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In-Circuit FPGA Debugging using Parameterised Reconfigurations
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Reassuring fault tolerance in computing systems that contain FPGA devices is the most important problem for mission
critical space components. With the rise in interest of commercial SRAM-based FPGAs, it is crucial to provide runtime
reconfigurable recovery from a failure. In this paper, we propose a superimposed virtual coarse-grained reconfigurable
architecture, embedded with on-demand three level fault-mitigation technique. The proposed method performs run-time
recovery via discrete microscrubbing. This approach can provide up to 3ÃŮ faster runtime recovery with 10.2ÃŮ less resources
in FPGA devices, by providing integrated layers of fault mitigation.
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1 INTRODUCTION
Ensuring functional correctness despite the rising levels of design complexity has been a major focus of research
and development since the beginning of digital system design. This focus has led to significant advances in the
verification and debugging of digital designs. While failures can be caused by various defects, such as logic,
timing, layout, there is no straightforward way to locate the root cause of these errors. Designers have been
using simulation to verify their designs. However, simulation can be incomplete time-consuming and bugs
can potentially escape into silicon. A growing trend is to prototype the Design Under Test (DUT) using FPGA
emulation, as it enables higher verification coverage compared to simulation and can operate orders of magnitude
faster. The main drawback of FPGA emulation is the increased FPGA resources and its limited internal signal
observability. While simulation gives full visibility, FPGA emulation allows the designer to observe only the
signals that are driven through the scarce output pins.

2 IN-CIRCUIT PARAMETERISED DEBUGGING FLOW
We introduce a debugging flow, which is automated and integrated within the normal FPGA flow. It offers low-
overhead accelerated debugging, with enhanced internal signal visibility by using parameterised configurations.
This allows us to implement parameterised DUTs, with parameters that define different circuit instances that can
be optimised on the fly by reconfiguring for a current set of parameters. Our debugging flow follows the typical
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stages of the FPGA flow (synthesis technology mapping, place and route) and consists of two phases: the design
phase and the verification phase.

During the design phase, GateRank is introduced, where all signals that can be used for debugging are automat-
ically selected, and finite graphs with its adjacency matrices are created that describe the gate-level DUT. This
is then balanced, ranked and plotted in such way that the designer can have an indication of the signals that
are highly utilised (high GateRank) and of the amount of on-chip memories and trace cycles that are needed.
Then, extra parameterised debugging support is added at the high GateRanked signals, as they will be the ones
traced during debugging. Then, the mapping is fixed and the debugging infrastructure is optimized alongside the
original DUT. During Place & Route we use the routing of the circuit in such way that its routing resources can be
reused during debug. The parameterised infrastructure can hence be implemented in the FPGA’s reconfiguration
resources. This drastically reduces the area usage. Finally, a virtual intermediate FPGA configuration is created,
with the debugging infrastructure integrated in the DUT. This allows most signals to be connected with on-chip
memories that trace signal changes during the verification phase.

During the verification phase, for each debugging turn, the DUT can be reconfigured with different GateRanked
signal sets. The signals that are not traced at the same time can share routing resources (based on their parameter
settings). For each debugging cycle the new signal selection translates directly into a new evaluation of a Boolean
function that represents the selected signals. Then, the new network is partially reconfigured with the exact
signals the designer wishes to trace.

3 PRELIMINARY RESULTS
The first experiments with the ITC benchmarks indicate that we only need the sum of areas of the DUT and the
optimised on-chip memories, instead of the sum of areas of the DUT and the added infrastructure (fixed on-chip
memories and fixed trace infrastructure), as is the case in related work. In that way, we drastically reduce the
resource overhead compared to related work, with a small area penalty (5-10%) on the DUT. The critical path
delay of the added functionality also remains the same with the original DUT for most benchmarks. The logic
depth (inversely related to clock speed) of the DUT changed after adding the extra debugging infrastructure by
10% in the worst case scenario.

The runtime overhead depends on the number of times the FPGA needs to be reconfigured and on the time
to evaluate the parameterised configuration and to reconfigure the bits that changed. This is maximum 50 µs.
Thus, each parameterised configuration can be up to 3 orders of magnitude faster than a full reconfiguration (176
milliseconds for a Xilinx Virtex-V FPGA). This describes the time needed for one debugging turn. The GateRank
algorithm can drastically alter the number of debugging turns needed and the number of cycles each signal is
being traced for. This has a large impact on the debugging overhead. The automation of the exact percentage of
the high-GateRanked signals to be simultaneously traced to reduce the overhead below the 5% threshold and
their impact on the FPGA debugging turns, will be future work.

4 CONCLUSION
An in-circuit debug methodology is proposed. The main parameterised FPGA flow is presented, enhanced with a
signal ranking algorithm and parameterised low overhead added infrastructure, for increased design observability.
The added infrastructure is optimised alongside the original design and is invoked only when a parameterised
trigger is set. The area needed is found by introducing parameterized reconfiguration in the design. Hence, thanks
to the fact that there is low overhead over the original implementation, we can incrementally add the debugging
functionality almost for free.
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