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Interfaces between a fibre and its matrix 

 

H Lilholt  and  B F Sørensen 

Section of Composites and Materials Mechanics, Department of Wind Energy, 

Technical University of Denmark, Risø Campus, Roskilde, Denmark 

E-mail: hali@dtu.dk 

 

Abstract. The interface between a fibre and its matrix represents an important element in the 

characterization and exploitation of composite materials. Both theoretical models and analyses 

of experimental data have been presented in the literature since modern composite were 

developed and many experiments have been performed. A large volume of results for a wide 

range of composite systems exists, but rather little comparison and potential consistency have 

been reached for fibres and/or for matrices. Recently a materials mechanics approach has been 

presented to describe the interface by three parameters, the interfacial energy [J/m2], the 

interfacial frictional shear stress [MPa] and the mismatch strain [-] between fibre and matrix. 

The model has been used for the different modes of fibre pull-out and fibre fragmentation. In 

this paper it is demonstrated that the governing equations for the experimental parameters 

(applied load, debond length and relative fibre/matrix displacement) are rather similar for these 

test modes. A simplified analysis allows the direct determination of the three interface 

parameters from two plots for the experimental data. The complete analysis is demonstrated for 

steel fibres in polyester matrix. The analysis of existing experimental literature data is 

demonstrated for steel fibres in epoxy matrix and for tungsten wires in copper matrix. These 

latter incomplete analyses show that some results can be obtained even if all three experimental 

parameters are not recorded. 

 

1.  Introduction 

In fibrous composite materials the fibres and matrix interact to produce the resulting properties of the 

composites. This interaction takes several forms. The fibres and matrix separately contribute with their 

“own” properties (often in a fraction-weighted way), and these properties of the constituents are both 

the stiffness, the stress and the strain (elongation). The fibres and the matrix also interact with each 

other through the interface between them and contribute additional behavior and properties. Normally 

composite materials are composed of (one type of) fibres of cylindrical geometry with one long 

dimension and two small transverse dimensions, which normally form a roughly equiaxed cross 

section, that is often represented by a circular cross section.  The representative model for the 

composite is thus a straight circular fibre in a block of matrix.  The interface parameters are the 
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interfacial energy Giic [J/m
2
], which is assumed to represent the chemical nature and bonding of the 

fibre surface to the matrix, the frictional interfacial shear stress τs [MPa], which is assumed to 

represent the topography and frictional sliding of the fibre relative to the matrix, and the mismatch 

strain Δe
T
 [-], which is caused by the thermo-elastic difference between fibre and matrix.  

     The first analysis of the interface was suggested by Kelly and Tyson [1], who for the system of 

metal wires (tungsten) in a metal matrix (copper) introduced and used the concept of a constant 

maximum interfacial shear stress, representing the sliding of the interface or the yielding of the near-

by matrix. This concept was in the following years used in several (simple) models and related 

experiments,  (see e.g. conference reports  [2] [3] ), and applied to many other combinations of fibres 

(e.g. glass, carbon, aramid) and matrices (e.g. polyester, epoxy, and other polymers). The one 

experimental method is typically the pull-out of a single fibre from a block of matrix, where the load 

on the fibre and the displacement of the fibre relative to the matrix are recorded. A plot of fibre load 

versus displacement typically shows a steeply rising initial part to a maximum load, followed by a 

load drop and a slowly decreasing load towards the final pulling out of the fibre from the matrix block. 

The maximum shear stress at the interface is typically calculated as the maximum fibre load divided 

by the interfacial area (equal to fibre circumference times embedded fibre length).  The other 

experimental method is the single fibre fragmentation test, where a (mini)composite with one (brittle) 

fibre is loaded in tension along the fibre direction; the very low fibre volume fraction will cause 

multiple fracture of the fibre into a number of (short) segments, ideally of lengths between the critical 

fibre length and one half of the critical fibre length.  This situation is the result of the concept of a 

constant interfacial shear stress [1], and can be used to derive the shear stress from the segment lengths 

and knowledge of the fibre fracture stress. 

     Recently, a micromechanical model including all three interface parameters has been proposed, and 

it has been applied to two cases of pull-out tests [4] [5] and to single fibre fragmentation test [6]. 

 

2.  Micromechanical model for pull-out and single fibre fragmentation  

The details of the model, its assumptions, its principles and the derivation of relevant equations have 

been given in the above references, and shall not be repeated here. The model includes the interface 

energy Giic, the interface shear stress τs, and the mismatch strain for fibre / matrix Δe
T
, as the 

characteristics of the interface in (fibrous) composites. The related experiments aim to record the load 

Pf on the fibre (pull-out cases) or the load (stress σc) of the composite (single fibre fragmentation 

case), the debond length ld along the interface, and the relative displacement δ between fibre and 

matrix. 

     The concepts implied in the model are the force balance for the fibre and matrix, both at the 

debonding zone and far away from the zone, and including residual stresses, the potential energy 

change [7] during debonding, and the relative displacement between fibre and matrix obtained by 

integration of the strain difference along the debonded length at the interface.  

     The three test cases are the pull-out test with the matrix end clamped, called PO-1, the pull-out test 

with support of the matrix at the fibre end, called PO-2, and the single fibre fragmentation test, called 

SFFT. The comparative schematics for the three cases are shown in figure 1 of [5]. 

     The model, as it has been developed [4] [5] [6], gives equations for the relations between the 

experimental parameters, the load (on fibre or on composite), the debond length, and the relative 

displacement. The equations include the three interface parameters, interface energy, interfacial shear 
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stress and the mismatch strain.  The equations also include materials parameters for the fibre and the 

matrix, as well as the geometry of the test specimens.  The parameters are listed: 

Interface parameters         Giic    interface energy, J/m
2
 

                                         τs        frictional shear stress between fibre and matrix, MPa 

                   Δe
T
     thermo-elastic mismatch strain between fibre and matrix, [-]  

Material parameters         Ef       fibre stiffness, GPa 

                        r       fibre radius, mm 

                   αf       fibre thermal expansion coefficient, K
-1

  

                   Em       matrix stiffness, GPa 

                   αm       matrix thermal expansion coefficient, K
-1

 

Experimental parameters   Pf       load on the fibre, N 

                   σc       stress on the composite, MPa 

                          ld       debond length along the interface, mm 

                    δ       relative displacement between fibre and matrix, mm 

                     Ac       cross sectional area of matrix block / composite, mm
2
 

                  ΔT       test temperature minus manufacturing temperature, 
o
C 

     In the original development of the model the equations were typically derived and presented as 

relations for the debond length as a function of relevant parameters, and for the relative displacement 

as a function of relevant parameters. In order to demonstrate the similarity for the three test cases, 

pull-out case PO-1 and PO-2, and the single fibre fragmentation case SFFT, the equations will be 

rewritten, to present (i) load (fibre load or composite stress) as a function of debond length and (ii) 

displacement/debond length ratio as a function of debond length. The first relation will give the 

interfacial shear stress, and the second relation will give the interfacial shear stress and the interface 

energy, and in combination the two relations will give the mismatch strain. 

     This rewriting of the original equations, the related graphical plots and the analysis of these plots 

will be illustrated in the following for the three test cases. 

3.  Common concepts and relations 

Some of the concepts and related equations are identical for all three test cases, and will presented 

here, even if they originally were derived in slightly different form in the individual papers. These 

concepts are the general force balance and equality of strains at any cross section of the composite 

(because the composite has unidirectional and long fibres), and the thermal stresses and strains, as 

well as the fibre stresses and the matrix stresses in the uncracked composite (ahead of the debond 

crack tip) and in the debond region, and the fibre strain and the matrix strain in the debond region. 

 

 
 

Figure 1.  Geometry and loading with relevant parameters (case PO-2) 
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The force balance for the fibre and the matrix is, with sign convention as shown in figure 1: 

    0 mfc PPP  

0 mmffc σVσVσ  

where σ is stress and V is volume fraction, with indices c for composite, f for fibre and m for matrix. 

     The three test cases are compared in figure 4 of [5], and the condition valid for each case is as 

follows: 

PO-1: condition σm =0, and thus σc – Vf · σf = 0 

PO-2: condition σc = 0, and thus Vf · σf + Vm· σm = 0 

SFFT: condition σf = 0, and thus σc – Vm· σm = 0 

     The equality of strains for fibre, matrix and composite implies that ef = em = ec. 

     The thermo-elastic strains and stresses are caused by the different stiffness (E) and thermal 

expansion coefficient (α) of the fibres and the matrix , respectively, and by the fact that the composite 

(test specimen) is manufactured at (typically) a higher temperature than the test temperature. The 

thermal strains (which are stress-free) of each component are 

Te f
T
f          and         Te m

T
m   

The fact that αf and αm (normally) are different, and assuming perfect contact at the fibre / matrix 

interface, means that the resulting strain for the composite is ec
T
, different from both ef

T
  and em

T
 . This 

leads to residual stresses in fibre and matrix: 

 T
f

T
cf

res
f eeE                and              T

m
T

cm
res

m eeE         

For the unloaded composite, these stresses are in balance by the volume fraction weighted relation: 

0
res

mm
res

ff VV                   

Inserting the stress expressions and solving for ec
T
, this expression for ec

T
 is re-inserted into the stress 

relations:  

                                                                      

 

 

 
c

ffT
m

res
m

E

EV
eE   

  Teee mf
T

m
T

f
T    

This parameter Δe
T
  is called the mismatch strain. It is assumed to be unknown and can be derived 

from the model and its equations. 

     The stresses in the composite are analyzed for two regions, the region ahead of the interface crack 

tip (the uncracked composite) called the up-stream region, and in the region behind the crack tip (the 

debond region) called the down-stream region. For the up-stream region the total stress on fibre or 

matrix is the sum of residual stress and mechanical stress: 

mechres    

where the test case condition and the related stress balance (see above)  as well as the equality of 

strains is used to derive σ
mech

. The details for each test case are presented below. For the down-stream 

region the total stress  σ
-
 on fibre or matrix is a function of the position z (figure 1) and is found from 

 
c

mmT
f

res
f

E

EV
eE 
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the balance of forces, accounting for the stress transfer between fibre and matrix via the constant 

interfacial shear stress τs. For the fibre the force balance is applied at the fibre surface,  for the matrix 

the force balance is applied at the inner surface of the matrix hole in which the fibre sits. The down-

stream stresses depend on z-position and fulfil the force balance at any z-position. For the down-

stream region we further need the strains for fibre and for matrix, these strains are found from the 

relation: 

   
  TTmech e

E

z
ezeze 


 

 

where the (stress-free) thermal strain (for fibre or matrix) e
T
 must be added to the mechanical strain. 

The details for each test case are presented below. 

     A relation between the load (on fibre or on composite) and the debond length is established via the 

concept of potential energy change [7] during debonding.  This requires the up-stream stresses for 

fibre and matrix and the down-stream stresses for fibre and matrix in the form: 

 zff
              and                zmm

   

The derivations are explained in detail in the original papers [4] [5] [6]. 

     A relation between the load (on fibre or on composite), the debond length and the relative 

displacement between fibre and matrix in the debond region (down-stream) is established by 

integration of the strain difference along the debonded length at the interface from z = 0 to z = ld. This 

requires the down-stream strains for fibre and matrix in the form: 

   zeze mf
   

The derivations are explained in detail in the original papers [4] [5] [6]. 

 

4.  Pull-out case PO-1 

This pull-out case represents the most often used test geometry. The model was presented [4] [8] with 

a detailed analysis and comments to the assumptions and concepts used to obtain the model. Here the 

results are presented and rewritten into a form, which is comparable to the other test cases. The load 

condition is σm =0, and the force balance is thus σc – Vf · σf = 0.  

The up-stream stresses are    

 
c

c
f

c

mmT
ff

E
E

E

EV
eE


   

 
c

c
m

c

fT
mm

E
E

E

EfV
eE


   

The down-stream stresses are 

  z
r

z s
ff  

 2  

  z
rV

V
z s

m

f
m  

 2  
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The down-stream strains are 

  T
f

f

s

f

f
f ez

rEE
ze 


 

2  

  T
m

f

s

mm

ff
m ez

rEEV

EV
ze 


 

2  

The relation between stress (load) on the fibre σf and debond length ld is [4] [8]: 

rE

G

E

EVE
e

EE

EVE

r

l

f

iic

c

mm

s

fT

f

f

c

mm

s

fd















































2
                                                          (1) 

The load on the fibre Pf  ( = σf · π r
2
) is written as a function of ld: 

ds
mm

cT
f

f

iic

mm

c
ff lr

EV

E
eEr

rE

G

EV

E
ErP 


























  22 22                    (2) 

This indicates a linear plot of Pf vs ld, with slope and cut-off on y-axis given as 

slope = SL1 = 







 s

mm

c r
EV

E
2  

cut-off = CO1 = 
















 T

f
f

iic

mm

c
f eEr

rE

G

EV

E
Er 222   

The relation between stress (load) on the fibre σf, the debond length ld, and and the relative 

displacement between fibre and matrix δ is [4] [8]: 

2


























r

l

EV

E

Er

l
e

Er

d

mm

c

f

sdT

f

f 
 

The ratio δ/ld is rewritten as a function of ld, using the term (σf /Ef + Δe
T
) from eq (1): 

d
f

s

mm

c

rf

iic

mm

c

d

l
rEEV

E

E

G

EV

E

l





































2                                                                            (3) 

This indicates a linear plot of δ/ld vs ld, with slope and cut-off on y-axis given as 

slope  =  SL2  = 

















rEEV

E

f

s

mm

c 
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cut-off  =  CO2  = 















rf

iic

mm

c

E

G

EV

E
2  

The two (linear) equations (2) and (3) allow the three interface parameters to be determined from two 

linear plots. Eq (2) gives the interface shear stress τs  from the slope SL1, and yields a combination of 

Giic and Δe
T
 from the cut-off CO1. Eq (3) gives the interface shear stress τs from the slope SL2, and the 

interface energy Giic  from the cut-off CO2. Inserting this value for Giic  into CO1 gives a value for 

Δe
T
: 

f

T

Er

CO
COe




2

1
2


 

5.  Pull-out case PO-2 

This pull-out case has been used in some tests and implies a clamping device to support the matrix 

block at the fibre end of the specimen. The practical geometry has often been a drop of matrix 

(polymer) on the fibre, which is pulled out of this drop.  The macroscopic specimen geometry of this 

droplet test is not well defined. The present model (which implies a circular cylindrical geometry) was 

presented [5] with a detailed analysis and comments to the assumptions and concepts used to obtain 

the model. Here the results are presented and rewritten into a form, which is comparable to the other 

test cases. The load condition is σc = 0, and the force balance is thus Vf · σf  +  Vm· σm = 0. 

The up-stream stresses are 

 
c

mmT
ff

E

EV
eE    

 
c

fT
mm

E

EfV
eE   

It should be noted that the second term with σc /Ec is not present because the condition is σc = 0. 

The down-stream stresses are 

  z
r

z s
ff  

 2  

  









f
s

m

f
m z

rV

V
z 


 2  

The down-stream strains are 

  T
f

f

s

f

f
f ez

rEE
ze 


 

2  

  T
m

f

f

f

s

mm

ff
m e

E
z

rEEV

EV
ze 

















 

2  
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The relation between stress (load) on the fibre σf  and debond length ld is  ([5] eq 18):  
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22                                                                   (4) 

The load on the fibre Pf  ( = σf · π r
2
) is written as a function of ld: 
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This indicates a linear plot of Pf vs ld, with slope and cut-off on y-axis given as 

slope  =  SL1  =  sr  2  

cut-off  =  CO1  = 
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It should be noted that eq (5)  is similar to eq (2) of case PO-1, with the scaling factor VmEm/Ec, such 

that loads (stresses) on the fibre relate by  Pf(PO-2) = VmEm/Ec · Pf(PO-1). 

     The relation between stress (load) on the fibre σf, the debond length ld, and the relative 

displacement between fibre and matrix δ is ([5] eq 11): 
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The ratio δ/ld is rewritten as a function of ld, using the term (Ec/VmEm· σf /Ef + Δe
T
) from eq (4): 
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This indicates a linear plot of δ/ld vs ld, with slope and cut-off on y-axis given as 
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It should be noted that eq (6)  is identical to eq (3) of case PO-1. 

     The two (linear) equations (5) and (6) allow the three interface parameters to be determined from 

two linear plots. Eq (5) gives the interface shear stress τs from the slope SL1, and yields a combination 

of Giic and Δe
T
 from the cut-off CO1. Eq (6) gives the interface shear stress τs from the slope SL2, and 
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the interface energy Giic from the cut-off CO2. Inserting this value for Giic into CO1 gives a value for 

Δe
T
: 

c

mm
f
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EV
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

 

It should be noted that although eq (3) for case PO-1  and eq (6) for PO-2, respectively, are identical, 

the relations to find Δe
T
 are not identical, but (partly) scaled by the factor VmEm/Ec. 

6.  Single fibre fragmentation case SFFT 

This test case represents a different test geometry and specimen geometry, as well as a different 

progress of the experiment. In the pull-out cases, one specimen gives one set of data. In the SFFT 

experiment, the (single) fibre will break several times (multiple fracture), and each fibre break gives 

two fibre ends which retract into the hole of the matrix, giving two sets of data for load, debond length 

and relative fibre/matrix displacement. This event is repeated at the next fibre break, and this 

continues until the composite fails. The (potentially) many fibre breaks cause concern over the 

possible interaction of the debond lengths from nearby fibre breaks. No experiments exist to illustrate 

the importance of this (possible) course of events.  

     The model was presented [6] with a detailed analysis and comments to the assumptions and 

concepts used to obtain the model. Here the results are presented and rewritten into a form, which is 

comparable to the other test cases. The load condition is σf = 0, and the force balance is thus σc – Vm· 

σm = 0.  

The up-stream stresses are 
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The down-stream stresses are 
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  T
f

f

s
f ez

rE
ze 


 

2  

  T
m

f

s

mm

ff

mm

c
m ez

rEEV

EV

EV
ze 


 

2  

38th Risø International Symposium on Materials Science                                                                  IOP Publishing
IOP Conf. Series: Materials Science and Engineering 219 (2017) 012030    doi:10.1088/1757-899X/219/1/012030

9



The relation between stress on the composite σc and debond length ld is ([6] eq 22): 
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The stress on the composite σc  is written as a function of ld: 
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It should be noted, in contrast to the pull-out cases, that for the SFFT case (only) the composite stress 

(load) can be recorded experimentally, and thus eq (8) must be written in terms of σc .This indicates a 

linear plot of σc vs ld, with slope and cut-off on y-axis given as 
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The relation between stress on the composite σc , the debond length ld, and the relative displacement 

between fibre and matrix δ is ([6] eq 27): 
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The ratio δ/ld is rewritten as a function of ld, using the term (σc /VmEm  -  Δe
T
) from eq (7): 
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This indicates a linear plot of δ/ld vs ld, with slope and cut-off on y-axis given as 
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It should be noted that eq (9)  is identical to eq (3) of case PO-1, and to eq (6) of case PO-2. The two 

(linear) equations (8) and (9) allow the three interface parameters to be determined from two linear 

plots. Eq (8) gives the interface shear stress τs from the slope SL1, and yields a combination of Giic  
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and Δe
T
 from the cut-off CO1. Eq (9) gives the interface shear stress τs from the slope SL2, and the 

interface energy Giic from the cut-off CO2. Inserting this value for Giic into CO1 gives a value for Δe
T
: 

mm
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EV
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1
2   

It should be noted that although eq (3) for case PO-1 and eq (6) for PO-2 and eq (9) for SFFT are 

identical, the relations to find Δe
T
 are not identical, but (partly) scaled by the factor VmEm. 

7.  Experimental test and analysis 

The three test cases have similarities and some marked differences. The two pull-out cases give one 

set of experimental data (fibre load Pf, debond length ld, and relative fibre/matrix displacement δ) for 

each specimen. In the SFFT case, one specimen (potentially) gives several (double) sets of data. The 

(potentially) many fibre breaks cause concern over the possible interaction of the debond lengths from 

nearby fibre breaks. No experiments exist to illustrate the importance of this (possible) course of 

events. 

     There are two equations for each test case, both giving a linear plot, where the slope and the cut-off 

values form the basis for calculating the (three) interface parameters. The experimental data and their 

analysis are summarized here. 

7.1  Pull-out case PO-1  

The plot of Pf vs ld gives the interface shear stress from the slope SL1 as 
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The plot of δ/ld vs ld  gives the interface shear stress from the slope SL2 as 
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7.2  Pull-out case PO-2 

The plot of Pf vs ld  gives the interface shear stress from the slope SL1 as 

1
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The plot of δ/ld vs ld  gives the interface shear stress from the slope SL2 as 
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and the interface energy Giic from the cut-off CO2 as 
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7.3  Single fibre fragmentation case SFFT   

The plot of σc vs ld  gives the interface shear stress from the slope SL1 as 
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It should be noted that the equations governing the calculations from the experimental analyses, are 

rather similar and in some situations identical.   

8.  Discussion 

 

8.1  Model characteristics   

The model is basically one and the same, and is applied to slightly different loading cases. This leads 

to the rather high degree of similarity for the various equations for load vs debond length and for 

displacement/debond length vs debond length, and to the scaling for the pull-out cases PO-1 and PO-2 

as indicated above.  It should be noted that the load vs debond length equation is individual for the 

three test cases, while the delta/debond length vs debond length equation is identical for all three test 

cases and is independent of load.  This is expected because the delta and the debond length are both 
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connected to the geometry of the debond process.  This process is essentially a shear crack (mode II 

crack) of the interface, which is characterized by the interface energy (chemical nature) and the 

interfacial shear stress (interface topography). 

     This combined situation gives two linear equations, which are the basis for the simple and “smart” 

linear plots, leading to establishing the three  characteristic interface parameters, as described above in 

the analyses. 

 

8.2  Case Vf = 0  

The equations have all been written with the term VmEm/Ec as a practical term, entering the equations 

where required. This term is normally very close 1, because normally one rather thin fibre is 

embedded in a fairly large block of matrix, which makes the fibre volume fraction very low, and thus 

the matrix volume fraction Vm very close to 1 and Ec very close to Em. This fact can be used to 

simplify the equations by setting VmEm/Ec = 1. This situation is not always present as the experimental 

examples below illustrates. 

 

8.3  Traditional experiments 

Many interface characterizations and related pull-out experiments have been reported in the literature, 

e.g. [9] [10] [11] for the end-gripped test geometry PO-1, and [12] [13] for the droplet test geometry 

PO-2. The tests have normally been performed by using several specimens with different embedded 

lengths of fibre. The curve for pull-out force (stress) vs fibre displacement is described in detail in [5] 

and figure 2. In most cases an apparent interfacial shear stress has been calculated from the maximum 

pull-out force Pmax and the embedded fibre length lemb. 

emb

max
app

lrπ2

P
τ


          

 

Figure 2.  Sketch (not to scale) of fibre stress vs displacement between fibre and matrix for a 

traditional pull-out experiment with embedded fibre length L 
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Figure 3.  Sketch of the relation between fibre stress and debond length according to eq (2) and (5) for 

traditional pull-out experiments, the dotted slopes indicate the calculations of the apparent shear 

stress, which for this case is decreasing with increasing embedded fibre length (termed L) 

 

It has often been noted in the individual publications in the literature, that this apparent shear stress 

was dependent on the embedded length, as discussed in [5] and illustrated in figure 3. This 

dependency is caused by the fact that the (maximum) fibre load is linear with but not directly 

proportional to embedded length. For the sake of clarity the eqs (2) and (5) for test cases PO-1 and 

PO-2, respectively, are written with the term VmEm/Ec = 1, making the two test cases and equations 

identical: 
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At the maximum fibre load Pmax  the embedded fibre has debonded completely, as sketched in figure 

2,  and starts to pull out of the matrix block (against frictional sliding). Therefore, at ld = lemb the fibre 

load is Pf =  Pmax . From this equation (10) the apparent shear stress can be written          

 
s

embemb
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P
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
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
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2
           

The constant is controlled by Giic and Δe
T
  (and material parameters), and only if this constant happens 

to be zero, will the apparent shear stress give the true interfacial shear stress τs. For all other situations 

the apparent shear stress will depend on the embedded length, with increasing or decreasing values 

dependent on the sign of the constant, as discussed in [5] and figure 3. The equation (10) suggests a 

direct way of making a correct analysis of simple pull-out experiments, based on various embedded 

fibre lengths and recorded maximum force from the pull-out curve, (figure 2): by plotting the Pmax vs 

lemb and using a linear fitting equation, the slope will give the true interfacial shear stress τs, and the 

cut-off will give a constant including a combination of Giic and Δe
T
, but it will not allow a 

determination of these two parameters individually. Examples will be given below to illustrate this 

incomplete analysis of pull-out experiments from the literature. 
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9.  Practical examples 

The model and its method of analysis will be illustrated by three examples. The one example is a 

complete experiment for steel fibres in polyester matrix, where all three experimental parameters load, 

debond length and relative displacement are recorded. The other two examples are incomplete and are 

from the literature, one is steel fibres in epoxy and one is tungsten wires in copper matrix. The relevant 

properties for the materials systems are collected in Table 1. 

 

Table 1.   Materials properties for the practical examples   

Fibre-Matrix system                                              Steel-Polyester   Steel-Epoxy   Tungsten-Copper 

Fibre stiffness Ef,  GPa                                                210                      200                  400 

Fibre radius r,  mm                                                          0.155                   0.075               0.25 

Fibre thermal expansion, αf, 10
-6 

K
-1

                             11.7                     11.7                   4.3 

Matrix stiffness Em, GPa                                                 3                          3                  100 

Matrix thermal expansion, αm, 10
-6 

K
-1

                          70                        50                    16.5 

Specimen area Ac, mm
2
                                                 25                        20                    28 

VmEm/Ec                                                                           0.825                   0.944               0.973 

 

9.1  Steel fibres in polyester matrix (complete analysis) 

The pull-out process is case PO-1 with gripping of the matrix block. These experimental data from 

Prabhakaran et al [8] have been analyzed earlier, using a slightly more complex procedure [8], where 

the specimens and the experimental test fixture is described in detail. From the video recording of the 

debond process a total of 30 pictures were used to measure the debond length ld at the corresponding 

fibre load Pf.  From the (continuous) recordings of the relative fibre/matrix displacement, (30) values 

for δ were selected at these fibre loads. These (30) simultaneous sets of data are the basis for 

establishing the plot of Pf vs ld in figure 4 and the plot of δ/ld vs ld in figure 5. The experimental and 

material parameters are listed in Table 1. It should be noted that with the fairly thick fibre of radius 

0.155 mm the fibre volume fraction of 0.003 clearly is not close to zero, and thus the parameter 

VmEm/Ec  is about 0.825 and must be included in the calculations. The straight lines in the plots show 

rather good fit (R
2
 is ca. 0.98). From the slopes and cut-offs of the straight lines the three interface 

parameters are calculated using the equations for case PO-1 from section 7.1.  The results are shown 

here: 

SL1 1.496  N/mm  

CO1 12.259  N 

τs 1.3  MPa 

SL2 0.00006164 mm
-1

 

CO2 0.002153 

τs 1.6 MPa 

Giic 31 J/m
2
 

Δe
T
 0.0014 

     It is noted that the two plots give slightly different values for the interface shear stress τs , it is not 

clear whether this is caused by experimental scatter, or whether the model and/or the analysis has a 

systematic deviation.  The experimental mismatch strain might be compared to an estimate from its 

definition, this requires knowledge of the thermal expansion coefficients for fibre and matrix and also 
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the temperature difference between manufacturing temperature and test temperature. With reasonable 

assumptions as listed in Table 1, the estimated value is: ΔeT = (12 – 70) · 10
-6

 · (20 – 50) = 0.0017. 

     A comparison with the results of the previous analysis [8] shows that the shear stress is very closely 

the same, while the interface energy and the mismatch strain deviate significantly.  

        

 

Figure 4.  Experimental data for steel fibre in polyester 

 

 

Figure 5.  Experimental data for steel fibre in polyester 
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9.2  Steel fibres in epoxy matrix (incomplete analysis) 

The pull-out process is case PO-2 with a clamp at fibre end of the specimen (droplet test). The 

experiments follow the traditional pull-out procedure with measurement of the maximum force for 

various embedded fibre lengths. The data originate from Gorbatkina [14] and were presented by 

Zhandarov and Mäder [15] in their figure 4b. The (7) sets of data for maximum force and embedded 

fibre length are analyzed according to the procedure described above for traditional, incomplete data 

and plotted as Pmax vs lemb in figure 6. The experimental and material parameters are listed in Table 1. 

It should be noted that with the moderately thick fibre of radius 0.075 mm the fibre volume fraction of 

0.0009 clearly is not close to zero, and thus the parameter VmEm/Ec is about 0.944 and must be 

included in the calculations. The straight line in figure 6 shows rather good fit (R
2
 is ca. 0.94). From 

the slope for the straight line, the interface shear stress is calculated using the equation for Pmax vs lemb  

in the full form eq (5) for case PO-2 from section 7.2.  The results are shown here: 

SL1 8.847  N/mm  

CO1 15.533  N 

τs 18.8  MPa 

As emphasized above the cut-off CO1 only gives a combination of Giic and Δe
T
. If the mismatch strain 

is estimated from its definition and the data in Table 1, the value is  ΔeT = (12 – 50) · 10
-6

·(20 – 120) 

= 0.0038, and with this value the interface energy is ca 250 J/m
2
.  

 

 

Figure 6. Experimental data for steel fibre in epoxy matrix 

 

9.3  Tungsten wires in copper matrix (incomplete analysis) 

The study of the interface in composites was (probably) initiated in the early 1960´s, and Tyson [16]  

performed some of the first pull-out tests for tungsten wires in blocks of copper matrix.  One of these 
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test series, which is presented by Kelly [17] figure 5.18, is performed at 600 
o
C, and includes 8 sets of 

data for embedded fibre length and maximum force for the pull-out experiment. The test case is PO-1. 

The 8 sets of data are analyzed according to the procedure described above for traditional, incomplete 

data and plotted as Pmax vs lemb in figure 7. The experimental and material parameters are listed in 

Table 1. It should be noted that with the moderately thick fibre of radius 0.25 mm the fibre volume 

fraction of 0.007 clearly is not close to zero, and thus the parameter VmEm/Ec  is about 0.973 and must 

be included in the calculations. The straight line in figure 7 shows rather good fit (R
2
 is ca. 0.94). From 

the slope for the straight line the interface shear stress is calculated using the equation for Pmax vs lemb  

in the full form eq (2) for case PO-1 from section 7.1.  The results are shown here:  

SL1 47.863  N/mm  

CO1 28.326  N 

τs 29.6  MPa 

As emphasized above the cut-off CO1 only gives a combination of Giic and Δe
T
. If the mismatch strain 

is estimated from its definition and the data in Table 1, the value is  ΔeT = (4.3 – 16.5) · 10
-6

 · (600 – 

800) = 0.0024, and with this value the interface energy is ca 190 J/m
2
.  It must be emphasized that this 

rough calculation is based on an effective manufacturing and stress-free state for the copper matrix at 

about 800 
o
C.  

  

 

Figure 7. Experimental data for tungsten wire in copper matrix 

 

10.  Summary 

The characterization of the interface between fibre and matrix in composites has been discussed and 

three interface parameters have been defined: the interface energy Giic , the frictional interfacial shear 

stress τs and mismatch strain between fibre and matrix Δe
T
.  
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     The  (new) mechanical model for the interface has been presented, and it has been based on the 

(three) test cases:  pull-out of a fibre from a block of matrix, (i) supported by gripping at the matrix 

end of the specimen, called case PO-1, (ii)  supported by clamping at the fibre end of the specimen, 

called PO-2, and (iii) fibre fragmentation in the single fibre composite, called SFFT. The model is 

shown to give rather similar but not identical results for the three cases.  This facilitates and simplifies 

the equations for the test cases, which are presented in the same or comparable format. 

     Two governing equations are derived for each test case, one equation relating the fibre load or 

composite stress to debond length, and the other equation relating the relative displacement/debond 

length ratio to the debond length.  The first equation is very similar for the three cases, and the second 

equation is identical for the three cases.  This latter derivation is a new observation. 

     These two equations allow two simple linear plots and the direct determination of the three 

interface parameters from the slope and cut-off values of these plots. This is possible (only) when the 

three experimental parameters are recorded: fibre load, debond length and relative fibre/mtatrix 

displacement. This is illustrated for the material system of a steel fibre in polyester matrix. 

     Many experiments exist in the literature, which (only) measure the maximum force for pull-out of 

fibres with different embedded lengths. The mechanical model and the equation for fibre load vs 

debond length can be used to establish the true interfacial shear stress, and (only) a combination of 

interface energy and mismatch strain. This is illustrated for the material system of a steel fibre in 

epoxy matrix, in test case PO-2, and for the material system of a tungsten wire in copper matrix, in test 

case PO-1. 

     It is believed that the results for the interface parameters obtained here are correct, but few or no 

reference values exist to compare and validate the numerical results. 
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