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Price-Taker Offering Strategy in Electricity
Pay-as-Bid Markets

Nicolò Mazzi, Jalal Kazempour, Member, IEEE, and Pierre Pinson, Senior Member, IEEE

Abstract—The recent increase in the deployment of renewable
energy sources may affect the offering strategy of conventional
producers, mainly in the balancing market. The topics of optimal
offering strategy and self-scheduling of thermal units have been
extensively addressed in the literature. The feasible operating
region of such units can be modeled using a mixed-integer linear
programming approach, and the trading problem as a linear
programming problem. However, the existing models mostly
assume a uniform pricing scheme in all market stages, while
several European balancing markets (e.g., in Germany and Italy)
are settled under a pay-as-bid pricing scheme. The existing
tools for solving the trading problem in pay-as-bid electricity
markets rely on non-linear optimization models, which, combined
with the unit commitment constraints, result in a mixed-integer
non-linear programming problem. In contrast, we provide a
linear formulation for that trading problem. Then, we extend
the proposed approach by formulating a two-stage stochastic
problem for optimal offering in a two-settlement electricity
market with a pay-as-bid pricing scheme at the balancing stage.
The resulting model is mixed-integer and linear. The proposed
model is tested on a realistic case study against a sequential
offering approach, showing the capability of increasing profits in
expectation.

Index Terms—Pay-as-bid, offering strategy, stochastic pro-
gramming, mixed-integer linear program, thermal unit.

NOMENCLATURE

Indices and Sets

i, i′ (I) Indices of day-ahead market price scenarios
j, j′ (J) Indices of balancing market price scenarios
s (S) Index of generation blocks
k (K) Index of time intervals
Π Feasible region of the unit’s offer curves
Ω Feasible region of the unit’s operation

Parameters

λDA
ik Day-ahead market price [e/MWh]
λBA
ijk Balancing market price [e/MWh]
MUP
jj′k Acceptance matrix for up-regulation offers

MDW
jj′k Acceptance matrix for down-regulation offers

E Capacity of the unit [MW]
E Minimum power limit of the unit [MW]
RUP, RDW Ramp-up and down limits [MW/h]
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Es Size of generation block s [MW]
CUP,CDW Start-up and shut-down costs [e]
C0 Cost at the minimum production level [e]
Cs Marginal cost of generation block s [e/MWh]
πDA
i Probability of day-ahead price scenario i
πBA
ij Probability of balancing price scenario j, pro-

vided that day-ahead price scenario i realizes

Variables

qDA
ik Quantity offer at day-ahead market [MWh]
oUP
ijk, o

DW
ijk Up/down regulation incremental offer [MWh]

qUP
ijk, q

DW
ijk Up/down regulation quantity offer [MWh]

qA
ijk Total production quantity [MWh]
cijk Operational cost [e/MWh]
ρUP
ijk, ρ

DW
ijk Up/down regulation profit [e]

yijk, zijk Start-up/shut-down (binary) status of the unit
uijk Commitment (binary) status of the unit

Functions

g(·), h(·) Operational cost functions

I. INTRODUCTION

IN recent years the power sector has experienced a sig-
nificant increase in the deployment of renewable energy

sources, such as wind and solar power. These sources are usu-
ally traded at zero marginal cost and their growing penetration
is leading to a decrease of the prices in the day-ahead market
[1]-[2]. Moreover, they can only be predicted with a limited
accuracy, thus leading to real-time imbalances and increasing
the need for balancing energy. These changes may affect the
strategy of the conventional producers in both day-ahead and
balancing markets.

A. Literature Review

The optimal offering strategy and self-scheduling of con-
ventional thermal units have already been widely studied in
the literature. Ref. [3] addresses the optimal response of a
thermal generator to a given set of electricity market prices
in terms of both energy and reserve. A mixed-integer linear
programming (MILP) problem is developed considering a non-
convex cost function, as well as its start-up costs, ramp rates
and minimum-up and -down constraints. The same authors
in [4] propose a detailed formulation to model start-up and
shut-down characteristics of a thermal generator. Other works,
such as [5] and [6], include risk measures while optimizing
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the self-scheduling problem of thermal units. References [3]-
[6] demonstrate that a detailed modeling of the generator’s
feasibility region and its production cost function may be
essential for deriving its optimal self-scheduling. Indeed, the
inter-temporal constraints (e.g., ramping constraints) and non-
convex costs (e.g., start-up and shut-down costs) may affect
the optimal solution. In this context, the pioneering paper
[7] presents an offering strategy for a price-taker producer
under price uncertainty. It develops a set of rules that aim to
translate the results of a self-scheduling problem into market
offers. Ref. [8] presents an algorithm for offering and self-
scheduling of a unit including risk management. Ref. [9]
presents an offering strategy for a price-taker power producer
that aims to maximize profit expectation while hedging against
possible infeasible schedules. Other works relax the price-taker
assumption and develop tools for strategic offering considering
the impact of power producer’s decisions on market prices.
This can be done through a residual demand model [10] or a
bilevel optimization setup [11]-[12].

By analyzing the optimization models in [3]-[12], we can
identify two different sets of variables and constraints. The
first set defines the feasibility region and the cost function of
the production unit. For instance, references [3]-[6] show how
to successfully model it as a MILP problem. The second set
simulates the trading problem, i.e., how the power producer
participates in the market (e.g., through non-decreasing step-
wise offering curves), while considering the market clearing
mechanism (endogenously or exogenously) and the pricing
scheme (e.g., uniform or pay-as-bid). The trading problem can
be modeled using a linear programming (LP) approach [13],
under price-taker assumptions and uniform pricing scheme.
However, even though European day-ahead electricity markets
are mostly settled under a uniform pricing scheme, several
balancing markets (e.g., in Germany and Italy [14]) are settled
under a pay-as-bid pricing scheme.

The topic of trading under a pay-as-bid scheme and price
uncertainty has not been extensively addressed in the literature.
An analysis on optimal offering under pay-as-bid and uniform
pricing schemes is presented in [15] and [16]. They obtain
profit expectation and variance for both pricing schemes, while
assuming that the market price follows a uniform distribution.
Ref. [17] proposes a methodology that aims to maximize the
profit expectation in a day-ahead pay-as-bid auction for power
system reserve. Offering strategies for a joint energy and spin-
ning reserve market under pay-as-bid pricing are presented in
[18] and [19]. Risk aversion is introduced in [20]. References
[15]-[20] show how to model the trading problem under pay-
as-bid pricing scheme using a non-linear programming (NLP)
approach. However, they do not consider an accurate modeling
of production unit’s operational constraints. Introducing the
feasibility region would result in a mixed-integer non-linear
problem (MINLP), which may have high computational cost
and, generally, do not guarantee the optimality of the solution.
It is worth mentioning that [19] proposes to solve the trading
problem in pay-as-bid markets under price uncertainty with a
two-step approach, obtaining the expected profit as a linear
function of the quantity offer. However, this approach is not
applicable in case of problems with inter-temporal constraints

or with more complex cost functions.

B. Approach and Contributions
Compared to the available literature, this paper provides a

novel approach that allows to cast the optimal price-taker trad-
ing problem in pay-as-bid markets under price uncertainty as
an LP problem. For that purpose, continuous random variables
(i.e., market-clearing prices) are represented as discrete vari-
ables. We test our formulation against the existing continuous
NLP alternative. In a simple setup, these two models bring
similar optimal solutions, while our LP approach drastically
reduces the computational cost. Hence, we demonstrate that
our LP model is a good approximation of the NLP one.
However, the value of our LP formulation, with respect to the
NLP one, arises when including the feasible operating region
of the unit.

Then, we use the proposed LP approach to build a multi-
stage stochastic programming problem with recourse. This
efficient decision-making tool could be used by a price-taker
conventional producer to derive its best day-ahead market
offer curves. In line with current practice in several Euro-
pean electricity markets, we consider a two-settlement market
framework, in which the day-ahead market is cleared based
on a uniform pricing scheme, while a pay-as-bid pricing
scheme is used in the balancing stage. The forecast market
prices in both stages are given but uncertain. This uncertainty
is properly characterized by generating a set of foreseen
scenarios. The resulting model is a stochastic MILP problem,
where non-convexities (i.e., binary variables) arise from the
unit commitment constraints. To the best of our knowledge,
this kind of stochastic MILP optimization model for obtaining
the offering strategy of a price-taker thermal producer in a
two-settlement electricity market with a pay-as-bid pricing
scheme in the balancing stage is not available in the literature.
It is worth mentioning that [12] provides a formulation for
obtaining optimal offering curves in markets settled under a
pay-as-bid pricing scheme for a price-maker producer. How-
ever, market problems with equilibrium constraints may have
high computational cost and rely on strong assumptions on
opponents’ behavior. Hence, when the production unit has a
negligible impact on the market, a price-maker setup may not
be the preferable choice.

C. Paper Organization
The remaining of the paper is organized as follows. Section

II presents the electricity market framework, the modeling
assumptions, and the methodology for generating market price
scenarios. Section III provides an overview of the existing NLP
setup as well as the proposed LP setup for deriving the offering
strategy of a price-taker producer under a pay-as-bid pricing
scheme. Then, Section IV extends the proposed approach and
develops a two-stage model for a price-taker producer to derive
its best offering curves in the day-ahead market, considering
a pay-as-bid pricing scheme in the balancing stage. Section
V presents a verification test to assess the performance of
the proposed LP trading model, as well as an application of
the two-stage model using a realistic test case. Finally, the
conclusions are drawn in Section VI.
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II. MODELING ASSUMPTIONS AND MARKET PRICE
SCENARIOS

We consider a single conventional producer that trades in a
two-settlement electricity market framework. The day-ahead
market is cleared once a day, at noon, simultaneously for
the whole 24 hourly trading periods of the following day.
Generators are remunerated under a uniform pricing scheme
in the day-ahead market. Then, a balancing market is cleared
separately per each hourly interval, one hour prior to real-time
operation. The provision of balancing energy is remunerated
under a pay-as-bid pricing scheme. The intra-day trading floor
is neglected for the sake of simplicity.

The power producer is assumed to be price-taker in both
day-ahead and balancing markets. Hence, the market prices
within the offering strategy problem of that producer are
exogenous, but still uncertain. We model those uncertainties
using a set of scenarios. Uncertainty characterization is a
critical input to stochastic optimization. The quality of the
solution of a stochastic optimization model is indeed strongly
influenced by the quality of the scenarios provided as input.
Given that the purpose of this paper is to analyze and test
an optimization model, we exploit a fundamental model for
generating market prices, instead of using real market data.
This fundamental model generates a set of electricity market
price forecasts, which is required as an input to our proposed
offering strategy.

In the fundamental market model we assume, for the sake
of simplicity, that the only stochastic generation is wind power
generation. A dataset of wind power forecasts for a wind
farm located in Denmark is used. The wind power forecasts
are re-scaled and assumed representative of the aggregated
wind power production in the market area. At the day-ahead
stage, we assume that the demand curve is linear, known,
and different per each hourly interval. Conversely, the supply
curve of conventional producers is quadratic and uncertain.
To model this uncertainty, we consider the coefficient of
the second-degree term (i.e., γk, where k is the index of
time interval) as a random variable with known marginal
distribution. The methodology for fitting such distribution is
beyond the scope of the paper. The coefficient of the first-
degree term is also considered known to simplify the process
of scenario generation. Then, we assume that the stochastic
generation is offered in the day-ahead market at its mean
forecast and at zero price.

At the balancing stage, the supply curve is assumed known
but different from the day-ahead one. Indeed, the participants
in the balancing market (under pay-as-bid pricing scheme) do
not offer their marginal cost, since they have to internalize
the expected revenues into their market offers [15]. Therefore,
we fix a negative price floor λ0 and impose γBA

k = η γk
(η > 1), where γBA

k is referred to the supply curve in the
balancing market. Several factors may cause the real-time
power imbalance in the system, e.g., errors in load and wind
forecasts. For the sake of simplicity, we consider the wind
stochasticity as the only source of uncertainty at the balancing
stage. This simplifies the scenario generation process.

A. Market Model

The demand curve of the day-ahead market at hourly
interval k is

pDA,d
k = αk + δ eDA,d

k , (1)

where eDA,d
k is the amount of energy demand at price pDA,d

k .
The parameters αk and δ control the shape of the demand
curve. For the same interval k, the supply curve is

pDA,s
k =

0, if ∆DA,s
k ≤ 0

β ∆DA,s
k + γk

(
∆DA,s
k

)2

, otherwise
(2)

where ∆DA,s
k = eDA,s

k − WDA
k . Note that pDA,s

k is the price
for scheduling the quantity eDA,s

k , and WDA
k is the amount of

wind power production offered in the day-ahead market. The
parameters β and γk control the shape of the supply curve.
The value of WDA

k is computed as

WDA
k = E [wk]W, (3)

where wk is the normalized value (wk ∈ [0, 1]) of wind power
production, and W is the total installed wind capacity. The
uncertain parameter γk follows a Normal distribution, i.e.,

γk ∼ N
(
µγ , σ

2
γ

)
, (4)

where µγ and σ2
γ are the mean value and variance of γk,

respectively. In the balancing market, the supply curve at time
interval k is

pBA,s
k =

λ
0, if ∆BA,s

k ≤ 0

βBA
k ∆BA,s

k + γBA
k

(
∆BA,s
k

)2

+ λ0, otherwise
(5)

where ∆BA,s
k = eBA,s

k − e0
k. The variables pBA,s

k and eBA,s
k

are the price and quantity of the balancing market supply
curve, respectively. The term eBA,s

k is obtained as the difference
between eDA

k and the imbalance generated by the stochastic
generation, i.e.,

eBA,s
k = eDA

k −
(
wkW −WDA

k

)
. (6)

Parameters βBA
k and e0

k are evaluated by imposing that pBA,s
k =

λDA
k when eBA,s

k = eDA
k . This ensures that the day-ahead and

the balancing market prices coincide when no balancing power
is required.

B. Scenario Generation

We generate scenarios following a methodology presented
in [21] and [22]. These papers propose a method for generating
trajectories of a stochastic process when predictive distribu-
tions are available. The idea is to convert series of forecast
errors into a multivariate Gaussian random variable and use
a unique covariance matrix to describe its interdependence
structure. This covariance matrix can be modeled through an
exponential covariance function [22], where an exponential
parameter (ν > 1) controls the correlation between different
lead times.

First, a set of scenarios {γik : i ∈ I, k ∈ K} is generated
while fixing the exponential parameter ν to 5. Then, a set of
market price trajectories {λDA

ik : i ∈ I, k ∈ K} is generated,
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where the market-clearing price λDA
ik is obtained from the

intersection between the demand and the supply curves at
interval k under scenario i.

For the balancing stage, we generate a set of wind power
production trajectories {wjk : j ∈ J, k ∈ K} by fixing the
exponential parameter ν to 7 as suggested in [22]. The prob-
abilistic forecasts of wind power production are available in
form of 19 quantiles (from 0.05 to 0.95). To fit the cumulative
distribution function we follow the approach of [23]. Then, a
set of market price scenarios {λBA

ijk : i ∈ I, j ∈ J, k ∈ K} is
generated by clearing the balancing market model.

III. TRADING PROBLEM UNDER A PAY-AS-BID PRICING
SCHEME

When trading in an electricity market, power producers can
usually submit price-quantity offers. The quantity identifies the
amount of energy they are willing to produce, and the price
is the minimum price for which they are willing to produce
that energy. Then, the offer is accepted only when the market
price is higher than or equal to the offered one. Since the given
producer is assumed to be price-taker, the market price in each
future time interval is necessarily treated as an exogenous but
uncertain parameter [4]-[5]. In this paper, the market price
λ is considered as a random variable following the density
function fλ : R 7→ R+. Given a price-quantity offer of a
producer, denoted as (p, q), the acceptance probability of the
offer is

P [λ ≥ p] =

∫ ∞
p

fλ(l) dl, (7)

where l is an auxiliary integration variable. Under a pay-as-bid
pricing scheme, the expected remuneration price p∗, providing
that the producer’s offer is being accepted, is computed as

E [p∗|λ ≥ p] = p. (8)

The expected return ρ of the producer, following [18], is

E [ρ] = P [λ ≥ p] E [p∗|λ ≥ p] q. (9)

By replacing (7) and (8) in (9) we obtain

E [ρ] = q p

∫ ∞
p

fλ(l) dl. (10)

Notice that the expected return in (10) is non-linear. The offers
in generation-side of real-world electricity market are gener-
ally non-decreasing step-wise functions, which can be modeled
through a set of B price-quantity offers {(pb, qb), b = 1, .., B}.
The formulation in (10) is extended to the generic model (11)
below including the multiple offer blocks, i.e.,

Max
qb,pb

∑
b

E [ρb]− E [cb] (11a)

s.t. E [ρb] = pb qb

∫ pb+1

pb

fλ(l) dl, ∀b (11b)

E [cb] = h(qb)

∫ pb+1

pb

fλ(l) dl, ∀b (11c)

qb ≥ qb−1, ∀b (11d)
pb ≥ pb−1, ∀b (11e)

E ≤ qb ≤ E, ∀b (11f)

where pB+1 =∞. The parameter cb is the operational cost for
producing the quantity qb, whose value is computed through
the function h(·). Constraints (11b) and (11c) compute the
expected return ρb and the operational cost of the offering
block (pb, qb), respectively. Constraints (11d) and (11e) impose
the non-decreasing condition of the offering curve. Finally,
(11f) imposes the minimum and maximum production levels
of the unit.

One of the main contributions of this work is to derive
an alternative linear formulation to (11), which is non-linear.
First, we discretize the continuous random variables. The
uncertain market price can be represented using a set of
possible scenarios {λi, i = 1, .., N}, where each price scenario
λi is associated with a probability πi such that

∑
i πi = 1. We

consider each price scenario λi as the potential offer price of
the price-taker producer, and obtain the optimal quantity offer
qi corresponding to each offer price λi. A collection of all
price-quantity offers, i.e., (λi, qi), builds the offer curve of the
producer, providing that the following conditions are enforced
to ensure that the offer curve is non-decreasing [13]:

qi ≥ qi′ if λi ≥ λi′ , ∀i,∀i′, (12a)
qi = qi′ if λi = λi′ , ∀i,∀i′, (12b)

where i and i′ are indices of the market price scenarios.
Note that this offer curve is now scenario-independent, i.e.,
it is adapted to all scenarios, though it is built based on
scenario-dependent price-quantity offers. Under a uniform
pricing scheme, the expected market return ρ can be computed
as

E[ρ] =
∑
i

πiλiqi, (13)

However, the market return formulation (13) needs to be
changed under the pay-as-bid scheme, since each block offer
is remunerated at its corresponding offer price. Therefore, we
introduce variable oi, which represents the additional quantity
offered at price λi. Figure 1 illustrates an example offer curve
with three offer blocks. In this curve, λ1, λ2 and λ3 are not
only the three price scenarios, but also they are price offers
of the price-taker producer. For example, the producer offers
its q1 MWh at price λ1 (as the first offer block), and then the
additional o2 MWh (i.e., q2 - q1) at price λ2 (as the second
offer block). The total quantity qi corresponding to price λi
can be computed as

qi =
∑
i′

Mii′ oi′ , (14)

where the acceptance matrix M is defined as

Mii′ =

{
1, if λi ≥ λi′
0, otherwise.

(15)

Matrix Mii′ indicates whether the offer block (λi′ , oi′) is
accepted in the market, providing that the market price re-
alization is λi. The total expected return is computed as the
sum of the expected returns for each offer block (λi′ , oi′),
denoted as ρi′ , i.e.,

E [ρ] =
∑
i′

E [ρi′ ] . (16)
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Fig. 1. An example offer curve with multiple blocks, which shows how
market price scenarios are used as price offers, building an offer curve.

In line with (9), we compute the expectation of ρi′ as

E [ρi′ ] = P [λ ≥ λi′ ]E [p∗|λ ≥ λi′ ] oi′ , (17)

where the acceptance probability of each block offer is

P [λ ≥ λi′ ] =
∑
i

Mii′πi, (18)

and the expected remuneration price is

E [p∗|λ ≥ λi′ ] = λi′ . (19)

Substituting (18) and (19) in (17) renders

E [ρi′ ] = oi′λi′
∑
i

Mii′πi. (20)

The total expected return can thus be computed as

E [ρ] =
∑
i′

oi′λi′
∑
i

Mii′πi. (21)

Note that (21) is linear. The expected profit E [ρ] can also
be seen as

∑
i E [ρi], where ρi is the return when scenario i

realizes. Therefore, we rewrite (21) as

E [ρ] =
∑
i

πiρi =
∑
i

πi
∑
i′

Mii′λi′oi′ . (22)

Given the linear formulation in (22), we rewrite the generic
nonlinear model (11) in a linear manner, i.e.,

Max
Θ

∑
i

πi

[
ρi − ci

]
(23a)

s.t. qi =
∑
i′

Mii′ oi′ , ∀i (23b)

ρi =
∑
i′

Mii′ λi′ oi′ , ∀i (23c)

ci = h(qi), ∀i (23d)

E ≤ qi ≤ E, ∀i (23e)

where Θ = {qi, oi, ci, ρi,∀i}. Constraints (23d) compute the
production cost through the function h(·). It is worth mention-
ing that the non-decreasing conditions are not necessary in (23)
since they are inherently included in the way we compute the
accepted quantity qi in (23b). The performance of both models,
i.e., (11) and (23), is analyzed and compared using a simple
case study in Section V-A.

IV. OFFERING STRATEGY AS A TWO-STAGE STOCHASTIC
OPTIMIZATION MODEL

Given the linear offering strategy setup under a pay-as-
bid pricing scheme proposed in Section III, we derive the
optimal offering curves of a conventional producer in the two-
settlement electricity market described in Section II. In this
model, we also consider the unit commitment constraints of
that producer. At noon, the power producer has to submit its
offering curves for the day-ahead market of the following day,
based on the price scenarios for both day-ahead and balancing
markets. In this two-stage setup, the producer maximizes
its expected profit from both markets simultaneously, in the
sense that it endogenously determines its future balancing
actions while solving its offering problem in the day-ahead.
Accordingly, we model the day-ahead production level in time
interval k, i.e., qDA

k , as first-stage (here-and-now) decision,
and the up and down production adjustments in the real-
time stage, i.e., qUP

ik and qDW
ik , as second-stage (wait-and-see)

variables. Following the approach described in Section III
for building the producer’s offer curve, we now relax the
day-ahead production variable to be scenario-dependent (i.e.,
qDA
k → qDA

ik ). Similarly, the real-time production adjustments
qUP
ik and qDW

ik are made scenario-dependent (i.e., qUP
ik → qUP

ijk,
qDW
ik → qDW

ijk ) in order to build the producer’s offer curve in the
balancing stage. In addition, we add a detailed representation
of the feasible operating region of the thermal unit. The
optimization model that the power producer solves to decide
the day-ahead market offers reads as follows

Max
Ξ

∑
ijk

πDA
i πBA

ij

[
λDA
ik q

DA
ik + ρUP

ijk − ρDW
ijk − cijk

]
(24a)

s.t. qA
ijk = qDA

ik + qUP
ijk − qDW

ijk , ∀i,∀j,∀k (24b)

qUP
ijk =

∑
j′

MUP
ijj′k o

UP
ij′k, ∀i,∀j,∀k (24c)

qDW
ijk =

∑
j′

MDW
ijj′k o

DW
ij′k, ∀i,∀j,∀k (24d)

ρUP
ijk =

∑
j′

λBA
ij′k M

UP
ijj′k o

UP
ij′k, ∀i,∀j,∀k (24e)

ρDW
ijk =

∑
j′

λBA
ij′k M

DW
ijj′k o

DW
ij′k, ∀i,∀j,∀k (24f)

qDA
ik , o

UP
ijk, o

DW
ijk ∈ Π, ∀i,∀j,∀k (24g)

qA
ijk, uijk, yijk, zijk ∈ Ω,∀i,∀j,∀k (24h)

cijk = g(qA
ijk, uijk, yijk, zijk), ∀i,∀j,∀k (24i)

qDA
ik , o

UP
ijk, o

DW
ijk ≥ 0, ∀i,∀j,∀k (24j)

uijk, yijk, zijk ∈ {0, 1}, ∀i, ∀j,∀k (24k)

where

Ξ = {qDA
ik , o

UP
ijk, o

DW
ijk , q

UP
ijk, q

DW
ijk , ρ

UP
ijk, ρ

DW
ijk , q

A
ijk,

uijk, yijk, zijk, xijks, cijk : ∀i,∀j,∀j′,∀s,∀k}.
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The acceptance matrices MUP
jj′k and MDW

jj′k are defined as

MUP
ijj′k =

{
1, if λBA

ijk ≥ λBA
ij′k and λBA

ijk > λDA
ik

0, otherwise,
(25a)

MDW
ijj′k =

{
1, if λBA

ijk ≤ λBA
ij′k and λBA

ijk < λDA
ik

0, otherwise.
(25b)

The objective function (24a) maximizes the expected profit
of the producer from selling energy in both day-ahead and
balancing markets. Constraints (24b) yield the total power
production qA

ijk when both day-ahead price scenario i and
balancing price scenario j realize at time interval k. For the
same scenario realization, constraints (24c) compute the level
of up-regulation energy qUP

ijk scheduled. Similarly, constraints
(24d) obtain the level of down-regulation energy qDW

ijk . Con-
straints (24e) and (24f) give the expected revenues from selling
regulation energy in the balancing market under a pay-as-bid
pricing scheme. Constraints (24g) include a set of constraints
associated with the offer curves, which is represented later in
Section IV-A. Constraints (24h) force the power producer to
operate in its feasible operating region, which is provided in
Section IV-B. Constraints (24i) compute the operational costs
for given schedule, whose formulation is provided in Section
IV-C.

Model (24) can be also used to compute the expected profit
from a sequential offering approach. First, we solve the model
considering the day-ahead scenarios only. To do that, we force
the balancing variables to be null (i.e., qUP

ijk = 0 and qDW
ijk =

0 ∀i, j, k). The optimal solutions q̃DA*
ik represent the optimal

market offers when considering the day-ahead market only.
Then, we solve again the model while imposing qDA

ik = q̃DA*
ik .

The optimal solutions q̃UP*
ijk and q̃DW*

ijk are the balancing market
offers that maximize the expected profit, provided that the day-
ahead offers are q̃DA*

ik .

A. Linear Expression of Π

The offer curve constraints (24g), denoted as Π, are

qDA
ik ≤ E, ∀i,∀k (26a)

qDA
ik ≤ qDA

i′k if λDA
ik ≤ λDA

i′k , ∀i,∀i′,∀k (26b)

qDA
ik = qDA

i′k if λDA
ik = λDA

i′k , ∀i,∀i′,∀k (26c)

oUP
ij′k = 0 if λBA

ij′k ≤ λDA
ik , ∀i,∀j′,∀k (26d)

oDW
ij′k = 0 if λBA

ij′k ≥ λDA
ik , ∀i,∀j′,∀k (26e)

Constraints (26a) restrict the day-ahead production quantity
of the producer to its capacity. Constraints (26b) and (26c)
enforce the non-decreasing and non-anticipativity conditions
of the producer’s offer curve in the day-ahead, respectively.
These two conditions are required for offer curves to be
submitted to markets settled under a uniform pricing scheme.
Constraints (26d) and (26e) impose that no balancing energy
is contracted when it is not required by the system.

B. Linear Expression of Ω

Constraints (24h) represent the feasible operating region of
the producer and can be replaced by

qA
ijk ≤ uijkE,∀i,∀j,∀k (27a)

qA
ijk ≥ uijkE,∀i,∀j,∀k (27b)

qA
ijk − qA

ij(k−1) ≤ R
UP, ∀i,∀j,∀k (27c)

qA
ij(k−1) − q

A
ijk ≤ RDW, ∀i,∀j,∀k (27d)

uijk − uij(k−1) ≤ yijk, ∀i,∀j,∀k (27e)
uij(k−1) − uijk ≤ zijk, ∀i,∀j,∀k (27f)

Constraints (27a) and (27b) impose that the total power pro-
duction lies between its minimum and maximum production
levels. Constraints (27c) and (27d) enforce ramp-up and ramp-
down limits [3]. Constraints (27e) and (27f) determine the
start-up status yijk and the shut-down status zijk. Notice that
constraints (27c)-(27f) require the initial production level and
commitment status

(
qA
0 , u0

)
.

C. Linear Expression of Operational Cost

Constraints (24i) define the operational cost of the thermal
unit and can be replaced by

cijk = C0uijk +
∑
s

Csxijks+

+ CUPyijk + CDWzijk, ∀i,∀j,∀k
(28a)

0 ≤ xijks ≤ Es, ∀i,∀j,∀k,∀s (28b)

Euijk +
∑
s

xijks = qA
ijk, ∀i,∀j,∀k. (28c)

Constraints (28a) compute the operational cost of the unit
including its start-up and shut-down costs [4]. Constraints
(28b) and (28c) are auxiliary constraints representing a linear
formulation of the quadratic cost function through a piecewise
approximation [3], where xijks is the amount of energy
produced by the generation block s.

V. CASE STUDY

A. LP Trading Model Verification

In this section we test and compare the proposed LP model
(23) and the existing NLP model (11) using a simple test case,
considering a single time period. The market price λ follows
a Normal distribution, i.e.

λ ∼ N (50, 5) . (29)

The production unit has a capacity E of 60 MW and a
minimum production level E of 0 MW. The quadratic cost
function h (·) is approximated with a two-step piecewise linear
cost function, i.e.,

h(q) = C1x1 + C2x2, (30a)
q = x1 + x2, (30b)
0 ≤ x1 ≤ E1, (30c)
0 ≤ x2 ≤ E2, (30d)
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where E1 and E2 are 30 MW, while C1 = e35/MWh and C2

= e47/MWh.
The input scenarios for the LP model (23) are selected

following the scenario reduction technique in [24]. We gen-
erate 1000 scenarios from (29) and then keep the 20 most
representative ones. The LP model is implemented using
GUROBI [25] in PYTHON, and it is solved in around 0.001s.
The optimal solution obtained is given in Table I, where the
expected profit E[ρ] is re-computed considering the continuous
distribution of λ in (29). The NLP continuous model (11) is
solved using COBYLA [26] algorithm in PYTHON in around
0.115s. Its optimal solution is also reported in Table I. The
two models show similar optimal solutions, while the gap
in the expected profit due to the discretization procedure is
lower than 0.07%. The LP model is solved around 115 times
faster than the NLP one. It is worth mentioning that the
computational time of the NLP model increases to around 3.2s
when the integrals in (11) are numerically computed, instead
of using the cumulative distribution function of (29). However,
the main advantage of the LP formulation is to be more
suitable to be merged with the unit commitment constraints of
the thermal unit. Therefore, a comparison between a MILP and
MINLP offering model would be more appropriate to test the
advantages of our LP formulation. Nevertheless, the solution
of a MINLP problem is out of the scope of this paper.

This test case shows that the LP formulation, when pro-
vided with an accurate sampling of input scenarios, brings an
optimal solution close to the continuous NLP alternative. In
the following section, we extend the LP model by including
the unit commitment constraints of the thermal unit in a multi-
time period and multi-stage stochastic optimization problem.

B. Day-ahead Offering Model Test Case

We test the two-stage stochastic optimization model (24)
on a realistic case study. We generate market price scenarios
according to the methodology presented in Section II. The
input parameters are shown in Tables II and III. First, we
generate 300 scenarios for λDA

ik and we select the 20 most
representative ones. Then, for each scenario λDA

ik , we generate
300 scenarios of λBA

ijk and keep the 20 most representative
ones. This procedure results in a scenario tree with 400
branches. We repeat this sampling procedure for different
values of W , i.e. 10, 20 and 30 GW. Figure 2 shows the
20 scenarios of λDA

ik (in blue) and the 20 scenarios of λBA
ijk

(in green) for a given realization of λDA
k (in red), when W

= 20 GW. We consider a thermal unit with a capacity of
E = 120 MW and a minimum production level of E = 40

TABLE I
THE PRODUCER’S OPTIMAL MARKET OFFERS OBTAINED FROM THE LP

AND NLP MODELS

qb λb E[ρ]
(MWh) (e/MWh) (e)

NLP b=1 30 46.6 313.4
b=2 60 51.7

LP b=1 30 46.4 313.2
b=2 60 51.8

TABLE II
PARAMETERS OF THE MARKET PRICE GENERATION MODEL

δ β µγ σ2
γ λ0

(e/MWh2) (e/MWh2) (e/MWh3) (e/MWh3) (e/MWh)

-6.67×10−3 1×10−4 2×10−8 3×10−9 -20

TABLE III
VALUES OF PARAMETER αk

k 1 2 3 4 5 6 7 8
αk (e/MWh) 322 312 315 317 340 349 353 369

k 9 10 11 12 13 14 15 16
αk (e/MWh) 394 424 444 445 440 429 437 458

k 17 18 19 20 21 22 23 24
αk (e/MWh) 446 423 408 383 373 346 331 332

Fig. 2. Day-ahead and balancing market price scenarios.

MW. Ramping limits are 40 MW for both RUP and RDW. The
quadratic cost function is approximated by a piecewise linear
function of four generation blocks of equal size, i.e. Es = 20
MW ∀s. Table IV shows the marginal cost Cs of each block,
the cost C0, the start-up cost CUP and the shut-down cost
CDW.

The optimization model is implemented using GUROBI
in PYTHON environment. We compare the two-stage co-
optimization model with a sequential offering approach. In-
deed, by modeling balancing market variables as recourse
decisions at the day-ahead stage, we co-optimize the offering
strategy for the two markets.

As an example, Table V reports the optimal value of the day-
ahead production variable qDA

ik in time interval k = 7 obtained
from both the co-optimized and sequential approaches. Note
that λDA

i7 , i = 1, ..., 20, is the set of the day-ahead price
scenarios, and each member of this set is viewed as a potential
price offer. For the co-optimized approach, the results given
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TABLE IV
PARAMETERS OF THE COST FUNCTION

C0 Cs1 Cs2 Cs3 Cs4 CUP CDW

(e) (e/MWh) (e/MWh) (e/MWh) (e/MWh) (e) (e)

2860 23.5 31.5 45.6 72.3 800 100

in Table V can be summarized as given in (31) below:

qDA
7 =


0, if λDA

7 < 39.7

40, if 39.7 ≤ λDA
7 < 42.0

80, if 42.0 ≤ λDA
7 < 51.7

120, if λDA
7 ≥ 51.7,

(31)

where qDA
7 is expressed in MWh and λDA

7 in e/MWh. Ac-
cording to (31), a scenario-independent offer curve in day-
ahead can be built using three price-quantity offer points,
i.e., (e39.7/MWh, 40 MW), (e42.0/MWh, 80 MW) and
(e51.7/MWh, 120 MW). A graphic representation of this
curve is provided in Figure 3a, blue curve. Similarly, the day-
ahead offer curve at time interval k = 7 for the sequential
approach can be obtained (red curve). Note that in both
approaches, the producer is not willing to produce if λDA

7 ≤
39.7 while desires to operate at its full capacity if λDA

7 ≥
51.7. However, when 42.0 ≤ λDA

7 ≤ 48.2, the co-optimized
approach suggests to produce 80 MW, while the sequential
approach does 40 MW only. In addition, Figure 3b shows
the offering curve of the producer in the balancing market
at time interval k = 7, provided that the realization of day-
ahead price λDA

7 is e44.1/MWh. Based on the co-optimized
approach, the producer is scheduled to produce 80 MW and
then to reduce its production level in the balancing stage
to 40 MW if λBA

7 ≤ 35.6, or to increase it to 120 MW
in case λBA

7 ≥ 55.7. Unlike the co-optimized approach, the
sequential one schedules the producer at 40 MW in the day-
ahead market, and then provides the up-regulation service only
in the balancing stage. For instance, its production increases
by 40 MW ifλBA

7 ≥ 56.0 while that increase is even more (80
MW) in case λBA

7 ≥ 58.7. The expected profits obtained from
these two approaches under different conditions are shown
in Table VI. In a case in which W = 10 GW, the expected
profit loss in the sequential approach is around 2%. The power
producer gains a lower expected profit in the day-ahead market
while earning more in the balancing stage, such that its total
expected profit (including both stages) increases as well. This
behavior is more observable in the cases with a higher value
of installed wind capacity. For instance, the loss of profit is
22% and 91% in cases in which W is equal to 20 and 30 GW,
respectively. The last case (W=30 GW) gives more insight: in
the sequential approach, the producer does not participate in
the day-ahead market, and earns a low profit in the balancing
stage only. In contrast, the producer gains a significant money
in the co-optimized approach, though it loses money in the
day-ahead stage. In fact, it takes such a loosing position in
day-ahead market to be able to produce profitable regulation
services in the balancing stage.

TABLE V
OPTIMAL VALUES OF qDA

i7 FOR THE SEQUENTIAL AND CO-OPTIMIZED
APPROACHES

i
λDA
i7 qDA

i7 i
λDA
i7 qDA

i7
(e/MWh) (MWh) (e/MWh) (MWh)

co-opt seq co-opt seq

1 44.1 80 40 11 36.3 0 0
2 33.0 0 0 12 44.4 80 40
3 45.1 80 40 13 44.6 80 40
4 45.6 80 40 14 43.4 80 40
5 39.7 40 40 15 52.7 120 120
6 37.1 0 0 16 44.7 80 40
7 48.2 80 80 17 42.0 80 40
8 44.9 80 40 18 41.1 40 40
9 51.7 120 120 19 44.3 80 40
10 43.0 80 40 20 46.9 80 40

(a) (b)

Fig. 3. The producer’s optimal offer curve in (a) day-ahead market, (b)
balancing market at time interval k = 7 (W = 20 GW).

VI. CONCLUSIONS AND FURTHER WORKS

This paper presents a novel method for deriving optimal
offering curves of a price-taker conventional producer in an
electricity market under a pay-as-bid pricing scheme. The
importance of this study is that several European balancing
markets in the balancing stage are settled under a pay-as-bid
pricing scheme. The main contribution of this paper is that
we develop an LP approach. In contrast, the existing tools
in the literature are mainly non-linear and less suitable to be
merged to the MILP feasibility region of a thermal unit. Then,
we extend our proposed approach to a two-stage market setup
including day-ahead and balancing stages. In this setup, being
consistent with the structure of several European electricity
markets, the day-ahead market is cleared based on a uniform

TABLE VI
EXPECTED PROFIT OF THE PRODUCER

W Model Profit in DA Profit in BA Total
(GW) (103e) (103e) (103e)

10 co-optimized 16.82 3.25 20.09
sequential 18.08 1.59 19.68

20 co-optimized 4.45 8.27 12.27
sequential 7.68 2.27 9.95

30 co-optimized -8.45 18.44 9.99
sequential 0.00 0.87 0.87
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pricing scheme, while a pay-as-bid scheme is used in the
balancing stage. To make our setup more realistic, we include
the unit commitment constraints of the thermal units to our
proposed setup, resulting in a MILP model.

We first test our proposed single-stage LP model against the
existing non-linear models. Our LP formulation successes in
well approximating the non-linear one. Then, we compare our
proposed two-stage MILP model against a sequential offering
model, which does not consider the balancing stage while of-
fering in the day-ahead market. Our proposed approach shows
a better performance in terms of expected profit achieved.

In future research it is of interest to test the proposed model
using real market price data. Besides, intra-day markets could
be included in the offering model. These additional trading
floors may bring more business opportunities to the producer.
Moreover, the proposed approach could be extended to derive
the optimal offering strategy of different technologies, such as
energy storage systems. For such facilities, the participation
in the balancing market may be significantly important for
exploiting their flexibility.
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