
  

 

 

GLUCOCORTICOID RECEPTOR MODULATION 

OF THE COLON CANCER MICROENVIRONMENT 

 

 

 

 

 

 

Zuzanna Drebert 

 

 

 

Promoter: Prof. Dr. Marc Bracke 

Second promoter: Dr. Ilse Beck 

Third promoter: Prof. Dr. Karolien De Bosscher 

 

2017 

Ghent University 

Faculty of Medicine and Health Sciences 

 

 

 

Thesis is submitted to fulfill the requirements for the degree of Doctor in Health Sciences 



 



  

 

SUPERVISORS 
Promoter 

Prof. Dr. Marc Bracke 

Department of Radiation Oncology and Experimental Cancer Research 

Ghent University 

 

Second promoter 

 Dr. Ilse Beck 

Department Health Sciences, Odisee University College 

Department of Radiation Oncology and Experimental Cancer Research, Ghent University 

 

Third promoter 

 Prof. Dr. Karolien De Bosscher 

Department of Biochemistry 

Ghent University 

 

EXAMINATION COMMITTEE 
 

Chairman of the Examination Committee 

Prof. Dr. Bruno Verhasselt  

Department of Clinical Chemistry, Microbiology and Immunology 

Ghent University 

 

Members of the Examination Committee 

Prof. Dr. Karen Geboes 

Department of Internal Medicine 

Ghent University 

 

Prof. Dr. Marleen Van Troys 

Department of Biochemistry 

Ghent University 

 

Prof. Dr. Apr. Olivier De Wever 

Department of Radiation Oncology and Experimental Cancer Research 

Ghent University 

 

Prof. Dr. Wim Vanden Berghe 

Department of Biomedical Sciences 

University of Antwerp 

 

Prof. Dr. Frank Claessens 

Department of Cellular and Molecular Medicine 

 University of Leuven 

 

https://biblio.ugent.be/organization/GE01
https://www.uantwerpen.be/en/staff/?dept=UA019


 

 

 

Front cover (from upper left to bottom right): histopathological section of chick chorioallantoic 

membrane invaded by HCT8/E11 cancer cells, human umbilical vein endothelial cells forming 

network of tube-like structures on Matrigel matrix (processed via Angiogenesis Analyzer), 

fluorescent visualization of glucocorticoid receptor localized predominantly in the nuclei of 

CT5.hTERT cells after glucocorticoid treatment, bioluminescent visualization of HCT8/E11luc+ 

cells via in vivo imaging system (IVIS). 

Back cover: phase-contrast image of CT5.3hTERT cells 



  

 

TABLE OF CONTENTS 

Summary 1 

Samenvatting 3 

PART I: General introduction 5 

1. Cancer 7 

1.1. Hallmarks of cancer 8 

1.2. Colorectal cancer 10 

1.3. Cancer microenvironment 18 

1.4. Angiogenesis 22 

1.5. Cancer invasion and metastasis 29 

1.6. Cellular cross-talk in the cancer microenvironment 33 

1.7. Cancer stroma and the therapy resistance 35 

2. Glucocorticoid receptor: nature and the mechanism of action 38 

2.1. Organization of the glucocorticoid receptor 39 

2.2. Glucocorticoids 43 

2.3. Mechanism of glucocorticoid receptor modulation 47 

2.4. Selective GR agonists and modulators 53 

2.5. Glucocorticoid receptor modulation in health and disease 57 

PART II: Research objectives 65 

PART III: Results 69 

Chapter 1: Article 1. 71 

Abstract 72 

1.1. Introduction 73 

1.2. Materials and Methods 75 

1.3. Results 78 

1.4. Discussion 89 

Chapter 2: Article 2. 97 

Abstract 98 

2.1. Introduction 99 

2.2. Materials and Methods 100 

2.3. Results 105 

2.4. Discussion 111 

Chapter 3: Article 3. 121 

Abstract 122 

3.1. Introduction 123 

3.2. Materials & Methods 125 

3.3. Results 129 

3.4. Discussion 138 

Chapter 4: Article 4 143 

Abstract 144 

4.1. Introduction 145 

4.2. Materials & Methods 147 

4.3. Results 149 

4.4. Discussion 153 



 

PART IV: General Discussion 159 

1. Main findings and their significance 161 

2. Relevance of the study 167 

3. Limitation of the study 171 

4. Future perspectives 176 

General conclusion 182 

Abbreviations 183 

References 187 

Addendum 1. 215 

Addendum 2. 217 

Addendum 3 225 

Addendum 4. 231 

Addendum 5. 233 

Curriculum Vitae 235 

Acknowledgment 241 

 



  

1 

SUMMARY  

The tumor microenvironment comprises not only cancer cells but also stromal cells including 

cancer-associated fibroblasts (CAFs), endothelial cells, cells from the immune system and other 

cellular components, which together with the extracellular matrix form a complex network of 

interactions. The recognition of the role of tumor stroma in cancer progression provokes scientists 

to research these cells as targets and tools in cancer therapy.  

Glucocorticoids, steroidal drugs with strong anti-inflammatory properties, are often used during 

chemotherapy of solid tumors, mainly to alleviate side effects of the cytotoxic treatment and to 

relieve cancer-associated pain. Activation of the glucocorticoid receptor via biding glucocorticoids, 

leads to suppression or stimulation of specific gene expression in mechanisms called 

transrepression and transactivation, respectively. Also other mechanisms of the glucocorticoid 

receptor are known. Although glucocorticoids are commonly used, their impact on solid tumor 

biology is controversial and not completely understood. Moreover, prolonged use of steroidal 

drugs is associated with harmful side effects. Therefore, experimental drugs called selective 

glucocorticoid receptor modulators, which would hold beneficiary anti-inflammatory properties 

without triggering detrimental side effects, are under intensive examination. 

The aim of this doctoral project was to establish the role in impact of glucocorticoids and a 

selective glucocorticoid regulator, compound A, on the colon cancer microenvironment, namely 

on CAFs and endothelial cells. Consequently, we aimed to investigate the impact of 

glucocorticoid-affected CAFs on their progression-promoting role in cancer cells and in 

angiogenesis. 

In both CAFs and endothelial cells, the glucocorticoid dexamethasone was able to drive the 

glucocorticoid receptor into the nucleus, leading to the transrepression of particular pro-

inflammatory genes in TNFα-stimulated cells. Compound A had an impaired ability to translocate 

the glucocorticoid receptor, and although its anti-inflammatory properties in CAFs were modest, 

its effects were more pronounced in endothelial cells. As expected, only dexamethasone, and not 

compound A, upregulated the glucocorticoid receptor transactivation-dependent GILZ expression. 

Neither dexamethasone, nor compound A affected CAF or endothelial cell viability. However, 

compound A delayed cell growth in both cell lines. Additionally, in CAFs, dexamethasone inhibited 

the expression of multiple factors involved in cancer progression and angiogenesis, including 

hepatocyte growth factor, urokinase plasminogen activator and matrix metalloproteinase 2. Yet, 

this effect was not detected for compound A.  

Furthermore, we could show that such extensive changes in the CAF-derived secretome affected 

these cells’ impact on other cellular populations from the cancer microenvironment, namely 
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endothelial and colon cancer cells. Conditioned medium from solvent- and dexamethasone-

treated CAFs (CMCTRL and CMDEX, respectively) increased endothelial cell proliferation, but did not 

affect typical characteristics of these cells. Interestingly, only CMCTRL accelerated endothelial cell 

migration, suggesting the presence of glucocorticoid-sensitive pro-migratory molecules in the 

CAF-derived conditioned medium. As expected, CMCTRL stimulated growth and invasion of 

glucocorticoid receptor-deficient colon cancer cells. In contrast, the effects of CMDEX were 

substantially less pronounced. In the in vivo chick chorioallantoic assay, the CAF and colon cancer 

cell co-culture-derived tumors treated with dexamethasone were significantly less invasive than 

the tumors treated with solvent. 

Combined, in this doctoral dissertation we present the beneficial therapeutic roles of 

glucocorticoids in the colon cancer microenvironment and angiogenesis, and we reveal additional 

information about the function of the selective glucocorticoid receptor modulator, compound A. 
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SAMENVATTING 

De kankermicro-omgeving bestaat niet alleen uit kankercellen, maar ook uit stromale cellen zoals 

myofibroblasten, endotheelcellen, cellen van het immuunsysteem en andere cellulaire 

componenten, die samen met de extracellulaire matrix een complex interactienetwerk vormen. 

Het erkennen van de rol van het tumor stroma in de ontwikkeling van kanker zorgt ervoor dat 

wetenschappers de stromale cellen onderzoeken als doelwit bij kankertherapie.  

Glucocorticoïden, steroïdale geneesmiddelen met krachtige anti-inflammatoire eigenschappen, 

worden vaak bij chemotherapie van vaste tumoren gebruikt, voornamelijk om de bijwerkingen 

van cytotoxische behandelingen tegen te gaan, en om kanker geassocieerde pijn te verlichten. 

Wanneer glucocorticoïden hun receptor activeren, onderdrukken of versterken deze de expressie 

van verschillende doelwitmoleculen via de respectievelijke mechanismen transrepressie en 

transactivatie. De glucocorticoïd receptor gebruikt ook andere mechanismen. Hoewel 

glucocorticoïden frequent worden gebruikt, is hun invloed op de biologie van vaste tumoren 

controversieel en niet volledig begrepen. Bovendien wordt het langdurig gebruik van steroïde 

geneesmiddelen geassocieerd met schadelijke bijwerkingen. Daarom worden experimentele 

moleculen genaamd selectieve glucocorticoïd receptor modulatoren, die gunstige anti-

inflammatoire eigenschappen zouden bezitten zonder nadelige bijwerkingen te veroorzaken, 

intensief onderzocht. 

Het doel van dit doctoraatsproject was om de rol van glucocorticoïden en de selectieve 

glucocorticoïd receptor modulator, compound A, op de micro-omgeving van colonkanker te 

onderzoeken, met name op uit colonkanker afgeleide myofibroblasten en endotheelcellen. 

Bijgevolg wilden wij de effecten van door glucocorticoïden geaffecteerde myofibroblasten op hun 

bevorderende rol in kankercellen en angiogenese bestuderen.  

In zowel myofibroblasten en endotheelcellen kon het glucocorticoïd dexamethason de 

glucocorticoïd receptor naar de nucleus transloceren, wat leidde tot de onderdrukking van 

bepaalde pro-inflammatoire genen in TNFα-gestimuleerde cellen. Compound A had een 

verminderd vermogen om de glucocorticoïd receptor te transloceren, en hoewel de anti-

inflammatoire eigenschappen in myofibroblasten bescheiden waren, waren deze effecten meer 

uitgesproken in de endotheelcellen. Zoals verwacht stimuleerde enkel dexamethason, en niet 

compound A, de glucocorticoïd receptor transactivatie-afhankelijke GILZ expressie. 

Dexamethason noch compound A hadden een invloed op de levensvatbaarheid van de 

myofibroblasten of endotheliale cellen. Echter, compound A vertraagde de celgroei van beide 

cellijnen. Bovendien remde dexamethason in myofibroblasten de expressie van verschillende 

factoren af die betrokken zijn bij de progressie van kanker en angiogenese, waaronder hepatocyt 
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groeifactor, urokinase plasminogeenactivator en matrix metalloproteinase 2. Dit effect werd 

echter niet terug gevonden bij compound A.  

Bovendien hebben we laten zien dat zulke grote veranderingen in het myofibroblastische 

secretoom een invloed hadden op de impact die deze cellen teweegbrengen op andere 

celpopulaties van de kankermicro-omgeving, namelijk de endotheel- en colonkankercellen. 

Geconditioneerd medium van solvent- en dexamethason-behandelde myofibroblasten 

(respectievelijk CMCTRL en CMDEX) verhoogde namelijk de proliferatie van endotheelcellen, maar 

had geen invloed op de typische kenmerken van deze cellen. Het is interessant dat enkel CMCTRL 

de migratie van endotheelcellen versnelde, hetgeen duidt op de aanwezigheid van glucocorticoïd-

gevoelige pro-migratoire moleculen in het geconditioneerd medium van myofibroblasten. Zoals 

verwacht, stimuleerde CMCTRL de groei en invasie van glucocorticoïd receptor-deficiënte 

colonkankercellen. De effecten van CMDEX daarentegen, waren aanzienlijk minder uitgesproken. In 

de in vivo kuiken chorioallantoïsch analyse waren tumoren, ontstaan uit co-culturen van 

myofibroblasten en colonkankercellen, minder compact en significant minder invasief bij 

behandeling met dexamethason. 

Samengevat, in dit proefschrift presenteren wij de positieve therapeutische rol van 

glucocorticoïden op de colonkankermicro-omgeving en op angiogenese, en onthullen we nieuwe 

informatie over de functie van de selectieve glucocorticoïd receptor modulator, compound A.  
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1. Cancer  

Cancer has accompanied humans and animals throughout the history. The oldest information on 

this disease was found in an ancient manuscript dated back to 3000 BC and later evidence was 

uncovered in mummified bodies from Egypt and Ancient Nubia (Figure 1) [1-3]. Despite an 

immense progress in cancer-related research and largely evolved therapeutic and diagnostic 

methods in the past decades, it is estimated that only in 2012 cancer harvested 8.2 million lives 

worldwide [4]. Cancer can affect any part of the body, resulting in more than 100 types of 

malignancies [5], with lung and breast cancer appearing most common in men and women, 

respectively [4]. Only approximately 5-10% of all cancers are caused by inherited gene defects, as 

most of these cancers develop due to lifestyle-associated factors. Tobacco use, accounting for 

about 20% cancer deaths, belongs to the most important risk factors. Other factors include 

infections, unhealthy dietary habits, obesity, alcohol consumption, lack of physical activity, air 

pollution, and radiation [6,7]. 

 

Figure 1. Example of an ancient incident of cancer. A) A 2250-year-old human mummy from the Egyptian 
Collection of Museu Nacional de Arqueologia in Lisbon B) X-ray digital image of the upper body C) A high-
resolution multi detector computerized tomography scan of the lumbar spine region showing bone lesions 
associated with metastatic prostate cancer. Image adapted from [3]. 
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1.1. Hallmarks of cancer 

Not every abnormality in a tissue leads to cancer. However, some of the changes, if neglected, 

may increase the risk. Hyperplasia is a state in which cells proliferate at a higher rate than 

normally, but their function and morphology is not affected. In dysplasia, beside the faster 

division, cells have changed morphology and the tissue structure is disorganized. Carcinoma in 

situ is a more advanced form of dysplasia, and it might be a stage prior cancer, i.e. before 

abnormal cells invade the nearby tissues. Benign tumors do not spread to other tissues and after 

surgery usually do not grow back. Malignant tumors, in contrast, are aggressive, able to invade 

the surrounding tissues and form secondary (metastatic) tumors [5].  

 

Figure 2. Hallmarks of cancer. Description in the text (section 1.1). Figure adapted from [8]. 

Carcinogenesis occurs when normal cells transform into cancer cells, which is characterized by 

genetic and epigenetic changes. During the carcinogenesis cancer cells acquire different 

properties, classified as hallmarks of cancer (Figure 2) [8]. Probably the most recognized 

characteristic of a cancer cell is its ability to sustain constant proliferation, which can be obtained 

via various strategies. In order to stimulate their growth, cancer cells can produce growth factors 

and receptors themselves, but also stimulate the surrounding non-cancerous cells to send growth 

signals. Moreover, even in the absence of growth factors cancer cells are able to activate 
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particular signaling pathways [8]. Proto-oncogenes and oncogenes (genes coding for transcription 

factors, signal transducers, growth factors and their receptors) play an important role during the 

carcinogenesis. Due to genetic mutations and extensive expression, oncogenes’ products have a 

significant contribution in the uncontrolled cell division [9]. Next to the chronic cell proliferation, 

the replicative immortality guarantees the appearance of a new generation of cells, what in a 

physiological situation is controlled by cell senescence and subsequent cell death. Moreover, 

cancer cells acquire resistance to growth suppressors, factors from the outside and inside of the 

cell that normally negatively control cell division [8]. One of the best known tumor suppressors, 

tumor protein 53 (p53), is also called “the guardian of the genome”, owing to its role in 

controlling the stability of the DNA, induction of cell cycle arrest, senescence and cell death. 

Therefore, inactivation of p53, which occurs mostly due to mutations in its own gene, marks one 

of the milestones in the process of tumorigenesis [10,11]. Unresponsiveness to growth 

suppressors leads eventually to a more drastic strategy of protecting the organism against 

damaged, infected or abnormally behaving cells, namely to programmed cell death (apoptosis), 

the natural destiny of every cell. Cancer cells, however, are able to resist apoptosis via sabotaging 

the apoptotic machinery, which can occur at multiple different levels, i.e. by increasing expression 

of anti-apoptotic factors or decreasing pro-apoptotic regulators [8]. A growing tumor needs an 

adequate supply of oxygen and nutrients, therefore, another hallmark of cancer is the ability of 

cancer to induce angiogenesis, a process of creating new vasculature from the existing network 

[12]. Tumor vasculature is chaotic and leaky, and as such contributes to the dissemination of 

cancer cells. In order for malignant cells to spread within the body, cancer cells induce the 

invasion-metastasis cascade which comprises multiple steps: (I) local invasion of neighboring 

tissue, (II) further cell migration through blood or lymphatic vessel walls (intravasation), (III) 

survival in circulation, (IV) escape from the circulatory system (extravasation) and (V) colonization 

of a new niche, which leads to the formation of metastases [8,13]. Yet, early dissemination of 

metastatic cells without primary tumor is recently increasingly documented [14,15]. A process 

called epithelial-to-mesenchymal transition (EMT) broadly regulates the initial steps of cancer cell 

invasion. After cells undergo EMT, they become mobile, lose their epithelial characteristics in 

favor of mesenchymal features, which leads to loosening of the tight connections with other cells 

and with the extracellular matrix (ECM) [16]. Moreover, recent research progress provided two 

additional hallmarks with potential generality: reprogramming of cell energy metabolism and 

escaping immune destruction by cancer cells. Furthermore, the complexity of the tumor 

microenvironment gained increased interest, since cells from the cancer’s neighborhood, either 

recruited or attracted by cancer, such as macrophages, myofibroblasts, and endothelial cells, play 

a key role in cancer progression and protection via a constant exchange of signals [8].  
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1.2. Colorectal cancer 

Carcinoma, cancer derived from epithelial cells, is the most common type of cancer. The majority 

of the colorectal cancers (CRCs) belong to the class of adenocarcinomas, i.e. derived from 

epithelium producing fluids or mucus [5]. In men, CRC is the third- and in women the second-most 

common cancer worldwide, with about 1.4 million cases and nearly 700,000 deaths reported in 

2012 [4]. In the majority of cases, CRC arises sporadically, with risk factors, such as increasing age, 

the occurrence of colonic polyps, and environmental factors, such as red meat consumption, high-

fat diet, smoking, sedentary lifestyle, obesity, and alcohol consumption [17]. Moreover, with the 

chronic inflammation being an additional important risk factor, individuals suffering from the 

inflammatory bowel disease, have a significantly higher chance of developing CRC [18]. Lynch 

syndrome (hereditary non-polyposis CRC) and the less frequent familial adenomatous polyposis 

(FAP) belong to hereditary syndromes associated with CRC and in total account for about 6% of 

cases [19]. Moreover, a family history of CRC is also an important risk factor, even despite the lack 

of evidence of any known inherited syndromes [20]. 

1.2.1 Mechanisms involved in molecular pathogenesis of CRC 

Currently, there are two sequences identified that drive the transformation of normal colonic 

glandular epithelium to CRC. In both sequences transformation in the epithelium starts with the 

occurrence of aberrant crypt foci, followed by the formation of polyps, which, in turn, can 

progress into cancer. The traditional sequence involves the development of tubular adenomatous 

polyps which can evolve into adenocarcinomas. In the alternative sequence, the occurrence of so 

called sessile serrated polyps leads to progression to serrated CRC [21]. 

1.2.1.1. Genomic and epigenetic instabilities in CRC 

Genomic and epigenetic instabilities are fundamental features of CRC that can drive the 

transformation of normal colonic epithelium to an invasive cancer. Three major phenotypes have 

been described to lead to CRC tumorigenesis: the chromosomal instability phenotype (CIN), the 

mutator-phenotype/DNA mismatch repair phenotype (microsatellite instability, MSI) and the 

hypermethylation phenotype hyperplastic/serrated polyp phenotype (the CpG island methylator 

phenotype, CIMP). Other mechanisms including involvement of microRNAs and inflammatory 

pathways have also been described [22].  

CIN which can be recognized by multiple aberrations in the chromosomal structure, as well as in 

an abnormal number of chromosomes, forms the most common genomic instability and is 

characteristic for FAP inherited syndrome and the majority of sporadic CRCs. MSI is implicated in 

the Lynch syndrome, as well as a number of sporadic CRCs and the underlying mechanism 

involves an inactivation of DNA mismatch repair (MMR) genes [23]. Hypermethylation of CpG 
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island-rich gene promoters and global DNA hypomethylation are common epigenetic instabilities 

occurring in CRC. CRC containing exceptionally numerous incorrectly methylated CpG loci are 

classified as CIMP. Aberrant CpG island methylation can result in the inactivation of transcription 

of certain genes involved in cell cycle regulation. Genomic instabilities and epigenetic alterations 

lead to an accumulation of gene mutations and a deregulation of signaling pathways [22,23]. 

Figure 3 depicts the mechanisms involved in CRC tumorigenesis. 

 

Figure 3. Sequences involved in colorectal cancer tumorigenesis. Two major sequences are recognized 
(adenomatous polyps to cancer and serrated polyps to cancer). (A) Histologic appearance of normal colon 
mucosa, adenomatous polyps and serrated polyps. Presense of sawtooth architecture of the crypts is 
characteristic for the serrated polyps. (B) The molecular networks affected in the particular stages are 
indicated within the frames. Both sequences share some genetic mutations (dotted lines), but they are also 
characterized by specific mutations. Figure adapted from [24-26] and [21]. 

1.2.1.2. Gene mutations and signaling pathways involved in CRC 

The most common mutation occurring in sporadic CRCs is also associated with CIN and FAP. This 

mutation occurs in the adenomatous polyposis coli (APC) gene, which is a tumor suppressor factor 
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that negatively regulates the Wnt signaling cascade. A highly conserved Wnt pathway plays a key 

role in embryo growth and development, as well as in tissue homeostasis. In the activated Wnt 

pathway β-catenin is translocated from the cytoplasm to the nucleus, where it acts as a 

transcriptional co-activator to stimulate expression of Wnt target genes, such as genes encoding 

for Tcf-1, LEF1, c-myc, and Cyclin D [27]. When the Wnt pathway is inactive β-catenin is restrained 

in a protein complex, which includes APC. This leads to a proteasomal degradation of β-catenin. 

The APC gene mutation causes the synthesis of a truncated protein, unable to drive cellular β-

catenin degradation. Inactivation of APC results in a constant activation of the Wnt cascade, 

leading to the uncontrolled stimulation of cell proliferation, differentiation, and migration. Wnt 

pathway can in certain cases also be affected at the β-catenin levels, independently of the APC 

functionality. Due to a mutation in β-catenin’s CTNNB1 gene, a wild-type APC protein is unable to 

degrade mutated β-catenin, subsequently leading to a similar outcome as with the APC gene 

mutation [22,23,28]. 

RAS is a family of oncogenes of which KRAS and NRAS play an important role in CRC. An activating 

mutation in the KRAS gene occurs in about 30% of all cancers and in approximately 40% of CRC 

cases [29]. KRAS encodes for a membrane-anchored guanosine triphosphate (GTP)- guanosine 

diphosphate (GDP)-binding protein (also known as p21) which acts as a downstream effector of 

the epidermal growth factor receptor (EGFR) to transduce growth stimulatory and pro-survival 

signals via B-Raf serine-threonine kinase and subsequent mitogen-activated protein kinase 

(MAPK) signaling. Mutations in KRAS lead to the constant activation of the pathway, resulting in 

enhanced cell proliferation and the possibility to escape apoptosis, disregarding EGFR activity. 

Therefore, patients with the mutated KRAS and also NRAS are not eligible for anti-EGFR therapy 

[30,31]. Moreover, mutations in the BRAF gene, occurring in 10% of CRC cases, can lead to a 

similar effect. The most common mutation in BRAF is a substitution of the amino acid valine to 

glutamic acid (V600E mutation), leading to the constitutive activation of B-raf protein [32]. 

Transformation of the epithelium to serrated polyps is attributed to BRAF mutations, which are 

frequent in MSI and highly implicated in CIMP CRCs [23].  

Mutations in genes encoding for elements of the phosphoinositide-3 kinase (PI3K) signaling 

pathway are observed in about 40% of CRCs. The PI3K pathway can be activated by four types of 

sensors: receptor-tyrosine kinases (RTKs, such as EGFR or insulin-like growth factor 1 receptor, 

IGF1R), integrins (proteins responsible for cell-extracellular matrix connections) and the cytokine- 

or G-protein-coupled receptors. The PI3K/Akt/mammalian target of rapamycin (mTOR) pathway 

leads to the activation of multiple transcription factors that regulate cell cycle, subsequent cell 

proliferation, and survival. PI3K is the kinase that phosphorylates and activates Akt (protein kinase 

B, PKB) using the phosphatidylinositol-3,4,5-trisphosphate (PIP3) as a substrate. Mutations in 
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PIK3CA gene encoding for PI3K, can lead to the enhanced activity of the pathway and a 

subsequent increase in pro-survival signals. Moreover, mutations in the PTEN gene, encoding for 

the tumor suppressor that negatively regulates the levels of PIP3, often occur in CRC, leading to 

an uncontrolled activation of PI3K/Akt/mTOR signaling [33]. 

The transforming growth factor (TGF)β signaling pathway, a tumor suppressing cascade, is often 

distorted in CRC. Mutations, common in most MSI CRCs, leading to the inactivation of the TGFβ 

cascade, can occur in TGFβ receptor genes (TGFBR1 and TGFBR2), in the downstream effector 

genes (SMAD2, SMAD4), and in genes encoding for members of the TGFβ superfamily (ACVR2). 

However, an excessive TGFβ expression in CRC (and several other types of cancer) correlates with 

tumor progression. TGFβ when secreted by cancer cells has a strong influence on the tumor 

microenvironment – it suppresses the inflammation, promotes angiogenesis and recruits 

myofibroblasts, known to support cancer progression [34,35]. 

p53 reduces the risk of the malignant transformation by inducing apoptosis in cells that suffer 

from cellular stress, such as hypoxia, DNA damage or oncogenic activation. In such circumstances, 

p53 acts as a transcription factor to trigger the expression of pro-apoptotic molecules (e.g. Bax, 

Noxa, PUMA) and to inhibit expression of pro-survival factors (e.g. Bcl-2, Bcl-xL). Loss of functional 

p53 leads to an uncontrolled cell proliferation and evasion from the cell death. Mutations in the 

TP53 gene occur in late stages of about 50% of CRCs cases and the presence of the aberrant p53 is 

associated with CRC aggressiveness and metastasis [36,37]. 

1.2.2. Therapy and prevention of colorectal cancer 

Most of the signs and symptoms of CRC are non-specific and besides that, the early stage CRC can 

be asymptomatic. The endoscopic examination of the large intestine, colonoscopy, is the most 

universal and accurate test for CRC screening. Besides the visual evaluation, it provides 

opportunity to obtain biopsies and to remove polyps. The obtained tissue is further 

histopathologically examined. Independently, the disease extent can be evaluated by an imaging 

test, such as CT scan of the abdomen, chest and pelvis [38]. The stage of the tumor is assessed 

according to the Tumor Node Metastases (TNM) staging system. The “T” category represents the 

primary tumor, the “N” describes whether the cancer is spread to adjacent lymph nodes and the 

“M” category specifies whether the tumor is metastatic. When the categories are ascribed, the 

overall stage of the tumor is determined (extending from stage 0 to IV) [39]. 

Surgical resection forms the only curative method for localized CRC, i.e. a tumor that is localized 

at the colon wall and/or the nearby lymphatic nodes. Preoperative (neoadjuvant) radio- or 

chemoradiotherapy is a common strategy for the treatment of locally advanced rectal cancer, 

invading into neighboring organs. In order to remove potential micrometastases and to 

subsequently reduce the recurrence of the disease, the postoperative (adjuvant) chemotherapy is 
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the next major step in CRC therapy. Chemotherapy is planned individually for each patient and in 

most cases comprises a combination of several drugs. Chemotherapy is associated with several 

side effects, such as emesis, diarrhea, mucositis, hair loss, fatigue, cardiotoxicity and other 

toxicities [21]. 

1.2.2.1. Cytotoxic chemotherapy 

Developed in 1957 by Charles Heidelberger and colleagues, 5-fluorouracil (5-FU) was the first 

chemotherapeutic used for the treatment of CRC [40]. Metabolized 5-FU acts as an inhibitor of 

thymidilate synthase, irreversibly blocking synthesis of thymidine, a nucleoside necessary for the 

DNA replication [41]. Later on, the addition of leucovorin (folinic acid) was proven to enhance the 

effectiveness of 5-FU. Nowadays, the first-line treatment for metastatic CRC is most often a 

combination of oxaliplatin (platinum derivative) with 5-FU or with an oral formulation of 5-FU 

capecitabine (FOLFOX or CAPOX regimen). Another approach is a combination of irinotecan 

(topoisomerase I inhibitor) with 5-FU (FOLFIRI regimen). A triplet regimen with use of oxaliplatin, 

5-FU and irinotecan (FOLFOXIRI) has also shown to be effective [21,41]. 

1.2.2.2. Targeted therapy 

Chemotherapy regimens are usually enriched by the use of targeted therapy agents. In CRC 

treatment these agents include monoclonal antibodies (mAbs) against EGFR or against vascular 

endothelial growth factor (VEGF)-A, a soluble protein that stimulates creation of new blood 

vessels (Figure 4) [21]. The majority of CRCs (over)express EGFR, which correlates with poor 

prognosis. The use of mAbs such as cetuximab and panitumumab showed efficacy in 

chemotherapy-naïve patients, as well as in individuals with emerging cytotoxic chemotherapy 

resistance. The use of EGFR mAbs, however, is only beneficial for patients who do not carry 

activating mutations in the KRAS and NRAS genes (both in exons 2, 3, and 4) detected in more 

than 40% of patients, and as such the RAS mutational status serves as a negative predictive 

biomarker for the anti-EGFR therapy [30,31,42]. Growing tumor needs additional oxygen and 

nutrients supply [43]. Subsequently, endothelial cells (ECs) are attracted to the hypoxic regions 

and stimulated by VEGF to create a new vascular network. Therefore, targeting the angiogenesis 

forms an important strategy in the anti-cancer therapies [44]. When released by cancer cells or 

adjacent stromal cells VEGF binds to its receptor (VEGFR) leading to an increased proliferation, 

migration of ECs and the increased vessel permeability. Bevacizumab, a mAb developed against 

VEGF-A, applied in the combination with a FOLFIRI or a FOLFOX regimen has demonstrated an 

improved median of progression-free survival in patients with metastatic CRC. Another anti-

angiogenic drug used together with chemotherapy is aflibercept, a recombinant fusion protein 

that contains a VEGF-binding domain (recombined from VEGFR), and therefore, it acts as a VEGF-

trap [42,45]. Moreover, in 2013 a novel chemotherapy agent for refractory metastatic CRC was 
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approved. Regorafenib, a tyrosine kinase inhibitor able to block several receptors (VEGFR-1, -2, -3, 

TIE-2 and others) demonstrated a significant clinical benefit [46]. 

 

Figure 4. Therapeutics targeting signaling pathways in CRC. Description in the text (section 1.2.2.2.) Figure 
adapted from [42]. 

1.2.2.3. New therapies 

Immunotherapy, which uses the patient’s immune system to fight the disease, is a new promising 

approach in cancer treatment [5]. After obtaining positive results in other types of cancer, use of 

immunotherapy, including nivolumab, an antibody developed against programmed cell death 

(PD)-1 protein, was shown effective in CRC patients with high-level MSI [47]. PD-1 is a receptor 

that contributes to suppression of inflammatory activity of T-cells and subsequently induces 

tolerance. PD-1 is therefore an immune checkpoint against autoimmunity, leading to increased 

apoptosis of antigen-specific T-cells and reduced apoptosis of regulatory T-cells. Inactivation of 

PD-1 in T-cells stimulates them to attack cancer cells [48]. 

Cancer stem cells (CSCs) form a subset of cancer cells that share characteristics with normal stem 

cells, giving them the ability of self-renewal and differentiation. Therefore, CSCs are believed to 

be responsible for metastasis formation and therapy resistance [49]. BBI608 is a stem cell 

inhibitor that targets several pathways associated with tumorigenesis [50]. This small molecule 

was shown to inhibit gene transcription driven by STAT3, an important factor to maintain cancer 
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stemness, as it regulates expression of genes implicated in cell survival, self-renewal, invasion and 

immunosuppression [51]. BBI608 decreased in a dose-dependent manner protein levels of Sox-2, 

Nanog, survivin and c-Myc, being down-stream factors of STAT3 [52] and levels of β-catenin, 

contributing to the deactivation of the Wnt cascade [27]. Subsequently, in cancer stem cells 

obtained from various cancer types, BBI608 was able to block spherogenesis and had a cytotoxic 

effect on cells with high stemness potential. Furthermore, BBI608 blocked cancer relapse and 

metastasis in vivo [50]. Since the phase I studies showed promising results, Boston Biomedicals, 

Inc. conducts phase II clinical trial for the use of BBI608 in the combination with panitumumab, 

capecitabine and cetuximab in adult patients with advanced CRC (clinicaltrails.gov identifier: 

NCT01776307). 

Patients with KRAS and NRAS mutation cannot benefit from the anti-EGFR therapy [30]. Reolysin®, 

an oncolytic virus designed by Oncolytics Biotech Inc., is a formulation of a human reovirus strain 

that targets cancer cells with an activated RAS pathway, and meanwhile has very little effect on 

cells in which RAS signaling is inactive [53,54]. The KRAS mutation is also common for melanomas 

and the intravenous application of Reolysin had a promising outcome in phase II clinical trial 

performed in metastatic melanoma patients [55]. 

1.2.2.4. Repurposed drugs 

Drug repurposing (reprofiling, repositioning) indicates application of well-known and well-

characterized drugs to treat new diseases [56]. A ReDO (Repurposing Drugs in Oncology) project 

focuses on known non-cancer drugs and their potential use in cancer therapy and prevention [57]. 

Recent accumulating evidence shows that non-steroidal anti-inflammatory drugs (NSAIDs), such 

as aspirin and diclofenac, are effective in preventing premalignant polyps formation and the 

development of CRC [58,59]. The use of aspirin reduced the CRC risk by 24% and mortality by 35% 

[60], and it was especially effective in individuals with Lynch syndrome [61]. Moreover, a regular 

aspirin use after CRC diagnosis reduced the disease recurrence in patients with a PIK3CA gene 

mutation [62]. Nevertheless, the mechanism behind the beneficial effects of aspirin is unclear. 

Possible actions include an inhibition of the nuclear factor (NF)κB and Wnt pathways (being also 

downstream the PI3K), as well as its modulating effects through the tumor microenvironment 

[42,63]. 

An anti-diabetic drug metformin, the most commonly prescribed medicine for diabetes type 2, is 

another potential repurposed drug [64]. Metformin treatment is associated with substantially 

lower risk of colorectal cancer in patients with type 2 diabetes, but it also decreased the risk of 

occurrence in other malignancies including pancreas, hepatocellular, and prostate carcinomas 

[64-66]. Molecular action of metformin in cancer cells involves mainly the inhibition of mTOR 

signaling pathway, playing an important role in cell proliferation. Moreover, metformin-mediated 
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reduction of insulin and IGF-1 levels is also suggested as an anti-cancer mechanism [66]. 

Furthermore, metformin was shown to induce 5-FU- and oxaliplatin-driven cell death in 

chemotherapy resistant colon cancer cells in vitro, which was associated with downregulation of 

the Wnt pathway [67].  

Other non-cancer drug candidates of which there is pre-clinical and clinical evidence of 

chemopreventive or anti-cancer actions include cimetidine - commonly used to treat stomach 

ulcers, nitroglycerin - used for high blood pressure and heart failure, and mebendazole - used 

against parasitic worm infestations [57]. 
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1.3. Cancer microenvironment  

Tumors are no longer recognized as a homogenic mass of cancer cells. Past decades of research 

have resulted in the recognition of cancer stem cells (CSCs). CSCs located within the malignant cell 

population play a key role in driving cancer growth [49]. Additionally, different cellular and non-

cellular components of the tumor microenvironment are crucial for cancer development. The 

tumor mass comprises non-cancerous cells, such as myofibroblasts, recruited at the invasive front 

of the tumor, endothelial cells (EC) that together with pericytes are structural elements of the 

tumor vasculature, cells of the immune system, and other cellular components characteristic for 

certain types of cancer (such as adipocytes in breast cancer). Moreover, the extracellular matrix 

(ECM) forms an active scaffold for the cross-talk between particular cellular populations. The 

dynamics occurring within the tumor microenvironment share similarities with the processes of 

wound healing and inflammation, therefore a tumor was once described as a “wound that does 

not heal” [68,69]. Figure 5 depicts a simplified model of a tumor microenvironment. 

 

Figure 5. Model of tumor microenvironment. Figure adapted from [8]. 

1.3.1. The extracellular matrix 

The ECM is a dynamic network of macromolecules (proteoglycans and fibrous proteins), which are 

secreted by the resident cells. The ECM acts as a biochemical and structural support for cellular 

components of the tissue, it contributes to cell adhesion, polarity, migration, differentiation, 

proliferation and cell-to-cell communication. The ECM forms a reservoir for growth factors that 

are embedded within it and certain ECM components may act as signal co-receptors or presenters 

by binding to specific growth factors. Each type of mammalian connective tissue has a different 

composition of its ECM that contributes to its particular tissue function, however, the ECM can be 

divided into two main types: the basement membrane and the interstitial (stromal) matrix. The 

basement membrane is a compact, laminin-, nidogen-, and collagen type IV-rich ECM, produced 
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by epithelial, endothelial and stromal cells, and acts as a barrier between stroma and epithelium 

or endothelium. The interstitial matrix, in contrast, is less compact, more hydrated and rich in 

fibrillar collagens, proteoglycans and polysaccharide gels. The ECM is highly plastic and its 

remodeling is strictly regulated during tissue development, thus the abnormal ECM dynamics are 

characteristic for many diseases, including cancer. In epithelial cancers the dissolution of the 

basement membrane is a crucial step in cancer invasion. Moreover, tumors are significantly stiffer 

than surrounding healthy tissues as a result of its particular ECM deposition and remodeling by 

fibroblasts and myofibroblasts recruited by cancer cells [70-73]. Figure 6 depicts examples of 

common macromolecules present in an ECM. 

1.3.2. Myofibroblasts 

The presence of myofibroblasts is characteristic for the physiological processes during embryo 

development and wound healing. In response to injury, residential fibroblasts acquire some 

characteristics of smooth-muscle cells and differentiate to myofibroblasts that produce and 

secrete components of the wound’s ECM. Owing to their contractile properties myofibroblasts 

play a major role in the maturation and contraction of the granulation tissue. Subsequently, 

myofibroblasts contribute to scar formation and remodeling of the granulation tissue, following a 

release of proteolytic enzymes (such as matrix metalloproteases, MMPs). Eventually, in healing 

tissues the number of myofibroblasts declines due to apoptosis [74,75]. Myofibroblasts, besides 

fibroblasts, can be recruited from various origins, i.e. from local or bone marrow-derived 

mesenchymal stem cells, endothelial cells, pericytes and other cell types undergoing EMT. 

Myofibroblasts have a polarized spindle-shaped morphotype and due to their contractile 

properties are highly motile. Additionally, myofibroblasts can be identified by the presence of 

typical markers, such as alpha-smooth muscle actin (αSMA), vimentin, podoplanin, desmin, 

neural-cadherin (N-cad) and the absence of certain cell type-specific markers, including 

cytokeratin, which is characteristic for epithelial cells [76]. Moreover, myofibroblasts produce and 

secrete various structural components of the ECM, such as collagens (type I, II, IV), fibronectin, 

tenascins and decorin [77,78]. During tumorigenesis myofibroblasts are recruited by cancer cells, 

and therefore, they are also known as cancer-associated fibroblasts (CAFs). Abundant in the 

tumor microenvironment, CAFs’ presence is persistent in contrast to the physiological wound 

healing process. CAFs are activated mainly via TGFβ signaling, and in turn they support cancer 

progression via secretion of various cytokines, growth factors, chemokines and enzymes, such as 

CCL5 (RANTES), IL-6, hepatocyte growth factor (HGF), fibroblast growth factor (FGF), insulin-like 

growth factor-1 (IGF-1), MMPs, and tenascin C (TNC). CAF-released factors contribute to an 

increased cancer cell invasion, motility, survival, and also a stimulation of angiogenesis via the 

secretion of VEGF and other factors [76]. 
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Figure 6. Extracellular matrix macromolecules. Proteoglycans (PGs) comprise of glycosaminoglycan (GAG) 
chain linked with a protein core. PGs are highly hydrophilic and involved in multiple signaling pathways, cell 
adhesion, migration and proliferation. PGs are classified into three families: SLRP – small leucin-rich PGs, 
modular PGs and cell-surface PGs. Collagen is the most common fibrous protein within the interstitial ECM 
and its main structural component. Fibronectin plays a key role in the cell adhesion by binding collagens 
and integrins. Elastins are highly elastic proteins that contribute to the tissue flexibility. Laminins are the 
main components of base membranes. Tenascins have cell adhesion-modulating properties. Figure adapted 
from [73]. 



Part I: General introduction: Cancer 

21 

1.3.3. Vascular endothelial cells and pericytes 

Endothelial cells (ECs) are mesodermal components of the blood vessels inner surface. In vascular 

capillaries, ECs form a semi-selective monolayer that separates the blood from the surrounding 

tissue, guaranteeing at the same time an exchange of nutrients, waste products and gases. 

Perivascular stromal cells (pericytes) provide structural support to ECs [79]. Inadequate number of 

pericytes in the tumor vasculature causes vessel leakiness and is associated with a poor prognosis 

and metastasis in CRC [79,80]. Hypoxia (inadequate oxygen concentration) can occur in a quickly 

growing tumor mass [8,43]. In order to provide the necessary supply of nutrients and oxygen to 

the tumor, cancer cells and other cells from the tumor microenvironment (CAFs and tumor-

associated macrophages) secrete factors to stimulate angiogenesis. ECs actively respond to 

vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and other pro-

angiogenic factors. Because of a constant, uncontrolled growth factor flow, tumor vasculature 

greatly differs from the healthy situation. As such, tumor ECs are of irregular size and shape, 

affecting the endothelial monolayer’s structure and function. Subsequently, formed vessels are 

fragile and leaky, show irregular diameters, and are chaotically organized, resulting altogether in 

an abnormal blood flow and a facilitated cancer cell intravasation [79]. The process of 

angiogenesis is further described in section 1.4. 

1.3.4. Inflammatory cells 

Various types of cells belonging to the immune system are attracted to the tumor site. 

T-lymphocytes are very abundant, making up to 10% of the cellular components of a tumor. 

Among the many populations of T-cells, CD8+CD45RO+ cells are capable of targeting and killing 

cancer cells. CD4+ helper 1 T-cells (Th1) produce IL-2 and interferon-γ and together with 

CD8+CD45RO+ are linked with a good prognosis. In contrast, Th2 and Th17 cells are associated 

with tumor growth, and furthermore, CD4+ T regulatory cells (Tregs) have tumor-promoting 

properties due to their immunosuppressive actions [68,81]. B-lymphocytes can be found at the 

invasive edge of the tumor and in tumor-adjacent lymph nodes. Their presence, however, 

similarly to natural killers (NK) and NKT cells, is linked with a good prognosis in some cancers [68]. 

Tumor-associated macrophages (TAMs) belong to “corrupted” cells that enhance cancer 

progression via stimulation of cancer cell migration, invasion and metastasis [82]. Because of their 

excessive production of growth factors and inflammatory cytokines, TAMs maintain a state of 

chronic inflammation within the tumor microenvironment. Furthermore, TAMs are attracted to 

the hypoxic areas of the tumor, and thanks to their VEGF secretion, they are important 

contributors of tumor angiogenesis. By releasing MMPs, TGFβ, EGF and other factors, TAMs also 

strongly influence ECM remodeling, cancer cell invasion and cell extravasation. Moreover, in 

pancreatic cancer macrophages were proven to activate myofibroblasts [82-84]. 



Part I: General introduction 

22  

1.4. Angiogenesis  

Angiogenesis is a process in which a new vascular network is created from the existing one [85]. 

This strictly regulated process due to the balance between pro- and anti-angiogenic endogenous 

factors (Table 1), is essential to tissue development, wound healing and during menstrual cycle. 

Table 1. Examples of endogenous regulators of angiogenesis. Table adapted from [86] and [87]. *TGFβ has 
a controversial role in angiogenesis, which depends on the cancer type and cellular context [34]. 

Activators Inhibitors 

Growth Factors 

Angiogenin 

EGF 

FGFs 

HGF 

Platelet-derived growth factor (PDGF) 

TGFβ* 

Tumor necrosis factor (TNF)α 

VEGFs 

TGFβ* 

 

Cytokines 

IL-1 

IL-6 

IL-8 

IL-10 

IL-12 

Proteases and proteases inhibitors 

ADAM-17 

Cathepsin 

MMP-2 (gelatinase A) 

MMP-3 (gelatinase B) 

MMP-9 (stromelysin-1) 

uPA 

ADAMTs 

PAI 

TIMP 

Other endogenous regulators 

Angiopoietin-1 

Endothelin 

Erythropoietin 

Hypoxia 

NO synthase 

Prostaglandin E2 

α5β3 integrin 

 

Angiopoietin-2 

Angiostatin 

Angiotensin 

Arresten 

Canstatin 

Endostatin 

Interferon-α 

Thrombospondin-1, -2 

Vasostatin 
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In a physiological situation, angiogenesis is a transient process, which is completely inhibited after 

a strict period of time. Disturbance of this balance can lead to a pathological insufficient 

angiogenesis (e.g. in the ischemic chronic wounds) or to an excessive angiogenesis (e.g. in cancer, 

ocular disorders and rheumatoid arthritis) [85,87]. As stated above, tumors cannot expand 

without nutrient and oxygen supply [43]. Cancer and cancer-associated cells secrete a plethora of 

pro-angiogenic factors, resulting in a constant distortion of the balance between activators and 

inhibitors of angiogenesis, and subsequently in an uncontrolled and chaotic formation of 

vasculature [86].  

1.4.1. Stages of blood vessel sprouting 

Angiogenesis occurs in several phases controlled by a complex net of regulation taking place in 

space and time. In a developing vessel, particular ECs acquire different roles, phenotypes and 

responses to the incoming signals. Sprout initiation occurs when one of the ECs responds to a pro-

angiogenic signal by extending the filopodia. Such cell, called a tip cell, is still connected to the 

parental vessel while migrating outwards. At the same time the tip cell blocks filopodia formation 

in the neighboring cells. The tip cell continues to migrate toward the pro-angiogenic stimulus, 

while the neighboring ECs (stalk cells) follow it by migrating and proliferating, without 

disconnecting from the parental vessel. Subsequently, a new sprout forms a lumen to connect 

with another outgrowing sprout or vessel. Cell junctions with the ECs from the other sprout are 

established, and lastly, a complete loop is created. Eventually, the new structure is covered by 

pericytes and basement membrane, and such newly formed vessel can act as a parental vessel for 

a new outgrowing sprout [88]. 

1.4.2. Molecular mechanisms of angiogenesis 

A multitude of factors were described as direct or indirect regulators of angiogenesis (Table 1). 

Particular molecules can be produced by various cell types as soluble factors or as membrane-

linked proteins. Figure 7 depicts important signaling events occurring during tumor angiogenesis. 

Because of their role in cancer development many of these pathways became a target for cancer 

therapy [89]. 

1.4.2.1. Hypoxia-induced mechanism 

Hypoxia is an important driver of angiogenesis and is counteracted by actions of the hypoxia 

inducible factor (HIF)-1. Under normoxia, HIF-1 is restrained from action due to hydroxylation of 

HIF-1 subunit α (HIF-1α), which is subsequently trapped in the E3 ligase protein complex, leading 

to its ubiquitination and degradation. Under hypoxic conditions, however, HIF-1α accumulates in 

the cytoplasm and dimerizes with the HIF-1β subunit to form a complete transcription factor that 

upon binding to the hypoxia-responsive elements (HRE) regulates expression of several target 

genes including VEGF, angiopoietins, PDGF-B, cytokines and ECM proteases [90,91]. Interestingly, 
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HIF-1’s transcriptional activity can also be stimulated via PI3K/Akt or RAS/MAPK signaling 

cascades, which are often hyperactivated in cancer [92]. Pro-angiogenic factors, abundantly 

secreted by cancer cells, attract ECs and stimulate neovessel formation. 

 

Figure 7. Schematic representation of selected molecular mechanisms involved in the tumor angiogenesis. 
Cancer cell produces factors to counteract the inadequate oxygen concentration. HIF-1 is a transcription 
factor responsible for activation of genes encoding for growth factors, cytokines and ECM proteases. 
Detailed description of the mechanisms is in section 1.4.2.  
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1.4.2.2. VEGF signaling 

Vascular endothelial growth factor (VEGF) signaling has an essential role in angiogenesis. The 

VEGF protein family consist of several glycoproteins including the most studied VEGF-A, a factor 

implicated in vasculogenesis, angiogenesis, modulating vascular permeability, stimulation of 

migration, and proliferation of ECs. VEGF-B plays a crucial role in cardiac development, VEGF-C 

and VEGF-D are responsible for lymphatic vessel development. Endocrine gland (eg)VEGF targets 

the endocrine gland endothelium and the placental growth factor (PlGF), originally discovered in 

human placenta, was shown to play a role in modulating inflammation associated with 

pathological angiogenesis [45,93,94]. VEGFs are ligands for the tyrosine kinase receptors (RTKs) 

VEGFRs (mainly VEGFR-1, -2 and -3) expressed in ECs. VEGF-A binds and activates VEGFR-1 and 

VEGFR-2, however, most pro-angiogenic potential is generated via a VEGFR-2 activation. VEGFR-1 

has a high affinity for VEGF-A, but its RTK activity is much weaker than VEGFR-2, therefore VEGFR-

2 is proposed to act as a negative regulator of VEGF signaling, by acting as a VEGF-trap [95]. 

Dimerization and autophosphorylation of ligand-bound VEGFR-2 leads to the activation of several 

signaling pathways resulting in the increased EC proliferation, migration, and vascular 

permeability. These signaling pathways include phospholipase C (PLC)-γ/protein kinase (PK)C and 

subsequent MAPK and PKD signaling and also stimulation of PI3K signaling cascade via adaptor 

molecule Src homology 2 and β cell (Shb), that binds the phosphorylated VEGFR-2 [93]. 

1.4.2.3. Fibroblast growth factors and their receptors 

Acidic and basic fibroblast growth factors (a- and bFGFs) are proven to be essential factors during 

the angiogenic response. FGFs produced by cancer or stromal cells bind to heparan sulfate 

proteoglycans (HSPGs), abundantly present on the surface of most cells and within the ECM. 

HSPGs-bound FGF forms a reservoir of the growth factor, facilitating its release in a controlled 

manner. Moreover, HSPGs serve as co-receptors to modulate FGF signaling. FGFs act as ligands 

for the FGF RTKs (FGFR-1, -2, -3 and -4). Upon binding to its ligand, an FGFR dimerizes and 

autophosphorylates leading to the activation of several signaling pathways including Ras/MAPK 

and PLC-γ/PKC, resulting in cell proliferation, migration and survival [96,97]. 

1.4.2.4. Angiopoietins and TIE receptors 

Angiopoietin (ANGPT)-1 and -2 are ligands for the Tyrosine kinase with immunoglobulin-like and 

EGF-like domains (TIE) receptors, of which signaling is essential for maintaining vessel stability. 

Upon ANGPT-1 binding, TIE-2 undergoes autophosphorylation and subsequently activates 

PI3K/Akt cascade in ECs. The ANGPT-1 is associated with vessel maturation via enhanced EC 

migration, adhesion and survival. ANGPT-2, on the other hand, promotes vascular regression, by 

disrupting connections between ECs and perivascular cells, but in the presence of VEGF it 
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stimulates vessel sprouting [98]. Elevated levels of ANGPT-2 have been correlated to poor 

prognosis in several cancer types [99]. 

1.4.2.5. TGFβ and its receptors 

As mentioned in section 1.2.1.2., aberrations in TGFβ signaling are common in CRC. TGFβ 

cytokines are released into the ECM in a latent dimerized complex. Activation of the protein can 

occur via proteolytic reaction catalyzed by plasmin or MMPs (such as MMP-2 and -9). TGFβ 

cytokines bind then to the serine/threonine kinase receptor type II (TβRII) which in turn 

phosphorylates type I receptor (TβRI, such as activin receptor-like kinase, ALK), and subsequently 

activates the Smad signaling cascade. Smad2 and Smad3 proteins are activated by TβRI-induced 

phoshorylation, leading to further Smad2/3 interaction with Smad4. Such complex is 

subsequently translocated to the nucleus where it acts as a transcription factor [100]. Depending 

on the cellular context, TGFβ is associated with both pro- and anti-angiogenic properties [96]. Pro-

angiogenic effects of TGFβ are a combination of direct and indirect effects as TGFβ can induce 

VEGF production, leading to the induction of sprouting, and as TGFβ can also attract 

macrophages, which in turn secrete many pro-inflammatory and pro-angiogenic factors [100]. In 

vitro applied TGFβ induces apoptosis in ECs, opposing VEGF’s pro-survival effects. However, TGFβ-

induced apoptosis is necessary for vessel formation, thus abrogation of this signaling causes an 

abnormal vasculature [101]. In some malignancies, such as pancreatic cancer, TGFβ induces the 

expression of thrombospondin-1, a potent angiostatic factor. Perturbation of TGFβ signaling in 

this case leads to an enhanced angiogenesis [34,102]. 

1.4.2.6. Platelet-derived growth factor signaling  

Platelet-derived growth factor (PDGF) is an important player in the vessel wall maturation. PDGF 

can exist as homo- or heterodimers composed of isoforms A, B, C and D. These growth factors are 

secreted by ECs in order to recruit pericytes and smooth-muscle cells to the vessel, and to 

subsequently stabilize the vessel structure. Upon binding of PDGFs to their PDGF receptors 

(PDGFRα and β), belonging to the RTKs, these receptors dimerize and autophosphorylate. 

Autophosphorylation reveals docking sites for the SH2-domain-containing signaling molecules, 

including tyrosine kinases of the Src family, PLC-γ and the GTPase activating protein (GAP) for Ras. 

Activation of these signaling cascades leads to an enhanced migration, proliferation and cell 

survival [93,103]. In CRC, these PDGF receptors are mainly present in CAFs and pericytes and their 

expression is correlated with a poor prognosis [103,104]. 

1.4.2.7. Angiogenin 

Angiogenin (ANG) is a potent stimulator of angiogenesis that interacts with ECs and smooth-

muscle cells to exert proliferative, pro-invasive and pro-migratory effects. ANG stimulates 

degradation of basement membrane via binding to αSMA at the EC or smooth muscle cell surface. 
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This interaction leads subsequently to activation of proteolytic cascades with generation of 

plasmin and other proteases that degrade laminin, fibronectin and other components of 

basement membrane. Although ANG belongs to the ribonuclease superfamily, it has relatively 

weak ribonucleolytic activity, yet necessary to induce the pro-angiogenic actions. ANG was shown 

to undergone nuclear translocations, where it enhanced ribosomal RNA transcription via binding 

to CT-rich angiogenin-binding elements. Besides, ANG was shown to activate several signal 

transduction cascades via interactions at EC’s cellular membrane. These actions were shown to 

stimulate the extracellular signal-related kinase (ERK1/2) MAPK and Akt, resulting in enhanced EC 

proliferation. Elevated levels of ANG were detected in various types of cancers such as breast, 

prostate, liver, and colorectal cancer, suggesting its close association with tumor development 

[105,106].  

1.4.2.8. ECM components and ECM remodeling in angiogenesis 

The ECM and its remodeling are key players during all phases of angiogenesis. Although structural 

support is key function of ECM, during angiogenesis the ECM is also an important signal mediator. 

In the initial phase of angiogenesis, an activated tip cell adheres to the ECM via cell-surface 

integrins, leading to the activation of ERK1/2 MAPK signaling cascade, which is crucial for EC 

proliferation, survival and migration. During sprouting ECs must jointly undergo morphogenesis, 

which is provoked by, among other molecules, collagen type I and integrins. This leads to the 

activation of Rho, Src and p38 MAPK pathways and results in an enhanced EC contractility and 

acquisition of a spindle-shaped morphology. Moreover, together with the ECM proteases, 

collagen and fibrin are important players in lumen formation. ECM proteolysis driven by 

membrane-anchored pericellular collagenase MT1-MMP is critical in facilitating expansion of EC 

tubes and formation of vascular guidance tunnels. The family of MMPs consists of over 20 zinc-

dependent metalloproteases specialized in degradation of various ECM proteins. Because of their 

proteolytic activity, MMPs mediate the release of many angiogenic factors (including VEGF and 

bFGF) in the ECM. MT1-MMP together with MMP-2 and its important negative regulator, tissue 

inhibitor of proteinase (TIMP)-2, are required for ECM remodeling at the leading front of an 

expanding sprout [107-109]. Different proteases have been shown to have opposite roles in the 

angiogenesis: a desintegrin and metalloproteinase (ADAM) and a desintegrin and 

metalloproteinase with thrombospondin motifs (ADAMT). ADAM-17 enhances angiogenesis via 

the activation of MMP-2, while ADAMTs can have pro-apoptotic effects on ECs [109]. Another 

important ECM enzyme system, the serine protease urokinase-type plasminogen activator (uPA) 

cascade, has a recognized role in wound healing, angiogenesis and cancer invasion, not only via 

ECM remodeling but also via intracellular signaling. uPA binds to its receptor (uPAR) leading to the 

cleavage of plasminogen and the subsequent release of active serine protease plasmin, which in 
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turn activates other proteinases, including MMPs and uPA itself, and as such drives degradation of 

many ECM structural proteins. Moreover, uPA-bound uPAR influences cell adhesion and migration 

via interaction with several proteins, including integrins and vitronectin. Furthermore, an uPAR 

interaction with integrins leads to the EGFR-dependent cell proliferation. Lastly, plasminogen 

activator inhibitors (PAI)-1 and -2, play important roles in the negative regulation of the uPA 

system, and as such are associated with anti-angiogenic functions [110]. 
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1.5. Cancer invasion and metastasis 

Cancer invasion and subsequent metastasis belong to the hallmarks of cancer leading to cancer 

dissemination. Metastasis forms the main cause of cancer mortality [8]. The invasion-metastasis 

cascade is a multistep process that begins when the cancer cells lose their cell-to-cell connections, 

and display increased proteolytic activity via production and release of proteolytic enzymes. 

Further, with the help of adjacent cells from the tumor microenvironment, cancer cells can 

migrate and spread to neighboring tissues and blood vessels, to eventually extravasate and 

colonize a distant target niche [13]. 

1.5.1. Mechanisms of cell invasion 

Cell invasion is a key process in cancer progression. Depending on the tissue and the cell type, two 

major types of invasion are proposed: collective and individual. The latter invasion type proceeds 

via mesenchymal or amoeboid cells [13,111]. Moreover, during invasion, cancer cells can undergo 

morphological and phenotypical conversions, such as EMT, mesenchymal to amoeboid transition 

(MAT) or collective to amoeboid transition (CAT) [13,112,113]. 

The collective cell invasion is characteristic for epithelial tumors, such as breast, CRC and 

endometrial cancer. In this type of invasion, cell-to-cell contacts remain unaffected and the 

cytoskeletal activity, in combination with multicellular coordination of polarity generates traction 

forces, resulting in collective cell migration (Figure 8A). Moreover, collective cell invasion requires 

ECM remodeling and rearrangement of the basement membrane [114,115]. 

The mesenchymal single cell invasion was reported in fibrosarcoma, melanoma and glioblastoma. 

In epithelial cancers, mesenchymal single cell invasion occurs via EMT and subsequent 

detachment of single cells from a cell cluster (Figure 8B) [13,111]. Mesenchymal cell invasion 

comprises several steps leading to a change in cell shape and rearrangement of the tissue through 

which the cell migrates. First, the actin cytoskeleton becomes polarized, forming a protruding 

front and a retracting rear end, which result in a polarized cell shape and a formation of leading 

extension. Next, the leading extension interacts with the extracellular components, resulting in a 

focal cell adhesion and the generation of traction forces. Further, cell-surface proteases 

contribute to ECM degradation, which facilitates cell migration and uncovers embedded growth 

factors and other molecules accelerating the process. Further steps involve the activation of 

myosin II and the generation of actomyosin-based contractile tensions within the cell. The final 

step is a continuation of contraction and iteration of the cell adhesion events [111].  

The invasion of single amoeboid cells is the fastest migratory phenotype and was reported in 

lymphoma, melanoma, and several epithelial cancers. The amoeboid cell invasion is a result of cell 

polarity loss, loose connections with the ECM and the ability of chemotaxis [111,116]. The 
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amoeboid cells have a round morphotype, lack stress fibers formation and weakly affect the ECM. 

Instead, amoeboid cells use actomyosin mechanical forces to squeeze between narrow spaces 

and gaps within the ECM and do not require proteolytic activity (Figure 8C) [13,111]. 

 

Figure 8. Mechanisms of cancer cell invasion. (A) During the collective cell migration, tip cells at the invasive 
margin of the tumor promote ECM remodeling and cell-matrix adhesions. The following cells within a sheet 
or a strand maintain most of their epithelial characteristics including the cell-cell connections. (B) Single 
cancer cells are able to detach from the cluster by undergoing an EMT (which can occur due to TGFβ-driven 
downregulation of E-cadherin and cytoskeleton rearrangements). (C) In amoeboid cell invasion, which can 
occur via MAT or CAT, the cancer cell is devoid of polarity and relies on protease-independent chemotaxis. 
Source [13]. 

It should be emphasized that above described modes of cell migration present the extreme forms 

and in reality the occurring migration processes range between these two opposed forms. Various 

combination of both intrinsic and environmental factors have an impact on the final outcome of 

the invasion mode, and moreover, cancer cells demonstrate a substantial plasticity in terms of 

adapting their migration mode [111]. The intrinsic factors determining the migration mode 

include the volume and plasticity of the cytoplasm and the nucleus, organization of the 

cytoskeleton, and activity of the small GTP-ases RhoA, Rac, and Cdc42 being key regulators of cell 

motility [117]. RhoA-controlled increased contractility is associated with amoeboid-like migration, 

while lower contractility together with increased cell adhesion favor mesenchymal-like migration 

mode. Furthermore, as evidenced by intravital studies, the microenvironmental factors, such as 

stromal collagen network organization, determine the migration mode and its dynamics. Cancer 

cells, amoeboid-shaped, as well as mesenchymal morphotype use collagen fibers bundles as 
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routes for directional migration. Moreover, proximity of blood vessels and macrophages is 

associated with increased cancer cell motility [118,119]. However, the confinement level of the 

surrounding microenvironment (including pores in the ECM or tunnel-like tracks) seems to 

determine the acquisition of amoeboid versus mesenchymal migration mode. In the confined 

spaces with pores diameter lower than nuclear diameter, cells acquire mesenchymal-mode of 

migration requiring proteolytical activity and adhesion. In contrast, cells using the pre-existing 

tracks or pores with higher diameter than the nucleus diameter acquire rather amoeboid-type 

migration and the exact mode depends on cell contractile abilities and levels of adhesion [120]. 

1.5.2. Epithelial to mesenchymal transition 

Epithelial to mesenchymal transition (EMT) occurs naturally during embryo development and in 

response to injury, but also in pathological states, such as fibrosis. Moreover, EMT is an important 

process that drives invasion of many epithelial cancers, including CRC [13,112].  

During EMT epithelial cells acquire typical characteristics of mesenchymal cells, losing meanwhile 

many of their epithelial properties. The normal epithelium is composed of polarized layers of cells 

(defined as inside - basal and outside - apical), that provide tight cell-to-cell connections (by tight, 

gap and adherens junctions). At the basal surface, cells maintain their matrix-binding to the base 

membrane and its component, laminin. The actin cytoskeleton of epithelial cells is apico-basally 

polarized with a peripheral organization. In contrast, mesenchymal cells, are motile, of an 

elongated shape and with a front-to-back polarity, creating a scattered network instead of a layer. 

The mesenchymal cells are characterized by a dense actin filament network and the presence of 

vimentin as an intermediate filament. Moreover, the matrix-binding sites are densely distributed 

on their cell surface [16,112]. The loss of expression or function of the cell-to-cell adhesion 

glycoprotein epithelial cadherin (E-cad) was described as a key step during EMT. Several known 

transcription factors such as zinc finger E-box-binding homeobox (ZEB), Slug and Snail are known 

to repress expression of E-cad via an inhibitory activity on its gene promoter. Other factors, such 

as Twist and FoxC2 are proven to repress E-cad transcription indirectly. Besides their role in 

repressing E-cad expression, these EMT-inducing factors contribute to the acquisition of an overall 

mesenchymal phenotype, cell proliferation and survival. Another crucial event during EMT is the 

loss of epithelial polarity. In that respect, protein complexes maintaining polarized epithelium, 

namely Par, Crumbs and Scribble, are also negatively regulated by ZEB and Snail factors 

suppressing their protein expression. This loss of polarity is also indirectly affected by TGFβ which 

stimulates ZEB and Snail expression. Furthermore, ZEB and Snail induce the expression of MMPs 

and, as such contribute to the basement membrane degradation and subsequent cell invasion. 
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Besides TGFβ, also hypoxia and several signaling cascades, including FGF, EGF, HGF, Wnt/β-cat, 

and Notch, are known to induce EMT [112,121]. 

1.5.3. Metastasis 

Metastatic tumors can be formed via direct primary cancer local expansion, a spread to nearby 

tissues or organs, or a distant spread via blood or lymphatic systems. Lungs, liver, bones and brain 

are the most common metastatic destinations. CRC most often metastasizes to the peritoneum, 

liver and lungs [5]. Cells that disseminated from the primary tumor and spread to the blood 

system are called circulating tumor cells (CTCs) and can be detected in patients with advanced 

primary carcinomas. However, thanks to mechanical forces and presence of immune cells, such as 

NKs in blood, only a small percentage of CTCs is able to survive and actually produce metastases. 

However, CTCs can counteract those dangers by expressing tissue factor proteins that attract 

aggregating platelets and, as such contribute to cancer cell protection and survival. The metastatic 

environment offers new challenges to the CTCs. Before a micrometastasis is formed a CTC must 

lodge, survive, extravasate and colonize the new niche [122,123]. According to the modern 

context of the “seed and soil” hypothesis, proposed first in 1889 by Stephen Paget, CTCs (seeds) 

can colonize only certain tissues (soil) that allow cancer cells to adhere and proliferate, while 

other sites would be less accepting [124,125]. The successful colonization depends not only on 

the cancer cells’ abilities to adhere and proliferate, but also relies on the specific growth factors’ 

availability within the ECM and the recruitment of the stromal cells, such as myofibroblasts and 

endothelial cells, to support micrometastatic growth [122,123].  

Mounting evidence suggests that cancer cells can disseminate also during the early stages of 

tumorigenesis, thus before the initial diagnosis. Recent research in HER2-driven mouse breast 

cancer model showed that such early dissemination occurred soon after cancer initiation, before 

the switch to intensive cancer cell proliferation, and was regulated by cell density, activity of HER2 

and progesterone signaling. In this case, progesterone acting via its receptor stimulated an early 

cancer cell invasion via up-regulating Rankl and Wnt4 gene expression [14,15]. 

Metastasis often develops years after surgical removal of the primary tumor. Recent studies on 

latency competent cancer (LCC) cells showed that disseminated cancer cells that survived the 

initial therapy are able to survive in distant organs in a latent state. LCC cells remain in a stem cell-

like state, undetected by host’s NK cells, due to very low division rate controlled by Wnt pathway 

inhibitor, DKK1. Such quiescent cells can remain in the host’s organs for years [126].  
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1.6. Cellular cross-talk in the cancer microenvironment 

The exchange of signals between particular cellular components is essential for the tumor 

progression. The understanding of these interactions between the cancer cells and the stromal 

cells creates opportunities for new diagnostic and therapeutic approaches. Moreover, recruited 

CAFs affect other cellular components, such as endothelial cells, facilitating cancer angiogenesis 

and its subsequent progression [68]. 

1.6.1. Interactions between cancer cells and myofibroblasts  

Myofibroblasts recruited by cancer cells (CAFs) affect cancer progression through release of 

soluble factors, exosomes or via cell-to-cell signaling. The constant dialogue between cancer cells 

and CAFs promotes multiple hallmarks of cancer [8,127]. 

TGFβ and PDGF are key factors produced by cancer cells to recruit CAFs. TGFβ is a strong 

chemoattractant of fibroblasts, promotes transdifferentiation of fibroblasts and myofibroblasts, 

and is an important inducer of αSMA expression, the major component of the contractile 

apparatus [35,128]. PDGF is also a potent chemoattractant for mesenchymal cells and stimulates 

cell proliferation. Although PDGF is not a direct factor to drive fibroblasts transdifferentiation, it 

stimulates local macrophages to produce TGFβ [35,103].  

Transmembrane glycoprotein neural-cadherin (N-cad) is a molecule with the ability to establish 

cell-to-cell connections, but is also a path-finding molecule and an important driver of cancer 

invasion. Cells undergone EMT lack E-cad expression in favor of N-cad, which is also abundantly 

expressed on the surface of mesenchymal cells, including CAFs. Moreover, soluble N-cad (sN-cad, 

a cleaved extracellular domain of the molecule) can be released by cells and embedded within the 

ECM [35]. (s)N-cad is able to interact with the FGF receptor leading to prolonged ERK MAPK 

activation and subsequent cell migration [129,130]. TGFβ released by cancer cells is a strong 

stimulator of N-cad expression in CAF filopodia. The cytoplasmic domain of N-cad connects with 

the actin cytoskeleton via catenins and upon cadherin-established extracellular contacts it 

translates the signal intracellularly into actin-mediated changes in cell shape and cell adhesion, 

resulting in cell motility [35,131,132]. 

CAFs produce and release a multitude of molecules, which facilitate cancer progression, including 

ECM structural proteins (collagens, proteoglycans, tenascins), proteases (MMPs, ADAMs, uPA), 

growth factors (EGF, HGF, FGF, IGF-1, SDF-1, VEGF), and cytokines (IL6, RANTES/CCL5). These 

proteins play a direct or indirect but essential role in promoting cancer cell EMT, proliferation and 

invasion [76]. CAFs-released MMP-2 and MMP-9 are specialized in degrading collagen type IV and 

laminin, which are the main structural components of the base membrane [133]. Hepatocyte 

growth factor/scatter factor (HGF/SF) is a mitogenic and motogenic protein that targets both 
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endothelial and epithelial cells and is an important mediator of the EMT during organ 

development and regeneration. HGF is released by stromal cells in a latent form as a pro-HGF that 

can be activated by ECM proteases, such as uPA. HGF binds to its receptor HGFR, also known as c-

Met, a proto-oncogenic product of the RTK family. Upon binding, c-Met undergoes 

autophosphorylation leading to the activation of several molecular cascades, such as PI3K and 

Wnt, and subsequently resulting in cell proliferation, migration, survival, morphogenesis and 

induction of angiogenesis [134]. Secreted by CAFs, HGF and TNC together, act as important 

stimulators of invasion for colon cancer cells via RhoA and Rac signaling [77]. C-C chemokine 

ligand 5 (CCL5), also known as regulated on activation, normal T-cell expressed and secreted 

(RANTES), is a molecule secreted by cancer cells or by CAFs and plays an active role in attracting 

immunosuppressive cells, such as Tregs and macrophages. Its receptor CCR5, which is a G-protein 

coupled transmembrane protein, mediates CCL5 signaling, leading to the activation of integrins, 

actin cytoskeleton polarization, F-actin formation and the subsequent cell migration through 

PI3K/Akt and NFκB signaling [135,136]. Both CCL5 and CCR5 are overexpressed in CRC at primary 

sites, as well as at the metastatic sites [137]. 

1.6.2. Interactions between CAFs and endothelial cells  

Factors released by CAFs affect not only the cancer cells, but can also attract ECs and facilitate 

angiogenesis [138]. Previous studies have shown that in a xenograft mouse model breast cancer 

cells mixed with CAFs created larger tumors with more complex vasculature, as compared to 

tumors with primary human fibroblasts added instead of CAFs. Secreted by CAFs stromal cell-

derived factor (SDF)-1 was proven to be a potent chemoattractant for endothelial progenitor cells 

in order to create blood vessels de novo, in a process of vasculogenesis [139]. CAFs are known to 

produce potent pro-angiogenic factors including VEGF, bFGF, PDGFs, TGFβ, HGF, connective tissue 

growth factor and IL-8, which create favorable conditions for EC migration, proliferation and 

further vessel expansion. Furthermore, the MMPs released by CAFs and the subsequent ECM 

remodeling facilitate not only the migration of cancer cells, but also enhance expansion of ECs. In 

addition, cytokines and chemokines released by CAFs, modulate inflammatory responses within 

the local microenvironment, leading to the recruitment of macrophages, which produce many 

pro-angiogenic factors independently [140]. Colon cancer-derived CAFs secrete IL-6, and this 

release is stimulated even more by colon cancer cells. Moreover, IL-6 was shown to enhance VEGF 

expression and secretion by colon fibroblasts [141]. Although, ECs’ influence on their surrounding 

is not clearly defined besides their structural role, the ECs can affect the local environment via 

release of proteolytic enzymes and subsequent ECM remodeling as well as via transdifferentiation 

into myofibroblasts [140]. 
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1.7. Cancer stroma and the therapy resistance 

Resistance to tumor therapy can be divided into two major types: de novo and acquired 

resistance. Whereas an acquired drug resistant phenotype develops as a result of an 

accumulation of genetic changes over time, de novo resistance is mediated by the cancer 

environment itself and is a quick transient response induced by signaling cross-talk between 

cancer cells and stromal cells [142]. 

Acquired therapy resistance of cancer cells can occur via different mechanisms and can exist for 

each type of cytotoxic therapy or targeted pathway. Multidrug resistance (MDR) occurs when a 

resistance to one drug can lead to or coincide with a resistance to another drug, often due to 

overlapping mechanisms. Cancer cells can counteract traditional cytotoxic agents via decreased 

intake of the drug into the cell, by an increased efflux or may be conferred by more complex 

genetic and/or epigenetic changes that affect drug sensitivity [143]. Mechanisms involved in CRC 

resistance to traditional cytotoxic drugs include acquired resistance to 5-FU via an increased 

expression of the 5-FU target protein, thymidylate synthase [144]. Capecitabine resistance can 

occur due to a decrease of thymidine phosphorylase expression, resulting in an impaired 

formation of the drug’s active metabolite [145]. An increase in the MDR protein expression leads 

to an increased efflux of irinotecan and oxaliplatin [146,147].  

Various mutations, upregulations or activations of the downstream effectors within specific 

signaling pathways can cause resistance to targeted therapy [143]. Resistance to EGFR antagonists 

can occur via activating mutations of KRAS, PI3K and BRAF, but also via PTEN loss of function 

mutation or via amplification of genes encoding for human epidermal growth factor receptor 

(HER)2 or c-Met [148-152]. An increased activity of HIF-1, an increased expression of PlGF, IL-8, 

and VEGF-D are some of the mechanisms counteracting VEGF antagonists [153-156]. 

Various kinds of cancer therapy, including surgery, chemo- and radiotherapy affect not only 

cancer cells but inevitably also the surrounding stroma. Wounds created during surgery trigger a 

healing process, creating a favorable niche for cancer cells that were not removed during the 

surgical intervention [76,157]. Similarly, obtaining biopsies for histopathological examination 

creates wounds within the tumor mass. In the areas along the biopsy track in breast cancer, CAFs 

were shown to produce higher amounts of uPA compared to the intact parts of the tumor [158].  

Since decades, radiotherapy has played an important role in cancer treatment. Ionizing radiation 

(IR) has been shown to affect non-cancerous tissues by triggering fibrosis and transition of 

fibroblasts into myofibroblasts. Also the cancer stroma is susceptible to IR. In fact, changes made 

to the stromal components contribute to further therapy resistance and cancer recurrence, and 

the IR-triggered inflammation drives CAFs to produce growth factors, cytokines and proteases to a 
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higher extent. Moreover, IR causes destruction of blood vessels, especially the microvasculature. 

IR affects EC functionality, by triggering EC apoptosis and detachment from the basement 

membrane, which increases vessel permeability. These changes contribute to the inflammatory 

and fibrotic responses within the tumor. Moreover, the vascular damage leads to tumor hypoxia, 

which in turn plays a key role in radiotherapy resistance. Oxygen shortage within the tumor 

reduces the production of reactive oxygen species that under normoxia trigger DNA damage 

leading to apoptosis. Moreover, hypoxia-induced HIF-1 activity, was also shown to promote 

radioresistance [76,159,160]. 

Furthermore, a growing body of evidence suggests that radiotherapy and chemotherapy affect 

healthy tissues to form a pro-metastatic environment. Toxic tissue damage, as a side effect of 

therapy leads to the upregulation of multiple chemokines, growth factors and other molecules, 

such as SDF-1 and sphingosine-1 phosphate. In a normal situation these factors attract stem cells 

to the injured sites as part of the healing process, however, they may also be exploited by cancer 

cells which survived the treatment, and as such, may facilitate the formation of micrometastases 

[161]. 

Environment-mediated drug resistance (EMDR) is de novo drug resistance, associated with 

interactions between cancer cells and the stromal microenvironment, resulting in a protection of 

cancer cells from the effects of different cytotoxic therapies [142]. Many studies concerning the 

role of stromal cells in cancer chemoresistance have recently been reported. In a model of 

colorectal CSCs, chemoresistance was increased by CAFs. The chemotherapy-induced CAFs 

promoted in vivo tumor growth and self-renewal of colorectal CSCs via the production of multiple 

cytokines and chemokines (including IL-17) in CAFs in a response to chemotherapy. Further 

studies with exogenous IL-17 displayed its growth- and invasion-stimulating effects on CSCs [162]. 

In the studies performed on BRAF-mutant melanoma in a co-culture system, stromal cells 

protected cancer cells from the PLX4720 RAF inhibitor via HGF secretion. Stromal-derived HGF 

activated the c-Met receptor and subsequently led to activation of MAPK and PI3K/Akt signaling 

cascades [163]. Furthermore, recently published results showed that the soluble factors produced 

by colon cancer-derived CAFs in the presence of chemotherapy, induced a nuclear translocation 

of Akt, p38 MAPK, and survivin in cancer cells, resulting in a promotion of colorectal cancer cell 

survival and proliferation [164]. In co-cultures of a head and neck squamous cell carcinoma 

(HNSCC) cell line and CAFs, a growth-inhibitory effect of EGFR antagonist cetuximab was 

neutralized, and a similar effect was observed in an experiment using CAF-derived conditioned 

medium. The cross talk between HNSCC and CAFs led to an upregulation of MMP-1, and since this 

drug resistance was abolished in the presence of an MMP-1 inhibitor, an important role of MMP-1 

in the mechanism of chemoresistance was suggested [165]. CAF-mediated resistance to hormonal 



Part I: General introduction: Cancer 

37 

therapy was recently also reported, as in vivo and in vitro evidence has shown that CAFs derived 

from luminal breast cancer induced tamoxifen resistance in cancer cells via the stimulated release 

of IL-6 [166]. 

Owing to its undeniable role in cancer progression and protection, cancer stroma also became a 

target in the cancer therapy and diagnostics [167]. RNA signatures of tumors (the transcriptome) 

became an important tool in the cancer classification and in establishment of the prognosis. The 

RNA information derives not only from cancer cells but also from the surrounding stroma, and in 

fact, most genes indicating a poor prognosis are of the CAF origin [168]. Furthermore, CAFs and 

their cross-talk with the cancer cells, other stromal cells, and with the ECM within the tumor 

microenvironment, became the target in therapy [167]. Nintedanib (BIBF 1120) is a tyrosine 

kinase inhibitor designed to target the tumor microenvironment. Thanks to its broad spectrum, 

nintedanib blocks the activity of VEGFR, PDGFR and FGFR by competitive binding to the ATP 

pocket of the respective receptors [169]. Targeting TGFβ signaling strongly influences the 

interaction networks within the cancer microenvironment. Galunisertib (LY2157299), an inhibitor 

of the TGFβ receptor is currently undergoing phase II clinical trials for multiple cancers [170]. 

Furthermore, CAFs have been studied as a tool in cancer treatment. In the ecological trap model, 

CAFs or their secreted proteins could be used as bait for cancer cells. In a mouse model, CAFs 

encapsulated in the alginate-gelatin microparticles promoted adhesion of disseminated cancer 

cells to the microparticles’ surface [171]. Current anti-cancer research focuses on developing 

similar methods via sabotaging stromal myofibroblasts cell function. 
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2. Glucocorticoid receptor: nature and the mechanism of action 

The glucocorticoid receptor (GR) is a steroid hormone (SH) receptor. Together with its closest 

relatives mineralocorticoid (MR), progesterone (PR), androgen (AR), and estrogen (ER) receptors, 

GR belongs to the nuclear receptor (NR) superfamily of proteins (Figure 9). These receptors, upon 

binding their ligands in the cytoplasm, are translocated to the nucleus, where they bind DNA and 

act as transcription factors to control many major functions of the organism [172]. GR is 

expressed in almost every human tissue, and its actions control processes involved in 

development, glucose metabolism and immune responses [173,174]. 

 

Figure 9. Evolution of the steroid hormone receptors. The vertebrate SH receptors evolved from a common 
ancestor. Works conducted by the group of prof. J. Thornton resulted in the resurrection of ancient SH 
receptor proteins and revealed the key events driving their evolution. A common ancestor of the GR and 
MR could bind to both the cortisol and aldosterone. Over the course of approximately 20 million years GR 
became solely sensitive to cortisol in the bony vertebrates. Adapted from [175] and [176]. 
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2.1. Organization of the glucocorticoid receptor 

The GR protein is composed of three major domains: the N-terminal transactivation domain 

(NTD), the central DNA-binding domain (DBD) and the C-terminal ligand-binding domain (LBD) 

(Figure 10C). The DBD and LBD regions are linked by a flexible hinge region [177]. The NTD region 

holds a strong transcription activation function (AF1) by interacting with the basal transcription 

machinery (BTM) and co-factors. Moreover, the NTD houses multiple sites for the post-

translational modifications (PTMs). The DBD has two zinc finger motifs, able to bind to the target 

DNA regions containing the glucocorticoid-responsive elements (GREs) and is the most conserved 

domain across the NR family. The LBD contains a hydrophobic pocket which binds the ligands, 

glucocorticoids (GCs), and it also has an AF2 which binds certain ligand-dependent co-factors. 

Furthermore, GR contains two nuclear localization motifs: an NL1, which is at the DBD/hinge 

region junction and an NL2, located within the LBD [178]. 

2.1.1. Alternative splicing of the GR gene 

The human GR gene (NR3C1) is located at chromosome 5 and comprises 9 exons (Figure 10A). The 

NTD is encoded by the exon 2, DBD by exons 3 and 4, and the hinge region and the LBD are 

encoded by the following exons. The alternative splicing occurring in the exon 9, near the end of 

the primary transcript, results in GRα and GRβ isoforms [178,179]. Moreover, the alternative 

splicing in the intron between exons 3 and 4 yields another GR isoform, GRγ, containing a single 

arginine insertion within the DBD. GRα is the main isoform that binds GCs and functions as a 

transcription factor, whereas GRβ, although localized in the nucleus, is not capable of activating 

GC-responsive reporter genes, since it does not bind GCs [180]. Nevertheless, GRβ can bind to 

GREs, therefore when co-expressed with GRα it acts as an inhibitor of GRα actions. Moreover, 

GRβ’s heterodimerization with GRα and competition for co-factors potentially contributes to an 

inhibitory function associated with GC resistance [178]. GRγ binds GCs and displays similar 

properties as GRα, but its functionality is strongly impaired and its transcriptional profile differs 

from GRα. GRγ’s expression, similarly to GRβ, is associated with a GC resistance [181,182]. 

Furthermore, two other splice variants of GR have been reported: GR-A and GR-P. GR-A has a 

truncated LBD and its function is currently unknown. GR-P, however, has been described to 

interfere with GRα transcriptional activity, depending on the cellular context [178]. 

2.1.2. Translational isoforms of GR 

Due to a different initiation of translation of its mRNA, GRα exists in multiple translational 

isoforms (Figure 10B). From the eight AUG start codons present in exon 2 of the GR gene, eight 

different variants (GRα-A, GRα-B, GRα-C1, GRα-C2, GRα-C3, GRα-D1, GRα-D2, GRα-D3) can be 

formed with progressively shorter NTDs. GRα-A, translated from the first AUG codon is the 
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protein of full-length 777 amino acids, and together with other isoforms it is able to bind GCs and 

target the GREs. However, other differences between these various isoforms are reported. GRα-A, 

-B, and -C reside in the cytoplasm, whereas GRα-D has a nuclear localization. Interestingly, less 

than 10% of genes are targeted by all GRα isoforms, indicating a specificity of action of each 

receptor subtype [183,184]. In fact, GRα-C showed the most pronounced activity in the 

transcription of reporter and endogenous genes, while GRα-D was the least active. GRα-D has the 

most truncated NTD, presumably explaining its considerably impaired transcriptional activity. 

Importantly, expression of various GRα isoforms differs depending on the tissue and cell type. 

GRα-A and -B are most abundantly present, however, immature dendritic cells are rich in GRα-D 

and trabecular meshwork cells in the human eye are characterized by expression of GRα-C and 

GRα-D [173,185,186]. 

2.1.3. Post-translational modifications of GR 

Post-translational modifications (PTMs) are covalent modifications of proteins, resulting from an 

enzymatic activity. PTMs enrich proteins by adding new functional groups such as phosphate, 

acetyl or methyl groups. GR’s PTMs strongly contribute to the receptor’s function and activity 

(Figure 10D) [178]. The most frequent PTM of proteins is phosphorylation [187]. In GR, 

phosphorylation can occur at several serine residues located in the NTD (Ser-113, -134, -141, -203, 

-211, -226, -404). MAPK, cyclin dependent kinases (CDKs) and glycogen synthase kinase (GSK)-3β 

belong to the major group of kinases that phosphorylate GR and contribute to changes in the GR’s 

transactivation activity [178,188]. Phosphorylation at Ser-211 enhances GR’s capability to activate 

transcription, whereas at Ser-226 impairs this function [189]. Moreover, Ser-404 phosphorylation 

is crucial in diminishing GR’s ability to activate or suppress certain target genes [190]. 

Furthermore, phosphorylation at Ser-211 residue, located in the AF1 domain, is important to 

facilitate the co-factor binding [191].  

Other PTMs of GR include ubiquitination, sumoylation, and acetylation. Ubiquitination of the GR 

occurs at a conserved lysine (Lys-419) residue located at the end of the NTD region, leading to 

protein degradation by the proteasome complex. Mutation at the Lys-419 impairs ligand-

dependent GR downregulation, resulting in a receptor accumulation and an enhanced target gene 

transactivation [192]. SUMOs (small ubiquitine-related modifiers) are attached to other target 

lysine residues (Lys-277, -293, -703). Sumoylation enhances GR’s binding to a ligand, but also 

plays a role in the recruitment of certain co-factors, and as such, modulates GR’s transcriptional 

activity [193]. GR acetylation at residues Lys-494 and -495, located in the hinge region is 

associated with an impaired GR interaction with NFκB, and a subsequent inhibition of GR’s anti-

inflammatory properties [194]. 
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Figure 10. Structure of the human glucocorticoid receptor and its variants. Description in the text (section 
2.1). Figure adapted from [195].  
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2.1.4. Membrane-bound glucocorticoid receptor 

It is believed that most of the GR-mediated, mainly the anti-inflammatory and 

immunosuppressive, actions result from the activation of cytosolic GR (cGR). There is, however, a 

solid body of evidence that a membrane-bound GR (mGR), plays a significant role in a non-

genomic signaling, which constitutes a very rapid response to a stimulus [196]. For the first time 

identified in 1987 and further investigated in the human lymphoma and leukemia cells, mGR is 

most probably encoded by the same gene as the cGR [197,198]. The expression of mGR was 

shown to correlate with a GC-induced apoptosis triggered in the lymphoid cells [199]. Moreover, 

GR presence in rat postsynaptic membranes in the lateral amygdala suggested mGR’s influence on 

the synaptic transmission plasticity, which is related with fear and emotional memory [200]. 

Recent studies showed mGR expression in human monocytes and B lymphocytes, and a treatment 

with a pro-inflammatory molecule lipopolysaccharide (LPS) correlated with the number of mGR-

positive monocytes. Moreover, mGR concentration was increased in the monocytes of patients 

with autoimmune afflictions, such as rheumatoid arthritis, lupus erythematosus and ankylosing 

spondylitis [201-203]. Ligand-activated mGR leads to an intracellular signal transduction via MAP 

kinases, however, the detailed mechanism of mGR actions is to date not fully understood [196]. 
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2.2. Glucocorticoids 

The name glucocorticoid (GC) combines the terms “glucose”, “cortex” and “steroid” owing to GC’s 

role in the glucose metabolism, origin of GC synthesis and its chemical structure. GCs belong to 

steroid hormones, and together with the mineralocorticoids form a group of corticosteroids – 

hormones produced by vertebrates in the adrenal cortex. Cortisol is an endogenous GC that binds 

GR in humans [204].  

2.2.1. Endogenous glucocorticoids and the hypothalamic-pituitary-adrenal axis  

Natural GCs are produced from cholesterol in the zona fasciculata of the adrenal glands. This 

process is strictly controlled by the hypothalamic-pituitary-adrenal (HPA) axis, regulated by the 

circadian and ultradian rhythm and also by environmental and physiological stressors (Figure 11). 

The hypothalamus releases the 

corticotropin-releasing hormone (CRH), 

which in turn stimulates secretion of 

the adrenocorticotropic hormone 

(ACTH) by the anterior pituitary gland. 

The ACTH causes induction of cortisol 

synthesis in the cortex of the adrenal 

gland and its subsequent release into 

the bloodstream, where more than 90% 

of the cortisol is bound by the 

corticosteroid-bound globulins (CBGs). 

Homeostasis in the GC release is 

regulated by the negative-feedback 

loop inhibiting the synthesis of CRH and 

ACTH. The unbound cortisol is a 

biologically active GC, which within the 

tissues can be converted to an inactive 

cortisone by the enzyme 11β-

hydroxysteroid dehydrogenase type 2 

(11β-HSD2), in a reaction reversed by 

11β-HSD1 [205]. 

Figure 11. Schematic of the HPA-regulated 
levels of endogenous glucocorticoids. 
Description in section 2.2.1. Figure adapted 
from: [195]. 
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The cortisol release in humans fluctuates during the day, reaching its peak levels in the morning 

and lowest levels at night. Cortisol is essential for development and whole-body homeostasis, it 

regulates the metabolism of carbohydrates, lipids and proteins in all major systems, including 

central nervous, cardiovascular, musculoskeletal, and immune system. Moreover, cortisol release 

is elevated following environmental or psychological stress, or during fasting, when low glucose 

levels are detected in the blood. Cortisol is a counterbalancing hormone of insulin, inducing 

gluconeogenesis and regulating ion levels, hereby contributing to the cellular pH balance. 

Cortisol’s anti-inflammatory and immunosuppressive properties, manifested by inhibiting T-cell 

proliferation and by blocking the expression of multiple pro-inflammatory molecules, are highly 

recognized and will be discussed further [195,205]. 

2.2.2. Synthetic glucocorticoids 

In 1949 Philip Hench with Edward Kendall and colleagues published their observation, in which 

the administration of adrenal cortex-derived steroid extract to patients with rheumatoid arthritis 

successfully stopped the progression of the disease [206]. This led to a subsequent discovery of 

cortisol and in 1950 the researchers, together with the chemist Tadeusz Reichstein, obtained the 

Nobel Prize for Physiology and Medicine. Following these discoveries, the era of synthetic 

glucocorticoids began, with a development of dexamethasone, prednisone/prednisolone, 

budesonide and other GCs exhibiting a higher potency than cortisol (Table 2) [204]. 

Dexamethasone (Dex), unlike cortisol, does not undergo conversion by 11β-HSD2, and moreover, 

the synthetic GCs are not bound by CBGs in the bloodstream, improving their bioavailability 

[195,207]. 

Table 2. Corticosteroid comparison chart. Adapted from: [208] .  

 

Corticosteroid Equivalent glucocorticoid 

dose [mg] 

Potency relative to hydrocortisone 

Anti-

inflammatory 

Mineralocorticoid 

Hydrocortisone (cortisol) 

Cortisone acetate 

Prednisone/Prednisolone 

Triamcinolone 

Methylprednisolone 

Dexamethasone 

Betamethasone 

Fludrocortisone 

Aldosterone 

20 

25 

5 

4 

4 

0.75 

0.6 

- 

- 

1 

0.8 

4 

5 

5 

30 

30 

15 

0 

1 

0.8 

0.8 

<0.5 

0.5 

<0.5 

<0.5 

150 

400+ 
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2.2.3. GC-associated side effects 

GCs, although potent anti-inflammatory agents considered the most efficient therapy for many 

inflammatory diseases, including asthma, are overshadowed by concomitant detrimental side 

effects. Long-term and/or high-dose administration leads to a spectrum of systemic and local 

adverse effects. Due to a negative-feedback loop, GCs inhibit the release of ACTH and cortisol 

secretion, therefore long-term treatment with GCs should be slowly reduced in order to prevent 

the “steroid withdrawal syndrome”, characterized by lassitude, muscle pain and fever. Other 

systemic side effects include muscle atrophy, osteoporosis, diabetes, hypertension, and increased 

risk of infection. The local atopic GC administration may result in skin thinning and a delayed 

wound healing. Local side effects for inhaled GCs include weakness of the voice and hoarseness. 

Moreover, prolonged GCs treatment at the ocular level may increase the intraocular pressure and 

may also cause induction of glaucoma and formation of cataract [204,209]. 

Table 3. Factors involved in the impaired GC response. Source [174,195]. 

Factor Examples 

GC bioavailability 

 

Concentration of corticosteroid-binding globulins 

Activity of 11β-HSD1 and 11β-HSD2 

GR 

 

 

 

Mutations in GR gene 

GR gene methylation 

GR protein level 

GR affinity of the ligand 

GR splice variants (GRβ) 

GR maturation and ligand binding Chaperones and co-chaperones levels 

Post-transcriptional modifications of 

GR 

 

Phosphorylation 

Ubiquitination 

Sumoylation 

Transcriptional activity of GR 

 

Interactions with other transcription factors 

DNA methylation 

Availability of co-activators and co-repressors 

Homologous downregulation of the GR gene 

2.2.4. Glucocorticoid resistance 

Limitations of GC therapy involve not only the side effects but also the occurrence of GC 

resistance and an overall heterogeneity in the GC responsiveness. GC resistance has become a 

major obstacle in the treatment of patients with inflammatory disorders, such as asthma and 

chronic obstructive pulmonary disease (COPD) [195]. At the molecular level, multiple genetic and 

environmental factors can trigger an impaired GR activity – the key cause of GC resistance. These 

factors include an inhibition of GR expression, an impaired GR affinity to the ligand and a reduced 

ability of GR to bind DNA [210]. Homologous down-regulation of the GR, caused by GC-induced 
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GR binding to its own gene promoter and inhibition of transcription, was suggested to be a critical 

mechanism of GC resistance [211]. The primary generalized GC resistance (Chrousos syndrome), a 

rare familial disorder, was recently linked to a point mutation in the GR gene [212]. Moreover, 

other factors that strongly contribute to GR’s responsiveness to GCs include: the GR gene 

polymorphisms, the existence of GR alternative splicing isoforms, the impaired GR nuclear 

translocation, the increased levels of GRβ competing with GRα for co-factors, the existence of 

alternative GRα isoforms due to changes in translation initiation, and the occurrence of various 

PTMs (Table 3) [174]. Furthermore, the hypermethylation of the GR gene promoter contributes to 

impaired GR expression which leads to a decreased responsiveness to GCs. A significant 

correlation was found between GR gene methylation and exposure to stress. Individuals who 

experienced early life stress presented with hypermethylation of the GR gene promoter and 

subsequent GC resistance, causing impaired HPA axis sensitivity to negative feedback to the 

hypothalamus. This impaired feedback sensitivity resulted in a longer recovery of cortisol stress 

response, which in turn is associated with development of psychopathologies [213,214]. 

Additionally, the availability of endogenous GCs is regulated by the CBGs present in the 

bloodstream and by the activity of the 11β-HSD1/2 enzyme system, which is also regulated 

independently [174,215]. 
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2.3. Mechanism of glucocorticoid receptor modulation 

A functional GR protein resides in the cytoplasm in a multiprotein complex. Upon GC binding, GR 

is translocated into the nucleus where it acts as a transcription factor to positively or negatively 

regulate expression of target genes. Alternatively, GC-bound GR may act via non-genomic 

mechanisms which do not require changes in gene expression [178]. 

2.3.1. Nuclear translocation 

GR, similarly to MR and AR, is continuously transported from the cytoplasm to the nucleus and 

back, both in presence and absence of the ligand [216-219]. Residing in the cytoplasm, newly 

synthesized ligand-free GR acquires a specific protein conformation, guided by the multimeric 

chaperone protein complex (Figure 12).  

 

Figure 12. Schematic representation of GR maturation. 1) A newly synthesized GR binds to hsp70 in an ATP-
dependent manner. 2) Binding with co-chaperones facilitates interaction with the hsp90. 3) A detachment 
of several proteins enables exposure of the GR’s LBD and attachment of immunophilins (IMM) FKBP51 and 
CyP-40 and immunophilin-like protein, phosphatase (PP)5. 4) Maturation of GR led by hsp90 in an ATP-
dependent manner results in the protein’s high ligand affinity conformation. 5) Binding to a GC 
accompanies an immunophilin switch. Figure adapted from [220]. 

Chaperones drive GR folding from low to high ligand affinity in a process catalyzed by the ATPases 

heat shock protein (hsp)70 and hsp90 [220]. Hsp70 is suggested to be the first chaperone to bind 

to newly synthesized GR protein and its binding to GR’s LBD is facilitated by a co-chaperone 

hsp40. A complex consisting of GR-hsp70 enables interaction with hsp90 dimers, which together 

with other co-chaperones (BAG-1, Hip and Hop) form a GR foldosome. During the process of GR 

maturation, in the presence of ATP, Hop, hsp70 and hsp40 are released from the foldosome and a 

co-chaperone p23 stabilizes hsp90 binding with the GR. Following the release of Hop, 

immunophilins, such as cyclophilin (CyP)-40 and FKBP51 are able to bind to hsp90 and following 

the detachment of hsp70, GR’s LBD is open to high affinity hormone binding [220-225]. Owing to 

their hydrophobic nature and small size, GCs can freely cross the cell membrane. After GC 
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binding, GR can undergo phosphorylation by several kinases, such as CDKs, GSK3β or MAPKs, and 

this modification can positively or negatively influence GR activity, i.e. depending on the 

phosphorylation site, GR nuclear translocation might be enhanced or inhibited. Ligand-bound GR 

maintains an interaction with the chaperone complex, which facilitates the receptor’s 

translocation along the microtubules toward the nuclear pore complex (NPC). Immunophilins 

were proven to play an important role in GR translocation by means of their interaction with a 

motor protein dynein, which moves along the microtubules in an ATP-dependent manner 

[220,226,227]. Importins 7, 8 and α/β recognize and bind the nuclear localization signals (NLS1 

and/or NLS2) within the GR protein and are able to translocate GR through the NPC. In the 

nucleus, importins release the cargo protein and are shuttled back to the cytoplasm [228,229]. GR 

nuclear export is facilitated by dissociation of GR from the DNA and is regulated by the nuclear 

export receptor, calreticulin, which binds to GR’s nuclear export signal (NES) and mediates the 

translocation of the cargo protein through a NPC, back into the cytoplasm. Most probably GR can 

be alternatively exported via the exportin-1 in a similar manner [220,230].  

2.3.2. Genomic actions: transactivation and transrepression 

The classical outcomes of the GC-GR signaling pathway are genomic actions, resulting in GR-

mediated activation or inhibition of transcription of target genes – mechanisms known as 

transactivation and transrepression, respectively.  

GC-bound GR translocated to the nucleus can dimerize and, as a homodimer, it binds to the DNA 

at the glucocorticoid responsive elements (GREs), which are imperfect palindrome sequences 

(5’ GGTACAnnnTGTTCT 3’), found in the promoters or within intron regions of GR’s target genes 

[188,231]. GR binding to the GREs attracts chromatin remodeling complexes and co-regulators 

which facilitate actions of the RNA polymerase II complex [232,233] (Figure 13A). Glucocorticoid-

induced leucine zipper (GILZ), serum glucocorticoid regulated kinase (SGK)-1 and mitogen-

activated protein kinase phosphatase (MKP)-1, also known as dual-specificity phosphatase 

(DUSP)-1, belong to factors upregulated by GR via the above GRE-dependent mechanism [234-

236]. GR’s transcriptional activity can be altered by various transcriptional co-factors (co-

activators, co-repressors, co-modulators), of which the functions are associated with remodeling 

of chromatin or recruitment of the basal transcriptional machinery (BTM). Among GR’s co-

repressors, interacting with the AF2 region of the antagonist-bound receptor, are nuclear 

receptor co-repressor (NCoR) and silencing mediator of retinoid and thyroid hormone receptor 

(SMRT), which repress the receptor’s transcriptional activity via the recruitment of histone 

deacetylases (HDAC) into the transcriptional complex [237-239]. HDACs are enzymes that remove 

the acetyl groups from conserved lysine residues on histones, contributing to the chromatin’s 

condensation and subsequent gene silencing. Histone acetyltransferases (HATs) reverse actions of 
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HDACs through acetylation of the histone’s lysine residues, leading to an increase in gene 

transcription [240]. Co-activator binding to the AF2 domain in GR is ligand-dependent. Following 

agonist binding, the GR conformation changes, which is necessary for the interaction with co-

activators, such as members of the p160 family (steroid receptor co-activators, SRCs), cAMP 

response element-binding (CREB)-binding protein (CBP) or mediator complex subunit (MED)-1 

[239,241]. SRCs enhance steroid receptor-mediated transcription by a recruitment of other co-

factors, such as CBP holding HAT activity [242]. Alternatively, co-activator binding to the AF1 

domain, such as by the SRCs and MED-14, occurs independently of the ligand’s presence [243]. 

 

Figure 13. Schematic representation of GR’s genomic actions. A) Direct GR binding to the GREs or nGREs 
results in the target gene’s respective activation or repression. B) GR tethering to other transcription factors 
can indirectly stimulate or inhibit transcription. C) During the composite regulation, GR is interacting both 
with another transcription factor and with the neighboring GREs. Detailed description in the section 2.3.2. 
Figure adapted from: [233]. 

Direct binding of activated GR to negative (n)GREs leads to a repression of expression of several 

genes including thymic stromal lymphopoetin, insulin, insulin receptor, and the GR gene itself. 

nGREs are also palindromic sequences (5’ CTCCn(0-2)GGAGA 3’), yet GR binds to them as two 

monomers instead of as a homodimer and involves assembly of GR-SMRT/NCoR complex (Figure 

13A). Nevertheless, more research is needed to explore the functionality of this type of elements 

[244]. GR’s indirect regulation of transcription may occur via tethering to another transcription 

factor occupying the DNA, together or without GR’s binding to the DNA, termed as “tethering” 

and “composite regulation”, respectively (Figure 13B,C). Since transrepression mechanisms inhibit 

the transcriptional activity of (among others) two major pro-inflammatory modulators, the 
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nuclear factor (NF)κB and the activator protein (AP)-1, this kind of regulation forms the main anti-

inflammatory feature of the activated GR [245]. Alternatively, the physical interaction between 

GR and transcription factors from the signal transducer and activator of transcription (STAT) 

family can stimulate the transcriptional activity of certain target genes, including β-casein, IGF-1 

and toll-like receptor 2 (Figure 13B,C) [246,247]. 

2.3.3. Role of GR modulation in inflammation 

Inflammation is a physiological response to a harmful stimulus, such as infection, mechanical 

irritation or tissue injury, and it is crucial to protect the affected tissue from any further damage. 

Inadequate inflammation can result in tissue destruction or systemic spreading of the pathogen, 

subsequently creating a danger to the whole organism. An excessive or persistent inflammation 

can also lead to the tissue damage and can give rise of inflammatory afflictions, such as allergies, 

autoimmune diseases and asthma. Regaining control over inflammatory responses is a key to 

maintain body homeostasis, and GR modulation plays an important role in terminating 

inflammation when it is no longer needed [188,233,248]. Glucocorticoids form a standard 

treatment in therapy of multiple inflammatory disorders including rheumatoid arthritis, 

inflammatory bowel disease, nephrotic syndrome and systemic lupus erythematosus. Moreover, 

locally administered GCs help against the ophthalmological disorders, allergic conjunctivitis, 

dermatitis and asthma [236]. 

At a molecular level, inflammation is induced by pro-inflammatory signals, such as bacterial LPS, 

viral double-stranded RNA or the endogenous TNFα and IL-1β. Following binding of these 

mediators to their respective receptors, the transcription factors (mainly AP-1 and NFκB) are 

activated resulting in transcription of target genes encoding for pro-inflammatory chemokines, 

cytokines, enzymes and adhesion molecules [188]. 

The best characterized pathway of NFκB activation involves binding of TNFα to the TNF receptor 

(TNFR)-1, which homodimerizes and links the TNFR-associated death domain (TRADD) with the 

cytoplasmic TNFR-1 death domain. Next, several other proteins are recruited to this complex, 

including the TGFβ-activated kinase (TAK)-1, NFκB-inducing kinase (NIK) and MAPK kinase kinase 

(MEKK3), which phosphorylate the inhibitor (I)κBα kinase (IKK) complex, causing its dissociation. 

Then, IKK phosphorylates IκBα, leading to the inhibitor’s further degradation, subsequent release 

and nuclear translocation of NFκB that binds to the respective gene promoters to stimulate the 

expression of pro-inflammatory mediators [188]. 

The main immunosuppressive and anti-inflammatory properties of GCs stem from the GR-

transrepressive mechanisms, in which GR in its monomeric form can interact with DNA-bound 

transcription factor. GR can inhibit actions of multiple transcription factors, including the most 

studied NFκB and AP-1, but also CREB, nuclear factor of activated T cells (NFAT), interferon 
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regulatory factor 3 (IRF3), STAT and GATA-3. However, GR-transactivation has also been 

acknowledged for its role in the suppression of inflammation; GR-driven stimulation of 

transcription of mediators such as IκBα, MKP-1, lipocortin and GILZ, indirectly affects the 

inflammatory responses at various stages (Table 4) [248]. 

Table 4. Examples of inflammatory mediators affected by GR transrepression and transactivation. The anti-
inflammatory actions of GR comprise of GR-transrepression, resulting in repression of transcription of 
multiple pro-inflammatory genes, and of GR-transactivation, resulting in the stimulation of expression of 
factors with immunosuppressive properties. Source: [248] and [246]. 

Factors downregulated via GR-transrepression Factors upregulated via GR-transactivation 

cyclooxygenase (COX)-2 

E-selectin 

IL-1β 

IL-4 

IL-5 

IL-6 

IL-8 

IL-12 

inducible NO synthase (iNOS) 

intercellular adhesion molecule (ICAM) 

interferon-γ  

monocyte chemoattractant protein 1 (MCP-1) 

RANTES (CCL5) 

TNFα 

vascular cell adhesion molecule (VCAM)-1 

annexin A1 

dexras 

docking protein (DOK)-1 

GC-induced leucine zipper (GILZ) 

IL-10 

inhibitor (I)κBα 

lipocortin-1 

MKP-1 (DUSP-1) 

p11/calpactin-binding protein 

secretory leukoprotease inhibitor (SLPI)  

tristetraprolin (TTP) 

type II IL-1 receptor 

2.3.4. Non-genomic actions of glucocorticoids 

It has been well documented that, apart from classical genomic actions, GCs can induce very rapid 

(within minutes or seconds) actions without involvement of de novo gene transcription. These 

actions can occur via cytosolic or membrane-associated GR, but interestingly also GC-mediated 

effects without binding to the receptor are reported [249,250]. The best described non-genomic 

effect of GCs, driven by the cytosolic GR, involves activation of the endothelial nitric oxide 

synthase (eNOS) via GR-mediated stimulation of the PI3K/Akt signaling cascade. Phosphorylation 

and subsequent activation of eNOS results in the production of nitric oxide (NO), which was 

shown to protect against ischemia-reperfusion injury of the heart in a mouse model [251]. 

Moreover, due to their lipophilic structure, GCs alone can interact with biological membranes and 

affect their physicochemical properties. It is suggested that GCs can intercalate plasma and 

mitochondrial membranes and interact with membrane-associated proteins influencing 

membrane permeability and lipid peroxidation [252]. In immune cells, these GC-mediated effects 

result in a rapid reduction of sodium and calcium transport across the plasma membrane, and as 
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such lead to an impaired lymphocyte energy metabolism and subsequent contribution to an 

immunosuppressive effect. Moreover, GCs’ interactions with the mitochondrial membranes 

enhance proton leakage causing a diminished ATP production. This can lead to an impaired 

cytokine production, cell migration and limitation of other important functions of the immune 

cells, which also limits the immune response [249,253,254].  



Part I: General introduction: Glucocorticoid receptor 

53 

2.4. Selective GR agonists and modulators 

The occurrence of adverse effects associated with a long-term GC use motivated researchers to 

look for alternative solutions. The ideal compound would hold potent anti-inflammatory 

properties of GCs and would exhibit a strongly reduced side effect profile. The search for such 

dissociated compounds is based on the simplified hypothesis stating that most of the anti-

inflammatory properties of GCs stem from GR transrepression and that undesirable side effects 

are associated with the GR transactivation mechanism. In recent years, it has become clear that 

the reality is far more complex, leading to different strategies [255].  

2.4.1. Dissociated glucocorticoids 

Synthesis of dissociated GCs or the selective GR agonists (SEGRA) was the first attempt to shift the 

balance of GC actions toward beneficial anti-inflammatory effects and away from adverse effects, 

by favoring transrepression over transactivation. Steroidal RU-compounds, RU-24782, RU-24858 

(Figure 14) and RU-40066, displayed a significantly reduced transactivation profile (9-35% activity 

of Dex) with a maintained transrepression activity (58-83% of Dex). RU-24782 and RU-24858 were 

reported to repress in vitro AP-1-dependent reporter genes, IL-1β, MMP-9, and tPA, and displayed 

the anti-inflammatory effects in the in vivo croton oil-induced ear edema mouse model. 

Unfortunately, as identified later, treatment with the most promising RU-24858 in rats still 

triggered some of the typical GC-associated adverse effects, including a reduction of bone density 

[256-258].  

2.4.2. Selective GR modulators 

Further research led to the synthesis of compounds with a non-steroidal structure, which may or 

may not bind the classic GR LBD, classified as selective GR modulators (SEGRM) (Figure 14) [256]. 

A compound with a structure based on a benzopyrano[3,4-f]quinoline precursor, AL-438, was able 

to preferably bind to GR over other steroid hormone receptors and displayed anti-inflammatory 

properties both in vitro and in vivo, by inhibiting the expression of TNFα- and IL-1β-induced IL-6 

and E-selectin via the transrepression mechanisms. Moreover, AL-438 not only had a decreased 

side effect profile in terms of inducing diabetes, as shown in a rat model [259], but also affected 

chondrocytes in vitro to a lesser extent than the classic GCs prednisolone and Dex, suggesting a 

reduced ability to trigger osteoporosis [260]. AL-438’s binding to the receptor caused an 

alternative protein conformation, resulting in differences in the co-factor-receptor binding profile, 

deemed responsible for AL-438’s beneficial outcome. 

Another non-steroidal GR modulator LGD-5552 ((5Z)-5-[(2-Fluoro-3-methylphenyl)methylene]-

2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolin-9-ol), combines weak 

GR-transactivation abilities with a relatively stronger GR-driven transrepression. LGD-5552 can 
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repress TNFα- and IL-1β-induced pro-inflammatory IL-6, E-selectin and MCP-1 expression, while 

stimulating anti-inflammatory IL-10 expression. Moreover, LGD-5552 was shown to act as an MR 

antagonist, suggesting potential decreasing effects on the blood pressure, a well-known side 

effect associated with classic GC use [261]. 

 

Figure 14. Examples of GR ligands and modulators. Dexamethasone is a classic synthetic glucocorticoid. RU-
24858 belongs to dissociated GCs. AL-438, LGD-5552, ZK-216348, Mapracorat and Compound A belong to 
non-steroidal GR modulators. Description in the section 2.4.1-2. Figure adapted from: [262]. 
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Developed by Bayer Schering Pharma, a non-steroidal compound with a dissociated profile, ZK-

216348, showed a promising reduced side effect profile compared to the classic GC Dex. ZK-

216348 successfully reduced inflammation in the croton oil-induced ear rat model, did not elevate 

the blood glucose and displayed diminished skin atrophy when applied topically. Moreover, ZK-

216348 displayed no harmful effects on osteoblasts using in vitro cultures [263]. 

Mapracorat (also known as ZK-245186 and BOL-303242-X) reduces inflammation by inhibiting the 

transcription of several pro-inflammatory cytokines. Recently Mapracorat has completed several 

phase II clinical trials including the treatment of atopic dermatitis (clinicaltrails.gov identifier: 

NCT00944632), allergic conjunctivitis (clinicaltrails.gov identifier: NCT01289431) and 

inflammation following the eye surgery (clinicaltrails.gov identifier: NCT01230125). Mapracorat 

was shown to reduce inflammation in experimental ocular models and, unlike classic GCs, 

displayed a less severe side effect profile, including only a minor increase of intraocular pressure. 

Mapracorat proved to be efficient at preventing early and late allergic responses at the ocular 

level, which was manifested by a reduced eosinophil recruitment and a reduced production of 

pro-inflammatory chemokines and cytokines [264,265]. 

Compound A (CpdA), 2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium chloride, is a plant-

derived aziridine precursor, which was discovered in a Namibian shrub Salsola tuberculatiformis 

Botschantzev, after observation of prolonged gestation period in Karakul ewes following S. 

tuberculatiformis-based diet in periods of draught [266]. Experiments showed that CpdA, a still 

labile yet more stabilized structure, obtained from the extreme labile active plant fraction, could 

bind corticosteroid-binding globulins in rat plasma. The follow-up studies revealed that CpdA 

could activate GR in a selective manner [267,268] and similar to classic GCs, CpdA suppressed 

NFκB-driven gene expression. Yet, CpdA did not trigger GR transactivation mechanisms. Binding of 

CpdA to GR induces a different protein conformation compared to binding with GCs. This 

alternative conformation presumably underpins the inability of GR to form homodimers, and 

therefore, CpdA-activated GR cannot bind classic GREs [268,269]. In rheumatoid arthritis primary 

synovial fibroblasts, CpdA was able to inhibit translocation of NFκB’s p65 subunit into the nucleus, 

contributing as such to a suppression of NFκB’s actions in a dual GR-dependent and GR-

independent manner [270]. GR-independent anti-inflammatory properties of CpdA were further 

investigated in bone marrow-derived dendritic cells, where expression of the pro-inflammatory 

granulocyte-macrophage colony-stimulating factor (GM-CSF) was suppressed by CpdA in GR-

knocked down cells and in case of pharmacological blockage of GR [271]. In osteoarthritis synovial 

fibroblasts, CpdA in contrast to prednisolone, did not induce leptin production, related to 

osteoarthritis severity [272]. And moreover, CpdA was shown effective in reducing mRNA and 

protein levels of GC-resistant chemokines (CCL5, CX3CL1 and CXCL10) in airway smooth muscle 
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cells, suggesting its potential beneficial role in treatment of GC-resistant asthma [273]. Adding to 

its immunosuppressive benefits, in analogy with the effect of cells under heat shock conditions, 

CpdA was shown to stimulate the expression of the GR chaperone hsp70, in a GR-dependent 

manner. Elevated intracellular hsp70 levels exert anti-inflammatory effects via obstructing the 

inhibitor (I)κB degradation and a subsequent impaired NFκB p65 translocation [274]. The anti-

inflammatory properties of CpdA were confirmed in animal models, including acute zymosan-

induced arthritis and experimental autoimmune encephalomyelitis models, and were 

accompanied by less adverse effects than classic GCs, including absence of hyperinsulinemia and 

hyperglycemia [268,275]. 
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2.5. Glucocorticoid receptor modulation in health and disease 

GC-driven actions exert pleiotropic effects on the organism (Table 5). The endogenous GCs play 

key roles in many fundamental processes involving embryonic development, function of the 

nervous, cardiovascular, immune and respiratory systems, glucose and lipid metabolism and the 

reproduction [195]. Synthetic GCs are used in the therapy of many inflammatory disorders, 

including asthma, chronic obstructive pulmonary disease (COPD), inflammatory bowel disease, 

and various allergies. Moreover, GCs are applied as immunosuppressors in order to minimize the 

risk of a transplant rejection. GCs are often co-administered during chemotherapy of various solid 

tumors, pre- as well as post-surgery. Because of their pro-apoptotic properties in lymphocytes, 

GCs are part of the therapy against hematological malignancies. And furthermore, GCs angiostatic 

properties are beneficial in the treatment of several angiogenic afflictions, such as infantile 

hemangiomas [195,276-278]. 

2.5.1. Glucocorticoid therapy in the hematological malignancies 

Owing to their ability to trigger apoptosis in hematological cells, GCs are used as 

chemotherapeutic agents for the treatment of acute lymphoblastic leukemia, chronic 

lymphoblastic leukemia, multiple myeloma, Hodgkin’s and non-Hodgkin’s lymphomas. GC-

induced apoptosis involves transactivation activity of GR and activation of the caspase cascade, 

which most probably occurs via the intrinsic mitochondrial-mediated pathway. This intrinsic 

pathway involves destruction of the mitochondrial membrane by Bim, Bax and Bak, pro-apoptotic 

proteins from the Bcl-2 family. This results in a release of cytochrome c and apoptotic peptidase-

activating factor-1, leading to further activation of caspase 9 and subsequent downstream 

effector caspases 3, 7 and 6. Unfortunately, the prolonged GC use, is associated not only with the 

emergence of side effects, but also with the occurrence of GC resistance in the clonal lymphocyte 

populations, a factor that strongly limits GC chemotherapy. GC resistance in lymphocytes can 

result from multiple events such as homologous down-regulation of GR gene, mutations of GR or 

deregulation of Bcl-2 family members’ functions [277,279]. The phenomenon of GC resistance is 

described in section 2.2.4. 

2.5.2. Effects of GR modulation in solid tumors 

Glucocorticoids are frequently used in the therapy of solid tumors (including brain, prostate, 

breast, lung and colon cancer), in the combination with surgery, radio-, chemo- or hormonal 

therapy. Because of their anti-emetic and anti-edemic properties, GCs have been administered to 

reduce the symptoms of the disease, to reduce side effects of chemotherapy and in order to 

protect healthy tissues from cytotoxic effects of the treatment. Although the administration of 

GCs has many benefits in the solid tumor treatment, it has been also associated with undesirable 
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effects, such as induction of chemotherapy resistance and protection from apoptosis, strongly 

contrasting with the GC-mediated effects in hematological malignancies. Nevertheless, depending 

on the cancer type the benefits vs. drawbacks of GCs will need to be considered in a case-specific 

manner (Figure 15) [278,280-282].  

Table 5. Roles of GCs in major human organ systems. Glucocorticoids affect the function of almost all organ 
systems, their beneficial effects are used in clinic, in the therapy of various diseases, however, the 
occurrence of adverse effects often limits the use of GCs. Source [195] and [231]. 

Organ system Role of the endogenous GCs Beneficial use of 

synthetic GCs 

Adverse effects 

of GCs 

Nervous 

 

Physiological homeostasis 

Response to stress 

 Psychiatric 

disorders 

Cardiovascular Anti-inflammatory 

Angiostatic 

Cardiomyocyte survival 

Blood pressure and vascular tone 

homeostasis 

 Cardiovascular 

disease 

Immune 

 

 

 

Suppression of expression of pro-

inflammatory cytokines 

Regulation of the immune cell 

maturation, migration and 

apoptosis 

Organ transplant 

 

Activation of 

latent viruses 

Susceptibility to 

infections 

Musculoskeletal 

 

 

 

 

Anti-inflammatory 

Muscle metabolism 

Insulin resistance 
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2.5.2.1. Beneficial effects of GCs in cancer 

Prednisolone, hydrocortisone and dexamethasone, for their ability to suppress adrenal androgen 

production, are often used as a secondary hormonal treatment for patients with castration-

resistant prostate cancer (CRPC). Moreover, prednisolone forms a part of chemotherapy strategy 

for metastatic CRPC, as it is proven effective in combination with abiraterone, docetaxel, and 

cabazitaxel [283,284]. Many in vitro studies have shown the beneficial role of GC administration 

against androgen-independent prostate cancer cells. Dex suppresses the activity of NFκB and 

expression of IL-6 resulting in growth inhibition of DU145 and PC3 prostate cancer cell lines 

[285,286]. Moreover, GCs were proven to have anti-angiogenic effects by repressing VEGF and IL-

8 production by prostate cancer cells, in concordance with in vivo results, showing a reduced 

tumor growth, vasculature and expression of VEGF and IL-8 in the xenograft mouse model [287].  

Budesonide, a synthetic GC used for treatment of asthma, displayed chemopreventive properties 

when administered as an aerosol into lungs of mice that were exposed to a carcinogen 

benzo(a)pyren. Budesonide reduced the tumor load by 78% compared to the control group. 

Moreover, in vitro studies on lung cancer cells A549 and H1299 showed growth-inhibitory effects 

of budesonide in a dose- and time-dependent manner [288].  

GCs have been used in the therapy of brain cancer for decades, mainly due to their ability to 

minimize cerebral edema and risk of a radiation-associated encephalopathy, however, the exact 

mechanism behind GC’s anti-edemic properties is not clear [289]. Dex was shown to have 

proliferation-inhibitory properties in several human glioma cell lines [290]. Moreover, Dex 

displayed anti-invasive properties in U87GM malignant glioma cells, in a MKP-1-dependent 

mechanism. GR-driven upregulation of MKP-1 led to reduced expression and activity of matrix 

metalloproteinase (MMP)-2, an extracellular matrix protein implicated in cell invasion. Similar 

anti-invasive properties of Dex were observed in an in vivo chick chorioallantoic membrane (CAM) 

model with U87GM cells [291].  

GCs’ ability to inhibit proliferation in the estrogen-regulated ER-positive breast cancer cells was 

previously described in several studies, while this effect was not detected in the ER-negative 

breast cancer cells [292,293]. As for the underlying mechanism, Dex was shown to inhibit 

estrogen-stimulated ER-driven expression of target genes. In cells treated with both Dex and 

estrogen, chromatin immunoprecipitation (ChIP) analysis revealed GR binding to the estrogen-

binding regions (EBRs), which blocked transcriptional activity of the ER. Interestingly, the 

treatment with Dex or estrogen alone did not result in occupation of the same EBRs by the GR 

[294]. 

In a study conducted on the ER-negative breast cancer cells MDA-MB-231, GC treatment resulted 

in a morphological alteration and reduced cell invasion. The mechanism behind this loss of 
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aggressiveness involved a GR-mediated induction of CCN5 expression. CCN5, a factor belonging to 

the CCN family (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) 

is involved in multiple functional cascades including cell survival, migration, mitogenesis, cellular 

adhesion and angiogenesis [295]. CCN5 was shown to repress genes associated with EMT, leading 

to a subsequent downregulation of mesenchymal markers, such as vimentin, cadherin 11 and 

ZEB1 [296]. 

The anti-invasive properties of Dex were also observed in bladder cancer cells, where GC 

treatment down-regulated MMP-2, MMP-9, IL-6 and VEGF and induced mesenchymal-to-

epithelial transition. However, in the same study Dex stimulated cancer cell growth by protecting 

the cells from apoptosis in conditions with and without cisplatin administration. In the in vivo 

mouse xenograft model, animals treated with Dex exhibited slightly larger tumors, but were 

spared from development of bloody ascites, associated with cancer cell dissemination and the 

formation of metastasis [297].  

GCs were recently described as agents able to inhibit ovarian cancer metastasis by inducing 

expression of microRNA (miR)-708 and a subsequent repression of Rap1B. Low miR-708 and high 

RapB1 levels are detected in late stages of ovarian cancer patients and are associated with a poor 

prognosis. GC-driven downregulation of Rap1B caused inhibition of migration and invasion of 

ovarian cancer cells and reduced formation of metastasis in the orthotopic xenograft mouse 

model. The anti-invasive effect was reverted by restoration of the Rap1B expression [298]. 

2.5.2.2. Undesirable effects of GCs in cancer 

Nevertheless, many recent studies have reported detrimental effects of GR activation in terms of 

induction of chemoresistance in cancer cells [280]. A large study which involved tests on primary 

and commercial cancer cell lines of different origin, demonstrated protective properties of GCs 

against diverse cytotoxic therapies. Tested treatments included cisplatin, etoposide, γ-radiation, 

gemcitabine, methotrexate, 5-FU, cytarabine and paclitaxel. Dex, prednisone, betamethasone and 

hydrocortisone, all displayed similar therapy resistance-inducing properties and the mechanism of 

this resistance originated from a GC-driven inhibition of apoptosis [299]. GR-activation was 

associated with a direct expression of SGK-1, MKP-1 and IκB, required for the GR-mediated 

protection from cell death [300,301]. Furthermore, a recent study on prostate cancer has 

reported that GR expression is associated with resistance to enzalutamide, a drug that targets the 

androgen receptor signaling. GR, by substituting for the AR blocked by enzalutamide, activated a 

similar set of target genes and led to the maintenance of a resistance phenotype. In a preclinical 

model, as well as in patients’ samples, the administration of Dex conferred to chemoresistance, 

and this effect was reversed with use of a GR antagonist, compound 15 [302]. Similar 

observations were made in breast and ovarian cancer. Pre-treatment with Dex significantly 
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inhibited therapeutic effects of paclitaxel in breast and ovarian xenograft tumors [303]. 

Furthermore, a treatment with Dex inhibited cisplatin- and gemcitabine-induced apoptosis in vitro 

in multiple established pancreatic cancer cell lines, as well as in primary cell lines obtained from 

the resected pancreatic tumors, which was also confirmed in an in vivo xenograft model [304]. 

Moreover, another study has reported proliferation-stimulatory actions of GCs, observed in 

multiple different cell lines including breast and lung carcinomas, as well as in cell lines of 

mesenchymal and neuroectodermal origin [305].  

 

Figure 15. Current understanding of GC-mediated effects in cancer. Figure source [282]. 

2.5.2.3. Effects of GCs in colorectal cancer 

Similarly to other solid tumors, GC administration in CRC was reported to have both beneficial and 

detrimental effects. Although it was earlier suggested as possible cause of colon carcinogenesis, a 

frequent systemic use of GCs was shown not to increase the risk of CRC, as reported in a 

population-based case-study in Northern Denmark [306]. GCs (such as Dex or 

methylprednisolone) given to patients prior CRC surgery, were shown to significantly reduce 

inflammation, cardiopulmonary stress and postoperative pain [307]. Nevertheless, a preoperative 

Dex administration was associated with a higher rate of cancer recurrence, compared to a 

placebo-treated group, as reported in a 5 year follow-up analysis. However, the authors 

highlighted the relatively small sample size (43 patients,) and therefore, they appeal to interpret 

their results with caution [308]. In vitro, Dex was shown to inhibit a TGF-β-induced EMT and cell 

migration of colon cancer cells. Dex inhibited the ERK and Akt signaling pathways, leading to a 

decrease in cystein-rich angiogenic inducer (CYR)61 expression, a factor implicated in the 
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promotion of cancer proliferation and invasion [309]. Furthermore, Dex was shown to inhibit a 

hypoxia-induced EMT. Dex treatment of colon cancer cells in vitro under hypoxic conditions 

resulted in a downregulation of HIF-1α, VEGF, and several EMT-related genes (encoding for 

transcription factors Snail, Slug and Twist). Moreover, induction with Dex inhibited colon cancer 

cell migration and invasion and furthermore recovered E-cadherin levels and a morphotype 

characteristic for the epithelial cells grown under normoxia [310]. Nevertheless, GC-driven 

protection against chemotherapy was reported in a study conducted on several colon and rectal 

cancer cell lines, as well as on cultures obtained from the resected tumors. Dex prevented 

cisplatin-induced apoptosis and promoted cell proliferation in the tested established cell lines, as 

well as in the surgical specimens of colorectal carcinomas, correspondingly to the in vivo 

xenograft model results, where Dex also induced chemotherapy resistance [311]. Another study 

suggested that GCs promoted formation of metastases of colon cancer cells injected into the 

murine spleen. A detailed analysis revealed that the injected cells, pretreated with Dex, were 

partially protected from a serum-mediated cytotoxicity, which enabled them to survive in the 

blood stream with higher chances of forming micrometastases. Interestingly, colon cancer cells 

treated with Dex, unlike the untreated control, were able to proliferate in pure serum [282].  

The level of GR expression in colorectal cancer cells is also an interesting aspect, noting that an 

immunohistochemical examination of 91 cases of human colon cancer revealed that 48% of 

analyzed tumors were GR-positive, independently of patient’s age, gender or survival. GR 

expression, however, correlated with the levels of cell-cycle related molecules: retinoblastoma 

protein (pRb) and p16, belonging to group of tumor suppressors, in view of their function in cell 

cycle arrest [312]. Moreover, as another study reports, in the colorectal carcinoma samples 

obtained from patients, GR mRNA expression was significantly (approximately 50%) lower 

compared to the normal colonic mucosa from the corresponding patients, and interestingly, GR 

mRNA levels negatively correlated with E-cadherin mRNA levels [313]. 

2.5.2.4. GR-modulation and cancer stroma 

Due to their lipophilic structure, systematically administered GCs affect all the cells in the body, 

with the emphasis on cells expressing a functional GR protein [174]. Stromal cells play an 

unquestionable role in cancer progression, therefore, there are research studies focusing on the 

stroma as a target or tool for cancer therapy [167].  

Cancer was described as “wound that does not heal”, because the process of tumor progression 

resembles mechanisms occurring during wound healing [69]. Wound healing involves cooperation 

of various cell types, including fibroblasts and myofibroblasts, endothelial cells, and inflammatory 

cells. Wound healing is a controlled process composed of three overlapping phases: inflammation, 

proliferation and maturation (tissue regeneration) [314]. Glucocorticoid treatment substantially 
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affects all phases due to suppression of inflammation and angiogenesis, decrease in collagen 

production, effects on cell metabolism and inhibition of expression of key factors involved in the 

wound healing process [315-317]. Subsequently, GC treatment can lead to skin atrophy [195]. 

GCs’ impact on dermal fibroblasts might point to a potential beneficial outcome of the treatment 

during cancer therapy (Table 6). 

Table 6.  Effects of glucocorticoid treatment on dermal fibroblast and potential implications to cancer 

Dermal 

fibroblasts 

Glucocorticoid-mediated actions Potential relation to cancer Reference 

Cell 

proliferation 

Controversial data on the impact 

of GCs on dermal fibroblast 

proliferation 

In keloid fibroblasts, triamcinolone 

delays fibroblast growth 

Potential inhibition of CAF 

proliferation 

[318,319] 

 

Cell migration GC treatment inhibited cell 

migration 

Decreased cell invasion [320,321] 

Expression of 

pro-

inflammatory 

genes 

GCs suppress production of pro-

inflammatory factors, including IL-

6, IL-8, and GM-CSF 

Suppression of cancer-

associated inflammation 

Reduced stimulation of 

macrophage infiltration 

[320,322] 

 

Collagen 

production 

and 

metabolism 

GCs decrease expression of 

collagen type I and III, 

collagenases, TIMP-1, and TIMP-2 

GC-mediated interference 

with collagen metabolism, 

possible reduction of tumor 

stiffness, but also facilitated 

cell migration 

[320,323] 

TGFβ 

expression 

 

GCs decrease TGF-β1 synthesis  Possible decreased cancer 

aggressiveness, delayed 

cancer progression 

[324] 

Hyaluronic 

acid 

production 

 

GC-mediated decrease of 

hyaluronan production  

Potential decrease of 

hyaluronan-linked increased 

cancer progression, 

angiogenesis and metastasis 

[325,326] 

Fibrosis and 

abnormal scar 

formation 

Corticosteroid treatment is 

effective in treating keloid and 

hypertrophic scars  

Potential GC anti-fibrotic effects 

due to suppression of 

inflammation in cystic fibrosis 

model  

Potential reduction of 

fibrosis formation 

Chronic fibrosis can 

predispose tissue to develop 

Cancer cancer progression 

is often accompanied by 

fibrosis 

[327-329] 

Nevertheless, the role of GR modulation in a tumor stroma is still poorly understood. A recent 

study showed that the majority (91%) of 56 tested breast cancer samples contained GR-positive 

peritumoral myofibroblasts. Interestingly, GR expression positively correlated with the tumor 
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grade and with GR expression in the epithelial component [330]. In the study on prostate cancer 

microenvironment, a functional GR was detected in myofibroblasts derived from cancer-

associated stroma (CAS), as well as in cells from benign-associated stroma (BAS). Intriguingly, GR-

mediated transcriptional activity varied between CAS-derived cultures, appearing higher or lower 

compared to BAS-originated cells [331].  

2.5.3. Angiostatic properties of GCs in cancer 

GCs’ angiostatic properties are well-documented and acknowledged in many therapies, including 

the treatment of diabetic retinopathy and infantile hemangioma [276,332-334]. Moreover, GCs 

were observed to reduce vasculature in several malignant tumors. Although the mechanism 

behind the angiostatic properties of GCs is not completely clear, the GR-mediated inhibition of 

VEGF expression in cancer cells was reported in several cases, including prostate cancer, head and 

neck carcinoma, Lewis mice lung carcinoma and renal cell carcinoma, of which the latter belongs 

to highly vascularized tumors, due to overproduction of pro-angiogenic factors, independently of 

the oxygen concentration [287,335-338]. In glioma cell lines Dex triggered apoptosis, but also 

appeared to elevate VEGF levels in a concentration-dependent manner. However, in an ex vivo 

assay Dex reduced brain tumor vascular density, showing its overall angiostatic character [339]. In 

a recent study on hepatocellular carcinoma Dex was shown to reduce tumor growth and to inhibit 

the angiogenesis. Dex treatment increased expression of genes regulating gluconeogenesis in the 

hepatocellular cancer cells, and the conditioned medium collected from such cultures inhibited 

the migration, tube formation and permeability of model human umbilical vein endothelial cells 

(HUVECs) [340]. Dex was also shown to reduce the TAM-induced expression of pro-inflammatory 

and pro-angiogenic factors IL-8, IL-6 and RANTES in the glioma cells. These results suggested Dex’s 

therapeutic role, as the analysis of glioma specimens obtained from patients revealed positive 

correlation between TAMs count, IL-8 expression and the microvessel density [341]. Similar 

observations were previously made in a case of human lung adenocarcinomas [342]. 

Furthermore, Dex was proven to enhance anti-angiogenic effects of Endostar, a recombinant 

human endostatin, as shown in the in vitro assays with use of HUVECs, as well as in an ex vivo rat 

aortic assay and in vivo chicken CAM assay. Moreover, in a mouse xenograft model, Endostar 

administered with Dex reduced tumor growth to a higher extent than when drugs were applied 

separately [343]. Furthermore, detailed studies on the endothelial cell (EC) response to GCs 

revealed that the direct angiostatic properties of GCs originate from the reduction of ECs’ ability 

to form tubular structures. This inhibition was shown to be a result of changes in the cell 

morphology and not cell viability, migration or proliferation. Mechanistically, these GR-driven 

changes are suggested to be partially mediated by the induction of thrombospondin-1 expression, 

a potent endogenous angiostatic factor [344]. 
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Glucocorticoids (GCs) are prescribed for cancer patients pre- and/or post-surgery and during 

chemotherapy. However, the impact of these GCs on solid tumor biology is controversial and not 

fully understood [278,281]. The glucocorticoid receptor (GR) is expressed in almost every human 

tissue. Therefore, a systemic GC use affects virtually all cells within the body. Nevertheless, the 

analysis of specimens obtained from colorectal cancer patients revealed that approximately 50% 

of these tumors are GR-negative [312]. Obviously, the GR expression profile of cancer cells will 

significantly impact the outcome of a GC treatment. Cancer progression is further supported by 

surrounding stromal cells, such as CAFs [76]. Although the CAFs’ role in cancer is well recognized, 

the impact of GC treatment on the tumor biology and angiogenesis via indirect effects on CAFs is 

yet unknown. Moreover, given the occurrence of many adverse effects associated with GC 

treatment, alternative GR stimulants are being studied, including the selective GR modulators 

(SEGRM), such as a plant-derived compound A (CpdA) [256]. The impact of CpdA on CAFs, 

endothelial cells, and on angiogenesis has never been described. 

Given this lack of information, the aim of this doctoral dissertation was to answer the following 

research questions: 

1. What is the impact of GCs and an SEGRM CpdA on CAF biology? 

2. How do CAF-derived factors affect endothelial cells and the process of angiogenesis and 

what is the impact of GR-mediated changes in the CAF-derived secretome on 

angiogenesis and endothelial cells? 

3. How do GR-mediated changes in CAFs affect their pro-stimulatory influence on GR-

deficient colorectal cancer cells? 

4. What is the impact of the GC dexamethasone and the SEGRM CpdA on endothelial cell 

behavior and angiogenesis? 

The Part III: Results section of this dissertation aims to answer the above questions in four 

corresponding chapters (articles) (Figure 16). Article 1 comprises a study on GCs- and CpdA-

derived effects on different aspects of CAF biology, in which the analysis of the cells’ responsivity 

to treatment reveals important GR-mediated changes in the CAF secretome. Article 2 presents 

results on an analysis of effects of CAF-derived culture medium on endothelial cells and 

angiogenesis, and moreover, it shows how the treatment with GCs affects this impact of CAFs. 

Furthermore, in Article 3 we focus on the influence of GC-treated CAFs and their secretome on 

the GR-unresponsive colorectal cancer cells. Lastly, in Article 4 we attempted to explain 

differences between dexamethasone’s and CpdA’s direct effects on endothelial cells’ behavior 

and the process of angiogenesis. 
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Finally, in the last part of this dissertation, the General Discussion, the main findings are 

recapitulated, the meaning of the obtained results is explained, the limitations of the study are 

revealed, and the future perspectives are discussed. 

 

Figure 16. A schematic representation of cross-talk in the tumor microenvironment and the research 
questions covered in this dissertation. Dotted arrows represent an impact of particular cellular components 
on the neighboring cell populations; numbers 1-4 indicate the chapter numbers in the Results section 
answering the corresponding research questions.  
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Abstract 

The glucocorticoid receptor functions as a ligand-dependent transcription factor that positively or 

negatively regulates the transcription of various specific target genes. Not only steroidal 

glucocorticoids can bind and activate the glucocorticoid receptor, but also the intensively 

examined non-steroidal selective glucocorticoid receptor modulators can do so, albeit with a 

select effector profile skewed to glucocorticoid receptor transrepression. Glucocorticoids are 

widely used to treat inflammatory afflictions, but also as part in anti-cancer therapies or adjuvants 

thereof. As the impact of glucocorticoids and selective glucocorticoid receptor modulators has 

scarcely been researched in this setting, we focused on colon cancer and its stromal environment, 

in particular the stromal myofibroblasts, which are known to influence cancer cells via paracrine 

signaling. In these myofibroblasts, also known as cancer-associated fibroblasts (CAFs) the 

glucocorticoid dexamethasone is able to drive the glucocorticoid receptor into the nucleus and 

thus negatively regulates the expression of particular pro-inflammatory genes in TNFα-stimulated 

cells. The selective glucocorticoid receptor modulator compound A has an impaired ability to 

translocate GR, presumably underpinning its modest anti-inflammatory properties in these cells. 

Only dexamethasone, and not compound A, can upregulate the glucocorticoid receptor 

transactivation-dependent GILZ expression. Neither dexamethasone, nor compound A affect CAF 

viability. However, compound A retards the growth of this CAF cell line. Additionally, 

dexamethasone can inhibit the expression of tenascin C, hepatocyte growth factor, and TGFβ, 

which are all factors known for their impact on colon cancer cell invasion, in a glucocorticoid 

receptor-dependent manner. In contrast, compound A can only slightly diminish the expression of 

just hepatocyte growth factor, and not tenascin C or TGFβ. Combined, our results expose new 

tumor microenvironment-modulating effects of glucocorticoids and the selective GR modulator 

compound A.  
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1.1. Introduction 

Hallmarks of cancer development involve sustained proliferative signaling, growth suppressor 

evasion, replicative immortality, angiogenesis, invasion and metastasis [8]. Some of those 

processes can be enhanced by adjacent tumor-associated stromal cells and the tumor-associated 

inflammatory response [8,35]. Many mechanistic questions on the regulation of invasion and 

metastasis still remain unanswered, despite recent progress. 

Colorectal cancer is the third most common cancer in Europe and the USA, and one of the 

prominent causes of cancer-related deaths [345]. The incidence of morbidity increases with age 

and is associated with the Western dietary lifestyle. Although there is no single cause for 

developing colorectal cancer, certain hereditary diseases, such as familial adenomatous polyposis 

or Lynch syndrome, strongly elevate the risk of disease [38]. The majority of colon cancers start in 

glands of the intestine lining. The disease progresses from normal mucosa towards hyperplasia 

and finally carcinoma in situ, which ultimately leads to an invasive and metastatic cancer [35,38]. 

Cancer cell invasion and metastasis are driven by changes occurring in the cancer stroma as a 

result of the cross-signaling between cancer cells and their surroundings. In this tumor 

microenvironment, myofibroblasts arise, which share characteristics with smooth-muscle cells 

and fibroblasts. Myofibroblasts have a spindle-like shape with an indented nucleus, well-

developed fibronexus junctions and stress fibers. They can be divided in bone marrow-derived 

myofibroblasts, which originate from mesenchymal stem cells, and non-bone marrow-derived 

myofibroblasts. The latter cells can originate from precursors, such as endothelial cells, 

fibroblasts, smooth muscle cells or non-malignant epithelial or epithelial-derived carcinoma cells. 

Apart from their role in embryonic development and tissue morphogenesis, myofibroblasts 

appear in the pathology of fibrosis and cancer development. Cancer cell-derived cytokines, such 

as transforming growth factor β (TGFβ) and other growth factors promote differentiation of 

surrounding stromal precursors into myofibroblasts, also known as cancer-associated fibroblasts 

(CAFs), which in turn modulate cancer invasion through cell-to-cell or paracrine signaling. Among 

the many factors expressed by CAFs we find chemokines and cytokines, such as IL-6 and RANTES, 

growth factors, such as TGFβ and hepatocyte growth factor/scatter factor (HGF/SF), as well as 

proteins involved in matrix remodeling, such as matrix metalloproteinases (MMPs) and tenascin C 

(TNC) [35,76,346,347]. 

Glucocorticoids (GCs) are widely used as a treatment strategy against inflammatory and 

autoimmune diseases [204], but also in anti-cancer therapies or as adjuvants thereof [348]. These 

steroids can bind and activate the glucocorticoid receptor (GR), which is a member of the 

superfamily of nuclear receptors and hence also known as NR3C1. Activated GR is then 
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transported to the nucleus where it can act as an activating or repressing transcription factor. 

Ligand-bound GR can, among other mechanisms, directly modulate transcription through 

interaction with glucocorticoid responsive elements (GRE) or indirectly via tethering with another 

transcription factor, such as NFκB or AP-1. This indirect modulation of transcription, often 

occurring in transrepression, solidly contributes to the anti-inflammatory properties of GCs 

[188,245,349]. 

Recent pharmacological advances have allowed to dissociate the transactivating and repressing 

mechanisms of GR modulation via the use of selective GR modulators (SEGRMs), which are 

designed to modulate only GR-mediated gene repression [256]. The SEGRMs were developed 

based on the hypothesis that the expression of many genes involved in undesirable GC-associated 

side effects [209] are mainly due to GR transactivation mechanisms, whereas the repression of 

pro-inflammatory gene expression forms the mainstay of GCs’ anti-inflammatory mechanism 

[255].  

In that respect, 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium chloride, named 

compound A (CpdA), a plant-derived precursor of phenyl aziridine, is a non-steroidal SEGRM that 

is under intensive investigation [255,267,268,350-352]. CpdA differs from classic GCs in size and 

structure. Nonetheless, CpdA was shown to effectively modulate GR. Unlike GCs, CpdA does not 

induce GR dimerization and fails to induce an increased GR S211 phosphorylation. Both events are 

most likely due to a different conformation of CpdA-bound versus GC-bound GR. Concomitantly, 

CpdA-bound GR is unable to physically bind GRE-driven promoters, culminating in its inability to 

trigger transactivation of these GRE-driven promoters. In vivo evidence shows that CpdA has a 

more favorable side-effect profile compared to classic GCs [255,268], confirming the rationale to 

develop and explore these SEGRMs. Moreover, recent studies showed that CpdA has an impact 

on cancer cells, as it potentially binds to both the androgen receptor and GR in prostate 

carcinoma, leading to an inhibited proliferation and induction of apoptosis of prostate cancer cells 

[353]. CpdA treatment also decreases cell proliferation and increases apoptosis of CEM and K562 

leukemia cells [351]. 

Given that GCs bare pro-apoptotic properties, these steroids have been widely used in 

combination with other treatments in lymphoid malignancies. However, their role in solid tumor 

biology is still ambiguous. On the one hand, the use of GCs can induce chemoresistance in, among 

others, prostate and cervical cancer therapy, and through parallel down-regulation of the immune 

response it might facilitate metastasis [280,354]. On the other hand, in breast cancer cells, GCs 

are known to indirectly repress epithelial-to-mesenchymal (EMT)-associated gene expression, 

eventually impacting the invasiveness of these cells [296]. The role of GCs is also contested in 

bladder cancer, where GCs actually increase cell proliferation and activity, but at the same time 
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suppress the expression of multiple invasion-associated genes and also cause mesenchymal-to-

epithelial transition (MET) [297]. 

Although GCs are commonly used in the treatment of certain cancers, cancer-related 

complications and inflammation, the GC- and especially SEGRM-mediated effects on the intricate 

cancer eco-system still remain largely unknown. As stromal cells affect the invasive progression of 

cancer cells by modulating cytokines, chemokines and other molecules and as these factors are 

potentially targeted by GR regulation, we explored the impact of GCs and the SEGRM CpdA on the 

biology and the particular gene expression pattern of key factors of stromal, colon cancer-derived 

CAFs.  

1.2. Materials and Methods 

1.2.1. Cells and reagents 

Human stromal colon cancer-derived CAFs (CT5.3hTERT cells) [77], and murine L929sA fibroblasts 

were cultured in DMEM (Gibco, Life Technologies) supplemented with 10% fetal calf serum 

(Greiner bio-one), 100 U/ml penicillin and 0,1 mg/ml streptomycin (Gibco, Life Technologies), and 

were grown at 37°C with either 10% or 5% CO2, respectively. In all experiments, we used medium 

supplemented with charcoal-stripped serum (Gibco, Life Technologies). 

The classic GC dexamethasone (Dex) was purchased from Sigma-Aldrich and the origin and 

handling of the SEGRM compound A (CpdA) was described previously [268]. Additionally, we used 

hydrocortisone (Hcrt) (f.c. 1µM), prednisolone (Pred) (f.c. 1µM), fluocinolone acetonide (FA) (f.c. 

1µM), and a GR antagonist RU486 (RU) (f.c. 2µM), which were all purchased from Sigma-Aldrich. 

All reagents above were dissolved in ethanol, and in all experiments, the total solvent 

concentration was kept similar in all conditions. Recombinant murine tumor necrosis factor 

(TNF)α was produced in E.coli and purified as described by Vanden Berghe, et al [355]. TNFα was 

dissolved in medium.  

1.2.2. Nuclear-cytoplasmic fractionation 

CT5.3hTERT cells were subjected to a 2h treatment with solvent, Dex (1µM) or CpdA (10µM), after 

which cell lysates were prepared and separated into nuclear and cytoplasmic fractions, as 

described previously [356]. In short, lysates were treated with hypotonic buffer (20 mM 

Hepes/KOH pH 7,6; 10 mM NaCl; 20% glycerol; 1.5 mM MgCl2; 0,2 mM EDTA; 0.1% Triton; 25mM 

β-glycerophosphate; 2mM pefabloc; 10µg/ml aprotinine; 5mM DTT) in order to separate 

cytoplasmic fraction from the nuclear. Subsequently, the nuclear envelope was ruptured using 

hypertonic buffer (i.e. hypotonic buffer with addition of NaCl 500mM). Protein concentration was 
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measured using the Lowry method. A fixed amount of protein from all samples, namely 30 µg, 

was analyzed via Western Blot. 

1.2.3. Reporter gene assay 

L929sA cells were stably transfected with the p(IL6κB)350hu.IL6P-luc+ reporter gene using the 

calcium phosphate precipitation protocol, as described by Vanden Berghe, et al [357]. The cells 

were induced with solvent, Dex (1µM) or CpdA (1 or 10µM) for 1h and co-treated with TNFα for 

another 5h. Subsequently, cells were washed with PBS and lysed using TROPIX lysis buffer. 

Thereafter, we measured the cellular luciferase and galactosidase levels, as described [358,359], 

at a ParadigmTM Detection Platform (Beckman Coulter®) using SoftMax® Pro 6.1 software. 

Luciferase activity was corrected for β-galactosidase activity (Galacto- Light kit; Tropix). Results 

are expressed as relative normalized reporter gene activity in which the condition induced with 

TNFα was set at 100 and all other conditions were recalculated accordingly. 

1.2.4. Cell viability and proliferation assays 

To test the cell viability and proliferation of CAFs, cells were seeded and left to adhere for 24h, 

after which they were treated with solvent, Dex or CpdA, ranging from 0.1µM to 10µM, or left 

untreated (Ni) for varying time points. To test for potential compound-inducted cytotoxicity, we 

performed a Lactate Dehydrogenase Activity (LDH) assay (Promega), according to the 

manufacturer’s instructions. To analyze cellular metabolic activity and cell viability we used a 

classic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, as described 

previously [360]. To assay cell proliferation rate, we performed a sulforhodamine-B (SRB) test, as 

described [361]. Results were furthermore obtained using a ParadigmTM Detection Platform 

(Beckman Coulter®) with SoftMax® Pro 6.1 software. Results are expressed as a percentage in 

which the untreated condition (SRB, MTT) or triton-treated cells (LDH) was set at 100% and all 

other conditions were recalculated accordingly. 

1.2.5. Indirect immunofluorescence  

Indirect immunofluorescence microscopy was performed as described previously [268], to 

visualize GR in CT5.3hTERT cells, after 2h treatment with solvent, Dex (1µM) or CpdA (10µM), 

using the primary anti-GR (H-300) antibody (Santa Cruz Biotechnology, cat no: sc-8992) together 

with an Alexa Fluor 488 goat anti-rabbit secondary antibody (Invitrogen Molecular Probes, cat no: 

A11008). In order to visualize the nuclei we used DAPI (0.4 µg/ml) and UV illumination. 

Observations were performed using an Axiovert 200M (Zeiss) fluorescence microscope and the 

images were processed via Axiovision 4.8 Software. Subcellular distribution of GR signal density in 

cells from various images from two independent experiments was analyzed using ImageJ software 
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[362]. The value for the solvent condition was set as 1 and all other conditions were recalculated 

correspondingly to allow ratio comparisons.  

1.2.6. Protein lysates and Western blot analysis 

For protein analysis, CT5.3hTERT CAFs were induced as indicated in the figure legends. Samples 

consisted of either collected cells or supernatants from cultured cells. Collected cells were washed 

twice with PBS. Next, protein lysate samples were prepared using TOTEX buffer (20mM 

Hepes/KOH pH 7.9; 0.35M NaCl; 20% glycerol; 1% NP40; 1mM MgCl2; 0.5mM EDTA; 0.1mM EGTA; 

2mM pefabloc; 10µg/ml aprotinin). After measuring the respective protein concentrations via the 

Lowry method, 25µg of total protein was denatured, loaded on a SDS-PAGE gel and subjected to 

the standard Western Blot protocol as described by Santa Cruz (Santa Cruz, CA, USA). 

Alternatively, SDS sample buffer (50mM Tris pH6.8; 2% SDS; 10% glycerol; bromophenol blue, 

100mM DTT) was used to prepare lysates from 10 fold concentrated cell supernatants and a 20µg 

sample was loaded on a SDS-PAGE gel and subjected to the standard Western Blot protocol. 

As primary antibodies, we used anti-GR (H-300) (Santa Cruz Biotechnology, cat no: sc-8992), anti-

N-cadherin (BD Biosciences, cat no: 610920), anti-αSMA (Sigma, cat no: A2547), anti-vimentin 

(Sigma, cat no: V6389), anti-tenascin C (clone BC-24, Sigma, cat no: T2551), anti-TGFβ (R&D 

Systems, cat no: MAB1835), anti-tubulin (Sigma, cat no: T5168), anti-PARP (BD-Biosciences, cat 

no: 556494) and anti-GRB2 (C-23, Santa Cruz, cat no: sc-255). To visualize our results we used 

species-specific HRP-linked secondary antibodies (GE-Healthcare, cat no: NA931V, NA934V), ECL 

solution (Thermo Scientific) and X-Ray films (GE-Healthcare). To quantify the bands obtained via 

Western blot analysis, we applied band densitometric analysis via ImageJ software [362]. The area 

under curve (AUC) of the specific signal was corrected for the AUC of the loading control. The 

value for the non-induced condition was set as 1 and all other conditions were recalculated 

correspondingly to allow ratio comparisons.  

1.2.7. RT-qPCR 

CT5.3hTERT CAFs were induced as indicated in the figure legends. Total RNA was isolated from 

cells using TRIzol reagent (Life Technologies), according to the manufacturer’s instructions. 

Reverse transcription (RT) was performed using an iScript kit (Bio-Rad), and the obtained cDNA 

served as a substrate for a quantitative PCR (qPCR) using Lightcycler 480 SYBRGreen I Master 

reagents (Roche Diagnostics), all processed according to the producer’s instruction. qPCR 

reactions were performed using the Lightcycler® 480 system (Roche Diagnostics), with the 

following protocol: A) initial denaturation 95°C, 5’; B) 40 cycles of denaturation 95°C, 15’’, 

annealing and elongation 60°C, 45”. qPCR reactions were performed in triplicate. The list of 

primer sequences is available in Addendum 5 (Supplementary Table 4). Specific signal was 
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normalized to the respective geometric mean of 3 housekeeping gene expression levels (GAPDH, 

PPIB, 36B4). Displayed results are expressed as relative mRNA expression in which the condition 

induced with solvent was set as 1 or, where applicable, the condition with TNFα was set as 100. In 

both cases, all other conditions were recalculated correspondingly.  

1.2.8. ELISA HGF/SF 

CT5.3hTERT CAFs were treated with solvent, Dex, CpdA, RU486, or a combination of RU486 and 

Dex, as indicated in the figure legend (Figure 8), and after 48h of induction culture supernatants 

were collected. In order to measure the total amount of HGF/SF released from the cells, the 

collected medium samples were analyzed using the HGF Human ELISA Kit (RayBio®, Inc., cat no: 

ELH-HGF-1) according to manufacturer’s instructions. Absorbance was quantified on a 

ParadigmTM Detection Platform (Beckman Coulter®) using SoftMax® Pro 6.1 software. Results are 

expressed as relative HGF concentration in cell culture supernatant, where the value of the 

solvent treatment was set as 1 and all other conditions were recalculated correspondingly to 

allow ratio comparisons. 

1.2.9. Statistical Analysis 

Results are presented ± standard deviations. Statistical analysis was performed using GraphPad 

Prism 5.03 with a one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons post-

test, in which a p-value of p<0.05 was considered statistically significant, as indicated in the figure 

legends. 

1.3. Results 

1.3.1. Dex can translocate GR and repress NFκB-mediated gene expression  

To assay the activity of our compounds, we analyzed the ability of the glucocorticoid Dex and the 

non-steroidal SEGRM CpdA to affect the location of GR and the compounds’ ability to inhibit 

NFκB-mediated gene expression. To that end, we prepared fractionated lysates of CT5.3hTERT 

cells and visualized GR via Western blot (Figure 17A1). To complement this approach, we used 

indirect immunofluorescence microscopy, to display the subcellular distribution of GR in 

CT5.3hTERT cells (Figure 17B1). While Dex can clearly drive GR to the nucleus, CpdA shows to be 

very weak in affecting GR location in CT5.3hTERT cells (Figure 17A1,A2,B1,B2). 
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Figure 17. (previous page) Dex and CpdA can translocate GR and repress NF-κB-mediated gene expression. 
(A1,A2). CT5.3hTERT cells were treated with solvent, Dex (1µM) or CpdA (10µM) for 2h before cells were 
lysed and a separation of nuclear and cytoplasmic fractions was performed. Obtained fractions were 
subjected to Western blot analysis detecting GR, and nuclear PARP and cytoplasmic GRB2 as loading 
controls. Relative GR intensity, with a correction for sample loading, was determined using band 
densitometric analysis (ImageJ). The solvent condition was set as 1 in each fraction to allow ratio 
comparisons. Results are representative of four independent experiments. (B1,B2). CT5.3hTERT cells were 
seeded on coverslips, starved in Opti-MEM for 24h, and subsequently treated with solvent, Dex (1µM) or 
CpdA (10µM) for 2h. After washing, fixing, and permeabilizing the cells, indirect immunofluorescence was 
performed to detect GR. DAPI staining indicates the nuclei. Additionally, we present overlays of both 
visualizations. This figure is representative of three independent experiments. Relative nuclear GR intensity 
was determined using densitometric analysis (ImageJ). The solvent condition was set as 1 to allow ratio 
comparisons. (C). L929sA cells, stably transfected with a p(IL6κB)350hu.IL6P-luc+ gene construct, were 
treated with solvent, Dex (1µM) or CpdA (1µM or 10µM) for 1h, after which cells were stimulated with 
TNFα (2000 IU/ml) for another 5h. β-galactosidase control-corrected results are presented as relative 
reporter gene activity, in which TNF stimulation is set at 100 and all results are recalculated accordingly. 
Results are the mean ±SD of two independent experiments and statistical analysis on potentially significant 
differences was performed using a one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons 
post-test. ns not significant, *p<0.05, ***p<0.001. 

The Dex and CpdA-mediated effect on GR transrepression activity was confirmed via experiments 

on L929sA cells, which were stably transfected with a recombinant promoter featuring NFκB 

response elements (Figure 17C). Stimulation of this promoter with TNFα could be clearly 

counteracted by Dex and CpdA. In conclusion, despite the impaired ability of CpdA to translocate 

GR in CT5.3hTERT CAFs, both compounds used are functional and show NFκB-transrepressive 

properties inL929sA cells, the latter of which corresponds with earlier reports in various cell types 

[188,256,268,350,352,363-365]. The effects of Dex and CpdA on NFκB-mediated gene expression 

in CT5.3hTERT CAFs will be investigated more specifically in Figure 21. 

1.3.2. Dex and CpdA do not affect CAF viability 

To evaluate potential effects of Dex and CpdA on the metabolic activity, viability or cell 

proliferation rate of CAFs, we performed LDH, MTT and SRB assays upon treatment with different 

concentrations of Dex and CpdA at different time points (Figure 18). The cytosolic enzyme lactate 

dehydrogenase (LDH) is released upon loss of membrane integrity and thus cell lysis [366]. 

Neither Dex nor CpdA show a concentration-dependent or even enhanced cytotoxicity level when 

CT5.3hTERT CAFs were exposed to these compounds for 24 or 48 hours, indicating that neither 

Dex nor CpdA compromise the CT5.3hTERT cells’ membrane integrity (Figure 18A). As a positive 

control in this assay, indicating the maximal LDH release potential at a certain time point we used 

a cell treatment with 20% Triton for 1 hour. 
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Figure 18. (previous page) Dex and CpdA do not affect CAF viability. CT5.3hTERT cells were treated with 
solvent, Dex (0.1µM, 1µM or 10µM) and CpdA (0.1µM, 1µM or 10µM) or left untreated. After the indicated 
time points cells were subjected to LDH (A), MTT (B) or SRB (C) analyses. (A). Relative cytotoxicity (%) was 
assayed using an LDH assay. Obtained values were normalized to a positive control of 20% triton-treated 
cells, which indicates a maximal cytotoxicity. (B). Percentage cell viability was assessed using an MTT assay. 
Obtained values were normalized to the values obtained using a negative control of non-treated cells, 
which indicates their maximal viability at a given time point. (C). Percentage cell proliferation was tested 
using an SRB assay. Obtained values were normalized to a control of non-treated cells at 96h, which 
indicates their maximal proliferation. Results (ABC) are the mean ±SD of three independent experiments 
and statistical analysis on potentially significant differences was performed using a one-way analysis of 
variance (ANOVA) and Tukey’s multiple comparisons post-test. ns not significant, ***p<0.001. 

In the colorimetric MTT assay, NAD(P)H-dependent cellular oxidoreductase enzymes are used to 

reflect the metabolic activity of analyzed cells. In viable healthy cells, the yellow tetrazolium salt 

(MTT) is reduced by these enzymes to a purple soluble formazan [367]. In our analyses, neither 

Dex nor CpdA significantly affect cellular metabolic activity at 24, 48 and 72 hours post induction 

(Figure 18B). As expected, our negative control, cells treated with 20% Triton for 1 hour, indeed 

imposed a steep decrease in cellular metabolic activity, indicating cell death (Figure 18B). 

The colorimetric SRB assay determines cell density, based on the cellular protein content. Upon 

analyzing the cell proliferation rate via this SRB assay, we could show that CpdA (10µM) can slow 

down CT5.3hTERT cell growth, which results in a significant difference to solvent already after 

24hours (Figure 18C). Nevertheless, CpdA (1µM) or Dex at either 100nM or 1µM does not 

profoundly affect the proliferation rate of CT5.3hTERT cells (Figure 18C).  

In conclusion, neither Dex nor CpdA significantly affect CT5.3hTERT CAF viability, but CpdA can 

negatively impact the growth rate of these cells. 

1.3.3. Effect of Dex and CpdA on the expression pattern of myofibroblastic markers 

CAFs can differentiate from different cell types, such as fibroblasts, epithelial, endothelial and 

mesenchymal stem cells. However, as common characteristic these CAFs, regardless of their 

origin, express αSMA and vimentin markers [76]. In order to test how Dex and CpdA influence 

these myofibroblastic characteristics, we performed mRNA and protein analysis of αSMA and 

vimentin (Figure 19A-D). Neither Dex nor CpdA treatment affects expression of αSMA on both 

transcription and translation levels in CT5.3hTERT CAFs (Figure 19A,B,D). Vimentin mRNA 

expression is, however, slightly affected by various glucocorticoids: dexamethasone (Dex), 

hydrocortisone (Hcrt), prednisolone (Pred), fluocinolone acetonide (FA), and a CpdA treatment 

(Figure 19C). This effect is reversed by a steroidal GR antagonist RU486 (RU) and it does not 

persist on protein level (Figure 19D). In conclusion, neither Dex nor CpdA impact CAFs’ typical 

features. 
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Figure 19. Effect of Dex and CpdA on the expression pattern of myofibroblastic markers. CT5.3hTERT were 
treated with solvent, Dex (1µM) or CpdA (10µM) for 24h or 48h (A,B) or with solvent, Dex (1µM), CpdA 
(10µM), Hcrt (1µM), FA (1µM), Pred (1µM), or RU (2µM) or co-treated with Dex (1µM) and RU (2µM) for 
48h (C). Isolated mRNA was subjected to RT-qPCR assaying αSMA and vimentin mRNA levels, and results 
were normalized to the respective geometric mean of GAPDH, PPIB and 36B4 household genes’ mRNA 
levels. The solvent condition was set at 1 and results were recalculated accordingly. Results (A,B,C) are the 
mean ±SD of three independent experiments and statistical analysis on potentially significant differences 
was performed using a one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons post-test. 
ns not significant, *p<0.05, **p<0.01, ***p<0.001. (D). CT5.3hTERT cells were treated with solvent, Dex 
(1µM) or CpdA (10µM) for 24 or 48h. Cell lysates were subjected to Western Blot analysis to detect αSMA, 
vimentin, and the loading control tubulin. Results are representative of at least three independent 
experiments. 
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Figure 20. Glucocorticoids trigger GR transactivation and diminish GR expression in CAFs. CT5.3hTERT were 
treated with solvent, Dex (1µM) or CpdA (10µM) for 24h (A,D) or with solvent, Dex (1µM), CpdA (10µM), 
Hcrt (1µM), FA (1µM), Pred (1µM), or RU (2µM) or co-treated with Dex (1µM) and RU (2µM) for 48h (B,E). 
Isolated mRNA was subjected to RT-qPCR assaying GR and GILZ mRNA levels, and results were normalized 
to the respective geometric mean of GAPDH, PPIB and 36B4 household genes’ mRNA levels. The solvent 
condition was set at 1 and results were recalculated accordingly. Results (A,B,D,E) are the mean ±SD of at 
least three independent experiments and statistical analysis on potentially significant differences was 
performed using a one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons post-test. ns 
not significant, ***p<0.001. (C1,C2). CT5.3hTERT cells were treated with solvent, Dex (1µM), CpdA (10µM) 
or co-treated with Dex (1µM) and CpdA (10µM) for 24, 48 or 72h. Cell lysates were subjected to Western 
Blot analysis for the detection of GR and the loading control tubulin. Relative GR intensity, with a correction 
for sample loading, was determined using band densitometric analysis (ImageJ). The solvent condition was 
set as 1 at each time point to allow ratio comparisons. The displayed results are representative of at least 
three independent experiments. 
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1.3.4. Glucocorticoids trigger GR transactivation and diminish GR expression in CAFs 

In order to test how the glucocorticoids Dex, Hcrt, Pred, FA, a GR antagonist RU486 (RU) and a 

SEGRM CpdA influence GR expression and activity in CT5.3hTERT CAFs, we performed mRNA and 

protein analyses of GR and an mRNA analysis of a typical GR target gene, i.e. glucocorticoid-

inducible leucine zipper (GILZ) (Figure 20).  

GR mRNA levels are significantly diminished 24 hours post induction by both Dex and CpdA 

(Figure 20A). However, this initial difference does not continue after 48 hours (Figure 20B). Similar 

results at 48 hours are obtained with other GCs (Figure 20B). 

Long-term treatment with Dex is known to trigger homologous downregulation of GR [368]. Also 

in the CAF cell line, prolonged treatment with a GC, in this case Dex, results in diminished protein 

levels of the receptor (Figure 20C1,C2). Although CpdA has a temporary inhibitory effect on GR 

mRNA levels, treatment of CT5.3hTERT CAFs with CpdA ultimately does not lead to a decrease in 

GR protein levels. As the GR levels, and GR homologous downregulation can play an important 

role in GC resistance [195], we explored whether simultaneous exposure of CT5.3hTERT CAFs with 

Dex and CpdA could prevent GC-mediated GR downregulation. Unfortunately, our results show 

that CpdA cannot protect GR from a Dex-induced downregulation (Figure 20C1,C2). 

Notwithstanding the clear downregulation of GR, the minimal GR levels that remain present show 

to be sufficient to allow a strong upregulation of GILZ mRNA levels after 24 and even 48 hours of 

GC treatment (Figure 20D,E). This effect is completely antagonized by a co-treatment with the GR 

antagonist RU486 (Figure 20E). In line with the nature of CpdA as a selective GR modulator, 

treatment with CpdA does not influence GILZ levels after 24 or 48 hours induction (Figure 20D,E).  

1.3.5. Both Dex and CpdA diminish pro-inflammatory gene expression in CAFs 

GR’s anti-inflammatory properties are mostly mediated via interference of GR with another 

transcription factor, such as NFκB or AP-1, which leads to suppression of multiple pro-

inflammatory genes [188]. In our study we tested whether in CT5.3hTERT CAFs the activated GR 

holds anti-inflammatory functions upon stimulation with TNFα. In our analyses multiple pro-

inflammatory genes are strongly up-regulated by TNFα, while this effect is counteracted by GCs 

for all cytokines and chemokines tested, i.e. RANTES, ICAM, MCP-1, IL-1β and TNFα, except for IL-

6 (Figure 21A-F). For the latter cytokine, we even recorded that CpdA could enhance its 

expression level (Figure 21A). Both Dex and CpdA decrease the expression of the chemokine 

RANTES and the adhesion molecule ICAM (Figure 21D,F). However, in contrast with previous 

research in adenocarcinomic human alveolar epithelial cells (A549) and in rheumatoid arthritis 

synovial fibroblasts (FLS) [270,365], CpdA is unexpectedly unable to significantly repress gene 

expression levels of MCP-1, IL-1β and TNFα (Figure 21B,C,E), indicating cell-specific mechanisms.  
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When analyzing the natural inhibitors of TNFα-stimulated NFκB activation, we observe that the 

GC Dex has a trend to stimulate the gene expression of IκBα (NFκBIa) and A20 (TNFAIP3) after 6h 

of induction (Figure 21G-H). Given a multitude of earlier likewise, but cell-specific observations for 

IκBα [245,369], we also assayed later time points and could confirm that this trend after 24h and 

48h of induction accumulates into a statistically significant difference in solvent- vs. Dex-

stimulated cells for both IκBα and A20 levels (Addendum 1, Supplementary Figure 1). Within the 

line of expectations, given the presence of both a GR- and an NFκB-responsive binding motif in 

the promoter of the IκBα gene and earlier corresponding results [365,369,370], combined 

exposure of CT5.3hTERT CAFs to an NFκB-activating TNFα stimulus and Dex, does not enhance 

mRNA levels of IκBα further. However, CpdA, unlike earlier reports in A549 cells [365], does not 

inhibit the TNFα-stimulated IκBα and A20 gene expression (Figure 21G-H), again suggesting a cell-

specific set of events in CT5.3hTERT cells. 

1.3.6. Dex negatively influences the expression of several factors involved in cancer progression 

To research whether GCs and/or SEGRMs could potentially influence key molecules which are 

secreted by CAFs, we investigated several factors known to play a role in tumor progression. TGFβ 

which is an autocrine or paracrine growth factor, indirectly also acts as a strong pro-invasive 

factor for cancer cells, as it stimulates transdifferentiation of fibroblasts into myofibroblasts, 

which in turn, promote cancer invasion [76]. TNC and HGF/SF are proteins secreted by CAFs, 

which are known to provide pro-invasive signals to cancer cells [77]. N-cad, a transmembrane 

protein upregulated by TGFβ, plays a critical role in CAF invasion and migration, and therefore 

indirectly in tumor progression [131].  

The CT5.3hTERT cell levels of N-cadherin mRNA were clearly decreased by Dex, but not by CpdA 

(Figure 22A). However, upon analyzing the corresponding protein levels we could not detect any 

Dex- or CpdA-mediated change in N-cadherin protein levels at 24, 48 or 72 hours of induction 

(Figure 22B).  

Our analyses further show that TGFβ mRNA expression in CT5.3hTERT cells is only slightly affected 

by Dex after 24 and 48 hours of induction, but not 6 hours of induction (Figure 23A-C). Treatment 

of these cells with CpdA at any time point leaves TGFβ expression levels unchanged (Figure 23A-

C). Upon analyzing the protein levels of secreted TGFβ, we detected that Dex could negatively 

impact both the TGFβ precursor and activated TGFβ protein levels (Figure 23D). As TGFβ 

stimulates N-cad expression in CAFs [131], the decreased levels of secreted active TGFβ protein 

may explain downregulation of N-cad mRNA levels (Figure 22A). 

HGF/SF (Figure 24) and TNC (Figure 25) behave quite similarly. Both factors’ mRNA levels are 

strongly downregulated when exposed to Dex, but not with a CpdA treatment. For Dex, this 



Part III: Results – Chapter 1. 

87 

negative impact persists on the protein levels of HGF and TNC, which can be counteracted by the 

GR antagonist RU486, albeit incompletely (Figure 24D-25D). Of note, also the inhibitory effect of 

Dex on the gene expression levels of TNC can be significantly antagonized by RU486 (Addendum 

1, Supplementary Figure 2). However, the protein concentrations of HGF and TNC can be 

moderately decreased by CpdA (Figure 24D, 25D).  

In conclusion, notwithstanding Dex can inhibit the mRNA levels of TGFβ, N-cad, TNC and HGF to 

varying extents, CpdA could never inhibit the expression levels of all of these genes (Figure 22-25), 

suggesting the involvement of indirectly acting GR transactivation mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. (next page) Both Dex and CpdA diminish pro-inflammatory gene expression in CAFs. CT5.3hTERT 
were treated with solvent, Dex (1µM), CpdA (10µM) for 1h either or not co-treated with TNFα (2000 IU/ml) 
for another 5h. Total mRNA was subjected to RT-qPCR assaying IL-6 (A), MCP-1 (B), IL-1β (C), RANTES (D), 
TNFα (E), ICAM (F), IκBα (G) and A20 (H) mRNA levels, and results were normalized to the respective 
geometric mean of GAPDH, PPIB and 36B4 household genes’ mRNA levels. The condition induced with 
solely TNFα was set at 100 and results were recalculated accordingly. Results are the mean ±SD of three 
independent experiments and statistical analysis on potentially significant differences was performed using 
a one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons post-test. ns not significant, 
**p<0.01***p<0.001. 
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1.4. Discussion  

In this study we investigated the impact of a classic glucocorticoid (GC) dexamethasone (Dex) and 

a selective glucocorticoid receptor modulator (SEGRM) compound A (CpdA) on the biology of 

colon cancer-derived CAFs. The stromal environment of the tumor plays an essential role in 

cancer cell proliferation, invasion and metastasis. Via paracrine secretion of multiple factors, 

among which TGFβ, cancer cells recruit myofibroblasts from surrounding precursors, which in 

turn are able to modulate the epithelial-to-mesenchymal transition (EMT) of cancer cells, 

ultimately facilitating invasion [76,347]. The glucocorticoid receptor (GR) is responsible for anti-

inflammatory actions via transactivation or transrepression mechanisms, of which the latter 

mechanisms results in downregulation of many pro-inflammatory genes including cytokines, 

enzymes and adhesion molecules [188,245,349]. Many of those factors are involved in the cross-

talk between cancer cells and their stromal environment [76]. 

 

Figure 22. Dex decreases the N-cadherin mRNA levels, but leaves its protein unaffected. (A). CT5.3hTERT 
cells were treated with solvent, Dex (1µM) or CpdA (10µM) for 24h. Total mRNA was subjected to RT-qPCR 
assaying N-cadherin mRNA levels, and results were normalized to the respective geometric mean of 
GAPDH, PPIB and 36B4 household genes mRNA levels. The solvent condition was set at 1 and results were 
recalculated accordingly. Results are the mean ±SD of three independent experiments and statistical 
analysis on potentially significant differences was performed using a one-way analysis of variance (ANOVA) 
and Tukey’s multiple comparisons post-test. ns not significant, ***p<0.001. (B). CT5.3hTERT cells were 
treated with solvent, Dex (1µM), CpdA (10µM) or co-treated with Dex (1µM) and CpdA (10µM) for 24, 48 
and 72h. Cell lysates were subjected to Western Blot analysis for detection of N-cadherin and the loading 
control tubulin. Results are representative of three independent experiments. 

Our study shows that both Dex and CpdA do not affect CAF viability, although a high 

concentration of CpdA can impair its cell growth rate (Figure 18). Both compounds activate GR, 

which is reflected by their ability to translocate the GR, although in CpdA’s case this effect is very 

modest (Figure 17A). Earlier, CpdA was reported to translocate GR into the nucleus, although with 

a slightly (in A549 cells) or clearly (in LNCaP-GR cells and fibroblast-like synoviocytes) lower 

efficacy than a classic GC [268,269,353]. Both Dex and CpdA can impose their anti-inflammatory 

properties at specific target genes (Figure 21). CpdA can act as a selective GR modulator in CAFs, 

as combined with its repressive action on NFκB-mediated gene expression (Figure 17C, 21), it fails 
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to stimulate GR transactivation, characteristic for steroidal GCs (Figure 20D,E). Although both 

compounds are functional in CAFs, only a select number of pro-inflammatory genes are affected 

by repressive actions of activated GR (Figure 21). Dex and CpdA downregulate TNFα-stimulated 

expression of RANTES and ICAM, only Dex represses MCP-1, IL-1β and TNFα, and none of our GR-

modulating compounds downregulate IL-6 (Figure 21). This phenomenon might be caused by the 

fact that the anti-inflammatory actions of GR are composed of a layered multitude of mechanisms 

depending on the transcription factor that is involved and the cell-specific background in which 

they are recorded [245,365]. 

 

Figure 23. Dex decreases TGF levels. (A,B,C). CT5.3hTERT cells were treated with solvent, Dex (1µM) or 
CpdA (10µM) for 6 (A), 24 (B) or 48h (C). Total mRNA was subjected to RT-qPCR assaying TGFβ mRNA levels, 
and results were normalized to the respective geometric mean of GAPDH, PPIB and 36B4 household genes’ 
mRNA levels. The solvent condition was set at 1 and results were recalculated accordingly. Results are the 
mean ±SD of three independent experiments and statistical analysis on potentially significant differences 
was performed using a one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons post-test. 
ns not significant, *p<0.05, **p<0.01. (D). CT5.3hTERT cells were treated with solvent, Dex (1µM), CpdA 
(10µM), RU (2µM) or co-treated with Dex (1µM) and RU (2µM). After 48h cell culture supernatant was 
collected and concentrated 10 fold. The protein fractions of these concentrated supernatants were 
subjected to Western Blot analysis for detection of TGFβ. Results are representative of three independent 
experiments. 
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Figure 24. Dex reduces the expression of hepatocyte growth factor. CT5.3hTERT were treated with solvent 
Dex (1µM) or CpdA (10µM) for 6h (A), 24h (B) or 48h (C). Total mRNA was subjected to RT-qPCR assaying 
HGF mRNA levels, and results were normalized to the respective geometric mean of GAPDH, PPIB and 36B4 
household genes’ mRNA levels. The solvent condition was set at 1 and results were recalculated 
accordingly. Results are the mean ±SD of three independent experiments and statistical analysis on 
potentially significant differences was performed using a one-way analysis of variance (ANOVA) and Tukey’s 
multiple comparisons post-test. ns not significant, ***p<0.001. (D). CT5.3hTERT cells were treated with 
solvent, Dex (1µM), CpdA (10µM), or RU (2µM) or co-treated with Dex (1µM) and RU (2µM). After 48h cell 
culture supernatant was collected and analysed via an HGF ELISA. The solvent condition was set at 1 and 
results were recalculated accordingly. Results are the mean ±SD of two independent experiments and 
statistical analysis on potentially significant differences was performed using a one-way analysis of variance 
(ANOVA) and Tukey’s multiple comparisons post-test. **p<0.01, ***p<0.001. 

Sustained exposure to glucocorticoids causes GR homologous downregulation, which in turn plays 

an essential role in causing glucocorticoid resistance [195,368,371]. Our results show that in CAFs 

the long-term exposure to GCs leads to homologous downregulation of GR, which does not occur 

with CpdA treatment (Figure 20), as was also shown before in fibroblast-like synoviocytes [352]. 

However, we now also established that simultaneous treatment of CAFs with CpdA and the GC 

Dex does not prevent this downregulation phenomenon. Given the fact that CpdA can also 

decrease the GR mRNA level, further research into the precise cause of the absence of a CpdA-

induced GR downregulation remains required. 

Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells lose their typical 

morphology and gain the ability to become motile and invasive. EMT is characteristic for embryo 

development and wound healing, but it also plays a significant role in neoplastic progression of 



Part III: Results – Chapter 1. 

92 

human epithelial tumors and in fibrosis [121,372]. Changes associated with EMT include 

downregulation of typical epithelial markers (e.g. cytokeratin, E-cadherin), which results in loss of 

cell polarity, and the acquisition of typical mesenchymal markers (e.g. expression of N-cad, 

vimentin, fibronectin) [121,373].  

 

Figure 25. Dex decreases the expression of tenascin C. (A,B,C). CT5.3hTERT were treated with solvent, Dex 
(1µM) or CpdA (10µM) for 6 (A), 24 (B) or 48 (C) h. Total mRNA was subjected to RT-qPCR assaying TNC 
mRNA levels, and results were normalized to the respective geometric mean of GAPDH, PPIB and 36B4 
household genes’ mRNA levels. The solvent condition was set at 1 and results were recalculated 
accordingly. Results are the mean ±SD of three independent experiments and statistical analysis on 
potentially significant differences was performed using a one-way analysis of variance (ANOVA) and Tukey’s 
multiple comparisons post-test. ns not significant, ***p<0.001. (D). CT5.3hTERT cells were treated with 
solvent, Dex (1µM), CpdA (10µM), Hcrt (1µM), FA (1µM), Pred (1µM), RU (2µM) or co-treated with Dex 
(1µM) and RU (2µM). After 48h cell culture supernatant was collected and concentrated 10 fold. The 
protein fractions of these concentrated supernatants were subjected to Western Blot analysis for detection 
of TNC. Results are representative of three independent experiments. 

Since CAFs share characteristics with smooth-muscle cells and fibroblasts, they express vimentin, 

αSMA and a mesenchymal marker N-cad. The latter path-finding molecule is involved in migration 

and invasion, and in CAFs it contacts with the αSMA cytoskeleton [35,131]. Both CAFs and invasive 

cancer cells express N-cadherin, which enables them to sense the surrounding environment and 

to promote invasion into extracellular matrix [374]. Moreover, N-cad and αSMA are upregulated 

in CAFs by TGFβ [131]. None of these typical myofibroblastic proteins, i.e. vimentin, αSMA or N-

cad are affected by Dex or CpdA treatment (Figure 20, 22). Downregulation of mRNA with 

constant protein levels of N-cad might be caused by less effective metalloproteinase-dependent 

cleavage of N-cad [375]. 
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As EMT is a complex net of cellular and molecular mechanisms, there are multiple pathways 

involved in its regulation, mediated by factors among which TGFβ and NFκB play a role. 

Myofibroblasts recruited by cancer cells are able to trigger EMT in epithelial cancers via the 

secretion of multiple cytokines, chemokines and molecules involved in remodeling the 

extracellular matrix [76,347]. Many of those factors, such as RANTES and IL-6, are up-regulated via 

NFκB signaling during the process of inflammation. An activated GR acts as a suppressor for NFκB 

actions via transrepressive mechanisms, which makes it the first line of defense against 

inflammation [370]. Therefore, repressing the expression of pro-inflammatory factors is important 

to control the cross-talk between CAFs and cancer cells at the invasion front. 

HGF is a mesenchyme-derived factor with morphogenic and mitogenic activities on endothelial 

and epithelial cells [376]. HGF is secreted by CAFs and is able to activate c-Met receptor tyrosine 

kinase of a target cell, which in turn leads to invasive growth [377]. Our results present that due 

to GC treatment both mRNA and protein levels of secreted HGF in cell culture supernatant are 

strongly diminished (Figure 24, Addendum 1, Supplementary Figure 2). It was reported before 

that GCs also downregulate expression of HGF in human lung fibroblasts and leukemic cells [378], 

and in human osteoblast-like cells [379], but this was never researched in CAFs. 

TNC is an extracellular matrix glycoprotein commonly expressed in embryonic and adult tissues 

which undergo active remodeling. During development, disease or injury or in case of cancer, TNC 

is often expressed by myofibroblasts and with a low-affinity it can bind to and activate epidermal 

grow factor receptor (EGFR) [77,380,381]. Our results show a strong decrease in TNC mRNA and 

protein levels after treatment with Dex (Figure 25). CpdA, however, has no impact on TNC mRNA, 

but it slightly affects protein levels. The Dex-mediated decrease of TNC is only partially reversed 

by co-treatment with RU486 (Figure 25, Addendum 1, Supplementary Figure 2). Moreover, a 

treatment with RU486 alone also leads to down-regulation of TNC. This phenomenon might be 

explained by the fact that RU486 acts as a strong antagonist for transactivation actions of GR, but 

it has a weaker effect on GR transrepression and it also carries partial agonist properties [238]. 

TGFβ is a cytokine that controls many cellular mechanisms such as proliferation and cell 

differentiation. Depending on the cell state, it can both lead to tumor suppression or promotion. 

In normal epithelial cells it serves as a growth inhibitor, however, in absence of the TGFβ 

receptor, which is frequently inactivated in human colon carcinomas due to mutations, 

production of this factor promotes recruitment of surrounding stromal cells, without affecting 

cancer cells themselves [8,100]. Together with the platelet-derived growth factor (PDGF) TGFβ is 

responsible for triggering wound-healing and appearance of myofibroblasts [382]. Recruited 

myofibroblasts, among many other factors also secrete TGFβ, which in turn stimulates directly or 

indirectly other surrounding cells, as well as processes of angiogenesis and escape of the 
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immunosurveillance [100,383]. Our results show that in CAF TGFβ mRNA expression is only 

slightly affected by Dex treatment, and not by CpdA (Figure 23A-C, Addendum 1, Supplementary 

Figure 2). Protein analysis, however, shows that levels of secreted TGFβ precursor and active 

TGFβ molecule strongly decrease upon Dex treatment, but not CpdA (Figure 23D). 

Glucocorticoids are widely used in inflammatory afflictions, but also in anti-cancer therapy 

[204,348]. However, long-term use of GCs might carry deleterious effects on patients’ health, can 

cause GC resistance [371] and accelerate cancer progression [278,280,354]. Hence, it is important 

to continue to investigate the molecular mechanisms of GCs in tumors, but also in their 

environment. In this study we have investigated the role of GR modulation in cancer-surrounding 

cells, namely colon cancer-derived CAFs, which are known to strongly influence cancer cells via 

cell-to-cell or paracrine signaling [76]. In these CAFs, GC treatment results in a significant 

downregulation of several factors involved in cancer invasion and progression, i.e. TGFβ, TNC and 

HGF/SF. Notwithstanding the inhibitory effects on the expression of these factors via GC-bound 

GR, the selective GR modulator CpdA has only a very modest impact on the gene and protein 

levels of these cancer-promoting factors, which is potentially caused by either the involvement of 

a specific GC/GR or GR transactivation component or caused by the observed impaired CpdA-

driven GR translocation in these CAFs. However, CpdA does clearly slow down CAF cell growth. 

Although current research on selective GR modulators already creates the opportunity to 

dissociate transactivating actions of GR from the transrepressive ones, further studies are still 

needed to fully explore this mechanism and the limitations of these compounds. 



Part III: Results – Chapter 1. 

95 

Acknowledgments 

Z. Drebert is supported by the Special Research Fund of the UGent (BOF-UGent) (grant number 

01D02011T) and since October 2014 she is supported by the Research Foundation- Flanders 

(FWO-Vlaanderen) (grant number 1.1.Z75.15.N.00). I.M. Beck is a postdoctoral fellow of the 

Research Foundation-Flanders (FWO-Vlaanderen) (grant number 1.2.405.10.N.00). Additional 

financial support was provided by the Care Program Oncology Gent (ZOG-UZGent). None of the 

afore mentioned funding bodies had any active part in preparing the manuscript. We convey our 

gratitude to Nora Sundahl, Karlien van Wesemael and Dorien Clarisse for their technical support. 

The authors have no conflicts of interest to disclose. 

 



Part III: Results – Chapter 1. 

96 



  

97 

CHAPTER 2: ARTICLE 2. 

 

 

Redrafted from:  

Drebert Z, MacAskill M, Doughty-Shenton D, De Bosscher K, Bracke M, Hadoke PWF, Beck IM 

(2017) Colon cancer-derived myofibroblasts increase endothelial cell migration by 

glucocorticoid-sensitive secretion of a pro-migratory factor. Vascul Pharmacol 89: 19-30 



Part III: Results – Chapter 2. 

98 

Abstract 

Angiogenesis is important in cancer progression and can be influenced by stromal myofibroblasts, 

also known as cancer-associated fibroblasts (CAFs). We addressed the hypothesis that 

glucocorticoids indirectly affect angiogenesis by altering the release of pro-angiogenic factors 

from colon cancer-derived CAFs. 

Our study shows that glucocorticoids reduced prostanoids, urokinase-type plasminogen activator 

(uPA) and angiopoietin-like protein-2 (ANGPTL2) levels, but increased angiogenin (ANG) in 

supernatant from human CT5.3hTERT colon cancer-derived CAFs. Conditioned medium from 

solvent- (CMCTRL) and dexamethasone (Dex)-treated (CMDEX) CAFs increased human umbilical vein 

endothelial cell (HUVEC) proliferation, but did not affect expression of pro-angiogenic factors or 

tube-like structure formation (by HUVECs or human aortic ECs). In a HUVEC scratch assay CMCTRL-

induced acceleration of wound healing was blunted by CMDEX treatment. Moreover, CMCTRL-

induced neovessel growth in mouse aortic rings ex vivo was also blunted using CMDEX. The latter 

effect could be ascribed to both Dex-driven reduction of secreted factors and potential residual 

Dex present in CMDEX (indicated using a dexamethasone-spiked CMCTRL control). A similar control 

in the scratch assay, however, revealed that altered levels of factors in the CMDEX, and not 

potential residual Dex, were responsible for decreased wound closure. 

In conclusion, our results suggest that glucocorticoids indirectly alter endothelial cell function 

during tumor development in vivo. 
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2.1. Introduction 

Angiogenesis, the formation of new blood vessels from an existing vascular network [85], is 

essential for embryonic growth. In healthy adults angiogenesis is restricted to discrete 

physiological processes (e.g. the regulation of the reproductive tract, muscle growth) and 

contributes to wound healing [44]. Excessive or impaired angiogenesis has also been implicated in 

disease pathogenesis (e.g. in malignant or inflammatory disorders [44]), and is associated with 

promotion of tumor growth and metastasis. Consequently, the potential of angiogenesis as a 

therapeutic target (e.g. in cancer [44,85,96], retinopathy [334] and tissue ischemia [384]) has 

attracted considerable research interest. 

Tumors use blood vessels not only as a source of nutrients and oxygen, but also to transport 

cancer cells to establish a new, metastatic site [43]. Cancer cells can directly modulate 

angiogenesis via secretion of pro-angiogenic factors, such as vascular endothelial growth factor 

(VEGF), angiopoietins, basic fibroblast growth factor (bFGF), interleukins (ILs) or transforming 

growth factors (TGFs) [86,96]. Epithelial tumors consist of cancer cells and a surrounding 

microenvironment composed of an extracellular matrix, stromal cells, inflammatory cells and 

endothelial cells (ECs). All these components play an important role during tumor development 

[138]. Myofibroblasts recruited by cancer cells, also known as cancer-associated fibroblasts (CAFs) 

are present at the invasive edge of the tumor and share properties of both smooth-muscle cells 

and fibroblasts. Myofibroblasts, which are essential during wound healing and embryonic 

development [346], can also influence tumor progression [76,140] either directly, through 

paracrine signaling to cancer cells, or indirectly, by modulation of protease activity, modulation of 

extracellular matrix remodeling, and recruitment of immune cells [76,138]. CAFs also have the 

potential to alter EC function and influence tumor angiogenesis [138,140]. In breast cancer, CAFs 

promote vascularization by recruiting endothelial progenitor cells to the tumor via increased 

release of stromal-cell derived factor 1 (SDF)-1 [139]. Moreover, prostaglandin (PG)E2-stimulated 

intestinal sub-epithelial myofibroblasts display an increased expression of vascular endothelial 

growth factor (VEGF) and hepatocyte growth factor/scatter factor (HGF/SF), which promote EC 

migration [385]. 

Glucocorticoids (GCs) are steroidal ligands of the glucocorticoid receptor (GR), which belongs to 

the nuclear receptor superfamily. Stimulation of GR regulates many physiological processes, 

mainly via gene transactivation or transrepression [188]. Consequently, glucocorticoids are 

clinically important as potent anti-inflammatory compounds in treatment of autoimmune 

diseases [204], and as adjuvants in cancer therapy [348]. Moreover, GCs provide an effective 

treatment of infantile hemangiomas [276]. GC-mediated inhibition of angiogenesis is well-
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documented [333] and has therapeutic potential in the treatment of cancer [287,336]. The direct, 

growth-inhibitory influence of GCs on vascular smooth muscle cells is well-established [386,387]. 

Furthermore, more recent investigations have demonstrated GR-dependent, GC-mediated 

inhibition of tube-like structure formation by ECs in vitro, independent of GCs’ anti-inflammatory 

actions [344]. GCs can also inhibit angiogenesis indirectly by suppression of pro-angiogenic 

factors, such as VEGF and IL-8, produced by prostate cancer cells [287], and possibly by 

extracellular matrix degradation or modification of cytokine production [388]. 

We recently reported that GCs regulate CAFs, decreasing production and secretion of a number of 

factors linked to cancer progression and invasion: tenascin C (TNC), TGFβ, HGF/SF [8,77,389]. 

These factors are all known to also affect the angiogenic response through a number of 

mechanisms [101,390,391]. Combined with our data, these studies suggest that GCs could have 

the ability to inhibit CAF-induced stimulation of angiogenesis by altering the composition of the 

CAF-derived secretome. Therefore, this investigation addressed the hypothesis that exposure of 

colon cancer-derived CAFs to GCs can reduce secretion of angiogenic factors and thus inhibit their 

ability to promote pro-angiogenic changes in ECs. 

2.2. Materials and Methods 

2.2.1. Cells and reagents 

Human colon cancer-derived CAFs (CT5.3hTERT cells) were isolated as described [77,171] and 

cultured (37°C, 10% CO2) in Dulbecco’s modified Eagles Medium (DMEM; Life Technologies, 

Merelbeke, Belgium) supplemented with 10% fetal calf serum (Greiner bio-one, Wemmel, 

Belgium), 100 U/ml penicillin and 0.1 mg/ml streptomycin (Life Technologies). Primary human 

umbilical vein endothelial cells (HUVEC; Promocell, Heidelberg, Germany) and human aortic 

endothelial cells (HAoEC; Promocell) were cultured in Endothelial Cell Growth Medium-2 (EGM2; 

Lonza, Wokingham, UK), containing all manufacturer-supplied supplements (2% FCS, 0.1% VEGF, 

0.4% hFGF-2, 0.1% R3-IGF-1, 0.1% hEGF, 0.1% ascorbic acid, 0.1% heparin, 0.1% GA-100) except 

hydrocortisone. HUVECs were cultured (37°C, 5% CO2) on 0.1% gelatin-coated flasks and were 

studied between passages 2 and 7. In experiments we used EGM2 containing 2%FCS or 0%FCS, 

abbreviated respectively EGM2S+ and EGM2S-. 

Dexamethasone (Dex), hydrocortisone (Hcrt), prednisolone (Pred), fluocinolone acetonide (FA) 

and the GR antagonist RU38486 (RU) were purchased from Sigma-Aldrich (Diegem, Belgium). All 

reagents were dissolved in ethanol and used at a final concentration of 1µM, except RU (2µM). A 

selective GR modulator (SEGRM), compound A (CpdA) was prepared as previously described [268] 
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and used at a final concentration of 10µM. The total solvent concentration (maximally 0.1%) was 

consistent in all conditions. 

2.2.2. Conditioned medium preparation 

Conditioned medium (CM) was obtained from 10x106 CT5.3hTERT CAFs and prepared as 

described [77]. Briefly, cells were washed three times with serum-free DMEM and treated for 48h 

with solvent (ethanol), Dex (1µM), Hcrt (1µM), Pred (1µM), CpdA (10µM) or RU (2µM) in serum-

free DMEM. After this incubation CM was collected, concentrated 10-fold using centrifugal filter 

tubes with a 3kDa cut-off (Amicon Ultra, Merck Millipore, Darmstadt, Germany), filter-sterilized 

(0.2µm pore size) and stored (-20°C) for subsequent functional and biochemical assays. For 

functional assays CM from solvent and Dex-treated CAFs (CMCTRL and CMDEX, respectively) were 

diluted with EGM2S+ or EGM2S- or with serum-free DMEM prior to treatment. Taking into account 

the concentrating procedure of CM and further dilution in the functional assays, the maximal final 

concentration of Dex in the CMDEX treatment was calculated to be 50nM. CM concentrations and 

dilutions used in particular experiments are listed in Addendum 2 (Supplementary Table 1). 

2.2.3. Protein analysis: protein array, western blot and immunoassay (ELISA) 

CM from CT5.3hTERT CAFs treated with Dex or solvent (CMCTRL and CMDEX, respectively) were 

collected after 48h, 4-fold concentrated and subjected to Ray Bio® Biotin Label-based Human 

Antibody Array I (Raybiotech, GA, USA, cat no: AAH-BLM-I-2) which allows simultaneous analysis 

of expression levels of 507 human target proteins (including cytokines, chemokines, adipokines, 

growth factors, angiogenic factors, proteases, soluble receptors and soluble adhesion molecules) 

in cell culture supernatants. The assay was performed according to the manufacturer’s 

instructions with the results visualized using X-Ray films (GE Healthcare, Diegem, Belgium) and the 

signal evaluated using ImageJ software [362]. For further analysis, we set the threshold value for 

the ratio between relative protein signals in CMCTRL vs. CMDEX as greater than 1.5. Selected factors 

analyzed using the protein array are listed in Addendum 2 (Supplementary Table 2). 

For further validation of the protein array results, CT5.3hTERT CAFs were incubated for 48h with 

steroids (Dex, Hcrt, Pred; 1μM), CpdA (10μM), RU (2μM) or solvent. Conditioned media were 

collected, concentrated (10-fold) and protein concentrations were evaluated using the Lowry 

method [392]. Samples were prepared in SDS sample buffer (50 mM Tris pH 6.8; 2% SDS; 10% 

glycerol; bromophenol blue; 100 mM DTT), loaded (25µg) onto an SDS-PAGE gel and subjected to 

the standard Western Blot protocol, as described by Santa Cruz (Santa Cruz, Heidelberg, 

Germany). The proteins were probed using the following primary anti-human antibodies: anti-uPA 

(H-140) (1/500, Santa Cruz Biotechnology, cat no: sc-14019), anti-ANG I (H-123) (1/500, Santa 

Cruz Biotechnology, cat no: sc-9044) and anti-ANGPTL2 (P-13) (1/500, Santa Cruz Biotechnology, 



Part III: Results – Chapter 2. 

102 

cat no: sc-107143). Results were visualized using species-specific HRP-linked secondary antibodies 

and reagents: anti-rabbit (1/4000, GE Healthcare, cat no: NA934V), anti-goat (1/3000, Santa Cruz 

Biotechnology, cat no: sc-2020), ECL solution (Thermo Scientific, Gent, Belgium) and X-Ray films 

(GE Healthcare). Signal quantifications were performed using ImageJ software [362]. 

The internalization and subsequent degradation of the acetylated low density lipoprotein (Ac-LDL) 

is a characteristic feature of endothelial cells. In order to evaluate whether the conditioned 

medium from CAFs affects the basic endothelial character of HUVECs, we performed an Ac-LDL 

uptake assay. Briefly HUVECs were incubated for 24h in EGM2S+ (control), DMEM, CMCTRL or 

CMDEX. DMEM and 10-fold concentrated CM were diluted 1:1 with EGM2S+. An Ac-LDL assay was 

then performed, as described in Supplementary methods (Addendum 2). 

In order to determine the concentrations of prostanoids in conditioned medium from CAFs and 

HUVECs, and in HUVEC lysates, we performed immunoassays (ELISAs) for prostaglandin F2α 

(PGF2α), prostacyclin (PGI2; by assessing 6-keto-PGF1α) and prostaglandin E2 (PGE2), according to 

manufacturer’s instructions (Enzo Life Sciences, Antwerp, Belgium, cat no: ADI-900-069, ADI-900-

001 and ADI-900-004, respectively). Absorbance was quantified on Paradigm Detection Platform 

(Beckman Coulter) using SoftMax Pro 6.1 software. HUVEC lysates were prepared from cells 

treated with EGM2S+ (control), CMCTRL or CMDEX (diluted 1:1 with EGM2S+, giving a final 5-fold 

concentration of CM). After 24h cells were lyzed with TOTEX buffer (20mM Hepes/KOH pH 7.9; 

0.35M NaCl; 20% glycerol; 1% NP40; 1mM MgCl2; 0.5mM EDTA; 0.1mM EGTA; 1/100 HALT 

Protease and Phosphatase Inhibitor Cocktail, ThermoFisher scientific, cat no: 78440) and the 

lysates were subjected to immunoassays. 

2.2.4. RNA isolation and RT-qPCR 

CT5.3hTERT CAFs were incubated for 48h with steroids (Dex, Hcrt, FA, Pred; 1μM), CpdA (10μM), 

RU (2μM) or solvent (control). HUVECs were incubated for 24h with EGM2S+ (control), DMEM, 

CMCTRL or CMDEX. DMEM and CM were diluted 1:1 with EGM2S+, the final CM concentration was 5-

fold. To isolate the total RNA from CAFs we used TRIzol reagent (Life Technologies) and to isolate 

HUVEC RNA we used an RNeasy Kit (Qiagen, Hilden, Germany), according to the manufacturer’s 

instructions. Reverse transcription (RT) of CAF RNA was performed using the iScript kit (Bio-Rad, 

Temse, Belgium), while RT of HUVEC RNA was performed using QuantiTect Reverse Transcription 

Kit (Qiagen). The cDNA obtained was subjected to quantitative PCR (qPCR) using LightCycler 480 

SYBR Green I Master reagents (Roche Diagnostics, Rotkreuz, Switzerland), according to the 

manufacturer’s instructions. qPCR reactions were performed in triplicate using the LightCycler 

480 system (Roche Diagnostics), with the following conditions: (A) initial denaturation 95 °C, 

5min; (B) 45 cycles of denaturation 95°C, 15s, annealing and elongation 60 °C, 45s. Primer 
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sequences are listed in Addendum 5 (Supplementary Table 4). Specific signal of the gene of 

interest was normalized to the respective geometric mean expression level of 3 reference genes 

(GAPDH, PPIB, 36B4).  

2.2.5. Cell viability (MTT) and proliferation (SRB) assays 

To test viability HUVECs were seeded in 96-well plates, equilibrated in EGM2S+ for 24h and 

incubated for 24h with DMEM, CMCTRL or CMDEX. DMEM and 10-fold concentrated CM were 

diluted 1:1 with EGM2S+. As a negative control HUVECs were treated with 10% Triton X-100 

(Sigma-Aldrich) for 1h (data not shown). Cell viability was assessed using a classic 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [393], performed with 

reagents purchased from Sigma-Aldrich. 

Proliferation was assessed using a sulforhodamine-B (SRB) test, as described previously [394]. 

HUVECs seeded in 96-well plates were left to equilibrate in EGM2S+ for 24h and then incubated in 

EGM2S+ or EGM2S-, DMEM, CMCTRL, CMCTRL+Dex (50nM) or CMDEX for 24-72h. DMEM and 10-fold 

concentrated CM were diluted 1:1 with EGM2S+ or EGM2S-. Results were obtained using a 

Molecular Devices OPTImax Microplate Reader and the SoftMax® Pro 3.0 software. Data were 

expressed on a scale where maximal proliferation in controls (EGM2S+ at 72h) was set to 100%. 

2.2.6. Scratch assay 

HUVEC migration was assessed using the IncuCyte ZOOM Scratch assay (Essen Bioscience, 

Hertfordshire, UK) according to manufacturer’s instructions. Briefly, 3x104 HUVECs/well were 

seeded in 96-well culture plates and cultured for 18h in EGM2S+ at 37°C, 5% CO2. A scratch was 

then made using the WoundMaker tool (Essen Bioscience). The cells were washed twice with 

medium, and the medium was then replaced with EGM2S+, EGM2S-, CMCTRL, CMCTRL+Dex (50nM) or 

CMDEX. 10-fold concentrated CM were diluted 1:1 with EGM2S-. Plates were then installed in the 

IncuCyte ZOOM system and images (10x magnification) of the wound were recorded in each well 

every hour for 48h. Scratch closure rate was evaluated with the IncuCyte software, expressed as 

percentage of relative wound density (RWD) over a 30h period. RWD = 0 at time 0 and 100% 

when cell confluence within the wound area is equal to that outside the initial wound area, thus 

normalizing for changes in cell density due to proliferation or other non-motogenic 

pharmacological effects. The area under the curve (AUC) was calculated for each condition and 

the results are expressed as AUC from RWD.  
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2.2.7. Tube-like structure (TLS) formation assay 

The TLS assay was performed by seeding HUVECs or HAoECs onto Matrigel™, as previously 

described [395]. Briefly, HUVECs and HAoECs (15x103 cells/well) were seeded in 96-well plates 

coated with Matrigel™ matrix (Corning, Flintshire, UK) in either EGM2S+, DMEM, CMCTRL or CMDEX. 

DMEM and 10-fold concentrated CM were diluted 1:4 with EGM2S+. This assay required a lower 

concentration of CM than that used in other experiments (4:1 ratio EGM2S+:CM, giving a final 

concentration of 2x basal CM) as ECs failed to generate TLS networks when EGM2S+ was used in 

1:1 ratio with DMEM. Phase-contrast images (5x magnification) of the centre of each well were 

taken 3h, 6h and 23h post induction and TLS formation was evaluated using the Angiogenesis 

Analyzer plug-in developed for the ImageJ software [362] by Carpentier et al. [396]. The total 

length of tubes, number of junctions, and number of segments were calculated from images 

taken when the network reached stability (6h post induction for HUVECs; 3h post induction for 

HAoECs). 

2.2.8. Aortic ring assay 

For the ex vivo aortic ring assay [397] C57BL/6 male mice aged 8-12 weeks (Charles River 

Laboratories) were sacrificed by CO2 asphyxiation at day 0 and the thoracic aortas were isolated 

and washed with serum-free DMEM. Isolated aortas were cleaned of connective tissue, divided 

into 1-2 mm rings and embedded in rat tail collagen type 1 (1mg/ml, Sigma-Aldrich). Rings were 

then incubated (37°C, 5% CO2) in serum-free DMEM (control), CMCTRL, CMCTRL+Dex (50nM) or 

CMDEX. 10-fold concentrated CM were diluted 1:1 with serum-free DMEM. Media were replaced 

after 3 and 7 days in culture. Phase-contrast microscopy was used to count outgrowths on days 5, 

7 and 10. Phase-contrast images (5x magnification) were taken at the corresponding time points. 

Sprout lengths were measured on pictures obtained after 10 days post treatment using ImageJ 

software [362]. Higher power images of formed sprouts are displayed in Addendum 2 

(Supplementary Figure 8). 

2.2.9. Statistical analyses 

Data are presented as mean ± standard deviation or as a Tukey’s box plot. Statistical analysis was 

performed using GraphPad Prism 5.03 with a one-way analysis of variance (ANOVA) and Tukey’s 

multiple comparisons post-test, or with Mann-Whitney U test, as appropriate. The applied test is 

indicated in the figure legends. A p < 0.05 was considered statistically significant. Where 

applicable, results were expressed as a relative number and the untreated condition was set as 1, 

100 or 100% and other conditions were recalculated accordingly. 
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2.3. Results 

2.3.1. Glucocorticoids modify secretion of angiogenic factors by CAFs. 

In order to obtain a broader insight into the effects of GR modulation on colon cancer-derived 

CAFs, we performed a protein array which detects over 500 different proteins from cell 

supernatants. Analysis of the protein array data (Figure 26A, Supplementary Figure 3) indicated 

that incubation with Dex (1μM) for 48 hours reduced the expression of urokinase-type 

plasminogen activator (uPA) and angiopoietin-like protein-2 (ANGPTL2), but increased expression 

of angiogenin (ANG) in supernatant from CT5.3hTERT CAFs. The array also identified a number of 

factors present in the CM from CAFs that were not sensitive to Dex treatment. Selected 

angiogenesis-related and inflammatory factors are listed in Addendum 2 (Supplementary Table 2). 

Western blot analyses (Figure 26B) and RT-qPCRs (Figure 26C-E), were used to verify the results 

obtained from the protein array and to possibly extend our findings to other GR ligands and 

modulators. Western blot analysis of 10-fold concentrated cell supernatants confirmed that Dex 

(1μM; 48h) reduced protein levels of uPA, and ANGPTL2, whilst increasing ANG protein levels 

(Figure 26B). A similar regulation pattern was seen with other glucocorticoids (Hcrt and Pred). In 

contrast, the SEGRM CpdA (10μM; 48h) did not reduce uPA and ANGPTL2 protein levels and did 

not upregulate ANG. RU (2μM; 48h) alone had no effect, but blocked Dex-induced changes which 

suggests a GR-regulated mechanism. RT-qPCR of mRNA isolated from CT5.3hTERT cells showed 

that glucocorticoids seemed to reduce expression of uPA (Figure 26C) and ANGPTL2 (Figure 26D), 

but this only achieved significance for the effects of Dex and Pred on ANGPTL2. The length of 

exposure to Dex matters here, as Dex-induced reduction of uPA expression was found to be 

significant after a shorter (6h) exposure (Addendum 2, Supplementary Figure 4). Consistently, all 

glucocorticoids significantly upregulated ANG (Figure 26E). In contrast, to what is observed for 

protein, CpdA yielded different results at the transcriptional level, following 48h of treatment, and 

upregulated the mRNA levels of uPA, ANGPTL2 and ANG. Treatment with RU had no effect on 

ANG and ANGPTL2 mRNA levels, but dramatically increased expression of uPA. Any effect of Dex 

was lost or reduced in the presence of RU (Figure 26C-E). 
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Figure 26. Glucocorticoids alter the secretion of proteins implicated in angiogenesis from cultured CAFs. (A) 
CT5.3hTERT cells were treated with solvent or Dex (1µM). After 48h cell supernatants were collected, 4-fold 
concentrated and subjected to Ray Bio® Biotin Label-based Human Antibody Array I. Relevant fragments of 
the array are displayed. The six dots displayed on the left of the array act as a positive control (pos.ctrl.). (B) 
CT5.3hTERT cells were treated with solvent, Dex (1µM), CpdA (10µM), Hcrt (1µM), Pred (1µM), or RU (2µM) 
or co-treated with Dex (1µM) and RU (2µM) for 48h. Cell supernatants were collected, 10-fold concentrated 
and subjected to Western Blot analysis for the detection of uPA, ANG and ANGPTL2. Protein bands 
representing ANGPTL2 belong to the same blot. Results are representative of three independent 
experiments. (A, B) Western blot and protein array signals were quantified using ImageJ software [362]. (C, 
D, E) CT5.3hTERT cells were treated for 48h with solvent, Dex (1µM), CpdA (10µM), Hcrt (1µM), FA (1µM), 
Pred (1µM), RU (2µM) or co-treated with Dex (1µM) and RU (2µM). mRNA isolated from cells was subjected 
to RT-qPCR assaying uPA, ANG and ANGPTL2 mRNA levels. Results were normalized to the respective 
geometric mean of GAPDH, PPIB and 36B4 reference genes’ mRNA levels. Results are shown as the mean ± 
SD of three independent experiments and statistical analysis was performed using a one-way analysis of 
variance (ANOVA) and Tukey’s multiple comparisons post-test. ns: not significant, *: p<0.05, ***: p<0.001. 
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2.3.2. Conditioned medium from dexamethasone-treated CAFs contains decreased levels of 

prostanoids. 

Prostanoids are known to influence cell proliferation and migration. Immunoassays (ELISAs) 

demonstrated that PGF2α, PGI2 (by assessing 6-keto-PGF1α) and PGE2 were all present in 

conditioned medium from solvent-treated CAFs (CMCTRL) (Figure 27). There was a pattern of 

decreased levels of all three prostanoids in conditioned medium from CAFs exposed to 

dexamethasone (CMDEX), which achieved significance for PGF2α (Figure 27A) and PGI2 (Figure 27B) 

but not for PGE2 (Figure 27C).  

ELISA demonstrated that PGF2α, PGI2 and PGE2 were also present in medium from HUVECs 

(Addendum 2, Supplementary Figure 4A-C). Exposure to CMCTRL (24h) did not alter the 

concentration of these prostanoids in HUVEC supernatants and this response was not altered if 

the conditioned medium was derived from Dex-treated CAFs (CMDEX). These prostanoids were 

also detected in HUVEC lysates but their concentrations were not altered by 24h exposure to 

CMCTRL or CMDEX (Addendum 2, Supplementary Figure 5D-F). 

 

Figure 27. Conditioned medium from dexamethasone-treated CAFs contains reduced levels of prostanoids. 
CT5.3hTERT cells were treated with solvent or Dex (1µM). After 48h cell supernatants were collected, 10-
fold concentrated and analyzed (ELISA) for (A) PGF2α, (B) PGI2 (by assessing 6-keto-PGF1α) and (C) PGE2 
levels. Results are the mean ± SD of four independent experiments and statistical analysis was performed 
using a one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons post-test, ns: not 
significant, *: p<0.05. 

2.3.3. HUVEC proliferation is promoted by conditioned medium from CAFs. 

The impact of conditioned medium from CAFs on the basic endothelial character of HUVECs was 

assessed using an Ac-LDL uptake assay. Results indicate Ac-LDL uptake was not altered in HUVECs 

following 24h exposure to DMEM, CMCTRL or CMDEX (Addendum 2 Supplementary Figure 6). 

Prior to proliferation experiments, an MTT assay was performed and demonstrated no negative 

effect on viability or metabolism from either treatment (Figure 28A). On the contrary, CMCTRL and 

CMDEX treatment increased the production of the MTT formazan product.  

In order to investigate the impact of CAF CM on EC growth we performed an SRB assay. In 

comparison with the control treatment (EGM2S+) HUVEC proliferation was reduced by exposure to 
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DMEM (Figure 28B). However, proliferation was increased compared with EGM2S+ when the 

HUVECs were exposed to CMCTRL after 48 and 72h. Use of CMDEX did not result in a significant 

difference with the EGM2S+ control.  

In the absence of FCS (Figure 28C), both CMCTRL and CMDEX induced a dramatic increase in HUVEC 

proliferation compared with EGM2S- control, at 24h and 72h post treatment. Addition of Dex 

(50nM) to CMCTRL did not alter HUVEC proliferation. 

2.3.4. Conditioned medium from solvent-treated CAFs causes an increase in HUVEC migration 

which is lost with conditioned medium from Dex-treated cells. 

One of the crucial events of angiogenesis includes EC migration into perivascular stroma, due to 

the presence of pro-angiogenic factors. In the scratch assay (Figure 29, Addendum 2, 

Supplementary Figure 7), 30h exposure to CMCTRL increased (by approximately 25% compared 

with EGMS-) the area under the curve (AUC) (Figure 29C), indicating accelerated wound healing. 

This acceleration was not seen when cells were exposed to CMDEX (Figure 29B, C). These data 

suggest, therefore, that CMCTRL contains a factor(s) that stimulate HUVEC migration which is not 

present in CMDEX. Direct addition of Dex (50nM) did not abolish the CMCTRL-induced increase in 

wound healing (Figure 29B, C), indicating the lack of effects with CMDEX was not due to residual 

Dex. 

2.3.5. Conditioned medium from CAFs does not influence tube-like structure formation by 

HUVECs or HAoECs. 

The ability of ECs to form three-dimensional structures (tube-like structures, TLS) represents cell 

differentiation belonging to a later phase of angiogenesis (Addendum 2, Supplementary Figure 8). 

The ability of HUVECs to form a net of TLS was mildly impaired after incubation with DMEM, 

CMCTRL or CMDEX diluted in a ratio of 1:4 with EGM2S+, as compared to untreated control (EGM2S+). 

This inhibition only achieved significance for total tubule length (Figure 30A), but not for number 

of junctions (Figure 30B) or number of segments (Figure 30C). Exposure to conditioned media had 

a similar effect in HAoECs with neither CMCTRL nor CMDEX significantly altering total tubule length 

(Figure 30D), number of junctions (Figure 30E) or number of segments (Figure 30F). 

2.3.6. Conditioned medium from CAFs alters gene expression in HUVECS. 

In order to investigate whether the CAF-derived CM affects the expression of angiogenesis-related 

genes in HUVECs, we performed RT-qPCR for VEGF, VEGFR1, VEGFR2 and IL-6. RT-qPCR was run 

on mRNA obtained from HUVECs exposed for 24h to DMEM or conditioned medium, diluted in a 

1:1 ratio with EGM2S+. Exposure to CM produced an apparent reduction in VEGF mRNA expression 

(Figure 31A) that achieved significance (0.62-fold change) only for the comparison of CMCTRL with 

the untreated (EGM2S+) control. CM had little effect on VEGFR1 (Figure 31B) or VEGFR2 (Figure 
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31C) mRNA, with a small increase (1.63 fold change) in VEGFR1 seen only when CMDEX-treated 

cells were compared with untreated (EGM2S+) controls. In contrast, exposure to CMCTRL induced a 

clear (2.16-fold) increase in IL-6 transcripts (Figure 31D) which was not observed when cells were 

exposed to CMDEX. 

2.3.7. Conditioned medium from CAFs promotes outgrowth formation from mouse aortic rings. 

The organ culture-aortic ring assay enabled investigation of the effects of CAF-derived 

conditioned medium in a more complex model of angiogenic tube formation, involving the 

presence of non-endothelial cells (smooth muscle cells, fibroblasts, pericytes, inflammatory cells) 

in an intact arterial ring (rather than in 2 dimensional culture). Ex vivo outgrowth vessel formation 

in mouse aortic rings (Figure 32) was increased by exposure to CMCTRL after 5 days (Figure 32A), 7 

days (Figure 32B) and 10 days (Figure 32C) of incubation, compared to untreated control (DMEM). 

This effect was less pronounced using CMDEX and by addition of Dex (50nM) to CMCTRL. In addition, 

the length of outgrowths (Addendum 2, Supplementary Figure 9) was reduced by exposure to 

CMDEX or by addition of Dex (50nM) to CMCTRL (Figure 33). 
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Figure 28. HUVEC proliferation is promoted by conditioned medium from CAFs. (A) HUVECs were treated 
with EGM2

S+
 mixtures with DMEM, CM

CTRL
 or CM

DEX
 in 1:1 ratio. After 24h cells were subjected to MTT assay 

and percentage cell viability was assessed. Obtained values were normalized to the values obtained from 
cells treated with DMEM and other conditions were recalculated accordingly. (B) HUVECs were treated with 
either EGM2

S+
 (control) or with EGM2

S+
 mixtures with DMEM, CM

CTRL
 or CM

DEX
 in 1:1 ratio. After 24h, 48h 

and 72h cells were subjected to SRB assay and percentage cell proliferation was calculated. Obtained values 
were normalized to a control of untreated cells at 72h, which indicates their maximal proliferation. (C) 
HUVECs were treated with either EGM2

S+
, EGM2

S-
 or with EGM2

S-
 mixtures with DMEM, CM

CTRL
, CM

DEX
 or 

CM
CTRL

+Dex (50 nM) in 1:1 ratio with EGM2
S-

. Obtained values were normalized to a control of cells treated 
with EGM2

S+
 at 72h, which indicates their maximal proliferation. Results (A, B, C) are the mean ± SD of at 

least three independent experiments and statistical analysis was performed using a one-way analysis of 
variance (ANOVA) and Tukey’s multiple comparisons post-test. ns: not significant, *: p<0.05, **: p<0.01, 
***: p<0.001. 
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Figure 29. Acceleration of HUVEC migration by CAF-derived conditioned medium is lost when the CAFs are 
exposed to dexamethasone. (A, B, C) HUVECs were cultured in EGM2

S+
. After 18h a wound was created in 

the confluent cell monolayer. Cells were washed and treated with either EGM2
S+

, EGM2
S-

, or EGM2
S-

 
mixtures with CM

CTRL
, CM

DEX
 or CM

CTRL
+Dex (50 nM) in 1:1 ratio. (A, B) The wound healing process was 

examined with the IncuCyte ZOOM system, measuring percentage relative wound density (RWD) for each 
condition every hour. (C) Area under curve (AUC) was calculated for each treatment and displayed in 
parallel. Results (A, B, C) are represented as the mean ± SD of four independent experiments and statistical 
analysis was performed using a one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons 
post-test. ns: not significant, ***: p<0.001. 

2.4. Discussion 

This investigation addressed the hypothesis that exposure of CAFs to glucocorticoids would 

reduce secretion of angiogenic factors and inhibit their ability to promote angiogenesis. We 

showed that conditioned medium from colon cancer-derived CAFs stimulated proliferation and 

migration of HUVECs. Secretion of certain angiogenic factors was altered in conditioned medium 

from Dex-treated CAFs (CMDEX), and this was associated with a reduced HUVEC migration, but did 

not affect HUVEC proliferation. Exposure to conditioned media only slightly altered expression of 

angiogenic genes in HUVECs, and had no effect on tube-like structure formation in a 2-
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dimensional assay (with HUVECS and HAoECs). In contrast, in an ex vivo model (mouse aorta), 

conditioned media from CAFs increased the number and length of vascular outgrowths. This 

effect was impaired when CAFs had been exposed to Dex; most likely a combined result of direct 

inhibition by residual steroid in the conditioned medium together with Dex-driven reduction of 

certain factors secreted by CAFs. 

Angiogenesis is a complex, multi-step process regulated by a balance between pro- and anti-

angiogenic factors [85,96]. It can be modified at various stages, including degradation of 

basement membrane and EC shape change, invasion, migration and proliferation of ECs to form a 

migrating column, EC differentiation, formation of tight connections and capillary tubes, fusion 

with other vessels and cell maturation and pruning [12]. CAFs have the potential to regulate 

angiogenesis during tumor development. They are recruited by cancer cells and act as potent 

promoters of tumor growth and invasion [76]. For example, breast cancer-associated fibroblasts 

promote tumor microvascularization, leading to enhanced tumor growth [139]. CAF-mediated 

regulation of vessel formation in cancer could be attributed to direct and/or indirect modulation 

of angiogenesis [76,138]. We have previously shown the GC-sensitive and GR-regulated release of 

several pro-angiogenic factors (TNC, TGFβ and HGF/SF) by cultured colon cancer-derived CAFs 

[389]. The present study extends this work by showing that these cells secrete factors that 

promote survival, proliferation and migration of ECs. In culture conditions devoid of serum, CM 

from colon cancer-derived CAFs could compensate for the absence of FCS, thus maintaining 

HUVEC proliferation (Figure 28C) and migration (Figure 29A). A similar increase in HUVEC 

migration was demonstrated with CM collected from intestinal sub-epithelial 18Co 

myofibroblasts, an effect that was stimulated by pre-treatment of the myofibroblasts with 

prostaglandin (PG)E2 [385].  

Since CAF-derived CM regulated migration and proliferation of ECs, it was reasonable to propose 

that it might also influence angiogenesis through direct interaction with the endothelium. 

However, the failure of CM to stimulate TLS formation by HUVECs or HAoECs in a 2-dimensional 

assay suggests that this was not the case (Figure 30). Furthermore, a lack of effect on 

angiogenesis is consistent with the relatively small impact of CM on expression of angiogenic 

factors in HUVECs (Figure 31). VEGF is a key promoter of angiogenesis, and acts through 

interaction with VEGFR2 [45,96]. VEGFR1, which has a 10-fold weaker kinase activity than 

VEGFR2, may act as a VEGF-trap and, thus, suppress angiogenesis [45,95]. IL-6 is a multifunctional 

pro-inflammatory cytokine which has potent pro-angiogenic properties [398,399]. Interestingly, 

CM from intestinal subepithelial 18Co myofibroblasts were also ineffective unless activated with 

PGE2, which increased VEGF expression in those myofibroblasts [385]. Similarly, mouse embryonic 

fibroblasts did not promote tube formation unless pre-treated with CM from gastric tumor cells, 
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which increased expression of VEGF in the fibroblasts [400]. These findings suggest that CM 

obtained from colon CAFs contain insufficient levels of VEGF and, coupled with a lack of VEGF 

activation in HUVECs treated with CM, could explain the inability of CM to stimulate tube 

formation by isolated HUVECs and HAoECs. 

GCs are exploited clinically, predominantly for their anti-inflammatory properties, for the 

treatment of numerous disorders, including asthma and rheumatoid arthritis [204]. They also 

serve as adjuvants in tumor therapy [348]. However, the influence of GCs on the solid tumor and 

its microenvironment is controversial and not fully understood [281]. In prostate and breast 

cancer GC therapy has some benefits, whereas in gastro-intestinal cancer GC treatment has no 

effect and in lung cancer may even be detrimental [278]. We have previously shown that 

production and secretion of TNC, TGFβ and HGF/SF by CAFs is reduced by GC treatment [389]. 

This is comparable with the demonstration here that GCs reduce expression and secretion of uPA 

and ANGPTL2, whilst upregulating ANG (Figure 26). This response is probably mediated via a GR-

dependent mechanism, since Dex is relatively GR selective and its effects were blocked by GR 

antagonism with RU. The alterations in uPA, ANGPTL2 and ANG secretion were observed with 

other GCs, namely Hcrt, FA and Pred. Although the non-steroidal SEGRM CpdA [268] is able to 

transrepress the expression of several GR-regulated genes in CAFs [389], it suppresses neither 

uPA nor ANGPTL2 protein levels. As previously reported [268,389] CpdA is unable to transactivate 

GC-inducible genes via a classic GRE-mediated mechanism. Therefore, consistent with our results, 

any effect on ANG protein or mRNA level was not expected. These findings support a common 

mechanism for the action of GCs and add to the evidence that CpdA has different signaling 

properties than classic GCs [389]. The factors identified as affected by GCs have been linked to 

cancer progression and/or angiogenesis. uPA regulates vascular remodeling [401] and its 

expression correlates with tumor angiogenesis and tumor vessel invasion in gastric and breast 

cancer [402,403]. ANG is named for its ability to stimulate vessel growth, in normal and 

pathological states, including in tumors [106]. Angiopoietin-like proteins can stimulate vascular 

cells and influence metabolism and tumor biology [404]. Thus it was logical to predict that 

modulation of these factors by exposure of the CAFs to Dex might influence angiogenesis. 

Moreover, levels of prostaglandins, factors known to modulate inflammatory response and to 

promote cancer progression [405,406], were also reduced by Dex treatment in CAF-derived 

conditioned medium (Figure 27). This corresponds with previous reports listing glucocorticoids as 

inhibitors of prostaglandin synthesis [407].  
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Figure 30. Conditioned medium from myofibroblasts does not affect tube-like structure formation by 
HUVECs or HAoECs. HUVECs (A, B, C) and HAoECs (D, E, F) were seeded on Matrigel-coated wells and 
treated with either EGM2

S+
 or EGM2

S+
 mixtures with DMEM, CM

CTRL
 or CM

DEX
 in 1:4 ratio. Phase-contrast 

images were taken at 6h post induction for HUVECs and 3h post induction for HAoECs. The total tubule 
length (A, D), number of junctions (B, E) and number of segments (C, F) were assessed using Angiogenesis 
Analyzer plug-in for ImageJ software [362,396]. Results are the mean ± SD of three independent 
experiments and statistical analysis was performed using a one-way analysis of variance (ANOVA) and 
Tukey’s multiple comparisons post-test, ns: not significant, *: p<0.05. 
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Figure 31. Influence of conditioned medium from CAFs on angiogenesis-related gene expression in HUVECs. 
(A, B, C, D) HUVECs were treated with either EGM2

S+
 or EGM2

S+
 mixtures with DMEM, CM

CTRL
 or CM

DEX
 in 

1:1 ratio. After 24h, mRNA isolated from cells was subjected to RT-qPCR assaying (A) VEGF, (B) VEGFR1, (C) 
VEGFR2 and (D) IL-6 mRNA levels. Obtained results were normalized to the respective geometric mean of 
GAPDH, PPIB and 36B4 reference genes’ mRNA levels. Results are the mean ± SD of three independent 
experiments and statistical analysis was performed using a one-way analysis of variance (ANOVA) and 
Tukey’s multiple comparisons post-test. Ns: not significant, *: p<0.05, **: p<0.01, ***: p<0.001. 

The failure of CMDEX to alter the CMCTRL-induced stimulation of HUVEC proliferation (Figure 28B, C) 

indicates that modulation of uPA, ANGPTL2, ANG or prostaglandins does not influence growth of 

these cells. There was no evidence that CAF-derived conditioned media induce prostaglandin 

production by HUVECs. This contrasted with the dramatic reduction in HUVEC migration when 

CMDEX was compared with CMCTRL (Figure 29B, C). The fact that this effect was not replicated by 

direct addition of Dex to CMCTRL indicates that the reduced migration is the result of changes in 

the CAF-derived secretome. In support, some of the components of CM that are suppressed by 

GC treatment can influence cell motility. uPA release from TGFβ-stimulated endometrial stromal 

cells increases migration of human microvascular ECs [408], whilst knock-down of the ANGPTL2 

gene impairs migration of endothelial colony forming cells [409]. The same is true for HGF/SF and 

tenascin C, which we have previously shown to be downregulated by GCs [389]. HGF/SF has well-
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known mitogenic and motogenic actions on ECs [410,411] and, thus, a reduction in HGF/SF could 

explain impaired HUVEC migration. Tenascin C promotes EC migration by binding to annexin II on 

the target cell surface, as well as by promoting phosphorylation of focal adhesion kinase 

[412,413]. Thus, decreased levels of these proteins in CM from Dex-treated CAFs are likely to 

explain the impaired motogenic response seen in HUVECs. Prostaglandins, especially PGE2 and 

PGI2, are known pro-angiogenic factors that directly induce EC survival, migration and tube-

formation by activating respective receptors [406,414]. Therefore, insufficient levels of these 

factors in CMDEX may have also negatively influenced HUVEC migration.  

It was notable that, in contrast to the 2-dimensional assay with HUVECs and HAoECs (Figure 30), 

CMCTRL did increase the number and length of vascular outgrowth formation in mouse aortic 

explants cultured ex vivo (Figure 32, Figure 33). This is unlikely to be simply due to a functional 

difference between umbilical vein and aortic ECs as single cultures of HUVECs and HAoECs 

responded in a similar way to CM in the TLS assay. Outgrowth formation in this assay is 

dependent on growth factor release from adventitial inflammatory cells [415]. Concomitant 

herewith, It is notable that the most dramatic change in transcript expression in HUVECs treated 

with CM was a 2-fold increase in IL-6 (Figure 31D), a pro-inflammatory cytokine that can influence 

angiogenesis. IL-6 and indeed many inflammatory proteins were not detected in the CAF-derived 

conditioned medium (Addendum 2, Supplementary Table 2). It has been reported that IL-6 

stimulates angiogenesis directly leading to increased proliferation and migration of ECs [399], as 

well as endothelial progenitor cells [398]. This suggests the presence of inflammation-stimulating 

molecules in the CAF-derived secretome that are also sensitive to down-regulation by GCs. These 

results suggest that CM from CAFs increases angiogenesis indirectly by stimulation of growth 

factor release by other (non-endothelial) cells in the vascular wall. The reduced effect observed 

with CMDEX can be attributed to both Dex-driven reduction of certain factors from CAF secretome 

and residual Dex in the medium, as addition of a comparable concentration of Dex to CMCTRL had a 

similar effect, but slightly less pronounced (Figure 32). This is consistent with the well-

documented direct angiostatic properties of GCs [344,386,387,397], including suppression of 

outgrowth formation in the aortic ring assay [397]. 
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Figure 32. Conditioned medium from CAFs promotes neovessel formation in mouse aortic rings embedded 
in collagen. (A, B, C) Explants were prepared from aortas isolated from adult male C57BL/6 mice. After 
embedding in collagen, aortic rings were cultured in serum-free DMEM (control) or treated with CM

CTRL
, 

CM
DEX

 or CM
CTRL

+Dex (50nM), in 1:1 ratio with serum-free DMEM. Vascular sprouts were quantified after 5 
days (A1, A2), 7 days (B1, B2) and 10 days (C1, C2) in culture. Left panel histograms represent the mean ± SD 
of six independent experiments. Results were analyzed using a one-way analysis of variance (ANOVA) and 
Tukey’s multiple comparisons post-test. ns: not significant, *: p<0.05, **: p<0.01, ***: p<0.001. 
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Figure 33. Conditioned medium from CAFs increases outgrowth length in mouse aortic rings embedded in 
collagen. Explants were prepared from aortas isolated from adult male C57BL/6 mice. After embedding in 
collagen, aortic rings were treated with CM

CTRL
, CM

DEX
 or CM

CTRL
+Dex (50nM), in a 1:1 ratio with serum-free 

DMEM. Images of explants and vascular sprouts were captured after 10 days and measurement of 
outgrowth length was performed using ImageJ software [362]. Results are the mean ± SD of six 
independent experiments and were analyzed using a one-way analysis of variance (ANOVA) and Tukey’s 
multiple comparisons post-test. ns: not significant, *: p<0.05, ***: p<0.001. 

In conclusion, this investigation has demonstrated that colon cancer-derived CAFs secrete pro-

angiogenic factors and stimulate endothelial cell migration. This migration is inhibited by 

exposure of the CAFs to GCs which alter the components of the CAF secretome. A similar 

modulation of angiogenesis appears to be the result of indirect interaction of CM with non-

endothelial vascular cells, possibly through activation of vascular inflammatory pathways. This 

work suggests that treatment with GCs may reduce the ability of CAFs to stimulate endothelial 

cell migration and angiogenesis, through both direct and indirect effects on the vascular wall. 
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Abstract  

Cancer-associated fibroblasts (CAFs) support cancer growth, invasion, and metastasis. 

Glucocorticoids (GCs), drugs often administered together with chemotherapy, are steroidal 

ligands of the glucocorticoid receptor (GR), a transcription factor which upon activation regulates 

expression of multiple genes involved in suppression of inflammation. We have previously shown 

that in dexamethasone (Dex)-treated CAFs derived from colon cancer, production and secretion 

of several factors related to cancer progression, such as tenascin C (TNC) and hepatocyte growth 

factor (HGF), were strongly suppressed.  

In this study we show that GCs can neutralize the cancer cell-promoting properties of CAFs. 

Conditioned medium from solvent-treated CAFs (CMCTRL) stimulates proliferation, motility and 

invasive morphotype of GR-deficient HCT8/E11 colon cancer cells. Yet, HCT8/E11 proliferation and 

invasive morphotype are impaired upon treatment with conditioned medium from Dex-treated 

CAFs (CMDEX), but HCT8/E11 cell migration is slightly increased under these conditions. Moreover, 

expression and potential activity of MMP-2 is also reduced in CMDEX compared with CMCTRL. These 

combined in vitro results concur with the results from in vivo chick chorioallantoic membrane 

assays, where the co-cultures of CAFs with colon cancer cells displayed impaired tumor formation 

and cancer cell invasion due to Dex administration. Combined, GC treatment influences cancer 

cell behavior indirectly through effects on CAFs. 
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3.1. Introduction 

Colorectal cancer (CRC) is one of the most common malignant neoplastic diseases in Europe and 

Northern America [4]. CRC’s morbidity is linked to western dietary lifestyle, age, obesity, smoking, 

alcohol consumption, lack of physical activity, and certain hereditary diseases [416]. Despite an 

improvement in treatment, CRC accounted for nearly 10% of cancer-related deaths in 2012 [4].  

Cancer development is driven by sustained proliferative signaling, resistance to apoptosis and to 

growth suppressors, angiogenesis, escape from immune response, reprogramming of 

metabolism, invasion, and metastasis [8]. Last decades’ progress in cancer research was enhanced 

by an improved understanding of the importance of the tumor microenvironment. Stromal 

components including inflammatory cells, cells forming tumor vasculature and lymphatics, 

myofibroblasts, and the extracellular matrix are not passive bystanders. On the contrary, they 

play a crucial role in virtually every step of cancer progression. Researching this complex net of 

interactions between certain components of the tumor microenvironment creates opportunities 

for diagnosis and therapy [8,68]. 

Myofibroblasts present in the tumor stroma are also known as cancer-associated fibroblasts 

(CAFs). They mostly differentiate from resident fibroblasts and share attributes of smooth muscle 

cells and fibroblasts and express markers, such as α-smooth muscle actin, fibroblast activation 

protein-α and vimentin [417]. CAFs are recruited by cancer cells at the invasion front of the tumor 

and they influence cancer cells via cell-to-cell contact or via secreted products, such as cytokines, 

chemokines, enzymes, and other factors [76,347]. CAFs are abundantly present in CRC compared 

to normal mucosa, both at primary and metastatic sites, which is related to poor overall and 

relapse-free survival [167]. CAFs were shown to contribute to the following tumor-promoting 

actions: cancer proliferation, induction of angiogenesis, protection from anti-tumor immune 

responses, activation of invasion, and promotion of metastasis [127]. 

Depending on the type and stage of the cancer different types of treatment are implemented. 

Most often patients receive a combination of therapies, which include surgery, radiation therapy, 

chemotherapy, immunotherapy, targeted therapy, hormone therapy, and stem cell transplant [5]. 

Cancer treatment, however, faces problems of therapy resistance, which can be also triggered by 

cancer stroma. Environment-mediated drug resistance (EMDR), whereby CAFs protect cancer cells 

by secreting a multitude of cytokines is linked with cancer aggressiveness and poor response to 

treatment [142].  

Glucocorticoids (GCs) are drugs that are often used in combination with chemotherapy, hormonal 

therapy, radiotherapy, and surgery of solid tumors, in order to relieve symptoms of the disease 

and the associated side-effects of these treatments [278]. GCs are steroidal compounds, essential 
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in regulating metabolism, blood pressure, reaction to stress, and immune response [231]. GCs are 

able to bind and activate the glucocorticoid receptor (GR). Ligand-bound GR is translocated from 

the cytoplasm to the nucleus, where it acts as a homodimerized transcription factor to positively 

regulate expression of numerous specific target genes by binding to glucocorticoid responsive 

elements (GREs). Furthermore, GR in its monomeric form can tether other transcripion factors, 

such as NFκB or AP-1, resulting in inhibition of transcription of many pro-inflammatory genes. 

These two major mechanisms are known respectively as transactivation and transrepression 

[188,220]. GR actions result in suppression of inflammation and therefore GCs are widely used in 

the clinic against many inflammatory disorders, such as asthma, allergies, and autoimmune 

diseases [204,231]. Besides their anti-inflammatory properties, GCs also serve as angiostatic 

agents in infantile hemangiomas [276] and form a treatment of hematological malignancies, such 

as multiple myeloma and lymphoma [279]. The role of GR modulation in solid tumor biology, 

however, is still not fully understood. This is also a topic of controversy, since the result of GC 

treatment depends on the primary site of the tumor and extends from possible detrimental 

effects in lung cancer, over neutral in gastrointestinal cancer to positive effects in prostate cancer 

[278,281]. Interestingly, GR mRNA levels are elevated in the stroma of breast cancer, compared to 

the healthy breast tissue. Moreover, in breast cancer, there is a positive correlation between GR 

mRNA levels in the tumor stroma and the tumor stage [418]. Lastly, approximately 50% of human 

colon tumors are GR-positive and the increased GR expression in colorectal adenocarcinoma 

patients is actually linked with a poor prognosis [312,419].  

In our previous studies, we have shown that GR modulation has an impact on the colon cancer-

derived CAFs biology and function. Treatment with the GC dexamethasone (Dex) diminished 

inflammatory gene expression, and moreover, generated changes in the CAF secretome, including 

suppression of expression of hepatocyte growth factor/scatter factor (HGF/SF) and tenascin C 

(TNC) [389,420]. HGF/SF is a well-documented factor with mitogenic and motogenic properties on 

epithelial and endothelial cells, that acts via the c-Met receptor [134]. TNC is an extracellular 

matrix protein abundant during the wound healing process and also involved in cancer invasion 

via low-affinity binding to the epidermal growth factor receptor (EGFR) [381]. CAF-derived HGF 

and TNC were proven to be both necessary - but not sufficient on their own - to promote colon 

cancer cell invasion in vitro, via RhoA and Rac pathways [77]. Interestingly, both HGF and TNC 

were strongly downregulated in CAFs, at mRNA and protein levels, following a GC treatment. 

Therefore, we wanted to establish the relevance of these GC-driven changes in CAF secretomes 

on cancer cell proliferation, migration, and invasion, and as such, to provide a novel insight into 

the role of GCs in the colon cancer microenvironment. 
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3.2. Materials & Methods 

3.2.1. Cells and reagents 

HCT8/E11 human colorectal adenocarcinoma (ATCC number: CCL-244) [421], in-house engineered 

HCT8/E11-luc cells [422], HCT116 human colon carcinoma (ATCC number: CCL-247) [423] and 

CT5.3hTERT human stromal colon cancer-derived CAFs [77,171] were cultured in DMEM (Life 

Technologies, Merelbeke, Belgium) supplemented with 10% fetal calf serum (Greiner bio-one, 

Wemmel, Belgium), 100 U/ml penicillin and 0,1 mg/ml streptomycin (Life Technologies) at 37°C 

with 10% CO2. DMEM used in experiments was serum-free or supplemented with charcoal-

stripped serum (Life Technologies). The GCs dexamethasone (Dex), hydrocortisone (Hcrt), 

prednisolone (Pred) and fluocinolone acetonide (FA) were purchased from Sigma-Aldrich 

(Diegem, Belgium) and dissolved in ethanol. A selective GR modulator (SEGRM) compound A 

(CpdA) was prepared according to De Bosscher, et al. [268]. Recombinant murine tumor necrosis 

factor (TNF)α was prepared as described by Vanden Berghe, et al. [355] and dissolved in serum-

free DMEM. Firefly D-luciferine was purchased from PerkinElmer (Zaventem, Belgium) and 

prepared according to the manufacturer’s instructions. Human recombinant hepatocyte growth 

factor (hrHGF) was purchased from PromoKine (Heidelberg, Germany, cat no: c-64532), human 

recombinant tenascin C (hrTNC) was purchased from R&D Systems (Abingdon, UK, cat no: 3358-

TC-50) and both were resuspended in PBS. 

Table 7. List of compounds used to incubate CT5.3hTERT CAFs and subsequent preparation of conditioned 
media. The concomitant ethanol concentrations are identical in all conditions. 

Compound Concentration Abbreviation used for the CM 

Ethanol 

Dexamethasone 

Hydrocortisone 

Prednisolone 

Fluocinolone acetonide 

Compound A 

0.1% 

1 µM 

1 µM 

1 µM 

1 µM 

10 µM 

CMCTRL 

CMDEX 

CMHCRT 

CMPRED 

CMFA 

CMCPDA 

 

3.2.2. Conditioned medium preparation 

Conditioned medium (CM) was prepared according to previous protocols [77]. Briefly, 

supernatants were collected from 10x106 CT5.3hTERT CAFs, which were cultured for 48h in 

serum-free DMEM and treated with solvent (ethanol), Dex or, optionally, with Hcrt, Pred, FA or a 

SEGRM CpdA in concentrations listed in Table 7. Subsequently, CM was 10-fold concentrated with 
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centrifugal filter tubes with a 3kDa cut-off (Amicon Ultra, Merck Millipore, Darmstadt, Germany) 

and filter-sterilized prior to storage at -20°C. 

3.2.3. Cell lysis and western blot analyses 

Cells were collected from HCT8/E11, HCT116 and/or CT5.3hTERT cultures and subsequently 

washed with PBS. Protein lysates were made using TOTEX buffer (20mM Hepes/KOH pH 7.9; 

0.35M NaCl; 20% glycerol; 1% NP40; 1mM MgCl2; 0.5mM EDTA; 0.1mM EGTA; 2mM pefabloc; 

10µg/ml aprotinin). Protein concentration was determined via the Lowry method [392]. 

Alternatively, 10-fold concentrated conditioned medium from CAFs treated with solvent or Dex 

(1µM) for 48h, was prepared for western blot analysis using SDS sample buffer (50mM Tris pH6.8; 

2% SDS; 10% glycerol; bromophenol blue, 100mM DTT).  

Samples were subjected to SDS-PAGE followed by a standard Western Blot protocol, as described 

by Santa Cruz (Santa Cruz Biotechnology, CA, USA). As primary antibodies, we used anti-GR (H-

300) (1/1000, Santa Cruz Biotechnology, cat no: sc-8992), anti-tubulin (1/4000, Sigma-Aldrich, cat 

no: T5168) and anti-human MMP-2 (1/500, R&D Systems, cat no: AF902). We used species-

specific HRP-linked secondary antibodies anti-mouse, anti-rabbit (GE Healthcare, Diegem, 

Belgium, cat no: NA931V, NA934V) and anti-goat (Santa Cruz Biotechnology, cat no: sc-2020). For 

visualization of the results we used ECL solution (Thermo Scientific, Gent, Belgium) and X-Ray 

films (GE Healthcare) or alternatively WesternBright Quantum HRP substrate (Advansta, CA, USA) 

and a ProXima imaging platform 2850 with ProXima AQ-4 software (Isogen Life Science, De 

Meern, The Netherlands). Quantification of western blot results was performed using ImageJ 

software [362] according to previous protocols [389]. 

3.2.4. RNA isolation and RT-qPCR 

HCT8/E11, HCT116 and CT5.3hTERT cells were collected and total RNA was isolated. Alternatively, 

HCT8/E11 cells were first induced with solvent, Dex (1µM) or a SEGRM CpdA (10µM) for 1h and 

then co-treated with TNFα or equivalent volume of DMEM for another 5h, before total RNA was 

isolated. We used TRIzol reagent (Life Technologies) to isolate the total RNA from these cells, 

which was subsequently followed by reverse transcription (RT), performed with an iScript kit (Bio-

Rad), and quantitative PCR (qPCR) using Lightcycler 480 SYBRGreen I Master reagents (Roche 

Diagnostics, Rotkreuz, Switzerland), all according to the manufacturers’ instructions. We 

performed qPCR reactions in triplicates using the Lightcycler® 480 system (Roche Diagnostics) and 

the following protocol: A) initial denaturation 95°C, 5’; B) 40 cycles of denaturation 95°C, 15’’, 

annealing and elongation 60°C, 45”. Primer sequences are available in Addendum 5 

(Supplementary Table 4). Further, results were normalized to the results obtained for the 

respective geometric mean of 3 housekeeping genes (GAPDH, PPIB, 36B4). Final results are 
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displayed as relative mRNA expression, in which the solvent control condition was set as 1 and all 

other conditions were recalculated accordingly. 

3.2.5. Gelatin zymography 

Conditioned medium from CT5.3hTERT cells treated with solvent or Dex (1µM) for 48h was 10-

fold concentrated and applied to the zymography protocol as described [424]. Briefly, conditioned 

medium samples were subjected to SDS-PAGE using 10% polyacrylamid-0.1% gelatin gels. Next, 

gels were incubated in renaturing solution (2.5% Triton-X) for 30 min, then washed twice with 

dH2O and incubated at 37°C in a developing buffer (50mM Tris-HCl pH 7.8, 0.2 M NaCl, 5mM 

CaCl2) overnight. Subsequently, gels were stained with Coomassie Brilliant Blue R-250 (Bio-Rad, 

Temse, Belgium) for 1h and then destained with destaining solution (10% methanol, 5% acetic 

acid). Quantification of zymogram results was performed with ImageJ software as explained 

earlier [362]. As this particular assay may not represent the actual state of MMPs released by 

cells, due to possible inactivation via noncovalent binding with tissue inhibitors of MMPs (TIMPs), 

these results are expressed as “potential enzyme activity”. 

3.2.6. Cell proliferation assays 

To assess proliferation of HCT8/E11-luc cells we performed a co-culture assay and assays using 

CM from CAFs, based on previous protocols [422]. In a co-culture assay CT5.3hTERT cells were 

seeded in 24-well plates together with HCT8/E11-luc cells at a 10:1 ratio and subjected to solvent 

or Dex (1µM) incubation. After a 72h incubation, D-luciferine (150 μg/mL) was added to the wells 

and luciferase activity was measured with the In vivo Imaging System Lumina II (IVIS®, Caliper Life 

Science, Hopkinton, MA, USA). Similarly, HCT8/E11-luc cells were seeded in 24-well plates 

(104/well) and after 24h cells were treated with DMEM, CMCTRL or CMDEX. D-luciferine (150 μg/mL) 

was added to the wells 72h post treatment and bioluminescence was measured using the IVIS. 

Results were analyzed via Living Image® software (Caliper Life Science). 

Additionally, we performed a sulforhodamine-B (SRB) test, as described previously [394] using the 

parental cell line HCT8/E11. Briefly, cells were seeded in 96-well plates (5x103/well) and treated 

with DMEM, CMCTRL or CMDEX for selected time points (24h, 48h and 72h). Following fixing, 

staining and washing steps, plates were scanned using a ParadigmTM Detection Platform 

(Beckman Coulter®, Krefeld, Germany) with SoftMax® Pro 6.1 software. Results are expressed in a 

scale, where the untreated post treatment condition at 72h was set at 1 and all other conditions 

were recalculated accordingly. 
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3.2.7. Cell morphology assay 

The cell morphology assays on collagen were performed as described by De Wever, et al. [425]. 

Briefly, single cell suspensions of 7x104 HCT8/E11 were seeded in 6-well plates, or alternatively, 

1.2x104 cells were seeded in 24-well plates, all on a layer of type I collagen (derived from rat tail; 

1mg/ml; Santa Cruz Biotechnology). Cells were treated with DMEM or with CM from CAFs as 

indicated in the figure legends. Cell morphology was observed 24h post treatment under a phase-

contrast microscope (Leica DMI3000B with LAS4.1 software) and digital images from 10-15 

microscopic fields (20 x magnifications) were taken for further evaluation. Cells with spread and 

round morphology were counted and the results per microscopic field are expressed as a relative 

cell spread index.  

3.2.8. Migration assay 

HCT8/E11 cell migration was assessed using a Transwell system. Cells were seeded in serum-free 

DMEM on Transwell inserts (5x104 cells/insert) with 8.0µm pores (Corning Inc., Lasne, Belgium, 

cat no: 3422) and left to migrate through the membrane for 24h towards serum-free DMEM, 

CMCTRL or CMDEX, which was applied in the lower compartments of the Transwell system. After 24h 

inserts were removed and the inside parts of these inserts were gently wiped with cotton swabs 

to remove cells which did not migrate. Next, the membranes were fixed with ice-cold methanol 

and washed 3 times for 5 min in PBS. Membranes were then stained with DAPI (0.4µg/ml), 

washed with PBS and subsequently mounted on microscope glasses. Membranes were observed 

under a fluorescence microscope (Zeiss Axiovert 200M, Carl Zeiss, Micro-Imaging, Heidelberg, 

Germany), which enabled counting the cells that migrated through the porous membrane. Cells 

were counted per microscopic field (10 x magnification), and 10 fields per condition were 

assessed.  

3.2.9. Adhesion assays 

Cell-to-cell adhesion assays between CAFs and HCT8/E11 cells were performed as described [422]. 

CT5.3hTERT CAFs were cultured in 24-well plates until confluency. Subsequently, cells were 

incubated with solvent or Dex (1 µM) for 24h prior to an additional seeding of 104 HCT8/E11-luc 

cells/well. After 24h of co-culturing, cells were washed twice with DMEM in order to remove the 

non-adherent cells. Subsequently D-luciferine (150 μg/mL) was added to the wells and luciferase 

activity was measured using the IVIS system.  

HCT8/E11 cancer cells’ adhesion to collagen coating was measured as described [78]. Briefly, 

HCT8/E11 cells (104/well) were seeded in quadruplicates in type I collagen-coated (50 µg/ml) E-16 

plates (ACEA Biosciences, Sand Diego, CA, USA). Cells were seeded in serum-free DMEM, CMCTRL 

and CMDEX. Cell-electrode impedance indicating cell adhesion was assessed every 5 minutes for 
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24h using xCELLigence RTCA SP (ACEA Biosciences). Cell adhesion is reported as a relative cell 

index and areas under the curve (AUC) were calculated for the first 60 minutes of each treatment. 

3.2.10. Chorioallantoic membrane (CAM) assay 

The chick embryo CAM assay was performed according to [426] and slightly adjusted. Briefly, 

fertilized eggs from a local hatchery were incubated at 37.8°C and 50% humidity in a poultry egg 

incubator (R-COM 50 Digital Egg Incubator, Gyeonggi-do, South Korea). At day 3 of embryonic 

development, 2-3ml of albumen was removed with a sterile needle in order to lower the level of 

the CAM. Additionally, an opening of approximately 1cm2 was made in the eggshell in order to 

evaluate the embryos’ state and eliminate dead or non-fertilized eggs. The window was then 

covered with a semipermeable polyurethane film (Suprasorb F, Lohmann & Rauscher, Neuwied, 

Germany). At day 9, single cell suspensions of 106 HCT8/E11 cancer cells together with 2.5x106 

CT5.3hTERT CAFs were seeded onto the CAM in Matrigel™ drops (100µl/CAM). Cells were treated 

while seeding with solvent or Dex (1µM) and re-treated 48h later in 20µl Matrigel drops. Five days 

after seeding, tumors were observed under the stereomicroscope (Leica Microsystems, Diegem, 

Belgium) and digital images were taken. CAM fragments containing tumors were harvested and 

fixed in buffered formaldehyde (4% formaldehyde, 4g/L Na2PO4H2O, 6.5g/L Na2HPO4). 

Subsequently, these samples were embedded in paraffin, sectioned and subjected to 

hematoxylin-eosin staining, as described by Sigma-Aldrich. These prepared slides were evaluated 

for tumor shape (sphericity) and cancer cell infiltration into the CAM’s mesenchymal layer, on a 

scale from 1 to 5 (Addendum 3, Supplementary Table 3). 

3.2.11. Statistical analyses 

We performed statistical analyses using GraphPad Prism 5.03 with the unpaired student t-test, 

Mann-Whitney test or one-way analysis of variance (ANOVA) with Tukey’s multiple comparisons 

post-test, where applicable as indicated in the figure legends. A p-value of p < 0.05 was 

considered statistically significant. 

3.3. Results 

3.3.1. HCT8/E11 cells do not express a functional GR 

In order to investigate the role of glucocorticoid receptor (GR) modulation in CAFs and its 

subsequent effects on colon cancer cells, we chose a colon cancer cell line that does not express a 

functional GR, enabling us to research the direct influence of glucocorticoid (GC) treatment 

limited solely to CAFs. Western blot and qPCR analyses revealed that HCT8/E11 colon cancer cells 

display lack of GR at both mRNA and protein levels (Figure 34A, B). Another colon cancer cell line, 

HCT116, showed a moderate expression of the receptor, both at mRNA and protein levels, as 
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compared to colon cancer-derived CT5.3hTERT CAFs, which express relatively high levels of both 

GR mRNA and GR protein (Figure 34A, B). Corresponding with its GR-deficient status, the 

administration of the glucocorticoid Dex (1µM, 6h) to HCT8/E11 cells did not lead to a statistically 

significant upregulation of glucocorticoid-inducible leucine zipper (GILZ), a gene known to be 

highly expressed following GC treatment [234] (Figure 34C). In HCT116 cells, GILZ was 5.5-fold 

upregulated due to Dex treatment while in CT5.3hTERT cells we observed an average 70-fold GILZ 

mRNA upregulation. Additional to the lack of GR transactivation in HCT8/E11 cells, these cells also 

did not display GR-mediated transrepression properties (Addendum 3, Supplementary Figure 10A, 

B). The treatment with TNFα led to an upregulation of NFκB-driven pro-inflammatory molecules, 

namely ICAM and MCP-1 in HCT8/E11 cells. However, a co-treatment with Dex did not lead to a 

suppression of expression of these molecules, in contrast to CT5.3hTERT cells, where this 

suppression was well pronounced (Figure 21) . The selective GR modulator (SEGRM) compound A 

(CpdA), a non-steroidal plant-derived molecule, yet able to modulate GR favoring its 

transrepressive actions [268,389], displayed a similar pattern as Dex. These combined results 

point to a lack of both GR transactivation and GR transrepression activities in the GR-deficient 

HCT8/E11 cells. 

3.3.2. Secretion of MMP-2 by CAFs is affected by Dex-treatment. 

MMP-2 belongs to the family of matrix metalloproteinases and has been studied as one of the 

biomarkers of colorectal cancer [133]. In order to investigate MMP-2’s presence in CAF 

secretomes, we performed western blot analyses, which showed that MMP-2 levels are 

decreased in the conditioned medium of these cells following 48h Dex exposure (Figure 35A, B). 

An MMP-2 activity assay, gelatin zymography, revealed that the majority of MMP-2 was secreted 

in an inactive form (pro-enzyme), as pro-MMP-2 (Figure 35C). The potential activity of the MMP-2 

pro-enzyme and of the MMP-2 active form decreased in samples obtained from Dex-treated cells, 

CMDEX, compared to CMCTRL (Figure 35C, D), which is in line with the protein expression status. 

However, only the difference in pro-enzyme potential activity obtained statistical significance. 

Although MMP-9 could not be visualized via Western blot analyses (data not shown), pro-MMP-9 

could be visualized via zymography at very low signal compared to MMP-2. Pro-MMP-9’s 

potential activity was also decreased in CMDEX (Figure 35E). 
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Figure 34. HCT8/E11 colon adenocarcinoma cells do not express a functional glucocorticoid receptor. (A) 
mRNA isolated from HCT8/E11, HCT116, and CT5.3hTERT cells was subjected to RT-qPCR assaying GR mRNA 
levels. Results were normalized to the respective geometric mean of GAPDH, PPIB, and 36B4 reference 
genes’ mRNA levels. Results are shown as the mean ± SD of three independent experiments and statistical 
analysis was performed using a one-way ANOVA and Tukey’s multiple comparisons post-test. ns: not 
significant, ***: p < 0.001. (B) Total cell lysates obtained from HCT8/E11, HCT116, and CT5.3hTERT cells 
were subjected to Western Blot analysis for the detection of GR and the loading control tubulin. Results are 
representative of at least three independent experiments. (C) HCT8/E11, HCT116, and CT5.3hTERT cells 
were treated with solvent or Dex (1µM) for 6h. Isolated total mRNA was subjected to RT-qPCR assaying GILZ 
mRNA levels. Results were normalized to the respective geometric mean of GAPDH, PPIB, and 36B4 
reference genes’ mRNA levels. Results are shown as the mean ± SD of three independent experiments and 
statistical analysis was performed for pairwise comparisons using an unpaired t-test. ns: not significant, ***: 
p < 0.001. 
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Figure 35. MMP-2 expression and potential activity is decreased in the conditioned medium from Dex-
treated CAFs (A, B) CT5.3hTERT cells were treated with solvent or Dex (1µM) in serum-free DMEM. After 
48h cell supernatants were collected and 10-fold concentrated. Such prepared conditioned medium 
samples (CM

CTRL
 and CM

DEX
) were subjected to (A, B) western blot analysis for the detection of MMP-2 and 

(C, D, E) gelatin zymography for detection of MMP-2 and MMP-9 potential activity. Signal quantification was 
performed using ImageJ software. Images (A, C) are representative of 4 independent experiments. Results 
(B, D, E) are shown as the mean ± SD of four independent experiments and statistical analysis was 
performed using an unpaired t-test. ns: not significant, **: p < 0.01, *: p < 0.05. 

3.3.3. Indirect impact of Dex treatment on HCT8/E11 through co-culture with CAFs affects 

proliferation but not adhesion of HCT8/E11 cells 

To investigate whether Dex treatment could have a CAF-mediated effect on HCT8/E11 we 

performed a cell proliferation and cell-to-cell adhesion assay in a co-culture system. In the 

proliferation assay (Figure 36A), HCT8/E11-luc cells cultured together with CT5.3hTERT CAFs in a 

1:10 ratio, displayed growth inhibition in the presence of Dex (1 µM, 72h) compared with solvent 

control-treated cells. An adhesion assay using a CAF confluent culture showed that pre-treatment 

of these cells with Dex (1µM, 24h) did not affect HCT8/E11-luc adhesion to CAFs and their 

secreted matrix (Figure 36B) in comparison to solvent control-treated cells. 
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Figure 36. In the co-culture system, Dex treatment indirectly affects HCT8/E11 growth, but not cell 
adhesion to a monolayer of CAFs. (A) HCT8/E11-luc cells were seeded together with CT5.3hTERT CAFs in a 
1:10 ratio and treated with solvent or Dex (1µM) for 72h. Signal quantification was performed via 
bioluminescent imaging (IVIS). (B) CT5.3hTERT cells were treated with solvent or Dex (1µM). After 24h 
HCT8/E11-luc cells were seeded on top of the CAF monolayer and 24h later signal quantification of 
HCT8/E11-luc cells was performed via bioluminescent imaging (IVIS). (A, B) Images are visualizations of 
representative wells of each condition displayed as a bioluminescence activity heat-map. Solvent conditions 
were set at 1 and the Dex condition was recalculated accordingly. Results are shown as the mean ± SD of 
three independent experiments and statistical analysis was performed using an unpaired t-test. ns: not 
significant, ***: p < 0.001. 

3.3.4. HCT8/E11 cell proliferation, morphology, and motility are changed due to exposure to 

CMDEX compared to CMCTRL.  

To assess whether the growth-inhibitory effects of Dex-treated CAFs originate from changes in the 

CAF secretome, we performed experiments using CAF-derived conditioned medium (CMCTRL) and 

CM from Dex-treated CAF (CMDEX). Via cell viability and metabolic activity assays (MTT), we 

observed that neither CMCTRL nor CMDEX impaired cell survival tested in a confluent culture of 

HCT8/E11 after 72h of treatment (Addendum 3, Supplementary Figure 11). In a cell proliferation 

experiment with HCT8/E11-luc cells (Figure 37A), we observed that both CMCTRL and CMDEX 

promoted colon cancer cell growth, compared to the control treatment with DMEM. However, 

CMDEX had a significantly weaker impact than CMCTRL on HCT8/E11-luc growth after 72h of 

incubation. These results are consistent with data obtained from an SRB assay in which 

proliferation of the parental HCT8/E11 cell line was assessed in the presence of CM from CAFs 

(Figure 37B). Also in this situation, 72h incubation with CM promoted cell growth compared to 

DMEM, and effects of CMDEX were less pronounced than those of CMCTRL. 

Changes in cell morphology into a stretched, elongated shape accompany epithelial-to-

mesenchymal transition (EMT) and a subsequent cell invasion [8]. In an in vitro cell morphology 
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assay on collagen, HCT8/E11 cells treated with CMCTRL adopted a spread morphotype, 

characteristic for invasive cells (Figure 37C, Addendum 3, Supplementary Figure 12). Treatment 

with CMDEX resulted in a significantly diminished number of cells with such invasive morphotype. 

Moreover, cell morphology effects obtained with CMDEX were also observed with CM from CAFs 

treated with other GCs, namely FA, Pred and Hcrt (Addendum 3, Supplementary Figure 13A). 

Furthermore, although unlikely due to the GR-defective status of HCT8/E11 cells, we could rule 

out direct effects of residual GC in the CAF-derived CM. The addition of Dex to CMCTRL, in order to 

mimic the direct potential impact of residual Dex in CMDEX, as expected did not affect the pro-

invasive influence of CMCTRL (Addendum 3, Supplementary Figure 13B), showing that the effects of 

CMDEX occur indeed due to changes in the CAF secretome and not due to residual GC.  

As the selective GR modulator compound A (CpdA), is not able to trigger GR transactivation, we 

used this GR modulator in the morphotype assays to assess whether GR transactivation or GR 

transrepression events could lie at the basis of the effect of CAF-derived CM on HCT8/E11 

morphotype changes. When applying CM derived from CpdA-treated CAFs (CMCPDA) no difference 

compared to CMCTRL could be observed, suggesting indeed GR-mediated transactivation 

mechanisms as the basis of changes in CAF-derived CM (Addendum 3, Supplementary Figure 13C). 

Nevertheless, GR-mediated non-genomic events cannot be excluded at this time. 

A GC-driven inhibition of HGF and TNC expression in CAFs occurring most likely via GR 

transactivation events was reported earlier [389,420]. We assessed whether these changes could 

be the main cause of the affected HCT8/E11 cell morphotype changes. However, HCT8/E11 cells 

seeded on collagen and incubated with CMDEX supplemented with either HGF (50 ng/ml) or TNC 

(2µg/ml) did not display an increased invasive morphotype above the levels obtained by the 

treatment with CMDEX alone (Addendum 3, Supplementary Figure 14A). Combination of both HGF 

and TNC added to CMDEX also did not result in a significant restoration of the invasive properties of 

CM above the CMDEX level. However, a combined treatment with HGF and TNC did stimulate cell 

invasion when cells were incubated in DMEM, confirming their functionality (Addendum 3, 

Supplementary Figure 14B).  

Increased cell motility facilitates cancer invasion [8] and it has been well-documented that CAFs 

promote cancer cell migration via secreted factors [347]. In a migration assay using porous 

membrane inserts (Transwell), we observed that the presence of CMCTRL below the insert favored 

HCT8/E11 cell migration through the membrane, compared with a DMEM control (Figure 37D). 

CMDEX, however, induced colon cancer cell migration slightly stronger compared to CMCTRL. 

Similarly to the co-culture experiments results, CAF-derived CM did not affect HCT8/E11 cell 

adhesion to a type I collagen coating (Figure 37E), which was measured via cell impedance 

(xCELLigence). Analysis of the area under the curve (AUC; Figure 37F) indicated that HCT8/E11 
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cells adhered to the collagen coating evenly, disregarding the treatment with CAF-derived CMCTRL 

or CMDEX. 

In conclusion, CM from Dex-treated CAFs displayed diminished pro-invasive and pro-growth 

potential, but had stronger pro-migratory properties on HCT8/E11 colon cancer cells, as 

compared to CM from the control CAFs.  

3.3.5. Dex treatment inhibits tumor formation in vivo. 

The in vivo chorioallantoic membrane (CAM) assay is widely used as a model for tumor 

development, invasion, and angiogenesis [427]. HCT8/E11 cells seeded together with CT5.3hTERT 

CAFs in a drop of Matrigel were able to form tumors (Figure 38A). Application of Dex (1µM) for 5 

days affected tumor shape, resulting in less spherical tumors (Figure 38B). Moreover, in Dex-

treated tumors a significant inhibition of cancer cell infiltration into CAM’s mesenchymal layer 

was observed (Figure 38C). 

 

 

 

 

Figure 37. (next page) CM
DEX

 has a diminished potential to stimulate HCT8/E11 cell growth and invasive 
morphotype but can increase cell motility, as compared to CM

CTRL
. (A) HCT8/E11-luc cells were cultured 

with serum-free DMEM, CM
CTRL

 or CM
DEX

 for 72h and signal quantification was performed by 
bioluminescent imaging (IVIS). Images are visualizations of representative wells of each condition displayed 
as a bioluminescence activity heat-map. The DMEM control condition was set at 1 and the other conditions 
were recalculated accordingly. (B) HCT8/E11 cells were treated with serum-free DMEM, CM

CTRL
 or CM

DEX
 for 

24h, 48h, and 72h and subjected to an SRB assay. The serum-free DMEM control condition at 72h was set at 
1 and the other conditions were recalculated accordingly. (A, B) Results are shown as the mean ± SD of 
three independent experiments and statistical analysis was performed using a one-way ANOVA and Tukey’s 
multiple comparisons post-test. *: p < 0.05, ***: p < 0.001. (C) HCT8/E11 cells were treated with serum-free 
DMEM, CM

CTRL
 or CM

DEX
 and under those conditions, subjected to a cell morphology assay on collagen for 

24h. Results are shown as scatter plots with means of at least three independent experiments and 
statistical analysis was performed using a Mann-Whitney test. **: p < 0.01, ***: p < 0.001. (D) HCT8/E11 
cells were seeded in serum-free DMEM in Transwell inserts and the inserts were placed in wells containing 
DMEM, CM

CTRL
 or CM

DEX
. After 24h migrated cells were stained with DAPI and the number of cells per 

microscopic field (10 x magnifications) was counted. Results are shown as box plots with the mean of three 
independent experiments, with whiskers indicating min and max values. Statistical analysis was performed 
using a Mann-Whitney test. **: p < 0.01. (E, F) HCT8/E11 cells were seeded on type I collagen-coated E-16 
plates and treated with serum-free DMEM, CM

CTRL
 or CM

DEX
. Cell adhesion was measured via cell impedance 

on an xCELLigence system for 60 minutes. The area under the curve (AUC) was calculated for each replicate 
of each condition. Results are shown as the mean ± SD of three independent experiments and statistical 
analysis was performed on AUC using a one-way ANOVA and Tukey’s multiple comparisons post-test. *: p < 
0.05, ***: p < 0.001. 
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Figure 38. Dex treatment inhibits tumor formation in vivo. (A, B, C) HCT8/E11 cells and CT5.3hTERT CAFs 
were seeded in Matrigel drops on the CAM of 9 day-old chick embryos and treated with solvent or Dex 
(1µM) for 48h and then re-treated for another 72h. Five days post seeding, tumors were examined under 
the stereomicroscope, fixed, embedded in paraffin and subjected to hematoxylin-eosin staining. (A) Black 
arrows indicate CAM’s mesenchyme; white arrows indicate clusters of cancer cells. Tumors were scored for 
(B) sphericity and (C) cancer cell infiltration in a scale from 1 to 5. Results (B, C) are shown as the mean ± SD 
of four independent experiments and statistical analysis was performed using an unpaired t-test. ***: p < 
0.001. 
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3.4. Discussion 

Recruited by cancer cells at the invasion front, stromal myofibroblasts, also known as cancer-

associated fibroblasts (CAFs), are known to promote cancer progression [127]. Recent findings 

show that radiotherapy and chemotherapy affect cancer microenvironments, leading to the 

release of certain stromal-derived cancer-promoting factors and subsequent therapy resistance 

[142,159]. On that account, targeting the cancer environment forms an important strategy in 

cancer therapy [167]. In our study, we show that glucocorticoids (GCs), often given to patients 

during cancer treatment [278], could neutralize the cancer-promoting impact of CAFs on colon 

cancer cells.  

Our model HCT8/E11 colon cancer cells do not express a functional glucocorticoid receptor (GR) 

(Figure 34). Without extra stimulation these cells display a round morphology on type I collagen 

matrix and limited migratory properties through a porous membrane (Addendum 3, 

Supplementary Figure 12, Figure 37C-D). We confirm here that colon cancer-derived CAFs can 

trigger aggressive behavior of cancer cells. CAFs’ secreted factors stimulate growth and invasive 

morphology of HCT8/E11 cells (Figure 37A-C), corresponding with previous reports in various 

types of cancer cells [139,428-430]. Moreover, CAF conditioned medium (CM) facilitated 

HCT8/E11 motility by promoting cell migration through a porous membrane, which is also in line 

with previous findings [35,431,432]. 

In our previous study, we have shown that GCs have a significant effect on colon cancer-derived 

CAFs, modulating production of several molecules [389]. Following GC treatment, CAFs display an 

impaired expression and subsequent secretion of tenascin C (TNC) and hepatocyte growth 

factor/scatter factor (HGF/SF) [389]. Moreover, we have reported GC-mediated downregulation 

of transforming growth factor (TGF)β, urokinase-type plasminogen activator (uPA), angiopoietin-

like protein-2 (ANGPTL2), diminished production of prostaglandins and also an increase in 

expression of angiogenin (ANG) [389,420]. These molecules are associated with cancer 

proliferation, invasion and/or angiogenesis [100,110,133,404,406,433]. In our current study, we 

extend these findings by showing that extracellular matrix (ECM) proteinase MMP-2’s expression, 

and MMP-2’s and MMP-9’s potential activities are diminished in CAF CM after treatment with the 

GC dexamethasone (Dex) (Figure 35). Table 8 contains a list of GC-sensitive factors secreted by 

colon cancer-derived myofibroblasts and reported to date. 

Our results show that GC-treated CAFs differently affect colon cancer cell proliferation, invasion, 

and motility, as compared to the control CAFs. Treatment with GCs resulted indirectly in impaired 

colon cancer cell proliferation (Figure 36A, 37A-B). Moreover, CM from Dex-treated CAFs (CMDEX), 

had a significantly weaker potential to induce invasive morphotype of HCT8/E11 cells on collagen, 
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compared to CM from solvent-treated cells, CMCTRL (Figure 37C, Addendum 3, Supplementary 

Figure 12). Furthermore, in the in vivo chick chorioallantoic membrane (CAM) model, HCT8/E11 

colon cancer cells applied together with CT5.3hTERT CAFs formed spherical, invasive tumors. In 

line with the in vitro results, treatment with Dex led to a decreased cancer cell infiltration into the 

CAM’s mesenchymal layer, as well as to lack of tumor sphericity (Figure 38A-C). Lack of a 

functional GR in HCT8/E11 cells suggests that Dex-induced growth inhibition and impaired 

invasion originate from the added CAFs, which upon Dex treatment secrete a modified cocktail of 

factors, resulting in inadequate growth- and invasion-stimulatory signals compared to the solvent-

treated CAFs. 

Table 8. List of GC-sensitive factors detected in colon cancer-derived CAFs’ secretome in current and 
previous studies (c.s. – current study). 

Factor GC-mediated effects  

Angiogenin 

ANGPTL-2 

HGF/SF 

MMP-2 

MMP-9 

Prostaglandins (PGF2α, PGI2, PGE2) 

tenascin C 

TGFβ 

uPa 

Increased mRNA and protein levels [420] 

Decreased mRNA and protein levels [420] 

Decreased mRNA and protein levels [389] 

Decreased protein levels and potential activity [c.s.] 

Decreased potential activity [c.s.] 

Decreased concentration [420] 

Decreased mRNA and protein levels [389] 

Decreased mRNA and protein levels [389] 

Decreased mRNA and protein levels [420] 

Interestingly, CMDEX seemed to favor HCT8/E11 cell migration through a porous membrane to a 

greater extent as compared to CMCTRL (Figure 37D). Cell migration mechanisms depend greatly on 

the cell type and surrounding tissue environment [111]. Cells with a round morphology, unlike 

spindle-shaped, elongated cells, migrate by adapting their shape, which enables them to squeeze 

through gaps or narrow spaces [111]. The fact that CMDEX has an impaired ability to promote a 

spread morphotype of HCT8/E11 cells on collagen as compared to CMCTRL (Figure 37C, Addendum 

3, Supplementary Figure 12), might be a cause of different migration efficiencies between CMDEX 

and CMCTRL treatments. Moreover, the induction of invasive morphotype might be affected by 

decreased MMP-2 protein levels and potential protein activity in the CMDEX, as compared to 

CMCTRL (Figure 35A-D). MMP-2 is known to affect cell motility via cleavage of adhesion molecules 

[434] and via proteolytic degradation of matrix proteins, limiting cell-surface interactions [435]. In 

line, MMP-2, but not MMP-9, was previously reported to cleave type I collagen [436]. 

Nevertheless, neither in co-culture system nor in experiments with use of CAF-derived CM we 

detected indirect Dex-mediated effects on colon-cancer cell adhesion (Figure 36B, 37E-F). 
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Results displaying decreased pro-invasive potential of Dex-treated CAFs correspond with 

decreased amounts of secreted TNC and HGF in the CMDEX [389], factors previously reported as 

important stimulators of HCT8/E11 colon cancer cell invasion via RhoA and Rac pathways [77]. 

Moreover, treatment of CAFs with other GCs, resulted in a similar TNC and HGF decrease [389], 

and use of CM from such treated CAFs caused also a diminished invasive morphotype in HCT8/E11 

cells (Addendum 3, Supplementary Figure 13A), suggesting that the observed effect is universal 

for other GCs. Interestingly, a selective GR modulator (SEGRM), compound A (CpdA), only slightly 

affected TNC and HGF protein levels [389], and in line, the impact of CMCPDA on HCT8/E11 

morphology was not different from CMCTRL (Addendum 3, Supplementary Figure 13B). Since CpdA 

triggers solely GR-transrepression, these results point to a conclusion that TNC’s and HGF’s 

downregulation is caused by GR-transactivation mechanisms [268]. Although our data and 

literature support give a strong argument that GC-mediated decrease of TNC and HGF in CAF-

derived CM could be responsible for diminished pro-invasive effects of the CM, as well as the 

impaired cancer cell invasion in the CAM model, the addition of recombinant TNC and HGF 

proteins to CMDEX did not restore the invasive morphotype up to the CMCTRL levels (Addendum 3, 

Supplementary Figure 14A). These data suggest that HGF and TNC are not sole players in the 

observed phenomena and point to the co-involvement of other factor(s) sensitive to GC 

treatment.  

Cancer therapy, as most treatments, has associated side effects. It is documented that 

radiotherapy and chemotherapy lead to activation of stroma, subsequently resulting in 

environment-mediated drug resistance (EMDR) and protection of cancer cells against treatment 

[142,159]. Lotti, et al. described that chemoresistance of colorectal cancer-initiating cells was 

increased by IL-17A produced by chemotherapy-induced CAFs [162]. Moreover, factors secreted 

by CAFs stimulate nuclear translocation of AKT, survivin, and MAPK p38 in colorectal cancer cells, 

leading to protection against chemotherapeutics oxaliplatin and 5-fluorouracil [164]. Therefore, a 

potential solution to overcome EMDR is required. In advanced pancreatic cancer neutralizing 

effects of nab-paclitaxel treatment on activated stroma were observed, which was manifested by 

decreased tumor stiffness and as such, disrupted collagen architecture and a decrease in CAF 

density [437]. Furthermore, in our recent study we have reported that GCs reduced the pro-

angiogenic abilities of colon cancer-derived CAFs, which was reflected by a lack of pro-migratory 

stimuli on endothelial cells, as compared to the control [420]. Lastly, in this current study, we 

show that Dex-treated CAFs have additionally an impaired ability to promote cancer cell growth 

and invasion, as compared to the non-treated CAFs. These results suggest that GCs could be 

helpful in neutralizing the negative effects of activated stroma and possibly also EMDR. 



Part III: Results – Chapter 3. 

141 

However, as reported before, around 50% of colon cancer tumors express GR [312]. In this 

current study, we used a model of GR-irresponsive HCT8/E11 cancer cells, which allowed us to 

limit GC-mediated effects to CAFs (in vitro) and other stromal cells (in vivo). However, the effects 

of GCs on GR-responsive cancers must certainly also be taken into account. Recent studies in 

various cancer cell lines, surgical resections and xenografts revealed GC-mediated protection of 

cancer cells against the cytotoxic therapies. The mechanism behind this therapy resistance was 

linked to GC-driven, most probably GR-mediated protection from apoptosis [299]. Nevertheless, 

the beneficial aspects of GC-treatment in cancer cells were also reported. In the glioblastoma 

cells, Dex decreased MMP-2 secretion and invasiveness of these cells via an MKP-1-mediated 

mechanism [291]. Similar anti-invasive properties of GC treatment were observed in bladder 

cancer cells and were accompanied by reduced expression of MMP-2, MMP-9, IL-6 and VEGF. 

Although the anti-apoptotic properties of GCs were also noted in case of these cells, in the in vivo 

model GC-treated tumors were in general less aggressive [297]. Moreover, in two recent studies 

GCs were shown to counteract TGFβ- and hypoxia-induced EMT in colon cancer cells [309,310]. 

Therefore, it seems that depending on the target cells, GCs can have different effects ranging 

from detrimental to positive, which points to the importance of an individual approach in 

planning cancer treatment. 

In conclusion, our findings show that GCs, besides their present role during cancer therapy, might 

have an additional beneficial effect in colon cancer treatment via their impact on the activated 

stroma. GCs could neutralize the negative, pro-aggressive effects of CAFs on cancer cells, by 

modulating factors secreted by these cells. These combined factors contribute, directly or 

indirectly but collectively, to observed effects on cancer cell growth and invasiveness. Therefore, 

further studies on the endogenous and treatment-affected CAF secretomes are needed to 

decipher this complex mechanism. 
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Abstract 

Angiogenesis, a process of vessel formation, is crucial for embryo development and tissue 

recovery, but also plays a role in pathological conditions, such as cancer, retinopathy, and tissue 

ischemia. Glucocorticoids (GCs), steroidal ligands of the glucocorticoid receptor (GR), are well-

documented agents with anti-inflammatory and angiostatic properties, and are therefore, widely 

used in the clinic. However, long-term GC treatment is associated with detrimental side effects, 

such as diabetes and osteoporosis, propagating the search for alternative and more selective GR 

modulators (SEGRM). A plant-derived SEGRM, compound A (CpdA), has a non-steroidal structure 

and was reported to trigger GR-mediated transrepression but not transactivation. This latter 

mechanism is partially associated with adverse clinical effects of GCs.  

In the current study, we compared the angiostatic and anti-inflammatory properties of a synthetic 

GC dexamethasone (Dex) with the SEGRM CpdA in endothelial cells (ECs). Unlike Dex, CpdA 

caused an impaired translocation of GR in human umbilical vein ECs (HUVECs), but interestingly, 

its anti-inflammatory efficiency was more pronounced in comparison to the GC. In vitro studies 

showed that CpdA, unlike Dex, had mild growth-inhibitory effects on HUVECs, however, neither 

compound had a strong impact on endothelial characteristics of HUVECs or on the mRNA 

expression of several angiogenesis-related genes. Nevertheless, in an ex vivo aortic ring assay, Dex 

strongly inhibited neovessel outgrowth, while CpdA’s impact was not different from the control 

stimulation. Our study confirms Dex’s angiostatic properties and suggests that these effects may 

originate from GR transactivation events. 
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4.1. Introduction 

The glucocorticoid receptor (GR) belongs to the nuclear receptor family and is expressed in almost 

every human tissue [174]. GR regulates many important biological processes involved in 

development, metabolism, and immune responses [172]. Glucocorticoids (GCs), act as steroidal 

ligands of GR that bind to the receptor in the cytoplasm, which leads to the protein’s 

conformational change, a release from its chaperone complex and a subsequent GR nuclear 

translocation [220]. In the nucleus, GR acts as a transcription factor, where as a homodimer it 

activates transcription of multiple genes (GR transactivation), or as a monomer it can suppress 

transcription of genes via tethering to another transcription factor (GR transrepression). Other 

nuclear mechanisms along with non-genomic actions of GR have also been described [188]. 

Although GR’s ability to suppress the transcriptional activity of nuclear factor (NF)κB and activator 

protein (AP)-1 reflects a main anti-inflammatory strategy, GR transactivation and non-genomic 

activity were also proven to play a role in the inhibition of inflammation [231]. Because of their 

anti-inflammatory properties, GCs are widely used in the clinic against autoimmune and 

inflammatory afflictions [204]. Due to their pro-apoptotic abilities towards blood cells, GCs are 

also used in therapy of hematological malignancies, such as leukemia and multiple myeloma 

[279]. Moreover, GCs’ angiostatic properties are also well-documented [333,334,397] and used in 

the therapy of infantile hemangiomas [276]. Furthermore, GCs are used in the clinic for the 

treatment of solid tumors, as part of chemo- or hormonal therapy in breast and prostate cancer 

or applied as an adjuvans to relieve side effects of chemotherapy in various cancer treatments 

[278]. However, long-term administration or high-dose treatment with GCs may result in several 

adverse effects, such as diabetes, osteoporosis, hypertension, and immunosuppression [209], but 

also induction of chemotherapy resistance [299]. Moreover, the occurrence of GR resistance 

(hyposensitivity to GCs) has been documented to negatively influence the outcome of GC therapy 

[174,204]. These drawbacks have triggered a search for alternative solutions including selective 

GR agonists and modulators (SEGRAMs) [262,438]. 

The idea behind SEGRAMs stems from the simplified hypothesis that most of GR-mediated 

therapeutic properties derive from GR transrepressive actions and undesirable side effects are 

mostly a result of GR transactivation [256]. Several dissociated GCs or selective GR agonists 

(SEGRAs), such as RU24858, were originally shown to favor GR transrepression over 

transactivation in vitro, however, these results did not translate to the in vivo situation [257,439]. 

Selective GR modulators (SEGRMs), compounds lacking steroidal structure, yet capable of binding 

GR and triggering solely GR transrepression, are of an even bigger interest [255]. Different 

SEGRMs have different origins, therefore their characteristics cannot be generalized. A SEGRM 
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with a very simple structure, compound A (CpdA), is an aziridine derivative isolated from a 

Namibian shrub Salsola tuberculatiformis [267]. CpdA was proven to bind GR, however in a yet 

unidentified manner, and to trigger a GR conformational change that differs from GC-GR binding. 

Such CpdA-activated GR is unable to form homodimers, and therefore, acts preferentially as a 

monomer to initiate GR transrepression, which leads to suppression of multiple pro-inflammatory 

genes expression [268,269,440]. In line, various mice models for inflammation revealed a 

restricted side effect profile due to CpdA treatment, as compared to synthetic GC dexamethasone 

(Dex) [268,269,275,441,442].  

SEGRAMs are investigated not only in terms of inflammatory afflictions, but also to improve 

cancer treatment, and as such, RU24858, CpdA, avicin D and 21OH-6,19OP are SEGRAMs with a 

cancer-modulating potential [438]. RU24858’s anti-tumor properties were shown in the SENCAR 

skin tumor model, as RU24858 similar to GCs reduced epidermal hyperplasia after induction with 

a tumor promoter TPA [443]. The SEGRA 21OH-6,19OP holds similar anti-inflammatory properties 

as classic GCs, however, it does not trigger chemotherapy resistance in a breast cancer model 

[444]. Avicin D, a plant-derived saponin, induced GR-mediated suppression of inflammation, but 

was also identified to induce apoptosis in various cancer cell lines. However, this pro-apoptotic 

mechanism is most likely not GR-dependent [445]. CpdA, besides its anti-inflammatory 

characteristics, was also shown to induce apoptosis in various cancer cell lines [351,353,446]. 

Moreover, in prostate cancer cells CpdA was able to interact with the androgen receptor (AR) and 

to inhibit its activity [353,447]. 

Angiogenesis is one of the hallmarks of cancer, and as such it is also a target in cancer therapy [8]. 

Angiogenesis results in the formation of new blood vessels from the pre-existing vasculature and 

is crucial during tissue development and repair [85]. Impaired angiogenesis may cause ischemic 

chronic wounds, which leads to tissue damage or dysfunction due to shortage of oxygen and 

nutrients [384]. Excessive angiogenesis, on the other hand, plays an important role in pathological 

states, such as malignant or inflammatory afflictions [44]. Although SEGRAMs’ direct impact on 

cancer cells has gained interest and attention, SEGRAMs’ effects on angiogenesis were not yet 

researched in detail, while GCs’ angiostatic properties are well-established [448]. In this study, we 

attempted to evaluate the direct impact of a SEGRM CpdA on angiogenesis in comparison to a 

classical GC Dex, using models of human umbilical vein endothelial cells (HUVECs) and murine 

aortic rings.  
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4.2. Materials & Methods 

4.2.1. Cells and reagents 

Primary human umbilical vein endothelial cells (HUVEC; Promocell, Heidelberg, Germany) were 

cultured in Endothelial Cell Growth Medium-2 (EGM2; Lonza, Wokingham, UK), supplemented 

with 2% FCS, 0.1% VEGF, 0.4% hFGF-2, 0.1% R3-IGF-1, 0.1% hEGF, 0.1% ascorbic acid, 0.1% 

heparin, 0.1% GA-100, but omitting the addition of the supplied hydrocortisone. HUVECs were 

cultured at 37°C, 5% CO2, on 0.1% gelatin-coated flasks. The cells were used between passages 2 

and 7. 

Dexamethasone (Dex) was purchased from Sigma-Aldrich (Dorset, UK, cat no: D1756), dissolved in 

ethanol and used at a final concentration of 1µM. A selective GR modulator (SEGRM), 

compound A (CpdA) was prepared according to [268] and used at a final concentration of 5µM. 

The total ethanol concentration (maximally 0.05%) was kept constant in all conditions in all 

experiments. 

Recombinant murine tumor necrosis factor (TNF)α was produced and purified as described [355]. 

TNFα was dissolved in medium and used at final concentration of 2000IU/ml. 

4.2.2. Cell viability and proliferation assays 

In order to test HUVEC viability and metabolic activity, cells were seeded in 96-well plates (1.5 

x104 cells/well) and left to adhere. Next, the confluent cell cultures were treated with solvent, Dex 

(1µM) or CpdA (5µM) for 24h and the cell viability was assessed with a 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) assay [393] using reagents purchased from Sigma-

Aldrich. 

To assess HUVEC proliferation, HUVEC (4 x103/well) were seeded in 96-well plates, and treated 

the next day with solvent, Dex (1µM) or CpdA (5µM) for 24h, 48h, and 72h. After selected time 

points cells were fixed and subjected to a sulforhodamine-B (SRB) assay, according to [394]. 

Results were obtained with a Molecular Devices OPTImax Microplate Reader and the SoftMax® 

Pro 3.0 software. Data were expressed on a scale where maximal viability (MTT assay) or 

proliferation (SRB assay, at 72h post treatment) in solvent controls was set at 100%. 

4.2.3. Indirect immunofluorescence 

Indirect immunofluorescence microscopy was performed according to previous protocols [268]. 

Briefly, HUVECs were seeded on 0.1% gelatin-coated glass coverslips and treated the next day 

with solvent, Dex (1µM) or CpdA (5µM) for 2h. Subsequently, cells were washed with PBS, fixed 

with 2% paraformaldehyde, permeabilized with ice-cold acetone, blocked with 1% BSA, washed 

again with PBS and probed overnight at 4°C with a primary anti-GR antibody (1/200, anti-GR H-
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300 antibody, Santa Cruz Biotechnology, cat no: sc-8992). Subsequently, cells were exposed to 

Alexa Fluor 488 goat anti-rabbit secondary antibody (1/800, Invitrogen Molecular Probes, cat no: 

A11008) for 2h at room temperature, and lastly, stained with DAPI (0.4 µg/ml) in order to 

visualize the nuclei. Observations and image processing were performed using a fluorescence 

microscope (40 x magnification, Axioscope, Zeiss, Oberkochen, Germany), CoolSNAP camera 

(Photometrics, AZ, USA) and MCID Basic 7.0 software.  

4.2.4. Tube-like structure (TLS) formation assay 

The evaluation of TLS formation was performed by seeding HUVECs (1.5 x104 cells/well) onto 

Matrigel™ (Corning, Flintshire, UK)-coated 96-well plates, as previously described [395]. Cells 

were treated with solvent, Dex (1µM) or CpdA (5µM) for 6h prior to microscopic evaluation (5 x 

magnification, phase contrast microscope, CoolSNAP camera, MCID Basic 7.0 software). The 

further analysis of TLS formation (total tube length) was performed with the Angiogenesis 

Analyzer plug-in [396] developed for ImageJ software [362].  

4.2.5. RNA isolation and RT-qPCR 

HUVECs were treated with solvent, Dex (1µM) or CpdA (5µM) for 24h. After washing with PBS, 

cells were subjected to total mRNA isolation using an RNeasy Kit (Qiagen, Hilden, Germany), 

according to the manufacturer’s instructions. Reverse transcription (RT) of HUVEC RNA was 

performed using QuantiTect Reverse Transcription Kit (Qiagen) and the obtained cDNA was 

subjected to quantitative PCR (qPCR) using LightCycler 480 SYBR Green I Master reagents (Roche 

Diagnostics, Rotkreuz, Switzerland), according to the manufacturer’s instructions. qPCR reactions, 

performed in triplicates, were run using the LightCycler 480 system (Roche Diagnostics) applying 

the following conditions: (A) initial denaturation 95 °C, 5min; (B) 45 cycles of denaturation 95°C, 

15s, annealing and elongation 60 °C, 45s. Specific signal obtained for the gene of interest was 

normalized to the respective geometric mean signal for three reference genes, namely GAPDH, 

PPIB, and 36B4. Primer sequences are listed in Addendum 5 (Supplementary Table 4). 

4.2.6. Acetylated low density lipoprotein (Ac-LDL) uptake assay 

HUVECs were seeded onto 0.1% gelatin-coated glass coverslips and incubated overnight. Next, 

cells were treated with solvent, Dex (1µM) or CpdA (5µM) for 24h. Ac-LDL assay uptake was 

performed as described previously [449]. In short, HUVECs were incubated with 5µg/ml Ac-LDL 

conjugated with alexa-488 (Invitrogen, Glasgow, UK, cat no: L23380) for 5h. Subsequently, cells 

were washed with PBS prior to fixation with 2% paraformaldehyde and washed again with PBS. To 

visualize the nuclei, cells were stained with DAPI (0.4 µg/ml). Images, taken using a fluorescence 

microscope (Axioscope, Zeiss), CoolSNAP camera (Photometrics), and MCID Basic 7.0 software, 
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were further analyzed for fluorescence signal intensity for a number of cells per image with 

ImageJ software [362]. 

4.2.7. Aortic ring assay 

For the ex vivo aortic ring assay [397] we used 8-12 weeks-old C57BL/6 male mice (Charles River 

Laboratories). After the animals were sacrificed (via CO2 asphyxiation) the thoracic aortas were 

isolated, the adjacent tissue cleaned off and washed with serum-free DMEM. Next, aortas were 

divided into 1-2mm rings and embedded in type I collagen (1mg/ml, Sigma-Aldrich). After 1h 

explants were treated with solvent in 2% FCS DMEM (positive control), Dex (1µM) or CpdA (5µM) 

in 2% FCS DMEM, or with solvent in serum-free DMEM (negative control), at 37°C, 5% CO2. Media 

and treatments were replaced after 3 and 7 days in culture. Neovessel outgrowths were counted 

on days 5, 7, and 10 using phase-contrast microscopy. 

4.2.8. Statistical analyses 

Data are presented as mean ± standard deviation or as a scatter plot with mean. We performed 

the statistical analyses using GraphPad Prism 5.03 with a one-way analysis of variance (ANOVA) 

and Tukey’s multiple comparisons post-test, or with a Mann-Whitney U test. The applied test is 

included in the figure legends. A p<0.05 was considered statistically significant. Results were 

expressed as a relative number, where the control condition was set at 1, 100 or 100% and other 

conditions were recalculated respectively. 

4.3. Results 

4.3.1. Effects of CpdA and Dex on GR translocation, transactivation and transrepression 

The GR upon binding to its steroidal ligand, is expected to be driven from the cytoplasm to the 

nucleus [220]. Indirect immunofluorescence imaging performed after 2h of treatment has shown 

that in HUVECs CpdA (5µM) had an impaired ability to translocate GR to the nucleus, as compared 

to the GC Dex (1µM) (Figure 39A). Furthermore, Dex and CpdA displayed little to no impact on 

GR’s mRNA expression (Figure 39B). As expected, CpdA, unlike Dex, did not upregulate GILZ. This 

result confirms CpdA’s lack of GR-transactivating properties, which are characteristic for the 

steroidal ligands of the receptor (Figure 39C). A pro-inflammatory molecule TNFα stimulated 

mRNA expression of several inflammatory markers in HUVECs, namely the interleukin (IL)-1β, the 

chemokine RANTES (Regulated on Activation, Normal T cell Expressed and Secreted, also known 

as CCL5) and TNFα itself. Further treatment with Dex and CpdA strongly suppressed IL-1β mRNA 

expression (Figure 39D), however, mRNA levels of RANTES and TNFα were only suppressed in 

HUVEC following CpdA treatment (Figure 39E, F). Overall, Dex and CpdA behaved as expected and 

both ligands were shown to be functional in HUVECs. 
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Figure 39. CpdA displays an impaired GR-translocation ability, but strong inflammation-suppressive actions 
in HUVEC. (A) HUVECs were seeded on 0.1% gelatin-coated coverslips, left overnight to adhere and 
subsequently treated with solvent, Dex (1µM) or CpdA (5µM) for 2h. After washing with PBS, fixing with 2% 
paraformaldehyde and permeabilizing the cells, indirect immunofluorescence was performed to detect GR. 
DAPI staining indicates the nuclei. Magnification: 40 x (B, C) HUVECs were treated with solvent, Dex (1µM) 
or CpdA (5µM) for 24h or (D, E, F) for 1h and either or not co-treated with TNFα (2000IU/ml) for another 5h. 
Total mRNA was subjected to RT-qPCR assaying (B) GR, (C) GILZ, (D) IL-1β, (E) RANTES, and (F) TNFα mRNA 
levels, and results were normalized to the respective geometric mean of GAPDH, PPIB, and 36B4 household 
genes’ mRNA levels. The condition induced with solvent (B, C) was set as 1, alternatively the condition 
induced with TNFα (D, E, F) was set at 100 and other results were recalculated accordingly. Results (B, C, D, 
E, F) shown are the means ± SD of three independent experiments and statistical analysis was performed 
using a one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons post-test. ns: not 
significant, *: p<0.05, **: p<0.01, ***: p<0.001. 
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Figure 40. CpdA slightly inhibits HUVEC growth, but does not affect cell viability. (A) Confluent cultures of 
HUVECs were treated with solvent, Dex (1µM) or CpdA (5µM) for 24h and subsequently subjected to an 
MTT assay to assess percentage cell viability. Obtained values were normalized to the control treatment 
(solvent). (B) HUVECs were treated with solvent, Dex (1µM) or CpdA (5µM) for 24h, 48h or 72h and 
subjected to an SRB assay. Percentage cell proliferation was calculated and obtained values were 
normalized to a control treatment (solvent) at 72h, which indicates a maximal cell proliferation. Results (A, 
B) are displayed as mean ±SD of three independent experiments and statistical analysis was performed 
using a one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons post-test. ns: not 
significant, *: p<0.05, **: p<0.01, ***: p<0.001. 
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Figure 41. CpdA does not affect endothelial characteristics of HUVECs. (A) HUVECs, seeded onto coverslips 
were treated for 24h with solvent, Dex (1µM) or CpdA (5µM). Next, Ac-LDL conjugated with Alexa-488 
(5µg/ml) was added to the cells. After 5h cells were washed, fixed and counterstained with DAPI prior to 
obtaining the microscopic images. Fluorescence signal intensity was evaluated using ImageJ software and 
divided over the number of cells assessed. Scatter plots represent data of three independent experiments. 
Results were analyzed using a Mann-Whitney U test. ns: not significant. (B) HUVECs were seeded on 
Matrigel-coated wells and treated with solvent, Dex (1µM) or CpdA (5µM). After 6h phase-contrast images 
were taken and total tubule length was assessed using the Angiogenesis Analyzer tool for ImageJ software. 
(C, D, E, F) HUVECs were treated with solvent, Dex (1µM) or CpdA (5µM) for 24h. Total mRNA was subjected 
to RT-qPCR assaying (C) VEGF, (D) VEGFR1, (E) VEGFR2, and (F) IL-6 mRNA levels. Results were normalized to 
the respective geometric mean of GAPDH, PPIB, and 36B4 household genes’ mRNA levels. The condition 
induced with solvent was set at 1 and other results were recalculated accordingly. Results (B, C, D, E, F) 
shown are the means ± SD of three independent experiments and statistical analysis was performed using a 
one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons post-test, ns: not significant, **: 
p<0.01. 
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4.3.2. Impact of Dex and CpdA on HUVEC viability and proliferation 

Analysis of the cell viability and metabolic activity assays (MTT) revealed that neither Dex (1µM) 

nor CpdA (5µM) had a cytotoxic effect on a confluent monolayer of HUVECs after 24h treatment 

(Figure 40A). In contrast, Dex caused a slightly higher production of the formazan salt compared 

to the solvent control. In the cell proliferation assay (SRB), we observed that CpdA impaired 

HUVEC growth compared to the solvent treatment (Figure 40B) which was manifested from a 24h 

treatment onwards. Treatment with Dex, on the other hand, had a positive impact on HUVEC 

growth, as detected upon 48 and 72h. 

4.3.3. Effects of Dex and CpdA on the endothelial characteristics of HUVECs 

A series of experiments were performed in order to establish a potential impact of the SEGRM 

CpdA on the biology and endothelial character of HUVECs. Neither Dex (1µM) nor CpdA (5µM) 

influenced HUVECs’ ability to internalize acetylated low density lipoprotein (Ac-LDL) (Figure 41A), 

a feature characteristic for endothelial cells (ECs) [449]. Another typical EC ability, formation of 

tube-like structures (TLS) on a gel matrix (Matrigel), was not affected following treatment with 

either Dex or CpdA, which was reflected in a lack of differences in lengths of TLSs, as compared to 

solvent control (Figure 41B). Representative images of the Ac-LDL uptake assay and TLS assay are 

shown in Addendum 4 (Supplementary Figures 15 and 16, respectively). mRNA expression of 

factors related to angiogenesis, namely vascular endothelial growth factor (VEGF, Figure 41C), 

VEGF receptor 1 (VEGFR1, Figure 41D) or IL-6 (Figure 41F) did not reach a significant difference 

after 24h treatment with either Dex or CpdA. RT-qPCR analysis of VEGFR2 has revealed that CpdA 

treatment caused a slight (1.34 fold change) upregulation of the receptor’s mRNA (Figure 41E). 

4.3.4. Effects of CpdA and Dex on angiogenesis in ex vivo aortic ring assay 

Murine aortic rings treated with medium supplemented with 2% FCS and solvent displayed 

outgrowths of several neovessels, compared to the negative control (serum-free conditions), 

where few or no outgrowths were identified. Exposure to Dex (1µM) caused a strong inhibition of 

neovessel formation observed after 5, 7, and 10 days of treatment, while stimulation with CpdA 

(5µM) had no inhibitory effects (Figure 42A, B, C, D), as compared to the positive control (medium 

supplemented with serum). 

4.4. Discussion 

Because of their anti-inflammatory properties glucocorticoids (GCs) are used in the clinic since 

1950s [204]. GCs are potent drugs with a wide spectrum of action and they are also known for 

their pro-apoptotic abilities in hematological cells, as well as for angiostatic properties [279,333]. 

Nevertheless, the use of GCs is associated with adverse effects, the occurrence of GC resistance 
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and, in case of certain solid tumors, an induction of chemotherapy resistance [204,209,299]. 

Selective glucocorticoid receptor modulators (SEGRM) are compounds that trigger only a portion 

of the actions normally associated with GCs, therefore, in the future SEGRM might serve as 

alternatives for steroidal compounds in particular treatments [256]. Several SEGRMs are under 

intensive investigation, however, their role in the process of neovessel formation (angiogenesis), 

is not yet described.  

 

Figure 42. CpdA, in contrast to Dex, does not inhibit neovessel growth in the aortic ring assay. (A, B, C, D) 
Aortic rings were prepared from aortas isolated from adult male C57BL/6 mice. Explants were embedded in 
collagen and treated with solvent, Dex (1µM) or CpdA (5µM) in DMEM supplemented with 2% FCS, or 
treated with solvent in serum-free DMEM. Neovessel sprouts were quantified after 5 days (A), 7 days (B), 
and 10 days (C, D) in culture. (A, B, C) Histograms represent the mean ± SD of three independent 
experiments. Results were analyzed using a one-way analysis of variance (ANOVA) and Tukey’s multiple 
comparisons post-test. ns: not significant, *: p<0.05, **: p<0.01, ***: p<0.001. 

GCs have a well-documented history of angiogenesis inhibition, and are used as angiostatics in 

infantile hemangiomas and in ocular afflictions [276,334], however, the mechanism behind these 

actions is not well-defined. Application of GCs resulted in diminished angiogenesis in several 

cancer-based studies. Indirect effects on angiogenesis were described via GC-mediated 

downregulation of VEGF in cancer cells [287,336], but also via neutralization of the pro-angiogenic 

impact of cancer-associated fibroblasts (CAFs) in a colon cancer model [420]. Moreover, a direct 
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GC-mediated growth inhibitory effect was reported in vascular smooth muscle cells [386] and 

other reports describe direct anti-angiogenic effects of GCs on endothelial cells (ECs) [344] and in 

neovessel formation in an aortic ring model [397]. In the current study, we attempted to define 

the role of a plant-derived SEGRM compound A (CpdA) in angiogenesis. For this purpose, we 

analyzed the impact of CpdA on the biology and function of human umbilical vein endothelial cells 

(HUVEC) and on neovessel formation in an ex vivo aortic ring model, and we compared the results 

with a synthetic GC dexamethasone (Dex).  

Our results indicate that CpdA, similarly to Dex, does not negatively affect HUVEC viability (Figure 

40A) and does not change endothelial characteristics of HUVECs (Figure 41). However, in contrast 

to the GC, CpdA has an inhibitory effect on HUVEC proliferation (Figure 40B). Moreover, we did 

not observe inhibition (or promotion) of tube-like structures (TLS) formation with Dex or CpdA 

after 6h of treatment, although the GC-mediated TLS formation inhibition in vitro was previously 

described after longer treatment times (22-24h) [344]. Nevertheless, in line with previous reports 

[397] we confirmed Dex’s angiostatic properties in the ex vivo aortic ring model, in which the 

number of neovessel outgrowths was significantly reduced compared to the untreated control 

(Figure 42). CpdA seemed to have no positive or negative effect on neovessel formation in this 

assay. 

HUVECs express glucocorticoid receptors (GRs) as visible on the indirect immunofluorescence 

images (Figure 39A). Treatment with Dex clearly triggered GR translocation to the nucleus, but 

this action was not exhibited by CpdA. Previously, CpdA was shown to translocate GR into the 

nucleus of A549 cells, although with a slightly lower efficacy than Dex [268]. Furthermore, CpdA 

induced a nuclear translocation of GR in GR-transfected LNCaP cells, clearly less proficient than 

the GC fluocinolone acetonide [353], and a similar outcome was reported in fibroblast-like 

synoviocytes [269]. However, we recently reported, in concordance with results obtained in 

HUVECs, a strongly impaired CpdA-mediated GR nuclear translocation in colon cancer-derived 

CAFs [389], which suggests that the efficiency of CpdA-mediated GR translocation depends on a 

cellular context. Interestingly, Dex-regulated genomic actions of GR in HUVECs were rather subtle 

as compared to other cell models [268,269,389,450], showing a relatively weak GR 

transactivation, reflected by only a 2-fold upregulation of GILZ (Figure 39C) and only a partial 

transrepression manifested by a suppression of IL-1β but not RANTES or TNFα levels. CpdA, on the 

other hand, displayed stronger suppressive properties, as it downregulated all three 

proinflammatory molecules (Figure 39D-E), without triggering GR-transactivation, confirming its 

dissociated nature and its functionality despite a poor GR translocation (Figure 39C). These 

combined results raise the question whether CpdA’s actions in HUVECs are solely GR-mediated. It 

was previously documented that CpdA, next to GR-binding, could also bind another nuclear 
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receptor family member, the androgen receptor (AR), which resulted in the inhibition of AR 

function in prostate cancer cells [353]. Interestingly, CpdA displayed GR-independent actions on 

NFκB’s transcriptional activity in rheumatoid arthritis fibroblast-like synoviocytes. In GR-knocked 

down cells, CpdA not only inhibited NFκB p65’s nuclear translocation and binding to DNA, but it 

also displayed a significant impact on TNFα-induced MAPK activation, with the latter effect 

discovered to be GR-independent. However, in order to obtain significant anti-inflammatory 

effects of CpdA, presence of the functional GR was still necessary [270]. Furthermore, CpdA 

impaired the maturation and activation of LPS-treated bone marrow-dendritic cells via 

suppression of expression of several cell-surface and pro-inflammatory molecules. Interestingly, 

these CpdA-derived effects were also present when GR was pharmacologically blocked or siRNA 

knocked down, indicating a GR-independent inactivation of the NFκB intracellular signaling 

cascade [271]. Moreover, in the human airways smooth muscle cells, CpdA was shown to inhibit 

expression of several GC-resistant chemokines, in a GR-independent manner [273]. In our study 

Dex’s effects on GR-transactivation and transrepression in HUVECs were relatively weak, thus, 

CpdA’s additional anti-inflammatory mechanism via direct inhibition of NFκB might explain the 

more pronounced downregulation of IL-1β, RANTES and TNFα, since all three molecules’ 

expression is regulated via an NFκB-responsive element in their promoters [451-453].  

In this presented work, distinct angiostatic effects were observed in the ex vivo aortic ring assay, 

in which Dex inhibited neovessel outgrowths. Since this was not apparent with CpdA treatment it 

could be concluded that these effects were due to GR-transactivation or non-genomic events. 

However, in such a complex model as an aortic ring, it is important to account for indirect effects 

of the treatment via inflammatory cells, pericytes and other components present in the aortic 

tissue. Alternatively, CpdA is more labile than Dex and could be degraded, explaining lack of 

activity at longer time frames [454]. Macrophage-mediated inflammatory mechanisms occurring 

in the aorta in response to injury are required in neovessel formation [415]. In fact, inflammation 

is an important regulator of angiogenesis and the interconnections of these two processes is 

increasingly recognized not only in wound healing but also in cancer progression [455]. 

Inadequate oxygen supply (hypoxia) is a common denominator for both inflammation and 

angiogenesis and regulation of hypoxia involves recruitment of transcription factors common for 

inflammation and angiogenic responses, namely NFκB and hypoxia-inducible factor (HIF)-1. 

Interestingly, NFκB regulates expression of HIF-1 and vice versa [456]. And indeed, it is proven 

that blocking NFκB activity in prostate cancer cells causes inhibition of angiogenesis [457]. 

Surprisingly, targeted activation of NFκB in ECs seems to have an angiostatic outcome and it is 

investigated as a potential treatment strategy [458].  
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In conclusion, we showed that the SEGRM CpdA does not share the same angiostatic properties as 

Dex, but its anti-inflammatory properties are present and strongly pronounced in the HUVEC 

model. Besides its mild growth-inhibitory properties, CpdA seems to have little impact on HUVEC 

biology, and furthermore, it does not affect neovessel formation in an aortic ring model. 

Nevertheless, the impact of both GCs and SEGRMs ought to be researched in further detail, in 

order to identify the exact mechanism of action in ECs and in more complex models of 

angiogenesis. 
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1. Main findings and their significance 

The role of glucocorticoids (GCs) in suppressing inflammation and fighting hematological 

malignancies is widely recognized [195]. Although GCs are also administered to patients with solid 

tumors, the influence of this treatment on cancer biology is not fully understood and often 

controversial [278,281]. The aim of this doctoral dissertation was to gain a more detailed insight 

into the role of GC treatment in colon cancer. Specifically, the objective of this project was to 

define the impact of GCs on cancer-associated fibroblasts (CAFs), and the effects of GC treatment 

via these CAFs on other cell populations within the cancer microenvironment, namely endothelial 

cells (ECs) and glucocorticoid receptor (GR)-deficient colon cancer cells. Moreover, we have 

compared direct effects of GCs and a selective GR modulator (SEGRM) compound A (CpdA) on the 

biology of CAFs, endothelial cells, and on angiogenesis as a functional read-out.  

1.1. Glucocorticoids and CpdA differentially affect the biology of colon cancer-derived CAFs and 

human umbilical vein endothelial cells (HUVECs). 

In Articles 1 and 4 we focused on direct effects of classic GCs, mainly dexamethasone (Dex), and 

the SEGRM CpdA, on the biology of colon cancer-derived CAFs and human umbilical vein ECs 

(HUVEC). Although the compounds exerted a number of similar effects in both cell lines, there 

were some marked exceptions noted as well. Neither compound negatively affected cell viability 

or typical myofibroblastic and endothelial markers. However, in contrast to Dex, CpdA displayed 

cytostatic effects in CAFs and in HUVECs. Growth-inhibitory effects of CpdA were previously 

described in malignant hematological cells, as well as in prostate and bladder cancer cells 

[351,353,446], and moreover, a GR-independent induction of apoptosis was reported in non-

malignant cells, such as thymocytes and mouse embryonic fibroblasts [454]. Furthermore, Dex 

was very effective in triggering a GR translocation to the nucleus, where it positively affected GILZ 

mRNA expression in both investigated cell lines. In CAFs, Dex negatively affected the GR gene and 

subsequent protein expression, which are relevant to GC-induced downregulation of its receptor, 

known as a homologous downregulation, and are correlated with the occurrence of GC resistance 

[211]. CpdA did not trigger GR downregulation, therefore, it is less likely to evoke therapy 

resistance, as previously shown in fibroblast-like synoviocytes [352]. Moreover, CpdA was recently 

reported to have GR-independent therapeutic effects in GC-resistant conditions [273]. 

Nevertheless, a combined treatment of CpdA and Dex did not prevent GR downregulation in 

colon cancer-derived CAFs (Article 1, Figure 20C1). 

In both cell lines, CpdA only marginally impacted GR translocation, and as expected, it did not 

show any GR transactivating properties [268]. Both compounds effectively suppressed a TNFα-



Part IV: General Discussion 

162 

induced expression of several pro-inflammatory molecules. In CAFs, Dex proved to be more 

effective than CpdA by suppressing 5 out of 6 tested genes: RANTES, ICAM, MCP-1, IL-1β and 

TNFα, while CpdA suppressed only RANTES and ICAM expression. In contrast, in HUVECs CpdA 

exerted stronger anti-inflammatory effects than Dex, by suppressing all 3 tested genes IL1β, 

RANTES and TNFα, whereas Dex had suppressive effects only in the case of IL1β. The differences 

between Dex’s and CpdA’s transrepressive profiles among the cell lines and particular genes 

suggest cell-specific mechanism, and could potentially be caused, in view of CpdA’s impaired GR 

translocation, by CpdA’s GR-independent actions on the activity of NFκB in an yet unknown 

mechanism [270,271,441].  

In conclusion, we confirm that CpdA behaves differently from classical GCs, does not trigger GR 

homologous downregulation, but has anti-inflammatory properties, which are most probably 

partially GR-independent, suggesting its potential role in cases of GC resistance. CpdA’s role in 

delaying CAF and EC growth might have an additional therapeutic benefit in cancer progression.  

1.2. GC treatment strongly affects the composition of the CAF-derived secretome. 

In CAFs, Dex but not CpdA showed strong suppressive effects on the expression of HGF/SF, TGFβ 

and TNC, important secretory factors involved in cancer progression and/or angiogenesis. Further 

investigation (described in the Articles 2 & 3) revealed additional factors present in the CAF 

secretome that were sensitive to GC treatment. uPA, ANGPTL2, MMP-2 and prostaglandins levels 

were diminished in the conditioned medium obtained from Dex-treated CAFs (CMDEX). Moreover, 

the potential enzymatic activity of MMP-2 and MMP-9 was also diminished. Interestingly, both 

mRNA and protein levels of ANG were increased due to Dex treatment (Table 9; Article 3, Table 

8). 

Cancer-protective and cancer-promoting properties of CAFs are gaining more attention in order to 

understand the intercellular cross-talk within the tumor microenvironment and to improve the 

applied therapeutic strategies. Recent studies focus on targeting not only the cancer cells but also 

CAFs in order to neutralize the cancer cell growth stimulatory effects of stroma. In pancreatic 

cancer nab-paclitaxel in combination with gemcitabine actually decreased CAF content and 

collagen architecture in patients, contributing to a more promising treatment outcome [437]. 

Other ongoing studies focus on an anti-TGFβ therapy and on blocking the cross-talk between 

cancer cells and stromal cells, along with an inhibition of angiogenesis [153,459,460]. 

In the Articles 2 & 3 we showed that the dramatic changes in the composition of the CAF-derived 

secretome caused by the GC treatment hold a potential to alter the behavior of other cellular 

populations within the tumor microenvironment. 
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Table 9. GC-sensitive factors detected in the CAF-derived culture medium and their role in cancer 
progression and/or angiogenesis. 

Factor Role in cancer and/or angiogenesis Reference 

Angiogenin 
 
 

Stimulation of angiogenesis by influencing endothelial and smooth-
muscle cells migration, invasion and proliferation. Induction of tube 
formation by ECs. Stimulation of tumor growth. 

[105,433] 
 
 

ANGPTL2 
 
 

Stimulation of sprouting angiogenesis and EC migration. Positive 
regulation of endothelial colony forming cell vascular lumen 
formation. Association with chronic inflammation. 

[409,461] 
 
 

HGF/SF 
 
 
 

Mitogenic, motogenic, morphogenic stimulation of epithelial and 
endothelial cells. Induction of cell invasion, tumorigenesis and 
angiogenesis. Anti-apoptotic properties in epithelial cells. 
Contribution to resistance against RAF inhibitors. 

[134,462] 
 

MMP-2, -9 
 

ECM degradation, facilitating cell invasion and EMT, proteolytical 
activation of TGFβ. 

[463] 
 

prostaglandins  Stimulation of cancer cell proliferation and invasion. Induction of 
immunosuppression. Promotion of EC survival, migration and tube 
formation 

[406,464] 

TGFβ 
 

Dual role as a tumor-suppressing and a tumor-promoting factor. 
Growth inhibition of early cancer cells. Immunosuppression, 
induction of EMT. Recruitment of CAFs. Pro- or anti-angiogenic 
functions depending on a cellular context. 

[34] 
 

tenascin C Facilitating cell invasion, migration and EMT. [77,465] 

uPA ECM degradation and remodeling, facilitating cell migration, 
invasion, cell extravasation and angiogenesis. Contribution to cell 
proliferation. 

[110] 

 

1.3. CAF-derived factors promote endothelial cell proliferation and migration, however, these 

pro-migratory effects are gone due to Dex treatment.  

In Article 2 we focused on the role of CAF-derived conditioned medium (CMCTRL) and CMDEX on the 

biology of ECs, using mainly HUVEC as a model cell line. We showed that CAF-derived culture 

medium induced growth and migration of HUVECs, without affecting endothelial characteristics of 

the cells, confirming CAFs’ stimulatory role in angiogenesis, previously described in several 

reports [139,140,385]. Although the levels of angiogenin, a factor that contributes to cell motility, 

were elevated after Dex treatment, we showed that in the secretome from GC-treated CAFs 

(CMDEX) the pro-migratory properties were absent, however, the growth-stimulatory effects were 

preserved. We conclude that GC-mediated effects influenced the activity and/or levels of a pro-

migratory factor(s) and/or inhibitors produced by CAFs. These data contribute to our 

understanding of GCs’ angiostatic properties through their indirect effects on ECs via CAFs. 
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1.4. An indirect influence on endothelial cells via effects on CAFs and immune cells contributes 

to the angiostatic properties of GCs.  

Although the angiostatic properties of GCs are widely recognized, the mechanisms behind them 

are not fully understood. Our results suggest that these effects could be caused by an indirect 

impact exerted on neighboring cells. We speculate that GC-mediated changes in the expression of 

multiple pro-angiogenic factors produced by neighboring cells strongly alter the behavior of ECs. 

The in vitro results presented in Article 4 showed that a direct application of Dex did not 

significantly affect EC behavior. This corresponds with previous reports, where a detailed 

investigation revealed that the angiostatic impact of GCs does not affect EC proliferation or 

migration but impairs in vitro tube formation [344]. Although we have not detected an inhibition 

of tube formation in HUVECs or HAoECs possibly due to use of a less precise method of screening, 

in the ex vivo assay we observed that Dex inhibited neovessel outgrowth formation, which 

corresponds with the in vitro process of tube formation and is in accordance with previous reports 

[397]. Nevertheless, it must be taken into account that the aortic explants comprise not only ECs 

but also other types of cells, of which the immune cells are known to play a key role in triggering 

neovessel formation [415]. Similar observations were made using CAF-derived conditioned 

medium (as described in Article 2). Although in the in vitro experiments CMCTRL (or CMDEX) had no 

significant effect on tube formation, the neovessel pro-growth effect of CMCTRL was tremendous in 

the ex vivo model. These observations suggest that the impact of CMCTRL, such as stimulation of IL-

6 expression in ECs, also affected the activity of immune cells present in the vascular tissue. It is 

plausible that a direct GC application to the explant (also as a residue in CMDEX) led to 

immunosuppression, and as such impaired the pro-inflammatory signaling exerted by immune 

cells, and indirectly inhibited neovessel formation. 

1.5. Dexamethasone treatment neutralized promoting effects of CAFs on colon cancer cells.  

In Article 3 we showed that GC treatment diminishes the cancer-promoting properties of CAFs. 

The stimulation of cancer cell growth and invasive potential via the treatment with CMDEX was 

significantly less pronounced as compared to the stimulation with CMCTRL. The results suggest GCs 

as potential agents to target the stroma-cancer interactions by blunting pro-aggressive signals 

released by CAFs. Many previous works reported on an increase of stroma activity due to radio- 

and chemotherapy and induction of therapy resistance. CAFs were shown to release elevated 

levels of IL-17 upon chemotherapy, which in turn promoted growth of colon cancer stem cells 

[162]. Moreover, CAFs were reported to affect the sensitivity to oxaliplatin and 5-FU in colorectal 

cancer cells [164]. Similar protective effects exerted by CAFs were described in other cases 

including pancreatic cancer [466], melanoma [163], head and neck squamous cell carcinoma 
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[165]. Therefore, our results suggest that a GC-mediated decrease in the activity of stroma, by 

impairing protective properties of CAFs, could also be beneficial during radio- and chemotherapy. 

 

Figure 43. A schematic representation of cross-talk in the tumor microenvironment and the main findings 
described in this dissertation. Dotted arrows represent impact of particular cellular components on the 
neighboring cell populations; numbers 1-4 correspond with the chapter numbers in the Results section 
covering the addressed findings. 

1.6. Dex affects tumor expansion in the in vivo co-culture. 

In the Article 3 we investigated whether the in vitro results of experiments with use of 

conditioned medium correspond to a situation where cells are in a physical contact with each 

other. Consequently, we used an in vivo chick chorioallantoic membrane (CAM) assay which we 

optimized for our purpose. CAM is an example of a model that is more complex than the in vitro 

experiments. Owing to the presence of fibroblasts, vasculature and immune cells, it can mimic a 

tumor microenvironment. Moreover, CAM allows measuring several different parameters, such as 

growth, invasion, angiogenesis and metastasis [467]. In our model, cancer cells were seeded on 

top of the CAM together with CAFs and the developed tumors were observed after 5 days of 

incubation. The difference in tumor shape (sphericity) and cancer cell infiltration between Dex- 
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and solvent-treated tumors was very pronounced. Obtained results confirm our initial conclusion 

that treatment with GCs affects tumor growth and invasiveness. The presence of other types of 

cells in CAM tissue did not abolish the initial in vitro observation of a CAF-derived CM impact on 

cancer cells. On the contrary, the effects of Dex were even clearer than in the in vitro morphology 

assay, suggesting additional GC-mediated suppressive effects also occur via other chick tissues. 

This optimized model might serve in the future as a fast screening of GC-mediated changes in 

altered conditions, such as a co-treatment with chemotherapeutics (which is further elaborated 

on in the Future perspectives section).  

In conclusion, results of our study support the idea of targeting the stroma as part of the anti-

cancer therapy. Owing to their genetic stability, lower proliferation rate and lower tendency to 

mutate, CAFs are more favorable targets than cancer cells. Moreover, cancer-stroma interactions 

are most probably universal across different cancer types, therefore targeting the cross-talk 

between these cell populations forms a promising strategy in cancer treatment [167]. 

The main results obtained during this doctoral project are summarized and depicted in Figure 43.  
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2. Relevance of the study 

GCs are used against inflammatory afflictions [236]. Moreover, GCs are applied in solid tumor 

therapy owing to their anti-edemic and anti-emetic effects, reduction of cancer-associated pain 

and ability to reduce post-surgical inflammation [281]. Nevertheless, a prolonged high dosage of 

exogenous GCs is associated with the occurrence of adverse effects [231]. Furthermore, several 

recent works reported detrimental effects of GCs on chemotherapy, stating that the direct GC 

treatment of cancer cells protects them from cytotoxic effects via inhibiting apoptosis [280,299]. 

In this light, the effectiveness and safety of GC administration during solid tumor therapy 

becomes questionable. Certainly, the answer whether GC treatment should be limited is 

dependent on various factors, such as cancer type and GR expression status of the cancer cells.  

In this thesis we showed that attacking the CAFs with Dex limited cancer proliferation, invasion, 

and angiogenesis. Therefore, we suggest that GCs can have a beneficial outcome in cancer 

treatment via effects on stromal cells. Nevertheless, targeting only one cellular population with 

GCs without affecting other tissues, is virtually impossible. Interestingly, recent works focused on 

targeted drug administration and proposed an alternative solution for GC delivery via long-

circulating liposomes (LCLs) [468]. Targeted GCs delivery could improve intratumoral drug 

concentrations, thereby reducing the systemic impact of GCs and occurrence of side effects [469]. 

LCLs have been previously reported to accumulate in malignant sites, due to the incidence of an 

increased vessel permeability within the tumor, as compared to a healthy vasculature [470]. 

Liposome-encapsulated prednisolone phosphate was proven effective at relatively low 

concentrations in reducing tumor growth of melanoma and colon cancer mouse models. In 

contrast, the free prednisolone phosphate did not have this anti-tumor effects when applied at 

the same treatment schedule, even when its concentration was increased [471]. The use of LCL-

encapsulated GCs could be promising in the treatment of cancer, however, in the GR-responsive 

cancer cells the beneficial effects of GCs cannot be predicted taking into account GCs’ role in 

chemotherapy resistance. Therefore, we suggest taking into consideration the GR expression 

status of patients’ cancer cells when planning the strategy of a therapy. We speculate that GR-

deficient cancer cells would not establish a chemotherapy-resistant phenotype and that the GC-

mediated effects would be limited to the cancer microenvironment. Our results imply that due to 

the suppression of the expression of multiple cancer progression-associated molecules, such as 

HGF, TNC, and TGFβ released by stromal cells, cancer aggressiveness and angiogenesis would be 

effectively impaired.  

Angiogenesis has been a target in cancer therapy since decades [472]. Bevacizumab, a mAb 

against the VEGF-A, is a standard therapeutic agent given to patients with metastatic CRC, applied 
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together with FOLFIRI or FOLFOX regimens. Moreover, aflibercept and regorafenib, agents 

disturbing the VEGF signaling, are also recently used in the therapy of metastatic CRC [42,45,46]. 

Previous studies recognized the anti-angiogenic potential of GCs via suppression of VEGF and 

other pro-angiogenic molecules secreted by cancer cells, including prostate and brain cancer, 

renal cell carcinoma, and head and neck carcinoma [287,335-337,339]. In the present study we 

showed that GC’s tumor-suppressing properties can also originate from the decrease of pro-

angiogenic molecules secreted by stromal cells, resulting in a lack of pro-migratory effects on the 

ECs.  

A large body of evidence shows that non-steroidal anti-inflammatory drugs (NSAIDs), such as 

aspirin and diclofenac are potent and cost-effective preventive agents for CRC [59,473]. NSAIDs’ 

anti-inflammatory actions originate from blocking the prostaglandin synthesis, mainly via 

inhibition of cyclooxygenase (COX)-2. Nevertheless, the mechanism behind the chemopreventive 

properties of NSAIDs is not fully understood [58,63]. GCs in comparison to NSAIDs are much 

stronger suppressors of inflammation, and next to other mechanisms, they also contribute to 

inhibition of prostaglandin production via suppression of phospholipase A2 and COX-2 [407]. 

Prostaglandins are not only mediators of inflammation, but they are also associated with 

carcinogenesis and angiogenesis. Prostaglandin (PG)E2, the most abundant prostanoid found in 

the epithelial cancers, stimulates cell motility, proliferation, and induces production of pro-

angiogenic factors, such as VEGF [464,474]. Interestingly, our results confirmed GC-mediated 

inhibition of prostaglandin synthesis also in CAFs. Whether GCs similarly to NSAIDs hold 

chemopreventive properties is not clear. GC treatment was shown not to correlate with the risk of 

CRC in a population-based study [306]. Moreover, in an in vivo study in carcinogen-induced mice, 

aerosolized budesonide was shown to prevent the development of lung cancer [288]. 

Furthermore, recently published results of a randomized trial in patients with indeterminate lung 

nodules revealed that after 1 year of treatment with inhaled budesonide the average size of non-

solid lung nodules was substantially decreased compared to the placebo, over a 5 year follow-up 

[475]. Another recent study analyzed chemopreventive properties of several commonly used 

drugs and supplements, including budesonide, aspirin and ascorbic acid. The study was performed 

on a mouse model mimicking conditions in smokers, and confirmed chemopreventive properties 

of budesonide in mouse lung, however, budesonide administration was linked with occurrence of 

parenchymatous degeneration of the liver in mice [476,477]. Nevertheless, use of budesonide as 

a chemopreventive agent in human lung cancer seems justified owing to its short plasma half-life 

and selective retention by airway tissue [478]. Furthermore, an oral budesonide formulation holds 

therapeutic benefit in several inflammatory gastrointestinal conditions. It was shown effective in 

the induction of remission of Crohn’s disease and collagenous colitis and it is the best-
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documented agent for treatment of microscopic colitis [479]. Nevertheless, its role in 

chemoprevention of CRC is not documented. In CRC, aspirin was shown to be efficient as a 

chemopreventive agent especially when used at high doses for more than 10 years, which was 

also inevitably related with gastro-intestinal complications [473]. Since the prolonged use of GCs 

is associated with multiple detrimental side effects, the GCs in their present form are also less 

suitable for testing as potential long-term chemopreventive agents in case of CRC.  

Consequently, there is an ongoing search for modified GCs and other GR ligands (SEGRAMs) that 

would hold beneficial properties without triggering the harmful side effects. Although a 

mechanistic distinction is difficult to make, it is hypothesized that GR-transrepressive actions 

exert in general more favorable effects than GR-transactivation (further referred to as 

“transrepression hypothesis”) in chronic disorders [255]. Several SEGRMs, such as AL-438, ZK-

216348, Mapracorat and CpdA were proven to exert a limited to a non-existent GR-

transactivation, while their anti-inflammatory features were maintained and the typical GCs-

associated side effects were decreased [259,264,268,350]. Therefore, this direction of research 

may bring solace, especially for patients suffering from chronic inflammatory conditions. 

Interestingly, several SEGRMs were also tested in cancer. RU24858, 21-hydroxy-6,19-

epoxyprogesterone (21OH-6,19OP), Avicin D and CpdA were reported to have potential direct 

cancer-modulating properties [438]. In fact, CpdA exerted beneficial anti-tumor effects on 

leukemia cell lines (CEM and K562) via upregulating pro-apoptotic genes. Moreover, CpdA caused 

growth and survival inhibition in prostate cancer cells and displayed beneficial anti-androgen 

properties, and inhibited bladder cancer growth, invasion and migration [351,353,446]. 

Interestingly, a recent study in triple negative breast cancer even showed that in contrast to Dex, 

CpdA did not evoke chemotherapy resistance [419]. 

Nevertheless, the transrepression hypothesis is also subject to some critical opinions. The most 

important argument is that transrepression is not solely responsible for the beneficial outcome of 

GCs. In fact, the transactivation mechanisms are also needed to exert GCs’ anti-inflammatory 

properties [480]. Dual specificity phosphatase (DUSP)1, also known as MAP kinase phosphatase 

(MKP)-1, an enzyme upregulated via GR-transactivation was shown to decrease levels of pro-

inflammatory factors (including IL-6, IL-1β, and TNFα) via interference with MAPK and 

subsequently with the activity of AP-1 and NFκB [481-483]. Moreover, the role of the highly GR-

transactivated gene GILZ is also recognized in suppressing inflammation. GILZ was shown to 

prevent nuclear translocation of AP-1 and NFκB and also to disturb MAPK signaling cascade [234]. 

Furthermore, there are other GC-inducible genes reported to have anti-inflammatory properties, 

such as tristetraprolin, IκB and IL-10 [480]. Nevertheless, GR’s conformation is sensitive to the 

structure of the ligand, and moreover, different GR modulators attract different co-factors to the 
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receptor, as such significantly altering the GR-mediated expression profile. Therefore, the 

research on the non-steroidal ligands continuously holds a lot of promise [248]. Consequently, the 

quest for new GR ligands with improved safety profiles, is certainly justified.  
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3. Limitation of the study 

During the course of this project we faced several problems and limitations associated with 

various factors, briefly described in this section. 

3.1. GC-mediated pleiotropic effects 

One of the troublesome aspects is the fact that GR is widely expressed in almost every human 

tissue. Therefore, in clinic it is difficult to restrain the effects only to the desired target tissue (in 

practice of particular inflammatory afflictions, local GC use in form of aerosol sprays and topical 

ointments is applied). The use of a GR-deficient colorectal cell line helped to dissociate the direct 

from indirect effects of GCs and allowed to monitor effects only attributed to GR-responsive CAFs. 

Moreover, it is important to note that GC-mediated effects are pleiotropic. GR-modulation affects 

the expression of a multitude of genes and the amount of changes prevents us to analyze them in 

detail. Having detected many GC-sensitive factors in the CAF-derived culture medium, it is difficult 

to find the one that is responsible for the observed effect, which most probably comprises chains 

of events, in which many factors are involved. We attempted to identify the role of several 

particular factors, by different approaches, such as selective depleting or blocking in the CMCTRL or 

by addition of recombinant factors to CMDEX. Although literature evidence and our experiments 

suggested TNC and HGF as synergistic stimulators of HCT8/E11 invasion, the simultaneous 

addition of those recombinant factors to CMDEX did not result in a full restoration of the pro-

invasive potential characteristic for CMCTRL (Addendum 3, Supplementary Figure 13), suggesting 

involvement of other, yet unidentified factors (activators and inhibitors) affected by GCs. 

3.2. Absence and presence of GR in cancer cells in vitro and in clinic 

One of the initial objectives of this study was to examine the direct role of GCs and CpdA on a 

colon cancer cell line. However, despite of a well-known general abundance of GR expression in 

tissues, we found it difficult to find a cell line that was overtly responsive to GC treatment, and at 

the same time was invasion-inducible by contact with CAF-derived CM. Among the 6 colon cancer 

cell lines examined, all of them displayed a very low mRNA expression of GR (Figure 44A) and a 

weak or absent GILZ transactivation (Figure 44B), compared to the CT5.3hTERT CAFs and to the 

prostate cancer cell line PC3, which are highly responsive to GCs. The GR mRNA levels of colon 

cancer cell lines were comparable to a well-known GR-negative prostate cancer cell line LNCaP. 

Among the colon cancer cell lines, HCT116, despite showing low mRNA levels, displayed some 

protein expression and mild GILZ upregulation. Moreover, HCT116 was also susceptible to GC-

induced GR homologous downregulation (Figure 45), making this cell line a potential model for 

future experiments. In the preliminary study, however, we did not observe a declined pro-invasive 
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potential of CMDEX on this cell line (Figure 45B), highlighting a significant difference between the 

behavior of GR-positive (GR+) and GR-negative (GR-) cell lines. As previously reported, 50% of the 

colorectal tumor specimens from patients were GR-, thus, the use of the GR- cell line HCT8/E11 is 

relevant. Nevertheless being able to investigate the effects on GR+ cells would highly complement 

the general picture. 

 

Figure 44. GR and GILZ mRNA expression in selected cell lines. Most of the widely available colon cancer cell 
lines showed very low GR mRNA levels compared to a well-known GR+ cell line PC3 and colon cancer-
derived CAFs CT5.3hTERT. As expected, these colon cancer cell lines displayed a marginal to no GILZ 
upregulation after 6h Dex (1µM) treatment. As a negative control we used a prostate cancer cell line LNCaP-
FGC, which is a well-documented GR- cell line. 

3.3. Chemical instability of CpdA 

Compound A, although used widely in research, was shown to convert into other derivatives, 

depending on the buffer system used for its dissolution. In the phosphate-buffered solutions 

CpdA decomposed into aziridine derivatives, reactive alkylating molecules with cytostatic 

properties [484]. In fact, CpdA evoked apoptosis in various cell types in a GR-independent 

manner. Further analysis of a dissolved CpdA showed that in pure water it decays into acetyl 

synephrine with a half-life (t1/2) of approximately 5 days, which next transforms into synephrine 
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(t1/2 = weeks-months). CpdA stability in PBS is dependent on the pH. The t1/2 increased inversely 

proportional to the pH value, ranging from approximately 3 to 100 minutes [454]. In order to 

ensure CpdA stability, the compound requires dissolving in absolute ethanol or DMSO in presence 

of the nitrogen vapors and further storage in -80°C. Although the protective conditions cannot be 

guaranteed in the cell culture or in vivo conditions, CpdA was suggested to be biologically active in 

vivo via stabilization by binding to plasma proteins [484]. Nevertheless, CpdA in its present form is 

not suitable for use in the clinic [454]. Although in our study CpdA did not cause cell death in CAFs 

and HUVECs, as shown via the viability assays, we observed a significant growth delay compared 

to a solvent control. We cannot exclude that these effects may derive from the CpdA’s 

metabolites. Importantly, there are several other SEGRMs, which are proven more suitable for 

clinical application. The SEGRM Mapracorat (BOL-303242-X) is currently undergone clinical trials 

for treatment of allergic conjunctivitis, atopic dermatitis, and against inflammation following the 

eye surgery. 

 

Figure 45. HCT116 are GR-responsive but do not react to CM
DEX

 in a similar manner as GR-deficient 
HCT8/E11 cells. A) After 24h and 48h of Dex (1µM) treatment GR levels have clearly diminished. B) The 
morphology assay showed that CM

CTRL
 increased spread morphotype of HCT116 cells, however, CM

DEX
 did 

not display diminished pro-invasive potential in these cells. 
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3.4. Homologous downregulation and GC resistance 

Although in our in vitro study we observed clear GC-induced GR homologous downregulation in 

CAFs (Article 1, Figure 20C1), we did not observe any effects of GC resistance in the in vivo CAM 

model. It is likely that a longer treatment would result in a GC resistance and possible subsequent 

reversion to an invasive tumor phenotype, however, the CAM model does not allow a long-term 

incubation due to eventual egg hatching. Consequently, we attempted to use a xenograft mouse 

model to investigate the long term effects of the treatment, however, we have encountered 

unexpected technical problems which are described further. 

3.5. The origin of the endothelial cells 

HUVECs are widely used as human EC model, owing to their relatively easy and non-invasive 

means of isolation [485], compared to other human ECs. However, their behavior might vary from 

the tumor-derived ECs, due to their different origin. In the in vitro tube-like structure formation 

assay we also tested ECs from an aortic origin, HAoECs (Article 2, Figure 30). Although we did not 

observe any differences in responses to the CM between venous and arterial-derived cells, it 

would be useful to examine the behavior of HAoECs also in other experiments. 

3.6. Use of the non-human experimental models 

Experiments performed on non-human tissues always raise questions about the inter-species 

differences, which can be a cause of limited tissue response due to, for example, unmatching 

human-derived ligand and host-derived receptor [486]. In our study we used murine aortic tissue 

to investigate pro-angiogenic effects of human cell line-derived CMCTRL and CMDEX, however, we 

can extrapolate these results to the human situation only with a limited certainty. The same 

question emerged for the CAM assay. Although we observed interesting differences between Dex-

treated and non-treated tumors, we must take into account that avian tissues and immune 

responses might substantially differ from the human situation. 

3.7. In vivo studies in mouse model 

In the course of this study we attempted to establish an in vivo mouse model using the in house 

engineered luciferase positive (HCT8/E11-luc-cl16) cells and the In Vivo Imaging System (IVIS) 

[422]. To this end, we subcutaneously injected female Swiss nu/nu mice with HCT8/E11-luc-cl16 

cells together with CAFs, followed by injections of the experimental group with dexamethasone 

(15µg) 3 times per week, while the control group was injected with solvent (PBS). Contrary to our 

expectations, in both groups tumors did not progress. Moreover, in the control group all tumors 

shrunk and disappeared after 3 weeks, while in the experimental group most of the animals did 

not display any cancer cell-derived bioluminescent signal after 7 weeks (Figure 46). Although, the 
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animals did not develop the tumors as expected, we still observed a difference between the 2 

groups. Treatment with Dex resulted in a significant delay of a tumor regression, revealing 

potential tumor-protective properties, probably owing to its immunosuppressive properties in the 

already immunocompromised mice. Therefore, it is important to repeat this experiment with the 

maternal HCT8/E11 cell line or with a more stable clone (as further described in the Future 

perspectives section). 

 

Figure 46. HCT8/E11-luc-cl16 cells did not develop tumors in mice. Nude Swiss nu/nu mice were injected 
with HCT8/E11 cells in mixture with CT5.3hTERT CAFs. Animals were injected with 15µg Dex (in PBS) or 
equivalent volume of PBS (control group). After three weeks, cancer cells were not detected in the control 
group. In the experimental group cancer cells were detected until week 7. Each picture represents triplet of 
the same animals over weeks per group. 
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4. Future perspectives 

Although this study brought novel insights, it also raised several new questions. Finding the 

answers to these questions could improve our understanding on the role of GCs in the colon 

cancer microenvironment and the impact of CpdA. 

4.1. The quest for new hits 

In this study we presented several target molecules that are sensitive to GC treatment and are 

potential candidates for explaining the observed diminished cancer growth and invasiveness and 

lack of migration acceleration of ECs. Although the protein array performed on CAF-derived 

CMCTRL and CMDEX has already revealed or excluded potential candidates out of 507 available hits, 

a more detailed study would be necessary in order to find even more candidates. Mass 

spectrometry (MS) is a technique that helps to quantitatively identify molecules within a sample 

by ionizing them and sorting accordingly to their mass-to-charge ratio. MS is widely used in 

pharmacokinetics and protein characterization [487]. Via MS we could reveal in an unbiased 

manner more of interesting molecules in the secretome of CAFs that are affected by GCs and may 

contribute to GC-mediated beneficial effects. Moreover, the use of quantitative proteomics could 

strongly enrich our knowledge on the differences between particular factors’ levels in the CAF 

secretomes of different treatments [488].Nevertheless, the more potential factors involved, the 

more difficult to decipher the mechanism behind the beneficial roles of GC treatment. It is highly 

possible that multiple factors act together in a specific manner to result in a final outcome.  

4.2. In vivo experiments in mice 

With the use of our optimized CAM model we showed that the treatment with Dex diminishes 

tumor growth and invasion. It would be interesting to confirm these data on a long-term scale 

with use of animal models, such as Swiss nu/nu mice. Although our first attempt with the 

HCT8/E11-luc-cl16 failed, further experiments conducted by collaborators revealed another clone 

HCT8/E11-luc-cl04 that successfully established the tumor formation in the control animals. 

Alternatively, the parental cell line could be also used, as described previously, albeit the 

advantage of the luciferase system is an easy visualization [428]. 

4.3. Impact of GCs and CpdA on GR-responsive colon cancer cells 

Another interesting aspect is a detailed analysis of a response to direct and indirect GC/SEGRM 

treatment by the GR+ cancer cells. As mentioned before, it was not straightforward to find a 

highly responsive GR+ colon cancer cell line. An alternative approach is to work with stably 

transfected GR+ colon cancer cells or ideally, with primary cultures obtained from patients. GR+ 

cells should be analyzed in terms of survival, proliferation and invasion after direct treatment with 
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GCs and CpdA, but also with CMCTRL and CMDEX. Furthermore, an RNA-sequencing approach, 

combined with MS for functional protein read-out, in such GR+ cancer cell lines would shed more 

light on the role of target genes of inflammatory mediators, factors involved in EMT, cell invasion 

and angiogenesis in the GR+ cancer cells after such treatment. Further in vivo experiments could 

confirm how GR-responsive cancer cells applied together with the CAFs react to Dex and CpdA 

treatment.  

4.4. Effects of chemo- and radiotherapy in combination with GCs on CAF secretome 

It was previously shown that ionizing radiation (IR) activates tumor stroma, making it more 

supportive for cancer cells [159]. It would be interesting to investigate whether the combination 

of GC administration and exposure to IR or chemotherapy changes the activity of CAFs, by 

analyzing the CMDEX+IR and CMDEX+CHEMO expression profiles compared to the CMIR, CMCHEMO and 

CMCTRL, and by examining its effects on the colon cancer cell proliferation, invasion and migration. 

So far, there has been little information published about the impact of GCs in combination with 

chemo- or radiotherapy on fibroblasts in general. The GC-mediated protection against radiation 

and drug cytotoxicity was earlier investigated in various cancer cell lines [280]. GC-mediated 

protection against apoptosis was observed in glioma cells, however, the researched mechanism 

was most probably cell-type specific. Mouse embryonic fibroblasts (MEFs) did not profit from GC 

treatment since their survival was decreased due to exposure to a chemotherapeutic teniposide. 

However, in MEFs with knocked-out p21, a major target of p53 actions, the protective influence of 

Dex was re-established [489]. Interestingly, Brock and colleagues showed that Dex had no 

protective properties on human diploid fibroblasts AG1522 when exposed to ionizing radiation, in 

contrast to V-79 cells, fibroblasts obtained from Chinese hamster lung tissue [490]. In case of 

internal radiation therapy, a study performed on samples obtained from synovial tissue from 

rheumatoid arthritis patients showed that the combined local treatment with glucocorticoids and 

yttrium-90 did not affect the number of fibroblast-like synoviocytes compared with the GC 

treatment alone [491]. Both cortisol and the endogenous rodent GC corticosterone were found to 

reduce pro-inflammatory protein expression (including IL-6, IL-8, and GM-CSF) of X-irradiated 

human skin and lung fibroblasts [322].  

In general combination of a chemotherapeutic agent with a GC has found application in the 

treatment of keloid and hypertrophic scars and in ocular lesions, resulting in synergized anti-

proliferative effects and suppression of inflammation. An antineoplastic antibiotic mitomycin C 

(MMC) has been recently used for prevention of keloid and hypertrophic scar recurrence [492]. A 

conjugate of MMC with the GC triamcinolone was shown to effectively reduce NIH 3T3 fibroblasts 

growth, an effect which was similar to MMC treatment alone [493]. In a small clinical study 
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performed on patients with several keloid scars, topical application of MMC followed by injections 

with triamcinolone prevented recurrence of keloid scars to a similar extend as the treatment with 

GCs alone [494]. A slowly-released combination of the antimetabolite 5-FU with triamcinolone 

was investigated in subglottic stenosis, a narrowing of airway due to scarring. The drug 

combination reduced subglottic stenosis formation in rabbits, which was evidenced by suppressed 

inflammation and fibrosis formation compared with the control group of non-treated animals 

[495]. In vitro studies investigated the mechanisms behind the synergy between low-dose 5-FU 

and triamcinolone in reduction of keloid scars recurrence. Keloid fibroblasts’ proliferation was 

stronger suppressed by a 5-FU-triamcinolone combination than by triamcinolone alone. Although, 

triamcinolone held no pro-apoptotic effects on the fibroblasts, induction of cell death with the 

drug combination was more effective than with 5-FU alone. Moreover, the combination 

treatment strongly inhibited collagen type I expression, and stimulated MMP-2 expression [319].  

A combination of MMC and Dex showed interesting results on corneal fibroblasts, indicating this 

treatment regimen could be beneficial for corneal wound healing. Dex did not increase the pro-

apoptotic properties of MMC, but it suppressed MMC-upregulated expression of IL-8 and MCP-1 

at mRNA and protein levels and attenuated MMC-stimulated actions of p38 MAPK and Jun N-

terminal kinases (JNK) [496]. Similarly, in human Tenon's capsule fibroblasts isolated from 

patients suffering from pterygium, Dex inhibited MMC-induced IL-8 upregulation, and moreover, 

it reversed MMC-triggered cell growth inhibition associated with elevated IL-8 levels. These 

results hold beneficial implication for postoperative recovery of the cornea [497]. 5-FU in 

combination with GCs has also been shown effective in treatment of ocular lesions. Conjugate of 

5-FU with Dex, as well as suspension of 5-FU combined with triamcinolone applied intravitreal to 

rabbits with induced proliferative vitreoretinopathy resulted in regression of the disease 

compared to the untreated group [498].  

A recent study investigated a link between MMC and circadian clock gene expression in NIH 3T3 

fibroblasts and ocular fibroblasts. The circadian clock system is regulated by light, subsequent 

production of corticosteroids in the adrenal glands, and GR activity [499]. MMC not only 

decreased Dex-induced nuclear GR protein levels, but subsequently led to the inhibition of Dex-

induced Per1 transcription, a gene implicated in circadian rhythm regulation, and decreased SGK-

1 expression, a well-known direct target of activated GR [500]. 
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Figure 47. A schematic representation of proposed future experimental approaches. Different experimental 
set-ups can be designed based on the knowledge obtained during this doctoral project. 

4.5. Effects of GC treatment via CAFs on radio- or chemotherapy-induced GR-positive and GR-

negative colon cancer cells 

As it was reported before in cell lines derived from various cancer types, including colon cancer, 

GC treatment is suspected to trigger chemotherapy resistance via anti-apoptotic actions 

[299,311]. In this perspective, another interesting question is how the GC-affected stromal cells 

influence chemotherapy resistance in GR+ and GR- colon cancer cell lines. Such experiments 

should be conducted using CAF-derived CMCTRL and CMDEX, and oxaliplatin- and Dex-treated colon 

cancer cells. But also in co-culture system using our optimized CAM model, where the tumors 

containing CAFs and colon cancer cells could be simultaneously treated with chemotherapeutic 

agent and Dex. Similar experiments with use of irradiated colon cancer cells would also shed light 

on the effects of GCs in combination with this kind of therapy. 

4.6. The influence of GC-treated CAFs on tumor-associated macrophages 

CAFs strongly impact the cancer microenvironment via secretion of various growth factors, 

enzymes, cytokines, chemokines, ECM proteins and adhesion molecules [76]. CAFs are implicated 

in several hallmarks of cancer including both tumor-promoting inflammation and avoiding 

immune destruction [8,127]. Cancer cells and CAFs were shown to attract tumor-promoting 
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myeloid-derived suppressor cells, including neutrophils, monocytes, immature dendritic cells, and 

early myeloid progenitors. Moreover, the increased CAFs’ affinity to M2 macrophages in CRC has 

been associated with tumor-promoting effects, considering M2’s role in immunosuppression via 

secretion of IL-10 and TGFβ and induction of angiogenesis [127,501,502]. In prostate cancer, CAFs 

were shown to attract monocytes to the tumor site and contribute to their transformation into 

M2 macrophages via stromal-derived growth factor-1 (SDF-1). Moreover, this impact was 

reciprocal, since the macrophages stimulated differentiation of fibroblasts into CAFs [503]. Among 

known immunomodulatory factors secreted by CAFs are IL-6, IL-8, RANTES, MCP-1, GM-CSF, and 

CXCL-1 [76,504]. Although via the protein array we detected only a part of these factors 

(Supplementary Table 2, Supplementary Figure 3, p.218), an mRNA analysis in the TNFα-induced 

CAFs revealed strong elevation of proinflammatory genes expression, including IL-6, MCP-1, 

ICAM, RANTES, IL-1β, and TNFα itself (Results Chapter 1, Figure 21, p.88). In the same experiment 

we showed that GC Dex strongly inhibited TNFα-stimulated expression of almost all of these 

molecules. These results suggest that an immunomodulatory role of CAFs is strongly impaired due 

to GC treatment. Suppression of such signals could not only decrease tumor-promoting 

inflammation but also possibly decrease macrophage infiltration, pointing to another beneficial 

side of an indirect GC impact. On the other hand, it is important to highlight that a direct GC 

treatment on lymphoid cells has been widely recognized, especially in hematological 

malignancies, owing to GC-mediated pro-apoptotic effects in lymphocytes [277]. The GC-

mediated anti-proliferative actions were also reported in monocytic/macrophage cell lines [505]. 

Moreover, a strong immunosuppressive impact of GCs was recognized in macrophages and 

neutrophils, leading to inhibition of inflammatory mediator secretion including IL-1β and MCP-1 

and subsequent reduction of myeloid cells infiltration into the tissue in a contact hypersensitivity 

model [506]. Combined, considering the little information published so far, a study analyzing the 

role of GC-treated CAFs on tumor-associated macrophages and vice versa would enrich our 

knowledge on an indirect GC impact in the tumor microenvironment and its role in tumor 

development. 

4.7. The influence of GC-treated colon cancer cells on CAFs and their precursors 

Cancer cells recruit CAFs by releasing factors, such as TGFβ and PDGF [35]. It would be important 

to find out whether GC/SEGRM treatment of GR+ colon cancer cells affect the production of these 

factors and, as such impact the transition of fibroblastic precursors into CAFs. Transition of the 

fibroblastic precursors, such as commercially available bone marrow-derived mesenchymal stem 

cells (BM-MSC), could be monitored during the treatment with conditioned medium from treated 
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and untreated GR+ cancer cells, by tracking the expression of myofibroblastic markers, such as 

αSMA and vimentin via RT-qPCR and Western Blot.  

4.8. Continuation of the study on effects of Dex and CpdA on angiogenesis 

In Article 4 we presented a study on direct effects of Dex and CpdA on the EC biology. These 

preliminary data revealed interesting properties of CpdA, which exerted anti-inflammatory and 

cytostatic effects in HUVEC. Moreover, we hypothesize that part of CpdA-derived effects in ECs 

are GR-independent. To this end, we would like to extend this research to other EC cell lines and 

to a detailed analysis of NFκB activity upon CpdA treatment, also in conditions with a knocked-

down GR. It would be also useful to investigate other cell functions, such as migration and 

adhesion. New systems and technology including the xCELLigence and IncuCyte platforms allow us 

to investigate in an automated, more detailed and more efficient way the effects of treatment in 

vitro. Results from such in vitro systems will yield a better understanding of the fundamental 

effects in non-complex conditions and, as such provide a better starting set up for more complex 

conditions, such as use of CAM and mouse models.  

Figure 47 depicts examples of potential future experimental set-ups based on the information 

gained from this doctoral project. 
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General conclusion 

The present study demonstrated that a treatment with the GC Dex, via inducing severe changes in 

the composition of the CAF secretome, neutralized pro-invasive and growth-promoting impact on 

colon cancer cells. Moreover, Dex administration limited CAFs’ pro-migratory properties exerted 

on endothelial cells, contributing to GC-mediated angiostatic effects. Our observations reveal 

interesting beneficiary properties of GCs, which upon further research, could be implemented in 

the strategy of colon cancer therapy. 

Moreover, data collected on the properties of the SEGRM CpdA confirmed its anti-inflammatory 

properties and revealed new information about its functionality in CAFs and in ECs. Owing to their 

unquestionable potential, this project strongly supports further research on novel GR ligands. 
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ABBREVIATIONS 

11β-HSD 11β-hydroxysteroid dehydrogenase 
36B4 (RPLP0) acidic ribosomal phosphoprotein P0  
5-FU 5-fluorouracil 
A adenine 
Ac-LDL acetylated-low density lipoprotein 
ACTH adrenocorticotropic hormone 
ADAM  a desintegrin and metalloproteinase 
ADAMT  a desintegrin and metalloproteinase with thrombospondin motifs 
AF activation function 
ALK activin receptor-like kinase 
Ang angiogenin 
ANGPT angiopoietin 
ANGPTL-2 angiopoietin-like 2 
AP-1 activator protein 1 
APC adenomatous polyposis coli 
AR androgen receptor 
ATP adenosine triphosphate 
AUC area under curve 
bFGF(R) basic fibroblast growth factor (receptor) 
BTM basal transcriptional machinery 
C cytosine 
CAF cancer-associated fibroblast 
CAM chorioallantoic membrane 
cAMP cyclic adenosine monophosphate 
CAT collective to amoeboid transition 
CBG corticosteroid-bound globulins 
CBP CREB-binding protein 
CCL5 (RANTES)  chemokine (C-C motif) ligand 5 
CD cluster of differentiation 
CDK cyclin-dependent kinases 
CIMP CpG island methylator phenotype 
CIN chromosomal instability 
CM conditioned medium 
CMCTRL CM from solvent-treated cells 
CMDEX CM from Dex-treated cells 
COPD  chronic obstructive pulmonary disease 
COX-2  cyclooxygenase-2 
CpdA compound A 
CRC colorectal cancer 
CREB cAMP response element-binding 
CRH corticotropin-releasing hormone 
CRPC castration-resistant prostate cancer 
CSC cancer stem cell 
CTC circulating tumor cell 
CTLA  cytotoxic T-lymphocyte-associated antigen 
CyP  cyclophilin 
DBD  DNA-binding domain 
Dex dexamethasone 
DMEM Dulbecco's modified Eagle medium 
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DMSO dimethyl sulfoxide 
DNA deoxyribonucleic acid 
DTT dithiothreitol 
DUSP-1 (MKP-1) dual-specificity phosphatase-1 
EC endothelial cell 
E-cad epithelial cadherin 
ECL enhanced chemiluminescence 
ECM extracellular matrix 
EDTA ethylenediaminetetraacetic acid 
EGF(R) epidermal growth factor (receptor) 
EGM endothelial growth medium 
ELISA enzyme-linked immunosorbent assay 
EMDR  environment-mediated drug resistance 
EMT  epithelial-to-mesenchyma transition 
eNOS  endothelial nitric oxide synthase 
ER  estrogen receptor 
ERK  extracellular signal-regulated kinase 
FA fluocinolone acetonide 
FAP familial adenomatous polyposis 
FCS fetal calf serum 
G guanine 
GAG glycosaminoglycan 
GAP GTPase activating protein 
GAPDH glyceraldehyde 3-phosphate dehydrogenase 
GC glucocorticoid 
GDP guanosine diphosphate 
GILZ  glucocorticoid-induced leucine zipper 
GM-CSF  granulocyte-macrophage colony-stimulating factor 
GR glucocorticoid receptor 
GRB2 growth factor receptor-bound protein 2 
GRE glucocorticoid-responsive elements 
GSK3β glycogen synthase kinase 3β 
GTP guanosine triphosphate 
HAoEC human aortic endothelial cell 
HAT histone acetyl transferase 
Hcrt hydrocortisone 
HDAC histone deacetylase 
HGF hepatocyte growth factor 
HIF hypoxia inducible factor 
HNSCC  head and neck squamous cell carcinoma 
HPA hypothalamic-pituitary-adrenal 
HRE hypoxia-responsive elements 
HRP horseradish peroxidase 
hsp heat shock protein 
HSPG heparan sulfate proteoglycans 
HUVEC  human umbilical vein endothelial cell 
ICAM-1 intercellular adhesion molecule 1 
IGF-1 insulin-like growth factor 1 
IL interleukin 
IR ionizing radiation 
KRAS Kirsten rat sarcoma 
LBD ligand-binding domain 
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LCC latency competent cancer 
LCL long-circulating liposomes 
LDH lactate dehydrogenase 
LDL low density lipoprotein 
LPS lipopolysaccharide 
luc luciferase 
mAb monoclonal antibody 
MAPK mitogen-activated protein kinase 
MAT  mesenchymal to amoeboid transition 
MCP-1 (CCL2)  monocyte chemotactic protein 1 
MDCT  multi detector computerized tomography 
MDR multidrug resistance 
MEF mouse embryonic fibroblasts 
MKP-1 (DUSP-1) mitogen-activated protein kinase phosphatase 1 
MMC  mitomycin C 
MMP matrix metalloproteinase 
MMR mismatch repair 
MR mineralocorticoid receptor 
mRNA messenger RNA 
MS mass spectrometry 
MSI microsatellite instability 
mTOR mammalian target of rapamycin 
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
N-cad neural-cadherin 
NCoR nuclear receptor co-repressor 
NES nuclear export signal 
NFκB nuclear factor κB 
nGRE negative GRE 
NK natural killer 
NKT natural killer T cell 
NL nuclear localization 
NLS nuclear localization signals 
NO nitrix oxide 
NPC nuclear pore complex 
NR nuclear receptor 
NSAID  non-steroidal anti-inflammatory drug 
NTD  N-terminal transactivation domain 
p53 protein 53 
PAGE polyacrylamide gel electrophoresis 
PAI plasminogen activator inhibitors 
PARP poly ADP-ribose polymerase 
PBS phosphate-buffered saline 
PD-1 programmed cell death protein 1  
PDGF platelet-derived growth factor 
PG proteoglycan 
PI3K phosphoinositide-3 kinase 
PIP3  phosphatidylinositol-3,4,5-trisphosphate 
PKB (Akt) protein kinase B 
PLC-γ phospholipase C-γ 
PlGF placental growth factor 
PPIB peptidyl-prolyl cis-trans isomerase B 
PR progesterone receptor 

https://en.wikipedia.org/wiki/Phosphatidylinositol_%283,4,5%29-trisphosphate
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Pred prednisolone 
PTM post-translational modification 
qPCR quantitative polymerase chain reaction 
RANTES (CCL5)  regulated on activation, normal T cell expressed and secreted 
RNA ribonucleic acid 
ROS reactive oxygene species 
RT reverse transcription 
RTK receptor-tyrosine kinase 
RWD relative wound density 
SDF-1 stromal cell-derived factor 1 
SDS sodium dodecyl sulfate 
SEGRA  selective glucocorticoid receptor agonist 
SEGRM  selective glucocorticoid receptor modulator 
SF scatter factor 
SGK-1  serum glucocorticoid regulated kinase 
SH steroid hormone 
SLRP small leucin-rich proteoglycan 
SMRT silencing mediator for retinoid or thyroid-hormone receptors 
SRB sulforhodamine B 
SRC steroid receptor coactivators 
STAT  signal transducer and activator of transcription 
SUMO small ubiquitine-related modifier 
T thymine 
t1/2 half-life 
TAM tumor-associated macrophage 
TGFβ Transforming growth factor β 
TH CD4+ helper T-cells 
TIE tyrosine kinase with immunoglobulin-like and EGF-like domains 
TIMP tissue inhibitor of proteinase 
TLS tube-like structure 
TNC tenascin C 
TNFα tumor necrosis factor alpha 
TNM Tumor Node Metastases 
tPA tissue plasminogen activator 
Treg CD4+ T regulatory cells 
uPA urokinase plasminogen activator 
VEGF(R) vascular endothelial growth factor (receptor) 
ZEB  zinc finger E-box-binding homeobox 
αSMA  alpha smooth muscle actin 
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ADDENDUM 1. 

Supplementary figures for Part III: Results: Chapter 1 

 

Supplementary Figure 1. (A,B,C,D) CT5.3hTERT cells were treated with solvent, Dex (1µM) or CpdA (10µM) 
for 24h or 48h. Isolated mRNA was subjected to RT-qPCR assaying IκBα (A,B) or A20 (B,C) mRNA levels, and 
results were normalized to the respective geometric mean of GAPDH, PPIB and 36B4 household genes’ 
mRNA levels. The solvent condition was set at 1 and results were recalculated accordingly. Results are the 
mean ±SD of two independent experiments and statistical analysis on potentially significant differences was 
performed using a one-way analysis of variance (ANOVA) and Tukey’s multiple comparisons post-test. ns 
not significant,* p<0.05,** p<0.01, ***p<0.001. 
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Supplementary Figure 2. CT5.3hTERT cells were treated with solvent, Dex (1µM), RU (2µM) or co-treated 
with Dex (1µM) and RU (2µM) for 48h. Total mRNA was subjected to RT-qPCR assaying HGF (A) TNC (B) and 
TGFβ (C) mRNA levels, and results were normalized to the respective geometric mean of GAPDH, PPIB and 
36B4 household genes’ mRNA levels. The solvent condition was set at 1 and results were recalculated 
accordingly. Results are the mean ±SD of three independent experiments and statistical analysis on 
potentially significant differences was performed using a one-way analysis of variance (ANOVA) and Tukey’s 
multiple comparisons post-test. ns not significant, **p<0.01, ***p<0.001. 
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ADDENDUM 2. 

Supplementary data for Part III: Results: Chapter 2. 

1. Supplementary methods 

Acetylated-low density lipoprotein (Ac-LDL) uptake assay 

HUVECs were seeded onto glass coverslips (coated with 0.1% gelatin) and incubated overnight at 

37°C, 5% CO2. Cells were then incubated for 24h in EGM2S+ (control), DMEM, CMDEX or CMDEX. 

DMEM and 10-fold concentrated CM were diluted 1:1 with EGM2S+. Ac-LDL uptake was assessed 

as described [449]. Briefly, HUVECs were incubated for 5h with 5 µg/ml Ac-LDL conjugated with 

alexa-488 (Invitrogen, Glasgow, UK, cat no: L23380), then washed with PBS, fixed with 2% 

paraformaldehyde, washed again with PBS and stained with DAPI. Images were taken using a 

fluorescence microscope (Axioscope, Zeiss, Oberkochen, Germany), CoolSNAP camera 

(Photometrics, AZ, USA) and MCID Basic 7.0 software. Photographs were analyzed for green 

fluorescence signal intensity over number of cells per image, using ImageJ software [362].  

2. Supplementary tables 

Supplementary Table 1. Conditioned medium dilutions and concentrations used in experiments 

Figure Cell Type Experiment Conditioned 

medium : EGM2 

Conditioned 

medium final 

concentration 

EGM2 used 

for dilutions 

28A HUVEC MTT assay 1:1 5x +serum (2%) 

28B HUVEC SRB assay 1:1 5x +serum (2%) 

28C HUVEC SRB assay 1:1 5x serum-free 

29, suppl. 

fig. 7 

HUVEC scratch assay 1:1 5x serum-free 

30, suppl. 

fig. 8 

HUVEC 

HAoEC 

TLS 

formation 

1:4 2x +serum (2%) 

31 HUVEC RT-qPCR 1:1 5x +serum (2%) 

32, 33, 

suppl. fig 9. 

murine 

aortic 

rings 

aortic ring 

assay 

1:1 with DMEM 5x serum-free 

DMEM 

suppl. fig. 4 HUVEC ELISA 1:1 5x +serum (2%) 

suppl. fig. 5 HUVEC Ac-LDL assay 1:1 5x +serum (2%) 
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Supplementary Table 2. A summary of selected factors detected or not-detected in the conditioned 
medium from CAFs (position refers to location on the protein array in the Supplementary Figure 3; signal 
detection fold changes above the threshold 1.5 or below 0.66 are indicated in bold). 

Factors detected in 

CM 

position  CMDEX/CMCTRL Factors detected neither in 

CMDEX nor CMCTRL 

position  

Angiogenin 

Angiopoietin-1 

Angiostatin 

ANGPTL-2 

Endostatin 

HGF/SF 

IL-8 

MCP-1 

TNFβ 

TSP-1 

u-PA 

VEGF 

A16 

A17 

A23 

A21 

D30 

G29 

I24 

L23 

Q18 

P27 

R12 

R18 

2.24 

0.83 

1.09 

0.18 

0.81 

0.76 

0.91 

0.88 

0.73 

1.02 

0.18 

0.87 

Angiopoietin-2 

Angiopoietin-4 

ANGPTL-1 

bFGF 

GM-CSF 

IL-1α 

IL-1β 

IL-6 

PDGFs 

TNFα 

TSP-4 

VEGFR-2 

A18 

A19 

A20 

E16 

G16 

H24 

H25 

I20 

N26-N30 

Q17 

P29 

R18 

 

3. Supplementary figures 

 

Supplementary Figure 3. Glucocorticoids alter the expression and secretion of proteins from cultured CAFs. 
CT5.3hTERT cells were treated with solvent or Dex (1µM). After 48h cell supernatants (CM

CTRL
 and CM

DEX
, 

respectively) were collected, 4-fold concentrated and subjected to Ray Bio® Biotin Label-based Human 
Antibody Array I. Factors with a fold change above 1.5 or below 0.66 are indicated with white circles. 
Positions of selected factors are listed in table Supplementary Table 2. Positive controls are represented by 
dots in positions A1-3 and R1-3.  



Addenda 

219 

 

Supplementary Figure 4. Expression of uPA in conditioned medium is reduced when the CAFs are exposed 
for 6h to dexamethasone. CT5.3hTERT cells cultured in DMEM were treated for 6h with solvent, Dex (1µM) 
or CpdA (10µM). Isolated mRNA was subjected to RT-qPCR assaying uPA mRNA levels. Results were 
normalized to the respective geometric mean of GAPDH, PPIB and 36B4 reference genes’ mRNA levels and 
are expressed relative to the solvent control. Results are the mean ± SD of three independent experiments 
and statistical analysis was performed using a one-way analysis of variance (ANOVA) and Tukey’s multiple 
comparisons post-test. ns: not significant ***: p<0.001. 
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Supplementary Figure 5. Levels of prostanoids produced in HUVECs are not affected by treatment with 
conditioned medium from CAFs. (A-F) HUVECs were treated with either EGM2

S+
 or EGM2

S+
 mixtures with 

CM
CTRL

 or CM
DEX

 in 1:1 ratio. After 24h cells and media were collected and analyzed for prostanoids. In 
HUVEC media and cell lysates ELISA was performed to quantify (A, D) PGF2α, (B, E) PGI2 (by assessing 6-keto-
PGF1α) and (C, E) PGE2 concentrations. Results are the mean ± SD of three independent experiments and 
statistical analysis was performed using a one-way analysis of variance (ANOVA) and Tukey’s multiple 
comparisons post-test, ns: not significant. 
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Supplementary Figure 6. Conditioned media does not alter acetylated LDL uptake by HUVECs. HUVECs were 
seeded onto coverslips and cultured for 24h in either EGM2

S+
 (control) or with EGM2

S+
 containing DMEM, 

CM
CTRL

 or CM
DEX

 in 1:1 ratio. Ac-LDL conjugated with Alexa-488 (5 µg/ml) was added to the cells (5h) before 
they were washed, fixed, counterstained (DAPI) and quantified. Tukey’s box plots represent data of three 
independent experiments and were analyzed using a Mann-Whitney U test. ns: not significant. 

 

Supplementary Figure 7. Representative images of scratch wound assay. HUVECs were cultured in EGM2
S+

. 
After 18h a wound was created in the confluent cell monolayer. Cells were washed and treated with EGM2

S-
 

mixtures with CM
CTRL

, CM
DEX

 or CM
CTRL

+Dex (50 nM) in 1:1 ratio. Examination of the wound healing process 
and image capture were performed with the IncuCyte ZOOM system. Dotted lines indicate the position of 
the original scratch wound. 
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Supplementary Figure 8. Representative images of tube-like structure formation assay. HUVECs (A) and 
HAoECs (B) were seeded on Matrigel-coated wells and treated with either EGM2

S+
 or EGM2

S+
 mixtures with 

DMEM, CM
CTRL

 or CM
DEX

 in 1:4 ratio. Phase-contrast images were taken at 6h post induction for HUVECs and 
3h post induction for HAoECs. 
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Supplementary Figure 9. Representative higher-power images of the aortic rings and outgrowths.Explants 
were prepared from aortas isolated from adult male C57BL/6 mice. After embedding in collagen, aortic 
rings were treated with CM

CTRL
, CM

DEX
 or CM

CTRL
+Dex (50nM), in 1:1 ratio with serum-free DMEM. Images of 

explants and vascular sprouts were captured after 10 days. 
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ADDENDUM 3. 

Supplementary data for Part III: Results: Chapter 3 

1. Supplementary methods 

Cell viability and metabolic activity (MTT) assay 

To test the cell metabolic activity and viability, HCT8/E11 cells were seeded in 96-well plates 

(7.5x103/well). In order to exclude treatment’s effect on cell proliferation, we used confluent cell 

cultures, which were subsequently treated for 72h with CMCTRL or CMDEX, or with serum-free 

DMEM. Additionally, as a negative control, we included cells treated with 10% triton for 1h (data 

not shown). To analyze cell metabolic activity a 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay was performed, as described [360]. Plates were 

scanned using a ParadigmTM Detection Platform (Beckman Coulter®, Krefeld, Germany) and 

SoftMax® Pro 6.1 software.  

2. Supplementary table 

Supplementary Table 3. Scoring system used to evaluate CAM results. 

Score Tumor shape (sphericity) Cancer cell infiltration 

1 

 

Semi-transparent, flat layer of 

cells 

No cancer cells invading the mesenchymal layer, 

unchanged chorionic epithelium 

2 Non-transparent flat layer of 

cells 

Enlarged chorionic epithelium, 1-5 invading cell 

clusters per field 

3 Non-transparent, partially 

compact tumor 

Disturbed chorion continuity and 6-10 cancer cell 

clusters invading per field 

4 

 

Non-transparent, compact, 

semi-spherical tumor 

Partial disappearance of chorion 11-15 cancer cell 

clusters invading per field 

5 Round, compact non-

transparent tumor 

Disappearance of chorion, cancer cells widely 

distributed in mesenchymal layer (15 < cell clusters 

invading per field) 
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3. Supplementary figures 

 

 

Supplementary Figure 10. HCT8/E11 cells do not display GR transrepressive properties. (A, B) HCT8/E11 
cells were treated with solvent, Dex (1µM) or CpdA (10 µM) for 1h and either or not co-treated with TNFα 
(2000 IU/ml) for another 5h. Cells were lysed and total mRNA was subjected to RT-qPCR assaying (A) ICAM 
and (B) MCP-1 mRNA levels. Results were normalized to the respective geometric mean of GAPDH, PPIB, 
and 36B4 reference genes’ mRNA levels. The solvent condition was set at 1 and other results were 
recalculated accordingly. Results shown are the means ± SD of three independent experiments and 
statistical analysis was performed using a one-way ANOVA and Tukey’s multiple comparisons post-test. ns: 
not significant. 

 

 

Supplementary Figure 11. Conditioned medium from CAFs does not impair HCT8/E11 cell viability. In order 
to exclude the effect of the treatment on cell proliferation HCT8/E11 cells were grown till confluency and 
treated with serum-free DMEM, CM

CTRL
 or CM

DEX
 for 72h. Cell viability was assessed using an MTT assay. 

The control condition (DMEM) was set at 1 and other results were recalculated accordingly. Results shown 
are the means ± SD of three independent experiments and statistical analysis was performed using a one-
way ANOVA and Tukey’s multiple comparisons post-test. ns: not significant. 
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Supplementary Figure 12. CM
DEX

 has a diminished potential to stimulate HCT8/E11 cell invasive 
morphotype, as compared to CM

CTRL
. HCT8/E11 cells were treated with serum-free DMEM, CM

CTRL
 or CM

DEX
 

and subjected to a cell morphology assay on collagen. Phase-contrast images were taken at 24h post 
induction. Arrows indicate cell extensions, characteristic for invasive cell morphotype. 
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Supplementary Figure 13. Glucocorticoids FA, Pred, Hcrt diminish pro-invasive properties of CAF 
conditioned medium, but a SEGRM CpdA does not have such properties. (A, B, C) HCT8/E11 cells were 
treated with either serum-free DMEM, CM

CTRL
 or CM

DEX
 and additionally with (A) CMFA, CMPRED, CMHCRT, 

(B) CM
CTRL

 supplemented with Dex or (C) CMCPDA, and subsequently, cells were subjected to cell 
morphology assay on collagen. Results (A, B, C) are shown as scatter plots with means of three independent 
experiments and statistical analysis was performed using a Mann-Whitney test. ns: not significant, ***: p < 
0.001. 
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Supplementary Figure 14. Dex-mediated downregulation of HGF and TNC in CAF is not solely responsible 
for decreased invasive morphology of HCT8/E11 cells. (A) HCT8/E11 cells were treated with either serum-
free DMEM, CM

CTRL
, CM

DEX
, CM

DEX
 supplemented with HGF (50ng/ml), CM

DEX
 supplemented with TNC 

(2µg/ml) or CM
DEX

 supplemented with both HGF and TNC and subsequently subjected to a morphology 
assay on collagen. (B) HCT8/E11 cells were treated with either DMEM or DMEM supplemented with HGF 
(50ng/ml) and TNC (2µg/ml) and subsequently subjected to a cell morphology assay on collagen. Results are 
shown as scatter plots with means of three independent experiments and statistical analysis for selected 
pairwise comparisons was performed using a Mann-Whitney test. ns: not significant, ***: p < 0.001. 



Addenda 

230 



Addenda 

231 

ADDENDUM 4. 

Supplementary figures for Part III: Results: Chapter 4. 

 

Supplementary Figure 15. Treatment with Dex or CpdA does not affect Ac-LDL uptake by HUVECs. HUVECs 
were seeded onto coverslips and subsequently treated for 24h with solvent, Dex (1µM) or CpdA (5µM). 
Next, Ac-LDL conjugated with Alexa-488 (5 µg/ml) was added to the cells. After 5h cells were washed, fixed, 
and stained with DAPI (indicating nuclei) prior to obtaining the microscopic images (40 x magnification). 



Addenda 

232 

 

Supplementary Figure 16. Treatment with Dex nor CpdA does not affect TLS formation. HUVECs were 
seeded on Matrigel-coated wells and treated with solvent, Dex (1µM) or CpdA (5µM). Phase-contrast 
images were taken after 6 h (5 x magnification). 
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ADDENDUM 5. 

Supplementary Table 4. List of primers used in the qPCR analysis (F- forward, R-reversed) 

Gene Sequence (5' - 3') 

h36B4 F: CATGCTCAACATCTCCCCCTTCTCC 

R: GGGAAGGTGTAATCCGTCTCCACAG 

hA20 F: CCTTGCTTTGAGTCAGGCTGT 

R: AAGGAGAAGCACGAAACATC 

hACTA2 
(αSMA) 

F: GGAATGGGACAAAAAGACAGCTA 

R: CGGGTACTTCAGGGTCAGGAT 

hANG F:CCGTTTCTGCGGACTTGTTC 

R:GCCCATCACCATCTCTTCCA 

hANGPTL2 F:AGACGCCTGGATGGCTCTGTTA 

R:AGTTGCCTTGGTTCGTCAGCCA 

hGAPDH 
 

F: AGCCACATCGCTCAGACAC 

R: GCCCAATACGACCAAATCC 

hGILZ 
 

F: GCGTGAGAACACCCTGTTGA 

R: TCAGACAGGACTGGAACTTCTCC 

hGR 
 

F: TGATGAAGCTTCAGGATGTCA 

R: TTCGAGCTTCCAGGTTCATTC 

hHGF 
 

F: CCGAGGCCATGGTGCTATAC 

R: TCCTTGACCTTGGATGCATTC 

hICAM 
 

F: GCAGACAGTGACCATCTACAGCTT 

R: CTTCTGAGACCTCTGGCTTCGT 

hIκBα 
 

F: CTCCGAGACTTTCGAGGAAATAC 

R: GCCATTGTAGTTGGTAGCCTTCA 

hIL1β 
 

F: TACCTGTCCTGCGTGTTGAA 

R: TCTTTGGGTAATTTTTGGGATCT 

hIL6 F: GACAGCCACTCACCTCTTCA 

R: AGTGCCTCTTTGCTGCTTTC 

hMCP-1 
 

F: CAGCCAGATGCAATCAATGCC 

R: TGGAATCCTGAACCCACTTCT 

hN-cadherin 
 

F:AGCCTGGAACATATGTGATGA 

R: CCATAAAACGTCATGGCAGTAA 

hRANTES 
 

F: TGCCCACATCAAGGAGTATTT 

R: CTTTCGGGTGACAAAGACG 

hTNC 
 

F: ACGAACACTCAATCCAGTTTGCTGA 

R: TGGAATTTATGCCCGTTTGCGCC 

hTGFβ1 
 

F: TGAACCGGCCTTTCCTGCTTCTCATG 

R: GCGGAAGTCAATGTACAGCTGCCGC 

hTNFα 
 

F: ATGAGCACTGAAAGCATGATCC 

R: GAGGGCTGATTAGAGAGAGGTC 

huPA F:CACGCAAGGGGAGATGAA 

R:ACAGCATTTTGGTGGTGACTT 
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hVEGF F: CACCCATGGCAGAAGGAGGA 

R: ACACACTCCAGGCCCTCGTC 

hVEGFR1 F: CGCTTGCCAGCTACGGTTTC 

R: GGCGACGAATTGACCAAAGC 

hVEGFR2 F: GGAACCTCACTATCCGCAGAGT 

R: CCAAGTTCGTCTTTTCCTGGGC 

hVimentin 
 

F: CCAAACTTTTCCTCCCTGAACC 

R: GTGATGCTGAGAAGTTTCGTTGA 

m/hPPIB F: ATGGTGATCTTCTTGCTGGTCCTTGC 

R: GCATACGGGTCCTGGCATCTTGTCC 
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