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Preface

The European Union leaders have made several agreements to continuallyreduce
CO2 emissions by 2050. For this purpose several initiatives are taken, including
the 20-20-20 target, which is a climate and energy package of legislation aimedat
ensuring that CO2 emissions in 2020 decrease by 20%. The goals for 2020 are:

• 20% less CO2 emissions with respect to 1990

• 20% less energy consumption

• 20% of the total energy consumption must come from renewable energy such
as wind and solar power.

Electric motor systems are estimated to account for 46% of global electricity use
[1]. Electric motors could be called the workhorses of industry, converting elec-
trical energy to mechanical energy, they drive compressors, rotate pumps, move
materials, run fans, blowers, drills or mixers and so on. It is estimated that for
industrial applications, motor systems approximately account for 70% of electric-
ity consumption [1]. Small improvements of such huge consumers of electricity,
can lead to large energy savings. For this reason, the International Electrotechnical
Commission (IEC) introduced four levels of motor efficiency, summarized in the
IEC International Standard: IEC 60034-30-1:2014:

• IE1 Standard efficiency

• IE2 High efficiency

• IE3 Premium efficiency

• IE4 Super premium efficiency.

These four IE codes are voluntary and can help regulators to determine the mini-
mum efficiency levels for electric motor energy performance in their regulations.
The IEC 60034-30-1 classification system has improved the competition between
motor manufacturers and caused massive technological improvements. Although
the IEC international standards are voluntary, the IEC classification system is
adopted in the European Union (EU) and numerous other countries. The EU
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directive 640/2009, which is effective from January 2015 for motors with a rated
output from 7,5-375 kW and from 2017 for motors with a rated output from0,75-
375 kW, is generally referred as the EU Minimum Energy Performance Standard
(MEPS). This measure, is expected to result in energy efficiency improvements
of 20% to 30% [2]. With respect to these legislations, research towards axial flux
permanent magnet machines was started at the department of Electrical Energy,
Systems and Automation of Ghent University in 2008 by prof. dr. ir. Alex Van
den Bossche and prof. dr. ir. Peter Sergeant as a generator in a domestic combined
heat and power application [3]. Already at an early stage, the axial flux permanent
magnet machine technology showed superior properties such as excellent energy
efficiency and high power density. Nevertheless, more research on thismachine
was necessary. Therefore, a BOF association research project was requested and
granted to prof. dr. ir. Peter Sergeant and prof. dr. ing. Ludwig Cardon. This
research project would focus on the energy efficiency of axial flux permanent
magnet machines.

I would like to acknowledge the Ghent University College for granting the
project “Composite Electric Machines” and Ghent University for their financial
support by the special research fund (BOF).

Also special thanks to the people who directly contributed to this research:
Prof. dr. ir. Peter Sergeant for his insightful guidance during this research and
being my promoter. Prof. dr. ing. Ludwig Cardon for his help in the selectionof
the material used in the prototype machine and being my co-promoter. Prof. dr. ir.
Herbert De Gersem (Technische Universität Darmstadt) for his excellent guidance
during this research and his many splendid ideas. Dr. Ir. Hendrik Vansompel for
providing me his preliminary research files and the construction of the prototype
machine. Prof. dr. ir. Luc Dupré for providing me measurement loss data files and
his customized setup. Prof. dr. ir. Joris Degrieck and Dr. Ir. Ives De Baere with
the many help on the construction of the prototype machine.

I also like to thank the many friends I made at the research group. I would like
to mention Bert Hannon and Jan De Bisschop (who started with me in September
2012) in particular, for the many coffee breaks and good talks towards aPhD.

Also special thanks is given to my family and my girlfriend Lisa, whose steady
support and love made me stand strong through the rough times.
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Summary

Electric motor systems are estimated to account for 46% of global electricity use.
Electric motors could be called the workhorses of industry, converting electrical
energy to mechanical energy. They drive compressors, rotate pumps,move ma-
terials, run fans, blowers, drills or mixers and so on. It is estimated that forin-
dustrial applications, motor systems approximately account for 70% of electricity
consumption. Small improvements of such huge consumers of electricity, can lead
to large energy savings. The share of electrical motors in total energy consumption
will even increase, based on today’s automobile market. Most stakeholders assume
a realistic market share for new electrically chargeable vehicles to be in the range
of 2 to 8% by 2020 to 2025. This increase in electrically chargeable vehiclesin the
near future will decrease the use of fossil-fuel. Because of the growing electricity
use due to electrical motors, two European Union legislations has been passed in
the EU:

The EU directive 640/2009, which is effective from January 2015 formotors
with a rated output from 7.5 to 375 kW and from January 2017 for motors witha
rated output from 0.75 to 375 kW, is generally referred as the EU Minimum Perfor-
mance Standard (MEPS). This directive is expected to result in energy efficiency
improvements of 20% to 30%.

Directive 2009/28/EC of 23 April 2009 on renewable energy, discusses energy
consumption and the increased use of energy from renewable sources, together
with energy savings and increased energy efficiency.

Both legislations ask for higher efficiency and energy savings in electric drives,
even in the most demanding conditions.

With respect to the electrical motor technology, the axial flux permanent mag-
net machine shows many advantages. Axial flux permanent magnet machines are
particularly suitable for applications whereby the axial length is limited (built-in
applications). They can be applied for a variety of rotational speeds, lowspeed
high torque or high speed low torque, together with a high efficiency and power
density.

Although a number of variants on the axial flux permanent magnet topologies
exist, this work focuses on the double rotor, single stator topology, which isin
literature often referred to as the yokeless and segmented armature or segmented
armature torus topology. This topology requires no stator yoke, which increases



✐

✐

✐

✐

✐

✐

✐

✐

xiv Summary

the compactness and the power density of the machine. The stator in the yokeless
and segmented armature topology is built of individually stator core elements, each
provided of aeastooth coil winding. These stator core elements can be manufac-
tured individually and finally arranged together into a stator. This means thatthe
winding process takes place out of the machine, which makes the winding process
easy, resulting in a good filling factor of the stator slots. All these advantages of the
yokeless and segmented armature topology make it possible to meet the demands
on economical manufacturing cost and energy efficiency.

The good energy efficiency is the most important benefit of the axial flux per-
manent magnet technology in general and particularly of the yokeless andseg-
mented armature topology. Nevertheless, the aim of this work is to further increase
the energy efficiency focusing first of all on the existence of specific iron losses in
the machine and secondly on the reduction of these specific iron losses.

Chapter 1 presents the working principle of axial flux permanent magnet ma-
chines, in particular the yokeless and segmented armature topology. It is explained
why the yokeless and segmented armature is an interesting topology for further
research. A comparison was made with other competing topologies. The global
construction of the yokeless and segmented armature topology is explained.

Chapter 2 explains the behaviour of eddy currents in laminations and the influ-
ence of several electromagnetic parameters. Skin effect and penetration depth are
studied in a stack of laminates. The numerical field models used in this research,
together with their model requirements are discussed: 2D Finite Element Method
(FEM), 2D multislice technique, 3D Finite Integration Technique (FIT) and 3D
FEM.

Chapter 3 starts with a study of the magnetic characteristics of the materials
and the losses in these materials: silicon steel (grain oriented and non-oriented),
soft magnetic composite (SMC) and ferromagnetic wire. After that, severalho-
mogenization techniques are compared in order to model the laminated materials
in finite element models.

Chapter 4 presents a detailed study of the losses caused by fringing flux coming
from the armature reaction on a simplified non-rotating setup, consisting of two
tooth coils and a return yoke. The validated field simulations give a very goodidea
of the cause and the behaviour of fringing flux losses coming from the armature
reaction. The last part of this chapter discusses three approaches for reducing these
losses. The first method directly restricts the eddy-current losses by segmenting
the lamination surface. The second method deflects the fringing flux by using
Soft Magnetic Composite (SMC). The third method magnetically short-circuits the
fringing flux using ferromagnetic wires. Here the magnetic characterisationfrom
chapter 3 is included in the modelling.

Chapter 5 presents a study of the losses caused by fringing flux coming from the
armature reaction and the permanent magnets of the complete axial flux machine.
The study is done as a function of several parameters such as rotationalspeed and
air gap size. In addition, in contrast to several cited papers that consider no-load
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only, the influence of the stator current is investigated. In the last sectionsof the
chapter, we consider first the no-load situation. Here, the fringing flux losses are
caused only by the rotating permanent magnets. Then, full load is considered. At
full load, the stator currents cause additional fringing fluxes. Finally, theeffect of
speed and air gap thickness is explained.

Chapter 6 gives the general conclusion of this research.
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Samenvatting

Het aandeel van elektrische motoren en elektrische aandrijvingen wordtgeschat
op 46% van het wereldwijde elektriciteitsverbruik. Elektrische motoren kunnen
de werkpaarden van de industrie worden genoemd. Ze zetten elektrischeenergie
om naar mechanische energie, drijven compressors en pompen aan, zorgen voor
de verplaatsing van materialen, drijven ventilatoren, blazers, boren, mixers, ...
Voor industrïele applicaties staan elektrische motoren naar schatting in voor 70%
van het elektriciteitsverbruik. Kleine verbeteringen aan dergelijke grote elek-
triciteitsverbruikers kunnen aanleiding geven tot grote energiebesparingen. Het
aandeel van elektrische motoren in het totale energieverbruik zal zelfs stijgen in de
nabije toekomst. Gebaseerd op de visie binnen de hedendaagse automobielsector,
verwachten de meeste aandeelhouders een realistisch marktaandeel voor nieuwe
elektrisch oplaadbare voertuigen van 2 tot 8% tegen 2020 tot 2025. Dezestijging
in de nabije toekomst van elektrisch oplaadbare voertuigen zal het gebruik van fos-
siele brandstoffen doen dalen. Door het stijgend elektriciteitsverbruik afkomstig
van elektrische motoren, heeft de Europese Unie twee wetgevingen opgesteld:

De EU richtlijn 640/2009, die in voege is vanaf januari 2015 voor motoren met
een nominaal vermogen van 7,5 tot 375kW en vanaf januari 2017 voor motoren met
een nominaal vermogen van 0,75 tot 375 kW, wordt in het algemeen aangeduid als
de minimum prestatienorm. Deze maatregel zal naar verwachting leiden tot een
stijging van de energie-efficiëntie van 20% tot 30%.

Richtlijn 2009/28/EC van 23 april 2009 inzake hernieuwbare energie, be-
spreekt het energieverbruik en het toegenomen gebruik van energieuit hernieuw-
bare bronnen, samen met energiebesparing en grotere energie-efficiëntie.

Beide wetgevingen vragen om een hogere efficiëntie en energiebesparing in
elektrische aandrijvingen, zelfs onder de meest veeleisende omstandigheden.

Onder de elektrische motortechnologie, heeft de permanentemagneet-
bekrachtigde machine met axiale flux veel voordelen. Permanentemagneet-
bekrachtigde machines met axiale flux zijn bijzonder geschikt voor toepassingen
waarbij de axiale lengte beperkt is (ingebouwde toepassingen). Ze kunnen
worden ingezet voor verschillende rotatiesnelheden, enerzijds laag toerental en
hoog koppel, anderzijds hoog toerental en laag koppel. Dit gaat samen met
een hoge efficïentie en vermogensdichtheid. Hoewel er een aantal varianten van
de permanentemagneetbekrachtigde machine met axiale flux bestaan, is dit werk
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gericht op de variant met dubbele rotor en enkele stator, die in de literatuurvaak
aangeduid wordt als de “Yokeless and Segmented Armature” (YASA) variant.
Deze topologie vereist geen statorjuk, waardoor de compactheid en de vermogens-
dichtheid van de machine verhoogt. De stator in de YASA machine is opge-
bouwd uit individuele statorkern-elementen, elk voorzien van een geconcentreerde
wikkeling. Deze statorkern-elementen kunnen afzonderlijk worden vervaardigd en
nadien worden gerangschikt in een stator. Dit betekent dat het wikkelproces buiten
de machine plaats vindt. Dit vergemakkelijkt het wikkelproces en maakt het moge-
lijk een goede vulfactor van de statorgleuven te bereiken. Al deze voordelen van
de YASA machine maken het mogelijk om de economische eisen met betrekking
tot fabricagekosten en energiebesparingen tegemoet te komen.

De goede energie efficiëntie is het belangrijkste voordeel van de permanente-
magneetbekrachtigde machine met axiale flux in het algemeen en in het bijzonder
van de YASA variant. Desalniettemin is het doel van dit onderzoek om de ef-
ficiëntie verder te verhogen, door gericht onderzoek te doen naar ten eerste het
bestaan van specifieke ijzerverliezen in de machine en ten tweede naar hoedeze
specifieke ijzerverliezen kunnen gereduceerd worden.

Hoofdstuk 1 toont het werkingsprincipe van permanentemagneetbekrachtigde
machines met axiale flux, met name de YASA variant. Er wordt uitgelegd waarom
deze variant de interessantste variant is voor verder onderzoek. Erwordt een
vergelijking gemaakt met andere concurrerende topologieën. De globale construc-
tie van de machine wordt uitgelegd.

Hoofdstuk 2 verklaart het gedrag van wervelstromen in lamellen en de invloed
van verschillende elektromagnetische parameters. Skin-effect en indringdiepte
worden bestudeerd in een stapel lamellen. De numerieke veldmodellen die ge-
bruikt worden in dit onderzoek komen aan bod, alsook de vereisten waar ze moeten
aan voldoen: 2D eindige-elementenmethode, 2D multislice techniek, 3D eindige-
integratietechniek en 3D eindige-elementenmethode.

Hoofdstuk 3 begint met een onderzoek naar de magnetische eigenschappen
van de materialen en de verliezen in deze materialen: gelamelleerd silicium-
staal (georïenteerd en niet-georiënteerd), “soft magnetic composite” (SMC) en
ferromagnetische draad. Daarna worden verschillende homogenisatietechnieken
vergeleken om het gelamelleerde materiaal in de eindige-elementenmethode te
modelleren.

Hoofdstuk 4 presenteert een gedetailleerde studie van de verliezen veroorzaakt
door randspreidingsflux, afkomstig van spoelen op een stilstaande vereenvoudigde
testopstelling. Deze testopstelling bestaat uit twee tanden voorzien van spoelen
en een sluitjuk. Randspreidingsflux of franjes van het veld, wordt in het Engels
fringing flux genoemd en veder spreidingsflux genoemd. De gevalideerde simu-
laties van het magnetisch veld geven een goed beeld van de oorzaken en het gedrag
van de spreidingsfluxverliezen afkomstig van de spoelen. Het laatste deel van dit
hoofdstuk bespreekt drie methodes voor het verminderen van deze verliezen. De
eerste methode beperkt de wervelstromen rechtstreeks door het segmenteren van
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het oppervlak van de lamellen. De tweede methode buigt de spreidingsflux af met
behulp van “soft magnetic composite”. De derde methode sluit de spreidingsflux
kort door gebruik te maken van ferromagnetische draad. De magnetischekarak-
teristieken van deze materialen uit hoofdstuk drie werden opgenomen bij het mod-
elleren.

Hoofdstuk 5 beschrijft de studie van de verliezen veroorzaakt door spreidings-
flux afkomstig van de spoelen en de permanente magneten van de volledige ma-
chine. De studie wordt uitgevoerd als een functie van verschillende parameters,
zoals rotatiesnelheid en luchtspleet grootte. Bovendien, in tegenstelling tot enkele
geciteerde artikels die alleen nullast beschouwen, wordt de invloed van de stator-
stroom onderzocht. In de laatste delen van het hoofdstuk beschouwenwe eerst de
onbelaste situatie. Hier worden de verliezen door spreidingsflux alleen veroorzaakt
door de roterende permanente magneten. Vervolgens wordt vollast beschouwd. Bij
volledige belasting zorgt de statorstroom voor extra spreidingsflux. Tenslotte wordt
het effect van de snelheid en de luchtspleetdikte toegelicht.

Hoofdstuk 6 geeft de algemene conclusie van dit onderzoek.
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Chapter 1

Introduction to the Axial Flux
PM Machine

1.1 Introduction

Synchronous machines consist of Permanent Magnet (PM) machines and machines
with excitation windings. Three main topologies exist: the radial flux, the axial
flux and the transversal flux topology. Assuming a sufficiently large radius, axial
flux machines are similar to their radial flux counterpart concerning the electro-
magnetic aspects. However, the mechanical and thermal design are more complex.
Transversal flux machines are very complicated to manufacture becauseof com-
plex 3D shapes in the stator ferromagnetic path [4]. This work only considersAxial
Flux Permanent Magnet Synchronous Machines(AFPMSMs).

1.1.1 Features of the axial flux PM synchronous machine

Axial Flux Permanent Magnet Synchronous Machines (AFPMSMs) aremostly se-
lected because of the following main advantages:

• The AFPMSM can be used in all kinds of areas because of the flexible de-
sign, whereby the number of PMs together with the diameter of the rotor
can be changed easily. By changing the number of PM’s on the rotor of the
AFPMSM, different rotational speeds together with different torques are ob-
tained. Increasing the diameter and the number of PM’s of the rotor makes
the machine suitable for low-speed-high-torque applications (electric vehicle
propulsion and small/medium ranged direct-drive wind energy systems) [5].
Conversely, decreasing the diameter and the number of PM’s of the rotor
makes the machine suitable for high-speed-low-torque (pumps, fans, valve
control, centrifuges, machine tools, robots and industrial equipment) [6] ap-
plications.
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2 Introduction to the Axial Flux PM Machine

• The AFPMSM has a limited axial length, which makes it suitable for built-
in applications, like for example in electrical vehicles with in wheel applica-
tions. A high power density is reached because of these compact dimensions,
which are needed in many applications. The inertia of the large diameter of
the rotor can be used as a flywheel.

• The AFPMSM uses permanent magnets for the generation of the magnetic
field, and has the same advantages as other types of permanent magnet syn-
chronous machines: no copper losses for magnetization currents and a high
efficiency.

Because of these main advantages, AFPMSMs are also used in pumps, fans, valve
control, centrifuges, machine tools, robots and industrial equipment.

Besides academic interest, the AFPMSM is also provided by companies like
Evo-Electric (UK), Axco-motors (Finland) and YASA Motors Ltd (UK) making
custom designed machines.

1.1.2 Basic Axial Flux PM Machine

Construction

The simplest construction of an axial flux machine is schematically shown in figure
1.1. This is a single-sided construction of an axial flux machine and is simpler than
the double-sided one, but the torque production is lower. The single-sided con-
struction comprises only one stator and one rotor on which the permanent magnets
are placed.

The airgap between the rotating (rotor) and stationary (stator) part has tobe as
small as possible and is mostly limited by mechanical constraints.

The permanent magnets are magnetised in the axial direction, alternatingly
north-south. This causes a magnetic flux, alternatingly magnetized in adjacent
stator teeth. In the ideal axial flux machine, the net flux crossing the airgapis
zero, which means that the flux in the stator and rotor has to return internally.The
magnetic circuit of the single sided axial flux machine is closed by the rotor disk
and the stator disk (also called the rotor and the stator yoke). The stator teethand
stator disk of figure 1.1 are one mechanical part.

Operation principle

The operation principle of an axial flux PM machine is equivalent to the one of a ra-
dial flux PM machine. The shaft is forced to rotate, either by an external force (e.g.
a combustion engine, a wind turbine, a gas turbine, ...) or the machine itself. As the
rotor is rotating, the magnetic field from the permanent magnets is rotating. Look-
ing at one stator coil, for every two magnets passing this stator coil, the magnetic
field waveform in this stator coil describes one period. If the rotor has for example
16 permanent magnet poles, the magnetic field in a stator coil has eight periods for
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Figure 1.1: Single-sided axial flux permanent magnet machine comprising
one stator (1) and one rotor (2) on which the permanent magnets
(3) are placed [7].

one mechanical revolution. This time varying magnetic flux induces by Faraday’s
law a back electromotive force (voltage) in the stator coil. To amplify this induced
voltage of one stator coil, several stator coils can be placed in series. Theselection
of coils to be connected in series can be determined by the star-of-slots theory. The
induced voltage (RMS) in the stator phases can be expressed as [8]:

Ef =
√
2πnspN1kw1φf (1.1)

with ns =
f
p

the synchronous speed of the rotating magnetic field produced by the
stator, which equals the mechanical speed in rotations per second,f the electrical
frequency in Hz,p the number of pole pairs,N1 the number of turns per phase,
kw1 = kd1kp1 the primary winding factor which is the product of the distribution
factorkd1 with the pitch factorkp1, φf the magnetic flux through one tooth which
can be approximated by:φf ≈ πDav

2p
LiBmg with Dav = Dext+Din

2
the average

diameter,Dext the outer diameter andDin the inner diameter of the lamination
stack,Li =

Dext−Din

2
the effective length of the stator core in the radial direction

andBmg the maximum value of the flux density in the airgap.
The tangential force acting on the rotor disk can be calculated by use of Lorentz

law:
d~Fx = Ia(d~r × ~Bmg) (1.2)

whereIa is the armature current,d~r the radius element,~Bmg the vector of the
normal component (perpendicular to the disk surface) of the maximum magnetic
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4 Introduction to the Axial Flux PM Machine

flux density in the airgap at a given radius. Assuming that the magnetic flux density
in the airgapBmg is independent of the radiusr, this electromagnetic torque is
given by [8]

dTd = rdFx = 2παikw1ABmgr
2dr (1.3)

with αi = Bavg/Bmg the average to maximum value of the normal component of
the magnetic flux density in the airgap andA = m1N1Ia

pτ
the armature line current

density in whichm1 is the number of phases, andτ the pole pitch. Note that the
total torque of the machine, found by integrating (1.3) overLi – scales with the
third power of the radius of the machine. For radial flux machines, the scaling
law for torque is the square of the radius times the active axial length. Formula1.3
supposes a non-saturated machine and sinusoidal operation, which areno necessary
conditions for axial flux PM machines. In the general case, the torque per square
meter and per meter in radial direction can be approximated by:

Td,sw =

(
Bl,sw +Br,sw

2

)
Fm,sw (1.4)

with Bl,sw andBr,sw, the magnetic flux density, respectively at the left and right
side of the slot width andFm,sw the magneto motive force of the slot width.

When the machine is driven by a mechanical source and connected to an elec-
trical load, power is transferred from the mechanical power on the shaft to electrical
power in the load. On the other hand, when the machine is driven by an electrical
source and connected to a mechanical load, power is transferred fromelectrical
power to mechanical power on the shaft. The rotor experiences mainly a constant
flux over time (flux coming from the permanent magnets) and can for this reason
be constructed out of solid steel, because the risk for losses due to induced eddy
currents is limited. In contrast, the stator experiences a time varying magnetic field,
forming a high risk for losses due to induced eddy currents. In order to limitthis
risk, laminated silicon steel or Soft Magnetic Composite material (SMC) is used.
The mechanical properties of the material and the construction should be chosen in
order to withstand the very high axial attraction force between the rotor andstator.
Also proper bearings need to be chosen, because the bearings shouldbe able to
carry radial as well as axial forces.

1.1.3 Topologies

Besides the single sided construction of the axial flux PM machine, many other
topologies are found [9].

First of all there is the single stator double rotor machine (Fig. 1.2), in which
the stator is placed between the two rotor discs.

Secondly there is the double stator single rotor topology presented in Fig. 1.3,
in which the rotor is placed between the two stators. Possibly, the ferromagnetic
part of the rotor can be omitted. Stators with slotted windings and coreless stators
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Figure 1.2: Schematic representation of the single stator double rotorax-
ial flux PM machine topology. Stator (1), rotor (2), permanent
magnet (3) [7].

1

1

2
3

Figure 1.3: Schematic representation of the double stator single rotorax-
ial flux PM machine topology. Stator (1), rotor (2), permanent
magnet (3) [7].



✐

✐

✐

✐

✐

✐

✐

✐

6 Introduction to the Axial Flux PM Machine

are the two main classes in stator construction [10–12].
Stators with slotted windings, whereby the winding is placed in the stator slots,

are made of materials with a high magnetic permeability (such as laminated silicon
steel or amorphous iron). Unfortunately cogging torque is introduced coming from
the stator slot openings near the airgap (local change in permeance). Because of
the interaction of the permanent magnets and the stator slot openings, the torque is
position dependent. Several applications require a low cogging torque in order to
reduce the startup torque. For these applications, coreless (air cored)windings can
be used. In axial flux PM machines with coreless windings, the winding is mostly
embedded in an epoxy resin having unit permeability. By doing so, the cogging
torque together with the core losses vanish and the mass of the machine lowers.
The main disadvantage of coreless axial flux PM machines is the high equivalent
airgap thickness, which requires a relatively high volume of permanent magnets
in order to reach sufficiently high flux densities in the machine. The permanent
magnets on the rotor are very often magnets made of rare earth materials such
as neodymium (NdFeB) and are therefore costly with respect to silicon steel and
copper. The reduction of cogging torque in axial flux slotted PM machines isa
topic of recent scientific research.

1.2 Yokeless And Segmented Armature (YASA) Topology

Special attention needs be given to the slotted torus axial flux PM machine with one
stator and two rotors. In [13] the north south (NS) torus (Fig. 1.4) and north north
(NN) torus (Fig. 1.5) are indicated as the best performing axial flux PM machine
topologies.

The torus machine is explained by use of the linear representation of an axial
flux PM machine, introduced in Fig. 1.6. A magnetic flux is present in the stator of
the NN torus topology because both rotors are magnetised in the opposite direction.
This in contrast with the NS torus where the magnets on both rotors are magnetised
in equal direction.

The shorter stator yoke in the NS torus topology, increases the power density
and lowers the stator core loss in comparison with the NN torus topology. Notwith-
standing the winding configuration in the stator slots in the NS torus topology is
more complicated compared with the NN torus topology. The latter gives mostly a
lower filling factor of the conductors in the stator slots. In the NN torus topology,
the winding is toroidally wound around the stator yoke, resulting in an easy wind-
ing arrangement, a good filling factor, together with a lower end winding length.
In [14] a rectangular conductor is used for the NN torus topology, whichresults in
a high filling factor.

In [14], the efficiency and power density of the NS topology were slightly
higher than the NN torus topology.
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Figure 1.4: Schematic representation of the NS axial flux PM machine
topology. Stator (1), rotor (2), permanent magnet (3), winding
(4) [7].
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Figure 1.5: Schematic representation of the NN axial flux PM machine
topology. Stator (1), rotor (2), permanent magnet (3), winding
(4) [7].
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Figure 1.6: Planar versions of the NS (left figure) and NN (right figure) torus machine topologies. The paths of the magnetic
flux are indicated [7].
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Figure 1.7: The yokeless and segmented armature axial flux machine topol-
ogy. Stator consisting of multiple stator core elements (1)
around which a tooth coil winding (4) is wound, rotor (2), per-
manent magnet (3).

1.2.1 From Torus to YASA

In [14], the yokeless and segmented armature flux machine topology (Fig. 1.7) is
introduced. This machine benefits from a short stator yoke as well as from an easy
winding arrangement. Starting from the original NS torus topology, the following
adjustments are performed:

• Because of the magnetic symmetry in the machine, there is no magnetic field
closing over the stator yoke. This means that the stator yoke has no magnetic
function and can be removed entirely. Replacing the stator yoke by individ-
ually segmented armature elements, removes the magnetic and mechanical
link between the different stator teeth as well.

• By using a concentrated (fractional pitch) winding instead of a distributed
winding, it becomes possible to reduce the number of slots per pole and per
phase, until the slot pitch approximates the pole pitch.

• The winding arrangement can be improved by using a double layer concen-
trated fractional pitch winding. A modular construction is obtained, because
a winding (also called a tooth coil) is wound around each individually seg-
mented armature (Fig. 1.7), which results in an advanced modular construc-
tion.
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10 Introduction to the Axial Flux PM Machine

The yokeless and segmented armature torus machine topology is an excellenten-
ergy efficient machine, because of the absence of the stator yoke and stator core
loss, the higher power density and the easy winding arrangement.

1.2.2 Geometry and construction of the YASA machine

The active parts of the YASA machine – i.e. the parts that create the magnetic field
and torque – are shown in previous figures 1.4-1.7. The stator consists of separate
modules: laminated stacks with concentrated windings around it. These are me-
chanically connected by an epoxy resin and an outer aluminium ring structure, also
taking care of the cooling. The rotors are solid discs in steel with magnets glued
on it. It is clear that the YASA machine is a challenge, not only on electromag-
netic but also on the thermal and mechanical domain. The mechanical and thermal
challenge in building such a machine is in making sure that the high axial forces
between stator and rotor do not cause deformation in the machine, or that thermal
gradients do not cause damage. To give a better overview on such a stator module,
an exploded view is presented in Fig. 1.8.

Among the different constructed YASA-prototype machines in recent litera-
ture, three variants are found. In [15], two endshields at both sides ofthe stator
keep the different elements together. These endshields are made of high-strength
synthetic material, as electrically conductive or magnetically permeable materials
would deteriorate the electromagnetic properties of the machine. A drawbackof
this method is the increase of the airgaps.

A second solution is proposed in [16] where 2 holes are made into the core
elements near the core tips (one at each side). The mechanical fixation is provided
by bolts, connecting the individual elements with an inner stator structure. Dis-
advantages are found in the induced eddy currents in the electrically conductive
material of the bolts and a major influence on the flux density pattern and possible
local saturation in the core elements near the stator tips.

A third construction method is introduced in [17], where the shafts of the indi-
vidual stator core elements are inserted into two slotted supporting structuresnear
the tooth tips. The axial movement is prevented by internal clamping of the tooth
tips between the two slotted supporting structures. This has the major disadvan-
tage that the slot area near the tooth tips remains unwound, which increasesthe
leakage flux. Moreover, there is the risk of induced eddy currents in theelectri-
cally conductive slotted supporting structures as they are situated very close to the
airgap.

In this PhD, another mechanical construction is proposed, taking care ofaccu-
rate positioning and rigid fixation of the modular stator teeth by use of an epoxy
resin. The stator housing consists of an aluminium ring with radially inward fins.
The fins reach between adjacent stator teeth modules. In this solution, the heat
evacuation from the windings and the iron towards housing is optimized. The main
function of the aluminium ring is to evacuate the heat produced by the windings
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Figure 1.8: Exploded view of a preassembled stator core element. Mechanical bracket (1), stator core element (2), tooth coil
winding (3).
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12 Introduction to the Axial Flux PM Machine

to the outside of the machine (cooling of the machine). The main function of the
epoxy is increasing the strength of the stator. The details about the construction are
given in Chapter 5.

1.3 Research on the YASA machine

Although the yokeless and segmented armature torus machine has inherently ahigh
efficiency and power density, these quantities can be further improved.

In the PhD of Dr. H. Vansompel [7] of Ghent University, several aspects of
the machine have been studied and improved. First of all, the magnetic materials
were studied. Grain oriented magnetic material was used instead of conventional
non-oriented material. The influence of eddy currents in the magnets was a second
research topic. By segmenting the magnets, these losses could be significantly
reduced. Thirdly, the winding layout was investigated, proving that the Electro
Motive Force (EMF) could be increased by a few percent by using a combined
star-delta winding layout [18]. Finally, the effect of several geometry parameters
was investigated: the slot openings, the shape of the magnets and the shapeof the
stator teeth. As the results of the PhD are also relevant for the work aboutfringing
flux losses, a summary of some of the results of dr. Vansompel is given in Chapter
5.

A new YASA AFPMSM was presented in the work of Dr. Woolmer of the
University of Oxford [14]. This new YASA AFPMSM is having a higher torque
density than other axial flux machines, typically by 20%. This is due to the absence
of the stator yoke, which gives a reduction of 50% of iron. Finite Element (FE)
analysis has been used to accurately calculate the machine losses. The machine was
shown to have a peak efficiency of 96% and a wide range of operating conditions,
where the efficiency was above the 94%.

In [19] a 1.6kW AFPMSM generator was designed to operate in small-scale
wind power applications. The obtained phase voltage and current were pure sinu-
soidal and the torque ripple was low. The mechanical structure of the proposed
machine was simplest and cheaper than other axial flux machine configurations
with laminated stator cores.

A new segmented armature torus AFPMSM as a strong candidate for in-wheel
direct drive motors was presented in [16]. The key feature of the motor isthe new
configuration for the laminated stator cores of an axial flux machine, resulting in
low manufacturer cost while maintaining power and torque densities similar to that
of the mainstream radial flux machines, which are less suitable for an in-wheel
configuration.

An experimental study is done on reducing the cogging torque and the no-
load losses in axial flux permanent magnet machines with slotted windings in [20].
It was seen that magnetic wedges used for closing the slot openings were likely
to be used for reducing the cogging torque and no-load losses of the machine.
Also skewing of the permanent magnets and the selection of an appropriate magnet
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width is important in order to reduce the cogging torque. Shortening the magnet
pitch was found to be the most effective measure for reducing the coggingtorque
to a few percent of the machine rated torque.

Antisymmetry effects in AFPMSMs were studied in [21]. A quasi-analytical
method for the evaluation of the airgap field in an axial flux PM machine has been
developed. Based on this method, several operation quantities are obtained, such
as flux linkages, EMFs, parallel loop circulating currents among winding paral-
lel paths, axial forces and bending torques, all taking into account dissymmetry
manufacturing defects.

In [22] a comparison is made between Soft Magnetic (SMC) AFPMSM stator
cores. Two machines with fractional slot windings, with the same rotor and ge-
ometry whose magnetic cores were made of SMC were experimentally compared
by use of two machines. The goal of the paper was verifying the degradation of
performance of the machine when made of a cheap charged resin core ora com-
mercial SMC. It was found that the iron losses of the charged resin composite were
lower than the commercial SMC because of the internal structure of ironcarbonyl.
Besides this, it was found that the torque density of the cheaper machine was 60%
lower than the machine with commercial SMC stator cores.

1.4 Problem statement

The state-of-the-art literature did not focus on losses due to fringing flux, nor on
special techniques to reduce them. Also mechanical construction, thermal be-
haviour and production issues are less elaborated in literature. This PhD has stud-
ied these missing parts in literature. The fringing flux losses are in detail examined
in the following chapters of this PhD. In addition, the mechanical constructionis
studied in chapter 5 of this PhD.

1.5 Conclusion

The working principle of axial flux permanent magnet machines was presented,
in particular the YASA topology. The reasons to further investigate the YASA
topology are its compactness (high power density) and inherently high efficiency.
The global construction of the YASA-machine is explained. In further chapters,
the construction and production of a prototype is shown, and also detailed studies
on the fringing flux losses in this machine. However, before studying the complete
machine, a lot of research is done on a simplified, non-rotating setup.
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Chapter 2

Field models for lamination eddy
currents

2.1 Introduction

The stator of a Yokeless And Segmented Armature (YASA) Axial Flux Perma-
nent Magnet Synchronous Machine (AFPMSM) is built of individual ferromag-
netic core elements with concentrated windings. These core elements are often
constructed as either solid structure in soft magnetic composite [23] or as a stack
of Laminated Silicon Steel Sheets (LSSS), in order to prevent excessiveeddy cur-
rents. Nevertheless, two types of significant eddy-current effects remain in lami-
nated media when excited by an alternating magnetic field [24].

The first type is due to laminar magnetic fields parallel to the laminations (main
field, Hα in figure 2.1). The corresponding eddy currents, which are presentin
every lamination of the lamination stack (Jβγ in figure 2.1) follow rather long
paths in proportion to a rather small enclosed surface area and are calledresistance
limited eddy currents[25]. This means that no skin effect is observed, and that the

Jαβ

Jαβ

Jβγ

Jβγ
Hα

Hγ

α

β

γ

d

Transverse direction

Rolling direction

Stacking direction

Figure 2.1: Individual lamination sheet; local coordinate system
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Yoke

Square stack of sheets
21mm

21mm

21mm

21mm

(a) In-plane (b) Lamination

285mm

Search Coils

Flux

Thermocouples
Excitation coils

Excitation current

directiondirection

Yoke (35A210)

Figure 2.2: Measurement tester for in-plane eddy currents in lamination
sheets [26].

currents are too weak to influence the magnetic field that causes them. Of course,
these induced currentsJβγ are not guaranteed to be resistance limited, because
skin effect will occur in case of high excitation frequency or rather highlamination
thicknessd. Nevertheless, we use the termresistance limited eddy currentsfor the
currents which are mainly restricted by lack of space. In most electric machines,
the lamination thickness is sufficiently thin for the given excitation frequency,so
that the eddy currents caused by the main flux are indeed of this type.

The second type comes from magnetic fringing fields that are perpendicular to
the lamination (fringing fields,Hγ in figure 2.1). The corresponding eddy-current
loops parallel to the laminations, which are only present in the end parts of the
lamination stack (Jαβ in figure 2.1) follow rather short paths in proportion to the
rather large enclosed areas. They thereby experience a large inductance and are
calledinductance limited eddy currents. We use the terminductance limited eddy
currentsfor the currents which are mainly restricted by the influence of their own
magnetic field [25].

Many authors have investigated the two types of induced currents:
In [26], the second type of eddy currents is measured by use of a tester. The

tester, shown in figure 2.2, consists of a square stack of sheets placed ina closed
magnetic circuit which is excited by two coils and provided of search coils. First,
the square stack of sheets is placed in the in-plane direction (the flux from the
excitation winding is perpendicular to the plane of the lamination sheet, (a) in
figure 2.2). The total iron losses are measured. Second, the square stack of sheets
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2.2 Eddy currents in laminations 17

is placed in the lamination direction (flux from the excitation winding is parallel to
the plane of the lamination sheet, (b) in figure 2.2), and again the total iron losses
are measured. The in-plane eddy-current losses are calculated by thesubtraction
of the first and second measurement. From this analysis, it is found that theeddy
currents of the second type have nearly resistance limited characteristics and are
penetrating the stack much deeper than the theoretical penetration depth.

In the non-linear case (BH-characteristic as described in section 3.1.1),both
eddy current types cannot be strictly separated [27]. They influenceeach other due
to saturation effects, in other words superposition is no longer valid because local
saturation causes a local change of permeability which locally changes the skin
and penetration depth. In [27] When flux enters the lamination perpendicularly
(fringing flux), the surface for the eddy currents is no longer small. Thiswill cause
serious eddy-current losses, which will reduce the efficiency of the application.
In [28], eddy currents due to perpendicular flux where analysed in aninterior per-
manent magnet motor, by a 3D FEM model, using the parallel computing method
on a vector-type parallel supercomputer. Each lamination sheet (with a thickness of
0.5mm) is modelled explicitly by use of gap elements (representing the magnetic
resistance between the adjacent sheets) and the perpendicular electrical conductiv-
ity of the sheets is set to zero. The eddy-current losses due to perpendicular flux are
directly calculated from the eddy current density of the FEM results. The analysed
region is 1/12 of the entire region because of symmetry. The analysis, consist of
15 million unknowns, and was completed in 7.3 min/step on 64CPUs of the su-
percomputer. It is shown that eddy currents related to the perpendicularflux are
responsible for an increase of 47% of the total iron losses.

2.2 Eddy currents in laminations

As the magnetic field in the AFPMSM is predominantly in the axial direction, this
type of machine is built with laminations in GO (Grain Oriented) silicon steel. In
chapter 3, the magnetic behaviour of this material as well as other materials used
in this PhD are further explained.

2.2.1 Causes of eddy currents in laminations

In this type of permanent magnet synchronous machines, fringing flux occurs be-
cause of three reasons, explained in the next paragraphs:

1. Fringing flux from the excitation coil positioned around the laminated stack
(fields closing through the air and entering the lamination perpendicularly,
as can be seen in figure 2.8).

2. A part of the flux from the permanent magnets on the rotor, as can be seen
in figure 5.27.
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Figure 2.3: Double-rotor, single-stator, yoke-less, and segmented-armature
axial flux PM machine. (1) Rotor disk, (2) permanent magnet,
(3) laminated stack, and (4) winding [29].

3. Redistribution of magnetic flux due to magnetic saturation of individual
sheets, as can be seen in figure 4.12.

The first cause of eddy currents, fringing flux of the excitation coils, can be
tackled by increasing the axial length of the coils for a given axial length ofthe
laminations. The eddy-current losses reduce as the coil is stretched over a longer
axial portion of the lamination sheets, at most if they are as long as the lamination
stack itself. The latter means that the windings reach the airgap. Then there is
no space left for additional tooth tips at the end of the stacks. The lack of tooth
tips increases the higher harmonic content of the airgap field. This may lead toa
higher cogging torque [30] and unacceptably large eddy currents in theiron and the
permanent magnets at the rotor side. Moreover the proximity effect between neigh-
bouring conductors will become dominant in a coil with a longer axial length [7].
Evidently, it is also possible to reduce the axial length of both laminations and
windings, leading to a lower inductance and by consequence higher peaktorque of
the electrical machine. A quantitative overview of the influence of severalgeomet-
ric parameters on the individual loss terms and performance of the machine isdone
in chapter 5.

The second cause is related to flux of the permanent magnets on the rotor.
The axial component of this flux is parallel to the laminations. This component
is responsible for the torque generation, but also leads to eddy currents(Jβγ in
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Hγ

µγ σαβ

Hαβ

µαβ

σαβ
δγ

δαβ

Figure 2.4: Skin depths for longitudinal and perpendicular magnetic flux
components.

figure 2.1). The radial component of the permanent magnet flux (fringing flux in
the airgap) is perpendicular to the laminations, which will lead to eddy currents
Jαβ in theαβ-plane in figure 2.1).

The third cause is related to magnetic saturation. Magnetic saturation causes
migration of magnetic flux between the individual lamination sheets. This comes
together with perpendicular field components that also generate eddy currents. This
phenomenon is also encountered in transformer lamination stacks [31]. Thethird
effect will result in flux travelling from one sheet to another, causing flux perpen-
dicular to the plane of the sheet. The flux will follow a path as in transformer cores,
where sheets overlap each other in order to have a parallel way with low reluctance
(not only the airgap, but also a way between adjacent sheets).

2.2.2 Skin and penetration depths

A local coordinate system(α, β, γ) is attached to a lamination sheet, as shown in
figure 2.1. The coordinatesα andβ are aligned with the lamination sheet whereas
γ is perpendicular to the sheet. The skin depth is

δsheet =

√
2

ωµFeσFe
(2.1)
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with ω = 2πf the angular frequency,f the frequency andµFe andσFe the per-
meability and conductivity of the silicon steel. This formula for the skin depth is
derived from the half-plane model [25, 32] and is only valid as long as a homoge-
neous magnetic flux density is exerted on the lamination sheet.

It makes sense to think about the lamination stack as a solid block of material
with homogenised material parameters [24] as described in section 3.5. The skin
depths of the homogenised lamination stack are

δαβ =

√
2

ωσαβµγ
(2.2)

δγ =

√
2

ωσαβµαβ
(2.3)

Here,δαβ is the skin depth of the eddy currents due to the magnetic flux com-
ponent perpendicular to the laminates. These eddy currents hamper the penetra-
tion of the perpendicular magnetic flux component into the lamination stack. This
phenomenon can be characterised by the penetration depthδγ experienced by the
magnetic flux components along the laminates (figure 2.4). Becauseµγ is con-
siderably smaller (series connection of the highly permeable lamination part and
the coating) thanµαβ , the skin depthδαβ related to the perpendicular flux is much
larger than the penetration depthδγ corresponding to the main (longitudinal) flux
components. The eddy-current paths according toδγ are, however, restricted by
the small lamination thickness. On the contrary, the eddy-current paths according
to δαβ and the perpendicular flux component spread out along the lamination and
may cause significant eddy-current effects, especially for laminations with a large
surface.

2.2.3 Quantifying inductance and resistance limited eddy currents

By exploiting symmetry

We again consider figure 2.1 with a local coordinate system(α, β, γ) attached to
a lamination sheet. In figure 2.1, as already explained, resistance limited eddy
currents caused by the main flux mainly inα-direction flow inβγ-planes, and are
denoted byJβγ , whereas inductance limited eddy currents caused by fringing flux
are denoted byJαβ and mainly flow inαβ-planes.

Figure 2.5 shows the cross-section of figure 2.1. In order to get more insight
in the behaviour of resistance limited and inductance limited currents, the total
current density vector~J is written as a sum of two contributions:~J = ~Jind + ~Jres.
In the cross- section of figure 2.5, the inductance limited eddy currents~Jind flow
in β direction and have the same sense at the top and bottom of the sheets. This
is in contrast with the resistance limited eddy currents~Jres, which also flow in the
β-direction but have an opposite sense at the top and bottom of the sheets.
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Jres

Jmir Jres J Jind

γ

β
Jmir Jres Jind J

Jres

Figure 2.5: Cross-section of the individual lamination of figure 2.1, indicat-
ing the separation of resistance limited and inductiance limited
eddy currents.

We assume that the amplitude of~Jind is constant inγ-direction, i.e. along the
(small) thickness of the thin lamination sheet. This means that the fringing flux is
homogeneous along the thickness of the lamination sheet. Although not exactly
true – see the finite element results in chapter 4 – this assumption is useful for
the splitting of the two loss contributions and for understanding the differentloss
mechanisms. Theγ = 0 plane – the dash-dot line in the figure – is taken as a
symmetry plane. It can be seen that both eddy current types counteracteach other
above theγ = 0 plane and reinforce each other below theγ = 0 plane. This
makes it possible to separate and quantify both types of eddy currents by use of the
following mirrored current densities with respect to this plane:

~J(α, β, γ) = (Jα(α, β, γ), Jβ(α, β, γ), Jγ(α, β, γ)) (2.4)
~Jmir(α, β, γ) = (−Jα(α, β,−γ),−Jβ(α, β,−γ), Jγ(α, β,−γ)) (2.5)

With ~J the local current density and~Jmir a virtual current density mirrored
with respect to theγ = 0 plane. To ensure the continuity law to hold for~Jmir as
well, there is no minus sign for the mirroredγ component. Using this mirrored
current density, both eddy current types can be distinguished:

~Jind =
~J − ~Jmir

2
(2.6)

~Jres =
~J + ~Jmir

2
(2.7)

~Jind and ~Jres flow in the same and opposite senses respectively at the top and
bottom of the sheet, as can be seen in figure 2.1. The following properties hold,
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with V the volume of the sheet:

~Jres · ~Jind 6= 0 for α, β, γ > 0 (2.8)∫

V

~Jres · ~Jind dV = 0 (2.9)

∫

V

~J · ~J
σ

dV =

∫

V

( ~Jres + ~Jind) · ( ~Jres + ~Jind)

σ
dV (2.10)

= Pres + Pind (2.11)

The last property (2.11) indicates that the power losses due to fringing flux and
due to main flux can be separated. In other words, that superposition canbe done.
This allows to clearly distinguish between losses due to the main flux and losses
due to the fringing flux. As already mentioned, the above quantification is only
valid for a homogeneous flux distribution over the cross-section of the lamination.
In [27] it was stated that in the non-linear case, both eddy current typescannot be
strictly separated. However, this property (2.11) is valid in the linear and non-linear
case, because the magnetic state is determined first on the basis of the total eddy
current.

By subtracting classical eddy-current losses from total eddy-current losses

The previous separation technique of both eddy current types is only valid for a ho-
mogeneous flux distribution over the cross-section of the lamination. A separation
which is valid for a non homogeneous flux distribution over the cross-section of the
lamination exists by calculating the eddy-current losses due to both eddy current
types in FEM and subtracting the losses due to the resistance limited eddy currents.
The latter are calculated by use of the low frequency approximation of Bertotti or
at high frequencies by use of the 1D diffusion model as described in 3.3.2. In later
chapters, this method is used for calculating fringing flux losses.

2.3 Finite-element modelling

2.3.1 The challenge of modelling fringing flux in laminations

This work focuses on all three causes of fringing flux described in paragraph 2.2. In
order to attain a sufficient modelling accuracy, all details of the laminated media are
taken into account. In [33], analytical expressions are given for the eddy-current
losses for low and very high frequencies in a rectangular geometry. An analytical
approach would require too many simplifications and would become too difficult
for the geometry under consideration. For this reason, a finite-element (FE) model
is constructed. Considering the individual laminations and insulation layers explic-
itly is a challenge for the numerical model for three reasons:

1. The geometric scaling problem.
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2. A high number of unknowns.

3. Limited computational accuracy.

The first reason is related to the large geometrical disproportion between the
lamination and insulation thicknesses and the device size. The meshes of the lami-
nations must be finely divided along the perpendicular direction of the sheets [28].
Creating a mesh for the insulation layers is challenging because of mesh growth
problems.

The second reason relates to the maximal mesh size, which is limited for taking
into account the skin effect. For this reason, the mesh size must be sufficiently
smaller than the skin depth in each individual lamination.

The third reason relates to eddy currents due to stray fields being a secondary
effect and are for this reason small compared to the excitation currents. As a con-
sequence, the solution for the eddy currents may be inaccurate, even when the
magnetic field converged [34], [35].

The corresponding large memory consumption and calculation times hamper
the application of such models in many practical situations. For that reason, many
papers in literature introduce homogenization techniques [36] and embedded lower
dimensional models [37] [27] [38].

The suggested homogenization techniques fail to accurately describe the eddy-
current effect corresponding to perpendicular magnetic flux components, espe-
cially in the case when these components originate from non-trivial geometriccon-
figurations. This work studies such eddy currents by 2D and 3D field models where
all relevant geometrical details, even the thin insulation layers, are explicitly mod-
elled. The calculation results are compared to each other and to the measurement
results obtained from a dedicated experimental setup. Eddy currents dueto per-
pendicular flux will hamper the flux causing these eddy currents by Lenz’s law.
This shielding effect for the perpendicular flux is not perfectly taken intoaccount
by any homogenization technique. In 2D, it is possible to implement all details of
the insulated media for a simple geometry. In 3D, it is almost impossible.

Therefore, this work will first show a 2D pseudo anisotropic linear FEM model
including all details of the laminated media. Secondly a 3D pseudo anisotropic
linear FEM model is presented, where a combination of individual sheets and a
homogenized bulk area is adopted. After this a comparison of the 2D and 3D
model is made. Finally a 3D pseudo anisotropic non-linear model is presented, for
the simple non-rotating geometry that will be presented in chapter 4.

2.3.2 Model geometry

The considered geometry – a non-rotating, simplified geometry of an axial flux
PMSM – consists of a lamination stack, a coil carrying a magnetising current, an
airgap and a yoke closing the magnetic circuit (Figure 2.6). Symmetries allow to
only model one fourth of the geometry in 2D and one eighth of the geometry in 3D,
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Yoke
Lamination stack

Excitation coil

α

γ

Figure 2.6: A section of a laminated stack in the XZ-plane is taken from the
axial flux permanent magnet synchronous motor of figure 2.3.
On the left side a yoke is provided as a conducting path for the
magnetic flux. The insulation layers between adjacent sheets
are modelled explicitly.

accompanied by appropriate boundary conditions. In contrast to many approaches
where the lamination stack is considered as a bulk material with homogenised ma-
terial parameters, here, the individual lamination sheets are considered.Further-
more, the thin insulating coating between the sheets is either modelled explicitly
or embedded in the model by thin low-permeability interface conditions.

2.3.3 2D Finite Element model

The magnetic flux density~B = ~∇ × ~A is expressed in terms of the magnetic
vector potential~A. By the Faraday-Lenz law, the electric field strength is~E =

−∂ ~A
∂t
− ~∇ϕ with ϕ the electric scalar potential. In the frequency domain, Ampère’s

law, ~∇ × ~H = ~J with ~H the magnetic field strength and~J the electric current
density, leads to

~∇×
(
ν ~∇× ~A

)
+ ωσ ~A = ~Js − ~∇× ~Hs , (2.12)

with ν = 1/µ the reluctivity,µ the permeability,σ the conductivity,ω = 2πf

andf the (angular) frequency,~Js = −σ~∇ϕ the source current density and~Hs the
coercivity of the permanent magnets. In case of anisotropic material behaviour, ν
andσ need to be replaced by the tensors¯̄ν and¯̄σ respectively. The magnetic vector
potential is discretised by first order edge elements

~wj(x, y, z) =
Nj(x, y)

ℓz
~ez (2.13)
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whereNj(x, y) are standard first order nodal finite elements (FEs),ℓz is the length
of the 2D model and~ez is a unit vector in thez-direction [39]. The magnetic vector
potential reads:

~A =
∑

j

aj ~wj (2.14)

whereaj are the degrees of freedom (DoFs). The discrete counterpart of (2.12)
reads

Kνa+ ωMσa = js + jmg (2.15)

whereKν is the stiffness matrix of reluctivities,Mσ the matrix of conductivities,
js the discrete counterpart of~Js andjmg the discrete counterpart of~∇× ~Hs, which
all follow from the discretization procedure and wherea gathers the DoFs.

The magnetic fluxes are aligned with the considered 2D cross-sectionA2D,
whereas the excitation current and the eddy currents are perpendicular toA2D. All
lamination sheets are considered explicitly. However, the insulation layers are only
present as line segments in the geometry and the mesh. Their relatively high reluc-
tances are modelled by the thin low-permeability interface condition, as described
in the next paragraph. The current through each individual laminate (perpendicu-
lar to the 2D cross-section) should be zero. This is enforced in the model by an
integral constraint of the form

∫

Sq

~J · d~S = 0 (2.16)

whereSq is the intersection of laminateq with S2D. Such integral constraint pos-
sibility is offered by the COMSOL Multiphysics® software.

Thin low-permeability interface condition

Considering individual lamination sheets already leads to huge numbers of DoFs
in the field models. When, moreover, the insulation layers between them need to
be drawn and meshed, the model may become prohibitively large. A way around is
offered by a thin low-permeability model [40, 41]. The thickness of the insulation
layer is not resolved by the computational grid but is present in the grid as asurface
Aic at which a specific interface condition is applied.

The application of Amp̀ere’s law to the rectangle with infinitesimal cross-
section in Figure 2.7 relates the tangential componentsHt1 andHt2 of the magnetic
field strength at both sides of the insulation layer to the normal component of the
magnetic flux densityBn by

Ht1 −Ht2 = ν0h
∂Bn

∂s
(2.17)

whereν0 is the reluctivity of the insulation layer,h is the insulation thickness and
s is a tangential coordinate. In general,

~n×
(
~H1 − ~H2

)
= ~∇t ×

(
ν0h~∇t × ~A

)
(2.18)
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ν0

Ht2

Ht1

ds
Bn(s + ds)Bn(s)h

γ

α

Figure 2.7: Ampère path around a thin insulating layer relating the tangen-
tial componentsHt1 andHt2 of the magnetic field strength to
the normal componentBn of the magnetic flux density.

Figure 2.8: Contour of the magnetic vector potential, for an airgap of 1mm,
computed by the 2D FEM with “thin permeability gap” bound-
ary condition between adjacent laminations.

Wheren is the unit vector normal to the interface and~∇t denotes the curl operator
at the interface.

The discretisation of (2.18) leads to a termKha to be added in (2.15). The
matrix coefficients are given by

Kh,ij =

∫

Aic

ν0h~∇t ×wi · ~∇t ×wj dAic (2.19)

Figure 2.8 shows the contour of the magnetic vector potential, for an excitation
of 300Aturns at a frequency of 50Hz and an airgap of 1mm. The magnetic material
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Figure 2.9: Surface plot of the magnitude of the eddy current density rang-
ing from−8× 104 to 6× 104 A/m2.

is a Grain Oriented (GO) magnetic material, with properties explained in chapter 3.
It can be seen that fringing field lines are closing through the air, enteringthe sheets
perpendicularly. The corresponding eddy current density is shown ina surface plot
of the magnitude of the induced eddy currents in figure 2.9. It can be seenthat the
eddy currents due to fringing flux are the largest in the laminations closest tothe
excitation coil.

2.3.4 Multilayer 2D finite element model

A 2D FE multilayer model consists of several 2D FE models calculated at different
radii. In such a 2D FEM, the whole circumference of the machine is modelled for
example 15 teeth and 16 magnets. When the magnets are in NS-topology [11],
only half of the machine needs to be modelled in axial direction when a Neumann
boundary condition is applied at the centre part of the teeth. In circumferential
direction, the use of periodic boundary conditions may also reduce the geometry to
be modelled, depending on the number of slots and poles of the machine.

2.3.5 3D finite integration technique model

In the Finite Integration Technique (FIT), Maxwell’s equations are discretised at
a primary-dual hexahedral tensor-product grid, yielding

⌢⌢

b = C⌢a,
⌢

h = Mν

⌢⌢

b,
⌢⌢

j = Mσ
⌢e = −Mσω

⌢a+
⌢⌢

j s+
⌢⌢

j pm, C̃
⌢

h =
⌢⌢

j , which gives the discrete counterpart
of equation 2.12:

C̃MνC⌢a + ωMσ
⌢a =

⌢⌢

j s +
⌢⌢

j pm , (2.20)

where⌢a,
⌢⌢

b,
⌢

h,
⌢⌢

j ,
⌢⌢

j s and
⌢⌢

j pm are vectors collecting the degrees of freedom (DoFs)

of ~A, ~B, ~H, ~J , ~Js and~∇× ~Hs respectively.C andC̃ are discrete curl operators at
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Figure 2.10: Magnetic flux density plot on the surface of the 3D FIT model
(with parameters of table 4.1) at a frequency of 50Hz and
200Aturns.

the primary and dual grid pair respectively.Mν andMσ are the grid reluctance and
conductance matrices and represent the constitutive relations~H = ν ~B and ~J =

σ ~E on the computational grid [42]. Also standard finite-element (FE) methods can
be expressed in the FIT notation [43]. The Joule loss is post-processedfrom the
field solution⌢a by Ploss = ω2⌢aHMσ

⌢a.
The eddy-current effect is described by the second term in (2.12), which is

typically quite small compared to the first term of (2.12). As a consequence,the
results for the eddy-current losses may be inaccurate, even when the results for the
magnetic field converged [34]. A low solver tolerance may lead to unacceptably
large calculation times. In an alternative procedure,⌢a is computed from (2.20)
with a feasible tolerance. The accuracy of the eddy currents

⌢⌢

j e = −ωMσ
⌢a is

improved by solving the divergence-correction equationS̃MσS̃
Tφ = −S̃

⌢⌢

j e and
substituting

⌢⌢

j e ←
⌢⌢

j e+MσS̃
Tφ, with S̃ the discrete divergence matrix of the dual

facets.
The fringing field lines closing through the air and entering the lamination

perpendicularly cause saturation of the first few sheets closest to the excitation
coil, this is shown in figure 2.10.

2.3.6 3D finite element method model

The field model is based on a 3D non-linear time dependent magnetoquasistatic
field formulation. Second order tetrahedral finite elements are used together with
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theT − φ formulation [44] which uses an additional current vector potential~T in
the eddy current regionΩc and a reduced magnetic scalar potentialφ in the whole
problem regionΩ. The current density~J , and the magnetic field~H are calculated
from the potentials as:

~J = ~∇× ~T ; ~H = ~Ti + ~T − ~∇φ in Ωc (2.21)
~J = ~∇× ~Ti ; ~H = ~Ti − ~∇φ in Ω− Ωc (2.22)

with ~Ti the impressed current vector potential representing the given currentdensity
of the coils made of stranded conductors.

In the frequency domain, Faraday-Lenz’s law leads to:

~∇× (ρ~∇× ~T ) + jωµ~T − jωµ~∇φ = −jωµ~Ti (2.23)

−~∇ · (µ~∇φ) + ~∇ · (µ~T ) = −~∇ · (µ~Ti) in Ωc (2.24)

−~∇ · (µ~∇φ) = −~∇ · (µ~Ti) in Ω− Ωc (2.25)

The current vector potential is approximated by edge basis functions as:

~T =
∑

j

tj ~wj (2.26)

wheretj are the line integrals of~T along the edges. The magnetic scalar potential
is approximated by use of nodal basis functions as:

φ =
∑

j

φj ~wj (2.27)

whereφj are the nodal values ofφ and ~wj the nodal basis functions.

2.3.7 Mesh generation

The generation of the mesh is a challenge for two reasons. The first reason is
that the maximal mesh size must be sufficiently smaller than the skin depth in
each individual lamination. The second reason is the large geometrical dispro-
portion between the lamination and insulation thicknesses and the device size. A
3D geometry with thin sheets is particularly challenging for a tetrahedral meshing
routine. The standard tetrahedral mesh generator of COMSOL Multiphysics® did
not work. Even mesh extrusion techniques resulting in a hexahedral meshfail be-
cause of the large disproportion between the lamination thickness and the device
size. The 3D model is constructed and solved in CST EM STUDIO® and post-
processed in MATLAB®, both capable of treating 3D hexahedral meshes. In CST,
a tensor-product hexahedral mesh easily copes with all geometrical details and is
easily constructed. In order to incorporate the large reluctance of the insulation
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layers and to prevent current migrating between adjacent laminates, the insulation
layers need to be considered explicitly. It is, however, cumbersome to do this for
the entire lamination stack. Therefore, only the top and bottom parts of the lam-
ination stack are modelled in full detail (figure 3.25). The number of explicitly
modelled lamination sheets is decided upon according to the penetration depthδγ .
The centre part of the lamination stack is considered as a bulk material with the
homogenised material parameters of Eq. (3.25). The tetrahedral mesh generator of
Ansys Maxwell® succeeded in generating a mesh of the individual laminations. In
order to achieve the optimal level of accuracy, the mesh is first generatedin static
mode with adaptive mesh refinement. The mesh is refined automatically by use
of a highly robust volumetric meshing technique with multithreading capability.
The refinement is based on the reported energy error in a static simulation. This
adaptively refined mesh is then fixed and further used in the transient solver.

2.4 Conclusion

In this chapter first three causes and the behaviour of eddy currents inlaminations
is studied and a separation is made between inductance and resistance limited eddy
currents. Then, different numerical models were described: 2D FE-model, 3D FIT
model and a 3D FE model. The first and third cause of eddy currents in laminations
will be studied in chapter 4 on a simplified non-rotating setup. In this chapter, all
models will be compared, evaluated and discussed. The second cause ofeddy cur-
rents in laminations will be studied using the 3D FE model on a complete rotating
axial flux machine in chapter 5. The second separation technique will be used for
calculating inductance limited eddy currents in the next chapters.
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Chapter 3

Magnetic material
characterisation

3.1 Introduction about characteristics and losses of mag-
netic materials

When calculating the magnetic behaviour and iron losses in high energy efficiency
machines, like the axial flux permanent magnet machine, accurate modelling ofthe
behaviour and losses of the magnetic material is needed. It is well known that the
core losses can be described as a summation of the quasi-static losses, the classical
and excess dynamic losses [45, 46], explained further in this chapter. However,
these loss components are caused only by the flux in the plane of the laminations.
The losses have to be augmented with the loss component due to fringing flux,an
extra eddy-current loss caused by flux entering the lamination plane perpendicu-
larly. This loss depends on both the magnetic material behaviour and geometric
details. For laminated materials, the thin coatings on the sheets create a big chal-
lenge from numerical point of view. Therefore, also homogenisation is studied in
order to describe the materials by bulk material having appropriate electromagnetic
properties.

In this chapter, we first study the magnetic characteristics of the materials and
the losses in these materials. After that, several homogenisation techniques are
compared in order to model the laminated materials in finite element models.

3.1.1 Isotropic materials

The flux density vector~B is written as a function of the magnetic field~H and the

magnetization vector~M =
∑

~Pm

V
, with ~Pm the magnetic dipole moments andV

the volume:
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~B = µ0( ~H + ~M) (3.1)

with µ0 the permeability of vacuum. Although the magnetic quantities are vec-
tors, in many cases, the constitutive law can be a scalar characteristic, theBH-
characteristic. Moreover, if the hysteretic behaviour is neglected, the materials
are characterised by a single-valuedBH-curve passing through the origin of the
BH-plane. Then, the characteristic can be written using the relative magnetic
permeabilityµr: B = µ0µrH. In this characteristic, three main regions can be dis-
tinguished. The first region is for lowH andB values and is called theRayleigh
region. In the Rayleigh region, the flux density is approximately quadratic with the
magnetic fieldH. The second region is thelinear region. In this region, the per-
meability is more or less constant and the flux density is linear with the magnetic
field. The last area, thesaturation regionis the region whereH is very high. In this
region, the magnetisationM becomes constant forH →∞ and is equal to the sat-
uration magnetisation (Msat). Here, the differential permeability (µ∂ = dB/dH)
is equal toµ0.

For non-linear FE calculations with the magnetic vector potential formulation,
the reluctivityν = 1/µ needs to be calculated for each element as a function of
the magnetic flux density. TheBH-curves are measured with an Epstein frame,
as shown in paragraph 3.1.3. The measurements provide the measurement points
(Hi, Bi), i = 0, ..., n, with B0 = H0 = 0. ν(B) is usually approximated by an
analytical formula, or by interpolation of a table of measured values.

3.1.2 Anisotropic materials

For anisotropic materials, the reluctivity tensorν( ~B) is used :
[
Hx

Hy

]
=

[
νxx νxy
νyx νyy

] [
Bx

By

]
(3.2)

The magnetic energy densityw = 1
2
~B · ν · ~B is a quadratic form of~B [47]. The

latter means thatν( ~B) is a symmetrical positive definite tensor, wherebyνxy =
νyx. For non-linear materials, the reluctivity components in the tensor are function
of the magnetic flux density. Also,̄̄ν is not uniquely determined because there
are two equations and three unknowns (νxx, νyy andνxy = νyx) for each known
(measured)H andB value. This indeterminacy can also be seen as follows [48].
The tensorsν( ~B) andν ′( ~B) are representing the same material if a numberc( ~B)
exists so that:

ν
′
( ~B) = ν( ~B) + c

[
B2

y −BxBy

−BxBy B2
x

]
(3.3)

However, this uncertainty vanishes by use of the magnetic energy function[7]:

Wem( ~B) =

∫ B

0

~H · d ~B (3.4)
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This numerical magnetic energy functionWem( ~B) can be constructed by use of
single-valuedBH-characteristics measured in a finite number of directions with
respect to the rolling direction. The single-valuedBH-characteristics in each con-
sidered direction can be constructed using the peak values of the measured hystere-
sis loops. As the energy is only calculated in the considered directions with respect
to the rolling direction, interpolation is used to get an energy map in an equidis-
tant rectangular grid of points in the (Bx,By)-plane. The magnetic field strength
~H corresponding with a magnetic flux density~B can be calculated by taking the
gradient of the magnetic energy function:

~H
(
~B
)
= ∇ ~B

Wem

(
~B
)

(3.5a)

where∇ ~B
denotes the gradient operator in~B-space,

∇ ~B
= ~ex

∂

∂Bx
+ ~ey

∂

∂By
. (3.5b)

Equation (3.5a) can be rewritten as

~H
(
~B
)
= ~ex

∂Wem

(
~B
)

∂Bx
+ ~ey

∂Wem

(
~B
)

∂By
(3.5c)

and hence the components of the magnetic field in thex- andy-direction can be
expressed as

Hx

(
~B
)
=

∂Wem

(
~B
)

∂Bx
(3.5d)

and

Hy

(
~B
)
=

∂Wem

(
~B
)

∂By
(3.5e)

respectively. Taking into account thatνxx = ∂Hx/∂Bx, νxy = νyx = ∂Hx/∂By,
νyy = ∂Hy/∂By, equation (3.2) can be rewritten in function of the magnetic en-
ergy function: [

Hx

Hy

]
=

[
∂

∂Bx

∂Wem

∂Bx

∂
∂By

∂Wem

∂Bx

∂
∂Bx

∂Wem

∂By

∂
∂By

∂Wem

∂By

] [
Bx

By

]
(3.6)

3.1.3 Magnetic measurements with the Epstein Frame

Using an Epstein frame, with a magnetic circuit as schematically shown in figure
3.1, it is possible to perform standardized (IEC 60404-2:2008) magnetic measure-
ments on electrical steel sheets for sinusoidal alternating magnetic flux densities.
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θ

Measurement coil

Excitation coil

Figure 3.1: Schematic presentation of an Epstein frame. Left: horizontal
cross section of the Epstein Frame with the measurement and
excitation coils, whereθ is the angle between the field excita-
tion direction and the rolling direction in case of grain oriented
material; right: side view of the Epstein frame [48].

The frame is constructed by alternately stacking strips of 3cm width and at least
28cm length. An excitation coil and a measurement coil are located around each
stack of strips. The magnetic field strength~H is directly derived from the excitation
current coming from the power amplifier, the number of coil turns and the standard-
ized length of the magnetic path. According to the norm (IEC 60404-2:2008),the
length of the magnetic path is 94cm.

In the measurement setup used for characterisation of the materials in the next
section, the voltage and current limits for the excitation winding are 50V and 8Afor
the used Kepco 50-8M amplifier. The measured signals (excitation currentand in-
duced voltage in the search coil) are processed by the data acquisition system. The
magnetic flux density~B is derived from the induced voltage in the measurement
search coils. An analog integration is done to obtain the flux density waveform
with high accuracy.
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3.2 Characteristics of magnetic materials used in this
PhD

3.2.1 Magnetic characteristics of grain oriented M100-23P

Several Epstein strips were cut from a MP100-23P laminated silicon steel sheet
in seven different directions. The rolling direction is taken as a reference and is
referred to the angle 0◦. The other directions enclose an angle (θ in figure 3.1) of
15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ with respect to the rolling direction. The angle
90◦ is referred to as the transverse direction (TD). For all grain oriented strips,
several quasi-static hysteresis loops up to 7200 A/m were measured on theEpstein
frame, which results inB(H) characteristics along the seven considered directions
as presented in figure 3.2. In [49], Epstein measurements were preferred over
single sheet measurements, because the dimensions of the stator core laminations
are in good approximation congruent to the shape of the Epstein strips. To estimate
the elements of the tensor in (3.2), several dynamic loops were measured upto
1000 Hz. The frequency is limited to 1000 Hz because of the voltage limit of the
amplifier. Figure 3.3 shows the relative permeability in function of the magnetic
flux density for M100-23P grain oriented material in the rolling direction. As can
be seen, the peak value for the relative magnetic permeabilityµr is more than
50000.

3.2.2 Magnetic characteristics of Soft Magnetic Composite

As an alternative to Laminated Silicon Steel Sheets (LSSS), Soft Magnetic Com-
posite (SMC) can carry 3D flux paths and may in some applications increase the
torque/weight ratio of the machine. SMC is mainly used in machines with com-
plex 3D magnetic flux paths like transverse flux machines [50] or axial flux ma-
chines [23]. On the one hand, the isotropic behaviour of SMC is an advantage for
these types of machines. Moreover, SMC does not suffer from induced currents
due to fringing field perpendicular to the lamination. On the other hand, SMC has
a lower magnetic permeability and higher losses (as described in the next section)
in the frequency range that is relevant in electrical machines.

By using the Somaloy® prototyping material from the company Högan̈as, it
is possible to implement Soft Magnetic Composite material in experimental se-
tups without the need of a dedicated mold for the compaction of the needed SMC
components. By machining the SMC component out of a pre-fabricated cylindri-
cal geometry, SMC can be implemented in a cost-efficient way. Normally, this
approach has the drawback that the properties will in most cases be different from
those obtained by compaction. This drawback vanishes using Somaloy® Prototyp-
ing material, because of the enhanced machinability (milling, turning and drilling)
in order to minimize these differences.

In order to measure the magnetic characteristics of this Somaloy® prototyping
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Figure 3.2: QuasistaticBH-characteristics of MP100-23P measured in
seven directions with respect to the rolling direction. Themen-
tioned angles are the angleθ in figure 3.1.

material, a dedicated setup is built. The reason for building this dedicated setupis
that the company Ḧogan̈as does not provide toroidal cores of the Somaloy® pro-
totyping material. For this reason, four SMC blocks with identical dimensions to
the stator cores of the experimental setup of chapter 4 were made (by milling) out
of four cylinders of Somaloy® prototyping material. A dedicated poly-amid po-
sition holder is used to position the four blocks in series, as shown in figure 3.6.
The poly-amid position holder ensures that the airgaps between the SMC blocks
are as minimal as possible. All blocks are equipped with an excitation coil and
a measuring search coil of each40 turns. Several quasi-static hysteresis loops up
to 10000 A/m were measured on this dedicated setup, which results in theBH-
characteristic as presented in figure 3.4. Figure 3.5 shows the relative permeability
in function of the magnetic flux density for SMC Somaloy® prototyping material.
As can be seen, a peak ofµr = 290 is reached, which is much lower than the peak
value of 50000 for M100-23P.



✐

✐

✐

✐

✐

✐

✐

✐

3.2 Characteristics of magnetic materials used in this PhD 37

µ
r

Bpeak[T]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

×104

0

1

2

3

4

5

6

Figure 3.3: Relative magnetic permeability in function of the magneticflux
density for MP100-23P silicon steel in the rolling direction.

3.2.3 Magnetic characteristics of ferromagnetic wire

Ferromagnetic wire used to conduct magnetic flux instead of an electrical current
can be used for example as a closing path for fringing fluxes.

To determine theBH-characteristics, a customized setup was made and mea-
surements were done at Ghent University by prof. L. Dupré. The loss measure-
ments are not performed with an Epstein frame because of ease of construction and
because the Epstein method is not defined for wires. Also the number of cutsin
ferromagnetic wire should be minimal. For this reason, the excitation and mea-
surement windings were cylindrical windings of sufficient axial length and rather
small diameters, having the ferromagnetic wire inside. TheBH-characteristics
are measured for an unannealed ferromagnetic wire with a diameter of 0.35mm,
shown in figure 3.7. A maximum relative permeability of 800 is reached, as shown
in figure 3.8.
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Figure 3.4: QuasistaticBH-characteristic of Somaloy® Prototyping mate-
rial.
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Figure 3.5: Relative magnetic permeability in function of the magneticflux
density of Somaloy® Prototyping material.
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Figure 3.6: Measuring setup for SMC: four SMC blocks (light grey) placed
in a custom made poly-amid position holder (black). The mea-
surement and excitation windings consist of four concentrated
windings each, like in an Epstein frame.

3.3 Loss modelling in magnetic materials

According to the loss theory of Bertotti [45], the iron losses in laminated steel
are divided into the quasi-statical hysteresis losses and the dynamic losses. The
dynamic losses can be further divided into the classical dynamic losses andthe
extra dynamic losses (excess losses). For a periodic excitation, the losses per cycle
and per volume-unit are as follows:

w
Fe

= whys + wdyn = whys + wcl + wexc (3.7)

The unit of the above loss density is J/m3. Usually, the loss density is given in
W/kg. The above loss densityw

Fe
can be converted to that unit by dividing by the

mass density (typically 7650kg/m3) and multiplying with the frequencyf .

3.3.1 Quasi-static loss component

The quasi-static loss componentwhys is the surface enclosed by the quasi static
(f → 0) BH-loop with peak valueB. If converted to a power in W/kg, it is
approximated as follows:

Ph = aBαf (3.8)
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Figure 3.7: BH-characteristics of ferromagnetic wire with a diameter of
0.35mm.
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Figure 3.8: Relative magnetic permeability in function of the magneticflux
density for ferromagnetic wire with a diameter of 0.35mm.
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with a andα material specific coefficients, fitted on the basis of quasistatic
magnetic loss measurements. The above equation is only valid if the waveforms
describe a closed hysteresis loop, and if there are no minor loops in the waveform.

3.3.2 Classical loss component: low frequency approximation

The classical losses for a perfect homogeneous lamination (without magnetic do-
mains), neglecting the skin effect can be approximated by Bertotti’s low frequency
approximation in the frequency domain:

Pcl =
1

6
σπ2d2f2B2 (3.9)

or in the time domain for an arbitrary waveformB(t)

Pcl(t) =
1

12
σd2

∣∣∣∣
dB(t)

dt

∣∣∣∣
2

(3.10)

with d the lamination thickness.

3.3.3 Classical loss component: 1D diffusion problem

Taking the skin effect into account and calculating the classical losses very accu-
rately and with a high spatial accuracy, Bertotti’s low frequency approximation is
no longer an option in the considered grain oriented material with very high relative
permeability (up to 50000, as can be seen in figure 3.3), because of skin effects,
even for frequencies that may be lower than the rated frequency of the electric ma-
chine studied in this PhD. Assuming the operating point at maximal permeability
and a lamination thickness of 0.23mm – which is thinner than most laminations
used in electrical machines – we obtain a critical frequencyfcrit where the skin
depth

δcrit =

√
1

πfcritµ0µr,FeσFe

(3.11)

equals half the lamination thicknessd/2:

fcrit =
1

π
(
d
2

)2
µ0µr,FeσFe

(3.12)

For d/2 = 0.115mm,µr,Fe,max = 50000 andσ
Fe

= 1.67 106 S/m (explained in
section 3.4.1) we obtain a critical frequency of 229 Hz. Above this frequency, the
low frequency approximation is not valid any more.

For this reason, a one-dimensional space diffusion problem [51] is solved for
half of the lamination thickness. The lamination and reference frame are shown in
figure 3.9.
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Figure 3.9: Cross-section of the lamination of figure 2.1.

The magnetic field intensity in the out-of-plane directionHα of figure 3.9 is
calculated from:

∂2Hα

∂γ2
= σ

dB

dHα

∂Hα

∂t
(3.13)

whereH andB are respectively the magnetic field strength and magnetic flux
density component in the out-of-plane direction,σ the electrical conductivity and
γ the transverse direction of the lamination. Half the lamination is discretised in
space fromi = 1 . . . ns and in time fromk = 1 . . . nt. The discrete counterpart in
the space-time domain at nodes defined by the timek and space pointi reads:

1

h2
(Hi+1,k − 2Hi,k +Hi−1,k) =

βd
pi

(Hi,k+1 −Hi,k), (3.14)

With

βd = σ
dB

dH
(3.15)

and withpi the time interval between two successive values ofHi over time at space
nodei, andh the mesh length representing the length between adjacent nodes in
space [25]. This gives the explicit equation:

Hi,k+1 = rHi+1,k + (1− 2r)Hi,k + rHi−1,k, (3.16)

Where
r =

pi
βdh2

; (3.17)

Using the explicit equation for calculating the magnetic field at each node, the
following restriction arises to ensure numerical stability:

r ≤ 1

2
(3.18)

To ensure numerical stability, it becomes advantageous to apply the magnetic
field waveform instead of the magnetic flux density in function of time. A sinu-
soidal excitation gives a non-sinusoidal response in the non-linear case. For this
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reason, for obtaining a sinusoidalB(t), a non-sinusoidalH(t) must be used as
excitation source in both measurements and simulations. Here, the non-sinusoidal
magnetic field waveforms measured with the Epstein frame are used for exciting
the 1D diffusion model, to ensure numerical stability. This is the magnetic field at
the boundary of the lamination.

As an illustration of the 1D diffusion model, we consider a M100-23P lami-
nation of 0.23mm thickness, where the magnetic field waveform at the boundary
is enforced as source term in the model. This magnetic field waveform is shown
in figures 3.10 and 3.11 for a frequency of 50Hz and 500Hz respectively. Note
that the magnetic flux density waveform is non-sinusoidal because only classical
losses were considered; hysteresis and excess contributions are nottaken into ac-
count, in this model, which focusses on an acceptable prediction of eddy-current
losses. The response of the model is the dynamic hysteresis loop of only theclassi-
cal losses, which is shown in figure 3.12 and 3.13. Measurements aroundthe area
for a magnetic field strength of zero are inaccurate because of noise, thiscauses the
discontinuity around the area where the magnetic flux density is zero. Takingthe
surface integral of these dynamic hysteresis loops, multiplied with the frequency
and divided by the density of the material, gives the classical losses. In figure 3.10,
it can be seen that there is no skin effect. In figure 3.11, skin effect is present. This
can be seen by comparing the magnetic field at the boundary with the magnetic
field at the middle of the lamination at a certain time instant.

For the same example, a comparison is made between the low frequency ap-
proximation of Bertotti, and the 1D diffusion model.

3.3.4 Excess loss component

The extra dynamic losses are associated with the eddy currents around moving
domain walls due to the changing domain wall structure and are approximated by
the equation from Barbisio [46] in the frequency domain:

Pe = cfBf(
√

1 + efBf − 1) (3.19)

or in the time domain for an arbitrary waveformB(t)

Pe = ct

∣∣∣∣
dB

dt

∣∣∣∣

(√
1 + et

∣∣∣∣
dB

dt

∣∣∣∣− 1

)
(3.20)

with cf , ct, ef andet material specific coefficients, fitted on the basis of Epstein
frame measurements.



✐

✐

✐

✐

✐

✐

✐

✐

44 Magnetic material characterisation

B
a
v
e
ra
g
e

[T
]

t[ms]

H
m
id
d
le

[A
/m

]H
b
o
u
n
d
a
ry

[A
/m

]

10 20 30 40 50

10 20 30 40 50

10 20 30 40 50

−2

0

2

−100
0

100

−100
0

100

Figure 3.10: Magnetic field strength at the boundaryHboundary and in the
middle Hmiddle of the M100-23P lamination together with
the average magnetic field densityBaverage at a frequency of
50Hz.

3.4 Losses of magnetic materials used in the PhD

3.4.1 Losses of grain oriented M100-23P

For all FE models, the sameBH-characteristic for grain oriented silicon steel is
used. Figure 3.14 shows the fitted total iron losses for M100-23P grain oriented
silicon steel based on Epstein frame measurements, using the low frequencyap-
proximation of Bertotti for the classical losses. This fitting is done by firstly fitting
the hysteresis losses on the base of a quasi-static BH-loop measurement. Secondly
the classical losses together with the excess losses and the calculated hysteresis
losses are fitted. Figure 3.15, shows the fitted total iron losses for M100-23P grain
oriented silicon steel based on Epstein frame measurements for the hysteresis and
excess losses and the 1D diffusion model for the classical losses. This fitting is
done by firstly calculating the classical losses by use of the 1D diffusion model.
Secondly the hysteresis losses are fitted on the base of a quasi-static BH-loop mea-
surement. At last, the excess losses are fitted on base of the total losses subtracted
from the calculated classical losses and hysteresis losses. In both figures 3.14 and
3.15, there are differences at low flux density levels and low frequencies. These
differences are related to the fact that standard fitting routines available inMAT-
LAB®, cannot find an optimal fitting for both low and high flux density levels.
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Figure 3.11: Magnetic field strength at the boundaryHboundary and in the
middle Hmiddle of the M100-23P lamination together with
the average magnetic field densityBaverage at a frequency of
500Hz.

Asymptotic behaviour of theBH-curve

The measurement of theBH-curve is restricted by the voltage and current limits
of the measurement setup. The point of total saturation is mostly out of the mea-
surement range. For this reason, it is necessary to extend theBH-curve before
application in the FE model [52]. TheBH-curve is extended starting from the last
measurement point as:

B(H) = µ0H +Msat (3.21)

Obtaining the conductivity tangential to the plane of the sheets

The conductivity is required for magnetic loss models. It is measured with a four
point DC meter and by use of Pouillet’s law:

R =
l

σS
(3.22)

with R the electrical resistance,S the cross-section of the conductor andl the
length of the conduction path. The conductivity depends on the fraction ofsilicon
in the steel, for example, steel with much silicon has a conductivity of about2 ·106
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Figure 3.12: Dynamic hysteresis loops as a response of the 1D model at a
frequency of 50Hz. The loops are for M100-23P but do not
include hysteresis or excess loss components.
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Figure 3.13: Dynamic hysteresis loops as a response of the 1D model at a
frequency of 500Hz. The loops are for M100-23P but do not
include hysteresis or excess loss components.
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Figure 3.14: Fitted total iron lossesPsim in the rolling direction of M100-
23P grain oriented silicon steel based on Epstein frame mea-
surements (Pmeas), using the low frequency approximation of
Bertotti for the classical losses.
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Figure 3.15: Fitted total iron losses (Psim in the rolling direction of M100-
23P grain oriented silicon steel based on Epstein frame mea-
surements (Pmeas), using the 1D diffusion model for the clas-
sical losses.
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S/m whereas for a lower fraction of silicon, the conductivity is about3 · 106 S/m.
The conductivity of M100-23P silicon steel is1.67 · 106 S/m.

3.4.2 Losses of Soft Magnetic Composite

For the core elements made of SMC, the classical losses are computed by ho-
mogenised material parameters in FEM. The classical losses are directly calcu-
lated from the current densities of the 3D non-linear FE model (describedin sec-
tion 2.3.6) by:

P =

∫

V

~J · ~J
σ

dV (3.23)

With σ provided by the manufacturer or measured as explained in paragraph 3.4.1.
The magnetic losses are computed based on measurements on the measuring setup
of Figure 3.6, which is described in section 3.2.2. Figure 3.16 shows the total
measured iron losses of the SMC Somaloy® prototyping material measured on
the SMC measuring setup together with the total iron losses of MP100-23P LSSS
measured on an Epstein frame for a magnetic flux density of 0.5T, 1T and 1.5T. As
can be seen, are the losses of the SMC Somaloy® prototyping up to 16 times larger
than the losses in LSSS for low frequencies. For higher frequencies, the classical
loss becomes high in the laminated material so that the difference is reduced to less
than a factor 4 at 1000Hz and 1.5T.
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Figure 3.16: Losses for Somaloy® Prototype SMC and FeSi measured on
Epstein frame for 0.5T, 1T and 1.5T.
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Figure 3.17: Total losses as a function of magnetic flux density for grain
oriented M100-23P, SMC and FeSi-wire at a frequency of 50
Hz.

Because of the isotropic behaviour, SMC is mainly used for machines with a
complex 3D path like transverse flux machine [50] or axial flux machines [23]. On
the one hand, SMC does not suffer from induced currents due to fringing field per-
pendicular to the laminations. But, on the other hand, SMC has a lower magnetic
permeability and higher losses in the frequency range that is relevant in electri-
cal machines: see figures 3.17 and 3.18. By a clever combination of SMC tooth
tips with LSSS, the advantageous material properties can be optimally exploited.
In chapter 4 SMC tooth tips are combined with a rectangular stack of laminated
silicon steel sheets.

3.4.3 Losses of ferromagnetic wire

The losses of the 0.35 mm ferromagnetic wire together with the losses of the So-
maloy® Prototype SMC and the losses of M100-23P GO laminated silicon steel
are shown in figure 3.17 for 50 Hz and in figure 3.18 for 200 Hz.

3.5 Homogenisation methods for eddy-current losses in
steel laminations

A stack of grain oriented laminated steel sheets is both pseudo and crystalline
anisotropic. The pseudo anisotropy comes from the heterogeneity caused by the
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Figure 3.18: Total losses as a function of magnetic flux density for grain
oriented M100-23P, SMC and FeSi-wire at a frequency of 200
Hz.

Figure 3.19: Losses for ferromagnetic wire

insulation between adjacent sheets. The crystalline anisotropy is due to the manu-
facturing (rolling) process of the individual sheets. The straightforward treatment
of the lamination stack consists of drawing all lamination sheets and their insu-
lation layers separately, assigning appropriate material data, defining the neigh-
bouring coils, meshing the laminations explicitly and starting a 3D field simula-
tion (Fig. 3.20). Using the straightforward treatment would lead to unmanageably
large computational grids. Instead, the lamination stack is typically modelled by
bulk material with surrogate material properties, viahomogenisation[38, 53, 54]
or an iteration between the macro-scale model and a number of meso-scale mod-
els (multi-scaletechniques) [24, 44, 55]. A trade-off has to be found between the
complexity of the technique and its accuracy.

3.5.1 Methods for homogenising the magnetic behaviour

This section sets up a comparison between a number of existing homogenisation
techniques for laminated stacks. In figure 3.21, the lamination stack is shown,
consisting of a highly permeable material and a non-magnetic space between the
adjacent laminations (isolation and/or air). When the lamination (thicknessd) and
the isolation (thicknessh) are excited by the same mmf (causing a magnetic field
strength in the direction parallel to the lamination and isolation), the magnetic flux
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γ
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Figure 3.20: Stack of lamination sheet and coating layers.

density~Bisol in the space between the adjacent sheets is much lower than the mag-
netic flux density in the lamination~Blam. We define thestacking factor, the ratio
of steel material volume to total volume:

χ =
d

d+ h
(3.24)

Typical values for this factor and the way to obtain it are given in section 3.5.3.

~B
coat

~B
Fe

h d

lz

Figure 3.21: Lamination stack.

Method 1: In this method, a lamination is considered with the stacking direction
along theγ-direction (Fig. 3.20). The reluctance experienced by the main flux
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Figure 3.22: Homogenisation of laminated structure.

(flux parallel to the laminations) is found by a parallel connection of the reluc-
tances of the path alongside the lamination itself and alongside the coating. The
perpendicular flux component experiences a series connection of the highly perme-
able lamination part and the coating. The insulating coating between the individual
lamination sheets causes a significant change to the permeability and the conduc-
tivity in theγ direction, and the allowable current paths. The electrical conductivity
is set to zero in the perpendicular direction:σγ = 0.

A simple homogenisation leads to diagonal reluctivity¯̄ν and conductivity¯̄σ
tensors [24]:





¯̄µ = diag(µαβ , µαβ , µγ)
µαβ = χµ

Fe
+ (1− χ)µ

coat

1
µγ

= χ
µ
Fe

+ 1−χ
µ
coat




¯̄σ = diag(σαβ , σαβ , 0)
σαβ = χσFe
σγ = 0

(3.25)

whereχ is the stacking factordefined in (3.24),µFe and σFe are the per-
meability and conductivity of steel andµcoat is the permeability of the coating
material [54]. For conciseness, we formulate the theory for an isotropic and
linear steel material and a non-conductive coating material. The extension tothe
non-linear case is derived in [56].

Method 2: In method 1,σγ is set to0, which excludes the eddy currents
generated by the magnetic fluxes parallel to the sheets. From an analytical 1D
model, one can represent the eddy-current effect as a magnetisation,i.e., ~H =
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ν ~B+ 1
12
σFed

2
lam

d~B

dt [38]. This is easily incorporated, and can be added to Method

1 as an anisotropic, complex-valued reluctivityναβ → ναβ + ω
σFed

2

lam

12
in Mν in

the frequency domain model of section 2.3.5.
The straightforward method for modelling the lamination stack which consists

of drawing all lamination sheets and their insulation layers separately, considers
all variations of the electromagnetic fields at the scale of the individual lamina-
tions, whereas Method 1 and Method 2 neglect them completely. Nevertheless,
Method 1 and Method 2 are assumed to represent the same macroscopic behaviour
of the lamination stack as the straightforward method. However, Method 1 and
Method 2 may become very inaccurate, especially when the magnetic flux pattern
is nontrivial. A compromise is found in Method 3:

Method 3: In this method, the individual laminations are resolved by mesh
elements but the coating layers are only related to mesh planes. The magnetic
behaviour of the coating layers is considerd by a thin low-permeability interface
condition [41], as explained in 2.3.3. This amounts to adding reluctances of the
form h

µcoat|Ap|
whereAp are the incident primary-grid faces toMν of equation

(2.3.5).

3.5.2 Methods for homogenising the electric behaviour

Resolving the individual sheets in the mesh is not sufficient to correctly model the
proper current paths. Several techniques to numerically prevent current migration
between the insulated sheets are:

• Currents in theγ-direction are prohibited automatically by the conductivity
tensor as in (3.25), used inMethod 1andMethod 2.

• Currents are allowed to migrate between the sheets, thereby drifting away
from the true current pattern. However, the conductivity tensor is adapted
as proposed in [53]. In order to obtain correct results for the eddy-current
losses, the following requirements were taken into account: the dissipated
powers and the magnetic fields outside the core must be the same for the
homogenised and the real model. The latter requires that the total current at
the surface must be equal.

• Migration of currents between the laminations is prevented by an integral
constraint on the currents, forcing the current through the sheet surfaces to
be zero [44].

3.5.3 Stacking factor of a lamination stack

Thin sheets (typically0.2 − 1.0 mm) have an insulating coating layer of typically
1−15 µm, leading to a stacking factorχ – see (3.24) – of at least 95% for a material
of 0.35 mm thickness, or 97% for a material with 0.50 mm thickness [57]. When
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Figure 3.23: Excitation winding around a laminated stack with a measure-
ment winding between the laminations (shown in red).

modelling the lamination stack of figure 3.21 by taking the gross thickness of the
lamination stack as the active lengthlz, it becomes necessary to recalculate the
real material characteristics of the lamination steel (net thicknessd) to the gross
thickness (d + h = d

χ
) in the FE model. For example in 2D FEM, the real flux

density in the lamination is then given by:

~BFe =
1

χ
~BEE =

1

χlz

(
∂Aγ

∂β
~1α −

∂Aγ

∂α
~1β

)
(3.26)

With ~BEE the 2D FE solution for the magnetic flux density over the gross
thicknesslz andAγ the magnetic vector potential in theγ direction.

Obtaining the isolation thickness

In order to obtain the width of the isolation between adjacent sheets, the following
methods can be used:

Method 1 By measuring the flux density in a single sheet of the lamination stack. This
can be done by using a measurement winding placed between the sheets, as
illustrated in figure 3.23. When the flux density is measured, the width of the
isolation can be estimated by changing the width in a 2D FE model until the
same magnetic flux density on the same place is reached, which constitutes
an inverse problem.

Method 2 By measuring the permeability in the transverse direction (circuit in series)
and assuming that the permeability of the lamination (silicon steel) is infinite.

Method 3 By measuring the total volume of a lamination stackVstack, which is the sum
of the volumes of the laminations and the coatings between the laminations.
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Calculating the volume of the laminationsVlam out of the mass density of
the material of the laminations (7650 kg/m3 for silicon steel) and neglecting
the mass of the isolation, the isolation thickness is given by:

h =
Vstack − Vlam

nlamw1w2

(3.27)

With nlam the number of laminations,w1 andw2 the “in-plane” height and
width of one lamination respectively, see figure 3.20.

3.6 Equivalent geometry model for laminated media

Apart from homogenisation, another technique to simplify the meshing of the fi-
nite element model is using an equivalent geometry for the laminated structure as
shown in figure 3.24 with an enlarged lamination and insulation thickness. This
approach reduces the geometrical disproportion between the lamination andinsu-
lation thicknesses and the device size. In order to have equivalence between the
original model (with parametersσ

Fe
, µ

Fe
, w

Fe
, µ0 andw0) and the model with en-

larged thickness (with parametersσ1, w1, µ2 andw2), we need to take into account
the following conditions:

• The same skin depth:

δ =

√
2

ωσ
Fe
µ

Fe

=

√
2

ωσ1µ1

(3.28)

• The same reluctance for the parallel flux:

µ
Fe
w

Fe
+ µ0w0 = µ1w1 + µ2w2 (3.29)

• The same reluctance for the series flux:

w
Fe

µ
Fe

+
w0

µ0

=
w1

µ1

+
w2

µ2

(3.30)

3.7 Post processing of finite element results

In the 2D FE model, the lamination stack is modelled by including thin low perme-
ability interface conditions, representing the insulation. In the 3D model, the outer
sheets are modelled explicitly. The inner sheets are modelled by a bulk material by
homogenising the permeability and conductivity as shown in (3.25).
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Figure 3.24: Equivalent geometry for a laminated structure.

The losses are determined in a post-processing step. The eddy-current losses
due to perpendicular flux are calculated by:

Pcl,fr =

∫

Viron

J · J∗

σ
dV (3.31)

With J the RMS complex phasor of the current density,J∗ the complex conjugate
of J andViron the volume of conducting material.

The material models are applied per triangle (2D model) or per primary-grid
cell (3D model). As such, spatially distributed results for the loss densities are
available. The total losses are determined by numerical integration.

3.7.1 Lamination stack: individually modelled sheets

For core elements made from LSSS, even for low excitation currents, the outer
sheets of a LSSS stack saturate very quickly: see figure 3.25. This is mainlycaused
by stray fields perpendicular to the lamination. As a consequence, the eddycurrents
induced by these stray fields will be the highest in the first few sheets closeto the
excitation winding. To accurately compute the eddy currents caused by stray fields,
the first few 0.23 mm thick sheets closest to the excitation winding are explicitly
resolved by the FE mesh by defining them in the FE model as individual domains,
separated by thin insulating (coating) layers of 15µm. The two types of eddy cur-
rents as described in the introduction, cannot be strictly separated in the non-linear
case, because they influence each other. For this reason, both eddy currents are
calculated together in the first few sheets closest to the excitation winding. Know-
ing that the magnetic field is enforced in the rolling direction (stator field) and the
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magnetic flux density is predominantly in the rolling direction, it is acceptable to
neglect the crystalline anisotropy and to use a scalar magnetic material model.

3.7.2 Lamination stack: homogenisation of the stack

The remaining centre part of the laminated stack is modelled as a homogenised
bulk material with anisotropic magnetic and electric properties, as suggested in
[58] and shown in figure 3.25. For the centre part of the laminated stack, we
use homogenisation method 1 described in section 3.5. The permeability in the
direction perpendicular to the stack is determined by the coating thickness and
lamination thickness. The pseudo anisotropy is taken into account by using an
anisotropic electrical conductivity. The classical losses in this homogenised centre
part are calculated separately using a 1D finite difference diffusion model of half
the lamination thickness.

α
β

γ
σ

Fe
µ

Fe

{σαβ , σαβ, 0}
{µαβ , µαβ , µγ}

σ
Fe
µ

Fe

Figure 3.25: 3D stack with in the middle bulk material and at the top and
bottom sheets

3.8 Conclusion

In this chapter, the characterisation of magnetic materials is described: the single-
valued magnetic characteristic (theBH-characteristic), and the losses. For the
losses, the loss theory of Bertotti is explained, with for the classical loss both the
low frequency approximation and the 1D diffusion model in the lamination.

The characterisation is done for 3 magnetic materials that are used in this PhD:
grain oriented M100-23P Silicon Iron with 0.23mm sheet thickness, Soft Magnetic
Composite (Ḧogan̈as) and ferromagnetic wire. The first was measured by a con-
ventional Epstein frame; the second and third were measured on customizedsetups.
In the magnetic characteristic, it is observed that the maximal relative permeability
differs a lot for the three materials: 50000 for the M100-23P, 290 for SMC and
800 for the ferromagnetic wire. In the losses, it is seen that the M100-23Phas very
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low losses at low frequency compared to the others, but at higher frequency, the
difference becomes smaller.

In the last part of the chapter, homogenisation techniques are studied in order to
model the laminated material in Finite Elements. Several techniques are described.
In chapter 4 and 5, the first homogenisation method will be used for the partof the
lamination stacks which is modelled as a bulk material. Finally, some details are
given about material-related postprocessing in Finite Elements: the computationof
eddy-current losses in the laminated stack, both the explicitly laminated stack and
the homogenised stack.
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Chapter 4

Fringing flux losses due to the
armature reaction

4.1 Introduction

It is explained in earlier chapters that fringing flux is caused by on the onehand the
(rotating) permanent magnets in the YASA machine, and on the other hand by the
stator currents (armature reaction). This chapter focusses on fringingflux losses
coming from the armature reaction of the YASA machine.

To avoid the complexity of a rotating machine, all simulations and measure-
ments in this chapter are based on a simplified non-rotating setup. The geometry
of the simplified setup is shown in figure 4.1a. This setup consists of two tooth
coils (whereas the real machine has 15 such coils), a return yoke, and 2air gaps
with accurately controlled width. This setup is suitable for studying fringing flux
losses caused by stator currents in the YASA machine, i.e. by the armature reac-
tion. For this setup, a detailed analysis is given of the eddy currents due to fringing
flux. As the setup has no moving magnets, fringing flux caused by the magnets
cannot be studied in this chapter: this is studied in the next chapter.

Z

xY

Z

xY

(a) (b)
Figure 4.1: (a) Simplified setup (b) 3D FEM geometry exploiting symme-

try and showing explicitly modelled laminations (blue) andthe
homogenized part of the lamination stack (green).

The several FEM models of chapter 2 are used and tested concerning their ca-
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pability of modelling eddy currents due to fringing flux. The difference in accuracy
between the FEM models is discussed. The simulations are validated by measure-
ments on the simplified setup, and the validated field simulations give a very good
idea of the cause and the behaviour of fringing flux losses caused by thearmature
reaction.

The last part of this chapter discusses three approaches for reducing these
losses. The first method directly restricts the eddy-current losses by segmenting
the lamination surface. The second method deflects the fringing flux by using
Soft Magnetic Composite (SMC). The third method magnetically short-circuits
the fringing flux using ferromagnetic wires. Here, the magnetic characterisation of
SMC and ferromagnetic wire from chapter 3 is included in the modelling.

4.2 Simplified non-rotating experimental setup

Although the goal is to study iron losses in an axial flux machine, an experimental
setup without moving parts is built, as shown in figure 4.2 and figure 4.3. This
makes it possible to measure iron losses more accurately than in a setup with a
moving rotor. As already mentioned, the focus of this section is on eddy cur-
rents due to fringing flux of the coils. For that reason, permanent magnetsare not
included in the setup. Four stacks of grain oriented material M100-23P withBH-
characteristic and losses shown in chapter 3, and parameters collected in Table 4.1,
are positioned at a pole width of 50 mm from each other. A laminated yoke of
20 mm thickness is provided. This is much larger than the real back iron of the
axial flux machine studied in chapter 5, in order to keep the losses of the back iron
low compared to those in the lamination stack. All surrounding material besides
the lamination stacks and copper is polyamide. The airgap length can be varied
in a very accurate way by moving the back-iron and stacks and inserting sheets
of polyamide (of 1 mm thickness) between them. The grain oriented silicon steel
sheets are cut by a water jet, in order to have minimal degradation of the magnetic
properties in the regions near the cutting boundaries [59].

4.3 Comparison and discussion of different models

4.3.1 The models: 2D FEM, 3D FIT, and 3D FEM

To model the simplified, non-rotating setup, three different numerical modelsare
considered: the 2D Finite Element Model described in section 2.3.3, the 3D Finite
Integration Technique model, described in section 2.3.5 and the 3D Finite Element
Model described in section 2.3.6. The used post processing is described in section
sec:postprocessing. In this simplified setup, symmetries allow to only model one
fourth of the geometry in 2D and one eighth of the geometry in 3D, accompanied
by appropriate boundary conditions. In this way, the considered geometry consists
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Back Iron

Lamination stack

Excitation coil

α β

γ

Figure 4.2: Experimental setup in exploded view

Table 4.1: Geometric and electromagnetic parameters for the simplified
setup

Parameter Value
Number of turns of one excitation coil 200
Grain oriented material grade M100-23P
Lamination thickness (d) 0.23 mm
Insulation between adjacent sheets (h) 15.2µm
Stacking factor (χ) 0.94
Stack width 28 mm
Stack height 24 mm
Stack depth 60 mm
Airgap width (variable) 0.0 – 5.0 mm
Conductivity (σ) 1.67 MS/m

of a lamination stack, a coil carrying a magnetising current, an air gap and a yoke
closing the magnetic circuit. The geometry of the 2D FEM is shown in figure 4.4,
the geometry of the 3D FIT and 3D FEM are shown in figure 4.1. In contrast
to many approaches where the lamination stack is considered as a bulk material
with homogenised material parameters, here, the individual lamination sheets are
considered in all three numerical models. The relevant geometric parameters of
the lamination stack are listed in Table 4.1. The 2D FEM and 3D FIT models are
evaluated with a constant relative permeability of 10000. The 3D FEM model is
evaluated in the non-linear case by use of an effectiveBH-curve, as described in
chapter 3.
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Figure 4.3: The simplified, non-rotating experimental setup

Excitation coil

Laminated stack
Return yoke

γ

β

Figure 4.4: A section of a laminated stack in the YZ-plane is taken from the
simplified setup of figure 4.1b. On the left side a yoke is pro-
vided as a conducting path for the magnetic flux. The insulation
layers between adjacent sheets are modelled explicitly

4.3.2 Validation in the linear case

Only low currents are applied, because the top and bottom sheets of the stack sat-
urate easily, even for weak currents. This can be seen in figure 2.10.

The losses due to perpendicular flux are plotted in function of the frequency in
figure 4.5. It can be seen that the losses of the 2D model are slightly higherthan the
losses of the 3D model. This is mainly due to the fact that the returning paths for
the eddy currents are not included in a 2D model, as they are inherently replaced
by short-circuit connections between the front and back model sides. Further re-
strictions of the 2D model are:
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Figure 4.5: Comparison of the losses due to perpendicular flux calculated
by the 2D and 3D FIT model for an excitation of 200Aturns and
an airgap width of 1 mm

• Flux migration between adjacent teeth (in the direction perpendicular to the
modelled plane) is not considered.

• Only the losses in the stack are considered (not in the back iron).

• Crystalline anisotropy cannot be included.

• Only simple geometries can be modelled.

These restrictions vanish by using a 3D model, at the expense of a substantially
larger number of unknowns and according computation time.

Figure 4.6 shows the total measured and modelled losses by use of the 3D
FIT model, for an airgap of 1.0 mm. It can be seen that the results of simulations
and measurements are in good agreement. This is easily explained by the main
flux following mainly the rolling direction. The slight deviation may be attributed
to the non-crystalline behaviour of the used grain oriented material, which is not
included in the model.

Table 4.2 shows the individual components of the total losses, for an airgap
of 1.0 mm, withf the frequency,Iex the RMS excitation current,Pmeas the total
measured losses,Pmod the total modelled losses,Pcl,fr the modelled losses due to
perpendicular flux,Ph the hysteresis losses,Pcl the classical losses,Pex the excess
losses and % the increase of total loss due to perpendicular flux. A great part of
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Figure 4.6: Comparison of the measured and simulated total lossesPmeas

andPsim in mW, as a function of the rms currentIrms, the cor-
responding surface plot of the magnetic flux density is shown
in figure 2.10 for a frequency of 50 Hz and 1 A rms excitation
current.

the total losses consists of excess losses, because the setup is built of grain oriented
silicon steel sheets. The highest increase of total loss related to perpendicular flux
at this point is 3%.

4.3.3 Validation in the non-linear case

Figure 4.7 shows loss measurements on the AFPMSM setup for SMC and FeSi
stator core elements at 0.5T and 1T. The difference between measured losses for
the motor teeth made of on the one hand laminated silicon steel and on the other
hand SMC is small because of the 3D flux path capability of SMC and the losses
in the back iron. With the SMC teeth, the total iron losses increase by a factor of
1.5 on average, while in chapter 3 an increase by a factor 4 to 16 was observed.
This fact is explained by the substantial eddy-current losses induced inthe LSSS
by fringing fluxes perpendicular to the laminates.

The 3D model is evaluated and compared with the measurement data for both
materials. Figure 4.8 shows the total measured and total modelled loss of the AF-
PMSM setup for LSSS at frequencies of 50, 100 and 200 Hz. It can beseen that
the loss due to fringing field increases more rapidly than the total loss because the
loss due to fringing field increases quadratically with the magnetic flux density.
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Table 4.2: Measured and calculated losses on the simplified setup. The last
column is the percentage of fringing flux lossPcl,fr in the total
iron losses.

f [Hz] Iex [A] Pmeas [mW] Pmod [mW] Pcl,fr [mW] Ph [mW] Pcl [mW] Pex [mW] %

50 Hz
0.5 7.6 5.53 0.12 2.04 0.63 2.53 2.25
1 40.2 20.7 0.5 8.14 2.52 9.54 2.4

1.5 48.2 45.5 1.1 18.3 5.66 20.5 2.4

100 Hz
0.5 21.2 16.6 0.5 4.09 2.53 9.57 3.0
1 103 63.3 1.8 16.4 10.11 35 2.8

1.5 209 137.03 4.1 36.8 22.74 73.4 3

200 Hz
0.5 73 55.1 1.5 8.25 10.2 35.2 2.7
1 339 204 6.1 33 40.8 124 3

1.5 547 434 13.7 74.2 91.8 254 3.2

333 Hz
0.5 180 135 3.43 13.9 28.5 89.6 2.5
1 718 489 13.7 55.4 114 306 2.8

1.5 1386 1030 30.8 125 257 618 3
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SMC @1T
SMC @0.5T

P
[W

/k
g]

f [Hz]

0
0 20 40 60 80 100 120 140 160 180 200

2

4

6

8

10

12

14

16

Figure 4.7: Losses for Somaloy Prototype SMC and GO silicon steel on the
AFPMSM setup at 0.5 T and 1 T.

The highest increase of total loss due to fringing flux is about 34%. This value is
approximately 10 times higher than in section 4.3.2, because in section 4.3.2 only
low excitation currents were applied to the excitation tooth coil in order to prevent
saturation of the first few sheets closest to the excitation winding.
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Figure 4.8: Total measured losses (Pmeas), total modelled losses (Pmod) and
losses due to fringing field (Pcl,fr) of the AFPMSM setup for
LSSS at frequencies of 50, 100 and 200 Hz.

4.4 Detailed analysis of eddy currents in Laminated Sili-
con Steel Sheets

The first type of eddy currents – eddy currents due to the main flux – are resistance
limited. The second type of eddy currents – the eddy currents caused by stray
fields – are mostly limited by their own field and are said to be inductance limited.
Knowing the latter effect, a phase shift in time between the two types of eddy
currents is expected. For the calculation at a frequency of 333 Hz, it can be seen in
figure 4.9 that at 1.57 ms, when the change in main flux is maximum, the classical
eddy currents are dominant. It can be seen in figure 4.10 that later in time, at1.72
ms, when the change in stray flux is maximum, that the eddy currents due to stray
fields are dominant.

The fringing field causes a flux redistribution in the individual sheets due to
saturation, which is shown in figure 4.11. This redistribution causes even more
perpendicular flux falling in to the adjacent sheets, as shown in figure 4.12.

Figure 4.13 shows the simulated instantaneous eddy-current losses due tofring-
ing flux in function of time in the individual top laminations for a calculation at a
frequency of 200 Hz, with the sheet numbering starting from the top of the LSSS
stack of figure 4.1-b. It can be seen in Figure 4.13 that there is a time shift between
the peak values of the losses in the individual laminations, due to the shielding
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Figure 4.9: Induced eddy current field in top sheet of LSSS stack (see figure
4.1-b), at point 1.57 ms where the eddy currents due to the main
flux are dominant.

Figure 4.10: Induced eddy current field in top sheet of LSSS stack (see fig-
ure 4.1-b), at point 1.72 ms where the eddy currents due to
stray fields are dominant.

effect of the individual sheets, which delays the penetrating fringing field in time.
This shielding effect comes from the inductive behaviour of the laminations inthe
perpendicular direction. The decreasing edge of the instantaneous losses of the
top lamination (lamination number 1 in figure 4.13) occurs earlier in time than the
decreasing edge of the losses in the other laminations. This is due to magnetic sat-
uration of the first lamination, causing a decrease of the inductance which causes
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Figure 4.11: Magnetic flux density in the top sheets of figure 4.1-b, ranging
from light green 0.7 T till red 2 T.

Figure 4.12: Fringing field lines in the outer sheets of figure 4.1-b.

the resistance of the first lamination to become dominant. Because of the satura-
tion, the top lamination reaches its maximum of loss before the excitation current
reaches its maximum: at 5.35 ms compared to 6.25 ms for the maximum of the
current. The losses in the second lamination are higher, because of flux migration
from the first lamination to the second lamination (as shown in figure 4.12), as a
consequence of the saturation of the first lamination.

4.5 Fringing flux losses as function of flux density

Figure 4.14 shows the simulated eddy-current losses due to fringing flux infunc-
tion of the averaged magnetic flux density level in the stator tooth, simulated by
the field solver described in section 2.3.6. In a purely linear problem with imposed
sinusoidal flux density at constant frequency, the losses caused by induced currents
are expected to be quadratic with the flux density level. However, the figureshows
that for the considered non-linear problem, the losses increase less thanquadrati-
cally, even for low flux densities. Looking at the losses per individual sheet in 4.13,
it is clear that – in spite of the simple geometry of this setup – complex nonlinear
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Figure 4.13: Instantaneous simulated losses due to stray fields in function of
time in the individual top sheets. The sheet numbering starts
from the top of the LSSS stack. The frequency is 200 Hz and
the excitation is 1000 At. The average magnetic flux density
level in the LSSS stack is 0.33 T.
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Figure 4.14: Simulated additional in plane eddy-current losses caused by

fringing flux in function of the magnetic flux density level ata
frequency of 200 Hz.

field patterns and loss distributions occur. Even for low average flux densities in
the stack, the top laminations saturate (figure 4.11), so that the problem doesnot
become linear even for rather low flux density values.

In order to validate the FEM simulations, the induced voltages due to fringing
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Figure 4.15: (a) Dedicated setup and (b) Detailed representation of the setup
with 1) Excitations coils, 2) search coil, 3) LSSS stack.
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Figure 4.16: Measured and simulated induced voltage due to fringing flux
in the search coil of figure 4.15 at a frequency of 200 Hz and
an excitation of 1000 At.

flux are measured with a search coil of 100 turns, positioned as shown in figure
4.15. The search coil is constructed by revolving wires around a polyamideblock
with parameters of table 4.3. These dimensions fit perfectly between the backiron
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Table 4.3: Parameters of the fringing flux search coil

Parameter Value
Wire diameter 0.2 mm
Length 27.9 mm
Height 10.6 mm
Width 11.8 mm

and the excitation winding. This makes an easy positioning on top of the LSSS
stack possible, as can be seen in figure 4.15.

Figure 4.16 shows the measured and simulated induced voltage due to fringing
flux in the search coil in function of time. Thanks to the accurate positioning and
the accurate geometry of the search coil, it is seen that the measured and simu-
lated waveforms correspond well. In chapter 5, where the complete and rotating
axial flux machine is considered, also measurements and simulations are donefor
the induced voltage in a search coil for fringing flux. Because of much more un-
certainty on the exact airgap size and the exact dimensions of the search coil, the
correspondence of the waveforms is less good. This illustrates the usefulness of
the simplified setup studied here in chapter 4.

4.6 Techniques for reducing fringing flux loss from arma-
ture reaction

Three novel methods are discussed and experimentally evaluated. The first method
restricts the eddy currents directly by decreasing the enclosed surfacearea by seg-
mentation. The second method deflects the fringing flux by adding SMC tooth
tips. The third method short-circuits the fringing flux by adding ferromagnetic
wires. The three approaches are studied theoretically and are comparedin a new
experimental setup. Figure 4.17 illustrates the three techniques graphically.The
loss properties of the LSSS, SMC and ferromagnetic silicon-steel (FeSi) used for
the wires are given in chapter 3

4.6.1 Top & bottom laminations segmented along axial direction

The largest eddy-current losses due to fringing fields take place in the first few
sheets close to the excitation winding. Therefore, it is advantageous to limit thein-
plane eddy currents in these first few sheets. A simple method, without destroying
the material properties for the main magnetic field, is cutting the top and bottom
sheets along the axial direction, as shown in figure 4.17-(a). In this way,the surface
for the eddy currents due to fringing flux is significantly reduced. The number of
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Figure 4.17: (a) Segmented top and bottom lamination (b) SMC tooth tips
(c) top and bottom layer of adjacent ferromagnetic wires along
the axial direction.

segmented top and bottom sheets and the number of divisions are two parameters
to be determined. The number of split top sheets depends on the penetration depth
of the fringing field. The number of divisions of the split laminations is restricted
by construction constrains. Too many divisions will eventually destroy the material
properties for the main magnetic field and will be to difficult to assemble. For this
reason only a feasible number of divisions is applied. First only the top andbottom
lamination were divided in two divisions each for a simulation of 200 Hz, because
the penetration depth (according to equation 2.3) for M100-23P with an electrical
conductivity of 1.67 S/m at a frequency of 200 Hz and calculated with a relative
permeability of 10000 in the rolling direction for a flux density level of 1.8 T (as
shown in figure 3.3) is only 0.275 mm. This penetration depth is the penetration
depth for a half-plane model and is only valid as long as a homogeneous magnetic
flux density is exerted to the lamination sheet. As will be seen is the penetration
depth of the fringing field larger. Besides this, it will be seen that splitting the top
and bottom lamination, causes an increasing penetration depth of the fringingfield
perpendicularly into the laminated stack. For this reason, three top and bottom
laminations where divided into two divisions each.

4.6.2 SMC tooth tips for capturing fringing flux

Tooth tips are mainly used to reduce the higher-harmonic content of the airgap
magnetic field in order to reduce torque ripple and cogging torque [60]. Because
SMC blocks do not exhibit large eddy currents regardless of the direction of the
flux density vector, it is advantageous to deviate the fringing flux by SMC tooth
tips, as shown in figure 4.17-(b). The captured fringing flux will flow further in the
laminations in the in-plane direction, without introducing extra eddy currents due
to fringing flux.
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Figure 4.18: Instantaneous simulated losses due to stray fields in function

of time in the individual top sheets, withone segmented top
sheet. The sheet numbering starts from the top of the LSSS
stack. The frequency is 200 Hz and the excitation is 1000 At.

Using SMC tooth tips may also be beneficial from constructional point of view,
for the cutting of the laminations: all sheets remain rectangular and can be cut
easily on a plate shear. However, the assembly of the laminated stack and the SMC
tooth tips may be a disadvantage from constructional point of view.

4.6.3 Ferromagnetic wires as closing path for the fringing flux

Adding a layer of ferromagnetic wires, all oriented in the axial direction adjacent
to the top and bottom of a LSSS stack, will short-circuit the fringing flux, as shown
in figure 4.17-(c). In this way, the fringing flux is no longer perpendicular to the
laminations.

4.7 Performance of the three proposed loss reduction
techniques

The performance of the three proposed loss prevention measures is studied on the
basis of the finite-element model and on the basis of the experimental setup. The
major tendencies are described in the following three subsections.
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Figure 4.19: Eddy current density distribution in the top segmented lamina-
tion at a frequency of 200 Hz and an excitation of 1000 At.

4.7.1 Top & bottom laminations segmented along axial direction

To explain the effect of segmented laminations, we compare the simulated instan-
taneous losses in the laminations for the unsegmented case (figure 4.13) with the
case with the first lamination segmented (figure 4.18) (the other laminations re-
main unsegmented). For the segmented case, it can be seen that the simulated eddy
currents are lower in the segmented top lamination (lamination number 1 in figure
4.18): the peak value is about 45mW compared to 78mW in the unsegmented case
(figure 4.13). However, the loss is higher in the other laminations, for example in
laminations 2 and 3, we observe 92mW and 85mW versus 87mW and 81mW in
the unsegmented case. For this reason, the eddy-current losses are higher in total
compared with the standard case (without segmented top and bottom lamination).
This is caused by the shielding effect of the first lamination in the unsegmentedsit-
uation. By segmenting the first lamination, the reaction field of the eddy currents
due to fringing flux in this segmented lamination will be lower.

Figure 4.19 shows the eddy current distribution in the segmented top lamina-
tion of figure 4.18 (lamination number 1). It is seen that the segmentation causes
two eddy current loops, instead of one in the unsegmented case: see figure 4.10.

Figure 4.20 shows the instantaneous iron losses for three segmented top lam-
inations. The losses evidently decrease in the first three laminations. In this case,
the total fringing flux losses decrease with 17%. Knowing that the amount offring-
ing flux losses is 34% of the total iron losses, this gives a reduction of almost6%
in total iron losses.

The measurement results of figure 4.21 confirm this reduction of 6%, predicted
by 3D FEM simulations, in case of three segmented laminations. Also the slight
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Figure 4.20: Instantaneous simulated losses due to stray fields in function
of time in the individual top sheets, withthree segmented top
sheets. The sheet numbering starts from the top of the LSSS
stack. The frequency is 200 Hz and the excitation is 1000 At.

increase of losses in case of only one segmented lamination can be seen in the
measurement results.

For the technique of segmenting top and bottom laminations, we obtain the
important conclusion that the total iron losses are reduced by about 6%.

4.7.2 SMC tooth tips for capturing fringing flux

Figure 4.22 shows the SMC tooth tips positioned using a polyamide holder. Figure
4.23 shows the total measured losses for the standard setup and the setup with SMC
tooth tips. As the tooth tips change the inductance of the circuit, it is important to
know that at a given abscis value in the figure, the total flux through the teeth
is the same in the case with and the case without tooth tips. It can be seen that
the losses are higher for low frequencies and low magnetic flux density values
and lower for high frequencies and high magnetic flux density values whenusing
SMC tooth tips. This is expected because for low magnetic flux density and low
frequencies, hysteresis losses are dominant, and these are quite high in SMC. For
high frequencies and high magnetic flux density values, the classical losses are
dominant, but for SMC these latter losses are quite small.
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1 segmented top sheet
3 segmented top sheets
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Figure 4.21: Total measured iron lossesPFe for the standard stack, for the
stack with one segmented sheet and for the stack with three
segmented sheets. The frequency is 200 Hz.
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Figure 4.22: (a) Dedicated setup with tooth tips and (b) Detailed represen-
tation of the setup with 1) excitation coils, 2) SMC tooth tips
and 3) laminated stack.

4.7.3 Ferromagnetic wires as a closing path for the fringingflux

One layer of eighty adjacent axially oriented ferromagnetic wires of 0.35 mm are
placed at the top and bottom of the LSSS stack, as shown in figure 4.24. Thislayer
is constructed by making a coil around a mold followed by removing the endings
of the constructed coil. Figure 4.25 shows the total measured losses by useof this
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Figure 4.23: Total measured iron losses for the standard LSSS, a LSSS with
one segmented top and bottom sheet, a LSSS with three seg-
mented top and bottom sheets and a LSSS with SMC tooth
tips. The frequency is 200 Hz.

(a) (b)

Figure 4.24: (a) One layer of adjacent FeSi wires (b) One layer placed at
the top and bottom of the LSSS

layer. It can be seen that the losses are always higher when using a ferromagnetic
layer. This is due to the large difference in permeability between the ferromagnetic
wire and the LSSS and also because the losses of the wire in W/kg are much higher
than the losses of the grain oriented silicon steel sheets: see figures 3.17 and 3.18.
Fringing flux migration takes place and these flux lines are perpendicularly tothe
plane of the sheet.
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Standard setup
1 segmented top sheet
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Figure 4.25: Total measured iron losses for the standard LSSS, a LSSS with
one segmented top and bottom sheet, a LSSS with three seg-
mented top and bottom sheets, a LSSS with SMC tooth tips
and a LSSS with one top and bottom layer of adjacent axial
oriented ferromagnetic wires. The frequency is 200 Hz.

4.8 Conclusion

A simplified non-rotating experimental setup of the AFPMSM is presented, which
makes it possible to measure iron losses very accurately. This simplified non-
rotating setup consists of motor teeth, each excited by a tooth coil and a return
yoke.

The field models of chapter 2 are compared with each other and validated on
the simplified experimental non-rotating setup. The magnetic characterisation from
chapter 3 is included in the modelling.

On this simplified non-rotating setup, a detailed study is done of the losses
caused by fringing flux coming from the armature reaction. The losses arevalidated
on the simplified non-rotating setup. The validated field simulations give a very
good idea of the origin and the behaviour of fringing flux losses coming from the
armature reaction.

In the last part of this chapter, three approaches for reducing these losses are
discussed. The first method directly restricts the eddy-current losses by segmenting
the lamination surface. The second method deflects the fringing flux by using
Soft Magnetic Composite (SMC). The third method magnetically short-circuits the
fringing flux using ferromagnetic wires. The technique using segmented topand
bottom laminations obtained the best result in reducing iron losses due to fringing
flux.
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Chapter 5

Fringing flux loss in the complete
Axial Flux Permanent Magnet
Synchronous Machine

5.1 Introduction

Chapter 1 has given an overview on the operating principle of the Yokeless and
Segmented Armature Axial flux machine. As explained in that chapter, this ma-
chine is known to have a high efficiency and a high power density [7]. Before
the start of this PhD, the geometry and electromagnetic properties of the machine
were already optimized in a “conventional” way, considering iron losses, copper
losses and magnet losses. This was done by several research groups e.g. prof.
McCulloch and dr. Woolmer at the University of Oxford (UK) [14], prof. Di Ger-
lando at Politecnico di Milano in (Italy) [21], prof. Pyrhönen and dr. Parvainen
at Lappeenranta University of Technology (Finland) [61], and also at Ghent Uni-
versity, EELAB [7]. In this PhD, the goal is not to redo this optimization. The
research goal is to further improve the efficiency of the existing machine byhaving
a deep focus on the loss components, in particular the fringing flux losses. We first
give an overview of the conventional iron and copper losses of the machine, and
then study the fringing flux losses in detail. The full understanding of the effects of
fringing flux in YASA machines makes it possible in the future to further increase
the efficiency of this type of machines.

According to literature, the fringing flux caused by the permanent magnets
on the rotor or the end windings on the stator can increase the losses in electrical
machines, especially if the stack length is rather short compared to the airgapwidth
and the end winding size [62]. Fringing fluxes have been studied in several papers,
mainly for radial flux machines.

In [63], the 3-D finite-element analysis (FEA) shows the excessive endcore and
radial-flux fringing effects in the axial-flux configuration of a switched reluctance
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motor. The paper presents geometry modifications to reduce the radial fringing flux
because it reduces the torque of the machine (higher flux in the unaligned position).
Notice that the goal of this paper is not to increase the efficiency, but to increase
the torque of the machine.

In [62], the fringing flux was investigated for linear induction motors. As ex-
pected, the authors found that the fringing flux increases the magnetizationinduc-
tance and that it becomes more significant when the airgap becomes larger.Inter-
esting parametrized studies were done, showing the quantitative influence of airgap
width, stator width and end portion width on the thrust force of the linear motor
and on its circuit parameters.

The effect of end windings is studied also for synchronous machines, in[64]
for large 150MW turbo-generators. Similar to the above cited papers, a 3DFEM
analysis was done. The main concern of this paper is the induction of eddy currents
in metal components in the end region, which leads to heat generation. The use of
copper and magnetic screens was studied in order to reduce the total eddy-current
losses of end metal structures.

In [65] the in-plane eddy currents where analysed for end and interiorstator
core packets of turbine generators (the stator core of turbine generators is divided
into packets in order to provide duct-space). A 3D FEM analysis was doneconsid-
ering each lamination by the 3D finite elements, in order to calculate the in-plane
eddy currents accurately. The authors found that the in-plane eddy current density
was not only large in the laminations of the end stator core packets but also in the
top lamination of interior core packets. It was found that the maximum current
density in the top lamination of the interior core packet was comparable with the
current densities in the laminations of the end stator core packets.

The paper [66] analyses the behaviour of the radial and axial flux density com-
ponents and the corresponding eddy currents inside the laminated cores of a large-
sized squirrel-cage induction motor. The 3D model is shown in figure 5.1(a). For
comparing the eddy-current losses in the core ends at different axialdepths conve-
niently, the active region was divided into forty 10-mm-thick slices perpendicular
to the rotor shaft. Only a no-load situation was considered. The axial flux density
component, caused mainly by the airgap fringing flux and the end-winding leak-
age flux, appears in the end portion of the cores, and decays rapidly towards the
middle of the cores. The decay occurs roughly by a factor 3 in subsequent lam-
inations towards the middle of the stack. The authors have studied not only the
decay of the amplitude, but also the phase lagging of this axial flux density com-
ponent, which is shown in figure 5.1(b) for the 10 outermost slices at the tip of a
stator tooth. The phase shift indicates that the axial flux penetrates the laminated
stack like in a diffusion problem, causing phase delay from the stack end (slice 40)
towards the machine centre (slice 1). This phenomenon was not observedin the ro-
tor: there were almost no eddy currents in the rotor as the authors considered only
no-load (slip zero). The radial component of the flux density had a rather limited
decay (20%) from the stack end towards the centre of the stack, but this compo-
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(b) Phase diagram of the axial flux density component in the 10 outermost slices
at the tip of a stator tooth.

Figure 5.1: a) The 3D model of the squirrel-cage induction motor of paper
[66], b) phase angles of the axial flux density component in the
10 outermost slices at the tip of a stator tooth.

nent showed almost no phase shift. The eddy-current losses were found to be small
(about 43 W in the stator core for a 1.25 MW machine, compared to 306 W no load
copper losses of the stator phase winding), but the authors only considered no-load,
and the axial length of the machine is very large compared to the airgap length.

For YASA machines, the phase shift of the field perpendicular to the lamina-
tions was studied in chapter 4 and [67] for the simplified setup of the YASA axial
flux machine. Similar conclusions were found. The eddy currents causedby the
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main flux – the flux in the plane of the lamination – are resistance limited and have
about 90 degrees phase shift with the flux. The eddy currents causedby fring-
ing flux – flux perpendicular to the lamination plane – behave as in a diffusion
problem: the phase shift is larger – between 90 and 180 degrees – and skin effect
is observed for this flux: the amplitude of the flux decays in azimuthal direction,
from the edges towards the middle of the laminations.

The YASA machine considered in this PhD has a stack length – which is in
radial direction – that is usually rather short in comparison to radial flux machines
of the same size and power. For axial flux machines, almost no literature canbe
found on fringing fluxes and their effect on losses. Moreover, an additional prob-
lem occurs in axial flux PM machines compared to radial flux PM machines. The
problem occurs if the rotor magnets are rectangular or trapezoidal, whichis often
the case. When the magnet passes a stator tooth, the edges of the magnet protrude
in radial direction, causing larger fringing flux as shown further in this chapter.
This chapter presents a study of the losses caused by fringing flux as a function of
several parameters such as rotational speed and airgap size. In addition, in con-
trast to several cited papers that consider no-load only, the influence of the stator
current is investigated. In the last sections of the chapter, we consider first the
no-load situation. Here, the fringing flux losses are caused only by the rotating
permanent magnets. Then, full load is considered. At full load, the statorcurrents
cause additional fringing fluxes. Finally, the effect of speed and airgap thickness is
explained.

5.2 The machine under study

5.2.1 The considered YASA machine

The design of a 4 kW YASA machine as well as the study of the different lossterms
have been studied by several researchers at the laboratory EELAB and have been
published in a number of papers. The design and study were done as a function of
several geometrical parameters, for several magnetic materials, for several current
waveforms and at different operating speeds.

All studies have been done for the same YASA machine, initially introduced
in [68]: a machine of 150 mm outer diameter, 15 stator slots and 16 rotor poles.
The machine has a rated power of 4 kW and a rated speed of 2500 RPM. The
main specifications are given in Table 5.1, and further details of this machine are
explained later in this chapter. Also in this PhD, the same YASA machine is con-
sidered, so that e.g. values of losses found in earlier studies can be numerically
compared to new studies in this PhD.

The following sections give an overview of the studies done on this machine:
the global design and the study of loss components. The goal of the overview is
not to give a detailed report of these studies, which are available in the scientific
literature. The goal of the following sections is to give an idea of the order of
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Table 5.1: Axial flux PM machine prototype specifications.

Parameter Value Unit
Rated mechanical output power 4000 W
Rated speed 2500 RPM
Rated torque 15 Nm
Rated current 10 A
Pole number 16 -
Slot/tooth number 15 -
Outer diameter housing 195 mm
Outer diameter (active) 148 mm
Inner diameter (active) 100 mm
Axial length stator 61 mm
Total mass 9 kg
Magnet thickness 4 mm
Magnet segments width 18/21/24 mm
Magnets NdFeB 40SH -
Stator core material M100-23P -
Rotor back iron thickness 8 mm
Airgap length (adjustable) 1.0 – 5.0 mm
Slot width 11 mm
Slot opening 3 mm

magnitude of the different loss components in the considered machine, so that a
later comparison with fringing flux losses is more useful.

5.2.2 Global design of the machine for high efficiency

In [68], the efficiency optimization of the YASA machine was done, by using the
multislice 2D technique of section 2.3.4. Also the influence of mass on the optimal
values of the geometry parameters and the efficiency is considered. It was found
that the mass can be reduced significantly with only a small decrease of efficiency.
Furthermore, in [69], two types of silicon steel were compared to study theirin-
fluence on the efficiency: non-oriented and grain oriented steels. The work about
optimization, published by Dr. H. Vansompel, and the work about the comparison
of magnetic materials, published by Dr. D. Kowal, were the oldest published work
on the YASA machine in the research group EELAB. These publications were the
basis for later, more detailed research on losses. In the optimization, it was already
noticed that some parameters have a contrary effect on the different losses in the
machine. For example, a high axial length of the stator cores combined with large
slot openings is beneficial with respect to the copper losses, but it results in higher
stator core losses. The work considered rather conventional loss modelling, but
it was important to optimize the geometry of the machine towards high efficiency
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and power density.

5.3 Loss analysis in the YASA machine

In this section, the several loss terms of the YASA machine are investigated in de-
tail: iron losses, copper losses, permanent magnet losses, bearing lossand windage
losses. Evidently, these losses depend on the geometry, the electromagneticprop-
erties (magnetic materials), the sources (stator currents, permanent magnets), as
well as on the rotation speed. The following sections give an overview of work
that is not done in the framework of this PhD, but that is published in the literature
by the research group EELAB.

5.3.1 Stator core losses

Non-oriented versus grain oriented magnetic material

The possibility to use grain oriented material is an important advantage of the
YASA machine. This material is not much more expensive than conventional non-
oriented magnetic material, but it has two advantages: 1) it has a higher flux density
at typical magnetic field levels in machines, and 2) it has much lower losses in the
rolling direction: as low as 1.0 W/kg is possible at 1.7 T and 50 Hz, while conven-
tional non-oriented steel with the same thickness has usually at least 2.3 W/kgat
an even lower flux density of 1.5 T and at the same 50 Hz frequency.

The comparison of oriented and non-oriented (M700-50A) material, published
by D. Kowal [69], was carried out for the described 4 kW YASA machine. The
hysteresis loops were measured – see figure 5.2 – showing both the higherflux
density (about 1.8T instead of 1.5T at 2000A/m) and the lower losses (smaller
enclosed surface of the hysteresis loop) of the grain oriented material. Inthe paper
[69], the losses were studied as a function of the frequency: figure 5.3. This figure
gives a quantitative impression of the iron losses in the considered machine,as a
function of speed. With the grain oriented material, the YASA machine has only
about 1/5 of the iron losses of non-oriented material at the same speed: for example
at a speed of 2000 RPM, it is seen that the expected iron losses are about 30W for
the grain oriented material and 150W for the non-oriented material. In addition, a
10% higher torque is obtained for the same current. Also, when extrapolating to
the rated speed of 2500 RPM in a quadratic way (worst case), the expected iron
losses are about 47W.

Influence of the slot openings on the stator core losses

The effect of geometrical parameters on the stator core losses are illustrated in [30].
Here, the influence of the stator slot openings is investigated. This is an important
study because it has a link with the study of iron losses on the simplified setup of
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Figure 5.2: Measured hysteresis loops for non-oriented (NO) and grain ori-
ented (GO) material [69]

the axial flux machine, as explained in chapter 4. In chapter 4, a comparison was
made between on the one hand a stack of rectangular silicon steel sheets and on
the other hand the same stack of rectangular silicon steel sheets with added SMC
tooth tips for capturing fringing flux. The tooth tips also decrease the slot opening
width. It was concluded that for low frequencies the total iron losses arehigher in
case of added SMC tooth tips because of the high hysteresis losses of SMCand
that for high frequencies the total iron losses are lower in case of addedSMC tooth
tips because of the low classical losses of SMC.

The width of the stator slot openings near the airgap has a large influence on
the losses in the stator iron and in the permanent magnets of concentrated winding
machines such as the YASA machine. This was shown by V. Xuan [70], whoinves-
tigated the influence of stator slotting on the performance of a radial flux permanent
magnet machine. On the one hand, the increase in stator slot openings results in
lower losses in the stator iron. On the other hand, it also results in increasedlosses
in the permanent magnets. Also the torque is reduced for large (13 mm) but also
for very small slot openings (1 mm).

To clearly illustrate the influence of the slot opening widthb0, two values are
chosen in all further examples: rather closed slots withb0 = 3 mm and rather open
slots withb0 = 9 mm.

When considering only permanent magnet flux, an unequal distribution ofthe
magnetic field over the tooth is observed in radial direction. Due to the shape of
the permanent magnets, the magnetic flux density in the laminations near the inner
radius is found to be higher than the one at the outer radius. This is causedby
the variable tooth pitch as a function of the diameter combined with a constant
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Figure 5.3: Iron losses in the stator for non-oriented and grain oriented ma-
terial [69]

slot width. Flux leveling over the laminations by radial magnetic flux components,
is limited due to the very poor permeability of the stator cores in the direction
perpendicular to the lamination planes. The effect is further studied by 3D FEM in
section 5.3.5. However, it can be seen also by 2D FEM presented in [30]:in Fig.
5.4 the magnetic flux density pattern in the stator core element is illustrated in case
only permanent magnets were present and aligned with the stator core element in
case of 3 mm slot opening width.

The influence of increasing the slot opening width from 3 to 9 mm is illustrated
in Fig. 5.5. At the inner diameter lamination regions, the magnetic flux density in
case ofb0 = 9 mm has decreased with an average value of 0.3 T compared to the
case ofb0 = 3 mm as the smaller tooth tips catch less magnetic flux. With larger
slot openings, the total magnetic flux in the stator core element reduces.

When considering only armature reaction current – that means that the rema-
nent flux density of the permanent magnets is set to zero – higher magnetic flux
densities are found at the inner diameter regions compared to the outer diameter
regions. The magnetic flux density pattern is plotted in Fig. 5.6 for the 3 mm slot
width opening and in Fig. 5.7 for 9 mm, both at rated current [30]. The increase
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Figure 5.4: Magnetic flux density in tesla in the stator core when the perma-
nent magnet is aligned with the stator core for the 3 mm stator
slot openings width [30].
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Figure 5.5: Magnetic flux density in Tesla in the stator core when the perma-
nent magnet is aligned with the stator core for the 9 mm stator
slot openings width [30].

of the slot openings increases the reluctance for the slot leakage flux, and hence
reduces the magnetic flux density levels in the stator core elements. The reduction
of the magnetic flux density is higher at the inner diameter regions compared to the
outer diameter regions.

When combining permanent magnet flux with armature reaction flux, lower
stator core losses are expected for the machine with the wide slot openings.This
is indeed observed when evaluating the iron losses in the machine both at loadand
at no-load. Table 5.2 shows the results.

Analysis of Table 5.2 indicates that the stator core losses mostly exceed 100 W.
Note that in this table a non-oriented material was used. Both for no load and load
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Figure 5.6: Magnetic flux density in Tesla in the stator core taking only ar-
mature reaction into account for the 3 mm stator slot openings
width [30].
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Figure 5.7: Magnetic flux density in Tesla in the stator core taking only ar-
mature reaction into account for the 9 mm stator slot openings
width [30].

working conditions, the iron losses decrease as the stator slot openings become
wider. The difference between the core losses with closed slots and openslots is
large: almost 50% at rated load. Further in this PhD, a slot opening of 3 mm is
considered, leading to stator core losses in rated conditions (2500 RPM, full load)
of 135 W with non-oriented material (Table 5.2) and – by extrapolation of results
in [69] – 47 W with grain oriented material.

5.3.2 Copper losses

For the same size, power and speed, the copper losses in YASA type machines
– and in machines with concentrated windings (tooth coil windings) in general–
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Table 5.2: Influence of the stator slot opening width on the losses, torque
and power, at rated speed (2500 RPM), rated load current (7 A)
and with 4 segments per magnet. The copper losses in the wind-
ings are estimated at 60.8 W. [30]

Stator slot Average Average Load losses No load losses
openings torque power Core PM Total Core PM Total
width [mm] [Nm] [kW] [W] [W] [W] [W] [W] [W]
1 18.22 4.769 148.0 5.446 214.3 124.4 0.1691 124.6
3 18.50 4.844 135.1 10.15 206.1 124.5 5.877 130.4
5 18.38 4.811 127.3 21.91 210.0 120.3 18.42 138.7
7 18.09 4.736 118.7 33.45 213.0 113.5 30.33 143.8
9 17.65 4.622 109.2 40.52 210.5 104.8 37.55 142.4
11 17.07 4.470 98.95 42.56 202.3 95.07 39.69 134.8

are typically lower than in machines with distributed windings. This is thanks to
the short end windings and the resulting rather low resistance per phase [71]. The
phase resistance can be reduced further by aiming at a high slot fill factor. For the
considered YASA machine, the slot fill factor is about 0.5. The total copper losses
at rated load are about 60 W. The section of the wire is chosen sufficientlysmall
so that the AC resistance is not much higher than the DC resistance. It is observed
that these losses are dominant at rated load and speed when using grain oriented
magnetic material (iron losses are about 47 W), and that iron losses are dominant
when using conventional silicon steel M700-50A: the iron losses are between 95
and 148 W according to Table 5.2.

The copper losses can be further reduced for the same power by introducing the
combined star-delta winding. This technique increases the winding factor and by
consequence theemf of the machine by about 3% for the considered machine with
16 poles and 15 stator slots [72]. As power is determined by the product ofemf
and current, it is clear that either the power increases by 3% for the same copper
losses, or the copper losses can be reduced by about 6% for the same output power.

Finally, it is well known that reducing copper losses requires a low winding
temperature. The copper resistance increases with temperature by a factor (1 +
αCu∆T ) with αCu = 0.004/K. A good thermal management is crucial to keep the
windings at an acceptable temperature at high load. Therefore, in [73],a coupled
electromagnetic and thermal modelling technique is developed for the considered
YASA machine and validated with measurements. It was found that the machine
reaches a steady state temperature of about 70◦C at 2500 RPM and at rated load.
This is much lower than the allowable temperature of 155◦C for enamelled wire
class F, and results in 1/3 less copper resistance than at 155◦C.
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5.3.3 Eddy-current losses in the permanent magnets

Eddy currents in the permanent magnets of the YASA machine originate from
changing flux density (dB/dt) in the magnets, causing induced voltages. The in-
duced voltages in the electrically conductive NdFeB magnets lead to induced cur-
rents and eddy-current losses. The dB/dt has three possible causes:

• Reluctance effects caused by the stator slotting. This is the only term causing
losses at no-load operation. It is absent in slotless machines.

• Space harmonics of the current. The mmf of the stator currents in the slots of
the machine is a stepwise function along the circumference of the machine:
each stator slot causes a step. The fourier spectrum of this function hasmany
harmonics, especially in fractional slot machines. Even if sinusoidal time
waveforms of the currents are injected in these slots, the airgap flux density
contains harmonics that rotate in a non-synchronous way. These harmonics
cause eddy currents in the magnets.

• Time harmonics of the current. Additional harmonics are created if the time
waveform of the current is not sinusoidal. When using Pulse Width Modula-
tion (PWM), several harmonics are introduced. Also these harmonics result
in eddy currents in the magnets.

The eddy-current losses in the permanent magnets are evaluated in different
ways. A fast computation technique is based on the multislice 2D - 2D model, in-
troduced by H. Vansompel in [7]. The study was done for the same YASA machine
as the one described further in this PhD in section 5.2.1, and with properties given
in Table 5.1. The losses in no-load depend on the rotational speed, the segmenta-
tion of the magnets, and the geometry of the stator teeth. At load, the losses also
depend on the current distribution in space, and the current waveformsin time. The
computational approach in the paper is fast, but only valid for rather low frequen-
cies, where the eddy currents are “resistance limited”. As explained in chapter 4,
this means that the induced currents in the magnets are too weak to influence the
source field that creates them.
In Table 5.2, taken from [30], the magnet losses are shown for different stator slot
opening widths, from 1 mm to 11 mm. The losses are computed with the multislice
2D - 2D model of [7]. In this table, the permanent magnets are assumed to consist
of four electrically isolated segments. At load, evidently, the magnet losses are
higher than at no-load. The values range from 5 W for almost closed stator slots
to 43 W for almost open slots. The increase with the slot opening is mainly due to
the first cause of eddy currents: the reluctance effects.

Segmenting the magnets is a known technique to reduce eddy-current losses.
Table 5.3 shows the loss in the magnets for other segmentations in case of
b0 = 3 mm. It is seen that with sufficient segmentation (two rotors were made
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Table 5.3: Effect of segmentation on the eddy-current losses in the magnets
for 3 mm slot opening [30]

Magnet eddy-current losses [W]
# segments no-load rated load

1 8.14 15.42
2 6.61 11.76
4 5.88 10.15
14 2.89 4.09

with 16 magnets consisting of 14 segments), the magnet losses can be reduced to
4W at full load and speed, which is almost negligible compared to other losses.

Other methods for loss computation in the magnets of the same YASA machine
were presented by A. Hemeida in [74]. This paper describes an analytical model
for the eddy currents in the permanent magnets (PMs) in the YASA machine us-
ing a coupled solution of Maxwell’s equations and a magnetic equivalent circuit
(MEC). The method includes the effect of armature field and slots. The permanent
magnets are modelled by a simple electric network, composed of resistances and
inductances. The model can describe the reaction field effect of the eddy currents
flowing in the magnets and also the skin effect. It is shown for many cases how
big the error in the computed losses is if the reaction field is neglected, by compar-
ing with a transient 3D FEM. The authors conclude that inclusion of the reaction
field is necessary when the machine is excited by a Pulse Width Modulated (PWM)
current, while for a sinusoidal excitation, the reaction field effect has minor con-
tributions to the total eddy losses. As expected, the influence of the reactionfield
increases with the speed. The losses found in the machine were 3.8 W at no-load,
and 22 W at full load. This corresponds with earlier published values [30] in Table
5.3, obtained by the multislice 2D - 2D technique.

In [74], also PWM losses were studied in the permanent magnets of the YASA
machine. Using PWM has a significant effect on the losses in the magnets: accord-
ing to [74], the loss with 5 kHz PWM increases from 22W to 33W in case of one
magnet segment. Evidently, segmentation can reduce these losses to 17.7W (two
segments) or 12.8W (four segments).

To conclude, the losses in the permanent magnets can be as high as 22 W or
even 33 W if PWM is included and if the magnets are not segmented. However the
permanent magnet losses can be reduced to an almost negligible 4W if sufficient
segmentation is considered.

5.3.4 Windage losses and bearing losses

The windage losses of the machine have been investigated by A. Rasekh viaCom-
putational Fluid Dynamics. Also this study was done for the considered YASA
machine [75]. Here, for the same prototype with an airgap thickness of 1.0 mm,
the windage losses were found to be 5 W per rotor, at a reference speed of 30 m/s.
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This corresponds to about 3800 RPM. It was shown that the losses – asexpected
– are third power of speed. At 2500 RPM and considering both rotors, this means
that the windage losses are less than 3 W and by consequence almost negligible for
speeds lower than or equal to 2500 RPM.

For the bearing losses, the bearing supplier gives loss curves as a function
of the axial and radial load. The construction of the machine is made in such
a way that not the complete axial force between rotors and stator is seen bythe
bearings. Nevertheless, a sufficient axial load must be foreseen on the bearings to
avoid small axial displacements in the bearings. The latter would cause unequal
airgap thicknesses and are therefore not allowed. The axial force is atrade-off
between sufficient axial stiffness on the one hand and low losses on the other hand.
According to simulations in software of Schaeffler, a bearing loss of a fewWatts is
found at rated speed.

5.3.5 Influence of lamination stacking and magnet shapes

For yokeless and segmented armature (YASA) axial flux permanent-magnet ma-
chines, several lamination stacking methods and magnet shapes are discussed
in [76], in terms of output torque, cogging torque, efficiency and powerdensity.
By evaluating the different combinations of lamination stacking methods and mag-
net shapes, it is shown that some combinations suffer from local saturation, lower
output torque and higher losses. Especially the local saturation may have an in-
fluence on the fringing flux in the machine. In Chapter 4, it was seen that flux
migrates from one sheet to another in the first few adjacent sheets closest to the
excitation winding, because of saturation, which causes even more flux falling in
perpendicular to the sheets. Therefore, it is interesting to summarize the results of
the cited work in order to see how the flux density behaves in radial direction, for
the YASA topologies with several lamination stacking methods and magnet shapes.

Four types of lamination stacking are compared: conventional lamination
stacking (CLS) and 3 simplified lamination stackings (SLS1, SLS2 and SLS3).
The four types of lamination stacking are shown in figure 5.8: 1) the conventional
lamination stacking in Fig. 5.8(a), 2) the rectangular lamination stacking SLS1 in
Fig. 5.8(b), 3) the T-shape stacking SLS3 in Fig. 5.8(c) and 4) the overlap lamina-
tion stacking SLS3 in Fig. 5.8(d).

The two considered magnet shapes are on the one hand trapezoidal magnets
(Fig. 5.9(a)) with a width of 0.8 times the pole pitch, and on the other hand an
assembly of two rectangular magnet segments that are combined into a T-shaped
magnet (Fig. 5.9(b)). The width of the upper magnet is limited to the width of the
pole pitch at the average radius.

The comparison of lamination stacking methods and magnet shapes in terms
of losses, power density and efficiency is given in Tables 5.4 and 5.5. The Tables
show that the lamination stacking technique has an effect on the output power
and the efficiency: compared to the CLS, the rectangular stacking has about 6%
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(a)

(b)

(c)

(d)

Figure 5.8: Overview of the lamination stacking methods; (a) CLS: conven-
tional stacking method; (b) Rectangular LS: a simple stacking
method with only one lamination profile; (c) T-shape LS: a sim-
ple stacking method with only two lamination profiles that are
stacked straight; (d) Overlap LS: simple stacking method with
only two lamination profiles that are stacked in an alternating
way so that they overlap partially [76].
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(a) (b)

Figure 5.9: Overview of the magnet shapes; (a) trapezoidal; (b) T-shaped as
a combination of two rectangular magnets [76].

lower output power and 0.57% point lower efficiency at full load. The magnet
shape however has only a very small influence on these two quantities, as isseen
by comparing both tables. Although this PhD does not focus on cogging torque,
it is interesting to mention that the cogging torque is strongly influenced by the
lamination stacking method while the magnet shape has almost no effect. Note
that the considered machine with 15 stator teeth and 16 magnets has an inherently
low cogging torque because no symmetry in the machine exists.

Table 5.4: Comparison of simulation results for trapezoidal magnets [76]

parameter CLS Rectangular LS T-shape LS Overlap LS
full-load torque (Nm) 15.19 14.24 14.71 14.89
no-load iron-losses (W) 35.84 50.71 42.88 35.95
full-load iron-losses (W) 32.83 45.68 38.67 31.66
output power (W) 3977.1 3728.6 3851.8 3897.7
power density (kW/kg) 0.5136 0.5560 0.5345 0.5408
efficiency at full-load (%) 96.15 95.58 95.89 96.10

Table 5.5: Comparison of simulation results for T-shaped magnets [76]

parameter CLS Rectangular LS T-shape LS Overlap LS
full-load torque (Nm) 15.19 14.23 14.75 14.91
no-load iron-losses (W) 35.98 50.52 43.19 36.19
full-load iron-losses (W) 32.95 45.68 38.94 31.79
output power (W) 3977.0 3728.6 3860.8 3902.2
power density (kW/kg) 0.5136 0.5560 0.5327 0.5414
efficiency at full-load (%) 96.15 95.58 95.89 96.10

The interesting part for the research on fringing flux, is related to the 3D mag-
netic field distribution in the machine, for the different lamination stacking tech-
niques and magnet shapes. In Fig. 5.10, an overview of the magnitude of the
magnetic flux densities in the different 3D-models is given.
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Figure 5.10: Overview of the magnitude of the flux density distribution in
the tooth for each combination of lamination stacking methods
and magnet shapes. The rows represent the lamination stack-
ing method: CLS, Rectangular LS, T-shape LS, Overlap LS.
The columns represent the magnet shapes: trapezoidal, and T-
shaped [76]
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Fig. 5.10 (a) and (b) show that with CLS, a lower flux density is obtained in
the laminated steel than with the other stacking methods. This results in lower iron
losses and hence higher efficiency.

Fig. 5.10 (c) and (d), show that local saturation of the lamination with rectan-
gular LS takes place at the upper layers while the material is still not saturatedat
the lower layers. Therefore the output power (Tables 5.4 and 5.5) is smaller com-
pared to the other combinations with trapezoidal and T-shaped magnets. Moreover,
the no- and full load iron-losses are high, leading to a less efficient machine. It can
be summarized that the Rectangular LS is not appropriate in combination with
trapezoidal and T-shaped magnets.

The conclusion is that some combinations – especially the rectangular lamina-
tion stacking – result in local saturation, which may lead to higher fringing fluxes
perpendicular to the lamination plane. The CLS has the lowest flux density in spite
of the high output power, which causes a high efficiency because of lowconven-
tional iron losses and low expected fringing flux losses. Because all laminations
have a different geometry in the CLS, this technique is unfortunately also themost
expensive. Only the Overlap LS-method shows comparable properties asthe CLS-
method and is therefore a good alternative for the CLS because of its lowercost.

Because of the lowest production cost and the above consideration, theproto-
type of the machine was made with T-shape stacking, and with T-shaped magnets.
Instead of 2 segments however, 3 segments for the magnets were taken, and 6 dif-
ferent geometries for the stator core. Further details are given in section5.4.

5.3.6 Summary of the losses in the YASA machine

A numerical overview is given of the losses in the prototype YASA machine based
on the previous studies of all loss contributions. Table 5.6 gives the summaryof
the conventional losses. As it is understood that geometric details such as e.g. slot
opening have a large influence on the losses, the values in Table 5.6 shouldbe seen
as indicative values only.

Table 5.6: Summary of conventional losses in the YASA machine at rated
speed of 2500 RPM and rated power of 4.0 kW

Loss Remark
Iron losses 40 – 50 W When using grain oriented M100-23P
Copper losses 60 – 70 W At operating temperature of 70◦C
Permanent magnet losses 5 – 33 W Highest value for 1 segment, incl. PWM
Bearing losses 2 – 20 W Depends strongly on axial load
Windage losses 2 – 3 W At 2500 RPM
Efficiency at full-load ≈ 95%
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5.4 Construction of the prototype

5.4.1 Overview of the prototype construction

In [7], the electromagnetic design of a 4 kW, 2500 RPM YASA-machine was op-
timized for energy-efficiency. This design optimization has resulted in a set of
parameters listed in table 5.1. In this new design, the rated current is 10A (instead
of 7 A), this because of geometrical reasons, the number of turns of the coil is ad-
justed (reduced) to the left space between adjacent stator teeth, which is different
from the first prototype because of the aluminium fins. The mmf of both designs is
the same.

Later, in [73], thermal aspects of the prototype YASA-machine have beenin-
vestigated. As the rotors in axial flux machines have a disc shape, inherent self-
ventilation [77] will have a significant contribution to the transfer of heat out of the
machine. This effect becomes particularly interesting for axial flux PM topologies
with two rotors and a single stator [78]. Nevertheless, in high torque densityappli-
cations, this self-ventilation will become insufficient [79]. Therefore, anadditional
stator heat extraction system is suggested which consists of inward heat extraction
fins cfr section 5.4.4.

In the construction of the stator of the YASA machine in section 5.4.4, epoxy
potting techniques will be used to get the different stator parts bonded into asingle
solid stator structure. As this epoxy potting material has both a thermal and me-
chanical function, extensive tests on different epoxy materials have been carried
out in the concept study towards the stator casting process.

The combination of the optimized electromagnetic design, the thermal analy-
sis and the extensive tests on different epoxy materials have resulted in a YASA-
machine of which a cross-section overview is given in figure 5.11. As this proto-
type machine is used for various experiments and measurements, some additional
features have been added,i.e. adjustable airgaps and the integration of multiple
sensors in the stator. The construction of this prototype is discussed in the follow-
ing sections.

5.4.2 Construction of the rotors

The two rotor discs are made of 8 mm thick steel C45, and combine two major
functions. Firstly, they are a back-iron for the magnetic flux, and secondly they
carry the high mechanical attraction forces from the permanent magnets to the sta-
tor cores. In general, the required thickness of these rotor discs is setby mechanical
constraints rather than the electromagnetic ones.

On these rotor discs, the permanent magnets are glued. These magnets are
4 mm thick in the axial direction, which is also the direction of the magnetization.
In circumferential direction, adjacent magnets are magnetized in the opposite(ax-
ial) direction. In this prototype YASA-machine, each disc has 16 magnets, which
results in a machine with eight pole pairs.
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Figure 5.11: Cross section view on the prototype YASA-machine.

The permanent magnet material is NdFeB 40SH. This material grade com-
bines a high remanent flux density,i.e. 1.30 T at 20◦C, with a sufficiently high
maximal operating temperature of 150◦C. As this material has a relatively good
electrical conductivity, the eddy currents will be induced in the permanentmagnets
by stator slotting and stator armature reaction. To limit the eddy currents and their
corresponding power losses, segmentation of the permanent magnets [74] is intro-
duced. The segmentation reduces the eddy-current loss in the magnets asalready
explained earlier and shown in Table 5.3. In the prototype machine, the radial
height (24 mm) of the magnet is divided into three (3 times 8 mm). The tangen-
tial lengths become 18, 21 and 24 mm. The axial thicknessi.e. the magnetization
direction is 4 mm. This 4 mm thickness results in an airgap flux density of about
0.95T. To protect the permanent magnet material from corrosion, each magnet seg-
ment is coated with a copper-nickel alloy. The rotors are shown in figure 5.12.
The picture shows clearly that each magnet pole consists of 3 rectangularblock
magnets.

The permanent magnet segments are glued on the rotor disc. The thermal ex-
pansion coefficient of the NdFeB is negative (-0.8×10−6 1/K) in the direction
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Figure 5.12: Rotor discs of the prototype YASA-machine, showing the
glued magnet segments.

perpendicular to the magnetization direction, and the one of steel C45 is positive
and relatively big (11.7×10−6 1/K). The big difference in thermal expansion co-
efficients requires flexibility of the glue. Moreover, the strength of the glueshould
not reduce significantly at the nominal operating temperature. In the prototype
machine, a 2-part, room temperature curing methyl-methacrylate (PermabondTA
4246) based structural adhesive is used.

5.4.3 Construction of the modular stator element

Together with the rotor discs with the permanent magnets, the modular stator ele-
ments are the electromagnetic active components of the machine. Such a modular
stator element includes a ferromagnetic core and a concentrated winding.

In the prototype YASA-machine, the ferromagnetic core is made of thin lam-
inated silicon steel sheets. As the direction of the magnetic field in these cores
is always in the axial direction, a grain oriented material M100-23P is used.As
explained in section 5.3.1, in the YASA-machines, the use of such a grain oriented
material results in strong reduction of the core losses in comparison with non-
oriented ones [69]. In theory1, the use of this grain oriented material results in
core losses of about 40 W at rated load and speed in the prototype machine(30 W
is given in [69] but at a speed of 2000 RPM; quadratic extrapolation to 2500 RPM

1Neglecting the degradation of the magnetic material properties due to cutting process, perpen-
dicular fringing fluxes,etc.
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gives 47 W).
As the magnetic flux density over the radial direction in a stator core element

is not uniform, a variable airgap is also introduced in the prototype machine [29].
The variable airgap is obtained by shortening the axial direction of the statorlam-
inations in the radial direction. A variable airgap has a higher airgap thickness at
the inner radius of the core elements, because these elements are generallymore
sensitive to local saturation. As a consequence, the higher airgap thickness at the
inner radius results in a desaturation of the core at the inner radius, and ifthe vari-
ation in the airgap is chosen carefully, a uniform magnetic flux density over the
radial direction in the core. This results in less iron losses for the same flux per
tooth, and by consequence in less power losses for the same output power.

After the stack of the stator core is made, it is impregnated in an epoxy resin
to keep the individual steel laminates in place. Then, an electrical isolation foil
is wound around the core. On this insulation foil, the winding is placed. This
winding is composed of two parallel strands of 1.12 mm diameter. The number of
turns is equal to 57. The wires of each core element are brought to the outside of
the stator; in such a way the individual electromagnetic behaviour of each coil can
be measured. Finally, a second layer of electrical isolation is put over the winding.
This isolation layer is required because of the close contact between the winding
and the heat extraction fincfr. section 5.4.4. The housing structure with radially
inward fins can be seen in figure 5.13, as well as one finished stator modulethat is
to be inserted between the radial fins. A detailed image of a modular stator element
is shown in figure 5.14.

5.4.4 Casting techniques for the stator

In a next production step, a stator assembly needs to be made out of the 15 pre-
assembled stator modules. Also a connection with the rotors and the final appli-
cation needs to be provided. Moreover an additional cooling system for the stator
modules is introduced.

The 15 pre-assembled stator modules are arranged in a circle configuration,
and the bearing block is put concentrically with them. The bearing block will
be the interface between the stator and the rotors; the bearings and shaftwill be
integrated in a later construction step. The outer cylindrical boundary is formed by
the stator housing. This housing is also used to mount the prototype machine to the
application. Figure 5.15 shows the manufacturing of the housing by stackingthe
aluminium sheets, and figure 5.13 shows the finished stator housing.

The remaining openings between the inner bearing block and the outer stator
housing will be filled with epoxy. The use of epoxy resins as a potting material
has also a major impact on the thermal design of the machine. These epoxy resins
have a relatively low thermal conductivity between 0.25-0.85 W/m·K [80]. By
consequence, a high thermal resistivity between the heat sources,i.e. the iron
losses in the cores and the copper losses in the winding, and the surface of the stator
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Figure 5.13: The stator housing of the prototype YASA-machine with one
of the 15 stator modules shown at the bottom right. The white
cover of the stator module is a glass fiber insulation.

Figure 5.14: Stator modules. The location of the search coil to measure
the fringing flux are shown on top of the lamination stack
(left). Afterwards the lamination stack is provided with the
main winding and electrical isolation (right).

housing limits the power output of the machine. To increase the conductive heat
flux from the stator modules to the stator surface, inward heat extraction fins are
integrated in the stator housing as illustrated in figures 5.13, 5.15 and 5.16. The fins
reach up to the inner diameter of the stator winding to have a high contact surface
with the stator winding. Moreover, the stator housing is made of an aluminium
alloy because of its good thermal conductivity. In order to avoid eddy currents [81]
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Figure 5.15: The construction of the stator housing of the prototype YASA-
machine, and the bearing block in the middle. The white mate-
rial in the middle is in a later stage replaced by the ball bearing.
The finished stator housing is shown in figure 5.13.

in the inward heat extraction fins due to leakage fluxes in the slot openings,the
stator is made by a stack of coated aluminium profiles as can be seen in the figures
5.13 and 5.15. Near the end windings, a sufficiently high distance is maintained
towards electrically conductive parts in order to avoid eddy-current losses. Despite
the reduction of the thermal resistance, the inward heat extraction fins reduce the
winding thickness, and hence, will result in an increase of the copper resistance
and copper losses. The ratio between the fin thickness,i.e. better cooling, and
the winding thickness,i.e. lower copper losses, is optimized in the multiphysics
design.

As mentioned previously, the epoxy resin is used as a potting material and fills
all the remaining openings between a mold formed by the bearing block at the inner
diameter and the stator housing at the outer diameter. As a consequence, theepoxy
material is the only securing means to keep the stator modules in place. On the
other hand, the epoxy material has also an effect on the thermal properties of the
machine. Therefore, the selection of the epoxy resin is critical in this construction
method.

First of all, the epoxy resin should have ahigh strength up to high temperature
as it must be capable to withstand the high forces from the rotor-stator interaction.
These forces can be in the axial directione.g. during the mounting of the discs
or because of small asymmetry in the airgaps or magnetization of the rotors. The
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Figure 5.16: Axial-flux PM machine stator before the epoxy potting pro-
cess.

forces can also be in the circumferential directione.g. because of torque produc-
tion. The epoxy resin should be capable to withstand these forces at operating
temperatures. A critical parameter in the selection of the epoxy resin is therefore
the glass transition temperature. At this glass transition temperature, the epoxy
resin loses its strength. As a consequence, the glass transition temperatureof the
epoxy resin should be sufficiency higher than the maximum temperature during
operation of the machine.

Secondly, thethermal expansion coefficientof the epoxy resin is also impor-
tant. In many places in the stator, there is a very thin layer of epoxy between
copper-iron and copper-aluminium alloy surfaces. Temperature transients during
operation of the machine will result in expansion of the different stator parts. An
epoxy resin with a thermal expansion coefficient that is more or less in the range
of these of copper, steel and aluminium alloy is therefore advantageous.

Thirdly, thethermal conductivitymust be as high as possible. The epoxy resin
will have an influence on the thermal properties of the machine. Despite the inward
heat extraction fins have been introduced to have a better heat conduction path in
the machine, an epoxy resin with a high thermal conductivity is still advantageous.
The epoxy resin will fill the thin gaps betweene.g. different wires of the stator
module coils and the inward heat extraction fins, and hence, also contributeto
better thermal conductive paths between the different stator parts.

The epoxy resin should have aviscosityas low as possible during the casting
process, to fill even the smallest cavities in the stator. Although the epoxy resins
have a relatively poor thermal conductivity, air inclusions have an even worse in-
fluence on the heat evacuation of the machine. Low viscosity epoxy resinswill
result in less air inclusions, and hence, a better thermal performance. Moreover,
too many air inclusions will also reduce the strength of the stator. The choice of the
epoxy resin with low viscosity is not the only way to eliminate air inclusions. Pre-
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heating of the epoxy resin before casting will also lower the viscosity of the resin.
Also preheating of the stator components can be help; although the epoxy resin is
preheated, direct contact with a cold stator part will immediately cool down the
epoxy resin with an increase of the viscosity as a consequence. Last but not least,
air inclusions can be eliminated by mechanical vibrations and vacuum casting.

During the selection of the epoxy resin, taking the previously mentioned
requirements into consideration, four resins have been retained. The Elantas
Epoxylite TSA220S, Henkel Stycast 3050 with catalyst 28, Henkel Stycast 2850
FT with catalyst 27-1 and Henkel Hysol EO 1058. The main parameters of these
epoxy resins are mentioned in table 5.7.

Before the casting of the entire stator, the properties of the epoxy resins were
evaluated in small test samples. In these test samples, a steel cylinder was consec-
utively wound with a first layer of electrical isolation material, a copper winding
and another layer of electrical isolation material. Finally, this assembly is put into
an aluminium alloy casting profile. These small test samples are very similar to a
stator module, but use less effort and cost to produce.

As mentioned previously, the samples are heated up to 80◦C for lowering
the viscosity of the epoxy resin. During the curing, the sample filled with epoxy
is heated at the listed curing temperature and time. Consecutively, the sample is
heated for 2 more hours at the service temperaturei.e. 120◦C. After these 2 hours,
the temperature is gradually decreased in a period of about 8 hours.

After the casting process, the samples are cut to evaluate the occurrenceof
cavities in the epoxy resins into the different sample structures and the presence
of cracks. In figure 5.17, the presence of cavities and cracks in the epoxy resins is
shown for the different sample structures in the test sample are shown.

Evaluation of the test samples showed that the Epoxylite TSA220S suffered
from major cracks into the massive epoxy parts. Even when using filling materials
e.g. cut glass fibers, the cracks remained in the massive epoxy parts. The Stycast
2850 is interesting because of its high thermal conductivity, but the interpenetra-
tion into the winding was less effective: the cavities in the blue resin are clearly
visible on the picture. This is due to the relatively high viscosity of the Stycast
2850. Despite the Hysol EO 1058 has also a relatively high viscosity, here, the
interpenetration of the epoxy resin into the different sample parts was more ef-
fective. Moreover, the Hysol EO 1058 is a single component, and hence, easy to
use. Nevertheless, its relatively high viscosity and by consequence the risk on cav-
ities was decisive to choose the Stycast 3050: the resin with lowest viscositybut
unfortunately also a rather low thermal conductivity (compared to Stycast 2850).

Before the casting of the stator, some research was done on the mechanical
stresses during and after the casting process. Initially, there are no mechanical
stresses in the stator modules, bearing block and stator housing. During thecast-
ing process, these pieces are heated up to the curing temperature. Duringthis
process, the elevated temperature introduces mechanical stresses in the stator mod-
ules, bearing block and stator housing, while no mechanical stresses arepresent
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Table 5.7: Properties of the selected epoxy resins. In case of two component epoxy resins, the properties for the mix
(epoxy+catalyst) is given.

Propery Unit Epoxylite TSA220S Stycast 3050 Stycast 2850 FT Hysol EO 1058
Color g/cm3 amber maroon blue black
Density g/cm3 1.18 1.55 2.3-2.5 1.65
Brookfield viscosity Pa·s 5.5 2 200-300 50
Glass transition temperature ◦C 143 140
Hardness Shore D 90 88 94 90
Tensile strength MPA 110 54 69
Compressive strength MPA 144
Coefficient of thermal expansionµm/m·◦C 50 40 24
Thermal conductivity W/m·K 0.23 0.4 1.0661 0.54
Temperature range of use ◦C -40 to +130 -40 to +175 ?
Cure temperature ◦C 165 120 120 140
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(a) Epoxylite™ (Elantas) TSA220S (b) Blue: Stycast™ 2850, black: Hysol™ EO
1058 , maroon: Stycast™ 3050 (Henkel)

Figure 5.17: Evaluation of cavities and cracks in the epoxy resins for cast-
ing experiments in the different sample structures in the test
sample.

into the epoxy resin. After the curing, the temperature is decreased again.During
the cooling, the residual stresses in the stator modules, bearing block and stator
housing compensate somewhat the higher coefficient of thermal expansion of the
epoxy resin in comparison to these of the stator modules, bearing block and stator
housing.

5.4.5 Mechanical assembly allowing adjustable airgaps

To measure the effect of the airgap thickness on the fringing fluxes at thestator
cores, both airgaps of the prototype YASA-machines are adjustable. Therefore,
an adaptor interface is used which connects the shaft with the rotors. On the ro-
tor discs, two types of holes are made. The first type of holes is provided with
(screw) thread. This thread is also used to mount the rotors on the adaptorinter-
faces. Initially, bolts are placed in these holes and are maximally inserted into the
rotors. This results in a distance between the magnets and the stator cores, so that
the attraction forces between both is still limited. Then these bolts are gradually
unscrewed, which results in a decrease of the airgap due to the attraction forces
between the magnets and the stator cores. Finally, when the airgap has the right
thickness, a set of additional bolts is used to secure the position. Therefore, the
adaptor interface is equipped with holes with thread.
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Figure 5.18: Axial-flux PM machine test set-up. From left to right: load
(asynchronous) machine, torque sensor with couplings, axial
flux PM prototype machine.

This mechanical assembly does not only allow a uniform variation of the air-
gap, but also non-uniform airgaps over the circumference are possible. These non-
uniform airgaps are required to study the effect of eccentricity [82].

5.4.6 Search coils for fringing flux

During the construction of the AFPMSM prototype, multiple sensors have been
integrated inside the machine: search coils to measure the induced voltages caused
by the main flux in a module, at both sides of the stator core, and search coils to
measure the fringing flux, and multiple RTD-sensors to measure the temperatures
in different parts of the machine.

The most important for this research is the fringing flux search coil. Figure
5.14 shows this coil mounted on top of the lamination stack of a stator module
core. The search coil consists of 20 turns of 0.2 mm wire diameter and encloses a
surface of 17.3 mm by 7.3 mm.

5.5 Experimental set-up

5.5.1 Overview of the complete setup

To perform measurements, the axial flux PM prototype is placed into a test set-up
of which an overview is given in figure 5.18. In this test set-up, an asynchronous
7.5 kW, 3000 RPM motor is used as a load machine and is powered by a commer-
cial drive. Set-points to this drive for the speed (or torque) are givenby a dSPACE
1104 platform. The feedback of the speed signal is realised by an incremental
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encoder attached to the asynchronous motor. Together with the torque value mea-
sured by the Lorenz DR2112 (nominal torque of 50 Nm, accuracy of 0.1%) torque
sensor, an accurate value of the mechanical power is achieved. Measurement of
the power on the electrical side of the prototype machine is done using a Tektronix
PA4000 power analyser. Interface boards are made to transfer the different sensor
signals into the dSPACE platform.

The axial flux PM machine can be operated using a dSPACE controlled custom-
designed inverter using a Semikron SEMiX101GD12E4s IGBT-module, or can be
connected to a fully-programmable three-phase load. For the measurementsper-
formed in this research, the axial flux PM machine is used as generator connected
to the fully-programmable three-phase load. This load has the advantage ofusing
no pulse-width modulation, which make the measurements less sensitive to EMI.

5.5.2 Measurements of torque and total losses

Figure 5.19 shows the total measured losses in the machine in function of the speed
and torque. The corresponding efficiency is given in figure 5.20. Thesmooth
colours are a result of smoothing. It can be seen that the efficiency is above 94%
in a lot of operation points. Table 5.8 shows the individual loss components of the
machine at rated speed of 2500 RPM and an RMS stator current of 7 A. The total
fringing flux losses in rated for this condition is 1.508 W, which is 3.2 % of the
total iron losses. The bearing losses are not accurate, because of thetorque sensor
limitations (small torque values compared to the measurement range of the torque
sensor). The bearing and windage losses are measured with non-ferromagnetic
rotors in order to exclude iron losses.

Table 5.8: Summary of losses in the YASA prototype machine at rated
speed of 2500 RPM and an RMS stator current of 7 A

Loss Remark
Iron losses 47 W
Copper losses 70 W At operating temperature of 70◦C
Permanent magnet losses 12.8 W
Bearing losses 20 W Depends strongly on axial load
Windage losses 3 W At 2500 RPM
Fringing flux losses from PM 0.03 W%
Fringing flux losses from armature reaction 1.478 W%

5.5.3 Low noise data acquisition of the fringing flux coil signal

The voltage induced in the fringing flux coil remains very limited; from 74,1 mV
peak at rated speed and no phase currents, to 150 mV peak at rated speed and rated
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Figure 5.19: Measured total losses [W] in function of the mechanical speed
nmech and torqueT of the prototype machine.
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Figure 5.20: Measured efficiency of the mechanical speednmech and torque
T of the prototype machine.

phase currents. Therefore some actions are performed to improve the signal-to-
noise ratio.

The axial flux PM machine is used as a generator connected to the fully-
programmable three phase load instead of the custom-designed axial flux PMma-
chine inverter. In contrast to the inverter, the three phase load uses no pulse-width
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modulation (PWM). As a consequence, the absence of a high frequency switch-
ing signal of the PWM has a positive impact on the electromagnetic interference
(EMI), and hence, improves the signal-to-noise ratio.

In order to amplify the low voltage signal of the fringing flux coil to a suf-
ficiently high level,i.e. ± 10 V for the ADCs of the dSPACE 1104 platform, a
noninverting operational amplifier circuit is used. To cancel out EMI in thecon-
nection wires between the fringing flux coil and the amplifier circuit, twisted-pair
cabling is used. Moreover the amplifier circuit is located as close as possibleto the
stator sensor wire opening to reduce the length of the fringing flux coil wires.

5.6 At no-load: fringing flux caused by the permanent
magnets

5.6.1 Waveforms of flux in the tooth search coil

The tooth search coil is not to be confused with the fringing flux coils for measuring
fringing flux. The tooth search coil is a winding around a stator tooth, to measure
the main flux, which is in axial direction. Before studying the fringing flux, we
first validate the main flux in the stator tooth of the 3D FEM model (as described
in section 2.3.6 of chapter 2), by comparing it with measurements. The machine
was at no load and at a speed of 2500 RPM. The measured flux in the tooth search
coil is compared with the simulated flux in 3D FEM. Figures 5.21 and 5.22 show
respectively the measured and simulated flux through the tooth search coil. In the
measurement, the flux is obtained by integrating the voltage in the tooth search
coil. It is seen that the noise level on the measured flux is quite low, and that
the simulated waveform is smooth, indicating a sufficiently fine discretization in
both time and space. Moreover, the correspondence between the measured and
simulated waveforms is good.

5.6.2 Waveforms of emf in the fringing flux search coil

The waveforms in the fringing flux search coil of the prototype machine aremea-
sured and simulated at a constant speed of 2500 RPM, without stator currents. The
airgap widths are constant, at 1.0 mm. The influence of different rotation speeds,
different stator currents, and different airgap sizes is studied in later sections in this
chapter.

Figure 5.23 shows the measured induced voltage (blue) in the fringing flux
search coil. As can be seen in the picture of the search coil in figure 5.14, the
coil has a small surface and a – for construction reasons – rather small number
of turns. Therefore, the signal has a very low voltage, and by consequence the
signal-to-noise ratio in the signal is low.

From the raw signal, a signal with reduced noise is constructed in the following
way. First, the time signal is captured during a complete mechanical revolution.
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Figure 5.21: Measured flux through the tooth search coilφth,meas.
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Figure 5.22: Simulated flux through the tooth search coilφth,sim.

The resulting waveform is transformed into a Fourier series of which figure 5.24
shows the harmonic content. It can be seen that the fundamental frequency, third
and fifth harmonic are dominant i.e. orders 8, 24 and 40. Other harmonics are at
least 5 times smaller than the 40th and at least 40 times smaller than the 8th. It is
not surprising to see these harmonics to be dominant in this no-load experiment,
as also these harmonics are dominant in the spatial spectrum of the permanent
magnets. To make the waveform clear, the time domain signal is reproduced by
considering only those three dominant harmonics. The result is the red waveform
in figure 5.23.
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Figure 5.23: Measuredemf in the fringing flux search coilefr,meas in func-
tion of time t: unfiltered waveform (blue) and waveform con-
sidering only the three most dominant harmonics (red).
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Figure 5.24: Present harmonics in the measured (unfiltered)emf waveform
of the fringing flux search coil.

The “noise free” time signal – which is the same as the red curve in figure 5.23
– of the induced voltage in the search coil is shown in detail in figure 5.25. The flux
through the coil – which is the fringing flux – is found by integrating the measured
noise free signal: see figure 5.26.
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Figure 5.25: Measuredemf in the fringing flux search coilefr,meas without
noise at a speed of 2500 rpm.
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Figure 5.26: Measured flux through the fringing flux search coilφfr,meas.

5.6.3 Origin of the dips in the emf waveform

The waveform in figure 5.25 clearly shows some “dips”. These dips are not mea-
surement noise. The following paragraph explains their origin by making a com-
parison with 3D FEM simulations and field plots.

Figure 5.27 and 5.28 show the field lines at no load for a speed of 2500 RPM,
at the moment that the PM is respectively aligned and unaligned relative to the
stator tooth. It can be seen that in the case of an unaligned PM, more fringing
flux is falling in perpendicularly to the plane of the lamination sheets, especially
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Figure 5.27: Field plot at no-load and 2500 RPM; magnet pole aligned with
stator tooth.

Figure 5.28: Field plot at no-load and 2500 RPM; magnet pole unaligned
with stator tooth.

at the edges. The cause is the shape of the pole in permanent magnets. Each pole
consists of 3 rectangular block magnets – see section 5.4.2 about rotor construction
of the prototype – and does not have the arc of a circle at highest radius. By
consequence, the magnet “protrudes” the plane at outer radiusr0 (radius of the top
of the laminated stack) in the unaligned position in figure 5.28.

This increase of the flux in unaligned position can also be proven numerically
by computing the flux linkage with the search coil. In FEM, a surface integralof
the normal flux density component was taken over a surface with identical position
and dimensions as the search coil of figure 5.14. This is done as a functionof time,
resulting in the simulated flux waveform shown in Figure 5.29. At points a and c,
the PM is unaligned relative to the stator tooth, as is the case in figure 5.28. At
point b, the PM is aligned relative to the stator tooth as is the case in figure 5.27.
It is observed that there is a little drop in flux in the aligned position. By taking
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Figure 5.29: Simulated flux through the fringing flux search coilφfr,sim in
no-load operation mode.
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Figure 5.30: Simulatedemf in the fringing flux search coilefr,sim at no-load
and at a rated speed of 2500 RPM.

the derivative of this simulated flux and multiplying it with the number of turns,
the emf in the search coil is obtained from 3D FEM. The resulting waveform is
shown in figure 5.30. The drops in the simulatedemf are similar to the drops in the
measuredemf, as shown in figure 5.25.
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Figure 5.31: Simulated instantaneous eddy-current losses due to fringing
flux Pcl,fr at no load and 2500 RPM in one half of a motor
tooth.

5.6.4 Fringing flux losses

Figure 5.31 shows the instantaneous eddy-current losses caused by fringing flux
calculated directly by the 3D FEM model of a half motor tooth. These inductance
limited eddy-current losses are separated from the resistance limited eddy-current
losses by use of the second separation technique of section 2.2.3. This loss (30 mW
for the complete machine) has to be compared with the total iron losses in the same
operating condition, as found in section 5.5.2. The fringing flux loss at no-load is
0,75% of the total iron losses.

5.7 At load: fringing flux caused by PM’s and stator cur-
rents

5.7.1 Waveforms of emf in the fringing flux search coil

Figure 5.32 and 5.33 show the waveform of the induced voltage and flux linkage of
the fringing flux search coil at a load current of 5 A. When comparing figure 5.26
with figure 5.33, it is clear that the excitation winding has a larger influence onthe
fringing flux than the permanent magnets: the peak value of theemf (74,1 mV) at
no load is much smaller compared to theemf (150 mV) at a load of 5 A.

Similar to the no-load situation, Figure 5.32 shows dips in theemf waveform.
It is expected that these dips are also caused by the magnets that protrudethe plane
r0 =cst in unaligned position, wherer0 is again the outer radius of the lamination
stack. This is indeed proven by 3D field plots for the considered loading condition:
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Figure 5.32: Measuredemf in the fringing flux search coilefr,meas without
noise at a rated speed of 2500 RPM and a load current of 5 A.
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Figure 5.33: Measured flux through the fringing flux search coilφfr,meas at
a rated speed of 2500 RPM and a load current of 5 A.

figure 5.34 and figure 5.35 show the field lines at full load for a speed of 2500 RPM,
at the moment when the PM is respectively aligned and unaligned relative to the
stator tooth. Therefore, the same explanation for the dips can be given asat no-
load.
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Figure 5.34: Field plot at full load and 2500 RPM; magnet pole aligned with
stator tooth

Figure 5.35: Field plot at full load and 2500 RPM; magnet pole unaligned
with stator tooth

5.7.2 Influence of stator current amplitude on fringing flux

Figure 5.36 shows the measured stator current waveform in function of timeat a
load of 5 A and a speed of 750RPM. It is already observed that the induced voltage
in the fringing flux search coil is higher at load than at no-load. It is interesting to
study the influence of the stator current amplitude. This is shown in figure 5.37. As
expected, more fringing flux is generated for increasing stator current.This effect
is already observed in chapter 4 and can be seen in figure 4.6. The experiment
is done at 1000 RPM. It is observed that at 0 A (no-load) and at 5 A current, the
induced voltages are about 23.4 mV and 38 mV, while they were found to be 74mV
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Figure 5.36: measured stator current waveform at a load of 5 A current and
750 RPM.

e f
r,
m
e
a
s

[m
V

]

Ia[A]
0 1 2 3 4 5 6 7 8 9 10

20

25

30

35

40

45

50

55

60

Figure 5.37: Measuredemf in the fringing flux search coilefr,meas in func-
tion of the armature load currentIa at a speed of 1000 RPM.

and 150 mV resp. for the same currents and at 2500 RPM. For full load, the emf
is about 43 mV. It can be concluded that the induced voltage almost doublesfrom
no-load to full load, and that this statement can be done at both 1000 RPM and
2500 RPM.
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Figure 5.38: Measuredemf in the fringing flux search coilefr,meas in func-
tion of the mechanical speednmech.

5.8 Fringing flux as a function of rotation speed

Figure 5.38 shows the induced voltage in the fringing flux search coil of figure 5.14
in function of the mechanical speed. Because of the low signal-to-noise ratio at
very low speeds, it was not possible to do accurate measurements below 500 RPM.
Several measurements were done between 500 RPM and 2500 RPM, for no-load,
part load (1.5 A stator current) and full load (7 A stator current).

In order to have a more detailed view on the behaviour of the induced voltage,
a new figure (figure 5.39) is made wherein the measured induced voltage offigure
5.38 is divided by the mechanical speed. From this figure, interesting conclusions
can be drawn regarding the behaviour of the fringing flux as a function of speed.

At low frequencies, the flux penetrates through the upper laminations. The
induced currents are almost uniformly distributed over the available surface, and
are too weak to oppose the field.

For higher frequencies, the flux is pushed towards the edges of the laminations.
The fringing flux causes larger eddy currents only in the first few sheets closest to
the excitation winding. The field coming from those currents opposes the fringing
field, reducing the induced voltage in the search coil. Above a sufficiently high
frequency (corresponding to about 1000 RPM in the considered machine), the flux
is almost completely flowing at the edges, causing almost no change any more in
the induced voltage. The figure again shows the more or less double amplitude
of the induced voltage at full load, compared to no-load. In figure 4.5 of chap-
ter 4, it is also observed that for perpendicular flux coming from the excitation
coil, higher frequencies cause higher losses. Higher losses for higher frequencies,
means higher opposing fringing fields.
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Figure 5.39: Measuredemf in the fringing flux search coilefr,meas in func-
tion of the mechanical speed divided by the mechanical speed
nmech.

5.9 Fringing flux as a function of airgap width

When the airgap width increases, the reluctance for the main flux increases.For
this reason, the ratio between the reluctance for the main flux and the reluctance
of the fringing flux decreases. The result is that more fringing flux occurs, as can
be seen in figure 5.40: the induced voltage due to fringing flux is increasingfor
increasing airgap width. Five measurement points are considered. These measure-
ments are very difficult, because they suffer from certain errors like asymmetries
of the machine, also the precise thickness of the air gap is difficult to measure.

The effect of the airgap width can be seen easily from 2D FEM simulations.
These are computations done by the 2D FEM described in chapter 2, whereall
laminations and the coatings in between them are modelled and meshed explicitly.
The 2D geometry is shown in figure 4.4. The 2D FEM results are shown in figure
5.41a and 5.41b, where the magnetic vector potential in the out of plane direction is
plotted for the simplified setup of chapter 4 for a frequency of 50 Hz, an excitation
of 300 Aturns and an airgap of 1 mm and 5 mm respectively. It can be seenthat
more fringing flux is falling in perpendicularly to the plane of the lamination sheets
for a larger air gap.

5.10 Conclusion

In this chapter, the losses of the complete axial flux permanent magnet synchronous
machine were studied. At full load, the conventional iron losses of the prototype
machine are about 40 W. In addition, there are copper losses of about 100 W and
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Figure 5.40: Measuredemf in the fringing flux search coilefr,meas in func-
tion of the airgap widthg for a constant current of 5 A and a
constant speed of 1000 RPM.

(a)

(b)

Figure 5.41: 2D field plot of the magnetic vector potential in the out of plane
direction of the simplified setup described in chapter 4 withan
airgap of (a) 1 mm, and (b) 5 mm.
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a number of smaller losses such as losses in the permanent magnets, bearings and
windage losses. The fringing flux losses increase the iron losses, but are usually
small. The losses increase with increasing stator current, and also with airgap
width. They are more or less quadratic with the rotational speed.

The construction of the prototype is explained in detail: construction of the
modular stator teeth, the rotors, and the assembly of the stator. A lot of effort was
done by colleagues at Ghent University for finding the appropriate epoxy resin and
casting technique, as the properties of the resin are very important: it shouldhave
high strength up to high temperature, a thermal expansion coefficient similar tothe
one of copper and aluminium, a high thermal conductivity, and a low viscosity.
Many tests have been done to investigate cavities, cracks and behaviour at high
temperature. Measurements on the prototype have shown that the chosen resin in
combination with the aluminium housing with inward fins leads to an excellent
thermal and mechanical behaviour of the machine.
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Chapter 6

Concluding Remarks

6.1 Conclusion

First, the working principle of axial flux permanent magnet machines is explained.
After this, a comparison is made of competing topologies. Out of this comparison,
the YASA topology is selected because of its advantages: modular construction,
high power density and high efficiency. The construction of the YASA topology
has been explained.

The second part of this work was dedicated to the behaviour of eddy currents
in laminations and the influence of several electromagnetic parameters. Skin effect
and penetration depth are studied in a stack of laminates. The field models used
in this research, together with their model requirements were discussed: 2DFEM,
2D multislice, 3D FIT and 3D FEM.

The third part studied the magnetic characteristics of the materials and the
losses in these materials: silicon steel (grain oriented and non-oriented), soft mag-
netic composite and ferromagnetic wire. Several homogenization techniqueswere
compared in order to model the laminated materials in finite element models.

The following chapter presented a detailed study of the losses caused by fring-
ing flux coming from the armature reaction on a simplified non-rotating setup, con-
sisting of two tooth coils and a closing yoke. The validated field simulations give a
very good image of the cause and the behaviour of fringing flux losses coming from
the armature reaction. The last part of this chapter discusses three approaches for
reducing these losses. The first method directly restricts the eddy-current losses
by segmenting the lamination surface. The second method deflects the fringing
flux by using Soft Magnetic Composite (SMC). The third method magnetically
short-circuits the fringing flux using ferromagnetic wires. Here the magneticchar-
acterisation from chapter 3 is included in the modelling.

The last chapter presented a study of the losses caused by fringing fluxcoming
from the armature reaction and the permanent magnets of the complete axial flux
machine. The study is done as a function of several parameters such as rotational
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speed and airgap size. In addition, in contrast to several cited papers that consider
no-load only, the influence of the stator current is investigated. In the lastsections
of the chapter, we consider first the no-load situation. Here, the fringingflux losses
are caused only by the rotating permanent magnets. Then, full load is considered.
At full load, the stator currents cause additional fringing fluxes. Finally,the effect
of speed and air gap thickness is explained.

6.2 Recommendation for future research

In the future, further research on fringing fluxes can be done. In thisPhD, the
influence of a number of parameters on fringing flux loss was done: statorcurrent
amplitude, airgap thickness, combination of several techniques to reduce fringing
flux losses. Further research can be focussed on the influence of several parameters
that were not studied in this work: the stack height, the stator slot openings,the
magnetic material grade, the geometry of the coil end windings, ...

Another further research activity will be on the production methodology ofthe
YASA machine. As low cost is very important in commercial motors, it is cru-
cial to find construction techniques suitable for mass production. Severalpractical
problems must be solved: the accurate positioning of the stator modules during
stator assembly, the casting process, the connection of the wires of the several sta-
tor modules,... For example, in the prototype, this connection is done manually by
soldering. In mass production however, an automated solution is required,e.g. via
busbars or specially designed printed circuit boards.

A last topic is the further research on the thermal behaviour of the machine.
A lot of research is done already in the framework of other PhDs, but thefuture
study may focus on very high temperatures, in combination with the mechanical
behaviour. Indeed, a machine with high power density is usually a machine that
can operate at higher temperature than conventional machines (typically 155◦C).
This is only possible if all components (enamelled wire, magnets, resins,...) are
functioning properly at these temperatures. Here, the epoxy resins playa crucial
role. Further testing of the properties of the resins is required, making sure that
strong temperature gradients in the machine do not cause excessive mechanical
stress or cracks in the machine. Also resins should be studied with good mechanical
properties at these high temperatures.
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M. Schatzman, “Approximate conditions replacing thin layers,”IEEE Trans-
actions on Magnetics, vol. 44, no. 6, pp. 1154–1157, 2008.

[42] M. Clemens, “Large systems of equations in a discrete electromagnetism:
formulations and numerical algorithms,”IEE Proceedings - Science, Mea-
surement and Technology, vol. 152, no. 2, pp. 50–72, March 2005.



✐

✐

✐

✐

✐

✐

✐

✐

BIBLIOGRAPHY 131

[43] R. Schuhmann, P. Schmidt, and T. Weiland, “A new whitney-based material
operator for the finite-integration technique on triangular grids,”IEEE Trans-
actions on Magnetics, vol. 38, no. 2, pp. 409–412, Mar 2002.

[44] O. Biro and K. Preis, “Finite element analysis of 3-d eddy currents,” IEEE
Transactions on Magnetics, vol. 26, pp. 418–423, Mar 1990.

[45] G. Bertotti,Hysteresis In Magnetism, 1st ed. Academic Press, 1998.

[46] E. Barbisio, F. Fiorillo, and C. Ragusa, “Predicting loss in magnetic steels
under arbitrary induction waveform and with minor hysteresis loops,”IEEE
Transactions on Magnetics, vol. 40, no. 4, pp. 1810–1819, July 2004.

[47] H. Haas and F. Schmellebeck, “Approximation of nonlinear anisotropic mag-
netization characteristics,”IEEE Transactions on Magnetics, vol. 28, no. 2,
pp. 1255–1258, Mar 1992.

[48] J. Gyselinck, “Twee-dimensionale dynamische eindige-
elementenmodellering van statische en roterende elektromagnetische
energieomzetters,” Ph.D. dissertation, Ghent University, 2000.
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