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Abstract—This paper proposes a distributed optimization 
based dynamic tariff (DDT) method for congestion management 
in distribution networks with high penetration of electric vehicles 
(EVs) and heat pumps (HPs). The DDT method employs a de-
composition based optimization method to have aggregators ex-
plicitly participate in congestion management, which gives more 
certainty and transparency compared to the normal DT method. 
With the DDT method, aggregators reveal their final aggregated 
plan and respect the plan during operation. By establishing an 
equivalent overall optimization, it is proven that the DDT method 
is able to minimize the overall energy consumption cost and line 
loss cost, which is different from previous decomposition-based 
methods such as multiagent system methods. In addition, a re-
conditioning method and an integral controller are introduced to 
improve convergence of the distributed optimization where chal-
lenges arise due to multiple congestion points, multiple types of 
flexible demands and network constraints. The case studies 
demonstrate the efficacy of the DDT method for congestion man-
agement in distribution networks.  
 

Index Terms-- Congestion management, distributed optimiza-
tion, distribution system operator (DSO), dynamic tariff, electric 
vehicle (EV), heat pump (HP). 

I.  NOMENCLATURE 

Sets 

BN  set of aggregators 

TN  set of planning periods 

LN  set of lines 

dN  set of demand bus 

Parameters 

, , _i t tA  coefficient matrix, describe the relations between 

the power consumption and temperature change 
of the household ( C  /kW) 

,i tB  coefficient matrix of the price sensitivity 

(DKK/kWh/kWh) 
D  power transfer distribution factor (PTDF) 

, ,i t iE E  customer to load bus mapping matrix  
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tF  line loading limit of active power (kW) 
,min

,
a
i tK  lower temperature limit ( C ) 

,max
,
a
i tK  upper temperature limit ( C ) 

R  resistance of each lines (ohm) 
V  voltage lower limit (p.u.) 

0V  voltage at node 0 (p.u.) 

LLY  the matrix obtained by removing the first row and 

column of the nodal admittance matrix  (S) 
Z  the inverse matrix of LLY (ohm) 

tc  forecast baseline energy price (DKK/kWh) 

,i td  discharging power of EVs due to driving (kW) 
min
ie  lower limit of the state of charge (SOC) level 

(kWh) 
max
ie  upper limit of the SOC level (kWh) 

,0ie  initial SOC level (kWh) 
min
,i tp , max

,i tp  lower/upper charging power limit of EVs (kW) 
minˆ ip , maxˆ ip  lower/upper power limit of HPs (kW) 

t

cp  active conventional power at each load point (kW) 

t

cq  reactive conventional power at each load point 

(kVar) 

,i tu  initial temperature ( C ) 

  coefficient, step size 

1 2 3, ,    coefficient for reconditioning and PI control 

Vector Variables 

,,i i tp p  charging power of EVs of one aggregator (kW) 

,ˆ ˆ,i i tp p  power of HPs of one aggregator (kW) 

tr  regulation price, i.e., DDT rates (DKK/kWh) 

ts  total apparent power at each load point (kVA) 

t  Lagrange multiplier (LM) of line limit constraint  

t  LM of load equation 

t  LM of voltage constraint 

Other Symbols 

*n  cardinality of *N , i.e. * *n N  

1
*  L-1 norm of vector * 

*T  transpose of matrix * 

*   element-wise conjugate of complex vector/matrix 
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II.  INTRODUCTION 

LONG with the rapid development of renewable energy 
resources (RESs), more and more distributed generators 

(DG) and flexible demands such as electric vehicles (EVs) 
and heat pumps (HPs) will be extensively deployed in future 
power systems for better balance of production and consump-
tion. Potential congestion problems might occur in distribution 
networks due to simultaneous charging or discharging of flex-
ible demands. In order to postpone or avoid the reinforcement 
of distribution networks, distribution system operators (DSOs) 
can use smart coordination methods to avoid or mitigate con-
gestion. In recent years, a number of such coordination meth-
ods has been proposed such as direct control methods [1] and 
indirect control methods, i.e., market-based methods, includ-
ing the dynamic tariff (DT) [2]–[5], distribution locational 
marginal price (DLMP) [6], [7], line shadow price (not nodal 
prices) method [8], subsidy-based methods [9]–[12], multia-
gent system methods [13], [14], and probabilistic congestion 
management methods [15]–[18].  

Without considering probabilistic methods, which are able 
to enhance the underlying methods, the market based methods 
can be categorized into three fundamental types according to 
their business models: 1) DT methods [2]–[5], which are 
based on distribution network tariffs and function together 
with the existing energy market; 2) Distribution market meth-
ods, including DLMP [6], [7], which are new energy markets, 
and function parallel to or supplement the existing transmis-
sion-level energy market; 3) Subsidy-based methods [9]–[12], 
which give incentives to customers to change their 
planned/fixed schedules. Depending on the specific models, 
the multi-agent system methods may be one of the three types. 

The motivation of proposing the distributed optimization 
based dynamic tariff (DDT) method is to provide more cer-
tainty and transparency than the normal DT method. In the 
DDT method, the aggregators are included in the optimization 
process, and they will reveal their final aggregated energy 
plans to the DSO and will keep the plans during the planning 
stage and operating stage. Thus, the DSO is more certain 
about the congestion management results, and the aggregators 
can manage the congestion cost more actively, implying more 
transparency of the DDT method. In the case study, a brief 
result of the uncertainty study of the normal DT method will 
be shown, while a more profound study can be seen in [18]. 
Another advantage of the DDT method is that the DSO does 
not need to know the cost functions of the aggregators. There-
fore, it can protect the privacy of the aggregators, which is 
very important in a competitive market. As a contrast, the 
normal DT method needs to forecast the cost functions of the 
aggregators, as well as the constraints of the aggregators, 
which are sources of uncertainties as pointed out in [18]. 

The DDT method is implemented through the dual decom-
position method in [19], [20]. The dual decomposition method 
has been successfully applied for solving many large scale 
constrained optimization problems, especially when there are 
only a few constraints involving all decision variables while 
other constraints and the objective function are separable with 

respect to decision variables. The convergence and small op-
timality tolerance (how close to the optimal solution) are 
guaranteed if the step size is sufficiently small [21]. In the 
DDT method, the decision variables related to each aggregator 
are separable, and only the network constraints binding all 
decision variables. Therefore, the dual decomposition method 
is well suitable for the DDT method. 

The most relevant work in the literature is the multi-agent 
system method [13], [14]. It is also based on the dual decom-
position method, but the business models (cost allocation) and 
objectives are quite different from the DDT method. In the 
multiagent methods, the DSO and aggregators are agents, who 
optimize the energy planning separately; however, the objec-
tive is to minimize the distance to an initial schedule, which is 
actually an infeasible schedule when considering the network 
constraints. Unlike the DDT method, the multi-agent system 
methods are not able to ensure that the total energy consump-
tion cost is minimized, as it is not in its objectives. In the DDT 
method, although the individual aggregators minimize their 
own costs separately, they are in line with the overall energy 
cost minimization as they are equivalent to the overall optimi-
zation (proved in Section IV). 

There are other distributed control methods for demand co-
ordination and/or congestion management in the literature. 
References [22], [23] have introduced distributed methods 
for coordinated EV charging; however, they are not based on 
the dual decomposition. A modified Benders decomposition 
method is employed in [24] for congestion management on 
transmission networks. However, this method is not suitable 
for the DDT method, because it requires the overall objective 
function. The same reason explains why the nonlinear Dan-
zig-Wolfe decomposition method for security constrained 
economic dispatch (SCED) [25] is not suitable for the DDT 
method either. In addition, the abovementioned methods are 
not able to provide a price signal that can be easily under-
stood by the aggregators as in the dual decomposition meth-
od, where the dual variables are also known as shadow prices. 

The main contributions of this paper are summarized as 
follows: 1) Propose the DDT concept for congestion manage-
ment in distribution networks; 2) Propose algorithms to calcu-
late DDT rates considering line loading limits, voltage limits 
and line loss reduction; 3) Prove that the DDT method is able 
to minimize the overall energy cost (and line loss cost) re-
specting the network constraints. 

The rest of the paper is organized as follows. The DDT 
concept and mathematical formulation are presented in Sec-
tion III. The equivalence to the centralized optimization and 
discussion are presented in Section IV. The method to im-
prove the convergence is described in Section V. In Section 
VI, case studies are presented and discussed, followed by con-
clusions.  

III.  DISTRIBUTED-OPTIMIZATION BASED DYNAMIC TARIFF 

In this section, the market mechanism of the DDT method 
for congestion management of distribution networks is pre-
sented. Afterwards, the mathematical formulation of the DDT 

A
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concept is described.  

A.  Congestion Management through the DDT Concept 

The essence of the DDT concept is still the same as the DT 
concept [4] from the economic point of view, i.e., it is a net-
work tariff which is location and time varying, and can influ-
ence the behavior of flexible demands according to the 
network conditions. Same as DT, DDT does not contain ener-
gy price. Therefore, the aggregators who represent the owners 
of flexible demands need to buy electricity by participating in 
an electricity market, such as the day-ahead market in Nordic 
(Nord pool) or the day-ahead market of the California ISO in 
the USA. DDT is published before the closure of the day-
ahead market. It means the aggregators are able to optimize 
the energy purchasing portfolio (bids submitted to the market) 
considering the cost due to DDT. This is how the DDT can 
influence the behavior of flexible demands. It is assumed in 
this paper that aggregators have contracts with the owners of 
flexible demands, and can directly or indirectly control flexi-
ble demands. It is also assumed that aggregators as business 
units are economically rational and pursue the maximum prof-
its by minimizing the energy consumption cost and network 
utilization cost. It will be shown in the next two sections that 
this network utilization cost is incurred by DDT, and can in-
clude both congestion cost and network-loss cost. DDT is 
determined by a DSO, who is responsible for the secure op-
eration and maintenance of distribution networks. 

The difference between DDT and DT is significant, espe-
cially in the implementation part. In the DT method, the tariff 
is determined by the DSO through a centralized optimization, 
namely a DCOPF, where the DSO needs to forecast the avail-
ability as well as the energy requirements of flexible demands, 
and then to formulate a cost minimization objective function 
and relevant network constraints. If the forecast has very high 
accuracy, the equivalence between the DSO optimization and 
aggregator optimization without network constraints can be 
established [4]. In the aggregator optimization, the network 
constraint is reflected in the DT, which is why the DT method 
can be effective in congestion management. However, in reali-
ty, the forecast cannot be perfect. To solve this issue, [18] 
proposed an uncertainty management algorithm for the DT 
method when forecast errors exist. In the present paper, the 
proposed DDT method can solve this issue more reliably. In 
the DDT method, the tariff is not determined by the DSO sole-
ly through a centralized optimization. Instead, it is determined 
by iterative interactions between the DSO and aggregators. 
The detailed procedure of employing the DDT method for 
congestion management is illustrated in Fig. 1. In the begin-
ning, the aggregators need to obtain the forecasted energy 
prices and the DSO needs to forecast the network status, in-
cluding the conventional (inflexible) demands. The DSO initi-
ates the iterative process by sending out tentative DDTs. Then, 
the aggregators will separately make their own optimal pur-
chasing plans by minimizing the energy cost and network cost. 
Then, the aggregators will send back the tentative demand 
responses (DRs) to the DSO. With the new information, the 

DSO will modify the DDTs and the iterative process will con-
tinue till the network constraints are satisfied and the final 
DDTs are determined.  

Throughout the whole process shown in Fig. 1, the DSO 
doesn’t know the energy cost function of the aggregators. This 
is a significant difference from the normal DT method, where 
centralized-optimization is employed and the cost function is 
known to the DSO. This feature also makes the DDT method 
slightly different from the normal optimization decomposition 
methods [20], [26], where the overall optimization problem is 
known. In the DDT method, the overall optimization problem 
is not known to the DSO, neither the aggregators. Each aggre-
gator optimizes its own planning problem, which is smaller 
and easier to be solved because of no coupling network con-
straints. This is where the term ‘distributed-optimization’ in 
the DDT concept comes from. 

 

 
Fig. 1. Illustration of the DDT method for congestion management 

 
Another difference between the DDT and DT methods is 

that the former requires aggregators keep the energy consump-
tion level within the capacity that is revealed in the last itera-
tion DR. This is why the DDT method can be more reliable 
than the DT method in congestion management. Further com-
parison of the two methods will be discussed in section IV. 

B.  Mathematical Formulation of DDT Method 

    1)  Formulation at the aggregator side: 
In the normal DT method [4], the optimizations at the ag-

gregator side are not part of the calculation of DTs, but only 
for validation of the effect of the DT method for congestion 
management. However, in the DDT method, the optimizations 
at the aggregator side are part of the determination of the 
DTTs. The aggregators are purely economic units who do not 
consider any of the network constraints. They make energy 
schedules based on the requirements of flexible demands and 
prices, including the forecast energy prices, and fixed cost 
(such as grid tariffs and tax), and DDTs from the DSO. In 
order to facilitate the study, residential EVs and HPs are cho-
sen to be the flexible demands. EVs are assumed to have very 
good battery storage systems; therefore the energy losses due 
to leaking and charging/discharging process can be neglected. 
HPs are assumed to have relatively poor thermal storage sys-
tems and the heat dissipates continuously due to the natural 
heat transfer processes (from high temperature objects to low 
temperature objects of the household structure and ambience). 
Therefore, the combination of EVs and HPs can represent 
many types of flexible demands in reality, e.g., refrigerators 
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and air conditioners (similar to HPs), and dish washer (shifta-
ble loads, similar to EVs). 

An aggregator can use a quadratic function to represent the 
energy consumption cost which is shown in (1). The quadratic 
term in (1) is due to the price sensitivity coefficient matrix 

,i tB . The method to determine ,i tB can be found in [4]. The 

reason of introducing the price sensitivity part in the cost 
function is also explained in [4]. Although one aggregator is 
small enough to be a price-taker in the electricity market, the 
incentives for an aggregator to make an optimal consumption 
pattern may be the same for many other aggregators. For in-
stance, if the forecast energy price is particularly low for one 
hour, then every aggregator will tend to consume energy at 
that hour, which will make the aggregators as a group no 
longer the pure price-takers. Price sensitivity can capture this 
coaction effect of the energy planning. The network cost in (1) 
is represented by the term with the regulation price tr , i.e., the 

DDTs. The optimal planning problem for aggregator i is for-
mulated as (1)-(5). 

 
, ,ˆ, , , , ,

, , , ,

1
min   ( ( )

2

1
ˆ ˆ ˆ                     ( ) )

2

i t i t

T

T T T
p p i t i t i t t i t i t

t N

T T T
i t i t i t t i t i t

p B p c E r p

p B p c E r p



  

 

 1

1

 (1) 

subject to, 
 min max

, _ , _ 0
_

( ) ,i i t i t i i t
t t

e p d e e t N


      , (2) 

 min max
, , ,    i t i t i t Tp p p t N    , (3) 

 ,min ,max
, , , _ , _ , ,

_

ˆ   ,a a
i t i t t i t i t i t T

t t

K A p u K t N


     , (4) 

 min max
, , ,ˆ ˆ ˆ     i t i t i t Tp p p t N   . (5) 

Constraints (2) - (3) are the limits of EVs. Constraint (4) 
represents the thermal limits of households and (5) gives the 
input power limits of HPs. Constraint (4) is derived from the 
thermal process analysis of the household and HP as shown in 
[4]. 

After solving the optimal problem, the aggregator will have 

a tentative optimal plan * *
, ,ˆ( , )i t i tp p . Then (6) can be used to 

formulate the aggregated DR, which will be sent to the DSO. 

 , , ,ˆ( ),a
i t i i t i t tp E p p t N      (6) 

    2)  Formulation at the DSO side: 
At the DSO side, there is no optimization model involved, 

which is quite different to the normal DT method. After re-
ceiving the DR results, ,

a
i tp , from the aggregators, the DSO 

will firstly determine the total apparent power load, ts , for 

each bus using (9) and (10). Then, it will use a dc load flow 
method to determine the power flow of each feeder and the 
voltage level of each bus by (7) and (8), respectively. The 
method to estimate an approximate voltage level for each bus 
(the left side of (8)) is proposed by [27]. The inequality of (7) 
and (8) is to compare the power flow and voltage level with 
the network limits, respectively.  

 Re( ) , ,  ( )t t T tD s F t N     (7) 

 
2

00

1
1 Re( ) , ,  ( )t T t

V
Zs t N

VV
     (8) 

 ,Re( ) , ,  ( )
B

c a
t t i t T t

i N

s p p t N 


     (9) 

 Im( ) ,c
t t Ts q t N    (10) 

The Matrix Z is the inverse matrix of the partial nodal ad-
mittance matrix LLY , which is a submatrix of the full admit-

tance matrix ( 00Y represents the slack bus), 

00 0

0

L

L LL

Y Y
Y

Y Y

 
  
 

. 

Vectors t and t in (7) and (8) can be considered as mar-

ginal prices of the network cost with respect to power flow 
limits and voltage limits, respectively. The marginal prices are 
positive if the corresponding network constraint has an effect 
on the DR of the aggregators, i.e., when the constraint is bind-
ing; otherwise, it will be zero. Even though the DSO does not 
need to model an optimization problem, it is interested in 
checking the network limits by establishing and evaluating the 
network constraints (7) and (8). 

Vectors t and t play an important role in determining 

proper DDT rates. They are determined iteratively. Initially, 

they are zero, i.e., (1) 0t  , (1) 0t   and (1) 0tr  . Then after 

receiving DR results ( )
,
a k
i tp  from the aggregators ( k  refers to 

the k-th iteration, and ( )
,
a k
i tp is the optimal solution based on k-

th DDT, i.e., ( )k
tr ), ( )k

ts can be determined. Then, t , t and 

tr can be updated by, 

 ( 1) ( ) ( )( Re( ) ),k k k
t t t t TD s F t N         , (11) 

 ( 1) ( ) ( )
2

00

1
 ( 1 Re( ) ),k k k

t t t T

V
Z s t N

VV
            (12) 

 ( 1) ( 1) ( 1)
2

0

Re( )T
k T k k

t t t

Z
r D

V
      . (13) 

In (11) and (12),  represents a proper step size, and the 
term after   is the residual of constraints  (7) and (8), respec-
tively. The justification of (11)-(13) will be discussed in Sec-
tion IV. There is an implicit requirement for the marginal 
prices t and t , i.e., they must be nonnegative; therefore, 

they are modified by, 

 ( )t t    , (14) 

 ( )t t   , (15) 

i.e., if they are negative, they will be replaced with zero. 
When the iteration converges, the residuals in (11) and (12) 

will be nonpositive, which means constraints (7) and (8) are 

satisfied. There are ( 1) ( )k k
t t     , ( 1) ( )k k

t t     and  

( 1) ( )k k
t tr r    , where t and t are modified values using 

(14) and (15), and  is a small tolerance. The final DDT rates 
are the same as the last iteration DDT rates (Fig. 1). 



 5

IV.  EQUIVALENCE TO CENTRALIZED-OPTIMIZATION BASED 

DYNAMIC TARIFF AND DISCUSSION 

A.  Equivalence to Centralized-optimization Based Dynamic 
Tariff 

In order to study the nature of the distributed optimization 
employed in the DDT method, an overall optimization prob-
lem is established in this section, where the distributed opti-
mizations at the aggregator side are put together. The details 
of the cost function and constraints are kept unknown and 
represented by general symbols,  if and ˆ( , )p p

i i i
 , respec-

tively. 
The optimization models at the aggregator side can be ab-

stracted as: Bi N  , 

 ˆ( , ) ,ˆ ˆmin  ( , ) ( )
i i i

T

T
p p i i i t i t i i

t N

f p p r E p p


   .  (16) 

For brevity, vectors ,i tp ( 1 2, ,..., nt t t t ) are stacked one on 

top of another to form one vector, written as ip ; same for 

ˆ ip .The network cost , ˆ( )T
t i t i ir E p p in (16) is listed separately, 

because this part is supposed to be known to the DSO, notic-

ing that , , ˆ( )a
i t i t i ip E p p  . Then, an overall optimization can 

be formed as (excluding the network cost), 

 ˆ( , ) ˆmin   ( , )
i i i

B

p p i i i
i N

f p p

  , (17) 

s.t. (7)-(10) and, 

 , , ,ˆ( ), , , ( )a
i t i t i i B T i tp E p p i N t N        . (18) 

It can be seen that the overall optimization problem is to 
minimize the total energy consumption cost with respect to the 
network constraints. The dual function of the overall optimi-
zation can be written as, 

 

ˆ( , )

2
0

, , , ,
, ,

ˆ( , , , ) inf ( , )

( Re( ) / ) Re( )

ˆ( ) ( )

i i i
B

T

B T

i i i
p p

i N

T T T
t t t t

t N

T a T
t i t i t i t i t i i

i N t N i t

g f p p

D Z V s

p E p p

   

  

  






 

 

  

  





  

 . (19) 

In order to be meaningful, g  should not be   ; therefore, 

there is 2
0Re( ) / 0T T

t t tD Z V      and , 0t i t   . This 

means, 

 2
, 0Re( ) /T T

i t t tD Z V      (20) 

 The dual function can be simplified as, 

 
ˆ( , )

, ,
,

ˆ( ) inf ( , )

ˆ( )

i i i
B

B T

i i i
p p

i N

T
i t i t i i

i N t N

g f p p

E p p








 

 





 
 . (21) 

From (13) and (20), it can be seen that, at each iteration, 

,t i tr  . This means (21) is equivalent to (16), noticing that 

(21) is separable with respect to i . From here, one can see 
that at each iteration, the distributed optimization represented 
by (16) is in fact an evaluation of the dual function for a given 

tr . When the iteration process converges, the value of the dual 

problem (maximize the dual function g ) can’t be improved; 

therefore, an optimal solution of the dual problem is found. 
Due to the introduction of the price sensitivity part in the cost 
function of the aggregators, if is strictly convex; therefore, the 

dual gap is zero, which means the primary problem, i.e., the 
overall optimization, is also solved. Hence, the DDT method 
is able to find an optimal energy plan which minimizes the 
overall energy consumption cost with network constraints 
satisfied. 

From (19), it can be seen that ( )Re( )k
t tD s F  and 

( ) 2
0 01 Re( ) / /k

tZ s V V V    are subgradients of g with respect 

to t and t , respectively. They are used in (11) and (12) for 

updating t and t . 

B.  Comparison with the Normal DT Method 

In section IV.A, it is proven that the distributed optimiza-
tion is equivalent to the overall optimization (when the itera-
tion converges), which is a centralized optimization. 
Therefore, if the cost functions if happen to be the same as 

those in the normal DT method, which also employs a central-
ized optimization, the congestion management results will be 
the same. But due to different business models for the DDT 
method and normal DT method, cost functions are not the 
same. In the DT method, cost functions are results of the DSO 
forecast, while in the DDT method, the cost functions remain 
unknown to the DSO. 

In [5], line loss reduction is included in the DT method. 
Assume that the line loss cost function is (Re( ))

T

t t
t N

h s

 . The 

cost function can be estimated with a linear method [28], a 
piece-wise linear method [29] or second order polynomials, 

such as 
2

0

(Re( )) Re( ) Re( )T Tt
t t t

c
h s s D RD s

V
 , where R is a 

diagonal matrix whose main elements are the line resistance. 
Rewriting the dual function (19) or using KKT conditions, 

there is (22), which means the DDT updating formula (13) can 
be modified to include the gradient of the line loss cost func-
tion and the line loss reduction is incorporated with the DDT 
method. 

 2
0Re( ) / ,T T

t t t t TD Z V h t N         (22) 

In [5], feeder reconfiguration is included in the DT method. 
However, it can’t be incorporated with the DDT method. The 
optimal feeder reconfiguration needs to be determined through 
an optimization problem; however, the primal problem (cost 
function) in the DDT method is not known and can’t be 
solved. 

C.  Comparison with the dual decomposition Method 

One can see that the DDT method has adopted the idea 
from the dual decomposition method [20], [26]. However, 
they are not exactly the same. In the dual decomposition prob-
lem, the primary problem (the overall optimization) is known, 
but in the DDT method, it is not. For this reason, many algo-
rithms of the dual decomposition method involving the ma-
nipulation of the cost function can’t be employed here. 
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V.  RECONDITIONING AND ADDING INTEGRAL CONTROLLER 

FOR CONVERGENCE IMPROVEMENT 

Although the convergence of the dual decomposition 
method is assured provided that the step size is sufficiently 
small [21], the speed of the convergence is quite slow in some 
cases. From (11)-(13), it can be seen that both t and t have 

contributions to the DDT rates. However, they have different 

weights: TD and 2
0Re( ) /TZ V respectively. Because 

2
0Re( ) /T TD Z V , t  has much less importance in the DDT 

rates calculation. This is not true. In reality, the voltage con-
straints should have same importance as the line flow con-
straints in congestion management. According to [30], a 
scaling matrix K  can be used to adjust the weights of t and 

t , and the negative gradient flow can be abstracted as (the 

step size is included) in Fig. 2, where x


 

  
 

 . 

 
Fig. 2. Negative gradient flow with step size α (P controller) 

  
In this paper, a scaling factor is used instead of the scaling 

matrix to have simplicity. Accordingly, (13) can be modified 
as (23) with an additional scaling factor 1 . Without 1 , 

when t converges, t may be far away from convergence, 

which slows down the overall convergence speed. 

 ( 1) ( 1) ( 1)
1 2

0

Re( )T
k T k k

t t t

Z
r D

V
       . (23) 

In addition, a diminishing integral controller (I controller) 
is added in parallel to the step size factor (P controller) for 
updating t and t in order to speed up the convergence. Ac-

cordingly, (11) and (12) can be modified as, 

 

( 1) ( ) ( )

( )2

1

( Re( ) )

( Re( ) ),

k k k
t t t t

k
j

t t T
j

D s F

D s F t N
k

  






   

  
 , (24) 

 

( 1) ( ) ( ) 2
0 0

( ) 23
0 0

1

 ( 1 Re( ) / / )

( 1 Re( ) / / ),

k k k
t t t

k
j

t T
j

Z s V V V

Z s V V V t N
k

  






     

    
 , (25) 

where   is the step size (P controller), and 2 / k and 

3 / k are the gains of the I controller, which are diminishing 

as k  grows. The negative gradient flow can be updated as in 
Fig. 3. 

1/s

-df/dx

K

α

xẋ

+

β/s
 

Fig. 3. Negative gradient flow with PI controller 

VI.   CASE STUDIES 

A.  Case study parameters 

The single line diagram of the four-feeder distribution net-
work of the Roy Billinton Test System (RBTS) [31] is shown 
in Fig. 4. Line segments of the feeder one are labeled in Fig. 
4, among which L2, L4, L6, L8, L9, L11, and L12 refer to the 
transformers connecting the corresponding load points (LP1 to 
LP7). The study is focused on this feeder because it has the 
most diversity among all the feeders: 5 residential load points 
with different peak conventional demands and two commer-
cial load points. The detailed data of these load points are 
listed in Table I. The peak conventional demands of residen-
tial customers are assumed to occur at 18:00 when people ar-
rive home and start cooking. Assume that the EVs and HPs 
have unit power factor. The DSO has improved the power 
factor of the conventional consumption by reactive power 
compensations, and the remaining reactive power consump-
tion is 10% of the conventional active power consumption. 
The line parameters are shown in Table II. 

The key parameters of the simulation are listed in Table III. 
The lower voltage limit is set to be 0.948 p.u., in order to have 
a small margin (0.006~0.008 p.u.) compared to the assumed 
physical limit 0.94 p.u. The EV availability shown in  Fig. 5 is 
from the driving pattern study in [32]. The household area is a 
random number between 100 and 200 (m2). 

33 kV

Grid

11 kV
SP1

LP2

LP3

LP4 LP5

LP6LP7

LP12

LP14

LP15

LP17
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LP19 LP20

LP21 LP22
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LP24 LP25

LP32

LP33

LP34 LP35

LP36
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L3

L4

L5L6

L7
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L10

L11 L12  
Fig. 4. Single line diagram of the distribution network 
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Fig. 5. EV availability 

 
TABLE I 

LOAD POINT DATA 
 

load 
points 

customer 
type 

peak conv. 
act. power 
per point 

(kW) 

peak conv. 
react. power 

per point 
(kVar) 

number 
of cus-
tomers 

per point 
LP1-LP4 residential 886.9 88.69 200 
LP5 residential 813.7 81.37 200 
LP6,LP7 commercial 671.4 67.14 10 
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TABLE II 
LINE PARAMETERS 

 
Line r (ohm) x (ohm) x/r ratio 
1 0.1210 0.0370 0.3058 
2 0.3000 3.0000 10.0000 
3 0.4233 0.0943 0.2228 
4 0.3000 3.0000 10.0000 
5 0.3722 0.0829 0.2227 
6 0.3000 3.0000 10.0000 
7 0.4403 0.0981 0.2228 
8 0.3000 3.0000 10.0000 
9 0.3000 3.0000 10.0000 
10 0.3091 0.0689 0.2229 
11 0.3000 3.0000 10.0000 
12 0.3000 3.0000 10.0000 

 
TABLE III 

KEY PARAMETERS OF THE SIMULATION MODEL ([32], [33]) 
 

parameter value 
EV battery size 25 kWh 
Peak charging power 11 kW (3 phase) 
Energy consumption per km 150 Wh/km 
Minimum SOC 20% 
Maximum SOC 85% 
Average driving distance 40 km 
Coefficient of performance (COP) of HP 2.3 
Min Temp. of the House 20  
Max Temp. of the House 24  

Voltage rating = 0V  11 kV 
Lower voltage limit 0.948 p.u. 
Transformer rating 1~3 MVA 
L2 limit (kW) 1100 
L3 limit (kW) 7000 
L4 limit (kW) 2700 
Price sensitivity (DKK/KWH/ KWH) 0.01 

1 2 3, ,    10, 10, 12 

B.  Case study results 

The simulation was carried out using the GAMS optimiza-
tion software [34] for the distributed optimization part at the 
aggregator side, and a Matlab script for the iteration control, 
i.e., the DDT calculation and convergence check at the DSO 
side.  
    1)  Congestion Management Results: 

Firstly, the distributed optimization was performed with in-
itial zero DDT. The line loading results are shown in Fig. 6, 
where there is congestion at hour 17, 18, 19 and 24. Then the 
iteration starts. When the iteration converges, the final DDT 
can be determined. The line loadings of L2, L3 and L4 after 
using the DDT method are shown in Fig. 7, and they are all 
lower than the limits. As the voltage constraints are also in-
cluded in the DDT calculation, the voltage profile of the criti-
cal bus, LP4, is above the lower voltage limit, which is shown 
in Fig. 8. It can be seen that the error between the approximat-
ed voltage and accurate one (by the load flow method) is less 
than 0.5%. 

The base energy prices and final energy prices with the 
DDT for the customers at LP1-5 are shown in Fig. 9. Because 
there is congestion at hour 17-19 due to conventional peaks 
and the HP consumption, the DDT rates have to be very high 
at hour 19, 18 and 17 (rates: 19>18>17) such that the energy 

price at hour 16 will become attractive enough to the HP con-
sumption. Also, because the voltage at LP4 (critical bus) is 
more sensitive to loads at the bottom of the feeder than the 
top, DDT rates have relations: LP4>LP5>LP3>LP2. DDT 
rates at LP1 are results from both line loading limit of L2 and 
voltage limits of LP4; therefore, they are relatively high. 

 

 
Fig. 6. Line loading results with the DDT=0 

 

 
Fig. 7. Line loading results after using the DDT method 

 

 
Fig. 8. Voltage profile of LP4 
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Fig. 9. Forecast system prices (base price) and final prices (including DDT) 

 
    2)  Convergence Observation: 

The key variables, including the line flow and voltage, the 
corresponding marginal prices t and t , and the DDT rates 

are observed in the iteration process. The results are shown in 
Fig. 10. It can be seen that the congestion at hour 24 is solved 
very quickly, as the cyan curves (hour 24) are settled very 
quickly (less than 20 iterations).  

 
Fig. 10 Iteration observation of the key variables 

 
However, the congestion at hour 17-19 is solved relatively 

slow. It takes about 200 iterations for the blue, magenta, yel-
low and purple (hour 16-19) curves, especially in the second, 
third and fourth sub graphs, to settle down. Two reasons are 
accountable for this. One is that the congestion at these hours 

is actually caused by HPs, and HPs have poor heat storage 
efficiency compared to the battery storage of EVs. The other 
one is that the conventional peaks occur at those hours, and 
the congestion occurs at three consecutive hours and all the 
HP loads should be shifted to hour 16 in order to solve con-
gestion at hour 17-19. This is particularly challenging for a 
distributed optimization method. Without reconditioning of 
the constraints, e.g., let 1 0   , there is no sign of conver-

gence of variables t  and voltage after 300 iterations. In prac-

tice, the iteration process including the communication 
between the DSO and the aggregators should be automated, 
and the communication time for each iteration should be kept 
within 1 or 2 seconds. 
    3)  Comparison with DT Method: 

When using the DT method instead of the DDT for conges-
tion management, uncertainty will occur if a forecast error 
exists. For instance, assume that the DSO forecast 6 kWh for 
the average EV demand; however, the real EV demands (the 
aggregators collected from their customers) are different un-
der different scenarios shown in Table IV. The congestion 
management by the DT method may fail as shown in Table IV. 
However, the DDT method can always succeed, implying that 
the DDT method has more certainty about the congestion 
management results. 

 
TABLE IV 

COMPARISON OF DT AND DDT 
 

Sce-
nario 

Relative Error: 
(Real Demand  
- Forecast) Results by DT 

Results 
by DDT 

1 30% Fail (over loading 9.9%) Success 
2 20% Fail (over loading 6.8%) Success 
3 10% Fail (over loading 3.4%) Success 
4 -10% Success Success 

 

VII.  CONCLUSIONS 

This paper proposes the DDT method for congestion man-
agement in distribution networks with high penetration of EVs 
and HPs. The DDT method employs a decomposition-based 
optimization method to have the aggregators participate in the 
congestion management explicitly, which gives more certainty 
and transparency compared to the normal DT method. Simula-
tion results show that employing the DT method instead of the 
DDT method for congestion management may lead to failure 
if there is a forecast error, and the overloading level depends 
on how big the error is. The reconditioning method and the PI 
controller can be used to improve the convergence especially 
when the optimization structure is complicate due to multiple 
congestion points and multiple types of flexible demands and 
network constraints. The case studies have demonstrated and 
validated the efficacy of the DDT method for congestion man-
agement. In the future work, the ACOPF, which is more accu-
rate than the DCOPF, will be employed to determine the DDT. 
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