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Highlights 

 Time course EPR measurement of direct radical formation by fungal laccases on genuine lignin 

samples  

 Assessment of enzyme kinetic rates of radical formation in lignin by  two fungal laccases  

 Identification of different radical formation patterns by a low and high redox potential laccase 

 Demonstration of different laccase rates on different types of lignin substrates  
 

Abstract 

Laccases (EC 1.10.3.2) catalyse removal of an electron and a proton from phenolic hydroxyl groups, 

including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed 

electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic radical 
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formation activity on three types of lignin (two types of organosolv lignin, and a lignin rich residue from 

wheat straw hydrolysis) brought about by two different fungal laccases, derived from Trametes versicolor 

(Tv) and Myceliophthora thermophila (Mt), respectively.  Laccase addition to suspensions of the individual 

lignin samples produced immediate time and enzyme dose dependent increases in intensity in the EPR 

signal with g-values in the range 2.0047-2.0050 allowing a direct quantitative monitoring of the radical 

formation and thus allowed laccase enzyme kinetics assessment on lignin. The experimental data verified 

that the laccases acted upon the insoluble lignin substrates in the suspensions.  When the action on the 

lignin substrates of the two laccases were compared on equal enzyme dosage levels (by activity units on 

syringaldazine) the Mt laccase exerted a significantly faster radical formation than the Tv laccase on all 

three types of lignin substrates. When comparing the equal laccase dose rates on the three lignin 

substrates the enzymatic radical formation rate on the wheat straw lignin residue was consistently higher 

than that of the organosolv lignins. The pH-temperature optimum for the radical formation rate in 

organosolv lignin was determined by response surface methodology to pH 4.8, 33°C and pH 5.8, 33°C for 

the Tv laccase and the Mt laccase, respectively. The results verify direct radical formation action of fungal 

laccases on lignin without addition of mediators and the EPR methodology provides a new type of enzyme 

assay of laccases on lignin.  

 

Keywords 

Laccase kinetics, Real time assay, phenoxy radicals in lignin, EPR, dose-response treatment  

 

1 Introduction 

Lignin is a heterophenolic biopolymer present in the plant cell walls of terrestrial plants. In the plants, lignin 

is synthesized via coupling reactions between primarily three phenylpropanoid subunits, p-coumaryl 
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alcohol (H-unit), coniferyl (guaiacyl) alcohol (G-unit), and syringyl alcohol (S-unit), to form a hydrophobic, 

insoluble network linked together by ether and carbon-carbon bonds [1,2]. The lignin network essentially 

surrounds the plant polysaccharides in each plant cell wall and typically constitutes 10-30% of 

lignocellulosic plant material [1]. It is considered useless for biomass processing and in current biorefineries 

residual lignin is combusted for internal energy consumption. However, it has been estimated that a 

surplus of lignin of 60% beyond what is needed for process energy is present in today’s cellulosic ethanol 

biorefineries [2]. Hence, a significant potential exists for exploitation of lignin to create value added 

products without compromising internal process requirements of biorefineries, and development of e.g. 

aromatic derived chemicals or functionalized polymeric materials by various catalytic technologies has 

already been reported in the literature [2-6]. 

Oxidoreductases expressed by certain white-rot and soft-rot fungi and even some bacteria catalyse lignin 

modification in nature as part of the global carbon biodegradation cycle [7-9]. Among these enzymes 

laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) uses molecular oxygen to catalyse oxidation of 

phenolic substrates similar to those found in lignin subunits. A laccase catalysed oxidation cycle involves 

oxidation of four moles of phenolic substrate and simultaneous reduction of one mole of O2 to H2O [10,11]. 

Because of the direct utilization of O2, as opposed to requiring H2O2, laccases are particularly interesting for 

practical use in biocatalytic lignin modification. Laccase catalysed action on lignin leads to phenoxy radicals 

which in turn induce a variety of non-enzymatic reactions including radical polymerization, bond cleavage, 

grafting, and modification of functional groups – all reactions which may be harnessed to functionalize 

lignin [12-15]. Elegant screening assays for enzymatic lignin oxidation have been reported [16,17], but 

unfortunately, these assays as well as detailed kinetic studies of laccases employ soluble phenols 

(monomeric and dimeric lignin model compounds) or are based on substrates such as ABTS (2,2'-azino-

bis(3-ethylbenzothiazoline-6-sulphonic acid) or syringaldazine (4-hydroxy-3,5-dimethoxy-benzaldehyde 

azine) which relate poorly to lignin with respect to molecular weight, solubility, and chemical composition.  
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The objective of this study was to examine if it is possible to assess laccase reactivity and kinetics on lignin 

directly by measuring the enzyme catalysed radical formation on lignin by electron paramagnetic resonance 

(EPR) spectroscopy. A second purpose was to quantitatively compare the activities of two different fungal 

laccases directly on three types of lignin to assess any differences or similarities in kinetic rates; the three 

lignin substrates employed included two pure (organosolv) lignins and a lignin-rich residue from wheat 

straw obtained after extensive cellulase treatment. The laccases examined included a low redox potential 

(0.5 V vs NHE) laccase derived from the soft rot ascomycete Myceliophthora thermophila and a high redox 

potential (0.7 V vs NHE) laccase originating from the white rot basidiomycete Trametes versicolor [18-20].  

2 Materials and Methods  

2.1 Lignins  

Two organosolv lignins were employed: an organosolv lignin (CAS No. 8068-03-9) obtained from Sigma-

Aldrich (Milwaukee, WI, USA) (SOL) and a beech organosolv lignin (BOL) produced at Thünen Institute of 

Wood Research (Hamburg, Germany) [21]. These organosolv lignins were dry powders with a volume-based 

particle size of D[4,3] = 11.2 µm for SOL and D[4,3] = 6.4 µm for BOL. Both SOL and BOL represented 

substrates with high lignin content comprising 94 wt% and 87.4 wt% of Klason lignin, respectively.  

Wheat straw lignin (WSL) was a hydrothermally pretreated wheat straw sample that had been exhaustively 

enzymatically treated with a Cellic CTec2 enzyme cocktail from Novozymes (Bagsværd, Denmark). The 

wheat straw had first been hydrothermally pre-treated in a pilot plant facility (10 min, 190 °C) according to 

[22]. After pre-treatment, the insoluble fiber fraction was suspended to 4.5 wt% dry matter (DM) and 

treated for 48 h with a Cellic CTec2 at pH 5.1, 50 °C. The Cellic CTec2 enzyme preparation was added in a 

ratio of 0.5 % by weight (liquid) to wheat straw (DM) and 0.02 wt% sodium azide was added as 

preservative. After the first enzymatic treatment, the suspension was centrifuged for 20 min at 5350 g and 

the pellet obtained washed twice with deionized water; this procedure was repeated twice. The final wheat 
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straw lignin pellet resulting after three rounds of enzymatic treatment was washed, dried at 70 °C, ground 

and sieved to obtain a resulting volume-based particle size of D[4,3] = 15.8 µm. This wheat straw lignin 

(WSL) sample contained 43.7 wt% of Klason lignin (and 37.8 wt%cellulose, 9.2wt% hemicellulose, and 

6.1wt% ash).  

2.2 Compositional analyses and particle size  

Compositional analyses of the three lignin biomasses were conducted according to the NREL Standard 

Procedure for Biomass Compositional Analysis [23]. The particle size distributions of the different (milled) 

lignin samples were determined using a Malvern Mastersizer 2000 (Malvern, UK). 

2.3 Laccases  

The fungal laccase derived from Trametes versicolor (Tv) was obtained from Fluka (St. Gallen, Switzerland) 

and the Myceliophthora thermophila (Mt) laccase was a gift from Novozymes (Bagsværd, Denmark).  

2.4 Laccase activity assay  

Laccase activity was determined by monitoring the oxidation of syringaldazine at 530 nm (ε = 6.5 · 104 M-1 

cm-1) during reaction at 25 °C. The assay reaction mixture contained 0.25 mM syringaldazine, 10 vol% 

methanol, 25 mM sodium acetate (pH 5.0) and a suitable amount of enzyme. Enzyme activity was 

expressed in units: One International Unit (U) was defined as the amount of enzyme required to catalyse 

conversion of 1 μmol of substrate (syringaldazine) per minute under the assay reaction conditions.  

2.5 Dose-response study of radical formation catalyzed by laccases  

Each of the lignin samples were suspended in Milli-Q water resulting in a 10 wt% lignin suspension. After 30 

min. the suspensions were adjusted to pH 5 by ammonia and acetic acid. The laccase treatments were 

conducted as stochastically independent timed reactions (i.e. individual, timed reactions were carried out 

for each time point) in aliquots of 250µl carried out in darkness at 25 °C. To avoid that oxygen would be the 

rate-limiting factor samples were vigorously shaken at 1400 rpm and sealed with gas permeable, water 
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proof membranes (ABgene, Surrey, UK) to optimise oxygen saturation. Laccases were dosed in 0.5, 1.0 or 

2.0 U/g of solid (DM) (Units according to the syringaldazine assay) and 50 µl of suspension or supernatant 

(after 45 sec of centrifugation) was sampled to mediate EPR measurements in a time span of 0-35 min. 

Reference treatments for each time point were carried out at similar conditions, but without any laccase 

addition.   

2.6 Optimization study by response surface modeling 

A 3-level full factorial design with the highest laccases dose (2 U/g) was carried out to study the influence of 

pH and temperature on the rate of laccase catalysed radical formation in the organosolv lignin from Sigma 

(SOL).  Each variable (pH and temperature) was considered at three levels including a center point (in 

triplicates), which represented the midpoint of each factor range. Based on preliminary experiments, the 

actual levels were set to pH 4 - 6 and 25 - 50 ᵒC (pH 5, 37.5 as center point) giving a total of 12 experiments 

for each of the two laccases. The lignin substrate concentration was 10 % by weight in all experiments. The 

response values were given as the rate of radical formation (µM/min), which were based on initial rate 

determination from time curves (0-25 min.) with a minimum of 6 data points (data not shown). The 

statistical design program MODDE 12.01 (Umetri AB, Umeå, Sweden) was used as an aid to statistically 

design the factorial experiments and to fit and analyse the data by multiple linear regression. Significance 

of the results was established at P < 0.05.  

2.7 Electron paramagnetic resonance spectroscopy (EPR)  

The laccase catalysed radical formation in the lignin suspensions and their corresponding supernatant(s) 

were determined directly by Electron Paramagnetic Resonance (EPR) spectroscopy. At selected time points 

from 0-35 min. a sample from a timed reaction was drawn into a 50 µl capillary tube during vigorous 

shaking, and care was taken to ensure that the EPR measurement was always done at the same time 

immediately after the sample had been drawn into the capillary tube to avoid any possible measurement 

variation caused by sedimentation in the tube and securing that the sensitive part of the capillary tube was 
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free of air bubbles. EPR detection was carried out immediately after sampling at 20 °C with a MiniScope 

MS200 (Magnettech, Berlin, Germany) using the following settings: Modulation amplitude of 0.2 mT; 

center field 336.7 mT, sweep width 10 mT, and a sweep time of 30 sec. The number of spins was calculated 

by double integration of the resonance signal lines after background subtraction (i.e. subtraction of the 

resonance signal line of the reference treatment). The area under the absorption signal was converted to a 

radical concentration through a linear standard curve (R2=0.99) based on solutions of 0.5-100 µM the stable 

nitroxyl radical TEMPO (g-value of TEMPO 2.0060) (Sigma-Aldrich, Milwaukee, WI, USA).  

2.8 Determination of g-values by EPR  

The types of radicals generated by laccase catalysis in individual suspensions of the three lignins were 

determined by resolving the g-values of the EPR signals. The g-values of the lignin suspensions and their 

corresponding supernatants were based on EPR measurements using samples dosed with 2 laccase U/g 

solid lignin after 16-30 minutes of incubation where the radical response were strongest. The g-values were 

calculated by determining the field strength where the spectrum, presented as the first derivative of the 

absorption signal, passed through zero.   

3 Results and discussion 

3.1. Laccase catalysed activation of lignin suspensions  

The EPR analyses of the lignin suspensions with laccase added showed an immediate time dependent 

increase in the isotropic signal intensity in all suspensions as a result of laccase treatment (Fig. 1). All 

samples provided EPR spectra with a single broad signal, which corresponded well with EPR spectral data 

reported for similar substrates [24,25]. The spectra (Fig 1.) showed no pronounced resolved hyperfine 

interactions and were slightly asymmetric indicating anisotropic signals as previously reported for lignin 

derived phenoxyl radicals [24] or that more than one type of radical was formed [26].  
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The g-values derived from the EPR spectra of the lignin suspensions after laccase treatment were close to 

2.005 (Table 1) with beech organosolv lignin (BOL) producing the highest g-value of 2.0051 and Sigma 

organosolv lignin (SOL) and wheat straw lignin (WSL) generating g-values of 2.0046 and 2.0047, respectively 

(Table 1). These values were in agreement with those reported for lignin derived phenoxy radicals in the 

literature of g = 2.004 [3,25,27]. As the presence of different radicals affect the g factor of the EPR spectra, 

the slightly higher values recorded may be explained by the presence or predominance of other stable 

radicals such as e.g. semi-quinones known to be present in organosolv lignin [24,28].  

There were no evident shifts in the g-values during the time span of any of the reactions, suggesting that 

the type of generated radicals remained the same throughout the laccase catalysed reaction in the three 

different lignin suspensions. Likewise, the similarity in the g-values of the EPR signal generated by the 

Trametes versicolor (Tv) laccase and the Myceliophthora thermophila (Mt) laccase, suggests that the two 

laccases catalysed the formation of the same type of radicals in the lignins.  

3.2 Distribution of radicals in lignin suspensions 

In order to assure that the radical responses were not exclusively caused by soluble phenolics in the 

suspensions, the supernatants of the suspensions treated with the highest dose of laccase (2U/g) were 

analysed separately by EPR spectrometry. An evident difference in signal intensity between the suspension 

and the corresponding supernatant were demonstrated for all three lignins, i.e. the signal intensities of the 

supernatants were small, and evidently significantly lower than those of the suspensions, and notably the 

supernatants of the SOL and the WSL samples did not elicit any significant responses to laccase treatment 

(fig 2a). This distinct difference in intensity between the whole suspension and the corresponding 

supernatant emphasized that laccase indeed facilitated formation of radicals in the solid insoluble part of 

lignin. (Small, but constant EPR signals were detected in the EPR spectra of substrates without laccase. It is 

assumed that these signals may have occurred as a result of spontaneous oxidation of phenolic groups in 
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lignin during the lignin storage prior to experimentation. These spectra were subtracted from the spectra of 

laccase treated samples before quantification into radical concentrations). 

The evolution of phenoxy radical formation in the supernatants differed among the substrates, but not 

between the two laccases (fig 2 b-d). Among the three substrates, laccase treatment of BOL appeared to 

generate the highest concentration of radicals in the supernatant constituting 20-30% of the radicals in 

suspension throughout the time of measurement, and the formation of radicals moreover increased 

throughout the reaction at a constant rate (0.3 µM/min)(fig 2b). In the SOL sample, however, the 

concentration of phenoxy radicals in the supernatants initially increased but then declined after 10-20 min 

and after 25 min the level was practically negligible (< 2-2.5 μM) (fig 2c). Upon laccase treatment, the WSL 

samples had the lowest contribution of radicals in the supernatants relative to the radical concentration in 

the suspensions. This low contribution was presumably related to the fact that the WSL substrate had been 

extensively washed prior to being used in the reactions. The concentration of phenoxy radicals in the 

supernatants thus constituted less than 10% of the radicals in the suspension during most of the time of 

measurement (fig 2d).  In general, the EPR spectra of the radicals from the supernatants produced higher g-

values compared to radicals from the corresponding suspensions, but it was most pronounced for the SOL 

samples (Table 1). The difference in g-values between radicals in the supernatants and the suspensions may 

suggest that the distribution of phenoxy radical species was slightly different in the supernatants and in the 

suspensions of the lignin samples [24]. 

3.3 Steady state concentration of radicals in lignin suspensions 

In the progress curves depicting the evolution of radicals formation in the lignin samples treated with the 

highest dose of laccase, the EPR measurements were prolonged until a steady state was reached and an 

overall decay of the accumulated radicals occurred (Fig. 3). Such decay of radicals is known to occur 

simultaneously with the formation of radicals. When the overall concentration of radicals starts to decline, 

the rate of generated radicals is surpassed by the radical decay rate. The radical decay is most likely due to 
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radical-radical reactions leading to non-radical products in the lignin or grafting of low-weight molecules 

onto the lignin polymer [29].  

The highest concentration of phenoxy radicals in the suspensions  was achieved with laccase treatment of 

BOL with the highest dose (2U/g solid) and the level of radicals reached almost 45 µM with the Tv laccase 

and 60 μM with the Mt laccase after 35 min (Fig. 3a,d). After 1 hour, the radical concentration of these 

particular reactions reached 78 µM and 65 µM with the Tv laccase and Mt laccase, respectively (data not 

shown). The finding that the highest radical concentration was reached by the Tv laccase despite a slower 

rate may be explained by the higher redox potential of Tv laccase enhancing the oxidising capacity to more 

phenols then the Mt laccase that is classified as a low redox potential laccase. The highest radical 

concentrations in the laccase treatments of SOL and WSL were remarkably lower reaching 36-45 µM after 

20-25 min (Fig. 2b-c, 2e-f).  

Low-molecular weight aromatic compounds have been demonstrated to function as mediators in laccase 

oxidation systems [30,31]. It could therefore be speculated that the remarkably higher radical 

concentration achieved in the suspensions of BOL could be due to a higher concentration of small, soluble 

radical compounds in the supernatant of BOL as compared to those in the SOL and WSL supernatants (Fig 

2); if so, these radicals in the BOL supernatant could function as mediators, and thus increase the oxidation 

capability of laccase towards BOL. 

3.4 Real time assay of laccase action on lignin by EPR  

When the EPR signals, whether given as intensity or quantified to µM of radicals, were expressed as a 

function of time, the laccase treated lignin suspensions showed a clear dose dependent increase in the 

accumulated number of radicals (Fig. 3). For each substrate and for each laccase dose, the initial time 

interval where the radical concentration increased linearly provided the basis for determination of initial 

rates. A linear dose-dependence between laccase dose and the initial radical response rate was evident in 

all three substrates when plotting the initial rates from each substrate as a function of laccase dose for Tv 
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laccase and Mt laccase (Fig. 4). The calculated slopes of the dose-response reactions all correlated linearly 

(R2≥0.997). For both laccases, the dose-response treatments affected the initial rate of the radical response 

in the lignins in following order; WSL≥SOL≥BOL. Surprisingly, this order also correlated with the particle size 

(WSL≥SOL≥BOL). The rate response to particle size was expected to be inversely correlated, since 

substrates with small particle size generally means a larger surface area available for enzymes to access, 

and hence are more likely to be affected by increasing enzyme dosage. This lack of a clear inverse 

correlation to substrate particle size suggests that other factors besides the particle size, e.g. distribution of 

subunits and phenolic groups in lignins influenced the rate of radical formation which is actually in 

accordance with what has been reported earlier [27]. The increase in initial rate as response to the increase 

in Mt laccase dose was specifically high for WSL substrate, but when accounting for the lignin content in 

BOL, SOL and WSL, the dose-response effect on the WSL and BOL substrates were similar for both laccases, 

while the dose-response effect was significantly higher on the SOL substrate (table 2, column 4 and 5).   

Although the laccases were dosed according to activity units of the assay substrate (syringaldazine), 

increasing dose of the Mt laccase with low oxidation potential appeared to induce a significantly stronger 

initial response in all three lignins compared Tv laccase with high oxidation potential (Table 2). This set of 

results indicates that the redox potential of laccases may have more impact on the total amount of lignin 

subunits that can be oxidized by laccase rather than on the initial rate of the oxidation. Such information 

which is important for lignin upgrading cannot be obtained from conventional laccase assays and 

emphasizes the necessity for assessing laccase activity on genuine lignin samples.    

3.5 Temperature and pH optimization of laccase catalysed radical formation in lignin 

A 3-level full factorial design was designed for both Tv and Mt laccase to assess if a pH-temperature 

optimum for each enzyme on genuine lignin could be established by measuring radical formation by 

EPR.From the data obtained a second-order polynomial equation for the radical formation rate was 

identified for each laccase by multiple linear regression: 
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Tv laccase: Y = 0.925-0.19667X2 – 0.2525X1
2 – 0.3175X2

2  

Mt laccase: Y = 1.73208 + 0.059X1 – 0.28167X2 – 0.40125X1
2 – 0.60625X2

2  

Y is the radical formation rate (µM/min), X1 is pH and X2 is the temperature (°C). Since pH within the range 

tested was not significant for the Tv laccase catalysis (discussed below) this main factor was removed from 

the model for Tv laccase above, analogously the non-significant interaction between pH and temperature 

(pH*Temp), also to be discussed below, has been removed from both models (Supplementary data Table 

S1 and S2). Both models expressed a good model fit with high significance (R2≥0.93) and acceptable 

predictive squared correlation coefficients (Q2≥0.44) (Supplementary data Figure S1 and S2); the low model 

validity is a result of the design, i.e. the regression model being based on only 2 variables (pH and 

temperature). Any possible solubilisation of lignin with increasing pH was not evident as no differences in 

the EPR signals of the lignin suspensions without laccase were apparent within the pH-range studied.    Not 

all regression coefficients were statistically significant (P≤0.05) (Supplementary data Table S1 and S2). The 

pH*Temp interaction regression coefficients were not significant for any of the enzymes, meaning that in 

the pH and temperature interval studied the laccase catalysed radical formation in SOL was not influenced 

differently by pH when the temperature was changed and vice versa.  Based on the model equations 

predicted responses could be graphically depicted as contour and response surface plots (Fig. 5 and 6). The 

plots visualise the optimal conditions (within the limits of the experiment) for the radical formation and 

illustrate the influence of the variables (pH and temperature) on the rate of radical formation induced by 

the Tv laccase (Fig. 5) and the Mt laccase (Fig. 6). The temperature, but not the pH, significantly affected 

the radical formation for the Tv laccase (Supplementary data Table S1); nevertheless the optimal conditions 

for radical formation in SOL catalysed by Tv laccase was predicted to be pH 4.8 at 33 °C (Figure 5). For the 

Mt laccase the radical formation was affected by the temperature as well as by the pH and the optimal 

reaction condition for Mt laccase was predicted to be 5.8 at 33°C (Figure 6). Although pH optima of laccases 

may depend on the substrate used, laccases from white rot fungi typically have pH optima in the range of 
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pH 3-5, which corresponds well with the result for Tv laccase [19]. The higher pH of the Mt laccase is also in 

accordance with result previously determined on phenolic substrates [20]. The temperature optimum of 

33°C for both laccases is lower than what is commonly reported for both enzymes (50 °C)[18-20], but could 

be due to the initial rate in other studies being determined during only a few minutes of reaction on model 

substrates.  

The data obtained show that the stable nature of phenoxy radicals enables real time measurement of 

laccase catalyzed radical formation in lignin suspensions by EPR analysis [25,32].  The EPR methodology 

lends itself directly to assess enzyme kinetic parameters of laccases acting on lignin e.g. the maximum 

catalytic conversion rate, kcat, defined as number of substrate molecules converted per second per enzyme, 

provided that the number of substrate molecules is counted as equivalent to each radical generated. 

However, measurement of e.g. substrate affinity, KM, defined as the substrate concentration at which the 

enzymatic rate is half of the maximal attainable rate (Vmax), is limited by the current general analytical 

complexity of structural lignin characterization, including analytical resolution of lignin surface chemistry. 

Integration of EPR analysis of laccase attack on lignin with advanced lignin analyses, e.g. multidimensional 

NMR and coherent anti-Stokes Raman scattering analyses combined with molecular dynamics simulations 

(methods that have been suggested promising for providing improved atomic level understanding of lignin 

33) may provide new insights into lignin reactivity and how laccases function on lignin. For now, the 

obtained linearity of the relations between initial rates and laccase doses in the present work verifies that 

EPR monitoring of laccase action on lignin suspensions can be used as a real time assay to determine 

laccase activity on genuine lignin substrates.  

Conclusion 

Previous studies examining radical formation in lignin or fibres during laccase treatment have mainly 

applied approaches of drying or freezing of sample prior to EPR spectroscopy measurements. The method 

applied in this study was based upon real time measurement on lignin suspensions during laccase action 
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thus providing quantifiable kinetic information about the activation of lignin during laccase treatment 

without addition of mediators. The initial rate of radical formation as a result of increased laccase dose was 

significantly higher for Mt laccase, while the TV laccase was superior in generating the highest radical 

concentration after extended reaction, but at a slower rate. The suggested method was also successfully 

demonstrated to be applicable for establishing optimal pH and temperature conditions for laccase 

catalysed formation of radicals in lignin. A smaller particle size, did not appear to have an impact on the 

rate of radical formation, as wheat straw lignin residue having the largest particle size also displayed the 

highest enzymatic radical formation rate. It is still debated how laccases participate in lignin degradation 

and how they interact with lignin, whether it is by direct interaction with the lignin polymer or by means of 

small mediators naturally occurring in the substrate or compounds added to the system. The present 

development of a laccase assay based on lignin as substrate can hopefully help in providing new knowledge 

that improves the understanding of laccase action on lignin biomass to pave the way for harnessing 

laccases for development of new lignin upgrading processes.  
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Figure legends 

Figure 1. Overlay of EPR spectra showing signal response over time of suspensions (10 wt% solid) measured 

at varying time points during laccase treatment with Tv and Mt laccase (2U/g DM biomass).  

Figure 2. Left column a): Overlay of EPR spectra from each suspension (red) and supernatant (green). All 

EPR spectra measurements shown are after 30 min of laccase treatment. Right column (b-d): Concentration 

of radicals in b) BOL c) SOL and d) WSL as a function of time during laccase treatment of suspensions, Mt lac 

( ), Tv lac ( ) and corresponding supernatants Mt lac( ), Tv lac ( ). Laccase dose was 2U/g solid.  

Figure 3. Kinetics of radical formation during laccase action on lignin with: Tv lac (a-c) and Mt lac (d-f) of 
BOL (a, d) SOL (b, e) and WSL (c, f). Laccase was administrated in three doses 2U/g solid ( ), 1U/g solid ( ), 
and 0.5U/g solid ( ). 
 
Figure 4. Initial rates of laccase catalyzed formation of radicals as a function of laccase dose a) Tv lac, b) Mt 
lac on WSL ( ), SOL ( ), BOL ( ). 
 
Figure 5. The contour plot and the response surface plot of the radical formation rate on BOL catalysed by 
Tv laccase (2 U/g) as a function of pH and temperature (°C).  
 

Figure 6. The contour plot and the response surface plot of the radical formation rate on BOL catalysed by 
Mt laccase (2 U/g) as a function of pH and temperature (°C).  
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Table 1. EPR g-values of the lignin suspensions and supernatants  

Standard deviations varied from 10-5-10-4   

 
Suspension Supernatant 

 
BOL SOL WSL BOL SOL WSL 

Tv lac 2.0050 2.0046 2.0047 2.0050 2.0049 2.0048  

Mt lac 2.0049 2.0046 2.0047 2.0051 2.0050 2.0048  
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Table 2. Slopes calculated by linear regression of linearity between the initial rates (vi) of radical formation 

in BOL, SOL and WSL versus doses of Tv and Mt laccase, for amount of the lignin substrate (Solid DM) and 

after adjustment in response to Klason lignin. All slopes had a correlation coefficient corresponding to a 

value of R2≥0.997 and standard deviations were in the range of 0.01-0.08. The significant differences 

(p≤0.05) between the slopes column-wise are shown as superscripted letters (a-c) and significant difference 

(p≤0.05) between the slopes row-wise are shown as superscripted letters (x-y). 

 
Dose based on Solid DM Dose accounted for Klason lignin 

 
vi/Tv dose vi/Mt dose vi/Tv dose vi/Mt dose 

BOL 0.66a,x 1.01a,y 0.57a,x 0.88a,y 

SOL 1.03b,x 1.36b,y 0.98b,x 1.28b,y 

WSL 1.24c,x 2.09c,y 0.54a,x 0.91a,y 

 

 


