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Transient flows in active porous media

Lefteris I. Kosmidis and Kaare H. Jensen*

Department of Physics, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
(Received 3 February 2017; published 26 June 2017)

Stimuli-responsive materials that modify their shape in response to changes in environmental conditions—such
as solute concentration, temperature, pH, and stress—are widespread in nature and technology. Applications
include micro- and nanoporous materials used in filtration and flow control. The physiochemical mechanisms that
induce internal volume modifications have been widely studied. The coupling between induced volume changes
and solute transport through porous materials, however, is not well understood. Here, we consider advective
and diffusive transport through a small channel linking two large reservoirs. A section of stimulus-responsive
material regulates the channel permeability, which is a function of the local solute concentration. We derive an
exact solution to the coupled transport problem and demonstrate the existence of a flow regime in which the
steady state is reached via a damped oscillation around the equilibrium concentration value. Finally, the feasibility
of an experimental observation of the phenomena is discussed.

DOI: 10.1103/PhysRevE.95.062608

I. INTRODUCTION

Fluid flow and convective solute transport in porous media
and confined channel geometries are ubiquitous in nature
and technology. Interesting phenomena arise when channel
walls and solid structures are themselves active, for instance
when the presence of solutes influences the channel geometry
and hence permeability to fluid flow. Man-made examples
include sensing and actuation in microfluidic systems using
stimuli-responsive hydrogels [1]. Responsive biomaterials are
found, for example, in the phloem and xylem vascular systems
of plants, where neighboring cells are separated by planar
membranes covered with pores that respond to changes in
concentration of chemical signals [2,3]. The stimuli that
induce changes in these synthetic and natural materials have
been widely studied. However, the coupling between induced
volume changes and advective solute transport in porous
materials is not well understood.

In this paper, we investigate the transient nature of advective
transport in active porous media. We study a one-dimensional
system in which the advective solute transport speed is coupled
to the concentration field. Numerical investigation of the model
reveals the existence of a flow regime in which the steady state
is reached via a damped oscillation around the equilibrium
concentration value. We derive an exact solution using per-
turbation theory and show that the flow dynamics depends
primarily on the ratio of advective to diffusive transport
time scales (the Peclet number, Pe). Above a critical Pe
value, damped oscillations occur in both the velocity and
concentration fields. Finally, we propose an experimental
design to test the theoretical predictions.

II. FLOWS IN ACTIVE POROUS MEDIA

Stimulus-responsive hydrogels have been a topic of ex-
tensive research in the past few decades [1]. Their ability
to modify their internal structure based on external stimuli
allows for dynamic control over flows in biological [2,3]
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or man-made systems [1,4] (Fig. 1). Responsive hydrogels,
i.e., hydrophilic polymers embedded and cross-linked into
hydrophilic structures [4], can respond to a broad range
of stimuli, e.g., pH [5–13], temperature [14,15], individual
molecules (chemically driven) [16–19], shear stress [20–25],
etc., that trigger a change of material properties. In pH-
induced responses, hydrogel swelling and deswelling occurs
when polymers are ionized by the dynamically changing
environmental pH [5]. Hence, the charge buildup results in
an electrostatic force generation within the hydrogel that ulti-
mately leads to absorbance or expulsion of water [6,7]. Other
workers have investigated temperature-dependent hydrogels
utilizing the critical solubility temperature with applications
in drug delivery [14] and tissue engineering [15]. Hydrogels
also exhibit responsive behavior to chemical stimuli such
as glucose by entrapping glucose oxidase enzymes in the
hydrogel structure [16]. Another group of stimulus-responsive
hydrogels are known to respond to mechanical stress. Two
subgroups that emerge are materials with shear thinning or
shear thickening behavior due to the viscoelastic nature of
systems comprised of polymers, an intermediate material
state at the interface between liquids and solids [20,21].
Applications of shear stress responsive hydrogels include,
among others, drug delivery and wound repair [22–25].

In summary, the physiochemical factors that induce volume
changes in stimulus-responsive materials are well understood.
By contrast, less is known about the coupling between fluid
flow, solute advection, and stimulus response in these systems.

III. MODEL

To elucidate the transient behavior of flow in active porous
media, we consider flow in a long and narrow channel of
constant cross section aligned with the horizontal X axis
linking two large reservoirs (Fig. 2). The channel has length
L, width w � L, and height h � L, and a short section of
active porous media is located at X = X0 < L. The right
reservoir (X = L) is kept at constant concentration C0, while
the left reservoir (X = 0) contains no solute. This drives a
diffusive flux −D∇C in the channel, where D is the diffusion
coefficient. The right reservoir (X = L) is kept at constant
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FIG. 1. Examples of active porous media in nature and tech-
nology. (a),(b) Sketch and electron micrographs of hydrogel-coated
pores that separate xylem conduits in vascular plants. (c) The flow
rate Q through the conduits depends on the concentration of KCl,
which influences the hydrogel permeability. Lines represent flow
through different xylem samples. (d),(e) Sketch and micrographs of
a concentration-dependent microfluidic valve. The valve comprises
pH-sensitive hydrogel posts that shrink and swell in response to local
pH. Panel (b) adapted from [26], (c) from [2], and (d),(e) from [27].
Reproduced with permission from copyright holders.

pressure p0, while the left reservoir (x = 0) is at a higher
pressure p0 + �p. We assume the advective flow speed in the
channel v follows Darcy’s law, v ∼ κ�p/(ηL), where κ is the
channel permeability and η is the viscosity. To model the active
porous media, we assume that the dependence of the channel
permeability κ on solute concentration c can be expressed as
κ = κ0C(X0)/C0. The hydraulic conductivity is proportional
to the concentration at the location of the active porous media,
X0, such that high solute concentration evokes deswelling of
the post valves while low concentration leads to an increase of
post valve volume (Fig. 2).

The transport of solutes in the channel is governed by the
advection-diffusion equation

∂T C + v · ∇C = D∇2C, (1)

where T is time, v is the velocity field, and D is the diffusion
coefficient. We reduce the spatial complexity by considering
the limit where the concentration only varies along the X

axis, i.e., C(X,Y,Z,T ) = C(X,T ). This assumes that the time
for transverse diffusion is smaller than axial diffusion and
advection times. Specifically, we require that h2/D and w2/D

are smaller than L2/D and L/v. In terms of geometric and
flow constraints, this can be expressed as the channel having
a sufficiently small aspect ratio (h2/L2 and w2/L2 < 1) and
that the flow speed v is sufficiently slow to allow for transverse
diffusive equilibration h2/L2 and w2/L2 < D/(vL).

With the aforementioned assumptions, Eq. (1) reduces to a
one-dimensional equation for the concentration C(X,T ) in the

FIG. 2. Schematic illustration of the system. A small channel of
length L, width w, and height h link two large reservoirs. Differences
in pressure (�p) and solute concentration (�C = C0) drive advective
and diffusive transport of solute in opposite directions through the
channel (large arrows). The active porous media pillars located at X0

swell and shrink in inverse proportion to the local solute concentration
(inset). This coupling between flow and concentration is modeled by
concentration-dependent Darcy permeability κ = κ0C(X0)/C0.

channel

∂T C + κ0�p

ηL

C(C0)

C0
∂XC = D∂2

XC. (2)

The boundary conditions are

C(0) = 0, C(L) = C0. (3)

For convenience we introduce the nondimensional variables

x = X/L, c = C/C0, and t = T (D/L2). (4)

The dimensionless governing equation is

∂tc + Pe c(x0)∂xc = ∂2
x c, (5)

where x0 = X0/L and we have introduced the dimensionless
Peclet number Pe = v0L/D. Here, v0 = κ0�p/(ηL) is the
maximum reference velocity. The Peclet number characterizes
the relative contribution from advective and diffusive transport.
The boundary conditions in Eq. (3) become

c(0) = 0, c(1) = 1. (6)

In the following, we consider the initial condition corre-
sponding to an empty channel:

c(x,0) = 0, (7)

and we study the transient dynamics of the system. Before
proceeding, however, we briefly discuss the steady-state
solution cs(x) to Eq. (5) and the system behavior when Pe � 1.

A. Steady-state solution

When ∂tc = 0, Eq. (5) reduces to

Pe γ ∂xcs(x) = ∂2
x cs(x), (8)

062608-2
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FIG. 3. Oscillations in active porous media at high Pe. Kymographs of the transient evolution of the solute concentration c(x,t) in the pipe
for Peclet numbers increasing from left to right: Pe = 1 (a), Pe = 10 (b), and Pe = 100 (c). The active porous media is located at x0 = 0.25.
Colors indicate concentration (dark blue: c = 0, dark red: c = 1).

where we have introduced the parameter γ = cs(x0), the
steady-state concentration at x0. The solution to Eq. (8) with
boundary conditions (6) is

cs(x) = ePe γ x − 1

ePe γ − 1
. (9)

The parameter γ = cs(x0) can be determined as a function of
the system parameters (Pe and x0) by solving the transcenden-
tal equation

γ = ePe γ x0 − 1

ePe γ − 1
. (10)

When Pe � 1, we find that c(x) = x and γ = x0. Taking the
limit Pe � 1 leads to log γ /γ = Pe(x0 − 1)

B. Solution in a diffusion-dominated system

When diffusion dominates, the Peclet number Pe � 1. In
that limit, the solution to Eqs. (5) and (6) is

c(x,t) = x + 2

π

∑
n

(−1)n

n
exp−n2π2t sin(nπx). (11)

Equilibrium is approached exponentially on the time scale set
by the slowest mode (n = 1). The system is within 5% of the
steady-state solution when t � 3π−2 � 0.3.

IV. RESULTS

A. Numerical simulation

To reveal the transient nature of flow in active porous media
(Fig. 2), we ran simulations of Eqs. (5)–(7) for a range of
values for Pe and x0. For relatively low Peclet numbers—
corresponding to a diffusion-dominated system—the steady
state is reached asymptotically with nondimensional relaxation
time τ ∼ 0.3 [Figs. 3(a) and 3(b)]. The behavior of the system
is thus in accord with a purely diffusive process [Eq. (11)],
where equilibrium is approached exponentially on a similar
time scale.

By contrast, for large values of the Peclet number Pe above
unity, the characteristics of the system change in two respects.
First, the steady state is reached on a time scale that decreases
with increasing Pe. Second, for large Pe the approach to
equilibrium follows a damped oscillation [Fig. 3(c)], indicating
a qualitative deviation from the asymptotic approach to
equilibrium in Eq. (11) and Fig. 3(a).

To further elucidate the characteristics of the oscillations,
we studied the temporal evolution of a small disturbance to
the steady state. We thus added a weak Gaussian perturbation
to the steady-state solution [Eq. (9)] at an arbitrary position
xp within the domain, and we studied the approach to
equilibrium. The amplitude of the perturbation was less than
3% of the steady-state value. After the initial perturbation had
decayed, we observed an approximately decaying harmonic
time dependence of the disturbance at the position xobs, i.e.,

c(xobs,t) − cs(xobs) ∝ e−(kr+iki )t , (12)

where cs is the steady-state concentration given in Eq. (9).
In Eq. (12), kr and ki are the real and imaginary parts of
the complex wave number k, corresponding to decay time
∼k−1

r and oscillation period ∼2πk−1
i . We thus extracted kr and

ki from the numerical simulations by curve fitting using the
FMINSEARCH package of MATLAB (The Mathworks, Inc., MA).
Neither the position of the perturbation xp nor the observation
location xobs appeared to influence the magnitude of the wave
number k significantly. However, we chose the parameters
to avoid overlap between the position of the active porous
material x0 and xp and xobs. Finally, we found that while
oscillations are present when the position is to the right of
the channel centerline (x0 > 1/2), they decay rapidly and a
sum of at least two decaying exponentials is necessary to
provide a satisfactory curve fit. In the following, we thus
restrict ourselves to the case x0 < 1/2.

Having extracted the wave number k = kr + iki from the
numerical simulations, we studied k’s dependence on the
relative importance of advection and diffusion (Fig. 4). When
the Peclet number is relatively small, we found kr � 10 and
ki = 0, in accord with Eq. (11), which predicts kr = 12π2 �
9.87 and ki = 0. The simulations further revealed that the onset
of oscillations occurs at a critical value of the Peclet number
Pec. For the case x0 = 1/4 shown in Fig. 4, Pec � 20. Note
that the magnitude of the critical Pec varies depending on the
location x0 of the active porous media in the channel (see also
Fig. 6).

The physical mechanism that triggers the onset of oscil-
lations can be interpreted as follows: when the system is
perturbed away from the steady state cs(x), the concentration
at x0, i.e., c(x0), will shift either up or down as solute is
transported by convection through the domain. This directly
influences the advective flow speed, which is proportional to
the local concentration at that point, v ∝ c(x0)/c0. Diffusion
will counteract this process, eventually returning the system
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FIG. 4. Onset of oscillations in active porous media with increas-
ing Pe. The real (dots) and imaginary (circle) wave number k plotted
as a function of Peclet number Pe for x0 = 0.05 (a), x0 = 0.25 (b),
and x0 = 0.45 (c). For x0 = 0.25 [panel (b)], the oscillations appear
at Pe � 20 where the first nonzero ki is found. Data points were
determined from fits to numerical data (Fig. 3) using Eq. (12). Thick
solid lines show results from the analytical solution in Eq. (21). Thin
dashed lines indicate the low-Pe limit in Eq. (24).

to the steady state cs(x). However, if the advective transport
is sufficiently strong, advection can push the system into a
state in which the concentration gradients become so great
that the concentration c(x0) overshoots its equilibrium value
as diffusion counteracts advection. The process repeats itself—
with a progressively smaller amplitude—until the steady state
is restored.

B. Analytic solution

To rationalize the observed onset of oscillations at high
Peclet numbers (Figs. 3 and 4) and their dependence on the
system parameters, we proceed to consider the evolution of
the perturbed system. Considering a small deviation from the

steady state cs(x), we write

c(x,t) = cs(x) − c1(x,t), (13)

where we assume the perturbation c1 � cs . We further assume
that the perturbation has a harmonic time dependence

c1(x,t) = e−ktg(x), (14)

where k = kr + iki is the complex wave number with kr > 0,
and g(x) is an unknown function of x. Substitution of Eqs. (14)
and (13) into Eq. (5) leads to a spatial equation for g(x),

g′′(x) − Pe γg′(x) + kg(x) = Pe2 γ

ePe γ − 1
ePe γ xg(x0), (15)

where the prime denotes derivative with respect to x. The
boundary conditions are

g(0) = 0, g(1) = 0, g(x0) = 1, (16)

where we have eliminated quadratic terms in g. Note that
g(x0) is an arbitrary constant that defines the strength of the
perturbation, chosen here as unity.

Equation (15) is solved following the method of Pedley
and Fischbarg [28], who analyzed a similar problem related to
transient flows near osmotic membranes. A particular solution
to the inhomogeneous equation is gi(x) = λ exp (Pe∗x), while
the homogeneous solution is gh = exp (Pe∗x/2)(A cos ζx +
B sin ζx). Here, we have introduced the parameters

Pe∗ = Pe γ, (17a)

λ = 1

k

Pe∗2

γ (ePe∗ − 1)
, (17b)

ζ = 1

2

√
4k − Pe∗2. (17c)

The complete solution to (15) is

g(x) = λePe∗x + e
Pe∗ x

2 (A cos ζx + B sin ζx). (18)

To determine the constants A and B, we apply the boundary
conditions

g(0) = 0, g(1) = 0, g(x0) = 1, (19)

which after substitution become

λ + A = 0, (20a)

λePe∗ + e
Pe∗

2 (A cos ζ + B sin ζ ) = 0, (20b)

λePe∗ x0 + e
Pe∗ x0

2 (A cos ζx0 + B sin ζx0) = 1. (20c)

By eliminating A and B, we find an eigenvalue equation
for the wave number k:

λe
Pe∗ x0

2

[
e

Pe∗ x0
2 − cos ζx0 + sin ζx0

sin ζ
(cos ζ − e

Pe∗
2 )

]
= 1.

(21)

To test the validity of our solution, we compared the
predictions from Eq. (21) with numerical data. For a given
set of parameters (Pe,x0) we thus determined the solution to
Eq. (21) with the smallest real part of k, corresponding to the
slowest decaying mode. The solutions to Eq. (21) are in good
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FIG. 5. Eigenfunctions corresponding to Eq. (22) for x0 = 0.25
shown for Pe = 1 (thick solid line) and Pe = 100 (dashed line). The
real part is shown in panel (a), while panel (b) shows the imaginary
part. The real eigenfunction [panel (a)] approaches g ∼ sin πx in the
limit Pe → 0 (thin solid line), in accord with Eq. (11).

agreement with the numerically extracted eigenvalues (Fig. 4).
The eigenfunction is

g(x) = λ

{
ePe∗ x + e

Pe∗ x
2

[
− cos ζx +

+
(

cot ζ − e
Pe∗

2

sin ζ

)
sin ζx

]}
, (22)

shown in Fig. 5. We note that the spatial eigenfunctions in
Eq. (22) are consistent with Eq. (11) when Pe is relatively
small.

C. Critical Pe for the onset of oscillations

To elucidate the conditions under which damped oscil-
lations occur in our system, we extracted a phase diagram
(Fig. 6) from the eigenvalue equation (21). Oscillations in
the mode associated with the smallest real eigenvalue can
occur for values for the Peclet number at or above Pe � 18,
depending on the position of the active porous media x0. This
suggests that advection should be nearly 20 times stronger
than diffusion to obtain oscillations. However, because of
the coupling between the permeability of the porous media,
κ = κ0c(x0)/c0 = κγ , and concentration c(x0), we can write
for the flow speed v = κ�p/(ηL) = γ v0. This implies that
the physically relevant Peclet number is Pe∗, given by

Pe∗ = v

v0
Pe = γ Pe. (23)

Replotting the phase diagram using the rescaled Peclet number
Pe∗ reveals that the onset of oscillations occurs when advection
is two to four times stronger than diffusion.

(a)

(b)
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0
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0

0.2
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Pe∗
x

0
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FIG. 6. Phase diagrams showing the system behavior as a
function of the Peclet number Pe, panel (a)] and the rescaled Peclet
number Pe∗, panel (b)] and the position of the active porous material
x0. Blue dots indicate the absence of oscillations (ki = 0), while
red circles correspond to parameter choices at which oscillations are
observed. The onset of oscillations occurs at or above Pe � 18 and
Pe∗ � 2, depending on the location of the active porous material x0.

Oscillations are found in the numerical simulations for x0 >

1/2. As noted earlier, however, they decay rapidly and a sum
of at least two decaying exponentials is necessary to provide
a satisfactory curve fit. By extracting the three smallest roots
of Eq. (21), we found that for x0 > 1/2 the oscillations are
no longer associated with the mode with the smallest real
eigenvalue. Oscillations are found, however, in higher-order
solutions to Eq. (21), an observation that provides a qualitative
rationale for the numerical results.

D. Small-Pe expansion

We end this section by deriving an analytical expression for
the solution to Eq. (21) for small Pe. Taking the limit Pe � 1
in Eq. (20) leads to λ = Pe/k and ζ = √

k. Inserting this into
Eq. (21) and assuming that we can write the eigenvalue as a
power series in Pe, k1/2 = a0 + Pe a1 + O(Pe2) with a0 = π

gives an analytical expression for the eigenvalue k at low Pe,

k(Pe,x0)1/2 = π + 2 Pe
sin(πx0)

π2
+ O(Pe2). (24)

The approximate expression in Eq. (24) is in reasonable accord
with the solution to Eq. (21) for Pe � 10 (Fig. 4).

V. DISCUSSION AND CONCLUSION

A relatively complete picture of the factors that influence
transient flows in active porous media has emerged. First
and foremost, we have demonstrated the existence of damped
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oscillations in the flow within a channel linking two reservoirs
(Fig. 2). The oscillations in solute concentration and liquid
flow speed are the result of a coupling between solute
concentration c and the permeability of the channel, controlled
by the swelling and shrinking of a stimulus-responsive material
located at the position x0 in the channel. Damped oscilla-
tions occur when the advective transport ∼vc is sufficiently
great to overcome diffusive transport ∼Dc/L, i.e., when
the Peclet number Pe∗ = vL/D is greater than a critical
value, which varies in the range from Pe∗ � 2 to Pe∗ � 4,
depending on the location of the active porous material x0

(Fig. 6).
To observe the damped oscillations in a laboratory setting,

we propose an experiment based on the system in Fig. 2. In a
channel of length L = 1 mm, the characteristic diffusive time
is td = L2/D = 2 × 103 s, where we have used the diffusion
coefficient D = 5 × 10−10 m2/s of the dye carboxyflourescein
[29]. With a stimulus-responsive hydrogel valve located at
x0 = 0.25 mm operated at a moderate Peclet number of
Pe∗ = 4 (Pe = 100), we find kr ∼ 30 and ki ∼ 20. This
corresponds to an oscillation period of Tosc = 2πk−1

i td �
630 s while the decay time is τ = 3tdk

−1
r � 200 s. At least

the first half-period should be observable for this choice of
parameters. For a slightly lower forcing Pe∗ = 2 (Pe � 30), we
find kr ∼ 30 and ki ∼ 10 corresponding to oscillation period
Tosc � 1300 s and decay time τ � 200 s. For water flowing
in a channel of width w = 300 μm and height h = 100 μm,
these flows would require pressure differentials of �p = 0.077
and 0.023 Pa, respectively [30]. These pressure differentials,
in the absence of post valves, would generate flow velocities
v0 = PeD/L = 50 μm/s and v0 = 15 μm/s for Pe = 100 and
30, respectively. However, due to the reduced conductance
imposed by the hydrogel structures, the effective velocity for
Pe∗ = 4 is v = 2 μm/s and for Pe∗ = 2 it is v = 1 μm/s,
in accord with the geometric and flow-speed assumptions
leading to the one-dimensional model in Eq. (2). In summary,
it does not appear technically unfeasible to experimentally
validate the existence of damped oscillations in active porous
media.
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