mono-exponential; T2L, long T2 component; 

T2S, short T2 component; ρS, fraction of the short compartment signal; ρL, fraction of the long 
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compartment signal; FF, fat fraction obtained from Dixon method; SD, standard deviation.  

 

Discussion 

Although mono-exponential T2 relaxation adequately describes many tissues in vivo, 

there have also been reports on non mono-exponential T2 models in many biological tissues, 

particularly the bi-exponential model [202-204]. In liver, T2 mono-exponential decay has 

shown promise for assessing liver disease [129, 205, 206]. A literature review showed that, 

there are no published studies comparing mono- and bi-exponential T2 models for evaluating 

fatty liver disease. Therefore, we sought to employ a bi-exponential model to evaluate T2 

weighted images in a rat model of fatty liver disease. This includes determining whether in 

vivo T2 decay curve of liver tissue is best described by a mono- or bi-exponential model from 

a statistical point of view using r2, F test, and AIC statistics. The primary result of this study 

was that two fractions are separable in fatty liver disease and thus T2 bi-exponential fitting is 

feasible for in vivo fatty liver disease and yields more accurate maps compared to mono-

exponential fitting.  

 Parameter constraints were determined which improved the quality and computation 

speed for generation of pixel wise parametric maps. The method was applied to create pixel-

wise T2 maps for control and CDAA animals at week 12 after diet commencement. For bi-

exponential fitting, we used equation 5 to calculate three T2 parameters (T2S, T2L and ρS). The 

mean T2M value estimated in control rats in this study (18± 0.5ms) is comparable to the T2 

value in normal liver of control rats using a 7T spectrometer (22.3±2.1ms) [129].  

Previous T2 modelling studies have described living tissues as bi- or multi-exponential 

components, with the components interpreted as intra- and extracellular water [207-209]. In 

this case, T2 short and long components determined from bi-exponential decay curves are 

attributed to liver water and fat components, i.e. two different chemical species. In the healthy 

liver, there is a little or no fat content, resulting in the dominant water signal being characterised 

by a single T2 value. As the proportion of signal from fat increases, and becomes relatively less 

or equivalent to the water signal, we would expect that bi-exponential decay would be an 

appropriate model for steatotic livers.  

The r2 analysis illustrates the goodness of fit but is not a statistically informative 

criterion for assessing the accuracy of the model. It can be used as guide to whether the selected 

model fits the underlying experimental data. We saw that the bi-exponential model explained 
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a large amount of variance in the CDAA rats, and less in the control rats. This was more 

formally quantified with the AIC test showing that the bi-exponential approach is the globally 

preferred model (in 84% of pixels) in the CDAA group, while fewer than 45% of pixels in 

control livers showed bi-exponential characteristics. Similarly, the F test showed that over 62 % 

of the pixels exhibit bi-exponential T2 characteristics in CDAA group compared to 16% in the 

control group. These statistical model comparisons indicate the presence of a large fat 

component in the CDAA group, but not in normal liver tissue. The F test and AIC tests in the 

control group preferred mono-exponential T2 signal decay. This may be interpreted by the 

absence of or low fat droplet content. 

The statistical comparison between control and CDAA groups, presented in Table 1, 

showed that the T2 metrics: T2M, T2L, ρS, and ρL were able to differentiate fatty liver disease in 

the CDAA group from normal liver in the control group. T2M, T2L, and ρL were significantly 

higher in CDAA compared to control liver, while ρS was lower; indicating that these four 

parameters are influenced by the high fat component and were thus relevant MR biomarkers to 

measure the underlying fatty distribution in the whole liver of the CDAA-rat model. The T2S 

values in CDAA group and control animals were equivalent (Table 5-1). This is consistent with 

the assumption that T2S is related to the liver water component which is present in both groups, 

and of similar origin and thus the short T2 relaxation data will stay constant between groups. 

Collectively, these data indicate that the global increase of T2L in the bi-exponential model in 

CDAA model is largely due to the expansion of the fat component.  

The F test and AIC showed greater fit for bi-exponential analysis of the CDAA group, 

consistent with increased signal from the fat with a unique long T2 value. The F test and AIC 

indicated that the mono-exponential model is more appropriate for more pixels in controls, 

consistent with the dominant single water T2 value. The biological source of the T2L in the 

control animal is not obvious, but may represent different water components in the tissue e.g., 

intracellular and extracellular water, as previously suggested, or due to fat accumulation in 

these strain of rat with age. 

The analyses described here will be useful for studies of liver diseases, in particular, 

fatty liver infiltration. In this study the bi-exponential analysis better described steatotic liver, 

consistent with unique T2 values for tissue water and fat. Beyond fat and water assessment, 

living tissue may contain multiple T2 components for fat and water requiring multi-exponential 

relaxation analysis [197]. This may allow new insights into the microarchitecture of a tissue at 

the sub-voxel level and may improve the accuracy of in vivo measurements, thereby increasing 
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the clinical potential of tissue characterization by MR imaging [197, 210]. For example, the 

non-alcoholic fatty liver disease (NAFLD) consists of a pathological spectrum including 

hepatic steatosis (the earliest manifestation), non-alcoholic steatohepatitis (NASH), liver 

fibrosis, liver cirrhosis, and finally HCC. The microarchitecture at the sub-voxel scale in the 

liver at each stage is likely to be altered (particularly the fat fraction), resulting in changes in 

bi-T2 characteristics during the progression. We are not aware of studies investigating the 

influence of these stages on multi component T2 relaxation in the liver. In this study, the 

presence of a T2 long component in fatty liver indicates a different underlying chemical 

environment than T2 short component. Therefore, a bi-exponential model is important to 

accurately determine these multiple tissue components for liver characterization in a 

longitudinal study, particularly, if the aim is to track drug efficacy or characterizing disease 

progression fatty liver disease in early stages leading to HCC in late stage.  

This data is consistent with the pathological changes accompanying fatty liver being 

responsible for the bi-exponential T2 relaxation. It is proposed that future work is needed to 

study the quantitative relationship and correlation between bi-T2 values with liver fat fraction 

(% FF) to determine at what time points the bi-exponential model is preferred using F test and 

AIC criteria.  A fat suppressed T2 weighted sequence may yield a single decay curve that 

represents only the water component, leading the mono-exponential function to be the model 

of preference and assure that fat component is the responsible for the second decay curve. A 

limitation of this study was that the number of short echo times used may not provide sufficient 

data to support estimation of the short component of a bi-exponential model. The number of 

lower echo times was limited by the stimulated echo effect due to imperfections caused by the 

refocusing RF pulse in the MSME sequence. This resulted in decreased image intensity at very 

short TE times, independent of reduced T2 signal dephasing.  

In conclusion, use of parameter constraints improved the quality and computation speed 

for generation of pixel wise T2 liver parametric maps in vivo. The bi-exponential model showed 

improved fit and better description of the data in livers containing high fat. This finding offers 

additional liver information which may provide potential biomarkers and scope for further 

investigation of liver abnormalities in vivo. 
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Chapter 6 : Characterization of fat fraction 

and T2 relaxation in the liver of a choline 

and methionine deficient rat model of 

hepatocarcinogenesis  

 

6.1 Introduction  

The previous chapter demonstrated that the T2 relaxation in steatotic liver is best 

represented by two T2 values determined by bi-exponential analysis. This is now extended to 

investigate the changing pathology during the development of liver disease and the formation 

of liver nodules. In particular, we are interested in changing T2 relaxation and fractions of the 

different components with varying fat fraction in liver tissue and during the formation of 

precancerous nodules. This may lead to the development of T2 based markers that identify 

tissue at risk of progression to HCC.   

6.2 Background 

Liver cancer is the second most common cause of death globally with an overall mortality 

to incidence ratio of 0.95 [211]. The most important risk factors for hepatocellular carcinoma 

remain hepatitis viral infection (B and C), or aflatoxin exposure [5] and recently metabolic 

syndrome has been used to explain discrepancies observed in spontaneous or unexplained 

occurrence of primary HCC [212]. Non-alcoholic fatty liver disease (NAFLD) is now thought 

to contribute to increased rates of HCC incidence [1] and is associated with insulin resistance 

(or diabetes) and obesity [34]. Detecting and monitoring these pathologies is challenging and 

whilst histology is considered the reference standard for the assessment of liver pathology, the 

techniques are invasive, and prone to error [213] since lesions can be small and easily missed 

during biopsies [42]. Target pathologies of the liver are generally heterogeneously distributed 

and biopsy samples may misrepresent the extent of disease [43, 44] because of under or over-
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sampling. It is also difficult to monitor disease longitudinally with repeat biopsies [214]. Other 

non-invasive techniques are available, such as ultrasound (US), computed tomography (CT) 

and dual energy X-ray absorption (DEXA). The latter two are limited for longitudinal 

examinations due to repeated radiation dose. Magnetic resonance imaging (MRI) has the 

potential to become a routine modality for following liver disease [215],  but to harness the full 

potential of MRI for liver disease stratification, the MR signal has to be better characterized. 

It is important to note that not all animal models of liver disease reflect the human 

condition accurately, and should be used within context when designing diagnostic methods 

for longitudinal monitoring. Lau et al. [216] have recently reviewed animal models of non-

alcoholic fatty liver disease identifying 12 different models. These cover the spectrum of 

pathologies found in the clinic, ranging from obesity to hepatocellular carcinoma. A well-

established model for hepatocarcinogenesis is the choline deficient L-amino acid modified 

(CDAA) diet. The advantage of the CDAA model is that animals develop histopathological 

features such as diffuse steatosis through to focal nodular lesions sequentially, closely 

resembling  the human condition [217]. In general, diffuse fatty infiltration is expected to 

precede HCC development  and may be indicative of malignant tumour [213] but there are few 

reliable biomarkers accurately predicting progression of fatty liver to HCC. 

A previous study by Griffitts et al. [213] showed that alterations in lipid metabolism 

associated with hepatocarcinogenesis could be followed by chemical shift imaging (CSI) and 

the formation of nodules or tumors could be predicted by determining the degree of 

unsaturation. The present study uses the CDAA rat model to determine whether other MRI 

methods could be used as biomarkers of heptaocarcinogenesis. While measurement of degree 

of unsaturation is a biomarker of beta-oxidation, the method is relatively insensitive because it 

relies on the measurement of two relatively small signals, the vinyl and bis-allyl resonances of 

lipids. Much more sensitive are the aliphatic methylene protons and the Dixon method is a 

spectroscopic imaging technique commonly used for quantitation and evaluation of this 

resonance as a proxy for fat quantitation. This method has become the MRI reference standard 

for quantifying fat fraction (FF), when compared with other non-invasive methods [47] but is 

not without limitations [218]. 

Recent advancements in quantitative MRI shows that incorporation of multiple MR 

parameters such as relaxation times can be used to infer chemical pathology since changes in 

the local chemical environment should be reflected in changes of MR spin properties. Indeed 

measurement of longitudinal, T1, and spin-spin, T2, relaxation times have been proposed for 
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detecting and staging liver fibrosis [205]. Reeder and Sirlin reviewed various MRI methods 

used for liver fat quantification [219] concluding that technical challenges and validation are 

still required. Yet more recent developments utilizing multi-parametric MRI such as a 

combination of diffusion weighted imaging, morphological imaging and dynamic contrast 

enhanced MRI have proven useful in staging cancers such as breast and prostate, the 

stratification of complicated risk factors and pre-cancer of the liver remains a challenge. An 

avenue towards addressing these challenges is the utilization of relaxometry in combination 

with spectroscopic imaging with validation by liver pathology. 

Relaxometry experiments result in maps of T2 and T1 relaxation times. These parameters 

can provide unique information on tissue composition and structure, which vary with 

pathological and physiological processes allowing pathophysiological conditions to be 

characterized [220]. T2 values can be extracted from the usual mono-exponential decay 

function, which assumes that a single spin type contributes to the signal from within that 

compartment. In MRI these are generally considered to be protons from water molecules. 

Inclusion of a second spin type within that compartment such as aliphatic methylene groups 

from lipids, confounds the decay characteristics of the signal but can be modelled by a two -

component exponential decay function [163].   

In order to investigate the characteristics of the MR signal in the presence of NAFLD we 

have used MRI to correlate T2 relaxation times with FF over time in the CDAA rat model. We 

have analysed whether a mono- or bi-exponential model is more accurate for in vivo T2 of the 

liver using three statistical approaches r2, F test [221] and Akaike information criterion (AIC) 

[222]. MR results were verified histologically. With a better understanding of these 

correlations, mono-/bi-component T2 and FF may give more accurate information about the 

structure and disease progression during hepatocarcinogenesis. 

 

6.3 Materials and Methods 

6.3.1 Animal model 

These experiments were approved by the Biological Resources Animal Ethics committee. 

Eight week old Fisher 344 rats (n = 6) were placed on a choline deficient L-amino acid modified 

diet (CDAA) diet and compared with control rats placed on a choline sufficient diet (CSAA). 

The composition of CDAA and CSAA diets has been described previously [57]. The CDAA 
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diet formulation used here is slightly lower in polyunsaturated fatty acid load, compared to 

similar diets used by others and thus prolongs the steatohepatitis stage, allowing ample time 

for imaging studies to be conducted without stress to animals.  Animals were housed in pairs 

in a controlled environment.  

  

6.3.2 In vivo MR imaging 

During MRI examinations, animals were anaesthetized with up to 3% isoflurane in a flow 

of 1.5 L/min medical grade oxygen. MRI experiments were conducted with a Bruker Biospec 

9.4T/30cm MRI spectrometer. The gradient set used could produce fields up to 14G/cm. A 

86mm quadrature radio-frequency (RF) resonator tuned and matched for proton was used for 

all studies. Imaging workflow and protocols were standard: briefly, a scout image in axial, 

sagittal and coronal planes was collected within a 120mm field of view.  Two-point Dixon 

in/out-phase (IP/OP) images [46] were collected in the axial plane using a spoiled gradient 

echo sequence, and all images were collected with respiratory triggering. The echo times, TE, 

were 2.86 and 4.64 ms for in/out phase images respectively. The in-plane resolution was 313 x 

313 µm, repetition time TR = 250 ms, number of excitations NEX = 2, and flip angle FA = 450. 

For determination of T2 maps, multi-spin-echo images were collected with TE spaced 

uniformly every 5 ms from 5 to 50 ms, and then every 20 ms from 50 to 130 ms, with TR=3300 

ms. The first echo time at TE = 5 ms was not used in T2 fitting due to the formation of indirect 

echoes [173].  Other parameters for both T2 and IP/OP images were FOV = 80×80 mm, slice 

thickness = 1.5 mm, and number of slices = 24.  

 

6.3.3 Data Analysis 

Pixel-wise mono- and bi-exponential fitting of multi-spin-echo data was accomplished 

with MATLAB software (MathWorks, Natick, MA, USA).  Fits to the mono-exponential decay 

function were compared to bi-exponential decay function fits, 

                                𝑆 = 𝑆0 (𝑓. 𝑒−𝑇𝐸/ 𝑇 2𝑆 + (1 − 𝑓). 𝑒−𝑇𝐸/ 𝑇 2𝐿) + 𝐶         (5) 

Here S is the observed signal, TE is the echo time, S0 is the bulk signal intensity, and T2S and 

T2L are the spin-spin relaxation times from fast and slow decaying components of the spin pool. 

Their proportions can be estimated from f, which is the fractional contribution of T2S to S0 and 
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referred to as ρS. Accordingly, 1‐ f is the fractional contribution from long decaying spins and 

denoted ρL. T2 obtained from fits to the mono-exponential function is referred to as T2M. Pixel-

wise percent fat fraction maps, FF, were generated from Dixon images neglecting phase errors 

[46, 198].  

In CDAA fed animals, where nodular lesions were apparent, mean FF and T2 times were 

extracted from within that region of interest (ROI).  Suspicious lesions were assumed when 

there was a correspondence between hyper-intense IP/OP and hypo-intense T2 images. Care 

was taken to choose ROI’s from similar locations across different time points and this was done 

manually and retrospectively. The nodular boundary (~1-2 pixels) was excluded to avoid 

contamination from the surrounding liver tissue signal. Focal lesions were only considered for 

statistical analysis if their volumes were greater than 0.60 mm3 and were observed in both 

IP/OP and T2 images. Focal lesions less than 0.60 mm3 were not always clearly defined in the 

FF and T2 parameter images as well as in all time points. Whole liver characteristics and 

changes with time were also investigated. The liver was manually segmented from each slice, 

blood vessels removed using an automatic threshold algorithm as implemented in MIPAV 

software and statistics determined from these images. To analyze whether mono- or bi-

exponential model were more appropriate the correlation coefficient r2, F test [221] and Akaike 

information criterion (AIC) [222] were used to inform on model appropriateness.  

Statistical calculations were performed using SigmaPlot software (version 11, Systat 

Software Inc., CA, USA). Estimates of parameters extracted from ROI’s are reported as mean 

+/− standard deviation at each time point. The independent student’s t test was used to compare 

FF and T2 between control and CDAA groups at each time point. Analysis of Variance 

(ANOVA) was used to evaluate changes in FF and T2 over time with p < 0.05 considered 

statistically significant. Correlation between mean FF and T2 parameters was evaluated using 

Pearson’s correlation coefficient and considered to be statistically significant when p < 0.05.  

 

6.3.4 Histology 

Animals were sacrificed after the final MRI session at 57 weeks. The liver was 

removed, separated into the seven lobes, drop fixed in RCL2 solution (3:5 v/v RCL2/Ethanol) 

[168] and stored at 4°C until prepared for histology. The tissues were embedded in paraffin 

wax. Sections (5 μm) were stained with haematoxylin and eosin (H&E) and examined by a 

veterinary pathologist.  Histological lesions were classified according to Thoolen et al. [169]. 
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Numerous patholgies were found with two common to all tissue analysed; microvesicular fatty 

change if hepatocytes were filled with numerous small lipid vacuoles and macrovesicular fatty 

change with hepatocytes containing a large single vacuole.  These photomicrographs were 

further compared with the corresponding MR images.  

 

6.4 Results 

The CDAA model used in our studies is based on the knowledge that combined 

deficiencies of choline and methionine ultimately lead to HCC, but does so via the onset of 

steatosis. Body weights and liver volumes for CDAA and control animals are presented in 

figure 6-1. A previous study of the CDAA animal model [223] to 12 weeks reported similar 

weight trends as ours (316 ±13 g compared to 294.12 ±17 g in our study).  Compared to 

controls, CDAA animals had a significantly higher body weight (500 ±15 g) by the end of the 

study (Figure. 6-1a). In addition, the liver volume of the CDAA group was significantly larger 

(P < 0.05) compared to controls and this was observed early, continuing through the course of 

the study (figure. 6-1b). This was not unexpected and consistent with previous studies. 

 

Figure 6-1: The average body weight (a) and liver volume size (b) in control group versus 

CDAA group at each time point from week 12 to week 57. n=6 animals per group, error bars 

are standard deviation. 

 

There are several qualitative features immediately apparent from the Dixon MR 

images. In control animals, IP and OP images are visually similar since lipid content is low. OP 

liver images from CDAA animals appear darker without any further image processing. T2–



95 

 

weighted images without fat suppression show a higher signal intensity in CDAA liver 

compared to controls. The increased T2 signal and signal cancelation in OP images are 

indicative of diffuse fat distribution. In this study, these characteristics were observed from the 

first imaging time point at 12 weeks. Histological examination (H&E) at the end of the MR 

study revealed diffuse micro- and macro-vesicular fatty character among other pathologies in 

the CDAA group, while only multifocal and occasional aggregated hepatocytes with 

intracytoplasmic lipid droplets were observed in controls as shown in the bottom panel of 

figure. 6-2. 

Also in figure 6-2, IP, OP, water only, fat only, and T2 weighted (at TE = 20 ms) images of 

control and CDAA rat livers at the week 57 time-point are shown.  Water and fat images can 

be retrieved from IP/OP imaging where “Water Only” = (IP+OP)/2 and “Fat only” = (IP-OP)/2, 

respectively [218]. From figure 6-2, it is noted that the maximum integer value of the calculated 

image (7000) is less than the water only value (22000). Thus percent fat fractions of our cohort 

are less than 50%. We do not expect liver fat content to be any greater in the clinical case but 

there does not exist a standard correlating clinical measurements with MRI-determined FF.  
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Figure 6-2: IP, OP, water only, fat only, T2 and H&E histology images of control and CDAA rat 

liver at week 57. CDAA liver shows lower signal intensity in the OP image compared to IP 

image, while almost equal signal intensity as the control indicating that fat content is very low. 

The T2 images show a higher signal intensity in CDAA liver compared to control. The grey 

scales indicate the signal intensity estimations of water and fat in the two animals. Histologic 

H&E staining of control and CDAA liver section shows that CDAA liver (200x) were 

characterised by a prominent accumulation of lipid droplets (microvesicular and 

macrovesicular fatty change) compared to control (100x). S(superior) ≡ dorsal; I(inferior) ≡ 

ventral; R, right; L, left.  
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Histological examination of CDAA livers at the end of the MR study revealed two 

types of nodular lesions corresponding to the nodules detected by MRI:  regenerative 

hyperplastic nodules and hepatocellular adenoma. Regenerative hyperplasia was characterised 

by focal or multifocal accumulation of elevated number of hepatocytes with a normal lobular 

architecture, compression of the surrounding liver parenchyma and occasional mild fibrosis. 

Hepatocellular adenoma (HCA) was observed as a single nodule consisting of increased 

number of hepatocytes with loss of the normal lobular architecture and sharp demarcation from 

the surrounding parenchyma. 

Eleven nodules from the six CDAA animals were selected from week 57 MR images 

and were retrospectively examined from week 24 to 57.  These were histologically confirmed 

to be regenerative hyperplastic nodules. 

The 11 regenerative nodules were characterised by hyper-intense IP/OP signal and hypo-

intense signal in T2 weighted images from week 24 as shown in figure 6-3.  

 

Figure 6-3: MRI images and histology of a regenerative hyperplastic nodule in CDAA rat 

liver. The MR axial section shows the presence of a hyperplastic nodular lesion in the liver 

lobe (red square in OP image) with hypo-intense signal in T2 image (TE=20 ms) and hyper-

intense signal in IP/OP images.  In the histological H&E stain shown on the right, taken from 

the red square, the nodule is indicated by the dotted black ROI.  

 

Mono and bi-exponential functions provided excellent fits to T2 data with average r2 > 
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0.95 irrespective of tissue type (i.e. fatty, nodular lesion or normal liver parenchyma). AIC 

analysis indicated, however, that the bi-exponential function is the preferred model at all-time 

points for CDAA group animals irrespective of pathology. The F test confirmed the AIC 

analysis at week 12, but indicated that mono-exponential fitting was better from week 24 to 57 

in both whole liver and nodular lesions in the CDAA group. Figure 6-4 shows the percentage 

of pixels where bi-exponential fitting is preferred by both AIC and F tests. Note that for both 

AIC and F test analyses of the CDAA group there is a significant reduction in the number of 

pixels best fit to a bi-exponential function over time, possibly because of the onset of mild 

fibrosis. Control animals also show a similar trend (solid blue circles in figure 6-4), the percent 

of pixels fit is much lower and there is no significant difference between the last time-point at 

57 weeks compared with 12 weeks. 

 

Figure 6-4: The average percentage of pixels for which the bi-exponential function is 

preferred using AIC and F test in whole liver measurement of control and CDAA animals, 

and nodular lesions over all time-points. 

 

Maps of mono/bi-exponential T2 components compared with FF from whole liver are 

shown in figure 6-5 for a control and CDAA animals at the 24 week time point.  
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Figure 6-5: Mono and bi-exponential components of T2 and FF analysis of representative 

control and CDAA animals at week 24 after diet administration. T2S: short component, ρS: 

signal contribution from T2S, T2L long component of T2 map; ρL signal contribution from T2L, 

T2M is mono-exponentially calculated T2, FF is fat fraction measured using the Dixon 

technique. Individual T2 maps are overlaid on T2 images and FF on OP images. T2S, T2L, and 

T2M are measured in milliseconds (ms); ρL, ρS and FF are expressed as percentages (%).           S 

(superior), dorsal; I (inferior), ventral; R, right; L, left 

 

 

 



100 

 

Statistically, with time, whole liver FF and T2 values show that the mean FF, T2M and 

T2L were significantly higher (P < 0.001) in CDAA animals compared to controls at each 

measurement point (figure 6-6a). ρS was significantly lower, and ρL higher, (P < 0.05) up to 

week 48 in the CDAA group compared to controls (figure 6-6b).   

 

 

Figure 6-6:  Box plot for the mean whole liver values of T2M, T2L, and T2S (a); and for 

percentages of  ρS, ρL , and FF (b) in CDAA and control groups from week 12 to week 57. 

 

In CDAA animals, FF, T2L, and T2M declined significantly (P<0.001, P<0.001, 

P<0.05; respectively) over the diet period, The T2S remained mostly constant over time. The 

fractional density, ρL, decreased with time, whereas ρS increased. The rates of change of FF and 

ρL per week were comparable in CDAA group: -0.0893% per week and -0.0922% per week, 

with correlation coefficient (r) = 0.83 and 0.96, respectively. This suggests that in diffuse fatty 
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liver,   0.1% decrease in both FF and ρL occurs per week. For controls, the rates of change for 

FF and ρL were not comparable (FF change rate =0.1%, r=0.79, P < 0.05 versus ρL=0.03%, 

r=0.34, P < 0.05). The change of mean FF and ρL values over time in CDAA and control groups 

is summarized in figure 6-7.  

 

Figure 6-7: Changes in the mean whole liver FF and ρL in CDAA and control groups from 

week 12 to week 57. In CDAA animals, the FF and ρL declined significantly and the rate of 

change per week for both were comparable during the diet period (-0.0893 % and -0.0922 %, 

respectively) during the diet period. For controls, the rate of change for FF and ρL were not 

comparable (0.1% versus 0.03%, respectively). 

 

         To determine the correlation between FF and T2 parameters, the average T2L, T2M, ρL, and 

ρS values of the whole liver were plotted against the respective FF in the CDAA group over 

time (figure 6-8).  The mean FF was positively correlated with T2L (P < 0.01; r = 0.931), ρL (P 

< 0.05; r = 0.806), and T2M (P < 0.05; r = 0.77) over time. A negative correlation was observed 

between FF with ρS (P < 0.05; r = -0.79) and no correlation was seen between FF and T2S. No 

correlation found between FF and T2 parameters in the control group.   
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Figure 6-8: Scatterplots between the whole mean ρL and T2M with FF (a); and ρL and ρS with 

FF (b) in CDAA group over time reveals a strong correlation. 

 

A positive correlation was also found between FF and AIC (P < 0.02; r = 0.81). This 

strong correlation and the decreased preference for bi-exponential T2 signal over time in whole 

diffuse fatty liver indicates a decrease in the level of fat droplets during hepatocarcinogenesis. 

It is possible that the fibrosis found in the histology in CDAA animals is the pathological factor 

resulting in reduced FF during the diet period. 

 

Nodular quantitative MR (nodule versus surrounding fatty liver tissue in CDAA group) 

Figure 6-9 shows an example of the T2 and FF parametric colour maps of nodular lesions 

versus diffuse fatty liver background in the CDAA group. At week 24, the mean area size of 

the 11 nodules was 1.6 mm3 (range 0.68 – 3.2 mm3). Over the MRI study period, these nodules 

had significantly increased (P < 0.01) with growth rate of 0.05 mm3 per week, reaching the 

maximum size at week 57 with an average of 3.2 mm3 (range 1.83 - 4.98 mm3). 
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Figure 6-9: An example of the axial T2 maps (overlaid on T2 images) and FF (overlaid on OP 

images) at week 24 showing a focal nodular lesion (white arrows) on a diffuse fatty liver 

background in CDAA liver. T2S, T2L, and T2M are measured in millisecond (ms); ρL, ρS, and FF 

measured in percentage (%). Compared to the surrounding liver tissue, the nodular FF and  T2M 

maps show decreased fat fraction and T2 value, respectively. The T2L, T2S, ρS and ρL maps show 

slightly lower values with surrounding tissue. S (superior), dorsal; I (inferior), ventral; R, right; 

L, left  

 

The results from descriptive statistics for the nodular lesion versus surrounding diffuse 

fatty (descriptive statistics presented in Table 6-1) show that the mean FF and T2M of nodules 

were significantly lower at all time-points (except week 40 for FF). Nodular T2L, ρS and ρL were 

significantly lower at certain time-points. No significant difference was seen in T2S. Note that 

the standard deviation given in table 6-1 shows a broad distribution of MR parameters among 

nodules compared to a tighter distribution across whole liver in CDAA animals, indicating that 

these lesions are heterogeneous. Repeated ANOVA measures showed no significant changes in 

FF and T2 values (P >0.05) over time, indicating that these values remained relatively constant 

in nodules during the diet period. No correlation was found between FF and T2 parameters, 

suggesting that FF does not have a strong influence on T2 parameters in nodules. 
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Table 6-1. Descriptive statistics for nodular lesions versus surrounding diffuse fatty liver. 

Week Group 
FF 

(%) 
±SD 

P 

value 

T2M 

(ms) 
±SD 

P 

value 

T2L 

(ms)  
±SD 

P 

value 

T2S 

(ms)  
±SD 

P 

value 

ρL  

(%)  
±SD 

P 

value 

ρS 

 (%)  
±SD 

P 

value 

24 
Nodule 14.74 6.09 

<0.001 
23.57 5.00 

0.03 
62.05 14.76 

0.10 
9.10 3.49 

>0.05 
31.18 8.41 

>0.05 
68.81 8.41 

>0.05 
S.tissue 24.65 1.96 28.87 2.17 72.17 4.85 9.50 0.97 29.00 1.55 70.00 2.45 

32 
Nodule 17.77 2.78 

<0.001 
22.25 4.66 

0.01 
48.37 12.85 

0.00 
9.85 4.76 

>0.05 
27.64 10.62 

>0.05 
72.36 10.62 

>0.05 
S.tissue 24.27 1.42 28.77 2.40 69.71 5.56 9.62 0.56 28.00 0.63 71.00 2.68 

40 
Nodule 18.72 7.08 

0.30 
19.51 3.45 

<0.001 
43.56 16.97 

0.01 
9.04 3.63 

>0.05 
23.09 6.56 

<0.05 
76.90 6.56 

<0.05 
S.tissue 23.80 2.18 27.26 0.98 65.63 3.46 9.30 0.39 27.17 0.75 73.00 0.63 

48 
Nodule 16.39 4.18 

0.02 
20.28 2.55 

<0.001 
46.97 13.78 

0.01 
7.58 3.07 

>0.05 
19.45 6.07 

<0.05 
80.54 6.07 

<0.05 
S.tissue 21.61 3.59 27.24 1.94 63.30 4.27 9.20 0.50 27.33 1.51 73.30 0.82 

52 
Nodule 14.36 4.11 

0.01 
17.04 2.06 

<0.001 
52.64 31.50 

0.70 
7.60 3.26 

>0.05 
17.00 6.65 

<0.05 
83.00 6.64 

<0.05 
S.tissue 20.22 3.96 26.22 1.61 56.32 3.48 9.24 0.21 26.00 2.97 74.00 2.97 

57 
Control 18.12 3.79 

0.03 
19.93 1.96 

<0.001 
56.07 24.80 

0.80 
8.77 2.35 

>0.05 
20.36 7.15 

<0.05 
79.63 7.14 

<0.05 
S.tissue 22.21 1.91 25.66 1.02 58.68 2.26 9.02 0.63 26.33 3.01 75.20 1.72 

CDAA, choline deficient L-amino acid; T2M, T2 mono-exponential; T2L, long T2 component; T2S, short T2 component; ρS, fraction of the short 

compartment signal; ρL fraction of the long compartment signal; SD, standard deviation.  
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Gross appearance  

The photographs in figure 6-10a&b demonstrates the CDAA liver as diffusely pale 

and enlarged compared to control. 

 

Figure 6-10: Gross appearance of a CDAA rat (A) and control rat (B). The CDAA liver is 

slightly enlarged and has a diffusely pale appearance. 

 

Other histological findings 

Histological assessment of the livers from CDAA animals revealed a number of 

features that could not be detected by MRI measures, mainly due to the difference in spatial 

scales available in each technique, and are depicted in Figure 6-11.  According to Thoolen et 

al. [169] classification, these lesions are:  

- Focal fibrosis: the presence of connective tissue and act as a reaction to acute or 

prolonged hepatotoxicity,  

- Bile duct hyperplasia: a spontaneous change in portal areas and defined as increased 

number of small bile ducts arising in portal region, 

- Eosinophilic foci (EOS): is polygonal enlarged hepatocytes with increased acidophilic 

staining compared with the surrounding normal liver, 

- Oval cell hyperplasia: arises from terminal ductule epithelial cells and can be 

observed following severe hepatotoxic injury and treatment with hepatocarcinogens, 
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- Clear cell foci: consist of normal or enlarged groups of cells with prominent cell 

membranes and distinct cytoplasmic clear spaces surrounding a densely stained 

centrally located nucleus. 

            These focal lesions in rat experiment models occur in association with a high 

incidence of hepatocellular carcinoma and thus considered as an indicative of 

progression towards HCC [169, 224]. 

 

Figure 6-11: The histological lesions in livers of CDAA animals not detected by MRI. 
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Comparison of in-vivo and ex-vivo imaging with histology 

Figure 6-12 presents MRI in-vivo and ex-vivo images in a CDAA liver of three 

regenerative nodules in two different liver lobes with accompanying H&E tissue stains 

obtained from liver approximately in the same position as the MR image slices.   

 

Figure 6-12: MRI in-/ex- vivo and histology (H&E stain) representative of three regenerative 

hyperplastic nodules in a CDAA rat. Red and yellow dashed lines in the in vivo MR image 

indicate two separate liver lobes.  These three nodules (blue, green and yellow arrows) were 

identified on in-/ex- vivo images and histology. 

 

Liver lobe appearance 

The CDAA livers were markedly enlarged, non-smooth, and with irregularities 

compared to the control animals at all-time points. Qualitatively, these changes became more 

severe with time.   Figure 6-13 shows T2 weighted images of control and CDAA liver lobes at 

the week 48 time point.  The four lobes (right lateral, left lateral, median, and caudate lobes) 

were enlarged in CDAA liver compared to the control, most obviously in the caudate lobe (CL).  
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Figure 6-13: Axial T2 images obtained from a control (left) and CDAA (right) rat 

livers at week 48 time point. (ML: median lobe; LLL: left lateral lobe; RLL; right lateral lobe; 

CL: caudate lobe; ST: stomach). 

 

6.5 Discussion 

Here we used quantitative in vivo MRI at 9.4T to study fatty infiltration and nodular 

formation in the liver of CDAA-induced rat HCC model over time. We utilized the two-point 

Dixon method and T2 mono/bi-exponential decay to measure FF and T2 parameters, 

respectively, of both the whole liver and nodules in CDAA animals compared to controls. The 

correlations between FF with T2 parameters were evaluated. Such data may be of importance 

for potential future use in a clinical setting to distinguish nodular lesions from fatty liver 

background and to allow a risk assessment in patients with fatty liver disease. The present 

results clearly showed that T2 parameters including T2M, T2L, ρL and ρS are affected by FF in 

the whole fatty liver but not in nodules.  

The evaluation of diffuse fat lesions using two-point Dixon imaging showed a signal drop 

in OP images and homogenous signal in IP images in the whole CDAA liver, compared to 

controls. T2 weighted imaging showed the fat lesions as a diffuse hyper-signal in CDAA liver, 

compared to controls. The increased signal in the CDAA group is due to the longer T2 relaxation 

time of fat compared to water [186, 225, 226]. Nodular lesions were easily distinguishable from 
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the surrounding liver tissue at 24 weeks, appearing as hypo-intense signal on T2 images and 

hyper-intense signal on both IP and OP images. 

Pixel-wise T2 mapping using mono- and bi-exponential models substantially showed 

a high precision (high r2) for the fit, suggesting that both mono- and bi-component analyses are 

valid. In this study, we statistically compared the mono- and bi-exponential models of T2 signal 

decay in both whole diffuse fatty liver and nodular lesions.  AIC showed that diffuse fatty liver 

and nodules at all-time points were better characterized by a bi-exponential function, while less 

than 45 percent of pixels were better defined by a bi-exponential model in control livers. We 

observed that when the FF is higher than 14%, the preference for bi-exponential fit in more 

than half the pixels in diffuse fatty liver is strongly affected by the presence of fat droplets. In 

contrast, results using the F test were only consistent with the AIC in week 12, and from week 

24 preferred the mono-exponential function. A possible explanation is that the F test tends to 

choose the simpler model in comparison to AIC even when the complex model is correct [227]. 

These results demonstrate that AIC is more effective in characterising fatty liver and focal 

lesions compared to the F test for the existence of two components.  

 

The dependence of T2 may be attributed to histological changes such as in nuclear to 

cytoplasm ratio, cell enlargement, and alteration in the cellular microenvironment by the 

intracellular fat droplets [228]. As the CDAA diet model in the rat is known to induce diffuse 

fatty liver disease before development of pathological nodules, we hypothesized that FF has a 

predictable relationship with liver T2 relaxation time during hepatocarcinogensis. With 

decreasing FF in the CDAA group during the diet period, the signal fractional contribution of 

the long T2 component (ρL) decreased, with a concomitant increase in the contribution (ρS) of 

the short T2 component. The rate of change for FF and ρL per week was similar ( 0.1%). In 

addition to the decrease in ρL, the T2 long (T2L) values tended to decrease with decreasing FF. 

Given that the decrease of ρL and T2L values with decreased FF, it may be intuitive to propose 

that the T2L component reflects the fat compartment and T2S reflects liver water in CDAA group. 

This is consistent with a previous spectroscopy study that found T2L, but not T2S, was 

significantly correlated with the percentage of fat within cirrhotic liver biopsy specimens [229]. 

However, the fractional contributions of the ρL and ρS in the control livers do not support such 

an interpretation in CDAA livers as there was a poor correlation between FF with T2L, ρL and 

ρS. Therefore, we suggest that the two components observed in the control animals could 

correspond to intra- and extracellular water compartments rather than to fat and liver water 
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components, as is typically described for T2 measurements in vivo.   

 

The presence of fibrosis in CDAA livers, may explain the decrease in ρL during the 

progression of the disease. T2 has previously been used to characterize liver fibrosis and 

increased T2 values were observed [205] consistent with our observations for T2L. The T2M 

value derived with the mono-exponential model showed significantly higher values in CDAA 

compared to controls at each time point. However, the T2M was decreased over time and showed 

a significant correlation with FF. Given that FF was strongly correlated with T2L component 

and poorly with T2S component, our results indicate that the decrease in T2M values with 

decreased FF over time is dominated by the decrease in the ρL, with a lesser contribution from 

ρS.  

 

For nodular evaluation, our study showed that a lesion of less than 1 mm3 was easily 

distinguishable from the fatty liver background by in vivo MRI, even without contrast media, 

due to their different T2 and characteristic shape. The increase in mean nodular size over time 

in the CDAA group is an indicator for nodular development in cancer and potentially an 

important tool for monitoring lesion response to therapy [230].  

 

The accumulation of fat on human tumor xenografts and animal nodular tumor models has 

been reported in spectroscopic studies, indicating the potential to use MR parameters as 

diagnostic markers to evaluate nodules [29, 231-233]. We showed that fat droplets can be 

quantified within nodules even when not detected visually on conventional in vivo MR images. 

Nodular signal T2 was accurately characterised by both mono and bi-exponential decay in all 

11 lesions detected in CDAA animals in vivo. The main MR quantitative findings of nodules 

were that (i) FF and T2M were significantly lower compared to the surrounding fatty liver tissue 

at all-time points (except week 40 for FF), and (ii) no correlation was shown between FF and 

T2 parameters, and (iii) T2L, ρL, and ρS were significant only at certain time points. There was 

no correlation between FF and T2 parameters in nodules over time, suggesting that nodular T2 

values may be affected by other molecular changes such as inflammation, perfusion changes, 

and edema [234]. Additional studies are needed to determine the physiological origin of T2 

parameters in these liver nodules. 

   

NAFLD ranges from simple liver steatosis to steatohepatitis (NASH). NASH is a serious 
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condition that can lead to fibrosis and cirrhotic stages, general risk factors for HCC [35]. There 

is insufficient MRI data to describe longitudinally the presence of HCC-associated NAFLD 

during hepatpocarcinogensis with histological confirmation at each stage. For example, we 

expect that fibrosis during hepatpocarcinogensis would translate to a continuous reduction in 

FF and reflected in decreasing T2 values. In this study however, we only performed histology 

following the last time-point. We propose that using multiple T2 components and FF together 

with histological analysis at each time point would provide a more detailed characterisation of 

the pathological microenvironmental changes within lesions as well as providing cutoff points 

to allow stages to be identified and classified. 

 

In conclusion, this study demonstrated that it is possible to create statistical maps of 

pathological liver that combine FF and T2 parametric data, indicating that combination of multi-

parametric MR is more powerful than any one technique alone. Our results demonstrate that 

T2M in the whole CDAA liver is significantly correlated with FF during hepatocarcinogenesis. 

In addition, both the T2 long value and its fraction significantly correlated and decreased with 

decreasing FF measured by Dixon method. Supporting the relationship between the T2L and fat 

fraction in the liver. The poor correlation between FF with T2 parameters found in nodules over 

time; suggests that nodular T2 values in longitudinal studies were less influenced by FF, and 

may more be likely affected by other molecular alterations.    
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Chapter 7 : Overall 

discussion and conclusion 

7.1 Introduction 

 

The ability to track the changes in liver pathology prior to the formation of HCC has 

potential to significantly inform improvement of clinical management and treatment of 

progressing liver disease. We used an experimental CDAA-induced hepatocarcinogenesis rat 

model to apply quantitative fat fraction and mono- and bi-exponential T2 analysis to progressive 

liver disease, including hepatic nodular lesion formation. To our knowledge, this is the first 

quantitative FF and T2 analysis in in vivo animal model studies at 9.4 T for characterizing 

developing hepatocarcinogenesis. The principle advantage of using high field MRI is to 

increase signal-to-noise ratio (SNR) and, thus, improve spatial resolution [235]. 

The evaluation of developing hepatocarcinogensis induced by the CDAA diet in a rat 

model is an important first step in the development of clinical methods for the measurement of 

MR detectable biomarkers for accurate HCC staging. Nakae, D., et al. reported that the CDAA 

diet is frequently used for long term studies and histologically presents fatty liver in early stages 

and fat associated with precancerous lesions after week 12 from continuous CDAA feeding. 

HCC develops from about 52 weeks on the CDAA diet [57]. Our rats on the CDAA diet 

displayed fatty infiltration in the whole liver at the first time point (12 weeks). At week 24, the 

pathological nodules were generated and diagnosed histologically as benign lesions. These 

benign lesions were associated with a reducing fatty liver and were diagnosed as hyperplastic 
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nodules. HCC nodules were not evident in our study as confirmed by histopathology and ex 

vivo high resolution MR imaging (16.4T). Hyperplastic nodules are known to precede the 

occurrence of HCC. Thus our study examined the development of fatty liver and hyperplastic 

nodules leading to fibrosis as a prelude to HCC on the carcinogenesis pathway.  The 

longitudinal T2 relaxation and FF analysis of developing liver disease may play an important 

role in enhancing a multi-parametric imaging approach to liver cancer diagnosis, staging and 

evaluation.    

7.2 Qualitative evaluation  

Our protocol examined the diffuse fatty infiltration of the liver in rats fed a CDAA 

diet. Evaluation of liver fat using Dixon imaging showed signal reduction in OP images and 

homogenous signal in IP images of the CDAA liver compared to controls. T2 weighted imaging 

indicated fat accumulation as diffuse hyperintense signal in the CDAA group due to the longer 

T2 relaxation times of liver fat relative to water in normal tissue [186, 225, 226]. Liver fat 

deposition was confirmed histologically with hematoxylin-eosin staining. Nodular lesions 

developed at around 24 weeks and were easily distinguishable from the surrounding liver tissue 

appearing as hypo-intense regions in T2 weighted images and hyper-intense in both IP and OP 

images.  Nodules of size less than 1 mm2 were easily distinguishable from the fatty liver 

background by MR, due to the intrinsic image contrast and characteristic nodular shape, 

without the need for contrast media. The increase in mean nodular size could be tracked over 

time (from 1.6 mm2 at week 12 to 3.2 mm2 at week 57) providing information about the rate 

of nodular lesion progression. This ability to track nodular development makes it possible to 

investigate nodular lesion response to therapy [230].  

Changes in the liver signal intensity and total liver volume were visually evident and 

quantified at each time point. MRI provides detailed images of soft tissues in abdominal 
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imaging. However, its application is challenging in delineating liver lobe boundaries due to 

structural complexity[236] and similar contrast to neighbouring organs. Moreover, high 

magnetic field MRI of rodents is challenging because of high heart and respiration rates, motion 

artefacts, and increased magnetic susceptibility effects which reduce image quality. Previous 

MR studies of rodent liver have indeed shown suboptimal images with no mention of changes 

in liver lobes that may occur during progression of liver disease [20, 205], particularly liver 

tumours. Neither of these studies measured the whole liver volume longitudinally. Our MR 

protocol using respiratory gating in the CDAA-liver rat model provided a good visualization 

of liver lobular structure changes which may be indicative of sequential changes during 

hepatocarcinogenesis.  

 

7.3 Quantitative analysis  

This study has provided new quantitative parametric data for assessing progressive 

liver pathology. This includes generating quantitative T2 and FF maps of the liver. Figure 7-1 

is a scatterplot graph showing a visual summary of the outcomes with regard to T2 and FF of 

whole liver in controls, CDAA liver tissue, and nodular lesions over time. Overall, the largest 

change was evident in the decrease in the long T2 component of the bi-exponential analysis 

with the decreasing fat fraction with time. 
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Figure 7-1: Scatterplot graph showing correlation and changes over time of FF with T2 values 

(a) and fractional contribution of T2S to S0 (ρS) and fractional contribution from long decaying 

spins and denoted ρL (b) in whole liver control and CDAA, as well as in nodular lesions. 

Symbols in the upper right refer to weeks after CDAA diet administration 

 

7.3.1 Mono- versus bi-exponential models 

Previous T2 studies describing living tissues containing bi- or multi-exponential 

components, generally interpreted the separate components as unique water compartments 

[207-209] usually ascribed to intra- and extracellular water. The T2 values of fat is longer than 
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that of liver water and will contribute significantly to the tissue T2 due to the high fat content.  

For this reason, liver water and fat compartments are the most logical source of short and long 

T2 components of the bi-exponential decay curves in fatty liver. This is consistent with the 

strong positive correlation between T2L and FF (figure 6-8). In contrast to the fatty livers in the 

CDAA rats, there is little or no fat content in controls in which the liver water is the primary T2 

component.  

To statistically assess which model (mono- or bi-exponential) better fit the T2 data in 

whole control and CDAA liver, two statistical measures: AIC and F test were utilized in this 

analysis. The AIC statistic has been used in  MRI studies to compare a range of compartment 

models such as in diffusion data [237, 238] and  T2* data [239]. To assess the benefit of using 

a bi-exponential as compared to a mono-exponential model to describe our in vivo data, the 

AIC was taken as an indication of whether the bi-exponential parameters reflect the bio-

physical data, i.e. two spin components (fat and water spins). The lower the AIC value the 

better the model describes the data. 

 The T2 analysis using the AIC test showed that the bi-exponential approach is the 

globally preferred analysis model in both diffuse fatty liver and nodules. In control animal 

livers, fewer than 45% of pixels were best modelled using a bi-exponential fit. These findings 

indicate that the bi-exponential model is best at quantifying fatty liver disease. We also 

calculated F test results for comparison. The F test results were consistent with AIC only for 

week 12 data in diffuse fatty liver but not for later time points. The r2 analysis shows the 

goodness of fit. It can be used as guidance as to whether the selected model fits the underlying 

experimental data. Our result showed that >95% of the pixels exhibited higher r2 for control, 

diffuse fatty liver, and nodules if a bi-exponential model was applied.  

 

The use of AIC analysis showed that the bi-exponential fit is the preferred model for 



117 

 

the CDAA group and is consistent with the increased signal in T2 image in CDAA group, 

compared to controls, resulting from the addition of the long T2 signal fraction introduced in 

the diffuse fatty liver. Both the T2 long value and its fraction correlated significantly with 

decreasing FF measured by the Dixon method.  

To the best of our knowledge, our study is the first to use a quantitative bi-exponential 

model of T2 decay in in vivo fatty liver. The analysis described here may be carried out in future 

studies in liver diseases, in particular with fatty liver infiltration. It is reasonable that living 

tissue exhibits several T2 components, the result being a bi- or multi-exponential relaxation 

process [197]. Consequently, applying bi- or multi-exponential fits for T2 calculations allows 

for the investigation of the microarchitecture of a tissue at the sub-voxel level, thereby 

increasing the clinical potential of tissue characterization by MR imaging [197, 210].  

Non-alcoholic fatty liver disease (NAFLD) consists of a spectrum of pathologies 

including hepatic steatosis (the earliest manifestation and hallmark), non-alcoholic 

steatohepatitis (NASH), liver fibrosis, liver cirrhosis, and finally HCC. The microarchitecture 

at the sub-voxel scale in the liver at each stage is likely to be altered (particularly the fat 

fraction), resulting in changes in bi-T2 characteristics during the progression. The chemical 

composition of the lipids during the changing pathological states may change with different 

characteristic T2 values. Using a mono-exponential analysis would therefore mask small 

changes in the T2L or fat T2 value. Separating out the T2S and T2L component allows more 

accurate modelling of T2L increasing the potential to detect smaller changes with changing 

pathology. There are no studies determining the influence of these stages on bi-T2 relaxation 

times in liver. Therefore, applying a bi-exponential model is important to accurately determine 

the two T2 components for liver evaluation in a longitudinal study. Changes in the fat 

component may allow tracking of drug efficacy or characterizing progression of fatty liver 

disease before development of full HCC.  
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7.3.2 Whole liver T2 and FF analysis 

The positive correlation of whole diffuse fatty liver with T2L, and T2M with FF, and the 

negative correlation of ρS with FF indicate that T2L, ρL, and T2M increase with FF while ρS 

decreases. For the animals investigated in this study, the maximum FF and T2L fraction was 

evident at 12 weeks and then progressively decreased during the study. Previous studies have 

reported that FF measured by MR decreases as fibrosis increases [240].This was proposed to 

be a consequence of fibrotic tissue replacing hepatocytes.  Future studies performing a more 

detailed investigation of changes in T2S and T2L in association with histological investigation 

of fibrosis may provide additional non-invasive biomarkers for tracking progressive liver 

disease. 

The Pearson correlation coefficient model determined that T2S was correlated weakly 

with FF. This indicates that fat has a weak effect on T2S throughout the liver. This behaviour of 

the T2S component was consistent with our assumption for the fat fraction in which the T2S 

component reflects water signal and is not affected by the fat fraction.  Moreover, the similarity 

and relatively constant value of T2S over time in both CDAA and control groups indicates that 

the underlying T2S is dominated by one tissue constituent that is not changing significantly 

during this period consistent with liver water in both groups. Any interpretation of T2S remains 

speculative, and more studies are needed to confirm these conclusions. 

7.3.3 Nodular T2 and FF parameters 

Eleven focal lesions were identified and monitored during the time course of this study 

and verified by histology after the last MR in vivo time point. The main MR quantitative 

findings of these nodules were that (i) FF and T2M were significantly lower compared to the 

surrounding fatty liver tissue at all-time points, and no correlation was shown between FF and 

T2 parameters. Interestingly, when comparing the T2M with bi-exponential T2 parameters, the 
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difference in T2M was statistically significant in all time points between nodules and 

surrounding liver tissues, while the difference in T2L, ρL and ρS were significant only in certain 

time points. 

The decreased level of fat in the lesions quantified by the MR methods was consistent 

with histological findings of decreased fat droplets within nodules. This was the case even 

when lesions were not obvious in conventional in vivo MR images.  This strengthens the case 

for applying quantitative FF and T2 pixel-wise analysis of livers with suspected pathology. In 

addition to the difference in mono-exponential decay for nodular evaluation, relative to 

surrounding tissue in our study, nodular signal exhibited two T2 components bi-exponentially 

in all eleven lesions detected in the CDAA animals in vivo.  

According to the histology findings, the nodules detected in this MRI study were 

hyperplastic nodules (benign). The qualitative and statistical descriptive range of regenerative 

nodules using our quantitative MRI is presented in table 7-1 

Table 7-1. Statistical descriptive of regenerative nodules using quantitative MRI 

 

The poor correlation between FF with T2 parameters found in nodules over time 

suggests that nodular T2 values in longitudinal studies were less influenced by FF, and may 

more be likely affected by other physiological alterations.  T2 can be influenced by 

inflammation, perfusion changes, edema, or steatosis [234]. Therefore, it is reasonable to 

assume that the T2 parameters in nodules may represent other pathological factors, not just 

steatosis as indicated by the steatotic liver tissue investigated in this study. The nodular T2 

Lesion 

size (mm) 

T2 

 image 

IP/OP 

images 

FF 

(%) 

T2M 

(ms) 

T2L 

(ms) 

T2S 

(ms) 

ρS 

(%) 

ρL 

(%) 

0.68-3.2 
hypo-

intensity 

hyper-

intensity 
14-20 19-23 43-60 7.5-9 68-83 17-31 



120 

 

values were lower relative to the surrounding liver tissue at each time point, consistent with the 

lower FF in the tumours. 

Other mechanisms have been proposed for a decrease in the T2 value in liver nodules. 

The presence of angiogenesis within the tumours which may result in accumulation of 

paramagnetic deoxyhemoglobin [241], that may play a role in the decreased T2 value. Another 

explanation is that iron deposits within the nodules may also lead to hypo-intensity of nodules 

on T2 images and lower T2 values when compared with surrounding fatty liver tissue. Iron is in 

the form Fe3+, which is paramagnetic and thus may generate low signal intensity on 

conventional T2 images [242].  

In non-cirrhotic livers, focal benign fatty change is known to occur in chronic liver 

disease, and  needs to be differentiated from other focal tumors. In the cirrhotic liver, fatty 

change within a precancerous lesion has been recognized as an expression of malignant 

transformation to HCC during hepatocarcinogenesis [243, 244]. This indicates that the 

presence of fat within focal lesions raises concern for HCC lesion development but not in other 

types of malignant liver tumors [245]. Therefore, the detection of fat-containing lesions may 

help to exclude other malignancy such as cholangiocarcinoma [246].  

The underlying nodular physiological origin of the multi-T2 parameters in our study 

is unknown, and so additional studies are needed to understand our observations. One proposed 

investigation would be to use in vivo MR T2 multi-exponential analysis and histopathology at 

each time point to evaluate the underlying physiological changes of nodules and make 

correlation of these measures.  Measurement of multiple T2 component and FF as well as 

histological analysis show potential for characterizing the pathological microenvironmental 

changes within the lesion.  

To our knowledge, no previous study has correlated the FF with mono- and bi-

compartment T2 values to detect and evaluate early changes during development of 
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hepatocellular carcinoma. Fatty infiltration should be considered when using quantitative T2 

mapping for characterizing HCC since T2 relaxation times are modified by the degree of fat 

present. 

A limitation of the current study that could be addressed in future studies includes the 

number and range of TE values used to T2 mono- and bi-exponential analysis. The maximum 

TE time was 130 ms. Figure 3-5 illustrates that the signal intensity appeared to be constant and 

reached the noise level by 130 ms. However, in the CDAA rats with steatotic livers, the image 

signal intensity was still decreasing at 130 ms. This has the potential to affect curve fitting, 

particularly the T2L component. Additional studies with severely steatotic livers should be 

investigated to determine the maximum TE required for the image intensity to reach the noise 

level. An expanded study would also benefit from adding histological assessment at each time 

point. The animals in our study developed benign hyperplastic lesions. Extending the final time 

point to allow development of HCC would also benefit assessment of quantitative FF and T2 

changes to understand the complete HCC formation process. 

 

7.4 Conclusion 

A bi-exponential T2 model and Dixon imaging has been applied to produce parametric 

information from liver tissue during steatosis and development of hyperplastic nodules in a 

CDAA rat model. A correlation between T2 values (T2M and T2L, ρL, and ρS) and FF were 

observed in diffuse fatty liver, suggesting that these parameters are good predictors of the 

functional status of animals with diffuse fatty liver and reflect changes in liver steatosis. In 

contrast, liver nodules detected did not demonstrate the same correlation between T2 

components and FF. This opens new paths to investigate differences in the T2 components in 

diffuse liver steatosis and nodule formation. This may lead to new methods to detect and assess 
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nodule formation and progressive liver disease.   

 

7.5 Future Perspective 

The results of our study suggest that quantitative MRI biomarkers can be correlated 

with the grading pathological liver tissue during hepatocarcinogenesis. However, the long in 

vivo MR follow-up periods designed for this study (57 weeks after diet administration) did not 

reach the stage where there is significant development of HCC occurs.  Future studies should 

focus on extending the study to include development of HCC to characterise T2 parameters as 

a function of disease progression, with FF and T2 to potentially play a role in differentiating 

cancer from benign lesions. 

 

 Extension of the work presented in this study could benefit from the following:  

 MR spectroscopy (MRS): to monitor alterations in lipid metabolism in animal model 

of hepatocarcinogenesis at different stages of nodule and tumour development. To the 

best of our knowledge, no MRS study has been completed to assess potential risk 

factors for progression of diffuse fatty liver or benign lesions to development of HCC. 

Therefore, we propose the use of spectroscopic imaging to examine liver tissue for early 

biochemical changes from fatty liver disease to the development of benign and 

malignant tumour for comparison to our results.  

 Contrast-enhanced (CE) MRI: Contrast-enhanced (CE) MRI is an accepted clinical 

diagnostic imaging method to assist characterization of hepatic nodules during 

carcinogenesis based on intra-nodular blood supply. Future studies integrating CE 

measurements into the multi-parametric analysis may improve the accuracy of HCC 

characterization during hepatocarcinogenesis.  
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 Histology: Histological grading at all-time MRI points would be helpful 

in understanding the physiological basis of the measured T2 parameters. This would 

allow for a confident characterization of most liver lesions and potentially may help to 

establish MR cut-off values to predict lesions at risk for progression to liver tumors.  

 Pre-clinical application of DWI in in vivo liver is limited, mainly owing to inherent 

drawbacks, including motion artifacts, chemical shift artefacts, and susceptibility 

artefacts. These reasons had affected our result and showed the difficulty in obtaining 

DWI images with sufficient quality for reliable quantitative analysis. The limitation 

studies and our result underline the importance for further studies that are needed to 

optimize and standardize liver DWI. Approaches involving hardware improvements 

and upgrade could be beneficial in tackling these challenges. Developing post-

processing techniques to increase image quality and reduce artifacts is needed. 

However, there are some solutions that can be used to minimize these artifacts. For 

motion artifact, intramuscular administration of buscopan can be used to decrease 

intestinal peristalsis. Using lower magnetic field contributes to lower susceptibility and 

chemical shift artifacts.  
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Appendix 

For T2 mapping using MATLAB, a single script including two functions was used: a) 

Function for mono-exponential model, and b) Function for bi-exponential model.  

Main script  

% addpath('/home/s4219677/matlab/NIfTI_20140122'); % this tells matlab where the 

functions are that you want to use. 

 

 %------------------------ 

% Specify graph options: 0 means not using the option, 1 means using the option  

--------------- 

  figure_savedir = '~/Desktop/benfitting/'; 

plot_ 50_vs _ 130 = 0; 

plot_me _vs _be = 1; 

mnexp_opts.plot_fit = 1; 

biexp_opts.plot_fit = 1; 

mnexp_opts.plot_components=0; % This plots T2L and T2 short and their sum 

biexp_opts.plot_components=0; % This plots T2L and T2 short and their sum 

disp_best _params = 1; % display values in matlab window 

parr_proc = 0;  % can't do parallel processing if you want to debug or plot 

 n_procs= 10; 

estimate_noise = 0; 

 

%------------------------ 

% Specify monoexp and biexp specific option  

    %------------------------ 

     

    n_params _me = 3+1; 

  n_params _be = 5+1; 

   

  mnexp_opts.fit = 1; 
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  biexp_opts.fit = 1; 

  mnexp_opts.include_offset = 1; 

  biexp_opts.include_offset = 1; 

  mnexp_opts.Algorithm = 'Trust-Region'; 

  biexp_opts.Algorithm = 'Trust-Region'; 

   

  biexp_opts.usef = 1; % 0 means not using f 

    reorganise_biexp = 1; 

   

  % Constraints 

    mnexp_opts.StartPoint = [50 4000 0];                % T2M S0 C 

    mnexp_opts.Lower = [1 0 0]; 

  mnexp_opts.Upper = [211 inf inf ]; 

  if biexp_opts.usef 

        biexp_opts.StartPoint = [10 70 0.7 4000 0];     % T2S T2L f S0 C 

        biexp_opts.Lower = [1 1 0 0 0];  

      biexp_opts.Upper = [100 211 1 inf inf]; 

  else 

        biexp_opts.StartPoint = [10 70 4000 4000 0];    % T2S T2L S0S S0L C 

        biexp_opts.Lower = [1 1 0 0 0];  

      biexp_opts.Upper = [100 211 inf inf inf]; 

  end 

     

    biexp_opts.biexpFixedParams_from_mnexp = 0; % this sets S0 and C and doesnt allow them 

to vary 

    biexp_opts.biexpStartPoint_from_mnexp = 1; % this sets starting point for S0, C, T2L and 

T2S from monexponential 

    data_driven _startpoint = 1; % This sets S0 and C (monexponential and biexponential) 

      

    %------------------------ 

    % Specify input and output 

    %------------------------ 
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    save_img = 0; % e.g im MIPAV 

     

    % data_dir _base = '/home/s4219677/Documents/MCD.MIPAV'; 

   data_dir _base = '/data/dumu/brereton/s4219677/MCD.MIPAV'; 

   

  identifier = 'T2'; 

  % identifier = 'T2CA'; % with contrast agent 

   study_dir = 'Optimisation_TR _Constraints _DDSP _BEfromME _f _validate'; 

     

   subjects = {'CON3'}; 

  %   subjects = {'MCD4' 'MCD1' 'MCD2' 'MCD3'  'MCD5' 'MCD6' 'CON1' 'CON2' 'CON3' 

'CON4' 'CON5' 'CON6' }; 

  weeks = {'24'}; 

  %   weeks = {'12' '24' '32' '4' '8' '40'}; 

    

  % specify maps you want to save 

   % DO NOT change names, these names are hard-coded later in the script 

     SaveImgNames = cell(0); 

  if mnexp_opts.fit 

        SaveImgNames = [SaveImgNames, {'T2M_map _me','S0_map _me','C_map 

_me','RSquare_map _me','AIC_map _me'}]; 

  end 

    if biexp_opts.fit 

        SaveImgNames = [SaveImgNames, {'T2L_map _be','T2S_map _be','T2min_map 

_be','T2max_map _be','RSquare_map _be','AIC_map _be','AIC_map _diff'}]; 

      if biexp_opts.usef 

            SaveImgNames = [SaveImgNames, {'f_map _be', 'S0_map _be'}]; 

      else 

            SaveImgNames = [SaveImgNames, {'S0S_map _be', 'S0L_map _be'}]; 

      end 

    end 

         

    % select what region you want to calculate the T2 for 



141 

 

        region_of _interest = 'single_voxel';  

  % region_of _interest = 'roi';  

  %   region_of _interest = 'all_voxels'; 

  % region_of _interest = 'MIPAV'; 

   

  if strcmp(region_of _interest,'single_voxel') 

        % vox_of _interest = [86,110,16]; % This voxel is bad for {noC,noD}, but good for {C, 

noD} 

        % vox_of _interest = [111,115,20]; % This voxel is bad for {C,noD}, but good for {C, D} 

     vox_of _interest = [73,123,21];  

      % vox_of _interest = [121,100,14]; 

  elseif strcmp(region_of _interest,'roi') 

        roi_name _ext = '_nmask'; 

       roi_name _ext = '_mask'; 

  elseif strcmp(region_of _interest,'time_series') 

        MIPAV_signal = [35 23 15 10 6 4 3 2 1 1 1 1 1]; 

  end 

     

    %   TE_unwanted = [5,60:10:130]; 

     TE_unwanted = [5,60:20:120]; 

  % TE_unwanted = []; 

   

   

    %----------------------------------------------------------------------------- 

     %----------------------------------------------------------------------------- 

     % Step 1: read in data 

      %----------------------------------------------------------------------------- 

     %----------------------------------------------------------------------------- 

      

     data_dir _CON = fullfile(data_dir _base,'control'); 

  data_dir _MCD = fullfile(data_dir _base,'treated'); 

   

  n_sub = length(subjects); 
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  n_weeks = length(weeks); 

   

  if parr_proc 

        poolobj = parpool(n_procs); % this has changed acording to new matlab software 

   %     matlabpool(n_procs); 

       

  end 

     

    %------------------ 

    % loop over subjects 

    %------------------ 

    for i_sub=1:n_sub 

           

           

          tstart=tic; 

      sub_name = subjects{i_sub};  

      % select correct directory depending on whether subject name includes 

        % CON or MCD 

        if strfind(sub_name,'CON') 

            data_dir _all = data_dir _CON; 

      elseif strfind(sub_name,'MCD')     

            data_dir _all = data_dir _MCD; 

      end 

                 

        for i_week = 1:n_weeks 

                     

              try % try for week 

              

              week_name = ['WEEK',weeks{i_week}]; 

          week_number = week_name(5:end); 

           

          %----------- 

            % read in data 



143 

 

             %----------- 

            data_dir _sub = fullfile(data_dir _all,sub_name,week_name); 

   

          data_name = [sub_name,'_',identifier,'W',week_number]; 

          % data_name = dir(data_dir _sub,'*T2*'); 

          data_fname = fullfile(data_dir _sub,[data_name,'.nii']); 

          disp(data_fname); 

           

          % read in mask 

            mask_dir = data_dir _sub; 

          mask_name = [data_name,'_mask']; 

          try 

                mask_tmp = load_nii(fullfile(mask_dir,[mask_name,'.nii'])); % mask 

                mask_tmp = flip_img(mask_tmp); 

          catch ME 

               disp(ME.message) 

               continue; 

          end 

            mask_img = double(mask_tmp.img); 

   

          save_dir = [data_dir _sub,'/',study_dir]; 

          if ~exist(save_dir,'dir') 

               mkdir(save_dir); 

          end 

             

             

            % read in roi 

            if strcmp(region_of _interest,'roi') 

                roi_dir = data_dir _sub; 

              roi_name = [data_name,roi_name _ext]; 

              try 

                    roi_tmp = load_nii(fullfile(roi_dir,[roi_name,'.nii'])); % roi 

                    roi_tmp = flip_img(roi_tmp); 
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              catch ME 

                   disp(ME.message) 

                   continue; 

              end 

                roi_img = double(roi_tmp.img); 

   

          end 

                

             

            % read in T2 weighted image 

            try 

                data_tmp = load_nii(data_fname); % this line reads in the image data 

                % load_nii.m flips image in x and y dimensions. Need to Flip back. 

                 data_tmp = flip_img(data_tmp); 

          catch ME 

               disp(ME.message); % display error meassage 

               continue; % break from for loop and go onto next week if T2 image not found 

            end 

     

             

            % extract/specify image dimensions.  

             n_x = data_tmp.hdr.dime.dim(2); 

          n_y = data_tmp.hdr.dime.dim(3); 

          n_slices _ 4D = data_tmp.hdr.dime.dim(4); 

   

          if n_slices _ 4D==240 

                 n_slices = 24; 

              n_TE = 10; % number of TE in raw data 

                TE = [5:5:50]; 

          elseif n_slices _ 4D==360 

                 n_slices = 20; 

              n_TE = 18; % nt = number of TEs points 

                 TE = [5:5:50,60:10:130]; 
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          elseif n_slices _ 4D==260 

                 n_slices = 26; 

              n_TE = 10; 

              TE = [5:5:50]; 

          elseif n_slices _ 4D==432 

                 n_slices = 24; 

              n_TE = 18; 

              TE = [5:5:50,60:10:130]; 

          elseif n_slices _ 4D==960 

                 n_slices = 24; 

              n_TE = 40; 

              TE = [5:5:200]; 

          elseif n_slices _ 4D==1040 

                 n_slices = 26; 

              n_TE = 40; 

              TE = [5:5:200]; 

          elseif n_slices _ 4D==312 % T2star 

                 n_slices = 26; 

              n_TE = 12; 

              TE = [4:6:70];     

          end 

            n_voxels = n_x*n_y*n_slices; 

   

   

          %----------------------------------------------------------------------------- 

             %----------------------------------------------------------------------------- 

             % Step 2: create time series for each voxel 

              %----------------------------------------------------------------------------- 

             %----------------------------------------------------------------------------- 

              

             signal = zeros(n_x,n_y,n_slices,n_TE); 

          signal_std = zeros(n_x,n_y,n_slices,n_TE); 
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          % loop over echo times to put 3D data into 4D (time) matrix 

            for i_slice=1:n_slices 

                  % signal(:,:,1,:) = data_tmp.img(:,:,1:18); 

              % signal(:,:,2,:) = data_tmp.img(:,:,19:36); 

              % signal(:,:,3,:) = data_tmp.img(:,:,37:48); 

   

              signal(:,:,i_slice,:) = data_tmp.img(:,:,(i_slice-1)*n_TE +1 : i_slice*n_TE); 

   

          end 

     

            signal_original = signal; 

           

          %----------------------------------------------------------------------------- 

             %----------------------------------------------------------------------------- 

             % Step 3: Get rid of unwanted TE 

              %----------------------------------------------------------------------------- 

             %----------------------------------------------------------------------------- 

              

             [C,ind_unwanted,IB] = intersect(TE,TE_unwanted); % this finds the indices of TE 

which include the unwanted times specificed in TE_unwanted 

     

            signal(:,:,:,ind_unwanted) = [];    % Get rid of the signal at bad TEs 

            TE_wanted = TE;                     % create new TE vector called TE_wanted 

            TE_wanted(ind_unwanted) = [];        % get rid of bad TEs 

            n_TE _wanted = length(TE_wanted); 

          TE_wanted _highres=[0:0.1:max(TE_wanted)]; 

   

            %------------------------------------ 

            % calculate noise from image 

            %------------------------------------ 

            if estimate_noise 

                noisemask_dir = data_dir _sub; 

              noisemask_tmp = load_nii(fullfile(noisemask_dir,'BENMASK_noise.nii')); % mask 
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                noisemask_img = double(noisemask_tmp.img);  

   

              ind_mask = find(noisemask_img);  

              for i_TE=1:n_TE _wanted 

                      noise(:,:,:,i_TE) = signal (:,:,:,i_TE) .* noisemask_img; % this multiplies the 

signal by the mask (0,1) 

                end 

                avg_noise = mean(noise(find(noise))); % get noise in voxels which are non-zero 

(ROI), then take mean over x,y,z,TE 

            end 

     

            %------------------------------------------------ 

            % Mask the T2 weighted image 

            %------------------------------------------------ 

            for i_TE=1:n_TE _wanted 

                  signal(:,:,:,i_TE) = signal (:,:,:,i_TE) .* mask_img; % this multiplies the signal by 

the mask (0,1) 

            end 

     

            % get list of voxels equal to one (i.e. inside the mask) 

            ind_mask = find(mask_img);  

          n_voxels _mask = length(ind_mask); 

          n_voxels _loop = n_voxels _mask; 

   

          %---------------- 

            % instantiate images 

            %---------------- 

            if save_img           

                for i_img _save=1:length(SaveImgNames)              

                      SaveImgNames_tmp = SaveImgNames{i_img _save}; 

                  eval([SaveImgNames_tmp,'= zeros(1,n_voxels _mask);']); 

              end            

            end 



148 

 

     

            %---------------- 

            % Specify/create input voxels 

            %---------------- 

            if strcmp(region_of _interest,'all_voxels') 

                 

                ind_voi = ind_mask; 

               

          elseif strcmp(region_of _interest,'single_voxel')  

                 

                vox_of _interest = vox_of _interest + 1;  % to convert between fslview/mipav and 

matlab coordinates 

                ind_voi = sub2ind(size(mask_img),vox_of _interest(1),vox_of _interest(2),vox_of 

_interest(3)); 

               

          elseif strcmp(region_of _interest,'roi') 

                 

                inds_voi = find(roi_img);             

              % get mean voxel location 

                 [x_inds,y_inds,z_inds] = ind2sub(size(roi_img),inds_voi); 

              x_mean = ceil(mean(x_inds)); y_mean = ceil(mean(y_inds)); z_mean = 

ceil(mean(z_inds)); 

              ind_voi = sub2ind(size(roi_img),x_mean,y_mean,z_mean);  

              n_voxels _loop = length(ind_voi); 

               

              for i_TE=1:n_TE _wanted 

                      signal(:,:,:,i_TE) = signal (:,:,:,i_TE) .* roi_img; % this multiplies the signal by 

the mask (0,1) 

               end 

               % set all voxels to zero, other than the mean location, set to 

                    % mean signal in ROI 

                    for i_TE=1:n_TE _wanted 

                          signal_ 3D =  signal(:,:,:,i_TE); 
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                      signal(:,:,:,i_TE) = 0; 

                      signal(x_mean,y_mean,z_mean,i_TE) = mean(signal_ 3D(inds_voi)); 

                      signal_std(x_mean,y_mean,z_mean,i_TE) = std(signal_ 3D(inds_voi)); 

                  end          

                     

                end 

                n_voxels _loop = length(ind_voi);     

       

               

              %------------------------------ 

                % NEED TO CHANGE THIS IF DOING PARRALLEL PROCESSING 

                %------------------------------ 

        %           parfor i_ind=1:n_voxels _loop 

                   for i_ind=1:n_voxels _loop 

            

                       try % try for voxel           

            

                       % initiate structures (required for parfor) 

                       fixed_params = struct; 

                  mnexp_params = struct; 

                  mnexp_opts _tmp = mnexp_opts; 

                  biexp_opts _tmp = biexp_opts; 

                   

                  %------------------------------------ 

                    % extract signal at voxel 

                    %------------------------------------ 

                    i_voxel = ind_voi(i_ind); 

                  % disp(['ind: ',num2str(i_ind),' voxel: ',num2str(i_voxel)]); 

                  [i_x,i_y,i_z] = ind2sub(size(mask_img),i_voxel); % this converts a 1D index into a 

3D subscript 

                  % extract signal from single voxel 

                  signal_voxel = squeeze(signal(i_x,i_y,i_z,:)); 

                signal_voxel _original = squeeze(signal_original(i_x,i_y,i_z,:)); 
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                if strcmp(region_of _interest,'roi') 

                      signal_std _voxel = squeeze(signal_std(i_x,i_y,i_z,:));  

                end 

                             

                   

                  %------------------------------------ 

                  % Set data driven startpoint 

                  %------------------------------------ 

                  if data_driven _startpoint 

                      mnexp_opts _tmp.StartPoint(2) = 1.1*signal_voxel(1); % S0;  signal_voxel(1)= 

first data point 

                       mnexp_opts _tmp.StartPoint(3) = signal_voxel(end); % C; signal_voxel(end)= 

last data point 

                        

                       if ~biexp_opts.biexpStartPoint_from_mnexp % if were not getting biexp 

startpoint from mnexp fitting 

                           biexp_opts _tmp.StartPoint(4) = 1.1*signal_voxel(1); % S0 

                          biexp_opts _tmp.StartPoint(5) = signal_voxel(end); % C 

                        end 

                    end 

                     

                    %------------------------------------ 

                    % calculate noise from image 

                    %------------------------------------ 

         

                    %----------------------------------------------------------------------- 

                   %----------------------------------------------------------------------- 

                   % Step 4: Fit mn-exponential curve to each voxel 

                    %----------------------------------------------------------------------- 

                   %----------------------------------------------------------------------- 

                   if mnexp_opts.fit 

                           

                          [bfp_me,gof_me,coeff_names _me,fitresult_me] = 
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fit_monoexponential(TE_wanted',signal_voxel,mnexp_opts _tmp); 

                    RSS_me = gof_me.sse; 

                    AIC_me = n_TE _wanted * log(RSS_me/n_TE_wanted) + 2 * n_params _me; 

                     

                     

                    T2M_me _ind = find(strcmp(coeff_names _me,'T2M')); 

                    S0_me _ind = find(strcmp(coeff_names _me,'S0')); 

                    C_me _ind = find(strcmp(coeff_names _me,'C')); 

                     

                    T2M_me = bfp_me(T2M_me _ind); 

                    S0_me = bfp_me(S0_me _ind); 

                    C_me = bfp_me(C_me _ind); 

                     

                    if disp_best _params   

                         disp(['T2M: ',num2str(bfp_me(T2M_me _ind))]); 

                        disp(['S0: ',num2str(bfp_me(S0_me _ind))]); 

                        disp(['C: ',num2str(bfp_me(C_me _ind))]); 

                    end 

       

                       

                       

                      if plot_ 50_vs _ 130 

                          TE_wanted _ 50_inds = find(TE_wanted<=50); 

                        TE_wanted _ 50 = TE_wanted(TE_wanted _ 50_inds); 

                        signal_voxel _ 50 = signal_voxel(TE_wanted _ 50_inds); 

                        [bfp_me _ 50,gof_me _ 50,coeff_names _me _ 50,fitresult_me _ 50] = 

fit_monoexponential(TE_wanted _ 50',signal_voxel _ 50,mnexp_opts _tmp); 

                       

                       

                      model_me = feval(fitresult_me,TE_wanted _highres); 

                      model_me _ 50 = feval(fitresult_me _ 50,TE_wanted _highres); 

                       

                      h=figure; 
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                      hold on; 

                       

                      plot(TE_wanted,signal_voxel,'k.','markersize',20); 

                      plot(TE_wanted _highres,model_me, 'r-','linewidth',5); 

                      plot(TE_wanted _highres,model_me _ 50,'g-','linewidth',5); 

                      if strcmp(region_of _interest,'roi') 

                           errorbar(TE_wanted,signal_voxel,signal_std _voxel,'k.'); 

                      end 

                       hold on; 

                      legend( 'signal', '13 TEs', '9 TEs' ); 

                      xlabel( 'TE' ,'fontsize',24); 

                      ylabel( 'Signal Intensity','fontsize',24 ); 

                      % title([sub_name,' ',week_name,': mn-exponential']);                   

                      if strcmp(region_of _interest,'single_voxel') 

                            title_str = [subjects{i_sub},', mnexponential, voxel: [' num2str(vox_of 

_interest(1)),',',num2str(vox_of _interest(2)),',',num2str(vox_of _interest(3)),']']; 

                      elseif strcmp(region_of _interest,'roi') 

                            title_str = [subjects{i_sub},', mnexponential, ',roi_name]; 

                      end 

                        

                       title(title_str,'fontsize',16); 

                      set(gca,'fontsize',20); 

                      hold off; 

                      saveas(h,fullfile(figure_savedir,title_str),'fig'); 

                      saveas(h,fullfile(figure_savedir,title_str),'jpg'); 

                  end 

                        

                      

                 end % if fit_mnexp 

      

                 %------------------------------------------------ 

                 % Step 4: Fit bi-exponential curve to each voxel 

                   %------------------------------------------------ 
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                   if biexp_opts.fit  

                        

                       if biexp_opts.biexpFixedParams_from_mnexp  | 

biexp_opts.biexpStartPoint_from_mnexp  % retrieve best fit parameters from mnexponential                  

                           

                          T2M_me _ind = find(strcmp(coeff_names _me,'T2M')); 

                      S0_me _ind = find(strcmp(coeff_names _me,'S0')); 

                      C_me _ind = find(strcmp(coeff_names _me,'C')); 

   

                      T2M_me = bfp_me(T2M_me _ind); 

                      S0_me = bfp_me(S0_me _ind); 

                      if mnexp_opts.include_offset 

                            C_me = bfp_me(C_me _ind); 

                      end 

                         

                    end 

                     

                                        if biexp_opts.biexpFixedParams_from_mnexp  % specify fixed 

parameters (taken from mnexponential) 

                         

                        fixed_params.S0 = S0_me;                      

                      if biexp_opts.include_offset  

                            if mnexp_opts.include_offset 

                                fixed_params.C = C_me; 

                          else 

                               disp('error: you have asked to fix biexponential offset from mnexponential 

without including offset in mnexponential'); 

                          end   

                             

                        end                     

                    end                     
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                    if biexp_opts.biexpStartPoint_from_mnexp   % specify starting parameters for 

biexponential (taken from mnexponential)  

                        biexp_opts _tmp.StartPoint(1)=0.5*T2M_me;        % T2S 

                        biexp_opts _tmp.StartPoint(2)=1.5*T2M_me;        % T2L 

                        if biexp_opts.usef 

                            biexp_opts _tmp.StartPoint(4)=S0_me; 

                      else 

                            biexp_opts _tmp.StartPoint(3)=S0_me/2;       % S0S 

                            biexp_opts _tmp.StartPoint(4)=S0_me/2;       % S0L 

                        end 

                        if biexp_opts.include_offset 

                            biexp_opts _tmp.StartPoint(5)=C_me;          % C 

                        end 

                    end 

                                         

                    % fit model to data 

                    if biexp_opts.biexpFixedParams_from_mnexp 

                         [bfp_be,gof_be,coeff_names _be,fitresult_be] = 

fit_biexponential(TE_wanted',signal_voxel,biexp_opts _tmp,fixed_params); 

                  else 

                        [bfp_be,gof_be,coeff_names _be,fitresult_be] = 

fit_biexponential(TE_wanted',signal_voxel,biexp_opts _tmp); 

                  end 

                     

                    T2S_be _ind = find(strcmp(coeff_names _be,'T2S')); 

                  T2L_be _ind = find(strcmp(coeff_names _be,'T2L'));                

                  f_be _ind = find(strcmp(coeff_names _be,'f')); 

                  S0_be _ind = find(strcmp(coeff_names _be,'S0')); 

                  S0S_be _ind = find(strcmp(coeff_names _be,'S0S')); 

                  S0L_be _ind = find(strcmp(coeff_names _be,'S0L')); 

                  C_be _ind = find(strcmp(coeff_names _be,'C'));                  
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                  RSS_be = gof_be.sse; 

                  AIC_be = n_TE _wanted * log(RSS_be/n_TE_wanted) + 2 * n_params _be; 

                  

                     

                  if disp_best _params   

                       disp(['T2S: ',num2str(bfp_be(T2S_be _ind))]); 

                      disp(['T2L: ',num2str(bfp_be(T2L_be _ind))]); 

                      if biexp_opts.usef 

                           disp(['S0: ',num2str(bfp_be(S0_be _ind))]); 

                          disp(['f: ',num2str(bfp_be(f_be _ind))]); 

                      else 

                           disp(['S0S: ',num2str(bfp_be(S0S_be _ind))]); 

                          disp(['S0L: ',num2str(bfp_be(S0L_be _ind))]);   

                      end 

                        

                       disp(['C: ',num2str(bfp_be(C_be _ind))]); 

                  end 

                     

                end % fit biexponential 

     

                %------------------------------------------------ 

                % Step 5: Compare mn-exponential and bi-exponential, compare R^2, compare 

Aikikes Information Criterion  

                %------------------------------------------------ 

                % AIC = -2*LL + 2*k; % LL = log likelhood, k=number of parameters 

                 % LL = ln ( p(model | parameters, data) ) ; 

   

   

              if plot_me _vs _be 

             

                    model_me = feval(fitresult_me,TE_wanted _highres); 

                  model_be = feval(fitresult_be,TE_wanted _highres); 
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                  h=figure; 

                  hold on; 

                  plot(TE_wanted,signal_voxel,'k.','markersize',16); 

                  plot(TE_wanted _highres,model_me,'r-','linewidth',1.5); 

                  plot(TE_wanted _highres,model_be,'g-','linewidth',1.5); 

                  if strcmp(region_of _interest,'roi') 

                           errorbar(TE_wanted,signal_voxel,signal_std _voxel,'k.'); 

                  end 

                   hold on; 

                  legend( 'signal','mn-exponential', 'bi-exponential'); 

                  xlabel( 'TE' ,'fontsize',16); 

                  ylabel( 'Signal Intensity','fontsize',16 ); 

                  % title([sub_name,' ',week_name,': mn-exponential']); 

   

                  if strcmp(region_of _interest,'single_voxel') 

                        title_str = [subjects{i_sub},', me vs be, voxel: [' num2str(vox_of 

_interest(1)),',',num2str(vox_of _interest(2)),',',num2str(vox_of _interest(3)),']']; 

                  elseif strcmp(region_of _interest,'roi') 

                        title_str = [subjects{i_sub},', me vs be, ',roi_name]; 

                  end 

    

                   title(title_str,'fontsize',16); 

                  set(gca,'fontsize',16); 

                  hold off; 

                  saveas(h,fullfile('~/Desktop/benfitting/',title_str),'fig'); 

                  saveas(h,fullfile('~/Desktop/benfitting/',title_str),'jpg'); 

              end 

                                  

                 %------------------------------------------------ 

                 % Step 6: Fill T2_maps image with T2 values 

                 %------------------------------------------------ 

      

                 if mnexp_opts.fit 
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                     S0_map _me(i_ind) = bfp_me(S0_me _ind); 

                  T2M_map _me(i_ind) = bfp_me(T2M_me _ind); 

                  RSquare_map _me(i_ind) = gof_me.rsquare; 

                  AIC_map _me(i_ind) = AIC_me;  

                  ftest_me(i_ind)=F_me; 

                  if mnexp_opts.include_offset 

                        C_map _me(i_ind) = bfp_me(C_me _ind); 

                  end 

     

                end 

     

                if biexp_opts.fit 

     

                    if biexp_opts.usef 

                        f_map _be(i_ind) = bfp_be(f_be _ind); 

                  else 

                        S0S_map _be(i_ind) = bfp_be(S0S_be _ind); 

                      S0L_map _be(i_ind) = bfp_be(S0L_be _ind); 

                  end 

     

                        T2S_map _be(i_ind) = bfp_be(T2S_be _ind); 

                  T2L_map _be(i_ind) = bfp_be(T2L_be _ind); 

                  RSquare_map _be(i_ind) = gof_be.rsquare; 

                  AIC_map _be(i_ind) = AIC_be; 

                  ftest_be(i_ind)=F_be; 

   

                  if ~biexp_opts.biexpFixedParams_from_mnexp 

                        S0_map _be(i_ind) = bfp_be(S0_be _ind); 

                      if biexp_opts.include_offset 

                            C_map _be(i_ind) = bfp_be(C_be _ind); 

                      end 

                   end 
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               end 

                    

    

               catch ME % line 244 

                    

                   disp(['error for voxel: ',num2str(i_x),',',num2str(i_y),',',num2str(i_z)]); 

                    

                  if mnexp_opts.fit 

                        disp(ME.message) 

                        T2M_map _me(i_ind) = nan; 

                      S0_map _me(i_ind) = nan; 

                      C_map _me(i_ind) = nan; 

                      RSquare_map _me(i_ind) = nan; 

                      AIC_map _me(i_ind) = nan; 

                  end 

                    if biexp_opts.fit 

                        T2_map _be _ 1(i_ind) = nan; 

                      T2_map _be _ 2(i_ind) = nan; 

                      T2S_map _be(i_ind) = nan; 

                      T2L_map _be(i_ind) = nan; 

                      RSquare_map _be(i_ind) = nan; 

                      AIC_map _be(i_ind) = nan; 

                  end 

                  end 

       

                      

              end % loop over voxels 

       

       

               

              %------------------------------------------------ 

              % get diffrerence in AIC 

              %------------------------------------------------ 
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              if mnexp_opts.fit & biexp_opts.fit  

                AIC_map _diff = AIC_map _be - AIC_map _me; % if positive ==> AIC me is lower, 

if negative AIC be is lower 

               end 

                

               %------------------------------------------------ 

               % Step 6: reorgaise biexponential components 

               %------------------------------------------------ 

               if reorganise_biexp & biexp_opts.fit 

                % initiate output images 

                T2max_map _be = zeros(size(T2L_map _be)); 

              T2min_map _be = zeros(size(T2L_map _be)); 

   

              % get maximum (of the two compnents) T2M value and put it in T2M_map _max, 

and take minimum and put in T2M_map _min  

                T2max_map _be = max(T2L_map _be,T2S_map _be); 

              T2min_map _be = min(T2L_map _be,T2S_map _be); 

          end 

      

             %------------------------------------------------ 

             % Step 7: Convert Vectors to Images and save 

             %------------------------------------------------ 

            

             if save_img 

                  

                 save_dir = [data_dir _sub,'/',study_dir]; 

              if ~exist(save_dir,'dir') 

                   mkdir(save_dir); 

              end 

                 

                for i_img _save=1:length(SaveImgNames) 

                       

                      SaveImgNames_tmp = SaveImgNames{i_img _save}; 
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                  disp(['saving ',SaveImgNames_tmp]); 

                  ImgSave = zeros(1,n_voxels); 

                  eval(['ImgSave(ind_mask) = ',SaveImgNames_tmp,';']); % ind_mask gives the 

voxel indices in the full image 

                    ImgSave = reshape(ImgSave,n_x,n_y,n_slices); % this turns a 1D vector into a 3D 

images 

                    TempImg = mask_tmp; 

                  TempImg.img = ImgSave;            

                  TempImg.hdr.dime.datatype = 64; 

                  TempImg.hdr.dime.bitpix = 64; 

                  save_nii(TempImg,fullfile(save_dir,[SaveImgNames_tmp,'.nii'])); 

                  clear ImgSave TempImg;                   

                

              end     

            end % if save_img     

     

            telapsed=toc(tstart); 

          disp(['telspased: ',num2str(telapsed)]);0.5 

    

    

       catch ME % try for weeks 

          disp(ME.message); 

      end     

    

            

       end % loop over weeks  

        

        

   end % loop over subjects    

    

   if parr_proc   

       matlabpool close; 

  end 
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     -------------------------------------------------------------------------------------------- 

a) Function to fit mono-exponential model  

 

function [ bfp,gof,coeff_names,fitresult ] = fit_monexponential( TE,signal,mnexp_opts) 

 

    if mnexp_opts.include_offset 

        ft = fittype( @(T2M,S0,C,x) S0*exp(-x/T2M) + C); 

    else 

        ft = fittype( @(T2M,S0,x) S0*exp(-x/T2M) ); 

    end 

     

    opts = fitoptions( ft ); 

    opts.StartPoint = mnexp_opts.StartPoint; %[C S0_ 1 R21] 

    opts.Display = 'Off'; 

    opts.Algorithm = mnexp_opts.Algorithm; 

     

     

    if strcmp(mnexp_opts.Algorithm,'Trust-Region')  

        if isfield(mnexp_opts,'Lower')  

            opts.Lower = mnexp_opts.Lower; 

        end 

        if isfield(mnexp_opts,'Upper') 

            opts.Upper = mnexp_opts.Upper; 

        end 

    end 

     

     

    % Fit model to data. 

       [fitresult, gof] = fit( TE, signal, ft, opts ); % "_me" means mnexponential 

    bfp = coeffvalues(fitresult); % bfp = bestfit parameters; 
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    coeff_names = coeffnames(fitresult); 

    % plot best fit parameters 

    if mnexp_opts.plot_fit         

         

        model = feval(fitresult,TE); % should equal betot;        

        me1 = bfp(2) * exp(-TE/bfp(1)); 

        metot = me1 + bfp(3); 

         

        figure; 

        hold on; 

         

        h(1)=plot( TE, signal,'k.'); 

        h(2)=plot( TE, model,'b-'); 

        if mnexp_opts.plot_components 

            h(3)=plot( TE, me1,'r--','linewidth',1.5 ); 

            h(4)=plot( TE, repmat(bfp(3),[1,length(TE)]),'c--', 'linewidth',1.5); 

        end 

 

        legend( h, 'signal', 'model fit', 'T2', 'C' );       

        % Label axes 

        xlabel( 'TE','fontsize',16 ); 

        ylabel( 'Signal Intensity','fontsize',16 ); 

        % title([sub_name,' ',week_name,': bi-exponential']); 

        title('mnexponential','fontsize',16); 

        set(gca,'fontsize',16); 

        hold off; 

    end 

 

end 

 

b) Function for bi-exponential model  
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function [ bfp,gof,coeff_names,fitresult] = fit_biexponential(varargin) 

    approx_T2L=0; 

    %--------- 

     % Assign Varargin  

    %--------- 

        

       TE = varargin{1}; 

    signal = varargin{2}; 

    if nargin>2 

        biexp_opts = varargin{3}; 

    end 

    if nargin>3 

        fixed_params = varargin{4}; 

        C_fixed = fixed_params.C; 

        S0_fixed = fixed_params.S0; 

    end     

     

    %--------- 

      % Step 1: estimate initial values of S0, f, R21 and R2star  

    %--------- 

  

     %--------- 

     % estimate R21 by fiting a monoexponential to high TE 

    % values > 60 (Equation 3)  

    % Here we tried to reduce the redundancy between free parameters by 

    % forcing a sensible strating point. This involved fitting a 

    % monoexponential to the last few data points and assuming the 

    % resulting T2 was T2L. It didn't work because the last few data points 

    % are too noisy. 

       %--------- 

     if approx_T2L 

        inds_long = find(TE_long>=60); 

        TE_long = TE_wanted(inds_long); 
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        signal_voxel _long = signal_voxel(inds_long); 

        [TE_wanted, yData] = prepareCurveData( TE_long', signal_voxel _long ); 

        if include_offset 

            ft = fittype( 'S0_ 1*exp(-x*R21) + C', 'independent', 'x', 'dependent', 'y' ); 

            opts = fitoptions( ft ); % this line must go before setting any other options 

            n_params = 3+1; 

            opts.StartPoint = [0  1/50 4000]; %[C S0_ 1 R21] 

        else 

            ft = fittype( 'S0_ 1*exp (-x*R21)', 'independent', 'x', 'dependent', 'y' ); 

            opts = fitoptions( ft );  

            n_params = 2+1; 

            opts.StartPoint = [ 1/50 4000]; %[C S0_ 1 R21] 

        end 

        % Fit model to data. 

           [fitresult_long, gof_long] = fit( TE_wanted', yData, ft, opts ); % "" means 

monoexponential 

        bfp_long = coeffvalues(fitresult_long); % bfp = bestfit parameters; 

        Shigh = bfp_long(1);nted 

        D = bfp_long(2); 

    end 

    %--------- 

      % Step 2: fit biexponential using initial values of S0, f, R21 and R2star  

    %--------- 

  

     if exist('fixed_params','var')    

        if biexp_opts.usef         

            if biexp_opts.include_offset 

                 ft = fittype( @(T2S,T2L,f,x) S0_fixed * ( f*exp(-x/T2S) + (1-f)*exp(-x/T2L) ) + 

C_fixed );      

            else 

                 ft = fittype( @(T2S,T2L,f,x) S0_fixed * ( f*exp(-x/T2S) + (1-f)*exp(-x/T2L) ) ); 

            end 

        else 
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            if biexp_opts.include_offset 

                ft = fittype( @(T2S,T2L,x)  S0S_fixed*exp(-x/T2S) + S0L_fixed*exp(-x/T2L)  + 

C_fixed );      

            else 

                ft = fittype( @(T2S,T2L,x)    S0S_fixed*exp(-x/T2S) + S0L_fixed*exp(-x/T2L)  ); 

            end  

        end 

    else 

        if biexp_opts.usef 

            if biexp_opts.include_offset 

                ft = fittype( @(T2S,T2L,f,S0,C,x) S0 * ( f*exp(-x/T2S) + (1-f)*exp(-x/T2L) ) + C );      

            else 

                ft = fittype( @(T2S,T2L,f,S0,x) S0 * ( f*exp(-x/T2S) + (1-f)*exp(-x/T2L) ) ); 

            end   

        else 

            if biexp_opts.include_offset 

                ft = fittype( @(T2S,T2L,S0S,S0L,C,x)  S0S*exp(-x/T2S) + S0L*exp(-x/T2L)  + C );      

            else 

                ft = fittype( @(T2S,T2L,S0S,S0L,x)    S0S*exp(-x/T2S) + S0L*exp(-x/T2L)  ); 

            end    

         

        end 

    end 

 

    opts = fitoptions(ft); 

    opts.Display = 'Off'; 

    opts.Algorithm = biexp_opts.Algorithm; 

    opts.StartPoint = biexp_opts.StartPoint; 

 

     

    if strcmp(biexp_opts.Algorithm,'Trust-Region')  

        if isfield(biexp_opts,'Lower')  

            opts.Lower = biexp_opts.Lower; 
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        end 

        if isfield(biexp_opts,'Upper') 

            opts.Upper = biexp_opts.Upper; 

        end 

    end 

     

    % plot initial params 

    %{ 

      y_init = S0_fixed * ( 0.5*exp(-TE*1.3*(monoexp_params.R2)) + (1-0.5)*exp(-

TE*0.7*(monoexp_params.R2)) ) + C_fixed; 

      figure; 

      hold on; 

      plot(TE,signal,'bx') 

       plot(TE,y_init,'r-'); 

      hold off; 

      %} 

     

    % Fit model to data. 

        [fitresult, gof] = fit( TE, signal, ft,opts); 

    bfp = coeffvalues(fitresult); % bfp = bestfit parameters 

    coeff_names = coeffnames(fitresult); 

    T2S_ind = find(strcmp(coeff_names,'T2S')); T2L_ind = find(strcmp(coeff_names,'T2L')); 

S0_ind = find(strcmp(coeff_names,'S0')); S0S_ind = find(strcmp(coeff_names,'S0S')); 

S0L_ind = find(strcmp(coeff_names,'S0L')); C_ind = find(strcmp(coeff_names,'C')); f_ind = 

find(strcmp(coeff_names,'f')); 

     

     

    % plot best fit parameters 

    if biexp_opts.plot_fit 

         

        TE_plot=[1:0.01:max(TE)]; 

         

        if biexp_opts.usef 
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            if exist('fixed_params','var')   

                beS = S0_fixed * ( bfp(f_ind)*exp(-TE_plot/(bfp(T2S_ind)))); 

                beL = S0_fixed * ( (1-bfp(f_ind))*exp(-TE_plot/(bfp(T2L_ind)))); 

                betot = beS + beL + C_fixed; 

            else 

                beS = bfp(S0_ind) * ( bfp(f_ind)*exp(-TE_plot/bfp(T2S_ind))); 

                beL = bfp(S0_ind) * ( (1-bfp(f_ind))*exp(-TE_plot/bfp(T2L_ind))); 

                betot = beS + beL + bfp(C_ind); 

            end 

        else 

            if exist('fixed_params','var')   

                beS = bfp(S0S_ind)*exp(-TE_plot/(bfp(T2S_ind))); 

                beL = bfp(S0L_ind)*exp(-TE_plot/(bfp(T2L_ind))); 

                betot = beS + beL + C_fixed; 

            else 

                beS = bfp(S0S_ind)*exp(-TE_plot/bfp(T2S_ind)); 

                beL = bfp(S0L_ind)*exp(-TE_plot/bfp(T2L_ind)); 

                betot = beS + beL + bfp(C_ind); 

            end 

        end 

        model = feval(fitresult,TE_plot); % should equal to betot;     

         

        figure; 

        hold on; 

 

        h(1)=plot( TE, signal,'k.'); 

        % h(2)=plot( TE_plot, model,'b-'); 

        h(2)=plot( TE_plot, betot,'b','linewidth',1.5);  

        if biexp_opts.plot_components 

            h(3)=plot( TE_plot, beS,'r--','linewidth',1.5 ); 

            h(4)=plot( TE_plot, beL,'g--', 'linewidth',1.5); 

            h(5)=plot( TE_plot, repmat(bfp(C_ind),[1,length(TE_plot)]),'c--', 'linewidth',1.5); 

        end 
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        legend( h, 'signal', 'model fit', 'T2S', 'T2L', 'C', 'model fit' ); 

        % Label axes 

        xlabel( 'TE','fontsize',16 ); 

        ylabel( 'Signal Intensity','fontsize',16 ); 

        % title([sub_name,' ',week_name,': bi-exponential']); 

        title('biexponential','fontsize',16); 

        set(gca,'fontsize',16); 

        hold off; 

    end 

end 

 

   


