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Samenvatting

Field-Programmable Gate Arrays (FPGA’s) zijn elektronische
chips die geprogrammeerd of geconfigureerd kunnen worden om
eender welke digitale logische schakeling te implementeren. Enkel
de grootte van de FPGA is hierbij een beperking. Een FPGA bestaat
uit een matrix van programmeerbare functionele blokken die in-
gebed zijn in een programmeerbaar interconnectienetwerk. Er zijn
verschillende types functionele blokken, waarvan de belangrijkste
een logisch blok genoemd wordt. Om een FPGA te programmeren
dient een binaire configuratie geladen te worden in een geheugen
dat de functionaliteit bepaalt van de programmeerbare componen-
ten. Dit geheugen wordt het configuratiegeheugen van de FPGA
genoemd. FPGA’s bieden een interessante combinatie van paral-
lelle rekenkracht en kostprijs voor digitale producten met lagere
oplages, zoals sattelieten, geavanceerde TV’s en netwerkgerelateerde
toepassingen. Ze bieden ook andere economische voordelen, zoals
beter risicobeheer en kortere time-to-market.

Dynamische Partiële Herconfiguratie (DPH) van FPGA’s laat toe
om een deel van de chip te herprogrammeren zonder de uitvo-
ering van de rest van de chip te onderbreken. Hierdoor kunnen
verschillende functies, die niet tegelijk gebruikt worden, dezelfde
chipoppervlakte delen en wordt de applicatie oppervlakte-efficiënter
geı̈mplementeerd. Het gebied dat door de verschillende functies
gedeeld wordt, wordt het herconfiguratiegebied genoemd. DPH leidt
mogelijk tot het gebruik van een kleinere en dus goedkopere FPGA.
Echter, vergeleken met een implementatie die geen DPH gebruikt, is
er nu een relatief lange tijd nodig, de herconfiguratietijd genaamd,
om de geı̈mplementeerde functie in het herconfiguratiegebied aan
te passen. Dit gebeurt door het herschrijven van het configuratie-
geheugen van de FPGA. In het algemeen, wordt de meerkost die
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gepaard gaat met het herconfiguratieproces de herconfiguratiekost ge-
noemd. Dit omvat ook het vermogenverbruik en de gebruikte hard-
waremiddelen. Het systeem dat de herconfiguratie uitvoert wordt de
configuratiemanager genoemd en is gewoonlijk in software geı̈mple-
menteerd. Het is verantwoordelijk voor het genereren van een
nieuwe configuratie en het herprogrammeren van de FPGA. De con-
ventionele DPH tool flow implementeert de verschillende functies
in het herconfiguratiegebeid onafhankelijk van elkaar, zonder te tra-
chten de herconfiguratiekost te reduceren.

De gecombineerde implementatietechnieken ontwikkeld in dit
doctoraat reduceren de herconfiguratiekost significant vergeleken
met de conventionele DPH tool flow, wanneer het aantal geı̈mple-
menteerde functies in het herconfiguratiegebied beperkt is. Het
configuratiegeheugen van hedendaagse commerciële FPGA’s be-
vat vooral configuratiebits die de toestand van het interconnec-
tienetwerk bepalen. De technieken in dit doctoraat trachten daarom
de herconfiguratiekost van de interconnecties te reduceren. Een
FPGA tool flow bestaat typisch uit een opeenvolging van verschil-
lende stappen. De gecombineerde implementatie kan plaatsvinden
startend op verschillende punten in de tool flow. Initieel heb ik ver-
schillende tool flows geëxploreerd die de gecombineerde implemen-
tatie starten op een verschillend punt in de tool flow. In deze ex-
ploratiefase werd de herconfiguratiekost uitgedrukt als het aantal
bits dat in het configuratiegeheugen dient herschreven te worden
tijdens de herconfiguratie. Het configuratiegeheugen van heden-
daagse FPGA’s is echter georganiseerd in groepen van bits, frames
genaamd. Een configuratieframe moet volledig herschreven worden,
zelfs als slecht één bit dient veranderd te worden. Daarom werden in
dit doctoraat ook technieken ontwikkeld die de herconfiguratiekost
verlagen in een frame-gebaseerde herconfiguratie-architectuur.

Dynamische circuitspecialisatie implementeert applicaties waarin
sommige inputs, parameters genaamd, traag variëren in de tijd
op een efficiënte manier. Het doet dit door off-line een configu-
ratie te genereren die niet enkel bestaat uit 1’en en 0’en, maar ook
Boolese functies van de parameters. Zo een configuratie wordt een
geparametriseerde configuratie genoemd. Telkens de parameters
van waarde veranderen dient de configuratiemanager enkel deze
Boolese functies te evalueren en de FPGA herprogrammeren. Dy-
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namische circuitspecialisatie laat erg snelle dynamische herconfig-
uratie toe van geparametriseerde systemen. In de Hardware en
Ingebedde Systemen onderzoeksgroep is er een automatische tool
flow beschikbaar, de TLUT tool flow genaamd, die automatisch
parametrische configuraties kan genereren waarin enkel de config-
uratiebits van de logische blokken geparametriseerd zijn.

Schuifregister logische blokken of SRL’s zijn speciale logische
blokken waarin de configuratiebits ook georganiseerd zijn als een
schuifregister waarvan de input en output toegankelijk zijn vanuit
het programmeerbaar interconnectienetwerk. Deze configuratiebits
zijn dus niet enkel toegankelijk gebruikmakend van de conven-
tionele configuratiepoorten van de FPGA, maar ook vanuit de in-
put van het schuifregister van de SRLs. SRL’s kunnen daarom ge-
bruikt worden om de configuratiebits van logische blokken te her-
schrijven tijdens de werking van de applicatie, vandaar de term SRL-
herconfiguratie. Voor specifieke hand-ontworpen functies werd reeds
aangetoond dat SRL’s het herconfiguratieproces aanzienlijk kunnen
versnellen wanneer enkel logische blokken dienen geherprogram-
meerd te worden. In dit doctoraat integreerde ik SRL-herconfiguratie
in de TLUT tool flow. In regelmatig gestructureerde ontwerpen
wordt dezelfde module vele malen geı̈nstantieerd. In de uitgevo-
erde experimenten toonde ik dat SRL-herconfiguratie veel voordelen
heeft voor regelmatig gestructureerde ontwerpen. Ik kwantificeerde
de versnelling die bekomen kan worden gebruikmakend van SRL’s.
Daarnaast toonde ik dat, gebruikmakend van SRL’s, het geheugenge-
bruik van de configuratiemanager laag en onafhankelijk van het aan-
tal modules kan gemaakt worden. Het geheugengebruik van de
methode die gebruikt maakt van de conventionele configuratiepoort,
daarentegen, is groter en groeit met het aantal modules in het ont-
werp. Omdat SRL-herconfiguratie ook gebruik maakt van het pro-
grammeerbaar interconnectienetwerk, kan het mogelijk de timing
van het ontwerp in het gedrang brengen. In de experimenten in dit
doctoraat was deze negatieve invloed op de timing klein.
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Summary

Field-Programmable Gate Arrays (FPGAs) are electronic chips
that can be programmed or configured to implement any digital
logic circuit, limited only by the size of the FPGA. An FPGA con-
sists of a matrix of programmable functional blocks embedded in a
programmable interconnection network. There are different types
of functional blocks, of which the most important one is called a
logic block. To program the FPGA, a binary configuration needs to
be loaded in a memory that controls the state of the programmable
components. This memory is called the configuration memory of the
FPGA. FPGAs offer an interesting combination of parallel comput-
ing power and cost efficiency for low-volume digital products, such
as satellites, high-end TVs and networking devices. They also offer
various economic advantages, such as better risk management and
shorter time-to-market.

Dynamic Partial Reconfiguration (DPR) of FPGAs allows to repro-
gram part of the chip without interfering with the execution of the
rest of the chip. Using DPR, different functions can be implemented
on the same chip area, therefore increasing the area efficiency. The
area that is shared by the different functions, is generally called the
reconfigurable region. DPR possibly leads to the use of smaller and
thus cheaper FPGAs. However, compared to an implementation that
does not use DPR, a relatively long time, called the reconfiguration
time, is needed to change the function implemented in the reconfig-
urable region. This is done by rewriting the configuration memory of
the FPGA. In general, the overhead associated with the reconfigura-
tion process is called the reconfiguration overhead. This also entails the
power consumption and the hardware resources used. The subsys-
tem that performs the reconfiguration is called the configuration man-
ager and is generally implemented in software. It is responsible for
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reprogramming the FPGA and might be responsible for generating a
new configuration. The conventional DPR tool flow implements the
different functions in the reconfigurable region separately and does
not optimize the reconfiguration overhead.

The combined implementation techniques presented in this dis-
sertation significantly reduce the reconfiguration overhead com-
pared to the conventional DPR tool flow, when the number of func-
tions implemented in the reconfigurable region is limited. The con-
figuration memory of current commercial FPGAs consists mostly of
bits that control the state of the programmable interconnection net-
work. The approach taken in this dissertation therefore attempts to
reduce the reconfiguration overhead of the interconnections. The
FPGA tool flow consists of a sequence of different steps. The com-
bined implementation can take place starting at different points in
the tool flow. I first explored several tool flows that start the com-
bined implementation at a different point in the flow. In this first
exploration, the reconfiguration overhead is expressed as the num-
ber of bits that needs to be rewritten in the configuration memory.
However, the configuration memory of current commercial FPGAs
is organized in groups of bits, called frames. A configuration frame
needs to be rewritten completely, even when only one bit has to be
changed. Therefore, in this dissertation also techniques are devel-
oped that reduce the reconfiguration overhead in a frame-based re-
configuration approach.

Dynamic Circuit Specialization efficiently implements designs in
which a subset of input signals, called parameters, only vary infre-
quently. This is done by generating a configuration off-line that does
not only contain constant 0’s and 1’s, but also bits that are Boolean
functions of the parameter signals. This type of configuration is
called a parametrized configuration and the Boolean functions are
called parametrized bits. Whenever the parameters change value,
the configuration manager only needs to evaluate the parametrized
bits and reprogram the FPGA. This allows for very fast dynamic re-
configuration of parametrized systems. In the Hardware and Em-
bedded Systems research group there is an automatic tool flow avail-
able, called the TLUT tool flow, that is able to automatically generate
parametrized configurations in which only the bits of the logic blocks
are parametrized.
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Shift Register LUTs or SRLs are special logic blocks in which the
configuration bits are also arranged as a shift register of which the in-
put and the output are accessible from the configurable interconnec-
tion network. Therefore, these configuration bits are not only acces-
sible through the conventional internal configuration port, but also
through the shift inputs of the SRLs. SRLs can be used to rewrite the
configuration bits of a logic block during run-time, hence the term
SRL reconfiguration. For specific hand-made designs, it has previ-
ously been shown that SRLs can significantly speed-up the reconfig-
uration process when only logic blocks need to be reprogrammed. In
this dissertation, I integrated SRL reconfiguration in the TLUT tool
flow. Regularly structured designs instantiate the same hardware
module many times. In the experiments, I show that for regularly
structured designs, SRLs have many benefits. I quantify the speed
up that can be obtained using SRLs. Furthermore, I show that, for
regularly structured designs, the memory usage of the configuration
manager can be kept low and independent of the number of mod-
ules. The memory usage of reconfiguration using the conventional
internal configuration port, on the other hand, is greater and grows
with the number of modules present in the design. Because the SRLs
also make use of the programmable interconnection network, they
could interfere with the timing of the design. In the experiments in
this dissertation, this impact on the timing was found to be limited.
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Chapter 1

Introduction

1.1 Introduction to the research

1.1.1 FPGAs and Dynamic Partial Reconfiguration

A Field-Programmable Gate Array (FPGA) is an electronic chip that
can be used to implement an arbitrary digital logic circuit. It consists
of an array of configurable functional blocks embedded in a config-
urable interconnection network. By writing the configuration mem-
ory of an FPGA with the appropriate binary values, any desired dig-
ital circuit can be implemented, limited only by the size of the FPGA.

FPGAs are, first of all, useful for implementing electronic prod-
ucts because they offer a different trade-off between cost and per-
formance compared to general-purpose processors and Application-
Specific Integrated Circuits (ASICs). A low cost is associated with
implementations using processors, since processors are cheap and
software can be developed relatively easily. However, because of
their sequential nature, processors generally lack performance, es-
pecially when many parallel computations need to be performed.
ASICs, on the other hand, have a very high parallel computational
performance, but are associated with a very high cost, primarily due
to the high non-recurrent engineering costs associated with the nec-
essary silicon masks. Also designing an ASIC is complex and costly
since physical design of the chip is necessary. That is why ASICs
only make sense when the chip volumes sold are high enough. When
this is not the case, FPGAs can provide a more cost-efficient alterna-
tive. Because of the flexibility of an FPGA, high chip volumes are no
longer required for a single product. This is, different manufacturers
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can each buy the same type of FPGA chip, but implement a com-
pletely different product by programming the chip accordingly. This
allows making electronic products with a high parallel computing
performance of which only a limited number is sold.

The flexibility of FPGAs also offers other economic advantages.
Since the design effort for FPGAs is relatively low, FPGAs can be
used in electronic products that require both a low time-to-market
and a high parallel performance. From a risk management perspec-
tive, FPGAs make sense because fixing a bug is straight-forward,
since it only requires reprogramming the FPGA. Note that fixing a
bug after an ASIC has been manufactured is extremely expensive,
since new silicon masks are required. New and upcoming products
are typically first implemented using FPGAs, until the design is sta-
ble and the product volumes increase, after which using an ASIC can
be considered.

Finally, FPGAs are also extensively used for testing, debugging
and emulating digital chips. Because of their parallel nature they
have the potential of significantly outperforming simulation in soft-
ware.

Conventionally, FPGAs are used statically: they are configured
once at the start-up of the chip, after which the configuration is
not changed during the operation of the application. Configuring
an FPGA, however, is nothing more than writing the configuration
memory. Since configuration memories are typically SRAM-based
this happens relatively fast - in the order of tens of milliseconds for
an average FPGA chip. When only a portion of the FPGA is recon-
figured, this is referred to as Partial Reconfiguration. Some FPGAs
can be reconfigured partially without interrupting the functionality
of the rest of the FPGA. Because with partial reconfiguration only
a portion of the configuration memory is rewritten, this allows for
even faster reconfiguration, in the order of a few milliseconds. When
Partial Reconfiguration is performed during the run-time of the ap-
plication, the term Dynamic Partial Reconfiguration (DPR) is used.

Initially, DPR was primarily used on a very large time scale, for
bug fixes and system updates, since it allows for in-field updates
without interrupting the system’s operation. Recently, DPR is also
explored on a smaller time-scale. Indeed, with DPR it is possible to
implement different functions that are not needed at the same time
in the system on the same FPGA area. Due to hardware sharing, the
amount of necessary resources will be smaller than in the case when
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each function uses a separate set of resources. The main reason to use
DPR is therefore that it possibly implements an application using a
smaller and thus cheaper FPGA.

The area on which the different functions are time-multiplexed is
generally called the reconfigurable region (RR). Whenever one wants
to change the implemented circuit, an amount of time, called the re-
configuration time, is needed to rewrite the configuration memory of
the reconfigurable region. In general, the overhead associated with
the reconfiguration process is called the reconfiguration overhead. This
can also entail the energy consumption and the hardware resources
used by the reconfiguration process. The subsystem that executes
the reconfiguration process is called the configuration manager (CM)
and is generally implemented in software. It is responsible for repro-
gramming the FPGA and might be responsible for generating a new
configuration.

1.1.2 Dynamic Circuit Specialisation

In certain circuits a subset of input signals, called parameters, only
vary infrequently. An example of such a circuit is a constant mul-
tiplier in which one of the factors only changes infrequently (and is
thus considered constant between changes). In this case, the con-
stant factor is considered to be the parameter. These parameter in-
puts stay the same for a relatively long period of time and hence the
state of the hardware driven by these signals also does not change.
Only when the parameters change value will the associated hard-
ware driven by these signals change state. The hardware resources
are therefore not used efficiently since part of the hardware is inac-
tive most of the time.

DPR can offer a solution for this problem by moving the parame-
ter inputs to the configuration manager (CM). The CM is in this case
responsible for generating a specialised circuit with only constantly
varying regular signals, optimised for values of the parameter sig-
nals. This way the inactive logic is removed. The question then re-
mains: how do we best set up such a DPR system? A first possible
solution is to run the complete FPGA tool flow on-line to generate
new configurations. This takes an excessive amount of time. An-
other approach could be to generate all the possible circuits off-line
and store them in a database. The CM then only needs to look up
the right configuration and reconfigure the FPGA. This is possibly
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the fastest approach. For some applications, however an enormous
amount of configurations are needed. A third approach, called Dy-
namic Circuit Specialization, offers an elegant solution to this problem.
This method generates a configuration off-line that does not only
contain constant 0’s and 1’s, but also bits that are a Boolean func-
tion of the parameter signals. This type of configuration is called
a parameterized configuration and the Boolean functions are called
parameterized bits. Whenever the parameters change value, the CM
only needs to evaluate the parameterized bits to create a specialised
configuration and reconfigure the FPGA. Generating a new config-
uration thus boils down to evaluating Boolean functions. This can
happen orders of magnitude faster than running the complete FPGA
tool flow.

A tool flow that is able to automatically generate such parame-
terized configurations has been developed at the Hardware and Em-
bedded Systems (HES) group at Ghent University. This tool flow
is called the TLUT tool flow and generates parameterized configura-
tions in which only the bits of the logic blocks are parameterized.
This tool flow is available through GitHub. A more general tool flow
called the Dynamic Circuit Specialization (DCS) tool flow, that also
generates parameterized routing bits, is still being researched. The
DCS tool flow does not map functions on a regular circuit, but on a
Tunable Circuit. A tunable circuit is the abstraction of a dynamically
reconfigurable circuit. Some prototypes of the different tools, such as
a placer and router of Tunable circuits, called TPlace and TRoute, are
already implemented. The complete DCS flow that can also generate
parameterized routing bits, however, is not yet available.

1.1.3 Limited-context Dynamic Partial Reconfiguration

In theory, the number of circuits that can be time-multiplexed in
a reconfigurable region is only limited by the size of the memory
available to store the different configurations associated with the cir-
cuits. In many cases, however, only a limited number of circuits are
needed. In this work we will call this special case of DPR, limited-
context DPR. An example that uses limited-context DPR is a mobile
transceiver that supports different communication standards (like
CDMA or Wi-Fi), but only uses one at any given time. In this case,
every context is a circuit that contains the necessary functions to sup-
port the corresponding communication standard. Another example
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is an audio application which only contains a low-pass and a high-
pass adaptive filter.

1.1.4 Shift-register look-up table (SRL) reconfiguration

The most common building block of an FPGA is a Lookup Table
(LUT). A K-input LUT can implement any Boolean function with
K inputs and one output. A K-input LUT or K-LUT consists of 2K

SRAM memory cells connected to a multiplexer. To implement a cer-
tain Boolean function, the truth table needs to be stored in the SRAM
cells of the LUT.

In a shift-register LUT (SRL), the truth table configuration bits are
also arranged as a shift register of which the input and the output are
accessible from the configurable routing. Therefore these configura-
tion bits are not only accessible through the FPGA’s configuration
ports, but also through the shift inputs of the SRLs. The SRL pro-
vides a very efficient means for implementing shift registers. Instead
of using flip-flops of the FPGA fabric, the flip-flops of the configu-
ration memory can be used. When only the truth table contents of
LUTs need to be changed during run-time, SRLs can also be used for
reconfiguring LUTs, hence the term SRL reconfiguration.

1.2 Focus and Contributions

1.2.1 Exploring novel tool flows for limited-context DPR

The conventional tool flow for DPR generates a configuration for
each circuit by implementing it separately in the reconfigurable re-
gion. The conventional DPR flow does not optimize the reconfigu-
ration overhead, making DPR less useful for more dynamic applica-
tions. A first example of such a dynamic application is the network
intrusion detection system described in [76], where reconfiguration
has to happen fast enough so that no network packets are dropped.
A second example is an imaging application where the reconfigura-
tion possibly happens per image frame [10]. In the case of [76] there
are only 2 contexts, corresponding to different networking protocols.
The work in [10] considers a video chain with a limited number of
processing steps. These are therefore both also good examples of
limited-context applications.
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In this part of my dissertation, I show that the reconfiguration
overhead can be reduced by combined implementation and opti-
mization of the limited number of circuits starting at a certain point
of the tool flow. The impact this has on the wire length of the imple-
mented circuits is also discussed.

I explored three different tool flows. The first tool flow uses a
technique found in literature called edge matching. When I started my
research, edge matching was the only technique I found in literature
that also considered a combined implementation approach to reduce
the reconfiguration overhead. Edge matching tries to place the LUTs
of the different circuits in such a way that the number of connections
that have the same source and sink is maximized. These overlapping
connections do not need to be reconfigured. Edge matching attempts
to reduce the reconfiguration overhead by reducing the number of
connections that need reconfiguration. This first tool flow reuses the
placement and routing tools of the DCS tool flow, called TPlace and
TRoute. This work was presented in the ’Design, Automation, and
Test in Europe Conference and Exhibition’ in 2013.

Brahim Al Farisi, Karel Bruneel, João M. P. Cardoso and Dirk
Stroobandt,
”An automatic tool flow for the combined implementation of
multi-mode circuits”,
Proceedings 2013 Design, Automation, and Test in Europe Confer-
ence and Exhibition (DATE 2013),
pp. 821-826

The second tool flow optimizes the total wire length of a Tunable
circuit that is formed during a combined placement step. In the third
tool flow the individual wire lengths of the different circuits are opti-
mized during placement and TRoute is used to perform the routing.
These last two tool flows are presented in the ’IEEE Computer Soci-
ety Annual Symposium on VLSI’ in 2013.

Brahim Al Farisi, Elias Vansteenkiste, Karel Bruneel and Dirk
Stroobandt,
”A novel tool flow for increased routing configuration simi-
larity in multi-mode circuits”,
Proceedings 2013 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI 2013),
pp. 96-101
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1.2.2 Reducing the overhead for limited-context DPR in a
frame-based reconfiguration approach

In the first exploration of tool flows, discussed in the previous sec-
tion, the reconfiguration overhead is expressed as the number of bits
that needs to be rewritten in the configuration memory. However, the
configuration memory of current commercial FPGAs is organized in
frames. A configuration frame needs to be rewritten completely, even
when only one bit needs to be changed. Although much lessons were
learned from the techniques developed in the first exploration of tool
flows, these would only be useful if the routing’s configuration mem-
ory would be bit-addressable. In this part of the dissertation other
techniques are developed that can be used in a frame-based reconfig-
uration approach. The main aim in this part of the dissertation is to
cluster dynamic bits in fewer configuration frames. These techniques
were developed based on the lessons learned in the first exploration
of tool flows.

I first developed a frame-based router called StaticRoute, in
which routing happens in two steps. In a first step the configuration
memory of the reconfigurable region’s routing switches is divided
into a static and a dynamic part. Care needs to be taken that the
memory cells of the static part reside in other frames than those of
the dynamic part. Then, in a second step the interconnections of all
circuits are routed simultaneously using StaticRoute in such a way
that dynamic bits are avoided in the static part. The dynamic bits
are thus clustered in the dynamic part of the configuration memory.
To the best of my knowledge, I was the first to propose such an ap-
proach. The StaticRoute tool flow was first presented in the ’Interna-
tional Conference on Field Programmable Logic and Applications’ in
2013.

Brahim Al Farisi, Karel Bruneel and Dirk Stroobandt,
”StaticRoute : a novel router for the dynamic partial reconfig-
uration of FPGAs”,
Proceedings 2013 International Conference on Field Programmable
Logic and Applications (FPL 2013),
pp. 1-7

An overview of the work done in the previous conference pa-
pers regarding limited-context DPR is given in a paper that was pre-
sented at the PhD forum of the ’International Conference on Field
Programmable Technology’ in 2014.
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Brahim Al Farisi, Karel Heyse and Dirk Stroobandt,
”Reducing the overhead of dynamic partial reconfiguration
for multi-mode circuits”,
Proceedings 2014 International Conference on Field-Programmable
Technology (ICFPT 2014),
pp. 1-2

The experiments in the FPL2013 paper regarding the StaticRoute
tool flow only implemented 2 circuits in the reconfigurable region.
They were done on a simple 4-LUT based architecture and only
looked at the total wire length of a circuit as a metric for perfor-
mance. Also, only the switch blocks were considered for the static
part. These experiments were extended for publication in the ’De-
sign Automation for Embedded Systems Journal’. In contrast to the
FPL2013 paper, in this journal paper it is explored how the static part
is best chosen. In this more thorough exploration also the connec-
tion blocks are considered. Furthermore, experiments that imple-
ment more than 2 circuits in the reconfigurable region are presented.
The experiments are also done on a realistic FPGA architecture with
6-LUTs and more complex configurable logic blocks, based on the
commercial Altera Stratix IV FPGA. Finally, the actual impact on
the maximum attainable clock frequency is assessed using the tim-
ing analyser available in the academic VTR framework.

Brahim Al Farisi, Karel Heyse, Karel Bruneel, João Cardoso
and Dirk Stroobandt,
”Enabling FPGA routing configuration sharing in dynamic
partial reconfiguration”,
Design Automation for Embedded Systems,
to be published (Accepted 2014)

The StaticRoute tool flow requires an extra step in which certain
configuration frames are manually marked as static. This means that
these configuration frames should not contain dynamic bits in the
end result. The ClusterRoute tool flow is similar. The main differ-
ence is that the router works completely automatic and it only needs
to know how the routing configuration bits are organized in frames.
A journal publication regarding the ClusterRoute tool flow has been
submitted to the ’ACM Transactions on Design Automation of Elec-
tronic Systems’ journal.
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Brahim Al Farisi, Karel Heyse, João Cardoso and Dirk
Stroobandt,
”ClusterRoute: a novel router for low-overhead dynamic par-
tial reconfiguration of a limited number of circuits”,
ACM Transactions on Design Automation of Electronic Systems,
submitted

1.2.3 Integration of SRL reconfiguration in the TLUT tool
flow

The second part of my dissertation covers the research done about
shift register LUT (SRL) reconfiguration. Before my research started,
SRLs had been primarily used to reconfigure specific hand-designed
functions. In this part of my dissertation, I explain how I inte-
grated SRL reconfiguration in the automatic TLUT tool flow. This
required adding appropriate timing constraints to make the tools
treat the SRLs between reconfigurations as conventional LUTs. Also
the design of a hardware block, called HWSRL, is discussed that in-
terfaces between the configuration manager and the reconfigurable
hardware. Finally, in order to make the truth table bits of multiple
LUTs accessible from the configuration manager, they are grouped
and each group is arranged as a larger shift register, called a recon-
figuration path, by connecting the shift out of an SRL to the shift in of
the next SRL. This work is an extension of my Master Thesis and was
presented at the ’ACM/SIGDA International Symposium on Field
programmable Gate Arrays’ in 2010.

Brahim Al Farisi, Karel Bruneel, Harald Devos and Dirk
Stroobandt,
”Automatic tool flow for shift-register-LUT reconfiguration:
making run-time reconfiguration fast and easy”,
Proceedings 2010 ACM/SIGDA International Symposium on Field
programmable Gate Arrays (FPGA 2010),
pp. 287-287

1.2.4 Exploring the benefits and overhead of SRL reconfig-
uration for regularly structured designs

In regularly structured designs the same hardware module is instan-
tiated many times. An example of a regularly structured design is an
adaptive filter in which a block that performs a multiply-accumulate
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operation is instantiated many times. For regularly structured de-
signs, I quantify the speed-up of the reconfiguration process when
using the new automatic tool flow using SRL reconfiguration, com-
pared to reconfiguration using a conventional internal FPGA config-
uration port. I also show that the memory efficiency thereof can be
greatly improved using SRLs. The impact of SRL reconfiguration on
the maximum operating clock frequency of the design is also dis-
cussed. This work was presented in the ’International Conference on
Field Programmable Logic and Applications’ in 2011.

Brahim Al Farisi, Karel Heyse, Karel Bruneel and Dirk
Stroobandt,
”Memory-efficient and fast run-time reconfiguration of regu-
larly structured designs”,
Proceedings 2011 International Conference on Field Programmable
Logic and Applications (FPL 2011),
pp.1-6

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows. The next two
chapters are background chapters. Chapter 2 gives an overview of
the architecture of FPGAs and the tool flow needed to generate a con-
figuration that implements a desired functionality. It also discusses
the different ways FPGAs can be programmed or configured, includ-
ing Shift-Register LUT (SRL) reconfiguration. Chapter 3 focuses on
Dynamic Partial Reconfiguration (DPR) and more specifically Dy-
namic Circuit Specialisation and limited-context DPR. This chapter
also gives an overview of the TLUT tool flow.

The research presented in this dissertation consists of two main
parts. The first part describes the work that aims at lowering the
reconfiguration overhead of limited-context DPR. This parts is de-
scribed in Chapter 4 and Chapter 5. The second part presents the
work done regaring SRL reconfiguration, it includes Chapter 6 and
Chapter 7.

In Chapter 4, a first exploration of different tool flows for limited-
context Dynamic Partial Reconfiguration is presented. Based on the
lessons learned in Chapter 4, two tool flows were developed for
low-overhead limited-context DPR: the StaticRoute tool flow and the
ClusterRoute tool flow. These tool flows are presented in Chapter 5.
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As explained earlier, the StaticRoute tool flow requires marking some
configuration frames as static. StaticRoute routes the connections of
all circuits in such a way that the dynamic bits are clustered in the
dynamic frames. This is discussed in Section 5.1. The ClusterRoute
tool flow, on the other hand, automatically clusters the dynamic bits
in fewer configuration frames. An extra step in which some frames
are marked as static is not longer needed. This is discussed in detail
in Section 5.2.

The second part of this dissertation starts with an introduction
to SRL reconfiguration in Chapter 6. Chapter 7 presents how SRL
reconfiguration was integrated in the TLUT tool flow. It also explains
how SRL reconfiguration can be beneficial for regularly structured
designs.

Both parts of this dissertation are concluded in Chapter 8. Possi-
ble future research is also presented there.
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1.4 Publications

Journal papers

Karel Heyse, Brahim Al Farisi, Karel Bruneel and Dirk
Stroobandt, ”TCONMAP: Technology Mapping for Parameterised
FPGA Configurations”, ACM Transactions on Design Automation of
Electronic Systems, to be published (Accepted 2015)

Brahim Al Farisi, Karel Heyse, João Cardoso and Dirk
Stroobandt, ”ClusterRoute: a novel router for low-overhead dy-
namic partial reconfiguration of a limited number of circuits”, ACM
Transactions on Design Automation of Electronic Systems, under review

Karel Heyse, Jente Basteleus, Brahim Al Farisi, Dirk Stroobandt,
Oliver Kadlcek and Oliver Pell, ”On the impact of replacing low-
speed configuration buses on FPGAs with the chip’s internal config-
uration infrastructure”, ACM Transactions on Reconfigurable Technol-
ogy and Systems, to be published (Accepted 2014)

Brahim Al Farisi, Karel Heyse, Karel Bruneel, João Cardoso and
Dirk Stroobandt, ”Enabling FPGA routing configuration sharing in
dynamic partial reconfiguration”, Design Automation for Embedded
Systems, to be published (Accepted 2014)

Elias Vansteenkiste, Brahim Al Farisi, Karel Bruneel and Dirk
Stroobandt, ”TPaR : place and route tools for the dynamic reconfig-
uration of the FPGA’s interconnect network”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2014)

Conference papers with international peer review

Brahim Al Farisi, Karel Heyse and Dirk Stroobandt, ”Reducing
the overhead of dynamic partial reconfiguration for multi-mode cir-
cuits”, Proceedings 2014 International Conference on Field-Programmable
Technology (ICFPT 2014), pp. 1-2

Brahim Al Farisi, Elias Vansteenkiste, Karel Bruneel and Dirk
Stroobandt, ”A novel tool flow for increased routing configuration
similarity in multi-mode circuits”, Proceedings 2013 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI 2013), pp. 96-101

Brahim Al Farisi, Karel Bruneel and Dirk Stroobandt, ”Static-
Route : a novel router for the dynamic partial reconfiguration of FP-
GAs”, Proceedings 2013 International Conference on Field Programmable
Logic and Applications (FPL 2013), pp. 1-7
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Brahim Al Farisi, Karel Bruneel, João M. P. Cardoso and Dirk
Stroobandt, ”An automatic tool flow for the combined implementa-
tion of multi-mode circuits”, Proceedings 2013 Design, Automation, and
Test in Europe Conference and Exhibition (DATE 2013), pp. 821-826

Karel Heyse, Brahim Al Farisi, Karel Bruneel and Dirk
Stroobandt, ”Automating reconfiguration chain generation for SRL-
based run-time reconfiguration”, Lecture Notes in Computer Science:
Reconfigurable Computing: Architectures, Tools and Applications (2012),
pp.1-12

Brahim Al Farisi, Karel Heyse, Karel Bruneel and Dirk
Stroobandt, ”Memory-efficient and fast run-time reconfiguration of
regularly structured designs”, Proceedings 2011 International Confer-
ence on Field Programmable Logic and Applications (FPL 2011), pp.1-6

Robbe Vancayseele, Brahim Al Farisi, Wim Heirman, Karel
Bruneel and Dirk Stroobandt, ”RecoNoC : a reconfigurable network-
on-chip”, Proceedings 2011 International Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC 2011), pp. 1-2

Brahim Al Farisi, Karel Bruneel, Harald Devos and Dirk
Stroobandt, ”Automatic tool flow for shift-register-LUT reconfigura-
tion: making run-time reconfiguration fast and easy (abstract only)”,
Proceedings 2010 ACM/SIGDA International Symposium on Field pro-
grammable Gate Arrays (FPGA 2010), pp. 287-287
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Chapter 2

FPGAs: Architecture, Tools
and Configuration

In the first section of this chapter the basic architecture of FPGAs is
presented. The subsequent section describes the typical FPGA tool
flow that implements a design on the FPGA. The FPGA tool flow
generates a configuration that can be loaded into the FPGA’s con-
figuration memory. Finally, the different ways an FPGA can be pro-
grammed or configured are presented.

2.1 FPGA Architecture

An FPGA basically consists of an array of programmable or config-
urable functional blocks that are embedded in a configurable inter-
connection network. Modern FPGAs also contain hard-wired em-
bedded processors.

2.1.1 Configurable functional blocks

The most common functional block is called a Configurable Logic
Block (CLB). An example of a simple CLB is shown in Figure 2.1.
This CLB contains one Lookup Table (LUT) with two inputs, also
called a 2-LUT, and one flip-flop. A K-input LUT or K-LUT consists
of 2K SRAM memory cells connected to a multiplexer. A K-input
LUT can implement any Boolean function with K inputs and one out-
put. To implement a certain Boolean function, the truth table needs
to be generated and stored in the SRAM cells of the LUT. The inputs
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Figure 2.1: A schematic representation of a simple CLB containing
one LUT and one flip-flop.

of the LUT act as an address to look up the right output value in the
truth table. The FF in the CLB can be used to build sequential logic,
this is logic of which the state changes synchronously with a clock.
A multiplexer, also controlled by an SRAM bit, determines whether
or not the output of the CLB is clocked. In modern FPGAs the FF can
also be used separately, without going through the LUT, as shown
in Figure 2.2. Most FPGAs used to be based on 4-LUTs. However, in
more recent technology nodes a shift has been made to 6-input LUTs.

Some of the LUTs in modern FPGAs can also be used to build
small localized memories. The SRAM cells of these LUTs can be used
as a shift register or RAM. When the LUT is used as a shift register it
is called a shift register LUT (SRL). The RAM functionality of CLBs
is called distributed RAM. Figure 2.2 shows an example of a CLB of
which the LUT can also be set as a distributed RAM or SRL. SRL con-
figuration is discussed in more detail in Section 2.3.3 and Chapter 6.

In modern FPGAs the CLBs are much more complex than in Fig-
ure 2.2. CLBs of Xilinx FPGAs, for example, contain several LUTs,
that are organized in groups called slices. On Figure 2.3 it can be seen
that each CLB on a Virtex 5 contains two slices. Figure 2.4 shows a
slice from a Virtex 5 FPGA, that contains four 6-LUTs. Between the
LUTs in a CLB there are fast direct connections, as shown in Fig-
ure 2.3. The number of LUTs in a slice and number of slices in a CLB
is dependent on the architecture. The CLB of a Virtex 4 FPGA for
example contains four slices, each with two 4-LUTs.

As can be seen on Figure 2.4 a slice contains more than just the
LUTs and FFs. Specialized hard-wired logic is also available, such as
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Figure 2.2: A schematic representation of a CLB in which the LUT
can also be set as an SRL or DRAM.

Figure 2.3: Schematic representation of the slices in a Virtex 5 CLB.
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Figure 2.4: Schematic representation of a Virtex 5 slice.
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Figure 2.5: An island-style style FPGA architecture, with details on
the switch and connection block components [61].
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Figure 2.6: Illustration of the hierarchical build up of a pro-
grammable interconnection network.

logic gates and carry chains, that are used to build efficient adders.
Because FPGAs are used a lot for signal processing applications, they
also contain specialized functional blocks as hard-wired multipliers
and larger RAM blocks called block RAMs or BRAMs. The CLBs,
multipliers and BRAMs are organized in columns. There are also
other columns available that are used for clocking purposes.

A final type of functional block is called an input-output block or
IO block. These blocks are located on the edges of the FPGA and are
used to connect to external hardware.

2.1.2 Configurable interconnection network

The functional blocks of an FPGA are embedded in a network of
wires that can be programmed to interconnect the CLBs as needed.
A group of wires between adjacent CLBs is called a channel. The
number of wires in a channel is called the channel width. Figure 2.5
shows a homogeneous FPGA, with only CLBs, embedded in an inter-
connection network with a channel width of four wires. On the same
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figure it can be seen that the programmable routing network is orga-
nized in connection blocks and switch blocks. The connection blocks
can interconnect the input and output pins of a CLB with the wires
in an adjacent channel. The switch blocks are used to interconnect
the wires of crossing channels.

The programmable interconnection network of Modern FPGAs
is based on multiplexers and uses unidirectional wires [61]. The
multiplexers are built up using pass-transistors controlled by a bit
value stored in an SRAM cell. The interconnection network is also
mostly built up hierarchically, with many short wires and less longer
wires [72]. Figure 2.6 illustrates the hierarchical build up of a pro-
grammable interconnection network.

2.1.3 Embedded processors

Modern FPGAs have evolved from purely logic matrices to complex
computing structures. A first example of this are the BRAMs and
hard-wired multipliers discussed above. Another important exam-
ple of this evolution are embedded hard-wired processors. The em-
bedded processor on a Virtex 5 FPGA, for example, is a PowerPC 440.
Its maximum clock frequency is 500 Mhz. In recent years, Xilinx has
developed the Zynq-7000 All programmable SoC, which combines a
dual ARM Cortex A9 Core with an Artix-7 or Kintex-7 FPGA. The
cores can run from 667 to 800 MHz [53].

If a hard-wired embedded processor is not present or a more
lightweight approach is necessary, then a soft-core processor can be
used, the MicroBlaze [111]. The user can scale the MicroBlaze im-
plementation to the application’s needs, because it is implemented
in the logic fabric. However, it will never achieve the same perfor-
mance as a hard-wired embedded processor.

2.2 Overview of the conventional FPGA Tool
Flow

The SRAM cells that control the LUTs, multiplexers and pro-
grammable interconnect together make up the configuration mem-
ory. To implement a design on the FPGA, a configuration, consisting
of binary values, needs to be loaded in the configuration memory.
There are commercial FPGA tool flows available that can generate
such configurations given a textual description of the digital design
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in a Hardware Description Language (HDL). A typical FPGA flow,
depicted in Figure 2.7, takes a HDL file as input and typically consists
of 4 steps: synthesis, technology mapping, placement and routing.

Figure 2.7: The FPGA tool flow.

2.2.1 Synthesis

The synthesis tool takes as input the HDL description and generates
a technology-independent circuit with logic gates. Figure 2.8 shows a
Very-high-speed Integrated Circuit Hardware Description Language
(VHDL) description of a 4-to-1 multiplexer. VHDL is a standard-
ized and commonly used HDL. We will use the multiplexer example
throughout this section.

Figure 2.9 shows the synthesis result for the 4-to-1 multiplexer.
This logic circuit is an and-inverter graph (AIG), a logic circuit de-
scription containing only AND and inverter gates. This format, de-
veloped at Berkeley university, can represent logic circuits very effi-
ciently and the memory usage scales very well when used for larger
circuits [16] [15] [14].In a byte-addressable memory, the two least sig-
nificant bits of pointers are not used. In the textual and binary rep-
resentations of AIGs of Berkeley, one of these bits is used to indicate
whether or not an edge is inverted.

2.2.2 Technology mapping

The technology mapping algorithm takes in the technology-
independent logic circuit and generates a technology-dependent
LUT circuit, together with the Boolean functions that describe the
relation between the inputs and output of each LUT. These are nec-
essary to generate the associated truth table contents for the LUTs.
The truth table of a LUT is generated using evaluation. This is done
by filling in each possible input in the Boolean function and noting
the result in the truth table at the position in the truth table that cor-
responds with the input address.
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entity multiplexer is
port (

I : in std logic vector (3 downto 0);
S : in std logic vector (1 downto 0);
O : out std logic

) ;
end multiplexer;

architecture behavior of multiplexer is
begin

O <= I(conv integer(S));
end behavior;

Figure 2.8: VHDL code of a 4-to-1 multiplexer.

I0 I1 I2 I3  S0 

S1 

O 

a0 a1 a2 a3 

a4 a5 

o0 o1 

o2 

Figure 2.9: The And-Inverter Graph generated by the synthesis tool
for the 4-to-1 multiplexer example. [18].
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The most commonly used technology mapping algorithm uses a
dynamic programming approach and searches for a depth-optimal
covering of the logic circuit with cones. When mapping to K-LUTs,
a cone is a subgraph of the logic circuit with K inputs and one out-
put. Each cone can thus be implemented afterwards in a single LUT.
The algorithm consists of three steps: cone enumeration, cone rank-
ing, cone selection [24] [28]. The cone enumeration step starts at the
input and recursively enumerates all possible cones until the out-
puts are reached. The second step also starts at the inputs, traverses
the enumerated cones recursively and for each cone it calculates the
depth, until the outputs are reached. The cone selection step starts at
the outputs and selects the cones with minimal depth. It then recur-
sively selects the cones at the input of the cone until the circuit inputs
are reached. It can be shown that this algorithm is depth-optimal.

Several optimizations of the algorithm described above are pos-
sible. A common optimization is called area recovery, which tries
to reduce the area, expressed as number of LUTs, without increas-
ing depth [68]. Other optimizations try to reduce the run-time of the
algorithm without compromising the quality of the resulting LUT
circuit. The most common of such optimizations use pruning and
priority cuts. When pruning is used, an upper-bound is set to the
number of cones explored per node in the logic circuit [29]. The tech-
nique that uses priority cuts also avoids enumerating all cones, but
attempts to enumerate a small number of cones (typically 5-10) that
are likely to lead to good results [73]. Of course, when using these
last optimizations, the algorithm is no longer guaranteed to be depth-
optimal.

The algorithm described above can only handle combinational
logic circuits. Sequential logic circuits, containing flip-flops (FFs), are
first converted to combinatorial circuits. This is done by cutting the
circuit through at the FFs, i.e. treating each input (output) of a FF as
an output (input) of the combinational part.

Figure 2.10 shows the result of technology mapping for the 4-to-
1 multiplexer example (in case of a 3-LUT technology target) and
Figure 2.11 shows the resulting 3-LUT circuit.

2.2.3 Placement

The placement step assigns each abstract functional block, produced
after technology mapping, to a physical block on the FPGA. A con-
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Figure 2.10: Result of the conventional technology mapping algo-
rithm to 3-LUTs for the 4-to-1 multiplexer example.
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Figure 2.11: Resulting LUT circuit after conventional technology
mapping to 3-LUTs for the 4-to-1 multiplexer example [18].
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function place(Netlist NL, Architecture A):
Placement P = randomPlacement(NL, A)

while (T > Tmin):
move = findLegalMove(P)
∆C = costAfter(move, NL, P) − currentCost(NL, P)
if (∆C < 0 or uniform(0, 1) < e−

∆C
T ):

P = acceptSwap(move, P)

return P

Figure 2.12: Simplified pseudo code for a simulated annealing placer.

ventional FPGA placement algorithm takes two inputs: the circuit of
functional blocks and a description of the FPGA architecture. The
algorithm searches a legal placement for the functional blocks of the
circuit that tries to reduce the number of wires that will be needed by
the routing algorithm. In a legal placement every functional block
is associated to (placed on) one of the physical blocks (without over-
lap).

The placement algorithm used in this dissertation, of which the
simplified pseudo-code is shown in Figure 2.12, is based on simu-
lated annealing [13] [57].

The algorithm starts by randomly, but legally, placing the func-
tional blocks in the input circuit on physical blocks of the FPGA ar-
chitecture. Then, the placer interchanges the functional blocks placed
on two randomly chosen physical blocks in an attempt to improve
the placement cost. If the move causes a decrease in placement cost,
the move is always accepted. If on the other hand, the move causes
an increase in placement cost the move is accepted with a probabil-
ity of e−

∆C
T , where ∆C is the change in cost due to the move. T is

a parameter called the temperature, which controls the probability
by which these moves, called hill-climbing moves, are accepted. Ini-
tially, T is very high so that most moves are accepted. Gradually T
is decreased so that the probability by which hill-climbing moves are
accepted decreases. When the temperature is decreased in the proper
way the result is a low cost placement. The hill-climbing moves al-
low the placer to escape from local minima. Mostly the estimated

26



wire length needed by the router is used as a cost during placement.

2.2.4 Routing

A conventional router calculates the Boolean values that need to be
stored in the memory cells of the configurable interconnection net-
work so that the physical logic blocks are connected as specified by
the nets in the mapped circuit. The main algorithm used to solve this
problem is PATHFINDER [13] [71].

PATHFINDER presents the available routing resources of the FPGA
in an easy-to-explore data structure, the routing resource graph
(RRG). The RRG is a directed graph, where each node represents a
routing wire on the FPGA and each directed edge represents a rout-
ing switch on the FPGA.1

An example of an RRG of a simple 2 × 2 island-style FPGA is
presented in grey in Figure 2.13. The result after routing of the 4-to-1
multiplexer is shown in black.

In the PATHFINDER algorithm, the connections that need to be
routed are organized in nets. These are sets of connections that share
the same source. During the first routing iteration, nets can share re-
sources at no extra cost and thus, each net is routed with a minimum
number of wires. In subsequent routing iterations, the algorithm rips
up and reroutes all the nets in the input circuit. A wire is said to
be congested if it is used by more than one net. Wire congestion is
not allowed in the final solution because this results in short-circuits.
That is why the routing iterations are repeated until no shared re-
sources exist or, in other words, the wire congestion is resolved. This
is achieved by gradually increasing the cost of sharing resources be-
tween nets, a technique called negotiated congestion. The cost function
of a wire in the RRG is

cost(n) = b(n) · p(n) · h(n), (2.1)

where b(n) is the base wire cost (equal to 1), p(n) is the present wire
congestion penalty and h(n) is the historical wire congestion penalty.

The factor p(n) is used to avoid wire congestion during one rout-
ing iteration. The factor h(n) is used to make heavily used resources
in past routing iterations more expensive. In this way a wire con-

1This is a simplification.The nodes can also represent logical pins or sources or
sinks. These are treated in the same way [13].

27



!"#$#%#

!"#$#"#

#
#
#
#

#
#
#
#
#

&'(#

ı̂0

ı̂1

ô0
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Figure 2.13: Implementation of the LUT circuit for the 4-to-1 multi-
plexer example in a simple 2 × 2 island-style FPGA resource graph
(grey). Wires are solid lines; Edges are thin lines; Sources are open
boxes; Sinks are filled boxes.
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gestion map is built, which enables nets to avoid routing through
heavily congested wires, if possible.

The present congestion penalty, p(n), is updated whenever a net
is rerouted. The update is done as follows

p(n) =

{
1 if c(n) > o(n)
1 + pf .(o(n)− c(n) + 1) otherwise

(2.2)

where c(n) represents the capacity of the node and o(n) is the occu-
pancy of the node. The capacity is the maximum number of nets that
can legally use the routing resource. The occupancy of a node is the
number of nets that are presently using it. The term o(n)− c(n) thus
represents the overuse of a node. The factor pf is used to increase the
sharing cost as the algorithm progresses. This is explained below.

The historical congestion penalty is updated after every routing
iteration. The update is done as follows

hi(n) =


1 if i = 1

h(i−1)(n) if c(n) ≥ o(n)

h(i−1)(n) + hf .(o(n)− c(n)) otherwise
(2.3)

Again, the factor hf is used to control the impact of the historical
congestion penalty on the total resource cost.

Note that both the present and historical congestion mechanisms
associate higher penalties with higher overuse.

The way the factors pf and hf change as the algorithm progresses
is called the routing schedule. The routing schedule proposed in [13]
is used. In this schedule, hf is held equal to 1 independent of the
iteration. On the other hand, pf is initially set to 0.5 and is doubled
in every subsequent iteration. More details on PATHFINDER can be
found in [13].

2.3 FPGA configuration

FPGA tool flows generally don’t generate a configuration, but a con-
figuration bit stream. A configuration bit stream contains, besides the
configuration data, the necessary instructions needed by the config-
uration controller to address the configuration infrastructure. There
are three ways of configuring an FPGA: through an external config-
uration port, through an internal configuration port and using shift
register LUTs (SRLs).
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Figure 2.14: External Configuration of FPGAs [17].

2.3.1 External configuration

Configuration through an external port is the conventional and most
used way of configuring an FPGA, shown in Figure 2.14. It is pri-
marily used to configure the complete FPGA at start-up. The config-
uration bit stream is mostly read from a non-volatile memory chip
such as an Electrically Erasable Programmable Read-Only Memory
(EEPROM). After designing the hardware on a PC, the configuration
bit stream generated by the FPGA tool flow is written to the EEP-
ROM. This configuration method is less useful for Dynamic Partial
Reconfiguration, as the configuration happens from outside the chip,
making it necessary to have a desktop PC or an on-board embedded
processor to perform the configuration.

2.3.2 Internal configuration

Modern FPGAs contain an Internal Configuration Access Port
(ICAP), that makes it possible to configure the FPGA from within
the FPGA. The ICAP uses the same protocol as the external configu-
ration port. The HWICAP is a small piece of hardware that interfaces
between the configuration manager and the ICAP. It is made using
FPGA resources, it uses around a few hundred LUTs, a few hundred
FFs and one BRAM.

The FPGA configuration memory is arranged as frames that are

30



Figure 2.15: Reconfiguration of a 3-input shift register LUT.

tiled on the device. A frame is the smallest addressable segment of
the configuration memory. For the Virtex 5 FPGA, for example, a
configuration frame consists of around 1000 bits. All operations must
therefore act upon complete configuration frames for both the exter-
nal and internal configuration port. Frame-wise configuration can be
inefficient since also configuration bits that do not change need to be
rewritten as well.

2.3.3 SRL configuration

In Section 2.1.1 it was mentioned that the configuration bits of some
LUTs of an FPGA, called shift register LUTs (SRLs), can be arranged
as a shift register that is accessible from the configurable routing. It
is important to note that the LUT still drives the output. An SRL is
both shift register and LUT. The shift register functionality of an SRL
can thus be used to (re)configure the LUT bits. This is illustrated in
Figure 2.15, where a 3-LUT is reconfigured from a 3-input OR gate to
a 3-input AND gate. The truth table bits of the LUT are numbered
from 0 (binary 000) to 7 (binary 111). On the figure the input is 010,
and therefore the third bit of the LUT drives the output. Note that,
just as is the case with the previous configuration method, there is a
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transient period where the FPGA contains a configuration that is not
valid. In this example the reconfiguration takes 8 clock cycles, where
the LUT is neither AND nor OR gate.

In order to make the truth table bits of multiple LUTs accessible
from the configuration manager, they are grouped and each group is
arranged as a larger shift register, called a reconfiguration path, by
connecting the shift out of an SRL to the shift in of the next SRL. The
shift in of the first SRL of each reconfiguration path is connected to a
hardware block that interfaces to the configuration manager.

In Chapter 6 and Chapter 7 SRL reconfiguration is discussed in
more detail and compared to ICAP reconfiguration.
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Chapter 3

Dynamic Partial
Reconfiguration

The configurability of FPGAs makes them a lot more flexible than
ASICs, as the FPGA can be used for different implementations at dif-
ferent times. However, this conventional FPGA use is static: they are
configured once at the start-up of the chip, after which the configura-
tion is not changed during the operation of the application. Config-
uring an FPGA, however, is no more than writing the configuration
memory. Since configuration memories are typically SRAM-based
this happens relatively fast (in the order of tens of milliseconds for an
average FPGA chip). When only a portion of the FPGA is reconfig-
ured, it is referred to as Partial Reconfiguration. Some FPGAs can be
reconfigured partially without interrupting the functionality of the
rest of the FPGA. This is illustrated in the left-hand side of Figure 3.1,
where a portion of the FPGA is reconfigured without interrupting a
tranceiver that is also implemented on the FPGA. Because with par-
tial reconfiguration only a portion of the configuration memory is
rewritten, this allows for even faster reconfiguration. When Partial
Reconfiguration is performed during the run-time of the application,
the term Dynamic Partial Reconfiguration (DPR) is used. Different
Xilinx FPGAs [50, 49] and the more recent 28 nm FPGA from Altera
support DPR [32, 31].

Initially DPR was primarily used on a very large time scale, for
bug fixes and system updates, since it allows for in-field updates
without interrupting the system’s operation. Recently DPR is also
explored on a smaller time-scale. Indeed, with DPR it is possible to
implement different functions, that are not needed at the same time
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Figure 3.1: (left) With partial reconfiguration, part of the FPGA
can be reconfigured without interrupting other logic present on the
FPGA, in this case a transceiver. (right) DPR makes it possible to
use smaller FPGAs, by time-multiplexing logic on the same FPGA
region. [51]

in the system, on the same FPGA area. Due to hardware sharing, the
amount of necessary resources will be smaller than in the case when
each function uses a separate set of resources. The main reason to use
DPR is therefore that it possibly implements an application using a
smaller and thus cheaper FPGA. This is illustrated in the right-hand
side of Figure 3.1. Besides increasing the area efficiency, DPR can
possibly also improve speed and energy consumption.

The area on which the different functions are time-multiplexed
is generally called the reconfigurable region (RR). Whenever one
wants to change the implemented circuit, an amount of time is
needed to rewrite the configuration memory of the reconfigurable
region, called the reconfiguration time. This is an important aspect
of DPR, because the interval between reconfigurations needs to be
sufficiently long as to not nullify the gains obtained by performing
DPR. In general, the overhead associated with the reconfiguration
process is called the reconfiguration overhead. This can also entail
the energy consumption and the hardware resources used by the re-
configuration process. The subsystem that performs the reconfigura-
tion is called the configuration manager (CM) and is generally imple-
mented in software. It is responsible for reprogramming the FPGA
and might be responsible for generating a new configuration. This
could require on-line computations or a simple lookup in an off-line
generated database of configurations.
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Figure 3.2: The conventional DPR tool flow.

3.1 Conventional DPR flow

The conventional DPR tool flow implements every circuit separately
in the reconfigurable region by following the typical steps of an
FPGA CAD flow (synthesis, technology mapping, placement and
routing), as shown in Figure 3.2. The flow generates a configuration
for each circuit. In the example in the figure, two configurations are
generated, starting from a HDL description of each circuit. To switch
between the different circuits the configuration manager overwrites
the reconfigurable region with the appropriate configuration. The
conventional DPR tool flow does not optimize for reconfiguration
time and thus almost the complete reconfigurable region needs to be
rewritten. This may lead to long reconfiguration times. For applica-
tions with a quasi-static behaviour it is previously shown that DPR
can improve the efficiency. For more dynamic applications, however,
this is no longer necessarily the case due to the relatively long recon-
figuration time [75] [27] [67] [81] [74] [96].
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Figure 3.3: A DPR system for designs with infrequently varying pa-
rameter signals.

3.2 Dynamic Circuit Specialization

In certain circuits a subset of input signals, called parameters, change
value only every now and then. An example of such a circuit is a
constant multiplier in which one of the factors changes only once in
a while and is thus considered constant between changes. In this case
the constant factor is considered to be the parameter. These parame-
ter inputs stay the same for a relatively long period and hence the
state of the hardware driven by these signals also does not change.
Only when the parameters change value, will the associated hard-
ware driven by these signals change state. The hardware resources
are therefore not used efficiently since part of the hardware is inac-
tive most of the time.

DPR can offer a solution for this problem by moving the para-
meter inputs to the configuration manager (CM), as is shown in Fig-
ure 3.3. The CM is in this case responsible for generating a specialised
circuit with only fast varying regular signals, whenever the parame-
ter signals change value. The question then remains: how do we best
set up such a DPR system?

A first possible solution uses constant propagation. When the
parameters change value, the CM fills in the new values in a VHDL
description, for example, and runs the complete FPGA tool flow to
generate a new configuration. The circuit that is generated is possibly
smaller and faster. The problem with this approach is that generating
a configuration from a VHDL description takes a long time (at least in
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the order of tens of seconds to minutes). This makes it less useful for
more dynamic applications. Besides, this method is also not efficient
since the complete tool flow is run for parts of the design that are not
driven by the parameters.

Another approach could be to generate all the possible circuits
off-line and store this in a database. The CM then only needs to look
up the right configuration and reconfigure the FPGA. This is possibly
the fastest approach. For some applications, however, an enormous
amount of configurations are needed. Indeed the number of config-
urations grows exponentially with the number of parameter signals.
Take the example of the constant multiplier. If the constant factor for
example has a width of 32 bits, 232 possible configurations need to be
stored.

A third approach, called Dynamic Circuit Specialization, offers an
elegant solution to this problem [20]. This method generates a con-
figuration off-line that does not only contain constant 0’s and 1’s but
also bits that are a Boolean function of the parameter signals. This
type of configuration is called a parameterized configuration and the
Boolean functions are called parameterized bits. Complex time con-
suming steps as placement and routing are all ran off-line. Whenever
the parameters change value, the CM only needs to evaluate the pa-
rameterized bits and reconfigure the FPGA. Thus, generating a new
configuration boils down to evaluating Boolean functions. This can
happen orders of magnitude faster than running the complete FPGA
tool flow. For the example of constant multipliers in [20], it is shown
that this can be done while hardly reducing the quality of the imple-
mentation, in terms of area and speed, compared to complete con-
stant propagation.

A tool flow that is able to automatically generate such parameter-
ized configurations has been developed at the Hardware and Embed-
ded Systems (HES) group at the University of Ghent. This tool flow
is called the TLUT tool flow and is presented in more detail in the
following section. It is available on-line at [43]. The TLUT tool flow
generates parameterized configurations in which only the truth ta-
ble bits are parameterized. A more general tool flow, called the DCS
tool flow, that also generates parameterized routing bits is discussed
in Section 3.2.2. The different steps of the DCS tool flow are still be-
ing researched. Although some prototypes of the different tools are
already implemented, the complete DCS flow is not yet available.
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Figure 3.4: Overview of the TLUT tool flow [19].

38



entity multiplexer is
port (

I : in std logic vector (3 downto 0);
S : in std logic vector (1 downto 0); −−PARAM
O : out std logic

) ;
end multiplexer;

architecture behavior of multiplexer is
begin

O <= I(conv integer(S));
end behavior;

Figure 3.5: The parameterized VHDL code of a 4-to-1 multiplexer
where the select inputs are marked as parameters.

3.2.1 The TLUT tool flow

Figure 3.4 gives a detailed schematic overview of the the TLUT tool
flow. Given an annotated VHDL description, it generates a master
configuration and a reconfiguration procedure. The master config-
uration contains the constant portion of the configuration, with the
regular, non-parameterized bits, together with the default values of
the parameterized bits. It can be used to configure the FPGA at start-
up. The reconfiguration procedure contains the necessary functions
needed to specialize the FPGA’s configuration when the parameters
change value.

3.2.1.1 Annotated VHDL description

The TLUT tool flow starts from a VHDL description in which the
parameter signals are annotated. In this section we will again use
the example of a 4-to-1 multiplexer. Figure 3.5 shows the VHDL de-
scription of such a multiplexer. As can be seen on this figure, the
selection signals are annotated as parameters. This is done by using
the ’–PARAM’ annotation.

Just as a conventional synthesis tool, the synthesis step in the DCS
tool flow converts the parameterized HDL description into a gate-
level circuit. The logic circuit obtained for the multiplexer example is
thus the same as the one shown in Figure 2.9. The only difference of
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Figure 3.6: Example of a Tunable LUT, which is function of a para-
meter signal p.

the synthesis tool in the TLUT tool flow with the conventional flow
is that it preserves the distinction between regular and parameter
inputs.

3.2.1.2 TMAP

As discussed earlier, a conventional technology mapper generates a
network of logic blocks, each consisting of a combination of a lookup
table and a flip-flop. The truth table entries of the look-up table and
the bit that controls the selection of the sequential output are constant
zeros and ones. We will further refer to logic blocks simply as lookup
tables or LUTs.

Figure 2.10 shows the result of the conventional technology map-
ping tool for the multiplexer example. The mapper looks for a depth-
optimal covering of the logic circuit, with a minimum number of 3-
LUTs. In this case three 3-LUTs are needed to implement the multi-
plexer. As can be seen on the figure the mapper looks for parts of the
logic circuits with maximum three inputs and one output, as such
a subcircuit can be implemented with a 3-LUT. Figure 2.11 and Fig-
ure 2.13 show the resulting LUT circuit and its implementation after
placement and routing, respectively.

The heart of the TLUT tool flow is an adapted technology map-
per. This mapper does not map to regular LUTs, but to Tunable LUTs
or TLUTs. A TLUT is a LUT of which the truth table bits are ex-
pressed as a Boolean function of the parameter signals. In Figure 3.6
an example is shown of a 2-input Tunable LUT, which is function of a
parameter signal p. The adapted technology mapper is called TLUT
mapper or TMAP.
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Figure 3.7: Result of the technology mapping using TMAP for the
4-to-1 multiplexer example.

O

Figure 3.8: Resulting LUT circuit after technology mapping for the
4-to-1 multiplexer example, when using TMAP [18].
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The result of TMAP for the 4-to-1 multiplexer example is shown
in Figure 3.7. Because the synthesis tool in the TLUT tool flow pre-
serves the distinction between regular inputs and parameter inputs,
TMAP is aware of which signals are infrequently varying. This is
taken into consideration when searching for a covering with LUTs.
TMAP searches for subcircuits with maximum three regular inputs,
one output and any number of parameter inputs. Such a subcircuit
can be implemented with a 3-input TLUT. The presence of parameter
signals thus translates into a LUT that is dynamically reconfigured
when the parameter signals change value.

The resulting LUT circuit obtained by TMAP is shown in Fig-
ure 3.8 and only uses two 3-LUTs. It is thus more area efficient com-
pared to the conventional mapper, which needs 3 LUTs to implement
the 4-to-1 multiplexer.

3.2.1.3 Generating the master configuration

Only the truth table contents of the LUT circuit obtained by TMAP
are parameterized, the connections between the LUTs are fixed. This
static LUT circuit can thus be placed and routed using the conven-
tional tools. An example of the implementation of the TLUT circuit
on a two by two FPGA is shown in Figure 3.9. Note that besides us-
ing less LUTs, also less routing is used compared to the conventional
implementation in Figure 2.13.

Because the code of the technology mapper in the Xilinx tool flow
is not open-source, a workaround is used to implement TLUT circuits
on Xilinx FPGAs. This workaround uses VHDL library primitives
that instantiate LUTs. The TLUT circuit is thus written out in VHDL
and processed by the complete Xilinx flow.

After routing, the master configuration can be easily extracted,
just as in the conventional FPGA flow. This configuration can be
used to configure the FPGA at start-up.

Xilinx provides intermediary formats in the tool flow that can be
used to change the implementation of a design. After technology
mapping, placement and routing a Native Circuit Description (NCD)
file is generated. This NCD file can be converted to the human-
readable Xilinx Design Language (XDL) format. To add the appropri-
ate truth table values for the desired default parameter values adjust-
ments are made in the XDL file after routing. The adjusted XDL file
is then converted back to an NCD file and the associated bit stream.
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ô0

ô1
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Figure 3.9: Implementation of the TLUT circuit for the 4-to-1 multi-
plexer example in a simple 2 × 2 island style FPGA resource graph
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boxes; And sinks are filled boxes.
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Figure 3.10: The Partial parameterized Configuration of the 4-to-1
multiplexer example [18].

3.2.1.4 Generating the reconfiguration procedure

Besides a LUT circuit, TMAP also generates a Partial parameterized
Configuration (PPC). This is a Boolean circuit that expresses the truth
table contents of the TLUTs as a function of the parameters. The
PPC of the multiplexer example is shown in Figure 3.10. This PPC is
automatically compiled into C code that can be used to generate the
specialized truth table contents of the TLUTs each time the parameter
signals change value. The evaluation C function of the PPC of the 4-
MUX is shown in Figure 3.11.

The reconfiguration procedure also contains the functions needed
to address the configuration interface. In the original implementa-
tion of the TLUT tool flow the HWICAP is used to interface to the
ICAP and reconfigure the FPGA. The XHwIcap_SetClbBits function
provided by Xilinx is used. This function takes the location of the
LUT to be reconfigured as input. To be able to reconfigure the TLUTs
using this function, their location is extracted from the XDL file after
routing.

3.2.1.5 Benefits of the TLUT tool flow

In [18] the TLUT tool flow was implemented on a Xilinx platform
to illustrate the benefits compared to a static implementation. The
XUP board was used that contains a Virtex 2 Pro (XC2VP30) FPGA,
with 30000 LUTs. The Virtex 2 Pro FPGA also contains two Power-
PCs. The Configuration Manager (CM) is implemented in software
on one of the PowerPCs. The CM communicates with the HWICAP
to reconfigure the FPGA when the parameter signals change value.
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void evaluatePPCMux (int s[], int L[][])
int node0 = s[0] & !s[1];
int node1 = !s[0] & !s[1];
int node2 = s[0] & s[1];
int node3 = !s[0] & s[1];

L[0][0] = 1;
L[0][1] = ! node3;
L[0][2] = 1;
L[0][3] = ! node3;
L[0][4] = ! node2;
L[0][5] = ! s[1];
L[0][6] = ! node2;
L[0][7] = ! s[1];

L[1][0] = 1;
L[1][1] = 1;
L[1][2] = 1;
L[1][3] = 1;
L[1][4] = 0;
L[1][5] = node1;

L[1][6] = node0;
L[1][7] = ! s[1];

Figure 3.11: The C-function to evaluate the PPC of the 4-to-1 MUX.
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Figure 3.12: Static implementation of the FIR filter (a), compared to
the DCS implementation (b) [18].

c0 c31c30c1

input

output

Figure 3.13: Schematic representation of the 32-tap FIR filter [18].

The platform implementations used in case of static and DCS imple-
mentation are shown in Figure 3.12 (a) and Figure 3.12 (b), respec-
tively.

The tool flow is used to implement a 32-tap Finite-Impulse Re-
sponse (FIR) filter with an 8-bit input and 8-bit coefficients, shown
in Figure 3.13. The static implementation of the FIR filter is shown
in Figure 3.12 (a). The coefficients of the filter are changed by the
PowerPC by writing to registers. In Figure 3.12 (b) the implementa-
tion using the TLUT tool fow is shown. In this case the coefficients
of the FIR filter are chosen as parameters. Every time the coefficients
change value, the CM will reconfigure the FPGA using the reconfig-

46



Table 3.1: Comparison of the static implementation and the DCS im-
plementation of the FIR filter [19].

Static DCS
FIR Area (LUTs) 4,259 1,985
System Area (LUTs) 1,218 1,298
Total Area (LUTs) 5,477 3,283
Reconf. time (ms) N/A 151

Figure 3.14: (a) Conventional FPGA tool flow (b) DCS tool flow.

uration procedure. Both implementations are tested by comparing
the values generated in hardware to values simulated in software.

The results obtained for both implementations are shown in
Table 3.1. The results show that using the TLUT tool flow the
adaptive filtering application can be implemented using 40% less
resources[19]. However, the static implementation can change the
coefficients in a few clock cycles. In this implementation, the param-
eterized implementation needs 151 ms to evaluate the parameterized
bits and reconfigure the FPGA.
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3.2.2 The DCS tool flow

The general DCS tool flow is shown in Figure 3.14 (b) and is com-
pared to the conventional FPGA tool flow in Figure 3.14 (a). This
DCS tool flow also takes in a HDL description in which the designer
annotates the infrequently varying inputs as parameters. The main
difference with the TLUT tool flow is that it generates a configuration
in which both the LUTs and routing are parameterized.

The core of the TLUT tool flow, the technology mapper TMAP,
maps to a circuit with Tunable LUTs or TLUTs. The TCONMAP tech-
nology mapper used in the DCS flow, on the other hand, maps the
parameterized design onto a Tunable circuit [46]. This is a network
of TLUTs interconnected with Tunable Connections (TCONs). These
connect a source and a sink, as do regular connections, but each Tun-
able connection is also associated with a Boolean expression that is
called the activation function. A Tunable connection only needs to
be realised for the parameter values for which the activation func-
tion evaluates to true. Note that a Tunable circuit can contain con-
nections that have the same sink as long as their activation functions
never evaluate to true at the same time. Figure 3.15 presents an ex-
ample of a Tunable circuit, implemented with 2-LUTs. When the pa-
rameter signals in a Tunable circuit are associated with a concrete
binary value, it results in a regular LUT circuit. For the example in
Figure 3.15 the associated LUT circuits are shown for the parameter
values p = 0 and p = 1.

TPlace and TRoute, the adapted placer and router in the DCS tool
flow, can further refine the Tunable circuit to a parameterized con-
figuration in which some of the configuration bits are expressed as
Boolean functions of the parameters [21, 93, 94, 95], namely the pa-
rameterized bits.

3.3 Limited-context Dynamic Partial Reconfigu-
ration

In theory, the number of circuits that can be time-multiplexed in
a reconfigurable region is only limited by the size of the memory
available to store the different configurations associated with the cir-
cuits. In many cases, however, only a limited number of circuits are
needed. In this work we will call this special case of DPR, limited-
context DPR. Figure 3.16 shows an FPGA with a reconfigurable re-
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Figure 3.15: A Tunable circuit and its associated logic circuits.
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Figure 3.16: Example of limited-context DPR with four contexts or
circuits [52].

gion that contains reconfigurable block A. There are only 4 versions
of block A between which is switched during run-time using DPR.
An example that uses limited-context DPR is a mobile transceiver
that supports different communication standards (like CDMA or Wi-
Fi), but only uses one at any given time. In this case, every context
is a circuit that contains the necessary functions to support the cor-
responding communication standard. Another example is an audio
application which only contains a low-pass and a high-pass adaptive
filter.

As mentioned in the introduction, the conventional DPR flow
generates a configuration for each circuit by implementing each cir-
cuit separately. The conventional DPR flow does not optimize the
reconfiguration overhead. In this dissertation I will show that the
reconfiguration overhead can be reduced through a combined im-
plementation of the limited number of circuits at a certain point of
the tool flow.

3.4 Related work

In [85] the modular design flow of Xilinx is described. This is the
basic flow that is used to implement dynamic partial reconfiguration
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on Xilinx FPGAs. It is the same as the conventional DPR flow de-
scribed in this dissertation. It runs the tool flow separately for each
circuit and therefore reconfigures almost the complete reconfigurable
region. It does not try to minimise reconfiguration overhead such as
in my work. Xilinx also provides a difference-based partial reconfig-
uration flow [40]. In this flow a designer is able to manually make
low-level changes to one design, after which the flow generates a
partial bitstream that incorporates only these changes. In contrast to
the difference-based flow, my work on limited-context DPR consid-
ers several circuits being time-multiplexed on the same region in an
automatic way.

An approach to generating specialized configurations for DPR is
running the conventional FPGA tool flow on-line. This is only use-
ful for quasi-static implementations, since running the complete tool
flow takes considerable time. Some authors propose to improve this
approach by using simpler versions of the FPGA tools. This way the
quality of the implementation is traded off to reduce the overhead of
the CM. A first example of this approach is the work done in [62, 87].
In this work generic netlists are created which are already partially
evaluated for certain parameter signals. This way the synthesis step
is avoided. The time consuming placement and routing steps, how-
ever, still need to be performed on-line.

Some authors focus on specific designs that are manually opti-
mized. In [100] [99], for example, a constant multiplier in which the
constant can be specialized during run-time is hand-designed and
optimized. Although manually designed implementations can be ef-
ficient, the required design effort is very high.

Considerable research has been done on reducing the reconfigu-
ration time of dynamic partial reconfiguration. Several authors con-
sider changing the configuration infrastructure of the FPGA to speed
up the configuration process. The authors in [42], [91], [92] propose
a time-multiplexed FPGA in which each configuration memory cell
is backed by 8 bits of inactive storage in the configuration SRAM.
This architecture was specifically designed for rapid switching be-
tween a limited number of contexts. In [69] the authors extend a
regular configuration memory with a barrel shifter. This architec-
tural enhancement does not only speed up reconfiguration, but also
the relocation of portions of the configuration memory. In [35] an
extension is proposed to the configuration infrastructure that allows
to directly handle compressed bitstreams. In contrast to these works,
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our novel tool flow does not require any changes to the configuration
infrastructure. The FPGA only needs to support dynamic partial re-
configuration.

Several publications, such as [30] [37] [59] [86], focus on reducing
the reconfiguration time on a higher abstraction level in the tools,
namely the one of modules or task graphs. They address the prob-
lem of scheduling several circuits on several reconfigurable regions
in such a way that execution time is optimized. As main objective
they try to overlap the configuration time and calculation time of
tasks. The possibility of changing the location of a module or task, a
concept called relocation, is also investigated in this context [12] [54].
In [48] relocation is considered in a heterogeneous architecture.

Another approach is expediting the actual reconfiguration pro-
cess. In [64] and [39] this is done by using configuration pre-fetching.
In this case, the configuration bit stream is partly loaded to on-chip
memory before the actual reconfiguration process starts. This is of
course only possible in applications where the new configuration is
known beforehand.

Several authors show that the hardware that interfaces the inter-
nal reconfiguration port, the Hardware Internal Configuration Ac-
cess Port (HWICAP), can be sped up significantly [26] [39] [41]. The
techniques considered are Direct-Memory-Access and overclocking.
In [26] custom circuitry is added to detect whether reconfiguration
was successful. In [47], it is shown that the inclusion of the con-
figuration access port into the data path of a processor core using a
Fast Simplex Link (FSL), instead of the Processor Local Bus (PLB) in-
terface to the HWICAP, results in a speed up of the reconfiguration
process.

When the number of circuits that are time-multiplexed on the
same FPGA region is limited, combined optimization approaches can
be considered to reduce area. In [23], the authors use a high-level
tool, called GAUT [33], for a combined implementation of different
data flow graphs of digital signal processing applications, by max-
imizing the similarities between control steps. They do not use dy-
namic partial reconfiguration, but add multiplexers where necessary.
In [82] the authors attempt to increase the correlation between the
configurations by placing the LUTs of the different circuits in such
a way that the connections between the LUTs overlap. A technique
they call edge matching. The overlapping connections can be im-
plemented using the same routing resources and thus the correla-

52



tion between the different routing configurations is increased. They
do, however, not consider the organization of configuration bits in
frames. Also, further on in this work it is shown that edge matching
increases the total wire length of the circuits considerably [4].

Others focus on increasing the correlation between the truth ta-
bles of LUTs that occupy the same physical LUT [25] [77] [78]. This
is done by changing pins to which the LUT inputs connect and tak-
ing advantage of don’t-care values. In [25] the placement is adapted
to further increase the correlation of the LUTs. Increasing the corre-
lation between LUTs can only have a limited impact when trying to
reduce the reconfigurations time, as most configuration bits control
how the FPGA’s interconnection network is configured. In this work,
for example, the contribution of CLBs (that contain several LUTs) to
the total configuration is found to be around 30%. Also, a static CLB
frame is only generated when all the bits of that frame correspond
for the different circuits.

There is also previous work that focuses on reducing the num-
ber of frames that need configuration. In [65] it is proposed to adjust
the router for this purpose. This is done to reduce the load time of
applications on FPGAs in general, it does not consider dynamic par-
tial reconfiguration. The work in [90] adjusts the placer to reduce
the number of frames and also considers dynamic partial reconfigu-
ration. However, they do not consider increasing the correlation be-
tween the routing configurations of the different circuits as in my re-
search. The approach taken is also reducing the size of the bit stream
of each of the circuits separately.

More recent research in literature on DPR focuses on applying
the technique to different applications such as: face recognition [2],
sql query execution [36] [11], triple modular redundancy [22] and
regular expression matching [97]. Also, some work considers using
DPR on the Zynq platform [6] [79] [58].

The work done in my research is complementary to the work
done about extending the regular configuration infrastructure, high-
level task scheduling and expediting the actual reconfiguration pro-
cess. It suits very well the work done about scheduling where a por-
tion of the FPGA is used to time-multiplex different tasks. The tools
I developed could be used to significantly decrease the time needed
to switch between tasks in one reconfigurable region.
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Chapter 4

Exploring novel tool flows
for limited-context dynamic
partial reconfiguration

The conventional DPR flow implements the different contexts or cir-
cuits separately in the reconfigurable fabric, independent of the num-
ber of circuits. This is illustrated in Figure 3.2 for 2 circuits. The
conventional DPR flow does not consider the reconfiguration over-
head, making DPR less useful for more dynamic applications. In con-
trast, in this chapter the possibilities and limitations are explored of
novel tool flows that use a combined approach to implement a lim-
ited number of circuits, thereby reducing the reconfiguration over-
head.

The configuration memory consists mostly of bits that control the
programmable interconnection network. That is why the focus in
this chapter is on reducing the reconfiguration overhead of the inter-
connection network. We therefore assume all Look-up Table (LUT)
bits are rewritten and the tool flows explored in this chapter try to
reduce the number of routing bits that need rewriting.

The main idea in this chapter is, given a limited number of cir-
cuits represented by a high level HDL representation, to form a single
tunable circuit. This tunable circuit contains all circuits as different
implementations of the tunable circuit that are mutually exclusive in
time. Using tools from the DCS flow the tunable circuit can then be
further implemented in the reconfigurable fabric.

TRoute, the router used in the DCS flow, plays a central role in
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the tool flows explored in this chapter. In the first section, TRoute
is therefore presented in more detail. The second section discusses
three tool flows I developed that each perform a combined imple-
mentation of the circuits, taking the reconfiguration overhead into
consideration. The first tool flow uses edge matching, which was
explained earlier in Section 3.4. When I started my research this
was the only technique I found in literature that also considered a
combined implementation approach to reduce the reconfiguration
overhead. The second tool flow optimizes the total wire length of
the tunable circuit during placement. In the last tool flow the wire
lengths of each of the different different circuits are optimized sep-
arately during placement. These three tool flows are first presented
separately and then compared. This comparison was done based on
experiments with tunable circuits containing only two circuits. The
final section of this chapter researches the limitations and benefits of
a combined implementation approach when the number of circuits
increases.

4.1 TRoute: a connection-based DCS router

As we explained in Section 2.2.4, a conventional router calculates the
Boolean values that need to be stored in the configuration bits of
the configurable interconnection network so that the physical logic
blocks are connected as is specified by the nets in the mapped cir-
cuit. The main algorithm used to solve this problem is PATHFINDER

[71]. The PATHFINDER algorithm was discussed in more detail in
Section 2.2.4. PATHFINDER presents the available routing resources
of the FPGA in an easy-to-explore data structure, the routing re-
source graph (RRG). In the PATHFINDER algorithm the connections
that need to be routed are organized in nets. These are sets of con-
nections that share the same source. Connections of a same net are
allowed to share resources. In every routing iteration, the algorithm
rips up and reroutes all the nets in the input circuit. These iterations
are repeated until no shared resources exist between nets or, in other
words, the routing trees of the nets are disjoint. This is achieved by
gradually increasing the cost of sharing resources between nets, a
technique called negotiated congestion. The cost function of a rout-
ing node n in the RRG is

cost(n) = b(n) · p(n) · h(n), (4.1)
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where b(n) is the base cost, p(n) is the present congestion penalty and
h(n) is the historical congestion penalty.

TRoute is the reconfiguration-aware router used in the Dynamic
Circuit Specialization (DCS) tool flow presented in [93]. This DCS
tool flow takes in a design with infrequently varying inputs, called
parameters, and generates a parameterized configuration. This
is an FPGA configuration that expresses the configuration bits as
a Boolean function of the parameters. Whenever the parameters
change value, the Boolean functions are re-evaluated and written in
the configuration memory of the FPGA.

An important concept in DCS is a tunable connection (TCON).
This is a connection, with which a Boolean function of the parameters
is associated, called the activation function. The connection between
the source and the sink of the TCON only needs to be realized in the
FPGA fabric for parameter values for which the activation function
evaluates to True. In contrast to nets, TCONs can legally share a
node in the RRG. This is allowed when they have the same source
or when they have the same sink. TCONs that share the same sink
are not active at the same time, have disjoint activation functions and
can therefore share routing resources.

TRoute is based on the PATHFINDER algorithm and is developed
to route a set of tunable connections [21][93][94]. Instead of nets,
TRoute rips up and reroutes tunable connections. The cost function
of a node n in the RRG, in the case of TRoute, is

cost(n) =
b(n) · p(n) · h(n)

share(n)
, (4.2)

where b(n), p(n), h(n) are as in Equation 4.1 and share(n) is the num-
ber of TCONs that legally share a node.

Note that this equation does not necessarily penalize historical
sharing between connections of the same net. To calculate the oc-
cupancy, it is not the case that the different connections that use a
node are counted. Instead a partition is made of the connections.
The connection are divided into groups such that connections in one
group can legally share routing resources. Connections can legally
share resources if they have the same source or if they have the same
sink. Only two partitions are considered, one based on the sources
and one based on the sinks. The partition with the minimum nuber
of groups is chosen. This minimum number of groups is considered
to be the occupancy. So the connections that legally share a routing
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node are not counted in the occupancy. Also the legal sharing in the
other groups of the partitions is not counted and is therefore not pe-
nalized. More details can be found in [21][93][94].

In Figure 4.1(a) an example is shown of a set of tunable connec-
tions that implement the functionality of a four way switch. The
straight connections are realized when p = 0, the crossed connections
when p = 1. In Figure 4.1(b) the implementation is shown of this
set of TCONs, as generated by TRoute on a 2×2 island-style FPGA.
To generate the parameterized configuration bits of the switches the
activation functions of the TCONs that use the switch are logically
added (OR). Note that a lot of static ones are generated. This is be-
cause TRoute stimulates sharing of resources between connections
with disjoint activation functions. In this example only eight con-
figuration bits are parameterized or dynamic, the rest is static. It is
straight-forward to generate a specialized configuration correspond-
ing to one of the connection patterns of the four-way switch. Only
the parameterized bits need to be evaluated.

4.2 Exploration of novel tool flows

In this chapter we explore tool flows that combine several LUT cir-
cuits into a tunable circuit. This is illustrated in Figure 4.2, in which
two LUT circuits A and B are combined into a tunable circuit T. It
can be verified that T implements A when c0 = 0 and B when c0 = 1.
The tunable circuit can be further implemented in the reconfigurable
fabric using the tools from the DCS flow, such as TRoute. Merging of
several LUT circuits into a tunable circuit consists of two steps:

1. determine which LUTs will be implemented using the same
tunable LUT;

2. the annotation of the connections with the appropriate activa-
tion function to generate the tunable connections.

Indeed, we essentially have one degree of freedom when gen-
erating a tunable circuit. We have to determine which LUTs will
be implemented using the same tunable LUT. Of course, only LUTs
belonging to different circuits can be combined in the same tunable
LUT. Once this is decided, generating the parameterized bits of the
tunable LUT is very straight-forward, as is shown in the example in
Figure 4.3.

58



!"#$#%#

!"#$#"#

#
#
#
#

#
#
#
#
#

&'(#

ı̂0

ı̂1

ô0
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Figure 4.1: (a) Schematic representation of a set of TCONs with the
functionality of a four-way switch. (b) Implementation of that set of
TCONs (black) in a simple 2 × 2 island style FPGA resource graph
(grey). Wires are solid lines; Edges are thin lines; Sources are open
boxes; And sinks are filled boxes.
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Figure 4.2: Merging two LUT circuits into a tunable circuit.

Figure 4.3: Generating parameterized tunable lookup table bits.
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We first assume the circuits are numbered and express this num-
ber in a binary fashion. For example, if there are three circuits, we
need two bits c1c0 to express the circuit number. Every circuit then
corresponds to a Boolean product that evaluates to True for the ap-
propriate circuit. For example, when the circuit c1c0 is 10 the Boolean
product is c1.c0. The bits of a LUT are first multiplied (AND) with
the Boolean product of the circuit the LUT belongs to. The corre-
sponding bits of the different LUTs are then added (OR) to generate
the Boolean expressions that represent the parameterized bits of the
tunable LUT. For example, for the highest bit of the truth table in
Figure 4.3 we get c0.1 + c0.0 which simplifies to c0. We note that
when evaluating the tunable LUT on the right for a certain circuit,
the correct bit values for the LUTs on the left are obtained. Using
the method above, a tunable LUT can implement any combination
of LUTs, as long as they belong to different circuits.

The topology of the tunable circuit is determined, once it is de-
cided which LUTs are implemented in the same tunable LUT. The
connections initially connecting the LUTs will simply connect the
corresponding tunable LUTs. To generate the tunable connections,
the connections of all the circuits are annotated with an activation
function that consists of the Boolean product that corresponds to the
circuit the connection belongs to. When connections have the same
source and sink they can be merged into one tunable connection of
which the activation function is an addition of the Boolean products
of the connections. An example is given in Figure 4.2. In this figure,
connections that are used in both circuits have as activation function
c0 + c0 which simplifies to True or 1.

In Figure 4.2 we simply implement the LUTs with the same in-
dex using the same tunable LUT. There are however many ways to
combine the different LUTs in one tunable LUT, each generating a
tunable circuit with a different topology. In what follows, we present
three different tool flows that generate a tunable circuit, each using
its own optimization criterion.

4.2.1 Edge matching

The first tool flow we propose, as shown in Figure 4.4, takes in the
HDL descriptions of the different circuits and generates a parame-
terized configuration, in which some of the bits are expressed as a
boolean expression of the circuits, for example 1, 0, 0, c1.c0, c0, 1, 0....
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Figure 4.4: Tool flow that uses edge matching when merging LUT
circuits into a tunable circuit.

The tool flow is clearly a combination of the conventional and DCS
tool flows. The conventional tool flow is followed up until the tech-
nology mapping, thus generating a circuit of LUTs for every input
HDL description. In the following step the LUT circuits are com-
bined into one tunable circuit that is further implemented in the re-
configurable region using the TPlace and TRoute step of the DCS
tool flow. The proposed tool flow thus reuses much of the steps of
the conventional and DCS tool flows. The key step in the tool flow is
the combination of different LUT circuits into one tunable circuit, as
is shown in Figure 4.2.

In this first tool flow a technique was used that is found in lit-
erature as edge matching. Edge matching tries to reduce the number
of tunable connections in the tunable circuit formed. It does this by
combining LUTs into tunable LUTs in such a way that the number of
connections that have the same source and sink is maximized. These
overlapping connections can be implemented by the same physical
connection. It is obvious that when the application changes between
these circuits no switches need to be turned in the routing for this
connection. Edge matching attempts to reduce the reconfiguration
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overhead by reducing the number of switches that need reconfigura-
tion.

Circuit edge matching was first proposed in [82]. However, these
authors did not have a router that could route the wires of the differ-
ent circuits simultaneously. In addition, no results regarding the im-
pact on the quality of implementation of the circuits were presented.

In our specific implementation we translated the edge matching
problem into a combined placement problem. This is, we implemented
the edge matching technique using a combined placement approach
based on simulated annealing. Given a placement of all the circuits
separately in the reconfigurable region, a tunable circuit can easily
be extracted. The LUTs positioned on the same physical LUT will be
implemented using the same tunable LUT. The number of TCONs
of this tunable circuit is used as a cost function during the combined
placement. This is discussed in more detail in the following section.

4.2.1.1 Combined placement

A conventional FPGA placement algorithm takes two inputs: the
mapped input circuit and a description of the target FPGA architec-
ture. The algorithm searches a legal placement for the logic blocks of
the input circuit so that circuit wiring is optimised. In a legal place-
ment every LUT is associated to (placed on) one of the physical LUTs
(without overlap).

As we explained in Section 2.2.3, the conventional placement tool
is based on simulated annealing. The algorithm starts by randomly,
but legally, placing the functional blocks in the input circuit on phys-
ical blocks of the FPGA architecture. Afterwards, the placer repeat-
edly tries to improve the placement cost by interchanging the func-
tional blocks placed on two randomly chosen physical blocks. Such
an interchange is called a swap.

The simulated annealing algorithm used in the combined place-
ment step, of which the simplified pseudo code is shown in Fig-
ure 4.5, is very similar to that of the conventional placement. We
extended the conventional placement tool to accommodate the si-
multaneous placement of several LUT circuits. First, the LUTs of all
the circuits are placed randomly on the reconfigurable region. In the
pseudo code we assume there are N circuits being placed. In the
conventional placement only one LUT is allowed per physical LUT.
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function combined placement(Netlists NLi, Architecture
A):

for i in 1 to N:
Placement Pi = randomPlacement(NLi, A)

while (T > Tmin):
c = pickRandomCircuit()
move = findLegalMove(P,c)
∆Cost = costAfter(move, NLi, P) − currentCost(

NLi, P)
if (∆Cost < 0 or uniform(0, 1) < e−

∆Cost
T ):

P = acceptSwap(move, P)

return P

Figure 4.5: Simplified pseudo code for the simulated annealing based
combined placement algorithm.

In the case of the combined placement, however, LUTs belonging to
different circuits can be placed on the same physical LUT.

During the combined placement algorithm, selecting a swap con-
sists of two steps: selecting a circuit for which the swap will be ex-
ecuted and choosing two random physical blocks. Only the LUTs
placed on the chosen physical LUTs belonging to the selected circuit
will be interchanged, the LUTs of the other circuits maintain their
position.

Just as in the conventional placement algorithm a swap is ac-
cepted if the cost function used reduces. Swaps that don’t reduce
the cost also have a chance of being accepted, which is dependent of
the temperature T of the algorithm.

One of the advantages of using a simulated annealing based
placement approach to place the circuits simultaneously is that we
are able to easily experiment by adjusting the cost function used in
the simulated annealing algorithm. In the case of edge matching the
cost function consists of the number of TCONs of the tunable cir-
cuit being formed. During the combined placement algorithm a con-
nection C is determined by its physical source and sink pin (so, si).
Matching connections are counted only once. A collection of N con-
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Figure 4.6: Tool flow that uses total wire length optimization of the
tunable circuit when merging LUT circuits into a placed tunable cir-
cuit.

nections, Ci = (soi, sii),with i ∈ {1, 2, ..., N}, match if soi = soj and
sii = sij ∀i, j ∈ {1, 2, ..., N}. We note that it is only useful to define
matching of connections when the connections belong to different
circuits.

4.2.2 Optimization of the total wire length

The combined placement algorithm in the previous section uses the
number of TCONs of the tunable circuit being formed as a cost func-
tion. The benefit of using a simulated annealing approach is that dif-
ferent cost functions can be tried. Indeed, circuit edge matching only
looks at the topology of the tunable circuit that is formed and does
not take into account the placement of the tunable LUTs. However,
using a combined placement strategy, the information regarding the
placement of the LUTs also allows to asses an estimation of the wire
usage of the tunable circuit being formed. To achieve this goal, the
cost function used in the total wire-length optimization approach uses
an estimation of the wire length TRoute will need to route the tun-
able circuit. The wire-length estimation used during the combined
placement is the same as the one TPlace uses during the placement
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Figure 4.7: Tool flow that uses individual wire length optimization of
the tunable circuit when merging LUT circuits into a placed tunable
circuit.

of the tunable circuit after merging.

The tool flow proposed in this section is shown in Figure 4.6.
Now the LUT circuits are merged into a tunable circuit during a com-
bined placement step that optimizes the total wire length, generating
a placed tunable circuit. Therefore only a routing step is necessary to
complete the implementation.

4.2.3 Optimization of the wire length per circuit

The third and final tool flow also takes the wire length into consider-
ation. The only difference with the tool flow proposed in the previ-
ous section is that the wire length is optimized per circuit. Figure 4.7
shows this tool flow. The main difference is that the placement step
also happens separately. This flow also generates a placed tunable
circuit which only needs to be routed. Note that the only step where
a combined implementation occurs in this flow is the routing.
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4.2.4 Experiments and results

4.2.4.1 Experimental set up

Benchmarks To validate the proposed tool flows we conducted ex-
periments using 3 different types of applications: a regular expres-
sion matching application (RegExp), an adaptive filtering applica-
tion (FIR) and general MCNC benchmarks. All experiments in this
section implement 2 of these circuits in the reconfigurable region.

In [89] a tool was developed that can generate a hardware en-
gine, written in VHDL, that matches a certain regular expression. In
the first set of experiments, we chose 5 regular expressions out of
the Bleeding Edge rules set [1] and with this tool generated the cor-
responding circuits. Then 10 experiments were executed using by
picking all possible combinations of 2 circuits out of the 5 generated
circuits. In the second set of experiments we combined 10 low pass
and 10 high pass finite impulse response (FIR) filters. The non-zero
coefficients were chosen randomly, after which all the constants were
propagated. Such a FIR filter is 3 times smaller than the generic ver-
sion.

Finally, in the third set of experiments, we chose 5 circuits out of
the general MCNC benchmark suite [112] that were of similar size
compared to the rest of the circuits in these experiments. Afterwards
we executed 10 experiments by making all possible combinations of
2 circuits.

For every application the minimum, average and maximum
number of LUTs are reported in Table 4.1.

Table 4.1: Size of the LUT circuits used in the experiments.

Minimum Average Maximum
RegExp 224 243 261
FIR 235 302 371
MCNC 264 310 404

FPGA architecture The combined placement algorithm was imple-
mented based on our Java version of the VPR (Versatile Place and
Route) wire-length driven placer [13]. VPR is the most commonly
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used academic tool for place and route algorithms. The FPGA archi-
tecture used for each of the implementations, is described in 4lut_-
sanitized.arch. This is an FPGA architecture file included in the
distribution of VPR. It has logic blocks containing one 4-LUT and
one flip-flop and the wire segments in the interconnection network
only span one logic block. We note that the techniques and tools
we use are independent of the architecture used. The number of
inputs of the LUTs is simply an input parameter of the tool flow.
Also, different routing architectures can be used since TRoute uses
a standard representation of the routing infrastructure, the routing
resource graph [13].

Since there is no other functionality implemented on the FPGA,
the reconfigurable region comprises the complete FPGA in our ex-
periments. As recommended in [13], the square area of the FPGA
and the channel width of this architecture were both chosen 20% big-
ger than the minimum needed.
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Table 4.6: Overview of the average reduction of reconfiguration over-
head (RRO) (in %) and wire length increase (WLI) (in %) for the dif-
ferent approaches considered.

RegExp FIR MCNC
RRO WLI RRO WLI RRO WLI

Edge matching 35 60 34 78 39 83
Total wire length 34 26 34 26 38 27
Wire length per mode 35 10 34 12 39 11

(in %)

4.2.4.2 Results

We point out that both our approach and the conventional DPR flow
have the same gains in area compared to a static implementation that
does not use DPR. Instead of implementing the different circuits next
to each other on the FPGA, only an FPGA region that can contain the
biggest circuit is needed. Since both the conventional DPR approach
and our new approaches time-multiplex the different circuits on the
same FPGA region, they use the same amount of area. Two other
metrics were used to further evaluate the quality of the implementa-
tion: reconfiguration overhead and wire length.

Table 4.2 presents the results obtained for the conventional DPR
flow. Tables 4.3, 4.4 and 4.5 contain the results obtained for the edge
matching flow, the total wire length optimization and the individual
wire length optimization approach, respectively. These last tables
were expressed in percentages relative to the conventional DPR flow.
Table 4.6 summarizes the average results. It contains the average
values for both the reduction of reconfiguration overhead (RRO) as
the wire length increase (WLI), compared to the conventional DPR
flow. These results are discussed in more detail below.

4.2.4.3 Reconfiguration overhead

In this section we assume the reconfiguration overhead to be directly
proportional to the number of bits that needs to be rewritten in the
configuration memory. The reconfiguration overhead gives an indi-
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Table 4.7: Overview of the maximum and minimum reduction of the
reconfiguration overhead (RRO) (in %) for the different approaches
considered.

RegExp FIR MCNC
Max Min Max Min Max Min

Edge matching 38 33 36 33 42 33
Total wire length 38 33 35 33 42 32
Wire length per mode 36 33 36 31 42 32

(in %)

cation of how much time is needed to load the configuration in the
configuration memory during run-time, i.e. the reconfiguration time.
It is also a good indicator for the memory space needed to store the
configuration bit stream.

The reconfiguration overhead is broken down into two parts:
LUT bits and routing bits. In this work we assume that all LUT bits
are rewritten. We do however count only the bits in the routing that
are dynamic. A dynamic configuration bit has a different value for
the different contexts or circuits. It therefore needs to be rewritten
when one switches between the circuits implemented in the recon-
figurable region. For our approach the dynamic bits of course corre-
spond to the parameterized bits.

Note that it would be in the advantage of the combined imple-
mentation approach if the LUT bits would also be counted in a bit
wise fashion, because this would increase the routing to LUT ratio.
We choose however not to do this for two reasons. The techniques
developed in this chapter do not optimize the correlation between
LUT bits. The second reason is that this way the LUT bits do not
need to be accessible per bit to apply this new technique.

In Table 4.6 we see that the tool flows proposed in this chapter all
obtain a reduction of reconfiguration overhead of around 35%. The
regular expression and adaptive filtering application obtain a reduc-
tion of around 34%, while a reduction of around 39% is achieved for
the MCNC benchmarks. Table 4.7 shows the maximum and mini-
mum values obtained for the reduction of reconfiguration overhead.
We see that the results of the regular expression matching and the
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adaptive filtering application are between 31% and 38%. The results
for the MCNC benchmarks are between 32% and 42%.

In Figure 4.9 (a) the RRO of the three proposed tool flows over all
benchmarks is shown in a whisker plot. The main observation here
is that the edge matching approach, which was previously proposed
in [82], on average does not further increase the correlation between
configurations. The reduction of reconfiguration overhead mainly
comes from the use of TRoute.

Figure 4.8 illustrates how the combined routing using TRoute
reduces the number of bits that need to be rewritten in the config-
uration memory, compared to the conventional DPR flow. In Fig-
ure 4.8(a) a set of TCONs is shown that represents a simple 2:1 mul-
tiplexer we would like to implement using dynamic reconfiguration.
The goal is to obtain two FPGA configurations. One corresponding
to connection (i0, o0), the other one to connection (i1, o0). By recon-
figuring the FPGA during run-time with the appropriate configura-
tion we can choose which input gets connected with the output.

Figures 4.8(c) and (d) show a possible implementation of the con-
nections (i0, o0) and (i1, o0) respectively, on a simple 2×1 FPGA, us-
ing the conventional DPR flow. Although the wire length of each of
the implementations is optimal, we note that the switches being used
in the two configurations are completely different. In this example
the bits of all the 10 used switches would need to be changed to ob-
tain an appropriate configuration. In Figure 4.8(b) we see the same
example implemented using TRoute. TRoute stimulates sharing of
routing resources between connections of different circuits. This re-
sults in a parameterized configuration with only 2 parameterized
bits. Only these bits need to be rewritten to specialize the parame-
terized configuration into the appropriate regular configuration.

4.2.4.4 Wire length

In the previous section it was shown that a significant reduction of
the reconfiguration overhead can be obtained using a combined op-
timization approach. However, this benefit does not come for free.
In our proposed tool flows the different circuits are not implemented
separately, as is the case in the conventional DPR flow, but instead
a global solution is considered to generate an efficient tunable cir-
cuit. In this section we assess the impact this has on the wire length.
Wire length is an important metric for the quality of a circuit, since it
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Figure 4.8: Schematic representation of a set of TCONs with the func-
tionality of a 2:1 multiplexer (a). Combined implementation of that
set of connections using parameterized configurations (b), compared
to a separate implementation by the conventional DPR flow(c)(d).
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Figure 4.9: Whisker diagrams of the RRO (a) and WLI (b) of the
explored tool flows (in % relative to conventional DPR.)
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Table 4.8: Overview of the maximum and minimum wire length in-
crease (WLI) (in %) for the different approaches considered.

RegExp FIR MCNC
Max Min Max Min Max Min

Edge matching 84 42 101 42 192 28
Total wire length 36 18 36 12 60 9
Wire length per mode 23 4 25 3 22 4

(in %)

correlates with power usage and performance (maximum clock fre-
quency) of a circuit [13]. Each circuit uses a set of wires when it is
active. We compare the size of this set in the case of implementa-
tion with conventional DPR and the three tool flows proposed in this
chapter. Results are averaged over all experiments. We also present
maximum and minimum values.

Table 4.6 contains the summary of the average results obtained in
the experiments. Table 4.8 presents a summary of the maximum and
minimum wire length increases.

In the previous section we saw that all the tool flows we pro-
posed resulted in more or less the same reduction of reconfiguration
overhead. Table 4.6 clearly shows that the edge matching approach
increases the wire length considerably. The average wire length in-
crease is 60%, 78% and 83% for the regular expression, adaptive fil-
tering and MCNC benchmarks, respectively. In Table 4.8 we even see
that for the MCNC benchmarks the maximum wire length increase is
192%. It seems that edge matching constrains the solution space that
can be explored by the placement and routing algorithms. The wire
length is best taken into consideration when generating the tunable
circuit. Compared to the experiments done in [82] we also use big-
ger and more general applications. The work in [82] does not report
results on impact of the quality of implementation of the circuits.

The total wire length optimization approach results in an increase
in wire length of around 26% on average and maximum 60%. This is
already much better than the edge matching approach. The approach
that obtains the best results however is the individual wire length
optimization approach. This approach results in an average increase
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in wire length of around 11% and maximum 25%. Figure 4.9 (b) that
plots the WLI of the three proposed tool flows over all benchmarks,
visualizes the differences between the tool flows.

The importance of this wire length increase is dependent on the
application. Note, however, that there are applications that do not
run at their maximum performance, because system requirements
are not that stringent. Since FPGAs are also used for parallel applica-
tions, such as regular expression matching, they often rely more on
massive parallelism than on high clock frequencies for performance.
There are therefore applications, for which the increase in wire length
is not a major draw back, especially given the significant reduction
of the reconfiguration overhead that can be obtained with this tech-
nique.

4.3 Combining more than 2 circuits

4.3.1 Experiments and results

4.3.1.1 Experimental set-up

The experimental set-up is the same as the one for 2 circuits in the
previous section. Experiments were done using 3 types of bench-
marks: a regular expression matching application, an adaptive filter-
ing application and general MCNC benchmarks. In each experiment
10 implementations were generated with a combination of N circuits
out of the benchmarks, where N was varied between 2 and 5. This
way we can analyze the quality of the implementation as the number
of circuits increases. For the adaptive filtering application no solution
was found for N = 5. In this section we only consider the individual
wire length optimization approach, since this had superior results in
the previous section.

4.3.1.2 Results

4.3.1.3 Reconfiguration overhead

The average results for the reduction of the reconfiguration overhead
(RRO) and wire length increase (WLI) are presented in Table 4.9. The
maximum and minimum values for the reduction of the reconfigura-
tion overhead are presented in Table 4.10.
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Table 4.9: Overview of the average reduction of the reconfiguration
overhead (RRO) (in %) and wire length increase (WLI) (in %), for
increasing number of circuits.

RegExp FIR MCNC
Nr. of circuits RRO WLI RRO WLI RRO WLI

2 35 10 34 12 39 11
3 33 17 34 21 38 16
4 32 20 32 25 36 22
5 30 22 34 25

(in %)

We see in Table 4.9 that the reduction that can be obtained using
the individual wire length optimization approach becomes slightly
smaller as the number of circuits increases. It decreases by 5% for the
regular expression matching applications and MCNC benchmarks.
The reduction for the adaptive filtering application is 2%. The re-
duction of the reconfiguration overhead for 4 circuits is around 34%
for all benchmarks. The minimum and maximum values more or
less follow this trend.The reduction of reconfiguration overhead is
between 29% and 36% for the regular expression matching and adap-
tive filtering applications. For the MCNC benchmarks this is be-
tween 32% and 42%.

4.3.1.4 Wire length

The average increase in wire length, as shown in Table 4.9, increases
as the number of circuits is higher. For the regular expression match-
ing and MCNC benchmarks this increases from around 11% for 2
circuits to around 24% for 5 circuits. For the adaptive filtering appli-
cation it increases to 25% for 4 circuits. Table 4.11 shows the mini-
mum and maximum values for the wire length increase. The mini-
mum and maximum wire length increases are around 10 % and 30
%, respectively.
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Table 4.10: Overview of the maximum and minimum reduction of
reconfiguration overhead (RRO) (in %), for increasing number of cir-
cuits.

RegExp FIR MCNC
Nr. of circuits Max Min Max Min Max Min

2 36 33 36 31 42 32
3 35 32 35 33 41 34
4 33 30 33 31 38 33
5 32 29 37 32

(in %)

Table 4.11: Overview of the maximum and minimum wire length
increase (WLI) (in %), for increasing number of circuits.

RegExp FIR MCNC
Nr. of circuits Max Min Max Min Max Min

2 23 4 25 3 22 4
3 29 11 38 13 27 4
4 30 11 32 18 31 7
5 33 14 - - 35 15

(in %)
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Figure 4.10: Overview of the three tool flows developed in this chap-
ter: edge matching (a), total wire length optimization (b) and individ-
ual wire length optimization (c).
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4.4 Discussion

Dynamic reconfiguration allows to implement several circuits in the
same reconfigurable region. This can increase the area efficiency of
the implementation significantly. The downside of this approach,
however, is the reconfiguration overhead. To switch between circuits
the configurations need to be loaded into the configuration mem-
ory, which takes considerable time. The configurations also take up
memory space.

The conventional DPR flow implements the circuits separately in
the reconfigurable region without taking the reconfiguration over-
head into account. It does this independent of the number of circuits
being implemented. In contrast, in this chapter we explored three
novel tool flows in which a limited number of circuits are imple-
mented taking the reconfiguration overhead into account. Because
most bits of the configuration memory control the routing, the fo-
cus is on reducing the reconfiguration overhead of the routing. This
is done by using a combined implementation approach at a certain
stage of the tool flow. The three tool flows are all shown in Fig-
ure 4.10, to allow side-by-side comparison.

The first tool flow uses edge matching to generate a tunable cir-
cuit that has a reduced number of connections. This tunable circuit is
then further implemented using the TPlace and TRoute tools of the
DCS tool flow. The second and third tool flow generate a tunable cir-
cuit that is already placed and only needs to be routed using TRoute.
The second tool flow uses a cost function during a combined place-
ment step that takes into account the total wire length of the tunable
circuit. The third tool flow optimizes the wire lengths of the different
circuits separately during placement.

From the experiments I conducted in this chapter it turns out that
the reduction of reconfiguration overhead that can be obtained using
a combined implementation approach is around 35%. This reduc-
tion of reconfiguration overhead comes from the combined routing
approach used by TRoute. TRoute optimizes the total wire length
of the tunable circuit and as such reduces the number of dynamic
bits in the routing. This reduction of reconfiguration overhead does
not come for free, it is associated with an increase in wire length of
the implemented circuits. The edge matching approach, previously
proposed in [82], does not increase the reduction of reconfiguration
overhead obtained using TRoute. It is, however, associated with a
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high increase in wire length. Compared to the experiments done
in [82] we use bigger, more general circuits and report the impact
on the quality of implementation of the circuits.

The third tool flow obtained the best results, with an increase in
wire length of, on average, around 11% for 2 circuits. This tool flow
was further researched for increasing number of circuits. The exper-
iments in this chapter show that as the number of circuits increases,
the reduction of configuration data lowers with 5%. The increase in
wire length is more noticeable, it increases from around 11% for 2 cir-
cuits to around 23% for 4 circuits on average. No solution was found
for the adaptive filtering application for 5 circuits. The combined op-
timization tool flows could not find a solution for all the applications
considered when the number of circuits was more than 5.

In this chapter the reconfiguration overhead is expressed as the
number of bits that needs to be rewritten in the configuration mem-
ory. For the routing we counted the number of dynamic bits. How-
ever, the configuration memory of current commercial FPGAs is or-
ganized in frames. A configuration frame needs to be rewritten com-
pletely, even when it contains only one dynamic bit. Although much
lessons are learned from the techniques developed in this chapter,
these would only be useful if the routing’s configuration memory
would be bit-accessible. In the next chapter other techniques are
developed that can be used directly in a frame-based reconfigura-
tion approach. These techniques were developed based on lessons
learned in this chapter.
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Chapter 5

Reducing the overhead of
limited-context DPR in a
frame-based reconfiguration
approach

As was mentioned in the introduction, the configuration memory of
FPGAs consists of SRAM memory cells that control the contents of
the lookup tables and the state of the routing switches. To imple-
ment a circuit on the FPGA, a configuration needs to be generated.
This configuration contains the binary values that need to be writ-
ten to the FPGA’s configuration memory cells. In conventional DPR
systems, a configuration is generated for every circuit by implement-
ing it independently in the reconfigurable region (RR). Each memory
cell of the RR then corresponds to one binary value for each circuit.
When these binary values are the same for a single memory cell in
all circuits, they are called a static bit. Otherwise, they are called a
dynamic bit. Memory cells containing a static bit do not need to be
rewritten when switching between circuits.

However, in current FPGAs, the reconfiguration granularity is a
collection of memory cells called a frame. A whole frame needs to be
rewritten, even when only one memory cell of the frame contains a
dynamic bit. As we will show further on, the problem with conven-
tional DPR systems is that the different circuits are implemented sep-
arately in the reconfigurable region. The dynamic bits are therefore
scattered over the frames of the configuration memory. This makes it
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Figure 5.1: Scattering of the dynamic bits when using the conven-
tional DPR tool flow.

necessary to reconfigure almost the complete reconfigurable region.
This is illustrated in Figure 5.1, for a simplified configuration mem-
ory where each frame contains 18 bits. Our goal is to cluster the
dynamic bits so that less frames need to be reconfigured.

An FPGA configuration consists mostly of routing bits. Figure 5.2
shows, for example, that in the experiments of this chapter only
30% of the configuration memory is used for the Configurable Logic
Blocks (CLBs). The rest is used for the configuration of the switch
blocks (SBs) and connection blocks (CBs) in the routing. This is the
main reason that in this chapter we focus on the routing algorithm.

In this chapter, I present two routing algorithms, called Static-
Route and ClusterRoute, that can cluster the dynamic bits in fewer
frames, and thus increase the number of routing frames without dy-
namic bits. This reduces the reconfiguration overhead, because the
routing frames without dynamic bits are constant for all the imple-
mented circuits and thus do not need reconfiguration during run-
time.

5.1 StaticRoute: clustering dynamic bits in dy-
namic regions

The approach taken in this section consists of two steps. In a first
step the configuration memory of the RR’s routing switches is di-
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CLB (30%)

Connection 
   Blocks (32%)

Switch
          Blocks (38%)

Figure 5.2: The relative contribution of CLBs and routing to the size
of the configuration memory.

vided into a static and a dynamic part. Care needs to be taken that
the memory cells of the static part reside in other frames than those of
the dynamic part. This way the configuration frames are split up in
static and dynamic frames. Then, in a second step the interconnec-
tions of all circuits are routed simultaneously using a novel router,
which is called StaticRoute. StaticRoute routes the interconnections
in such a way that dynamic bits are avoided in the static switches of
the RR. The dynamic bits are thus clustered in the dynamic part of
the configuration memory. This is illustrated in Figure 5.3, where the
static frames (marked with S) do not contain dynamic bits. To the
best of my knowledge, I was the first to propose such an approach.

StaticRoute uses a novel concept called switch congestion. In con-
trast to wire congestion, where a wire is congested if multiple con-
nections try to use it, a switch is said to be congested when it is in a
static part, but is controlled by a dynamic bit. In both cases the con-
gestion represents situations which need to be avoided in the final so-
lution. StaticRoute is based on the PATHFINDER algorithm, explained
in Section 2.2.4, and also uses the negotiated congestion mechanism
to resolve both wire and switch congestion.

To implement the circuits on the FPGA, a router alone is not
enough, but a complete tool flow is needed. In Section 5.1.1, the Sta-
ticRoute tool flow is presented and compared to the conventional
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Figure 5.3: Clustering of the dynamic bits in dynamic frames when
using the StaticRoute tool flow.

DPR tool flow.
Before StaticRoute is used the routing switches need to be marked

as being either static or dynamic. We note that this happens in the
CAD software. To be able to do this, the representation of the FPGA’s
architecture needs to be extended. This is explained in Section 5.1.2.

Detecting dynamic bits after the configurations are generated is
easy. When a memory cell has different values in the different con-
figurations, it contains a dynamic bit. This means it will have to be
rewritten during run-time. In Section 5.1.3 we show, however, that it
is also possible to detect dynamic bits during routing.

Section 5.1.4 handles how StaticRoute extends the cost function
of PATHFINDER, so that dynamic bits are avoided in the static part of
the configuration memory.

Section 5.1.5 and Section 5.1.6 present the results of thorough ex-
periments done on a 6-LUT architecture based on the commercially
available Stratix IV FPGA. Section 5.1.5 explores how the static part
is best chosen in the FPGA’s configuration memory. Our approach
is specifically focused on the case where the number of circuits to be
implemented in the reconfigurable region is limited. In Section 5.1.6
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Figure 5.4: The StaticRoute tool flow. StaticRoute also takes as input
the set of switches that are marked static.

the impact on performance is discussed as the number of circuits in-
creases.

5.1.1 The StaticRoute tool flow

The proposed tool flow is presented in Figure 5.4. Instead of running
the tool flow completely separately for the different circuits, the idea
is to have a combined routing of the circuits. In this case, the tool
flow is run separately until placement, generating a placed design for
each circuit. Then the nets of all the circuits are merged into one set
of nets. The tool flow was designed this way because from Chapter 4
it followed that a combined placement algorithm tends to increase
the wire length of the circuits significantly and it therefore was better
to focus solely on the routing algorithm [5].
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The set of merged connections is routed with StaticRoute. Sta-
ticRoute thus routes the nets of all circuits simultaneously. This is
of course only viable when the number of circuits is limited. Static-
Route detects dynamic bits and clusters them in the dynamic routing
frames. Figure 5.4 shows that the result of the StaticRoute flow is one
static configuration and a dynamic configuration for every circuit.
The static configuration contains the binary values for the static part
of the RR’s routing. It only needs to be loaded to the FPGA’s configu-
ration memory once at start-up. The dynamic configurations contain
the remainder of the configuration of the RR, needed to reconfigure
the Configurable Logic Blocks (CLBs) and the dynamic part of the
routing. These are used to switch between circuits during run-time.
Since the dynamic configurations are much smaller than a configura-
tion of the complete RR, the reconfiguration overhead can be reduced
considerably.

5.1.2 Extended routing resource graph

As discussed in Section 2.2.4, in a standard routing resource graph
(RRG) the nodes represent wires and the directed edges represent
switches. In conventional routing algorithms, information needs to
be associated only with the wires. However, when developing the
StaticRoute routing algorithm for DPR, a new representation is nec-
essary to associate information with the switches during routing.
This can be a cost or information on which circuits are using a certain
switch. This information can then be used to associate a switch con-
gestion cost with the switches. Therefore, the routers in this chapter
do not make use of a standard RRG, but of an extended RRG. This ex-
tended RRG does not only represent the wires as nodes but also the
switches. An example of an extended RRG is shown in Figure 5.5.
The round nodes are wires and the square nodes switches.

We note that this is a straight-forward extension of the represen-
tation of the routing architecture. Also adding information to the
switches during routing happens in the CAD software and not in
the actual architecture. The FPGA and its routing architecture do
not need any adaptation for the routing algorithms described in this
chapter.
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Figure 5.5: An example of an extended RRG of a multiplexer con-
trolled by some dynamic bits (a) and one controlled only by static
bits (b). The round nodes are wires and the square nodes switches.

5.1.3 Detecting dynamic bits in the extended routing re-
source graph

As can be seen in Figure 5.4, the input to StaticRoute is the list of the
nets of all circuits that need to be implemented in the reconfigurable
region. These nets are all annotated with the ID of the circuit they
belong to. When a net uses a node during routing, it is also annotated
with this ID. So, each node stores information regarding the updated
set of circuits that use that node. Our starting point in this section is
therefore an extended RRG annotated with this information.

As will be explained later, to take the reconfiguration overhead
into consideration, also the switches will be associated with a cost.
That is why we need to detect dynamic bits, to be able to calculate
that cost. In this subsection we only discuss the detection of whether
a switch contains a static or dynamic bit. The novel cost function,
that combines the detection of dynamic bits with the information
about how the switches are organized in frames, is discussed in Sec-
tion 5.1.4.

Let us assume 4 circuits, numbered 1 to 4, are implemented in
the RR. In Figure 5.5(a) we see a routing multiplexer of the RR, rep-
resented as an extended RRG. It connects the top wire to its output
for circuits 1 and 2. The middle wire is connected to the output for
circuit 3. Circuit 4 does not use the routing multiplexer and therefore
is not shown in the figure. Let us focus on the top switch. It follows
that this switch needs to be closed for circuit 1 and 2. It needs to be

91



Figure 5.6: An example of a switch S controlled by a dynamic bit.

open for circuit 3, as not to add any extra capacitance of the wires of
the other circuits. It has a don’t-care value for circuit 4, because this
circuit is not using this multiplexer. In this case, the switch clearly is
controlled by a dynamic bit, since it has different values for different
circuits.

Let us look at a second example in Figure 5.5(b). In this case the
top switch has value 1 for circuits 1, 2 and 3. And it has a don’t-care
value for circuit 4. It is clear that when a switch and its connected
wires are used by the same circuits, it does not have to be changed
during run-time. The switch is closed for the circuits that use it and
has a don’t-care value set to 1 for the other circuits. The remaining
switches are static, because they are not used by any circuit. They
always have the static value zero.

In general, in the extended RRG, a switch node S connects two
wire nodes Win and Wout. Let us assume that S is used by a set of
circuits CS . Win and Wout are used by Cin and Cout respectively. We
state that S is controlled by a dynamic bit if:

((CS 6= Cin) ∨ (CS 6= Cout)) ∧ CS 6= φ. (5.1)

Figure 5.6 shows an example with all the terminology indicated
on the figure. In this figure we see that both switch S and wire node
Win are used by circuits 1 and 2, whereas the wire node Wout is used
by circuits 1, 2 and 3. Switch S therefore contains a dynamic bit as
CS is different from Cout.

There is, however, a property that allows to express this condition
differently: if a circuit uses a switch, then this circuit will also use
both connected wires. The condition to detect a dynamic bit in switch
S is therefore also expressed as:

((|CS | < |Cin|) ∨ (|CS | < |Cout|)) ∧ |CS | 6= 0. (5.2)
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The conditions CS 6= φ and |CS | 6= 0 are necessary to exclude
unused switches, which are always static. We note that Equation 5.1
and Equation 5.2 are equivalent, they do not affect the end result.
Both can be used to detect dynamic bits. Therefore for both condi-
tions exactly the same results in terms of reduction of reconfigura-
tion overhead and maximum clock frequency are obtained. In the
implementation of this chapter we used Equation 5.2.

5.1.4 Cost function

In the previous sections we explained that in the extended RRG some
switches are marked as being static. We also presented a way to de-
tect dynamic bits in the extended RRG. In this section we introduce
the term switch congestion. A switch is said to be congested when it is
marked as static, but is controlled by a dynamic bit.

In the PATHFINDER algorithm the cost of using a wire only takes
into account wire congestion. The nets are ripped up and rerouted
until there are no wires that are congested. In this section we describe
how we extended this algorithm to also take switch congestion into
consideration. StaticRoute rips up and reroutes the nets of all circuits
until all wire and switch congestion is resolved.

In the PATHFINDER algorithm a connection of a net is routed by
searching the path of wire nodes with lowest cost in the RRG. In our
algorithm the same happens in the extended RRG. Except that, to
take switch congestion into consideration an extra cost per wire is
added. Out of Equation 5.2 follows that when a wire is used, the
congestion of all the static switches that are connected with it in the
extended RRG are affected. That is why the cost of switch nodes
in the path of the RRG is zero. So, only the wires contribute to the
cost of a net. Switch nodes are used to hold information needed to
determine the switch congestion penalty.

In our novel cost function, the cost of a node in the extended RRG
is

cost(n, c) =

{
costw(n, c) + costs(n) if n is a wire
0 if n is a switch

(5.3)

where costw(n, c) is the wire congestion cost associated with wire
node n and circuit c (we discuss the influence of c later). The term
costs(n) is the switch congestion cost associated with wire node n.

93



Figure 5.7: Example where the switches of the set S(n) for a wire
node n are indicated in black in the extended RRG.

The term costw(n, c) takes wire congestion into consideration and
is very similar to Equation 2.1. Remember that StaticRoute routes the
nets of all circuits simultaneously. However, when a net of the circuit
c is routed, only the other nets of c are taken into consideration for
the wire congestion. This is because nets of the other circuits do not
cause wire congestion. They are never present on the FPGA at the
same time as circuit c and therefore can share wires with circuit c.
The equation for costw(n, c) is

costw(n, c) = p(n, c) · h(n, c), (5.4)

where p(n, c) and h(n, c) are the present and history wire congestion
penalty for circuit c. These are calculated as in Equation 2.2 and 2.3,
the only difference is that o(n) is replaced with o(n, c).

The term costs(n) takes switch congestion into consideration. As
mentioned in the previous section, to determine whether a switch
is congested the information associated with both the wire nodes
it connects is needed. However, when a wire node is being evalu-
ated during routing, it is not yet known what the next wire node
will be. Therefore the calculation of the switch congestion cost of
the switches in the fan-out nodes of a wire node is delayed until the
next wire node is reached. Therefore the router calculates the cost
for switch congestion using the union of the fan-in switch nodes of
the current wire node n and the fan-out switch nodes of the previ-
ous wire node in the routing path currently being evaluated. This set
of switch nodes is called S(n). Figure 5.7 shows an example where
the switches of S(n), associated with a wire node n, are identified in
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black. In this set S(n), we use Equation 5.2 to identify the subset of
congested switches, which we call C(n).

Given a wire node n, with its associated set of congested switches
C(n), we propose the following equation for the switch congestion
penalty

costs(n) = ps(n) · hs(n), (5.5)

where ps(n) and hs(n) are the present and history switch congestion
penalty. The factor ps(n) resolves switch congestion during one iter-
ation and is given by:

ps(n) = 1 + |C(n)| · pf . (5.6)

Note that if the use of a wire results in more congested switches
this wire is more penalized. This is similar to the PATHFINDER algo-
rithm, in which wires with more overuse result in a higher penalty.

The factor hs(n) takes into consideration the switch congestion
that occurred in the previous iterations. It uses the congestion map
that is built in the switch nodes. It is given by:

hs(n) =
∑

m∈C(n)

hs(m), (5.7)

where hs(m) is the history switch congestion penalty of one switch
node m. This is updated every routing iteration i as follows:

his(m) =


0 if i = 1

h(i−1)(m) if m is not congested
h(i−1)(m) + hf otherwise

. (5.8)

5.1.5 Selection of the static part

In this section I explore how the static part in the configuration mem-
ory of the routing is best selected. I will do this exploration by look-
ing at two important quality metrics of the implementation: reconfig-
uration overhead and maximum clock frequency of the circuits. The
reconfiguration overhead gives an indication of the efficiency of the
reconfiguration process. The maximum clock frequency is important
for the performance during the operation of a circuit.
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I point out that both the StaticRoute tool flow and the conven-
tional DPR flow have the same gains in area compared to a static im-
plementation of the circuits on the FPGA. Instead of implementing
the different circuits next to each other on the FPGA, only an FPGA
region that can contain the biggest circuit is needed.

5.1.5.1 Experimental set-up

Integration in the VTR framework The novel tool flow, depicted
in Figure 5.4, was implemented in the latest version of the VTR
(Verilog-To-Routing) framework [80], which incorporates the latest
6.0 version of VPR (Versatile Place and Route). This extensive frame-
work is written in C and consists of thousands of lines of code.
Within this framework, StaticRoute was based on the wire-length
driven router of VPR 6.0 [13] [66]. Wire-length is an important metric
for the quality of the implementation of a circuit.

In the section above I described a new routing methodology for
DPR of FPGAs, which could be integrated in any FPGA router that
is based on the PATHFINDER algorithm. I chose to build in the Sta-
ticRoute tool flow into the VTR framework, because this has sev-
eral advantages. First, the built-in verification algorithms can be
re-used for our tool flow. VTR for example checks that a routing
describes a properly connected tree for each net and that this tree
connects all the pins used by that net. It also checks that no routing
resources are overused (the occupancy of everything is recomputed
from scratch) [80]. Second, VTR has a built-in timing analyzer and
the provided architecture file contains timing information. There-
fore it is possible to get representative timing information. For each
implementation of a circuit it is possible to get the maximum clock
frequency. Finally, because the FPGA architecture is represented in a
standard XML format, it is possible to try out different architectures
more easily.

I chose to do the experiments in VTR primarily because a built-
in timing analyser is available. An additional benefit of the VTR
framework is that an architecture file is available, which is strongly
based on a commercially available FPGA, namely the Altera Stratix
IV FPGA [9]. This FPGA architecture is used to conduct the experi-
ments in this chapter.

Another alternative, the Rapidsmith framework, makes it possi-
ble to implement the circuits on a commercial (Xilinx) FPGA, but in
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this framework timing information is not provided [60]. It would
therefore be impossible to investigate the impact of our technique on
the maximum clock frequency of the circuits.

FPGA architecture The architecture based on the Altera Stratix IV
is described in sample_arch.xml and included in the distribution of
VTR. This is the architecture used in the experiments of this chapter.
It has configurable logic blocks (CLBs) containing 10 6-LUTs and the
wire segments in the interconnection network span four logic blocks.
It uses Wilton switch blocks [70] and unidirectional wires [61]. Al-
tera’s Chip Planner Tool was used to determine the channel width of
the Altera Stratix IV [8], which is 248. This way the experiments are
carried out as close as possible to the actual FPGA chip.

Note that the techniques and tools used in this chapter are inde-
pendent of the FPGA architecture used. The number of inputs of the
LUTs is simply an input parameter of the tool flow. Also different
routing architectures can be used since StaticRoute uses a straight-
forward extension of a standard representation of the routing infras-
tructure called the routing resource graph. Because of this it would
also be possible to target Xilinx FPGAs.

Since there is no other functionality implemented on the FPGA,
the reconfigurable region comprises the complete FPGA in our ex-
periments. The minimum square area of the FPGA was chosen to fit
all circuits under consideration.

Choice of static configuration frames Unfortunately, detailed in-
formation on how the frames in the configuration memory are built
up is not provided by the FPGA manufacturers. This is considered
proprietary information and is not disclosed. How the configuration
memory is organized in frames also differs between FPGAs. Given
the limitations of physical design of the FPGA, it is however likely
that internal structures which are close together in the FPGA archi-
tecture, will be controlled by memory cells which are close together
in the configuration memory. For the sake of the experiments, it
is therefore assumed that the frames coincide with the connection
blocks (CBs) and the switch blocks (SBs). The size of an SB frame
in the VTR architecture contains around 1300 bits which is approxi-
mately the same as the frame size for a commercially available FPGA,
for example the Virtex V FPGA from Xilinx which has a frame size
of 1312 bits [107]. The size of a CB frame in our architecture is of the
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same order of magnitude, but considerably smaller, namely around
600 bits. An important reason to choose the frames as such, is that
this makes it possible to research the interaction between these fun-
damental routing structures and the routing algorithms described
in this chapter. It can among others be investigated which of these
structures is most suitable to make static or is better kept dynamic.

To investigate the impact of marking routing blocks static, the
cases are compared where the fraction of both the static SBs and
static CBs varies between 0% and 75% in steps of 25%. This gives
us 16 cases organized in a two-dimensional table as can be seen in
Table 5.5. In doing so, it can be examined how these structures are
best marked static. Figure 5.8 shows an example where 50% of the
switch blocks are marked static. As can be seen, this is done in such
a way that the selected blocks are spread uniformly over the FPGA’s
area. The cases where either 100% of the connection blocks or switch
blocks are marked static are omitted from the table because Static-
Route was not able to find a solution for these cases. This already
indicates that some dynamic flexibility is needed in both the switch
and connection blocks.

Benchmarks For each of the cases above, that represents a relative
portion of the CBs and SBs marked static, 20 experiments were con-
ducted. In each of these experiments 2 circuits were randomly cho-
sen out of the 20 largest circuits of the MCNC benchmark suite [112].
The circuits were chosen randomly to demonstrate that our novel
tool flow can be used maintaining the possibility to implement com-
pletely unrelated circuits in the DPR region. These benchmarks can
also be found in the ’benchmarks/blif’ folder of the VTR framework.
Their size varies from around 1000 6-LUTs to around 5000 6-LUTs.
The chosen circuits for each experiment are listed in Table 5.1 and
Table 5.2.

5.1.5.2 Results

Impact on reconfiguration overhead In both the case of conven-
tional DPR as well as the StaticRoute tool flow, the configurations
are computed off-line. This is done by running the tool flows shown
in Figure 3.2 and Figure 5.4, respectively. During run-time the con-
figurations only need to be downloaded to the FPGA’s configuration
memory when it is needed to switch between circuits.
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Figure 5.8: An example of a 3×3 island style FPGA where 50% of
the switch blocks are marked static (in grey). LB is (Configurable)
Logic Block, SB is Switch Block, CB is Connection Block and IOB is
Input-Output Block.
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The reconfiguration overhead (RO) is assumed to be proportional
to the size of the configuration needed to reprogram the reconfig-
urable region. Therefore, to obtain the reduction of reconfiguration
overhead (RRO) in the experiments the size of the configurations
of the reconfigurable region is calculated, for both the conventional
DPR as for the StaticRoute case and these are compared.

In the case of conventional DPR both the routing as well as the
configurable logic blocks (CLBs) in the reconfigurable region (RR) are
reconfigured. The size of the configuration needed for this is there-
fore given by:

Bconv = BCLB
conv +BR

conv (5.9)

where BCLB
conv and BR

conv are the number of configuration bits in the
reconfigurable region that control the CLBs and the routing, respec-
tively.

BCLB
conv = BCLB

total = LCLB ∗ 64 +
∑

m∈MCLB

Cm (5.10)

where LCLB is the total number of LUTs contained in the CLBs of the
RR, MCLB is the set of multiplexers found in the cross bar switches
of the CLBs and Cm is the number of configuration bits needed to
control one multiplexer. The number of LUTs is multiplied by 64
as our architecture contains LUTs with 6 inputs. Note that for the
StaticRoute tool flow it does not matter how the CLB bits are divided
into frames, as these are always completely overwritten during run-
time. Cm is given by

Cm = 2 ∗
⌈√

Im

⌉
(5.11)

where Im is the number of inputs of the routing multiplexer. The up-
per bound takes non-square numbers of inputs into consideration.
This formula is used because all multiplexers are considered to be
two-level and one-hot encoded, as is the case in current commercially
available FPGAs [63] [88]. An example of a two-level 16:1 multi-
plexer is shown in Figure 5.9(a). This is a more efficient implementa-
tion than a one-level implementation, as the multiplexers of the first
level share control bits and hence less SRAM cells are required. For
the implementation of a multiplexer in one level we assume the use
of pass transistors and one hot encoding [88]. An example is shown
in Figure 5.9(b) for a 4:1 multiplexer.
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Figure 5.9: (a) An example of a two-level 16:1 multiplexer controlled
by 8 SRAM bits. (b) Implementation of a 4:1 multiplexer using pass-
transistors and one hot encoding.

The number of routing configuration bits that needs to be recon-
figured using conventional DPR is given by

BR
conv =

∑
f∈F

bf (5.12)

where F is the set of routing configuration frames of the RR that
contain at least one dynamic bit, bf is the number of bits per routing
frame given by Equation 5.13.

bf =
∑

m∈MF

Cm (5.13)

where MF is the set of multiplexers that is controlled by the bits in
frame F. I stress that F only includes routing frames that contain at
least one dynamic bit. If a frame contains only static bits it is not
counted in the configuration size.

For the StaticRoute tool flow the configuration can also be di-
vided into a part for the CLBs and a part for the routing:

Bnew = BCLB
new +BR

new (5.14)
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BCLB
new = BCLB

total (5.15)

As mentioned above, in both the case of conventional DPR and
the StaticRoute flow all CLBs in the reconfigurable region are rewrit-
ten. That is why BCLB

new also equals BCLB
total and is thus also given

by Equation 5.10. However, in contrast with conventional DPR, the
routing frames of the RR are divided into a set of static frames FS

and a set of dynamic frames FD, with FS
⋃
FD = Ftotal. A reduction

of reconfiguration overhead is achieved for the StaticRoute flow be-
cause only a much smaller dynamic part of the configuration mem-
ory needs reconfiguration. The content of the larger number of static
frames is the same for all implemented circuits and therefore never
needs to be rewritten in the configuration memory during run-time.
Again, only routing frames that contain at least one dynamic bit are
included in FD. The size of the configuration of the interconnection
network in the reconfigurable region for StaticRoute hence is

BR
new =

∑
f∈FD

bf (5.16)

where bf is the number of bits per routing frame and is calculated
the same as above (i.e., using Equation 5.13). Finally, the reduction
of reconfiguration overhead (RRO) is calculated as

RRO =
(Bconv −Bnew)

Bconv
= 1− Bnew

Bconv
. (5.17)

In Table 5.3 the number of configuration bits in the experiments
with 2 circuits (case with 50% static SBs and 50% static CBs) is pre-
sented for BCLB

total , BR
total, B

R
conv and BR

new. A column containing the
fraction BR

conv

BR
total

was added. BR
total is the total number of configuration

bits present in the configuration memory of the routing of the recon-
figurable region, independent of the fact whether the bits are static
or dynamic. This column clearly shows that, in the case of conven-
tional DPR, the dynamic bits are scattered over, on average, 94% of
the frames of the reconfigurable region. Only 6% of the frames acci-
dentally happen to have the same bit values for the different circuits.
These are mostly frames that are not used by both circuits.
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Table 5.3: The reduction in reconfiguration overhead (RRO) of the
StaticRoute flow compared to the conventional DPR flow (in %), for
the experiments with 2 circuits (case with 50% static SBs and 50%
static CBs).

Exp BCLB
total BR

total BR
conv

BR
conv

BR
total

BR
new RRO

(bits) (bits) (bits) (%) (bits) (%)
0 135520 308800 289404 94 146198 34
1 542080 1229004 1192694 97 596126 34
2 542080 1229004 1183194 96 591250 34
3 362880 834968 813972 97 407024 35
4 219520 505660 462724 92 231890 34
5 323680 745342 729990 98 366768 34
6 592480 1339474 1253246 94 630004 34
7 161280 377924 354840 94 177130 34
8 592480 1339474 1255156 94 630736 34
9 448000 1023724 975330 95 484592 34
10 592480 1339474 1294606 97 649386 34
11 219520 505660 463256 92 233322 34
12 189280 439182 392408 89 196582 34
13 362880 834968 790432 95 392156 35
14 542080 1229004 1186302 97 593142 34
15 493920 1123754 1043826 93 524450 34
16 286720 663204 567530 86 288734 33
17 189280 439182 389976 89 197074 33
18 362880 834968 797634 96 397902 34
19 493920 1123754 1042322 93 523820 34

Avg: 94 Avg: 34
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The Altera IV configuration port that has a width of one byte and
runs at 125 MHz [7]. Therefore by assuming a configuration band-
width of 1 Gigabits per second, we can estimate the reconfiguration
time in case of conventional DPR to be on average around 1.5 ms.

Table 5.3 corresponds to the case where 50% of the connection
blocks and 50% of the switch blocks are marked static. The dynamic
routing bits are clustered in the remaining dynamic part of the recon-
figurable region. This results in a reduction of the routing reconfig-
uration overhead of around 50%. In Table 5.3 we see that this corre-
sponds to a reduction of the total reconfiguration overhead (RRO) of
34% (due to the overhead for the CLBs being the same in both cases).

Columns RRO in Table 5.5 present the reduction of reconfigura-
tion overhead for all the 16 cases (combinations of percentages of
SB and CB marked static) considered in the experiments. These are
values which are an average of the values obtained in the 20 experi-
ments conducted for each case.

In the formulas above we see that, as the size of the static part
increases, the size of the dynamic part decreases and this results in
a larger reduction of reconfiguration overhead. Note that all CLBs
will be rewritten completely during run-time. The actual reduction
is therefore mostly dependent on the relative size of the configuration
memory dedicated to the different components of the reconfigurable
fabric, namely the CLBs, the connection blocks and the switch blocks.

For the FPGA architecture used in the experiments, 30% of the
total number of configuration bits is used for CLBs, 38% for switch
blocks and 32% for connection blocks. If, for example, none of the
switch blocks and all connection blocks are marked static, this will
result in about 32% reduction of the reconfiguration overhead. Mark-
ing 0% of the switch blocks and only 50% of the connection blocks
static, results in a reduction of around 16%. The actual reduction is
14%. This can be clearly seen in Table 5.5.

Impact on maximum clock frequency In the StaticRoute flow the
different circuits are not implemented separately, as is the case in the
conventional DPR flow. Instead, the circuits are routed simultane-
ously using StaticRoute. In this section we assess the impact this has
on the maximum clock frequency of the circuits. For each circuit we
compare the implementation with the conventional DPR flow to the
one resulting from using StaticRoute.
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Table 5.4: The reduction in maximum clock frequency (∆i) for the
experiments when using StaticRoute with 2 circuits, in % relative to
conventional DPR (case with 50% static SBs and 50% static CBs).

Exp. F0 F1 FS
0 FS

1 ∆0 ∆1

(MHz) (MHz) (%)
0 168 254 156 231 7 9
1 243 169 224 158 8 7
2 219 243 211 231 4 5
3 119 320 116 285 3 11
4 209 288 195 271 7 6
5 140 258 136 230 3 11
6 191 215 181 195 5 9
7 220 259 210 241 5 7
8 139 215 131 196 6 9
9 230 167 203 155 12 7
10 139 278 134 254 4 9
11 288 237 272 220 6 7
12 230 222 211 198 8 11
13 166 219 154 211 7 4
14 209 243 203 233 3 4
15 151 198 145 174 4 12
16 314 185 284 178 10 4
17 151 225 147 211 3 6
18 320 166 292 150 9 10
19 161 222 156 213 3 4

Avg: 215 Avg: 200 Avg: 6

107



Table 5.5: Average reduction of reconfiguration overhead (RRO) and
average reduction in maximum clock frequency (RCF) for the Static-
Route flow, in % relative to conventional DPR.

% static CB

0% 25% 50% 75%

RRO RCF RRO RCF RRO RCF RRO RCF

0% 0 -1 7 2 14 3 22 8

%
st

at
ic

SB

25% 10 1 18 3 24 5 32 9

50% 20 4 27 5 34 6 41 15

75% 29 9 37 11 44 18 51 21

(in %)

The reduction of maximum clock frequency (RCF) for the 16 cases
considered in the experiments are shown in column RCF of Ta-
ble 5.5. The results shown here are each an average of the 20 ex-
periments that have been carried out. The results depend on how
the connection and switch blocks are marked static.

The actual clock frequencies of the experiments for the case of
50% static SBs and 50% static CBs are presented in Table 5.4. The Fi

columns show the maximum clock frequencies for the implementa-
tions that use the conventional DPR tool flow. The maximum clock
frequencies obtained in the StaticRoute tool flow, are denoted FS

i .
The reduction of maximum clock frequency, compared to the con-
ventional DPR flow (in %), is shown in the columns ∆i.

Figure 5.10 shows the values of Table 5.5 in a scatter plot. The
pareto-optimal points are marked in black. Again, we see that the
relative reduction in maximum clock frequency depends on the rel-
ative size of the static part. As the size of the static part increases,
the reconfiguration overhead decreases and the maximum clock fre-
quency decreases more. Up until a reduction in reconfiguration over-
head of around 34% the impact on maximum clock frequency is less
significant. When we cross this value, the maximum clock frequency
decreases faster.

We can also see in Table 5.5 that it is better to spread the static part
over the connection blocks and switch blocks. When, for example,
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Figure 5.10: Trade-off between reconfiguration overhead and maxi-
mum clock frequency.

75% of the connection blocks are marked static then the reduction in
maximum clock frequency is on average 8%. If, however, 50% of the
connection blocks and 50% of the switch blocks are marked static,
then the average reduction is smaller, namely 6%.

For this last case the reduction of reconfiguration overhead is
even higher, as shown in Table 5.5. In Figure 5.10 and Table 5.5
we can also see that an implementation is more likely to be pareto-
optimal if the static part is spread more evenly over the SBs and CBs.

We see that the discussion above is even more pronounced for the
maximum values found in Table 5.6. The minimum values are also
reported in Table 5.6. When the static part is small or zero we see
that there are some small positive values. This means that in some
cases StaticRoute turned out to have a slightly better maximum clock
frequency than the PATHFINDER algorithm. This is possible because
both algorithms are heuristics.
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Table 5.6: Maximum and minimum reduction of maximum clock fre-
quency (RCF), in % relative to conventional DPR.

% static CB

0% 25% 50% 75%

Max Min Max Min Max Min Max Min

0% 2 -3 3 1 7 1 13 5

%
st

at
ic

SB

25% 4 -2 5 1 9 4 18 6

50% 9 0 10 2 12 3 24 8

75% 14 4 19 6 31 9 37 8

(in %)

If the static part in the CBs or SBs is not chosen higher than 50%,
then the reduction in maximum clock frequency is not higher than
6% on average and maximum 12%. The reduction is 10% on average
and maximum 15%, if only the SBs or CBs have a static part of 75%.
The reduction is 20% on average and maximum 37% if both CBs and
SBs have a static part of 75%. As mentioned earlier, StaticRoute was
not able to find a solution when all the CBs and/or SBs were com-
pletely marked static.

We can conclude that, for 2 circuits, the impact on the maximum
clock frequency is limited if the static part in the SBs or CBs is not
higher than 50%. It is also better to spread the static part evenly over
the CBs and SBs. This way the same reduction of reconfiguration
overhead is achieved (or more), while the impact on the maximum
clock frequency is less significant.

It is difficult to say what the actual impact is of this reduction
in maximum clock frequency on the application. This will depend
on the type of application. There are applications that do not run at
their maximum performance, because system requirements are not
that stringent. Think, for example, of bandwidth-restricted applica-
tions. Also, since FPGAs are used a lot for parallel applications, they
sometimes rely more on massive parallelism than on high clock fre-
quencies for performance.
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5.1.6 Implementing more than 2 circuits

The previous section dealt with how the static part is best selected
in the configuration memory. Only implementations that time-
multiplexed 2 circuits on the same reconfigurable region were con-
sidered. In this section we will look at what the overhead is when
our new flow using StaticRoute implements more than 2 circuits into
the same reconfigurable region.

5.1.6.1 Experimental set-up

The FPGA architecture used in this section is the same as the one
described in Section 5.1.5.1.

The circuits used in the experiments for N = 2, N=3 and N= 4 are
presented in Table 5.1 and Table 5.2 in Section 5.1.5.1. In the exper-
iments StaticRoute was not able to find a DPR solution with static
parts when N was greater than 4. The reason for this is probably
that StaticRoute has a fixed number of routing iterations (which is
the same as the conventional Pathfinder algorithm in VPR). Static-
Route doesn’t seem to find a solution, given this number of itera-
tions. However, for a more thorough exploration we refer to future
work. The execution time of the algorithm is best optimized before
the relation between the number of routing iterations and the num-
ber of circuits is researched more thoroughly.

Based on the results from the previous section, in this section only
the case is considered where 50% of the SBs and 50% of the CBs were
marked static.

5.1.6.2 Results

Impact on reconfiguration overhead The reduction of reconfigura-
tion overhead is calculated as explained in Section 5.1.5.2. The results
for the experiments with N = 2 were already presented in Table 5.3
in Section 5.1.5.2. The results for N = 3 and N = 4 are presented in
Tables 5.7 and 5.8, respectively. Column RRO shows the reduction of
reconfiguration overhead for each experiment. On the bottom of this
column the average value is presented.

In these tables we see that the impact on reconfiguration over-
head hardly depends on the number of implemented circuits, N.
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Table 5.7: The reduction in reconfiguration overhead (RRO) for the
experiments using StaticRoute with 3 circuits, in % relative to con-
ventional DPR (case with 50% static SBs and 50% static CBs).

Exp BCLB
total BR

total BR
conv

BR
conv

BR
total

BR
new RRO

(bits) (bits) (bits) (%) (bits) (%)
0 362880 834968 814276 98 407936 35
1 542080 1229004 1183194 96 590566 34
2 362880 834968 784344 94 388518 35
3 448000 1023724 981674 96 491538 34
4 219520 505660 472676 93 237882 34
5 592480 1339474 1250760 93 627214 34
6 362880 834968 810054 97 406298 34
7 362880 834968 792518 95 393646 35
8 592480 1339474 1295450 97 649926 34
9 592480 1339474 1277194 95 641528 34
10 592480 1339474 1290064 96 644290 34
11 542080 1229004 1186834 97 595260 34
12 592480 1339474 1242988 93 625080 34
13 592480 1339474 1252764 94 631612 34
14 592480 1339474 1260918 94 635036 34
15 542080 1229004 1193506 97 598026 34
16 323680 745342 732460 98 367414 35
17 362880 834968 817792 98 410326 35
18 362880 834968 807504 97 405158 34
19 219520 505660 470966 93 235070 34

Avg: 96 Avg: 34
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Table 5.8: The reduction in reconfiguration overhead (RRO) for the
experiments using StaticRoute with 4 circuits, in % relative to con-
ventional DPR (case with 50% static SBs and 50% static CBs).

Exp BCLB
total BR

total BR
conv

BR
conv

BR
total

BR
new RRO

(bits) (bits) (bits) (%) (bits) (%)
0 323680 745342 730902 98 366002 35
1 592480 1339474 1267310 95 638668 34
2 448000 1023724 992204 97 496648 34
3 362880 834968 812182 97 406682 35
4 592480 1339474 1296204 97 651440 34
5 323680 745342 732460 98 367110 35
6 362880 834968 810054 97 406336 34
7 592480 1339474 1296026 97 652396 34
8 592480 1339474 1280810 96 649328 34
9 286720 663204 581308 88 293556 33
10 542080 1229004 1184598 96 591908 34
11 219520 505660 478984 95 239326 34
12 592480 1339474 1297576 97 653650 34
13 286720 663204 584550 88 295046 33
14 592480 1339474 1267918 95 638662 34
15 592480 1339474 1263064 94 634352 34
16 592480 1339474 1293554 97 653042 34
17 592480 1339474 1267744 95 637892 34
18 493920 1123754 1045530 93 529390 34
19 362880 834968 798992 96 399040 34

Avg: 95 Avg: 34
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Table 5.9: The reduction in maximum clock frequency (∆i) for the
experiments when using StaticRoute with 3 circuits, in % relative to
conventional DPR (case with 50% static SBs and 50% static CBs).

Exp. F0 F1 F2 FS
0 FS

1 FS
2 ∆0 ∆1 ∆2

(MHz) (MHz) (%)
0 219 119 320 198 112 313 10 6 2
1 207 243 201 186 224 187 10 8 7
2 166 176 183 151 148 170 9 16 7
3 258 207 167 220 175 141 15 15 16
4 179 320 219 168 294 188 6 8 14
5 191 181 226 180 167 196 6 8 13
6 250 176 119 213 156 109 15 11 8
7 213 166 219 178 156 198 16 6 10
8 278 191 313 267 176 282 4 8 10
9 313 135 139 271 130 133 13 4 4
10 191 200 135 179 188 124 6 6 8
11 116 243 294 109 235 272 6 3 7
12 255 191 172 220 179 156 14 6 9
13 118 156 191 107 140 179 9 10 6
14 139 215 213 132 196 196 5 9 8
15 243 142 294 228 137 275 6 4 6
16 226 140 306 213 131 267 6 6 13
17 223 119 278 194 112 263 13 6 5
18 250 278 166 216 238 157 14 14 5
19 288 174 320 272 151 272 6 13 15

Avg: 210 Avg: 190 Avg: 9
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Table 5.10: The reduction in maximum clock frequency (∆i) for the
experiments when using StaticRoute with 4 circuits, in % relative to
conventional DPR (case with 50% static SBs and 50% static CBs).

Exp. F0 F1 F2 F3 FS
0 FS

1 FS
2 FS

3 ∆0 ∆1 ∆2 ∆3

(MHz) (MHz) (%)
0 140 190 195 226 130 154 150 204 7 19 23 10
1 213 139 226 320 174 115 202 288 18 17 11 10
2 190 167 313 148 166 153 243 131 13 8 22 11
3 335 213 119 223 269 166 107 191 20 22 10 14
4 278 118 139 135 251 101 125 118 10 14 10 13
5 195 215 174 140 179 191 156 130 8 11 10 7
6 176 119 223 250 139 104 200 217 21 13 10 13
7 191 215 278 172 177 178 250 138 7 17 10 20
8 191 200 255 320 156 166 220 247 18 17 14 23
9 210 314 237 225 192 254 214 201 9 19 10 11
10 294 193 243 201 245 167 222 181 17 13 9 10
11 288 237 320 226 267 195 258 201 7 18 19 11
12 156 200 191 278 127 169 150 226 19 16 21 19
13 210 226 300 314 186 191 251 245 11 15 16 22
14 255 320 213 139 219 272 176 122 14 15 17 12
15 139 226 181 172 118 176 152 141 15 22 16 18
16 226 191 255 278 192 160 220 250 15 16 14 10
17 139 215 161 255 115 183 138 216 17 15 14 15
18 204 241 151 226 173 210 126 198 15 13 17 12
19 200 176 149 166 161 147 130 145 20 16 13 13

Avg: 214 Avg: 182 Avg: 15
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As we mentioned before, the reduction of reconfiguration over-
head is mostly dependent on the relative size of the configuration
memory dedicated to the different components of the reconfigurable
fabric, namely the CLBs, the connection blocks and the switch blocks.
We again added a column that shows the fraction BR

conv

BR
total

. This column
clearly shows that, in the case of conventional DPR, the dynamic bits
are scattered over around 95% of the frames of the reconfigurable
region.

In the case of StaticRoute the static part does not need to be
rewritten during run-time. In the experiments in this section the frac-
tion of static SBs and static CBs were both chosen to be 50%. This of
course results in a reduction of routing reconfiguration overhead of
around 50%. In Tables 5.3, 5.7 and 5.8 we see that this corresponds to
a significant reduction in total reconfiguration overhead of 34%.

Impact on maximum clock frequency In this section we take a look
at how the maximum clock frequency is affected as the number of
circuits N increases. As mentioned earlier, StaticRoute was not able
to find a DPR solution with static parts when N is greater than 4.

The results obtained in all the experiments for this section can be
found in Table 5.4 for N = 2 and in Tables 5.9 and 5.10 for N = 3 and N
= 4, respectively. In these tables the maximum clock frequencies ob-
tained using the conventional DPR flow are denoted as Fi. The ones
obtained using StaticRoute were denoted as FS

i . The last columns
of these tables show the difference (∆i) between the corresponding
maximum clock frequencies, i.e. the reduction of maximum clock
frequency (RCF).

Figure 5.11 shows the average values of these tables, namely the
average reduction of maximum clock frequency compared to con-
ventional DPR. Also the maxima and minima of the experiments are
shown on this figure using error bars. As discussed in Section 5.1.5.2,
the decrease is 6% on average for 2 circuits. The results show that the
reduction is higher as the number of circuits N increases. It is 9% on
average for 3 circuits and 15% for 4 circuits. We see that the maxi-
mum values follow the same trend. They are 12% for 2 circuits and
increase to 16% for 3 circuits and 23% for 4 circuits. The minimum
values indicate that there are also some circuits that are barely influ-
enced by implementation using the StaticRoute flow.

In fact, the analysis made above assumes the clock frequency
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Figure 5.11: Averages of the reduction of maximum clock frequency
of the StaticRoute flow (in % rel. to conventional DPR), as a function
of the number of circuits N. Maxima and minima of the experiments
are indicated with error bars.

changes when the circuit implemented in the reconfigurable region
changes. Although this is theoretically possible, it is not done in prac-
tice as it significantly increases the complexity of the design. It there-
fore is reasonable to assume that the clock frequency remains fixed
when switching between circuits [20]. In Table 5.11 the new values of
the reduction in clock frequency are presented. The values are very
similar as the ones presented before, but improve with a few percent.
The RCF is 5% on average for 2 circuits. The reduction is higher as
the number of circuits N increases. It is 8% on average for 3 circuits
and 14% for 4 circuits.

Impact on off-line compilation time of the tool flow As we can
see in Figure 5.4 the StaticRoute tool flow reuses the first steps of
the conventional flow. The main difference compared to the con-
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Table 5.11: Overview of the reduction of the clock frequency (RCF)
(in %) relative to conventional DPR for the StaticRoute (SR) and Clus-
terRoute (CR) algorithm, for increasing number of circuits.

Avg. Max. Min.
Nr. of circuits SR CR SR CR SR CR

2 -5 -5 -11 -10 -3 -2
3 -8 -11 -16 -19 -4 -3
4 -14 -21 -20 -31 -7 -12

(in %)

ventional DPR flow is the routing step. In the StaticRoute flow the
circuits are routed simultaneously to also be able to take the recon-
figuration overhead into account. Calculating this cost results in a
higher compilation time of the tool flow.

Table 5.12 presents the compilation times of the experiments of
the conventional DPR flow. The timing experiments are all done us-
ing an Intel Core i7-3770 Quad Core processor running at 3.40 GHz
with 16 GiB of memory running the Java HotSpotTM 64-Bit Server
VM. Because the circuits are available in blif format, these compila-
tion times do not include the time needed for synthesis.

In the conventional DPR flow the different circuits are imple-
mented separately and there are a limited number of circuits. To al-
low a fair comparison we assume that this flow can easily be run on
a multi-core processor. That is why we first measure the time needed
to implement each circuit and then take the maximum value.

Table 5.13 presents the slowdown of the experiments when using
this flow compared to the conventional DPR flow. In these measure-
ments we assumed the first steps of the flow are done in parallel, just
as in the conventional flow. The slowdown of the routing step is 11×
for 2 circuits and increases to 16× for 4 circuits. The slowdown of the
complete flow is smaller, 7× for 2 circuits and increases to 10× for 4
circuits.

There are 3 main reasons for this slowdown. First, in the Static-
Route flow the compilation time increases because a cost needs to be
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Table 5.12: Compilation time of the experiments in the conventional
DPR flow (in seconds).

N = 2 N = 3 N = 4

Experiment Routing Total Routing Total Routing Total

0 3.52 7.79 34.15 54.61 16.18 34.71

1 100.67 127.29 32.54 62.97 92.37 132.46

2 27.69 55.91 37.15 57.02 88.22 113.86

3 34.34 54.75 105.42 131.75 34.14 54.72

4 3.43 11.22 7.63 14.89 92.19 132.26

5 16.19 34.73 33.49 65.54 15.94 34.55

6 40.65 75.01 33.9 54.49 27.93 47.58

7 4.67 9.04 42.22 62.55 33.49 65.58

8 78.27 117.26 34.11 66.84 39.71 74.02

9 106.12 132.26 92.38 132.43 8.36 14.24

10 77.73 117.02 33.34 65.42 27.91 56.44

11 3.43 11.16 46.62 67.53 3.41 11.54

12 6.66 13.09 34.29 66.62 90.04 119.86

13 42.21 62.38 92.11 122.17 9.77 15.65

14 31.22 61.39 94.15 134.32 87.43 127.6

15 72.16 100.5 73.63 102.95 76.7 115.51

16 8.02 15.69 16.32 34.92 40.52 74.95

17 6.64 13.06 34.39 54.97 111.8 138.47

18 41.88 62.05 37.61 57.56 72.73 101.24

19 71.92 100.72 3.44 11.57 42.31 62.49

(in seconds)
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Table 5.13: Slowdown of the compilation when using the StaticRoute
flow, compared to the conventional DPR flow.

N = 2 N = 3 N = 4

Experiment Routing Total Routing Total Routing Total

0 14 7 11 7 16 8

1 9 7 13 7 9 6

2 11 6 11 8 12 9

3 10 6 8 7 14 9

4 13 5 18 9 14 10

5 12 6 16 9 12 6

6 8 5 10 7 15 9

7 16 9 10 7 18 10

8 8 6 15 8 20 11

9 7 6 10 7 25 15

10 10 7 24 13 20 10

11 17 6 15 11 32 10

12 14 8 13 7 15 12

13 8 6 14 11 27 17

14 9 5 8 6 10 7

15 9 7 13 10 10 7

16 17 9 13 6 16 9

17 13 7 13 9 13 11

18 9 6 12 8 10 7

19 8 6 23 8 12 8

Average: 11× 7× 13× 8× 16× 10×

120



Figure 5.12: Clustering of the dynamic bits in fewer configuration
frames when using the ClusterRoute tool flow.

calculated that takes the reconfiguration overhead into account. This
cost is calculated in the inner loop of the PATHFINDER algorithm. Sec-
ond, the routing step does no longer happen in parallel. Finally, our
implementation of StaticRoute is not thoroughly optimized, as is the
case for the router in VTR.

We note that both the conventional flow and the StaticRoute flow
are run off-line. The compilation time of the flow therefore does not
affect the performance of the application on the FPGA.

StaticRoute explores the RRG in the same way as the PATHFINDER

algorithm. Extra time is needed per explored wire node to calculate
the wire congestion. The scaling behaviour of the StaticRoute algo-
rithm is therefore the same as that of PATHFINDER [71].

5.2 ClusterRoute: Automatic clustering of dy-
namic bits

In the previous section a new router for low-overhead limited-
context DPR, called StaticRoute, has been presented. In the Static-
Route tool flow, shown in Figure 5.4 an extra step is needed before
routing, where a portion of the routing network is marked as being
static. The result of this step is that the configuration frames are split
up in frames marked static and frames marked dynamic. StaticRoute
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Figure 5.13: The ClusterRoute tool flow.

routes the nets of the circuits in such a way that the dynamic bits are
clustered in the dynamic frames, as shown in Figure 5.3 .

In this section a router, called ClusterRoute, is presented where
marking routing switches as static is no longer necessary. Cluster-
Route automatically routes the interconnections in such a way that
the dynamic bits are clustered in fewer configuration frames, as is
shown in Figure 5.12. ClusterRoute is also based on the PATHFINDER

algorithm [13] [71], but takes into account both the wire length and
the reconfiguration overhead.

5.2.1 ClusterRoute tool flow

The tool flow that uses CluserRoute is shown in Figure 5.13. As can
be seen in the figure, the flow is very similar to the StaticRoute flow,
depicted in Figure 5.4. However, marking routing switches as static
is no longer necessary. The flow implements the circuits in the re-
configurable region completely automatic. As the StaticRoute flow,
it generates a static configuration that only needs to be loaded in the
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configuration memory at start-up. It also generates a dynamic con-
figuration for each of the circuits. These can be used to configure the
dynamic configuration frames of the FPGA during start-up and run-
time. Because the dynamic configurations are much smaller than a
complete configuration of the reconfigurable region, the reconfigura-
tion overhead is considerably reduced.

ClusterRoute is also based on the PATHFINDER algorithm, uses
an extended routing resource graph during routing and detects dy-
namic bits in the same way as StaticRoute, which is explained in Sec-
tion 5.1.2 and Section 5.1.3. ClusterRoute, however, has another cost
function that makes it possible to automatically implement circuits
in the reconfigurable region, such that less dynamic routing config-
uration frames are generated. This cost function is described in the
following section.

5.2.2 Cost function

In this section I describe how I extended the cost function used in
the PATHFINDER algorithm to also take the reconfiguration overhead
into consideration. As was the case for StaticRoute, to take the re-
configuration overhead into consideration an extra cost per wire is
added, called the reconfiguration cost in the case of ClusterRoute. In
our novel cost function, the cost of a node in the extended RRG is
thus

cost(n, c) =

{
costw(n, c) + costr(n) if n is a wire

0 if n is a switch
(5.18)

where costw(n, c) is the wire congestion cost associated with wire
node n and circuit c. Costr(n) is the reconfiguration cost associated
with wire node n.

The term costw(n, c) is given by Equation 5.4, already presented
in Section 5.1.4 for StaticRoute.

The term costr(n) takes the reconfiguration overhead into con-
sideration. The reconfiguration cost is calculated based on the union
of the fan-in switch nodes of the current wire node n and the fan-
out switch nodes of the previous wire node in the routing path cur-
rently being evaluated. As was explained in Section 5.1.4, this set
of switch nodes is called S(n). Figure 5.7 shows an example where
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the switches of S(n), associated with a wire node n, are identified in
black.

Given a wire node n, with its associated set of switches S(n), we
propose the following equation for the reconfiguration cost

costr(n) =
∑

s∈S(n)

costr(s), (5.19)

where costr(s) is the reconfiguration cost of one switch s and is given
by:

costr(s) =


0 if Nd(F (s)) = 0

(1− Nd(F (s))
T (F (s)) ) · factor if 0 < Nd(F (s)) ≤ threshold

1− Nd(F (s))
T (F (s)) otherwise

(5.20)
where F (s) is the configuration frame to which the switch s be-
longs. This cost function is also depicted in Figure 5.14. Nd(F (s))
and T (F (s)) are the number of dynamic bits and the total number of
bits in this frame, respectively.

The reconfiguration cost is basically inversely proportional to the
number of dynamic bits in the frame. When the number of dynamic
bits in the frame increases, each bit is associated with a lower cost.
This way the dynamic bits are clustered in less frames. The parame-
ters factor and threshold were introduced to associate an extra cost
with frames with only a few dynamic bits. This is done by multi-
plying the base cost, which is a basic inverse linear function, with a
factor when the number of dynamic bits in the frame is lower than
a certain threshold. This stimulates the router to make these frames
completely static. It also increases the cost to make a static frame
dynamic. Based on a parameter sweep with 2 circuits, factor and
threshold were both set to 4. For these parameter values a reduction
of reconfiguration overhead of 31% was achieved, while the reduc-
tion of maximum clock frequency was on average limited to 5%.

5.2.3 Experimental set-up

The experimental set-up is mostly the same as for StaticRoute, as de-
scribed in Section 5.1.5.1. ClusterRoute is also integrated in the VTR
framework and based on the wire-length driven router [80]. The con-
figuration frames are also chosen the same. Only in the case of Clus-
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Figure 5.14: The reconfiguration cost associated with one switch s.

125



terRoute it is not necessary to mark switches as static. The circuits
used in the experiments are also the same and can also be found in
Table 5.1 and Table 5.2. ClusterRoute was also not able to find a so-
lution when N was greater than 4. A discussion of the reason for
this, can be found in Section 5.1.6.1. The reconfiguration overhead is
also calculated as described in Section 5.1.5.2. The maximum clock
frequency of the implemented circuits was also extracted using the
timing analyser in the VTR framework.

5.2.4 Results

5.2.4.1 Impact on reconfiguration overhead

In Tables 5.14, 5.15 and 5.16 the results regarding the reconfiguration
overhead can be found for the experiments where the number of cir-
cuits N was 2, 3 and 4, respectively.

In these tables the values obtained in the experiments are pre-
sented for BCLB

total , BR
total, B

R
conv, BR

new. In Table 5.14 we see that an
average reduction of reconfiguration overhead (RRO) is achieved of
32% for N = 2. This reduction of reconfiguration overhead decreases
to 27% and 19% for N = 3 and N = 4, respectively.

5.2.4.2 Impact on maximum clock frequency

For each circuit we compare the implementation with the conven-
tional DPR flow to the one resulting from using ClusterRoute. The
clock frequencies of the experiments for the case of N = 2, N =3 and
N = 4 are presented in Table 5.17, Table 5.18 and Table 5.19, respec-
tively. As mentioned earlier, ClusterRoute was not able to find a so-
lution when N is greater than 4. The Fi columns show the clock fre-
quencies for the implementations that use the conventional DPR tool
flow. Clock frequencies obtained in the ClusterRoute flow, are de-
noted with FC

i . The last columns of these tables show the reduction
of maximum clock frequency.

It can be seen that the decrease is 5% on average for 2 circuits.
The results show that the decrease is higher as the number of circuits
N increases. It is 13% on average for 3 circuits and 22% for 4 circuits.

Finally, Figure 5.15 shows these average values together with the
maxima and minima of the experiments, using error bars. We see that
the maximum values follow the same trend. It is 14% for 2 circuits
and increases to 21% for 3 circuits and 31% for 4 circuits.
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Table 5.14: The reduction in reconfiguration overhead (RRO) of the
ClusterRoute flow compared to the conventional DPR flow (in %),
for the experiments with 2 circuits.

Exp BCLB
total BR

total BR
conv

BR
conv

BR
total

BR
new RRO

(bits) (bits) (bits) (%) (bits) (%)
0 135520 308800 289404 94 180012 26
1 542080 1229004 1192694 97 851936 20
2 542080 1229004 1183194 96 445372 43
3 362880 834968 813972 97 415096 34
4 219520 505660 462724 92 265410 29
5 323680 745342 729990 98 359198 35
6 592480 1339474 1253246 94 617582 34
7 161280 377924 354840 94 220596 26
8 592480 1339474 1255156 94 616426 35
9 448000 1023724 975330 95 495472 34
10 592480 1339474 1294606 97 588670 37
11 219520 505660 463256 92 244460 32
12 189280 439182 392408 89 299918 16
13 362880 834968 790432 95 372012 36
14 542080 1229004 1186302 97 487464 40
15 493920 1123754 1043826 93 496078 36
16 286720 663204 567530 86 248170 37
17 189280 439182 389976 89 234000 27
18 362880 834968 797634 96 435656 31
19 493920 1123754 1042322 93 619798 28

Avg: 94 Avg: 32
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Table 5.15: The reduction in reconfiguration overhead (RRO) of the
ClusterRoute flow compared to the conventional DPR flow (in %),
for the experiments with 3 circuits.

Exp BCLB
total BR

total BR
conv

BR
conv

BR
total

BR
new RRO

(bits) (bits) (bits) (%) (bits) (%)
0 362880 834968 814276 98 427312 33
1 542080 1229004 1183194 96 691082 29
2 362880 834968 784344 94 468462 28
3 448000 1023724 981674 96 725312 18
4 219520 505660 472676 93 400592 10
5 592480 1339474 1250760 93 653650 32
6 362880 834968 810054 97 500496 26
7 362880 834968 792518 95 540354 22
8 592480 1339474 1295450 97 653236 34
9 592480 1339474 1277194 95 757782 28
10 592480 1339474 1290064 96 723444 30
11 542080 1229004 1186834 97 610594 33
12 592480 1339474 1242988 93 627144 34
13 592480 1339474 1252764 94 901706 19
14 592480 1339474 1260918 94 753970 27
15 542080 1229004 1193506 97 879072 18
16 323680 745342 732460 98 481618 24
17 362880 834968 817792 98 475556 29
18 362880 834968 807504 97 492256 27
19 219520 505660 470966 93 268914 29

Avg: 96 Avg: 27
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Table 5.16: The reduction in reconfiguration overhead (RRO) of the
ClusterRoute flow compared to the conventional DPR flow (in %),
for the experiments with 4 circuits.

Exp BCLB
total BR

total BR
conv

BR
conv

BR
total

BR
new RRO

(bits) (bits) (bits) (%) (bits) (%)
0 323680 745342 730902 98 527514 19
1 592480 1339474 1267310 95 748766 28
2 448000 1023724 992204 97 767844 16
3 362880 834968 812182 97 554662 22
4 592480 1339474 1296204 97 1053520 13
5 323680 745342 732460 98 555434 17
6 362880 834968 810054 97 507740 26
7 592480 1339474 1296026 97 785346 27
8 592480 1339474 1280810 96 1057512 12
9 286720 663204 581308 88 439264 16
10 542080 1229004 1184598 96 771536 24
11 219520 505660 478984 95 372476 15
12 592480 1339474 1297576 97 905578 21
13 286720 663204 584550 88 477840 12
14 592480 1339474 1267918 95 799100 25
15 592480 1339474 1263064 94 847902 22
16 592480 1339474 1293554 97 837618 24
17 592480 1339474 1267744 95 1103654 9
18 493920 1123754 1045530 93 686714 23
19 362880 834968 798992 96 720234 7

Avg: 95 Avg: 19
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Table 5.17: The reduction in maximum clock frequency (∆i) for the
experiments when using ClusterRoute with 2 circuits, in % relative
to conventional DPR.

Exp. F0 F1 FC
0 FC

1 ∆0 ∆1

(MHz) (MHz) (%)
0 168 254 156 236 8 7
1 243 169 237 162 3 4
2 219 243 209 237 5 3
3 119 320 117 312 2 2
4 209 288 200 280 4 3
5 140 258 137 251 2 3
6 191 215 171 204 10 5
7 220 259 205 236 7 9
8 139 215 131 209 5 3
9 230 167 225 157 2 6
10 139 278 132 247 5 11
11 288 237 248 222 14 6
12 230 222 221 218 4 2
13 166 219 154 215 7 2
14 209 243 202 229 3 6
15 151 198 143 193 5 2
16 314 185 308 180 2 3
17 151 225 138 215 9 5
18 320 166 283 149 11 10
19 161 222 158 216 2 3

Avg: 215 Avg: 204 Avg: 5
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Table 5.18: The reduction in maximum clock frequency (∆i) for the
experiments when using ClusterRoute with 3 circuits, in % relative
to conventional DPR.

Exp. F0 F1 F2 FC
0 FC

1 FC
2 ∆0 ∆1 ∆2

(MHz) (MHz) (%)
0 219 119 320 191 103 283 13 13 12
1 207 243 201 184 200 176 11 18 13
2 166 176 183 150 150 164 10 15 11
3 258 207 167 243 178 141 6 14 15
4 179 320 219 168 260 190 6 19 13
5 191 181 226 181 161 214 5 11 5
6 250 176 119 212 157 109 15 11 8
7 213 166 219 188 140 199 12 16 9
8 278 191 313 241 167 248 13 13 21
9 313 135 139 253 116 118 19 14 15
10 191 200 135 163 174 122 15 13 10
11 116 243 294 104 213 255 10 12 13
12 255 191 172 227 169 141 11 11 18
13 118 156 191 111 135 171 6 14 11
14 139 215 213 121 193 188 13 10 12
15 243 142 294 213 116 243 12 19 17
16 226 140 306 191 132 265 16 6 13
17 223 119 278 192 115 234 14 3 16
18 250 278 166 219 226 148 12 19 11
19 288 174 320 238 155 262 18 11 18

Avg: 210 Avg: 182 Avg: 13
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Table 5.19: The reduction in maximum clock frequency (∆i) for the
experiments when using ClusterRoute with 4 circuits, in % relative
to conventional DPR.

Exp. F0 F1 F2 F3 FC
0 FC

1 FC
2 FS

3 ∆0 ∆1 ∆2 ∆3

(MHz) (MHz) (%)
0 140 190 195 226 115 149 152 183 18 22 22 19
1 213 139 226 320 160 117 189 247 25 16 17 23
2 190 167 313 148 153 117 216 126 19 30 31 15
3 335 213 119 223 290 164 101 168 13 23 15 25
4 278 118 139 135 226 89 112 102 19 25 19 24
5 195 215 174 140 153 174 124 123 21 19 28 12
6 176 119 223 250 139 99 183 189 21 17 18 24
7 191 215 278 172 152 158 229 140 20 27 18 19
8 191 200 255 320 148 169 203 253 22 15 21 21
9 210 314 237 225 163 243 183 175 22 23 23 22
10 294 193 243 201 212 143 201 150 28 26 17 25
11 288 237 320 226 199 181 224 175 31 24 30 23
12 156 200 191 278 107 142 146 208 31 29 24 25
13 210 226 300 314 153 171 227 217 27 24 24 31
14 255 320 213 139 203 263 156 114 20 18 27 18
15 139 226 181 172 113 195 154 135 19 14 15 21
16 226 191 255 278 180 164 203 229 20 14 21 18
17 139 215 161 255 112 179 118 193 20 17 27 24
18 204 241 151 226 170 197 116 183 17 18 23 19
19 200 176 149 166 168 139 113 114 16 21 24 31

Avg: 214 Avg: 167 Avg: 22
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Figure 5.15: Averages of the reduction of maximum clock frequency
of the ClusterRoute flow (in % rel. to conventional DPR), as a func-
tion of the number of circuits N. Maxima and minima of the experi-
ments are indicated with error bars.

The minimum values indicate that there are also some circuits
that are barely influenced by implementation using the ClusterRoute
flow.

As discussed earlier, it is reasonable to assume that the clock fre-
quency remains fixed when switching between circuits [20]. In Ta-
ble 5.11 the new values of the reduction in clock frequency with this
assumption are presented. The results for the ClusterRoute algo-
rithm are indicated with ’CR’. The RCF for the ClusterRoute algo-
rithm is 5% on average for 2 circuits. The reduction is again higher
as the number of circuits N increases. It is 11% on average for 3 cir-
cuits and 21% for 4 circuits.
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Table 5.20: Slowdown of the execution when using the ClusterRoute
flow, compared to the conventional DPR flow.

N = 2 N = 3 N = 4

Experiment Routing Total Routing Total Routing Total

0 38 18 25 16 42 20

1 21 17 29 15 22 16

2 24 12 25 17 24 19

3 21 13 15 12 37 23

4 36 12 46 24 35 25

5 23 11 38 20 37 18

6 16 9 24 15 41 24

7 43 23 21 15 32 17

8 18 12 35 18 45 24

9 13 11 23 16 67 40

10 21 14 57 29 44 22

11 48 16 35 25 103 31

12 34 18 27 15 36 27

13 16 11 31 24 70 44

14 16 9 16 11 21 14

15 18 13 27 20 23 16

16 37 20 38 18 32 18

17 35 18 29 19 31 25

18 18 12 26 17 23 17

19 17 13 77 24 28 19

Average: 26× 14× 32× 18× 40× 23×
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5.2.4.3 Impact on off-line compilation time of the tool flow

The timing experiments in this section were done using the same
set-up as for the StaticRoute flow, as described in Section 5.1.6.2.
Table 5.12 presents the compilation times of the experiments of the
conventional DPR flow. Table 5.20 presents the slowdown of the ex-
periments when using the ClusterRoute flow compared to the con-
ventional DPR flow. The slowdown of the routing step is 26× for
2 circuits and increases to 40× for 4 circuits. The slowdown of the
complete flow is smaller, 14× for 2 circuits and increases to 23× for 4
circuits

The reasons for this slowdown are the same as for the StaticRoute
flow and were discussed in Section 5.1.6.2. Again, we note that both
the conventional flow and our new flow are run off-line. The compi-
lation time of the flow therefore does not affect the performance.

ClusterRoute explores the RRG in the same way as the
PATHFINDER algorithm. Extra time is needed per explored wire
node to calculate the reconfiguration cost. The scaling behaviour
of the ClusterRoute algorithm is therefore the same as that of
PATHFINDER [71].

5.3 Industrial relevance

As stated earlier, the use of Dynamic Partial Reconfiguration (DPR)
of FPGAs can possibly result in an implementation that is more area
efficient than a static approach. A higher area efficiency possibly
results in the use of an FPGA with a lower cost. The downside of
DPR is that a cost is associated with switching between configura-
tions during run-time.

As the introduction of DPR impacts both the area and the execu-
tion time, capturing both the effects requires a metric for the area-
time-efficiency. A measure that satisfies these conditions is the func-
tional density: It is the number of computations (N ) per unit of area
(A) and per unit of time (T ) [34]. It is also used to assess the benefits
of dynamic reconfiguration implementations in [98].

FD =
N

T ·A
(5.21)

The functional density depends heavily on the rate at which
the application performs reconfigurations during run-time. In Fig-
ure 5.12 the functional density is plotted for the static, conventional
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DPR, StaticRoute and ClusterRoute approach. To make this figure
a configuration bandwidth of 1 Gigabits per second is assumed [7].
This corresponds with the Altera IV configuration port that has a
width of one byte and runs at 125 MHz. The area, clock frequency
and reconfiguration time are averaged over all 20 experiments con-
sidered in this chapter. The less optimistic clock frequency compar-
ison is used, to show that even in this case the techniques in this
chapter improve the functional density for a certain, more dynamic,
configuration rate. A typical configuration time of a complete FPGA
chip is around 10s of milliseconds [7]. The reconfiguration for partial
reconfiguration is typically in the range of a few milliseconds. The
average reconfiguration time in our experiments using an architec-
ture based on the Stratix IV would be around 1.5 ms in the case of
conventional DPR. When using StaticRoute the average reconfigura-
tion time would drop to around 1 ms.

In the figure it can be seen that, when reconfiguration only hap-
pens once-in-a-while, it could be that the static implementation is not
efficient, because there is hardware present that is not used for a sig-
nificant portion of the execution time. In this case the approaches that
use DPR will be more efficient since they require much less area and
all of the hardware resources are used at all time. The conventional
DPR approach is most efficient since the clock frequency at which
the circuits operate is maximal and the area minimal, while the re-
configuration time plays less of a role as the reconfiguration rate is
very low.

When the reconfiguration rate is very high, the cost of reconfig-
uration outweighs the benefits and a static implementation will be
more efficient. When the configuration rate is in between (circuit re-
use of around 500 thousand clock cycles) the StaticRoute approach
will be more efficient. The StaticRoute algorithm always outperforms
the ClusterRoute algorithm what functional density is concerned.
Note however, that the ClusterRoute algorithm is more automated. If
an application is constrained in area and the use of DPR is necessary,
the StaticRoute approach clearly outperforms conventional DPR.

As explained above, the techniques in this chapter target appli-
cations that are more dynamic and thus where the reconfiguration
overhead plays an important role. This can for example be an ap-
plication that process network traffic. An example of such an appli-
cation is shown in Figure 5.16 [76]. In this application the network
packets are divided in complementary sets, based on the network
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Figure 5.16: Example of a network intrusion detection system that
exploits dynamic reconfiguration [76].

protocol. The hardware that processes the different types of pack-
ets is time-multiplexed on the same reconfigurable region to save
area. Since the reconfigurable region is off-line during reconfigura-
tion, queues are needed to buffer the network traffic and place the
packets in the appropriate queue. This part that contains the queues
and the sorting logic is placed in the static part of the FPGA since it
has to remain active at all times to not drop any packets. The size of
the queues is very much dependent on the reconfiguration time. The
techniques in this chapter can reduce the amount of memory needed
for these queues, making such a system more realistic.

The functional density measure assumes the circuits run at max-
imum clock frequency. Since the techniques presented in this chap-
ter consider a joint optimization approach they affect the maximum
clock frequency at which the circuits can operate. If the circuits have
to operate at their maximum clock frequency, it will not be possi-
ble to use these techniques. An application in for example High-
Performance Computing is therefore unlikely. This is however not
always the case. Some applications are more restricted by bandwidth
than by pure computing power. The example application in [76] for
example runs at a standard clock frequency of 125 MHz. Also, since
FPGAs are highly parallel computing platforms they tend to rely
more on parallelism than on maximum operating clock frequency.

Of course, as only limited-context DPR is considered in this chap-
ter, the developed techniques are only viable when the number of
configurations is limited to no more than 4, as is this case for the
network intrusion detection example discussed in this section.
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Figure 5.17: Comparison of the functional density of the different
approaches.
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Chapter 6

An introduction to SRL
reconfiguration

6.1 The Shift Register LUT

As was mentioned in Chapter 1, the basic building block of some
Xilinx FPGAs is not a simple lookup table (LUT) but a Shift Register
LUT (SRL). A schematic representation of an SRL is shown in Fig-
ure 6.1. In an SRL the truth table configuration bits are also arranged
as a shift register of which the input and the output are accessible
from the configurable routing. Therefore these configuration bits are
not only accessible through the FPGA’s configuration ports (e.g. the
Internal Configuration Access Port or ICAP), but also through the

Figure 6.1: A schematic representation of the shift register LUT.
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Figure 6.2: A schematic representation of a 32-bit shift register made
up out of 2 SRLC16Es.

shift inputs of the SRLs. The SRL provides a very efficient means
for implementing shift registers. Instead of using flip-flops of the
FPGA fabric, the flip-flops of the configuration memory can be used.
As is shown in previous work of other authors, SRLs can also be
used to reconfigure the truth table contents of a LUT during run-
time [38, 100, 56, 84], hence the term SRL reconfiguration.

In my research on SRL reconfiguration I mainly worked with the
Virtex2 Pro. A library component to instantiate SRLs in VHDL for the
Virtex 2 Pro is available. Because the Virtex 2 Pro contains 4-LUTs,
the shift register that can be made with one SRL has a size of 16 bits,
the component is therefore called an SRL16. There are different types
available. In my work I mainly used the SRLC16E [101]. The C stands
for cascade, and refers to the fact that several of these SRLs can be
cascaded to form longer shift registers. The E denotes the presence
of a clock enable signal. Figure 6.2 shows a 32-bit shift register made
up out of two SRLC16Es. The input port D acts as an shift input
to the shift register. Q is the normal output of the LUT. Depending
on the address and the content of the truth table, different bit values
can be brought out on Q. CE is the clock enable. CLK is the clock
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input. When CE is high the bits in the register will shift further one
place every clock tick. The signal on D is shifted into the first bit and
the last bit is shifted out to the Q15 output. The Q15 output can be
connected to the D input of another SRLC16E to create longer shift
registers.

6.2 Comparison with ICAP reconfiguration

In this section the intrinsic differences between SRL and ICAP recon-
figuration are explained. As will be discussed later, some hardware
is needed to interface between the configuration manager and the re-
configuration mechanism. In the case of ICAP reconfiguration the
HWICAP, provided by Xilinx, is used for this purpose. For SRL re-
configuration a new interface is developed called the HWSRL. The
HWSRL uses, for the Virtex 2 Pro for example, around 140 LUTs and
150 FFs. The hardware resources used are very similar to the HW-
ICAP and are negligible, since the Virtex 2 Pro chip used in this work
contains 30000 LUTs. That is why it is not discussed further below.

6.2.1 Accessible configuration bits

When using SRLs only LUTs can be reconfigured. The most impor-
tant limitation therefore is that the configurable interconnection net-
work of the FPGA can not be changed during run-time using SRLs.
With the ICAP on the other hand the complete FPGA fabric can be
reconfigured. This is not only the LUTs and the routing, but also
specialised hardware components such as hard-wired multipliers.

In Table 6.1 some basic characteristics are listed of the Virtex 2
Pro, Virtex 4 and Virtex 5 FPGAs [44] [103] [107] [102]. It can be
seen that in the Virtex 2 Pro every LUT can be set as an SRL. This
is however no longer the case for later FPGAs, such as the Virtex
4 and the Virtex 5. Only a fraction of the available LUTs has shift
register functionality, while these SRLs are uniformly spread over
the FPGA. Also, on the 6-LUT based FPGAs a LUT can only be set as
a 32-bit shift register. The more recent Virtex 6 and 7 series FPGAs
have the same SRL characteristics as the Virtex 5 [108] [109]. For
UltraScale FPGAs, the SRL characteristics are dependent on the type
of FPGA [110]. Depending on the type of Ultrascale FPGA 25% or
50% of the LUTs have SRL functionality.
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Table 6.1: An overview of the basic characteristics of the Virtex 2 Pro,
Virtex 4 and Virtex 5 FPGAs.

Family K-LUT LUTs Slices Fraction Size
per slice per CLB of SRL

Virtex 2 Pro 4-LUT 2 4 100% 16 bit
Virtex 4 4-LUT 2 4 50% 16 bit
Virtex 5 6-LUT 4 2 25% 32 bit

When using the HWICAP the LUTs that need reconfiguration can
be placed anywhere on the FPGA. When using SRLs these LUTs can
only be placed where the shift register functionality is available.

6.2.2 Routing cost

When using SRL reconfiguration some routing is needed to imple-
ment the reconfiguration paths that interconnect SRLs. Because extra
routing is introduced the maximum clock frequency can be affected
of the design to be reconfigured. ICAP reconfiguration does not have
this cost.

An important remark to this extent is that between SRLs in a Con-
figurable Logic Block (CLB) there is dedicated routing. This routing
can only be used to interconnect two consecutive SRLs, it can not be
used for other interconnections. With one CLB a 128-bit shift reg-
ister can be made, that interconnects eight SRLs without any extra
routing. Figure 6.3 shows half a CLB or two slices can connect four
SRLs without any extra routing. Between the CLBs the normal con-
figurable routing network of the FPGA is used.

6.2.3 Granularity

Every single SRL on the Virtex 2 Pro can be used separately. This
allows the creation of random reconfiguration paths on the FPGA. It
is, for example, possible to connect two non-consecutive SRLs in a
CLB, as is illustrated in Figure 6.4. In the figure the top half of a CLB
is shown, in which the first and the fourth SRL are interconnected.
Note that in this case it is not possible to use the dedicated rout-
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Figure 6.3: Two slices can interconnect 4 SRLs using only the dedi-
cated routing.
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Figure 6.4: Example of a reconfiguration path connecting two non-
consecutive SRLs in a CLB.

ing, but instead wires of the configurable interconnection network
are used.

The FPGA configuration memory of recent Xilinx devices is ar-
ranged as frames that are tiled on the device. A frame is the smallest
addressable segment of the configuration memory. When using the
ICAP, all operations must therefore act upon complete configuration
frames. In the case of the Virtex 2 Pro, for example, the 640 LUTs of
a CLB column are spread over two configuration frames of 320 LUTs
each. It is therefore not possible to reconfigure one single LUT. The
whole frame of 320 LUTs needs to be rewritten. In the best case these
are all LUTs that need reconfiguration. Mostly, however, this is not
the case and only the truth table content of a few LUTs needs to be
changed. It is clear that this is the main disadvantage when working
with the ICAP: the reconfiguration time is largely dependent on the
number of configuration frames in which the LUTs are placed. This
is not the case for SRL reconfiguration.

6.2.4 Reconfiguration bandwidth

In Figure 6.5 a schematic is shown of the top half of one slice of
the Virtex 2 Pro. All relevant signals are marked in bold. In this
schematic it can be seen that the flip-flop and the SRL in the slice
share the same clock. A different clock could be put on the reconfig-
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Figure 6.5: A detailed schematic of the top half of a slice on the Virtex
2 Pro.

uration path and possibly use a much higher clock frequency. How-
ever, then no flip-flops of the design can be placed in slices that con-
tain SRLs. This could affect the maximum operating clock frequency
of the design. In my research this method was used. Further on,
it is shown that the impact on the maximum clock frequency of the
design is limited, when using the appropriate timing constraints.

Because the interval in which the design operates and the interval
in which the bits are shifted in during reconfiguration can not over-
lap, there is also the possibility to use a clock multiplexer. This last
option, however, is associated with a very high design effort.

During my experiments with SRL reconfiguration on the Virtex
2 Pro I found that the clock frequency of the shift registers easily
reached a range of 100 to 200 MHz. This could be expected as the
reconfiguration paths are very simple. A reconfiguration path is ba-
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Figure 6.6: An example scenario of SRL reconfiguration with 1 path
(a) and with 4 paths (b).

sically a collection of serially interconnected flip-flops. There are no
combinatorial paths present, as is the case in the reconfigured design.

The reconfiguration time when using SRLs is not only dependent
on the clock frequency at which the bits are shifted in, also the num-
ber of bits shifted in is important. This is equal to the number of re-
configuration paths. In Figure 6.6(a) a scenario is depicted in which
one reconfiguration path is used to change the truth table contents of
the grey LUTs. In Figure 6.6(b) there are four reconfiguration paths
shifting in bits in parallel. The designer can therefore tailor the num-
ber of reconfiguration paths, and thus also the reconfiguration band-
width, to the needs of the application.

In the case of ICAP reconfiguration the reconfiguration band-
width is fixed. The HWICAP of the Virtex 2 Pro, for example, always
works at a clock frequency of 66 MHz. The ICAP reconfiguration
port on this chip has a width of eight bits.

The differences between SRL and ICAP reconfiguration are sum-
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Table 6.2: An overview of the comparison between SRL and ICAP
reconfiguration.

ICAP SRL
Accessibility Complete Only LUTs
Routing cost None Extra routing

minus dedicated routing
Granularity Frame LUT
Bandwidth Fixed Adaptable

marized in Table 6.2.

6.3 Related work

In this section I give an overview of the literature on dynamic recon-
figuration using SRLs.

6.3.1 Dynamic multiplication with a constant

A first application where SRLs are used for dynamic reconfigura-
tion is introduced by FPGA manufacturer Xilinx itself. It is used to
implement a dynamically reconfigurable multiplication with a con-
stant [100]. Constant multipliers are multipliers in which one of the
factors is a constant. These can be more efficient than generic mul-
tipliers in applications where one of the multiplication factors stays
constant for a relatively long time interval. In this application from
Xilinx, the LUT contents associated with a constant are calculated
beforehand. During run-time these truth table values are looked up
in a memory and shifted in using the SRLs. The LUTs are all recon-
figured in parallel and therefore the reconfiguration process takes 16
clock cycles.

6.3.2 Dynamically reconfigurable PLAs on FPGAs

A second application is found in [84] and [83]. This author imple-
mented Programmable Logic Arrays (PLAs) using LUTs and multi-
plexers. The most important observation made in this work is that in
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Figure 6.7: An example of SRL reconfiguration that avoids halting
the design during reconfiguration.

a PLA the routing is fixed and thus SRLs can be used to reconfigure
the LUTs. Using this method, fast dynamic reconfiguration can be
achieved. Also, different methods are presented to generate a PLA
given the logical circuit of an application.

Note that in the TLUT tool flow the routing is also fixed. The
TLUT tool flow uses the conventional FPGA tools and only an ad-
justed technology mapper. This technique is more powerful than
PLAs as composition of Boolean functions is possible. The TLUT
tool flow is also more generic and tailored to dynamic reconfigura-
tion. In [84] and [83] the author focuses mainly on the design of the
PLA. How this is supposed to be used for dynamic reconfiguration
is not discussed.

6.3.3 Dynamic reconfiguration without a transient

Certain specific functions needed in a Universal Mobile Telecommu-
nications System (UMTS) are typically space multiplexed, so that
they operate much faster than actually is necessary. In [55] these
functions are time-multiplexed on the same FPGA area, increasing
the area efficiency of the implementation. Because the author is able
to achieve this without lowering performance, this results in a more
efficient use of hardware resources.

The shift register functionality of SRLs is used in a special way.
This is represented graphically in Figure 6.7. Using this technique,
the transient interval in which the design needs to be halted for re-
configuration is avoided.
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In the example in Figure 6.7 it seems that 3-LUTs are used, but
these 3-LUTs are actually used as 2 2-LUTs. The truth table of a 2-
LUT contains four bits, that of a 3-LUT eight bits, so the 3-LUT con-
tains two 2-LUTs. Reconfiguration without a transient is achieved by
letting the input of the 3-LUT follow the top 4-bit truth table as it is
shifted down. A second 4-bit truth table can therefore be shifted in
without disturbing the designs functioning. This illustrated in the
figure, because the output remains the same, while a new top 2-LUT
is shifted in. To make the input follow the truth table an adder is
used. In this example the actual switching between truth tables oc-
curs for t > 4, when the number that is added with the input is set
to zero again. The contents of the truth tables are generated on-line
and shifted in immediately. The advantage of this approach is that
no extra memory is needed.

In [55] the author uses an architecture with 4-LUTs and maps the
reconfigured module to 3-LUTs. Exactly the same principle applies
as in our example with 3-LUTs. Note that, in principal an adder is
needed for every LUT that needs reconfiguration. This technique is
thus especially useful when many of these LUTs share inputs. For
the application under consideration only one adder is needed as the
input to the reconfigurable module is also the input to all the 3-LUTs
it consists of.

This technique is very interesting for designs in which the new
truth table contents are known before the reconfiguration has to take
place. This way computation time and reconfiguration time can be
overlapped.

Note that the same result could be achieved as in this work using
the ICAP, since recent FPGAs allow for glitch-less reconfiguration:
when a memory cell in the configuration memory is overwritten with
the same value, it is as if this value did not change [85]. Hence the
design can operate during reconfiguration using the ICAP, as long as
the active truth table contents are overwritten with the same value.
In this case the truth table bits are not shifted, but overwritten. Only
one half of the truth table would be active at any time. The other half
could be reconfigured without interrupting the design’s operation.
The most significant bit of the 4-LUTs would in this case be used to
switch between the two halves. This way the adders that are needed
in [55] are avoided and it is also no longer needed that the 3-LUTs
should share inputs. The reconfiguration will take longer than is the
case with SRLs, which only needs eight clock ticks. The time interval
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between reconfigurations should therefore be longer.

6.3.4 Efficient implementation of low frequency finite state
machines

In [56] the observation is made that some finite state machines
(FSMs) only change state once in a while. It therefore makes sense to
specialise the hardware for the current state. A method is explained
that makes it possible to implement an FSM with less LUTs using
dynamic reconfiguration. Although the author proposes a new ar-
chitecture for this purpose, the design of such an FSM still happens
manually.

Since FSMs only implement a limited number of states, it is pos-
sible to generate the LUT contents off-line and save these to BRAM.
So this system trades off some of the gains made with more BRAM
usage. According to this work, however, it is likely that there are
some spare BRAM resources available.

The routing in the design is fixed because the reconfigured logic
consists of a large lookup table built up using LUTs. SRL reconfigu-
ration can therefore be used to shift in the data out of the BRAM into
the LUTs. Reconfiguration takes 16 clock cycles, since a 4-LUT archi-
tecture is used and all the configuration bits are shifted in in parallel.

6.3.5 Regular expression matching

A custom designed architecture for regular expression matching is
proposed in [38]. The shift register functionality is used to recon-
figure the LUTs of specific, hand-designed functions. The authors
present a tool that automatically generates VHDL code that can
match a certain regular expression. It is not possible to match a reg-
ular expression for which the VHDL code was not already generated
off-line. The configuration data is also generated off-line by running
the conventional FPGA tool flow. During run-time, the configuration
data is looked up in a memory and shifted in accordingly.

6.3.6 Discussion

What stands out in the applications of SRL reconfiguration above is
that almost all the applications are manually designed. The work
in [84] and [83] allows for generic design, but uses the FPGA sub-
optimally since for any application a PLA is generated, which is es-
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sentially a two-level Boolean function. It is also not explained how
this can be used for dynamic reconfiguration. In most cases consid-
ered, the configuration data is generated off-line and shifted in dur-
ing run-time. This is not a general approach, since some applications
would require an enormous amount of memory.

Most authors use the SRLs to reconfigure small, specific, hand-
designed functions. It is not the case that the LUTs that need to be
reconfigured are spread out in the design. To the best of my knowl-
edge, before I started my research no work was done that attempts
to figure out the influence the SRL reconfiguration paths have on the
design. What is, for example, the impact on the maximum operating
clock frequency of the design? What is the expected speed up of the
reconfiguration process that can be obtained with SRL reconfigura-
tion? Does the order in which the LUTs are placed in the reconfig-
uration paths matter? I will investigate these questions in Chapter
7.
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Chapter 7

SRL reconfiguration of
regularly structured designs

The TLUT toolflow was presented in Section 3.2.1. I also discussed
how shift register LUTs have been used for dynamic reconfiguration
in previous work in Section 6.3. SRLs have been primarily used to
reconfigure specific hand-designed functions. In this chapter, I ex-
plain how I integrated SRL reconfiguration in the automatic TLUT
tool flow.

In regularly structured designs the same hardware module is in-
stantiated many times. For these designs, I quantify the speed-up
of the reconfiguration process and also show that the memory effi-
ciency thereof can be greatly improved using SRLs. The impact of
SRL reconfiguration on the maximum operating clock frequency of
the design is also discussed.

7.1 Integration of SRL reconfiguration in the
TLUT tool flow

The original TLUT tool flow that generates a master configuration
and a reconfiguration procedure is described earlier in Section 3.2.1.
The tool flow that incorporates SRL reconfiguration is depicted in
Figure 7.1. Adjustments have been made in three different steps of
the tool flow. First, a step has been added in which the SRL reconfigu-
ration paths are introduced. Second, during the placement and rout-
ing step, appropriate timing constraints are necessary for the proper
optimization of the design clock and shift register clock. Finally, in-
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Figure 7.1: The TLUT tool flow with SRL reconfiguration.
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stead of using the HWICAP, a newly designed block is used called
the HWSRL. This new block receives the configuration data and is
responsible for shifting it in the reconfiguration paths. The reconfig-
uration procedure is adapted to reflect this change. Now, the address
of the LUTs in the configuration memory is no longer necessary. The
only relevant information is how the LUTs are arranged in the recon-
figuration paths.

7.1.1 Introduction of the reconfiguration paths

In the VHDL files generated by the SRL-based TLUT tool flow of Fig-
ure 7.1, SRL16 primitives are instantiated instead of regular LUTs. By
default only one reconfiguration path is used. If the TLUT circuit is
completely contained in one VHDL file, the generation of the recon-
figuration path is completely automatic. The SRLs are placed in the
reconfiguration paths in the order of appearance in the VHDL file.
When there are multiple VHDL blocks, or instantiations of blocks,
the tool flow will automatically generate an adapted version for each
VHDL file. In these VHDL files shift in and shift out ports are added
and the SRLs are also interconnected in the order of appearance.
However, the designer has to manually interconnect these different
blocks. Creating a completely automatic method on VHDL level is
possible, but would require an extensive VHDL parser on system-
level. Creating such a parser is not trivial and very time-consuming.

Another, more generic way of inserting the SRLs, was presented
in [45]. This new tool flow was developed by Karel Heyse and based
on the VHDL-based tool flow presented in this chapter. In this new
method, the reconfiguration paths are inserted after placement on the
complete, flattened out design. The SRLs are inserted in an interme-
diate representation of the design offered by Xilinx, which is called
the Xilinx Design Language (XDL). A small excerpt of an XDL file
after technology mapping is shown in Figure 7.2, together with the
slice it relates to. Xilinx also provides access to the implementation
of a design through the XDL interface after placement and routing.
The advantage of inserting the reconfiguration paths in XDL is that
there is more control on how these are implemented. When these are
inserted in VHDL the Xilinx tools determine the exact implementa-
tion.

In Figure 7.3 it is illustrated how the reconfiguration path is in-
serted in the VHDL-based flow for regularly structured designs, in
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Figure 7.2: A small excerpt out of a XDL file together with the slice
it relates to.
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Figure 7.3: The SRL reconfiguration path in a regularly structured
adaptive filtering application.
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this case a 32-tap adaptive filter. The paths basically follow the reg-
ular structure. The input of the reconfiguration path is connected to
the HWSRL block. The different taps, which are 8 by 8 multipliers
of the FIR filter, are instantiated using a generate statement. The re-
configuration path is easily inserted in VHDL by incorporating the
adapted VHDL file that contains a shift in and a shift out port in the
generate statement. Each 8 by 8 by 8 multiplier consists of two 4 by
8 multipliers. Also a connection has to be made between these 4 by 8
multipliers.

7.1.2 Adding appropriate timing constraints

After synthesis an estimation is made of a theoretical maximum clock
frequency based on the gate delays of the primitives present in the
synthesized circuit. The primitives are for example LUTs and carry
chains. This maximum clock frequency is an over estimation, since it
will be reduced by the effect of technology mapping, placement and
routing, but already gives an indication of the expected maximum
clock frequency.

When analysing the synthesis tool reports it is notable that the es-
timated maximum achievable clock frequency of the FIR filter design
with reconfiguration paths is lower than the original design without
reconfiguration paths. On the Virtex 2 Pro the synthesis tool reports
a maximum clock frequency of around 165 MHz for the original de-
sign and 135 MHz for the design with reconfiguration paths. This
is striking since it could be expected that the reconfiguration paths
would only have effect during placement and routing.

When the synthesis report is analysed in more detail, it can be
seen that the delay of a SRLC16E primitive is larger than that of
a LUT. This is illustrated in Figure 7.4. It is this delay that results
in the longest path when estimating the maximum clock frequency
of the design. This observation can be verified by instantiating the
SRLC16E components, but not adding the reconfiguration paths. The
synthesis report still indicates a lower clock frequency for the design
with SRLs. The reduction in clock frequency is therefore not due to
the reconfiguration paths, but the SRLC16E components themselves.

This is an interesting finding, since it could be expected that the
reduction in performance of the design would primarily come from
the addition of the reconfiguration paths. However, the SRLC16E
component itself seems to also have an influence. The reason for
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Figure 7.4: The gate delay of a shift register LUT compared to that
of a regular LUT.

this is that the tools treat the shift register LUTs as shift registers.
The tools assume that there could be data shifted in the SRLs during
operation. That is why the tools assign a higher delay than normal
LUTs to the SRLs. The truth table bits of LUTs are indeed assumed
not to change during operation.

In the case of SRL reconfiguration, however, the truth table con-
tents also do not change during operation of the design. It is only
during the reconfiguration process, when the design is halted, that
the new truth table contents are shifted in. Therefore, in our case the
delay of an SRLC16E is the same as that of a LUT. For a proper op-
timization of the clocks, it is important that this is made clear to the
tools.

A possible solution is to put the reconfiguration paths on a differ-
ent clock than the design and tell the tools to ignore the transitions
between the two clock domains. More specifically this is done by
putting the SRLs and the FFs in a different timing group and ignor-
ing the transitions between these groups. This is the approach taken
in my work. When applying this solution, there is another, much
smaller, side effect to be considered. The SRLC16Es and the FFs of
the design can not be placed in the same slice. As I explained in Sec-
tion 6.2.4 the SRL and the FF of a slice share the same clock.

Another observation was made when I put a clock frequency con-
straint of 200 MHz on the reconfiguration paths and a clock of 100
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Figure 7.5: Design of the HWSRL block.

MHz on the design. When running the placement and routing tools
as is, they failed to reach both constraints. However, if the design
clock is given a priority of 1 (highest) and the reconfiguration clock a
priority of 100, the tools easily reach the given constraints.

It seems that the tools get confused when trying to optimize glob-
ally for both clock domains. This could be due to the overestimation
of the importance of the reconfiguration clock. The reconfiguration
paths are very simple and consist solely out of FFs with interconnec-
tion between the SRLs. By giving the reconfiguration clock a very
low priority, the tools are basically told to ignore the reconfiguration
clocks. As will be discussed further on, even when the tools only op-
timize the design’s clock, the reconfiguration clock still easily reaches
a high clock frequency.

7.1.3 The HWSRL block

The design of the proof-of-concept implementation of the HWSRL
block in the case of the Virtex 2 Pro is shown schematically in Fig-
ure 7.5.
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Figure 7.6: A timing diagram of the control signals of the HWSRL
block.

There is a 32-bit data register and a 32-bit control register avail-
able, which are connected to a bus. The Peripheral Local Bus (PLB)
is used. This bus can be written from the C code in the reconfigu-
ration procedure. The HWSRL block contains a FIFO which is used
for synchronization between the PLB and the logic that shifts in the
configuration data. Writing and reading the FIFO can happen us-
ing different clocks. The FIFO can also be used to temporarily buffer
configuration data on the FPGA.

The read width of the FIFO is set to the number of reconfiguration
paths. In our case this is set to 1, by default. This simplifies the hard-
ware needed to shift in the configuration data, because the data can
flow out of the FIFO without interruption. No back-end is necessary
to read the data out of the FIFO and write it to the reconfiguration
paths. The output of the FIFO is therefore directly connected to the
first SRL of the reconfiguration path.

The FIFO is generated and optimized by the software tools of Xil-
inx. This software does not allow a ratio larger than 8 between the
read and write widths. That is why the write width is 8. Therefore
a front-end is required to sequentially write the bits out of the data
register into the FIFO.

A timing diagram of the control signals responsible for shifting
in the configuration data is shown in Figure 7.6. Shifting the data
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out of the FIFO is controlled by the SHIFT ENABLE signal. As can
be seen in the figure, when this signal is put high 32 bits are shifted
out of the FIFO and in the reconfiguration path. The READ ENABLE
signal follows the SHIFT ENABLE signal, unless the FIFO is empty
(EMPTY signal high), then this signal stays low. When the READ
ENABLE signal is set high, the 32 bits will be present on the out-
put of the FIFO. In Section 6.1, it was explained that data could be
shifted in the SRLC16E by putting the CE (clock enable) signal high.
The signal that drives all the CE signals of the SRLs is called SHIFT
CLK ENABLE. This signal follows the READ ENABLE signal, unless
the EMPTY signal is high, then it stays low. This last condition is
necessary, because the READ ENABLE signal stays high one clock
tick too long when the FIFO becomes empty. When the EMPTY sig-
nal turns high, there is no data in the FIFO any more, yet the READ
ENABLE signal stays high for one more clock cycle. Note that no
counter is used in the implementation of the HWSRL block, instead
the EMPTY signal is used. That is why only configuration data is
allowed to be sent to the FIFO.

In the design a RESET signal was added that can set all the con-
trol signals to zero and reset the FIFO. The implementation of the
HWSRL block on the Virtex 2 Pro uses 137 LUTs and 156 FFs, which
is very similar to the HWICAP and is negligible.

7.2 Reconfiguration speed up

7.2.1 Experimental set-up

The adapted TLUT tool flow is validated on an adaptive filtering ap-
plication: a fully pipelined 32-taps FIR filter with 8-bit coefficients
and an 8-bit input. It is assumed that the coefficients need to be
changed every once in a while, which could, e.g., be the case in a
wifi application to cancel inter-symbol interference (ISI). Every time
a wifi-client is moved, the communication channel properties change
and the coefficients of the ISI cancelation filter need to be updated.
It is also assumed that the configuration manager (in our case the
PowerPC) is responsible for calculating the new coefficients and re-
configuring the filter accordingly.

I implemented both platforms of Figure 7.7 on a Xilinx XUP
board, that contains a Virtex 2 Pro (XC2VP30) FPGA. The first imple-
mentation of the reconfigurable FIR filter uses our previous ICAP-
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Figure 7.7: Platform implementation of the original TLUT tool flow
(a) and the new SRL implementation (b).

based tool flow [19]. The configuration manager is implemented
in software and changes the filter characteristics by reconfiguring
the FPGA through the ICAP. The second implementation uses our
new SRL-based tool flow. The configuration manager is again imple-
mented in software, but now reconfigures the filter by using SRL re-
configuration. The functionality of the 32-taps FIR filter is also tested
in both implementations by comparing it to a FIR filter simulated in
software.

As shown in [19], the TLUT tool flow implements the FIR-filter
example with an area gain of 40 percent compared to a generic design
without RTR. The same gain is found in the SRL-based approach.
There is a large difference in the overhead though. While the ICAP-
based platform requires 141 ms (taken from [19]) for the reconfigu-
ration of the TLUTs, our new SRL-based implementation needs less
than 1 ms, over two orders of magnitude improvement. However,
as the reported reconfiguration time for the ICAP solution is mostly
due to the overhead of the specific implementation, I further explore
the intrinsic differences in reconfiguration time, and its scalability, in
the next section.

The overhead comparison of the previous paragraph is not com-
pletely fair as the ICAP-based tool flow uses the Xilinx function
XHwIcap_SetClbBits and reconfigures one LUT at a time. In fact, the
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Table 7.1: Results for the HWICAP reconfiguration.

Maximum Number Reconfiguration
clk freq of frames time ICAP

32 taps 151 MHz 68 840 µs
64 taps 153 MHz 88 1087 µs
128 taps 147 MHz 131 1619 µs

HWICAP is capable of framewise reconfiguration.1 To compare the
fundamental reconfiguration overhead difference, it is assumed that
the reconfiguration data is already available on the FPGA, for exam-
ple in a RAM block, and that it can be processed in one time. For the
ICAP the reconfiguration data is the partial reconfiguration bitstream
the HWICAP has to process. In case of the SRL reconfiguration the
reconfiguration data consists of the configuration bits of the TLUTs
that have to be shifted in by the HWSRL. With this assumption, the
complete platform (with PowerPC, HWICAP or HWSRL, . . . ) are
again implemented as shown in Figure 7.7. The scaling behaviour is
investigated below by implementing a 32-tap, a 64-tap, and a 128-tap
FIR filter. The implementation with the 32-tap FIR filter takes 6% of
the FPGA area, for the 128-tap FIR filter this is 40%.

7.2.2 Results

7.2.2.1 Reconfiguration speed-up

In Table 7.1 the measurements for the design that uses ICAP recon-
figuration are shown. As the maximum clock frequency is indepen-
dent of the reconfiguration infrastructure, it is only determined by
the reconfigurable module. The number of frames in the partial con-
figuration bit stream naturally increases with the number of taps im-
plemented. The instructions in the partial configuration bit stream
of the ICAP are very few and are therefore neglected. The number
of frames is used to estimate the reconfiguration time. These num-
bers also include the padding frames that have to be processed by the

1A frame is a column of 1-bit wide in the configuration memory. For the Virtex 2
Pro a frame consists of 204 bytes.
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Figure 7.8: (a) Influence of SRL reconfiguration on the maximum
clock frequency of different designs. (b) Speedup of the SRL recon-
figuration over the ICAP reconfiguration for the different designs.
Both figures show the scaling over the number of reconfiguration
paths.

ICAP. It is known that a frame of the Virtex 2 Pro consists of 204 bytes
and that the HWICAP processes it bytewise at a clock frequency of
66 MHz. This results in very good estimates for the reconfiguration
time of the different designs (last column of the table), as the number
of instruction bytes is negligible.

In the case of the SRL reconfiguration, the reconfiguration time
depends on the number of reconfiguration paths so the FIR filters are
reconfigured using 1, 2, 4, 8, 16, or 32 ad hoc reconfiguration paths
of equal length. The clock of the reconfiguration paths is put on the
same value as the clock of the design. As it is known what the num-
ber of LUTs is that has to be reconfigured and the clock frequency at
which the bits are shifted in, it can easily be calculated what the re-
configuration time is for the different implementations. Figure 7.8(a)
shows the decrease in maximum clock frequency for the different FIR
filters as function of the number of reconfiguration paths relative to
the values of the design clock without these paths (as mentioned in
Table 7.1). Figure 7.8(b) shows the speed-up of the reconfiguration
time over the respective ICAP results.

165



Figure 7.8(b) shows that SRL reconfiguration with 32 reconfigu-
ration paths is two orders of magnitude faster than ICAP reconfig-
uration. Indeed, the partial configuration bit stream for the ICAP
consists for more than a third of padding frames. Moreover, the
ICAP bandwidth is fixed. In the case of the SRL reconfiguration, only
the LUTs that have to be reconfigured are put in the reconfiguration
paths. Increasing the number of reconfiguration paths reduces the
number of bits per reconfiguration path and increases the reconfigu-
ration speed. In the SRL case, the reconfiguration speed can thus be
tuned to the application requirements.

7.2.2.2 Impact on maximum clock frequency

The decrease in maximum clock frequency of the design for the
fastest reconfiguration approach, the one with 32 reconfiguration
paths, stays within 8%. The maximum reduction in clock frequency
is 10%, for the case of the 128-taps FIR filter reconfigured with 1 path.
It can also be observed that the number of reconfiguration paths
seems to have little influence on the clock frequency. The largest
effect comes from the number of taps of the FIR filter. This could
indicate that more routing congestion arises as the number of taps of
the FIR filter increases.

These results are confirmed by the experiments done in [45]. Be-
sides an adaptive filtering application (FIR), the authors in this work
also considered a Ternary Content Addressable Memory (TCAM).
The main results regarding the impact on the maximum clock fre-
quency can be found in Figure 7.9 for the FIR filters and Figure 7.10
for the TCAMs and are discussed in the following paragraphs.

The clock frequency of the method where the reconfiguration
paths are inserted following the regular structure of the design are
labelled ’Structured SRL chain’. Also here the maximum decrease in
maximum clock frequency is around 10% (TCAM design with 128
elements). Choosing the reconfiguration paths as such also outper-
forms the method proposed in [45], which is labelled ’mTSP SRL
chain’ on the figures. This method solves a multiple Travelling Sales-
man Problem based on the implementation of the design after place-
ment. This method is, however, universally applicable and not only
useful for regularly structured designs.

In a lot of cases, it can be observed that the maximum clock fre-
quency even improves compared to the design without reconfigura-
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tion paths. This has to do with the fact that the SRLs also influence
the packing, placement and routing algorithms. In these cases this
seems to be a positive influence. The results which are labelled ’With
SRL’ show that this effect already occurs when the SRLs are added,
together with the reconfiguration clock and the shift enable signals,
but without the reconfiguration paths.

In my master thesis [3] I showed that regularly structured recon-
figuration paths outperformed random paths significantly. This re-
sult is also confirmed by the work done in [45], as can be seen in
Figure 7.9 and Figure 7.10. The maximum clock frequency is up to
around 40% worse than the structured reconfiguration paths (FIR,
256 taps).

Finally, note that all the experiments above were done on the Vir-
tex 2 Pro FPGA architecture. In Section 6.2.1 it was mentioned that
in later FPGAs, such as the Virtex 4 FPGA and the Virtex 5 FPGA,
not every LUT can be set as an SRL. The fraction of SRLs is 50% on
the Virtex 4 FPGA and 25% on the Virtex 5 FPGA. In [45] it is shown
that on these later FPGAs the maximum clock frequency deteriorates
more than on the Virtex 2 Pro. This effect is most noticeable when
the fraction of TLUTs in the design is higher than the fraction of SRLs
available.

7.3 Memory efficiency

As was presented earlier, the TLUT toolflow automatically maps an
annotated VHDL description onto a TLUT circuit. TLUT circuits
are very memory efficient, since the specialized LUT circuits are not
stored separately, but as Boolean functions of a parameter. Note that
the routing and LUT truth table configuration bits of recent Xilinx
Virtex FPGAs reside in different configuration frames [105]. Since
the routing of a TLUT circuit is fixed, no information has to be stored
in the configuration manager (CM) concerning the routing.

In regularly structured designs the same hardware module is in-
stantiated many times. An example of a regularly structured design
is an adaptive filter in which a module is instantiated that performs a
multiply-accumulate operation. The function of every module is the
same, only the inputs that have to be processed are different. Using a
TLUT circuit as a module of regularly structured designs provides a
means for memory efficient and fast run-time reconfiguration of such
designs. The Partial Parameterized Configuration (PPC) expresses
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Figure 7.9: Influence of the reconfiguration chains on the FIR filter
design’s clock frequency using the Xilinx tool flow, averaged over
experiments with 1, 4, 16 and 32 chains
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Figure 7.11: The specialization procedure in the case of regularly
structured designs.

the truth table contents as a Boolean function of the parameters. This
Boolean function is stored as a logic network of AND and inverter
gates. Because the function of all the modules is the same, the PPC
only has to be stored once in the specialization procedure.

The specialization procedure in the case of regularly structured
designs is shown in Figure 7.11. During run-time this procedure
takes in a list pM containing the parameter values of the different
modules and generates a specialized FPGA configuration. Because
the PPC only has to be stored once, the memory requirements for the
evaluation of the PPC are constant and independent of the number of
modules. However, the memory requirements of the specialization
procedure are also dependent on the information needed for recon-
figuration. In this section the memory usage of the specialization
procedure is compared when using ICAP and SRL reconfiguration.
Below it is shown that for ICAP reconfiguration the memory usage
is dependent on the number of modules, which results in excessive
memory usage when the number of modules is increased. For SRL
reconfiguration it is shown that the reconfiguration paths can be con-
structed in such a way that no information needs to be stored for
reconfiguration. Particular interest is shown in how the memory us-
age, expressed in bits, of the specialization procedure scales with the
number of modules. In every section the reconfiguration time is also
briefly discussed.

7.3.1 ICAP reconfiguration

The ICAP reconfiguration interface processes the reconfiguration
data per frame. The pseudo code for the specialization procedure
is in this case given in Figure 7.12. Note that the size of the C code
that implements this relatively simple pseudo code will be small and
independent of the number of modules. To estimate the memory us-
age when increasing the number of modules, the size of the actual
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function specializationICAP(parameterList)
for frameAddress in frameAddressArray:

Frame = getConstantData(frameAddress);
for each Tlut in Frame:

( frameIndex,tlutPPCFunction,parameterIndex) =
getLUTInfo(Tlut);
Frame [frameIndex] =
evaluateTLUT(tlutPPCFunction, parameterIndex);

configureFPGA(Frame, frameAddress);

Figure 7.12: Pseudo code for ICAP specialization.

specialization procedure is thus neglected and the focus lies on the
amount of information needed in the specialization procedure.

The placement process distributes the TLUTs of different mod-
ules irregularly across various different configuration frames. This
is illustrated in Figure 7.13(a) for a regularly structured design with
two modules and three TLUTs per module that are scattered across
two frames. This scattering has several consequences.

First of all, information has to be stored containing the locations
of the TLUTs in the configuration memory. This location information
consists of a frame address and an index in the frame. The number
of modules is denoted M , the number of TLUTs per module LM , the
number of frames F in which the TLUTs are located, the number of
LUTs per frame LF and the number of bits to store the frame address
bA. The number of bits needed to store this information is then F ·
bA +M · LMdlog2(LF )e.

Second, the TLUTs of one module are also distributed irregularly
across several different frames. To accomodate evaluation on a frame
basis, as is shown in Figure 7.12, the PPC of the module must be ad-
justed to accomodate evaluation per TLUT. Per TLUT of the module
a separate PPC is thus created. Per TLUT one also has to store the
function to be called to evaluate the PPC of the TLUT and a pointer
to the parameter value of the respective module in the parameter list
pM . The main consequence is that Boolean gates of the PPC of the
module, that are reused across TLUTs will have to be duplicated.
This increases the memory requirements for the compiled C-code
that evaluates the PPC. Since the function of all the modules is the
same, this C-code also only has to be stored once. For example, all
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Figure 7.13: The LUTs of a regularly structured design irregularly
scattered in the ICAP configuration memory (a) and regularly placed
in an SRL reconfiguration path (b).

the TLUTs with name ’TLUT1’ in Figure 7.13 will use the same PPC.
PPCLUT is denoted as the sum of the sizes of the compiled C-code of
the PPCs of the different TLUTs. The number of bits needed to store
this information is then PPCLUT +M ·LM ·(dlog2(M)e+dlog2(LM )e).

Finally, when reconfiguring the TLUTs, the constant data in the
frames is also rewritten. One option is to keep this constant data
in the memory of the CM. This is very memory consuming, but has
the fastest reconfiguration time. Since the configuration memory can
also be read a read-modify-write strategy can also be applied, where
reconfiguration time is sacrificed for more memory efficiency.

MW = PPCLUT + F · (bA + bF ) +M · LM · bL (7.1)

MRMW = PPCLUT + F · bA +M · LM · bL (7.2)

where bL is given by d(log2(LF ))e+ d(log2(LM ))e+ d(log2(M))e and
bF is the number of bits per frame. In both equations (7.1) and (7.2) it
can be seen that the memory usage grows with the number of mod-
ules.

The reconfiguration time is given for both versions of ICAP re-
configuration, in equations (7.3) and (7.4).

TW =
F · bF · TICAP

D
(7.3)
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TRMW = 2 · TW (7.4)

As mentioned above F and bF are the number of frames and the
number of bits in a frame. D is the width in bits and TICAP is the
clock period of the ICAP interface. The reconfiguration time of the
read-modify-write version of ICAP reconfiguration is simply double
that of the write-only version. The data has to be processed once
when read and once when written, while the bandwidth of the ICAP
when reading is the same as when writing [106].

7.3.2 SRL reconfiguration

The scattering of the TLUTs in the reconfiguration memory space
(and the growth of memory usage with the number of modules) can
be avoided using SRLs, as shown in Figure 7.13 (b). The degrees
of freedom when constructing reconfiguration paths, can be used to
retain the regularity of the design in the reconfiguration paths. To
achieve this goal the reconfiguration paths are chosen so that the
TLUTs of one module are always coherent and the order of the differ-
ent TLUTs in a module is the same. Of course there are still different
ways to connect the different TLUTs. In these experiments, the or-
dering of the modules is the same as the ordering in the pipelined
FIR filter. The ordering of the TLUTs in one module is the same as
the order of appearance in the VHDL file. Further optimizations are
possible.

By choosing the reconfiguration paths as mentioned above, one
can take full advantage of the regularity of the design to minimize the
memory usage of the specialization procedure. The pseudo-code that
represents the specialization procedure in this case is shown in Fig-
ure 7.14. It is important to understand that the order in which TLUTs
in a module are specialized, is the same for all modules and corre-
sponds with the order chosen in the SRL reconfiguration paths. That
is why the for loop in the pseudo code can be used in Figure 7.14. As
shown in equation (7.5), the only data that is stored is the evaluation
function of the PPC. Indeed, combining TLUT circuits and SRL re-
configuration results in a very memory efficient method for run-time
reconfiguration of regularly structured designs.

MSRL = PPCModule (7.5)

Using SRLs also has advantages for the reconfiguration time. Only
the LUTs that have to be reconfigured are put in the reconfiguration
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function SpecializationSRL(parameterList)
for parameter in parameterList:

evaluatedModule = evaluateModule(parameter);
configureFPGA(evaluatedModule);

Figure 7.14: Pseudo code for the SRL specialization procedure.

paths. Increasing the number of reconfiguration paths reduces the
number of bits per reconfiguration path and increases the reconfigu-
ration speed. In the SRL case, the reconfiguration speed can thus be
tuned to the application requirements.

TSRL =
M · LM · 2K · Tshift

R
(7.6)

The formula for obtaining the reconfiguration time in the case of SRL
reconfiguration is given above in equation (7.6). The time needed to
reconfigure the design is dependent on the number of modules M,
the number of TLUTs per module LM , the number of inputs K of one
SRL, the period Tshift of the clock frequency at which the bits are
shifted in and the number of reconfiguration paths R.

7.3.3 Experimental set-up

The ideas above are illustrated by implementing a fully pipelined
FIR filter, of which the coefficients are chosen as the parameters. The
module in this case is an 8 by 8 bit multiplier of which one of the
operands is a parameter. The parameter list pM , depicted in Figure
7.11, thus contains the specific coefficient values the FIR filter is spe-
cialized for during run-time. As discussed earlier, such a run-time
reconfigurable FIR filter is 40 % more area efficient than a generic
FIR filter of which the coefficients are inputs to the FPGA [19]. The
memory usage of the specialization procedure is compared for ICAP
and SRL reconfiguration while increasing the number of modules
from 64 to 1024. Also the reconfiguration time and impact of SRL
reconfiguration on the maximum clock frequency of the FIR filter are
discussed.

The general characteristics of the FIR filter relevant for the equa-
tions from the previous section are LM = 24, PPCLUT = 296kb and
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Table 7.2: Number of frames (F) and shift clock period (Tshift) for the
different FIR filters.

M 64 128 256 512 1024
F 182 339 601 1095 1422
Tshift (ns) 5,170 7,23 8,203 8,050 8,529
max clk (MHz) 198 190 186 156 92

PPCModule = 136kb. To obtain the values of PPCLUT en PPCModule

the evaluation C-functions are compiled on a Microblaze v7.10.c
[104]. The FIR characteristics that are dependent on the number of
modules are given in Table 7.2. This experiment is conducted on
a Virtex4(xc4vlx100) [103] using ISE 10.1 software with default set-
tings. The characteristics of the Virtex 4 ICAP relevant for the equa-
tions from the previous section are given in Table 7.3.

Table 7.3: Characteristics of a Virtex4 FPGA.

K TICAP D bF LF bA

4 10 ns 32 bit 1312 bit 80 32 bit

7.3.4 Results

7.3.4.1 Memory efficiency

In Figure 7.15 (a) the memory usage of the ICAP reconfiguration
(both the write-only and the read-modify-write version) and SRL re-
configuration are shown relative to the total memory of all BRAMs
of the FPGA, which is 4320 Kb [103]. It can be seen that the memory
requirements of the write-only ICAP reconfiguration increase dra-
matically with the number of modules, consuming more than 60 %
of the FPGAs BRAMs for the case with 1024 modules. Indeed, stor-
ing the constant data of the frames is very memory consuming. Even
the more memory efficient read-modify-write ICAP version needs 20
% of the FPGA BRAMs to implement the FIR filter with 1024 mod-
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Figure 7.15: Influence of the number of modules on the memory us-
age (M) and reconfiguration time (T). W, RMW and SRL in the indices
indicate ICAP write-only, ICAP read-modify-write and SRL reconfig-
uration, respectively.

ules. With SRL reconfiguration, on the other hand, even for a FIR
filter with 1024 modules only 3% of the FPGA’s memory is needed.
As pointed out earlier, the memory usage for SRL reconfiguration is
independent of the number of modules.

7.3.4.2 Reconfiguration time

In this experiment the width of the SRL reconfiguration interface is
chosen the same as the ICAP interface of the Virtex4, namely 32 bits.
Of course, increasing the number of reconfiguration paths would fur-
ther improve the results obtained for the reconfiguration time of SRL
reconfiguration.

In Figure 7.15 (b) it can be seen that, in this case, at least a 6X
and at most a 37X speedup over ICAP reconfiguration can be ob-
tained when using SRL reconfiguration. The decrease in speedup as
the number of modules increases has two reasons. The number of
frames increases less than linearly with the number of modules, as
opposed to the total number of TLUTs M · LM . A second reason is
the occurence of routing congestion, that reduces the clock frequency
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Figure 7.16: Influence of the SRL reconfiguration paths on the maxi-
mum clock frequency.

at which the bits are shifted in. These two effects can be clearly seen
in Table 7.2. Note that for ICAP reconfiguration a trade-off has to be
made between speed and memory-efficiency. Using SRLs results in
a reconfiguration process that is both memory-efficient and fast.

In Section 7.2.2 it was shown that the reconfiguration speedup for
the Virtex 2 Pro was around two orders of magnitude. The difference
with the Virtex 4 is mainly due to the improved ICAP interface. The
ICAP of the Virtex4 has a port width of 32 bits and runs at 100 MHz,
while that of the Virtex 2 Pro has a width of 8 bits and runs at 66 MHz.
The configuration memory of the Virtex 4 also consists of frames that
contain less configuration bits.

7.3.4.3 Impact on maximum clock frequency

The maximum clock frequency of the designs without SRLs can be
found in the last row of Table 7.2. The decrease in maximum clock
frequency as the number of modules increases is due to routing con-
gestion. The FIR filter with 64 modules occupies 4% of the slices
of the FPGA, while the one with 1024 modules takes 87%. Figure
7.16 presents the difference between the maximum clock frequency
of the design with SRL reconfiguration paths and the design with-
out, which is reconfigured using ICAP reconfiguration. It can be
clearly seen that the negative impact of SRL reconfiguration on the
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maximum clock frequency is very limited. The decrease is never big-
ger than 1%. In fact, as the number of modules increases, it could
be expected that due to increased routing congestion the maximum
clock frequency to be worse when the SRL reconfiguration paths are
present. The maximum clock frequency of the FIR filter however im-
proves compared to ICAP reconfiguration. The presence of the SRL
reconfiguration paths of course influences the packing and place-
ment and routing process and in the case of the FIR filter this seems
to be a positive influence. As discussed in Section 7.2.2, this effect
was also observed in [45].
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Chapter 8

Conclusions and Future
Work

Dynamic Partial Configuration (DPR) makes it possible to imple-
ment different circuits on the same FPGA area, called the reconfig-
urable region. Since several mutually exclusive functions of an appli-
cation can share the same area, a more area efficient implementation
is obtained. This possibly results in the use of a smaller and thus
cheaper FPGA. However, compared to a static FPGA implementa-
tion, a relatively long time, called the reconfiguration time, is now
needed to rewrite the configuration memory of the reconfigurable
region when a different function is needed. In the experiments of
this work, the reconfiguration time for the conventional DPR flow
was estimated to be around 1.5 ms on average. In general, the over-
head associated with the reconfiguration process is called the recon-
figuration overhead. This can consist, among others, of the hardware
resources needed and the energy consumed during reconfiguration.

Two examples were given in this dissertation of applications
where the reconfiguration time constraints are so strict that they pos-
sibly hinder the efficient use of DPR. A first example is the network
intrusion detection system described in [76], where reconfiguration
has to happen fast enough so that no network packets are dropped.
A second example is an imaging application where the reconfigura-
tion possibly happens per image frame [10]. In the case of [76] there
are only 2 contexts, corresponding to different networking protocols.
The work in [10] considers a video chain with a limited number of
processing steps. These are therefore both also good examples of
limited-context applications.
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This concluding chapter, just as the dissertation itself, is divided
in two parts. The first part concludes on the research on limited-
context DPR, discussed in Chapter 4 and Chapter 5. The second part
concludes on the research using shift-register LUTs (SRLs), which
was discussed in Chapter 6 and Chapter 7. In the PhD dissertation
of dr. ir. Karel Bruneel, Dynamic Circuit Specialization (DCS) tech-
niques are presented [17]. As discussed in Chapter 3, DCS allows
for an efficient DPR implementation of systems with slowly varying
signals called parameters. In these systems there is one design that
is specialized for certain parameter signals during run-time.

The first part of this research considers a very different type of
reconfiguration than in [17], namely one where several (and not only
one) larger functions, that are used mutually exclusive in time, are
time-multiplexed on the same FPGA area called the reconfigurable
region. In this first part of the dissertation it is assumed all Look-up
Tables (LUTs) are reconfigured, together with the dynamic portions
of the routing (expressed in bits in Chapter 4 and in frames in Chap-
ter 5).

The second part builds further on the TMAP tool flow that was
presented in [17]. In this tool flow only the LUT bits are reconfigured.
The second part of this dissertation improves the TMAP tool flow
by introducing SRL reconfiguration. So, in the second part of this
dissertation only the LUTs are reconfigured during run-time while
the routing remains fixed.

8.1 Limited-context Dynamic Partial reconfigura-
tion

The conventional DPR tool flow implements the different circuits in
the reconfigurable region separately and does not optimize the re-
configuration overhead. The number of circuits implemented in the
reconfigurable region is only limited by the amount of memory avail-
able to store the configuration bit streams needed for reconfigura-
tion. In some cases, however, the number of circuits implemented in
the reconfiguration region is limited, a situation called limited-context
DPR.
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8.1.1 Conclusions

In the first part of this dissertation, I consider an approach for
limited-context DPR where the different circuits are not implemented
separately as in the conventional DPR flow. Instead, from a cer-
tain point in the flow on, a combined implementation and optimiza-
tion takes place that also takes into consideration the reconfiguration
overhead. This approach is only viable when the number of circuits
is limited, as is the case in limited-context DPR. The configuration
memory of current commercial FPGAs consist mostly of bits that
control the state of the configurable interconnection network. The
approach taken in this dissertation is therefore to attempt to reduce
the reconfiguration overhead of the interconnections.

Exploring novel tool flows for limited-context dynamic partial re-
configuration The combined implementation approach can take
place starting at different points in the tool flow. In Chapter 4, I ex-
plored three different tool flows that start the combined implementa-
tion at a different point in the flow: before placement, during place-
ment and during routing. The first tool flow I researched combined
the different circuits before placement using a previously developed
technique found in literature called edge matching. In this tool flow,
the placer and router from the Dynamic Circuit Specialisation tool
flow, called TPlace and TRoute, were used for further implementa-
tion in the reconfigurable region. The second tool flow combines the
circuits during placement and optimizes the total wire length of all the
circuits using the same cost function as TPlace. The third and final
tool flow optimizes the individual wire lengths of the circuits during
placement and only performs combined routing using TRoute.

A first conclusion of this exploration was that edge matching
increases the wire length of the implemented circuits excessively,
sometimes up to 192% for two circuits, without contributing to the
reduction in reconfiguration overhead. For the three different tool
flows considered, a reduction in reconfiguration overhead, expressed
as number of configuration bits, of around 35% was achieved. It
turns out that most of the reduction in reconfiguration overhead is
generated through the combined routing using TRoute.

A comparison of the two wire length driven tool flows results
in the finding that the wire length of the circuits is best optimized
individually during placement. When implementing two circuits,
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the individual wire length optimization approach increased the wire
length of the circuits on average with 11%, compared to 26% for the
total wire length optimization approach.

A tool flow for limited-context DPR therefore should reuse the
steps of the conventional DPR flow up until placement and only per-
form a combined routing, as is the case in the third tool flow consid-
ered. For this tool flow, experiments were also done with more than
two circuits. The tool flow is able to find a solution, when the num-
ber of circuits is not more than 4. The reconfiguration overhead only
decreases with a few percent when the number of circuits increases
and thus stays above 30%. The wire length increase associated with
this reduction in reconfiguration overhead is around 18% and 24%
for three and four circuits, respectively.

Reducing the overhead of limited-context DPR in a frame-based
reconfiguration approach In the exploration of novel tool flows for
limited-context DPR, the reconfiguration overhead is expressed as
the number of bits that needs to be rewritten in the configuration
memory. However, the configuration memory of current commer-
cial FPGAs is organized in frames. A configuration frame needs to
be rewritten completely, even when it contains only one dynamic
bit. Although many lessons were learned from the techniques de-
veloped in the previous chapter, these would only be useful if the
routing’s configuration memory would be bit-addressable. There-
fore, in Chapter 5 other tool flows are developed that can be used di-
rectly in a frame-based reconfiguration approach. These techniques
were developed based on lessons learned from the exploration dis-
cussed above. Chapter 5 presented two flows: the StaticRoute and
the ClusterRoute tool flow.

In the StaticRoute flow the routing happens in two steps. In a first
step the configuration memory of the reconfigurable region’s rout-
ing switches is divided into a static and a dynamic part. Then, in
a second step the interconnections of all circuits are routed simulta-
neously using StaticRoute in such a way that the dynamic bits are
clustered in the dynamic part.

Experiments done in the academic VTR framework suggest that,
using the StaticRoute tool flow, the reconfiguration overhead can be
reduced by around 34%. The tool flow only finds a solution when the
number of circuits is limited to at most four. Of course, the reduction
in reconfiguration overhead does not come for free. Because of the
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Table 8.1: Overview of the reduction in clock frequency (RCF) or wire
length increase (WLI) and reduction in reconfiguration overhead for
the TRoute, StaticRoute (SR) and ClusterRoute (CR) algorithm, for
increasing number of circuits (all in % relative to conventional DPR).

RCF/WLI RRO
Nr. of circuits TR SR CR TR SR CR

2 11 5 5 36 34 32
3 18 8 11 35 34 27
4 22 14 21 33 34 19

(in %)

combined routing approach, it is associated with a reduction in max-
imum operating clock frequency. This reduction in maximum clock
frequency is limited on average to around 6% for two circuits and
increases to around 9% and 15% for three and four circuits respec-
tively. When we assume a fixed clock frequency of the circuits dur-
ing run-time, as is common in real-life applications, these reductions
improve to 5% for two circuits and around 8% and 14% for three and
four circuits respectively. The average values of these reductions in
maximum clock frequency (RCF) and the reductions in reconfigura-
tion overhead (RRO) are summarized in Table 8.1 for both the Clus-
terRoute and StaticRoute algorithm. The wire length increase (WLI)
results and RRO results of the individual wire length approach (in
bits instead of frames) using TRoute from Chapter 4 are added for
comparison.

Using the StaticRoute tool flow is also associated with a slow-
down of off-line compilation time of the tool flow. This slowdown
is mostly because this flow also takes the reconfiguration overhead
into consideration and thus solves a much more complex problem.
Compared to the conventional DPR flow a slowdown occurs of 7×
for two circuits. This slowdown increases to 8× and 10× for three
and four circuits, respectively.

Finally, an automatic combined DPR flow, called the ClusterRoute
tool flow, is presented in which it is not necessary to manually make
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a distinction between static and dynamic configuration frames be-
fore routing. The ClusterRoute tool flow automatically clusters the
dynamic bits in fewer configuration frames. It achieves a reduction
of reconfiguration overhead of 32% for two circuits. This reduction
decreases to 27% and 19% for three and four circuits respectively. As
is the case for the StaticRoute flow, the reduction in reconfiguration
overhead in the ClusterRoute flow is also associated with a reduc-
tion in maximum clock frequency. This reduction is around 5% for
two circuits and increases to around 11% and 21%, for three and four
circuits respectively. The reduction in maximum clock frequency of
the ClusterRoute flow is thus somewhat bigger than the reduction
obtained in the StaticRoute flow. ClusterRoute, on the other hand,
performs the implementation completely automatic, as opposed to
the StaticRoute flow, where some of the configuration frames first
have to be marked static.

The impact of the reduction in maximum clock frequency on the
overall performance of the application will depend on the type of
application. If the application needs to run at the absolute highest
clock frequency, these combined implementation techniques will not
be applicable. However, this is not always the case. It could be that
the constraints that are imposed on the system are not that stringent.
FPGAs often rely more on massive parallelism than on high clock fre-
quencies. There are also applications that are more restricted by the
bandwidth offered by FPGAs. Finally, clocks on FPGAs are mostly
derived by dividing or multiplying a round base clock (of for exam-
ple 100 MHz) using clock generators. It is not unusual that a circuit
with a maximum clock frequency of for example 217 MHz is run at a
round 200MHz.

The ClusterRoute flow is also associated with a considerable
slowdown of the off-line compilation time. Compared to the con-
ventional DPR flow a slowdown of 14× occurs for two circuits. This
slowdown increases to 18× and 23×, for three and four circuits re-
spectively. The slowdown of the ClusterRoute flow is greater than
the StaticRoute flow’s slowdown. This reason for this is that the
problem that ClusterRoute solves is more complex. In the Static-
Route flow the problem is broken down in two steps, which reduces
the complexity .

When reconfiguration only happens once-in-a-while the ap-
proaches that use DPR will have a higher functional density than
the static approach since they require much less area and all of the
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hardware resources are used at all time. The conventional DPR ap-
proach is most efficient since the clock frequency at which the circuits
operate is maximal and the area minimal, while the reconfiguration
time plays less of a role as the reconfiguration rate is very low. When
the configuration rate corresponds to a circuit re-use of around 500
thousand clock cycles, the StaticRoute approach will have a better
functional density than the conventional DPR approach. The Sta-
ticRoute algorithm always outperforms the ClusterRoute algorithm
what functional density is concerned. Note however, that the Clus-
terRoute algorithm is more automated. If an application is con-
strained in area and the use of DPR is necessary, the StaticRoute ap-
proach clearly outperforms conventional DPR.

8.1.2 Future Work

As discussed in the previous section, a combined implementation
approach that also takes into account the reconfiguration overhead
is associated with a considerable slowdown of the compilation. A
first possible track for future work could explore ways to improve
the compilation time of the tool flow. The current version of the
tool flow could be analysed and optimized for memory usage and
compilation time. The algorithm can also possibly be accelerated by
trading off some memory usage for a reduced compilation time. Af-
ter the compilation time is shortened, it can be researched if the cost
function of StaticRoute and ClusterRoute can be further improved.
Also, the relation between the number of routing iterations of the al-
gorithm and the number of circuits that can be implemented can be
researched more thoroughly after the compilation time is reduced.

As discussed in Chapter 5, the way the configuration memory is
built up is considered proprietary information and is not disclosed
by FPGA manufacturers. There clearly is a need for an academic
framework, similar to the VTR framework for the FPGA fabric, in
which experiments can be done concerning the configuration mem-
ory.

Using such an academic framework, a different opportunity for
future work is the design of a configuration memory that is more tai-
lored to DPR. The trade-off between chip area and granularity of the
configuration memory could be, for example, researched. A smaller
granularity increases the efficiency of the reconfiguration process,
but also makes the configuration memory bigger and more complex.
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An interesting granularity would be one that has the same width
as the configuration port. Of course, it would also be interesting
to look at how configuration bits are grouped in frames in current
commercial FPGAs and if this can be improved, taking the reconfig-
uration overhead of DPR into consideration. Finally, it could also be
researched what the trade-off is between the area cost and configu-
ration speed of a frame.

A hybrid configuration memory could also be researched in
which the configuration frames are split up in two groups: the nor-
mal frames and frames optimized for configuration speed. The con-
figuration would then also be split up in two phases, each one con-
figuring a specific type of frame. A new tool flow can then be devel-
oped, such that during run-time mostly the faster frames are recon-
figured.

8.2 SRL reconfiguration of regularly structured
designs

In certain circuits a subset of input signals, called parameters, only
vary infrequently. The Dynamic Circuit Specialization method, im-
plements these designs efficiently by generating a configuration off-
line that does not only contain constant 0’s and 1’s but also bits that
are a Boolean function of the parameter signals. This type of con-
figuration is called a parameterized configuration and the Boolean
functions are called parameterized bits. Whenever the parameters
change value, the configuration manager only needs to evaluate the
parameterized bits and reconfigure the FPGA. The TLUT tool flow is
able to automatically generate such parameterized configurations in
which only the truth table bits are parameterized.

In a Shift Register LUT, the truth table configuration bits are also
arranged as a shift register of which the input and the output are
accessible from the configurable routing. Therefore these configu-
ration bits are not only accessible through the FPGA’s configuration
ports (e.g. the Internal Configuration Access Port or ICAP), but also
through the shift inputs of the SRLs. SRLs can thus be used to recon-
figure the truth table contents of a LUT during run-time, hence the
term SRL reconfiguration.
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8.2.1 Conclusions

Integration of SRL reconfiguration in the TLUT tool flow One of
the findings of my research is that making appropriate use of SRLs
for reconfiguration requires adding timing constraints to make the
tools treat the SRLs as conventional LUTs and not as shift registers.
Also a proof-of-concept design of a hardware block, called HWSRL,
is presented that interfaces between the configuration manager and
the reconfigurable hardware. Finally, in order to make the truth ta-
ble bits of multiple LUTs accessible from the configuration manager,
they are grouped and each group is arranged as a larger shift register,
called a reconfiguration path, by connecting the shift out of an SRL
to the shift in of the next SRL.

Exploring the benefits and overhead of SRL reconfiguration for
regularly structured designs In regularly structured designs, the
same hardware module is instantiated many times. In the experi-
ments of Chapter 7 the reconfiguration speed-up of SRL reconfigura-
tion compared to the convention Internal Configuration Access Port
(ICAP) is quantified for regularly structured designs. On the Virtex
2 Pro, a speed-up of around 2 orders of magnitude is obtained, while
on the Virtex 4 the speed-up was between 6× and 37×. For both ar-
chitectures the speed-up is very significant. This is because SRLs are
more tailored to LUT-only reconfiguration. As explained before, the
reconfiguration granularity of the ICAP is a frame. It thus also recon-
figures LUTs that do not need to be changed during run-time. The
differences in reconfiguration speed-up between the architectures are
explained by the difference between the ICAP implementation on
each. On the Virtex 2 Pro the width of the configuration port is 8 bit
and reconfiguration happens at a clock frequency of 66 MHz. For the
Virtex 4 this is 32 bit and 100 MHz. Also, the frames on the Virtex 4
contain fewer configuration bits.

When reconfiguring regularly structured designs, it is also shown
that using SRL reconfiguration, the memory usage of the configuration
manager can be kept constant, regardless of the number of modules.
Experiments with an adaptive filtering application on a medium-
sized Virtex 4 FPGA show that the memory requirements of write-
only ICAP reconfiguration increase dramatically with the number
of modules, consuming more than 60% of the FPGA’s BRAMs for
the case with 1024 modules. Even the more memory efficient read-

187



modify-write ICAP version needs 20% of the FPGA BRAMs to imple-
ment the adaptive filter with 1024 modules. With SRL reconfigura-
tion, on the other hand, even for an adaptive filter with 1024 modules
only 3% of the FPGA’s memory is needed. As the write-only version
of ICAP reconfiguration is faster than the read-modify-write ICAP
version, a trade-off needs to be made between reconfiguration speed
and memory efficiency. The use of SRLs, on the other hand, results
in a reconfiguration process that is both memory-efficient and fast.

Because the SRL reconfiguration paths also make use of the con-
figurable interconnection network, it could be that they interfere
with the timing of the design. Reconfiguration paths that follow the
structure of the design result in a smaller reduction in maximum
clock frequency than randomly chosen reconfiguration paths. In the
experiments in Chapter 7 it was shown that using reconfiguration
paths following the regular structure, the clock frequency of the de-
sign reduces somewhat, but that this reduction is mostly limited.
For both the experiments done on the Virtex 2 Pro and Virtex 4, the
decrease in maximum clock frequency stays within 10%. These re-
sults are similar to the result found in [45]. In the experiments done
in Chapter 7, it was also observed that the number of reconfigura-
tion paths seems to have little influence on the clock frequency. The
largest effect comes from the number of modules of the design. This
could indicate that more routing congestion arises as the size of the
design increases.

8.2.2 Future Work

In my research I have shown that the use of SRLs offers many ben-
efits over ICAP reconfiguration when only LUTs need reconfigura-
tion. They improve the speed of the reconfiguration process and the
memory efficiency. It would also be interesting to research how SRLs
affect the energy consumption of the reconfiguration process.

As explained in Chapter 6, a Configurable Logic Block contains
dedicated routing between adjacent SRLs. To connect these SRLs
therefore no wires from the configurable interconnection network are
needed. Another possible direction for future research is to explore
other architectural changes from which SRL reconfiguration could
benefit.

In this dissertation, the reconfiguration paths are chosen based on
the regular structure of the design under consideration. LUTs from a
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same module were placed together in a reconfiguration path. The or-
der of LUTs from a module was chosen in the order of their appear-
ance in the VHDL file. In [45], a general method is presented that
solves a multiple travelling salesman problem based on the place-
ment of the design to determine how the SRLs are placed in recon-
figuration paths. It would be interesting to see if this method could
be specialised for regularly structured designs. In these designs, it
is fixed how SRLs are grouped in SRL reconfiguration paths. The
order of modules and the order of SRLs in one module are the only
remaining degrees of freedom.
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