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José De Jesús Arias Garcı́a1, Hans De Meyer2, and Bernard De Baets1

1 KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics
Ghent University, Gent, Belgium

{josedejesus.ariasgarcia,bernard.debaets}@ugent.be
2 Department of Applied Mathematics, Computer Science and Statistics

Ghent University, Gent, Belgium
{hansdemeyer}@ugent.be

Recently, there have been several studies of transformations called ‘flippings’, which
map n-copulas to n-copulas. The resulting transforms can be thought of as the multi-
variate cumulative distribution functions of random vectors that are obtained by replac-
ing (called flipping) each of the original random variables from a given subset of the
random vector by a countermonotonic counterpart. It is important to note that if all the
variables are flipped, the resulting transform is the well-known survival n-copula (for
more details, see [9]). In the bivariate case, these transformations have been studied
from the algebraic point of view in [7], and have been further generalized to binary ag-
gregation functions in [2, 3]. In the multivariate case, these operations have been studied
in [5] for n-copulas, while in [4] the authors have studied the case of multivariate ag-
gregation functions.

Inspired by the above results and the notion of invariant copula (i.e., a copula that co-
incides with one of its transforms [8]), we present two methods to construct flipping-
invariant copulas in higher dimensions, given a lower-dimensional marginal copula.
Both methods are partially based on an associative extension of an aggregation func-
tion, although not in the way that it is usually done, as it can be easily seen that there is
no associative solution to the Frank functional equation in the n-dimensional case for
n ¥ 3 (see [1, 5]).

In the first method, we construct a 3-dimensional function that is flipping invariant,
starting from a bivariate flipping-invariant symmetric copula. We show that if the func-
tion that is obtained by this transformation is increasing, then it is a 3-quasi-copula.
We also present some numerical examples of this method for well-known families of
flipping-invariant 2-copulas, such as the Frank copula family and the Farlie-Gumbel-
Morgenstern copula family. In the second method, we construct a 3-dimensional aggre-
gation function that it is flipping invariant in the last variable starting from an arbitrary
2-copula. We study some properties of the aggregation function that is obtained by this
transformation, as well as conditions that guarantee that it is a 3-(quasi)-copula. Finally,
we discuss several possible generalizations of both methods in higher dimensions.
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