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Abstract: This paper deals with quantifying the resilience of a network of pavements. Calculations were 9 

carried out by modeling network performance under a set of possible damage-meteorological scenarios 10 

with known probability of occurrence. Resilience evaluation was performed a priori while accounting 11 

for optimal preparedness decisions and additional response actions that can be taken under each of the 12 

scenarios. Unlike the common assumption that the pre-event condition of all system components is 13 

uniform, fixed, and pristine, component condition evolution was incorporated herein. For this purpose, 14 

the health of the individual system components immediately prior to hazard event impact, under all 15 

considered scenarios, was associated with a serviceability rating. This rating was projected to reflect 16 

both natural deterioration and any intermittent improvements due to maintenance. The scheme was 17 

demonstrated for a hypothetical case study involving Laguardia Airport. Results show that resilience 18 

can be impacted by the condition of the infrastructure elements, their natural deterioration processes, 19 

and prevailing maintenance plans. The findings imply that, in general, upper bound values are reported 20 

in ordinary resilience work, and that including evolving component conditions is of value. 21 
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Introduction and Motivation  25 

Networked civil infrastructures, such as transportation, water, and energy systems, are essential to the 26 

functioning of any modern society, and therefore must be resilient. Numerous works have focused on 27 

the development and quantification of resilience metrics, and some have proposed normative models for 28 

such systems. Common to their definitions is a concept of system-level coping capacity under multi-29 

component damage due to, for example: extreme meteorological conditions, geological hazards, and 30 

human-made events of an accidental or intentional nature. Damage to the system may also originate 31 

from less extraordinary events. In this context, resilience is generally conceived in terms of the system’s 32 

ability to absorb damage thus continuing to serve the intended purpose, and recover within an acceptable 33 

time and cost (e.g., Holling 1973; Haimes 2009; The White House 2015; National Infrastructure 34 

Advisory Council 2015). 35 

An underlying and typically unstated assumption in treating resilience is that the pre-event 36 

condition of all system components is uniform, fixed, known, and pristine. This means that resilience 37 

evaluations are, in effect, specific to the pre-event condition assumed at the moment of analysis as if the 38 

damage events were imminent. In reality, at a given point in time, the level of ‘health’ across components 39 

is uneven, with some offering a reduced inherent ability to endure damage. That is, infrastructure 40 

component integrity evolves over time. Two main governing and competing factors determine 41 

infrastructure integrity: (i) Progressive condition deterioration under usual service as a result of the 42 

combined effects of physical and environmental loading (i.e. “wear-and-tear” and aging), and (ii) 43 

Maintenance activities that aim for partial or complete condition renewal, or merely for slowing the 44 

natural deterioration rate (i.e., preventative). Based on a thorough review of the literature (Faturechi and 45 

Miller-Hooks 2015) which scanned over 200 articles, it appears that other than two works by Dehghani 46 

et al. (2013, 2014), no prior work on resilience or related performance measure computation has 47 

explicitly accounted for non-pristine integrity, timewise evolution, and subsequent unevenness in system 48 

component conditions. Dehghani et al. (2014) assessed expected network performance in terms of 49 

vehicle miles traveled and other devised vulnerability metrics over multiple randomly generated generic 50 

disruption scenarios involving link failures. Both papers discuss the need for condition-based 51 

vulnerability assessment as advocated herein, or more specifically, the need to incorporate each 52 

element’s condition in replicating link failure probabilities. Their application in (Dehghani et al., 2014) 53 
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on a hypothetical example demonstrates that a range over network performance results from assuming 54 

different link probability failure distributions (i.e. all link failures are either uniform, beta or normal). 55 

Herein, this general idea of a need for condition-based assessment is furthered.  56 

This work proposes and demonstrates a condition-based resilience quantification methodology 57 

that incorporates component-condition evolution in a systems-based analysis. Resilience calculations, 58 

which may include resilience enhancing preparedness and response actions, are carried out under a set 59 

of possible damage-meteorological scenarios with known probability of occurrence. Each scenario 60 

consists of hazard type identification, meteorological state, number of affected segments (damage 61 

extent), and damage severity in terms of required repair duration and resources. The evaluation is 62 

performed a priori while accounting for optimal response actions that can be taken under each of the 63 

scenarios; preparedness actions that improve resilience are also optimized. To account for condition 64 

evolution, the health or integrity level of the individual system components immediately prior to hazard 65 

event impact (under all considered scenarios) is associated with a serviceability rating. This rating is 66 

projected to reflect both usual deterioration and policy-guided improvements due to maintenance. 67 

Impacts from generated damage-meteorological events are made to depend on the pre-impact 68 

serviceability ratings, exemplifying the added vulnerability of deteriorated components. The 69 

quantification scheme also captures the increased damage extent, extra repair costs, and longer repair 70 

times due to pre-event non-pristine conditions.  71 

Hereafter, pavement condition and its expression through serviceability is first described. Then, 72 

an existing concept of resilience is restated and subsequently expanded to incorporate component 73 

serviceability rating. The formulation is applied next to an airport case study to demonstrate the value 74 

and effect of including natural deterioration and maintenance policies in resilience quantification. 75 

Lastly, gained insights and main conclusions of the study are listed and discussed. It is important to note 76 

that the applicability of the concepts and general methodology presented herein transcend this 77 

pavements application, generally applying to a system of components whose conditions differ, 78 

deteriorate over time and are influenced by maintenance and/or replacement actions. Specific models of 79 

deterioration/serviceability, maintenance or renewal planning, or system resilience as throughput or 80 
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other will differ based on the use, but the framework is designed to be generally applicable. Moreover, 81 

it accounts for the system impacts of multiple link-based maintenance and resilience enhancements. 82 

 83 

Pavement Condition Evolution 84 

The Serviceability Concept 85 

Without repair actions, pavements progressively deteriorate with time. The decline is directly associated 86 

with structural or physical damage involving distress modes, such as: rutting, cracking, longitudinal 87 

roughness, and raveling. It therefore represents a timewise diminishment in coping capacity against 88 

damage events of operational (e.g., overloading), natural (e.g. flooding), or other causes. The 89 

degradation pattern is case-specific as it depends upon the pavement design, as-built mechanical 90 

properties of the different layers, traffic intensity, and prevailing climatic conditions. 91 

The concept of serviceability is often employed in the pavement arena for quantifying 92 

infrastructure condition. The idea was introduced and developed during the 1960’s in conjunction with 93 

the AASHO road experiment (Carey and Irick 1960). In this experiment, different full-scale road 94 

sections were intensively trafficked for a period of two years by trucks of known weight, axle 95 

configurations, and travel speed. At the same time, the evolution of surface distress was closely 96 

monitored and recorded. A serviceability rating in the range of 5 (=pristine) to 0 (=worst possible), was 97 

adopted to quantify the condition of each road section from a user and structural perspective. Initially, 98 

the rating was based upon a subjective visual score given by a group of experts examining the ride 99 

surface (Present Serviceability Rating, PSR); it was later correlated with objectively measurable damage 100 

such as density of cracked or patched zones, longitudinal roughness, etc (Present Serviceability Index, 101 

PSI). In the AASHO road test, a power-law expression was found adequate for all pavement types to 102 

describe the evolution of serviceability as a function of traffic loadings: 103 



 









W
SSSS fii )( ,    (1) 104 

where S  denotes the current serviceability rating, iS  is the initial serviceability rating prevailing 105 

immediately after construction, fS  is the final or unacceptable serviceability rating, and W  is the 106 
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cumulative number of equivalent vehicle passes applied to the section up to point for which S  is 107 

calculated. In effect, if the traffic intensity is timewise uniform, W  may be seen as equivalent to age. 108 

The parameters   and   are regression constants that embody the experimental setup, such as 109 

pavement layering arrangement and mechanical properties, prevailing environmental conditions, and 110 

loading characteristics of passing vehicles. By substituting fSS   it may be noticed that   equals the 111 

value of W at failure. Graphically, the deterioration pattern (i.e., the shape of S  vs. W  curve) depends 112 

upon the value of  ; for 1  the curve is an oblique line, for 1  the curve is concave, while for 113 

1  it is convex.  114 

The AASHO deterioration function is well recognized and still widely utilized in engineering 115 

practice. At the same time it is deemed restrictive, incapable of correctly matching observed long-term 116 

pavement behavior, mainly because its curvature never reverses as needed (Fwa 1990). This 117 

shortcoming was later rectified by considering a slightly different equation capable of producing an S-118 

shaped curve (Garcia-Diaz and Riggins 1984):  119 

 n

fi

i
t

SS
SS

)/(exp 


 ,    (2) 120 

wherein t  is the time since construction or time elapsed since most recent repair (i.e. when serviceability 121 

is iS ),   and n  are parameters controlling the deterioration pattern, analogous to   and   in Equation 122 

1. Note that fSS   is approached only at infinite time. By setting %100iS  (i.e., pristine) and 0fS  123 

(i.e., worst possible) the resulting serviceability curve can be viewed as a so-called survivor curve 124 

(Lytton 1987; Stampley et al. 1995).  125 

Plots of Equation 2 over a 25 year period are included in Fig. 1. Three different n  values (0.5, 126 

1.0, and 2.0) are considered in Fig. 1(a) for 7  years. Three different   values (5, 7 and 9 years) 127 

are considered in Fig. 1(b) for 1n . As can be seen, Equation 2 is able to describe a pavement that 128 

progressively deteriorates - while switching between three different degradation rates. Initially, for a 129 

certain time interval, the degradation rate is very small - allowing the pavement to practically remain in 130 

pristine conditions. Next, the deterioration rate increases, causing a relatively quick drop in 131 

serviceability. Finally, the deterioration rate is arrested, slowing the drop in serviceability. In both charts 132 

the solid line indicates an assumed benchmark case, associated with 1n  and 7  years. This 133 
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benchmark case depicts a realistic situation for a pavement with an initial serviceability rating of 100% 134 

that deteriorates to 50% serviceability after 10 years and to a rating of about 25% after 25 years. Two 135 

pavement damage pictures are superposed over the charts, each associated with a different serviceability 136 

level. The association is approximate, merely provided to exemplify the physical meaning of the curves. 137 

The purpose here is to intuitively reinforce the link between lower serviceability and infrastructure 138 

vulnerability to a hazard event.  139 

Also included in Fig. 1 are qualitative ratings of infrastructure condition, ranging from “Good” 140 

to “Failed”. The descriptive scale is identical to that employed in the Pavement Condition Index (PCI) 141 

method (ASTM D6433 or ASTM D5340), a scheme often used by pavement managers (Shahin 2005). 142 

For the purpose of the current work a PCI index may be used in place of a serviceability rating, i.e., they 143 

are interchangeable.  144 

Maintenance 145 

The curves in Fig. 1 essentially represent pavement condition under a no-maintenance situation. When 146 

maintenance is applied at some point in time, it changes the shape of the deterioration curve. First, 147 

rehabilitation activities appear as a sudden jump in the curve, i.e., an abrupt increase due to improved 148 

serviceability. Further, maintenance work alters the subsequent shape of the deterioration curve. 149 

Realistically, pavements cannot be preserved at their original as-built serviceability levels throughout 150 

the life of the system. Hence, some decline in performance is allowed in the different network 151 

components before taking repair actions. Policies for maintaining deteriorating systems have been 152 

studied extensively (not necessarily for the pavement discipline), with numerous proposed model types 153 

(Wang 2002), e.g., age-based, periodic/sequential, failure/performance/condition-based, cost limited, 154 

repair-duration limited, opportunistic, etc.  155 

In practice, pavement repair actions are scheduled according to a condition-based policy (Hajek 156 

et al. 2011; Air Force Civil Engineer Center 2014). Typically, a set of intervention rules is pre-stated, 157 

triggering a specific maintenance effort on the basis of the component condition level. An intervention 158 

rule associated with a high serviceability rating usually requires more frequent repairs but involves only 159 

preventive or minor rehabilitation. Triggering intervention at low serviceability levels typically implies 160 

that major and costly rehabilitation efforts are necessary. Research on this connection, e.g. Camahan et 161 
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al. (1987), Madanat and Ben-Akiva (1994), has generally focused on maximizing cost effectiveness by 162 

optimizing decisions, such as: (i) how frequently maintenance should be applied; (ii) to what condition 163 

a pavement should be allowed to deteriorate before action is taken; and (iii) what best maintenance 164 

alternative to take for a given situation. Contributions in this field have also attempted to integrate 165 

condition forecasting into the optimization. 166 

Fig. 2 depicts condition evolution for a pavement under a simplistic threshold-based 167 

maintenance policy. The abscissa represents time and the ordinate represents serviceability rating. 168 

Starting from an arbitrary “current” rating, the condition is seen to degrade with elapsed time until a 169 

predefined threshold level is reached ( %60S  in the case shown). This threshold designates a 170 

minimal acceptable serviceability rating for the infrastructure being considered. Repair intervention is 171 

therefore triggered, raising the rating to %100S . Then after, the pavement condition continues its 172 

decline, triggering a new repair intervention once the threshold is encountered again. This situation is 173 

repetitive/cyclic. The depiction in Fig. 2 is deemed simplistic, because it presumes that the deterioration 174 

curve has identical shape before and after repair, and because the pavement receives treatment at the 175 

exact designated timing - assuming all necessary resources are available for the repair. Without loss of 176 

generality, these simplifications are adopted for the current work. 177 

     178 

Resilience Definition 179 

The literature is replete with qualitative discussions and quantitative methods for measuring system 180 

resilience, as well as other related system performance metrics, including: risk, vulnerability, reliability, 181 

robustness, flexibility, survivability, etc. See Faturechi and Miller-Hooks (2015) for a synthesis of 182 

articles proposing such measures in the context of transportation systems alone. The concept of 183 

resilience as adopted and computed herein considers two main features: (i) the system’s innate ability, 184 

based on the physical properties and topology/connectivity of its components, to cope with a disruption 185 

event that causes physical damage and (ii) the system’s ability to adapt through quick, cost-effective 186 

actions that can preserve or restore post-event performance/functionality. Both features are depicted in 187 

Fig. 3, which schematically illustrates system performance vs. time before and after a disruption event; 188 

notice the time axis changes scale between pre- and post-event, from months (pre-disruption) to hours 189 



Resilience of Networked Infrastructure with Evolving Component Conditions: A Pavement Network Application 

7 

 

(upon disruption). As can be seen, the system’s post-event performance level after a time period with 190 

length 
maxT  is composed of two parts: (i) coping capacity - defined as performance level prevailing 191 

immediately after disruption; and (ii) adaptive capacity - defined as the improvement in performance 192 

level restored during 
maxT  for a given set of repair resources. Ultimately, resilience is defined with 193 

respect to a baseline. It is taken as the ratio of post-response system performance level at event time t  194 

to pre-event system performance level for link serviceability levels at base time zero.  195 

Fig. 3(a) illustrates the commonplace assumption of a system that is initially (and at all times) 196 

in pristine condition (e.g., Bruneau et al. 2003). On the other hand, Fig. 3(b) depicts a system with 197 

fluctuating performance. This latter case is the non-traditional viewpoint offered herein; it originates 198 

from evolving component conditions and varying component age. As can be seen, pre-event 199 

performance level for the system is imperfect, leading to poorer coping and adaptive capacities than 200 

seen in Fig. 3(a). 201 

A mathematical modeling approach proposed in Miller-Hooks et al. (2012) is used in this paper, 202 

wherein resilience is quantified through solution of a nonlinear, two-stage, stochastic program. The 203 

stochastic program seeks to maximize the expectation of an indicator representing the resilience of the 204 

network (throughput in this case) over possible disruption scenarios. That is, resilience actions are 205 

incorporated in the resilience computation, thus accounting for not only the innate coping capacity of 206 

the system, but also post-event adaptability in the disruption event’s immediate aftermath. Optimal 207 

mitigation and preparedness actions are determined in the first-stage prior to event realization, and 208 

scenario-dependent, optimal, remedial actions are chosen in the second-stage in the form of recourse. 209 

Recourse decisions are taken with full knowledge of how the event is realized. Availability, cost and 210 

implementation time of recourse options may also depend on the choice of preparedness actions. An 211 

integer L-shaped decomposition method is applied to provide exact solution for the problem. This 212 

method decouples first- and second-stage decisions, eliminating bilinear terms that are the root of the 213 

nonlinearity. 214 

As a means of introducing evolving component conditions into the resilience model, failure 215 

probabilities are associated with serviceability, the latter being governed by: age, normal deterioration 216 

curves, and maintenance policies. Specifically, the probability an adverse event will lead to component 217 
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failure depends on the component’s serviceability level at the event time, and the ability of the system 218 

to provide services depends on its functioning components. Moreover, the cost and time for 219 

implementing repair or other restorative options post-event are also functions of pre-event serviceability 220 

rating. If a component is deteriorated, the effort required to return it to pristine condition will be greater 221 

than if that component were not deteriorated. This is in part because the effectiveness of the restorative 222 

options will be diminished once the component has deteriorated to certain levels. This integration of 223 

component condition in resilience computation is described and demonstrated through a case study 224 

given next. 225 

 226 

Demonstration on Case Study 227 

Introduction and Design 228 

A specific case study is employed hereafter to demonstrate and assess the effects and value of 229 

incorporating evolving component conditions in resilience quantification. Use is made of a pavement 230 

system representing Laguardia Airport’s (LGA’s) taxiway and runway network. This choice builds on 231 

previous work (Faturechi et al. 2014), which was motivated by the fact that air transportation is one of 232 

fastest growing transportation modes worldwide. It is also driven by the particular sensitivity of airport 233 

operations to pavement condition. LGA contains two intersecting runways and supporting taxiways - as 234 

depicted in Fig. 4. These components and their interconnectivity are represented by a 68-node, 104-link 235 

network.  236 

Resilience of the LGA pavement network was computed in Faturechi et al. (2014) with an 237 

implicit assumption of pristine component condition (pre-event). Fig. 5 synopsizes the employed 238 

modeling approach, and the reader is encouraged to consult Faturechi et al. (2014) for full details. In 239 

general terms, the model involves identification of a set of potential directed paths through the airport 240 

network for maneuvers between the gates and takeoffs or landings. Despite that each runway can be 241 

used in two directions, within a given period of time, runway operations are unidirectional for safety 242 

reasons. Thus, the model forces a choice of direction, a so-called runway configuration, within a given 243 

time period. If an arc is damaged, its capacity to support the movement of an aircraft is zero; hence, only 244 

paths whose constituent arcs are undamaged or repaired can support flow.  245 
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Consequently, for a given budget B and response duration 
maxT  (see Fig. 3(a)), resilience is 246 

computed as the ratio max,TB
  of the expected number of landings and takeoffs to a comparable pre-247 

disruption flow rate given by demand 
swD ,

 for each maneuver w  and aircraft type s , over all disaster 248 

scenarios . As defined in Figure 5, )(,, swg

pf  is the flow rate of maneuver w  for aircraft type s  249 

in path p  under runway configuration g  and scenario  .   250 

 


  


sw
sw

swg
pPpsgw

TB D

fE swg

,
,

,,
,,~

,

)(,,

max





,    (3) 251 

The expectation is taken over a set of predicted disaster-meteorological event scenarios that may arise 252 

due to any one of a number of hazard event types, whether natural, accidental or malicious, with 253 

anticipated occurrence probabilities. First-stage decisions mitigate disaster impact and can support post-254 

event repair opportunities (e.g. availability of materials, repair equipment, trained crews, and contracts 255 

with external resources). These decisions are be taken a priori with the knowledge that second-stage 256 

recourse (repair) decisions will be taken optimally a posteriori given the available resources, and 257 

knowledge of how the disaster-meteorological event unfolds. 258 

An overview of the computational framework, specified for the case study, is given in Fig. 6. 259 

Similar to Faturechi et al. (2014), the scheme consists of three main modules: (i) scenario generation, 260 

(ii) mathematical modeling; and (iii) model solution. As part of the scenario generation, runway and 261 

taxiway link failure probabilities were made functions of serviceability as described in Equation 2. To 262 

capture serviceability levels as a function of component’s age and maintenance plan, serviceability 263 

ratings )(tS a
 were explicitly defined as a function of time t  for each runway or taxiway link a : 264 










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SS
StS


exp

)( ,    (4) 265 

where 
a
mt  is the time of last maintenance before time t  which has brought the serviceability of link a  266 

back to 
a
iS  at that time (

a
mtt   at all times). 

a
iS  is the initial serviceability condition typically taken as 267 

pristine, and 
a
fS  is the final (worst possible or ultimate) serviceability rating approached if no repair is 268 

applied typically taken as zero.  269 
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Each scenario is defined in terms of damage severity and type (climate/geological, operational, 270 

natural deterioration, and terrorism), along with current meteorological conditions in terms of 271 

temperature, precipitation and visibility conditions. Meteorological conditions are described in terms of 272 

temperature, visibility, wind velocity and precipitation, which might affect potential damage causes and 273 

types. The causes also affect damage location and distribution of damage in multiple locations over the 274 

pavement network. The likelihood of an event falling within any of these causal categories depends on 275 

the geographical characteristics of the airport. A host of damage-weather scenarios are possible. To 276 

capture correlations between damage characteristics and meteorological conditions, conditional 277 

probabilities are employed in generating scenarios. The probability of each scenario is assumed to be 278 

known a priori. Specifically, let )( 0ap , )|( 0 dp  , )|( mdp  and )(mp , be the probability of 279 

scenario 0 , probability of scenario given disruption type d , probability of disaster type  given 280 

meteorological condition m, and probability of meteorological condition m  for the given geographical 281 

location, respectively. Then, 282 

0( ) ( | ) ( | ) ( )ap p s d p d m p m    ,    (5) 283 

The failure probability )( tap   of link a , given disruption-meteorological event t  arising at 284 

time t , is related to )(tS a
 as follows: 285 

   )()(11,1min)( 0 a

a

ta ptScp  ,    (6) 286 

where )( 0ap  is the failure probability of link a  at 100% serviceability (i.e. under pristine conditions) 287 

for given event type. As can be seen, the sought failure probability is governed by a positive 288 

proportionality constant c . This is a newly introduced parameter that links serviceability ratings to the 289 

formulation. Higher values of c  infer greater influence of component condition on failure probabilities. 290 

Note that if c  is set large enough, it is possible that a probability greater than one would be generated; 291 

a ceiling of probability-one is therefore assumed. If %100)( tS a
 at all times, then the influence of 292 

c  is annulled, yielding the familiar assumption in the resilience literature: )()( 0 ata pp  . Similarly, 293 

the damage severity of link a  is captured through repair action implementation cost and time, which 294 

are also formulated as a function of the link’s serviceability level: 295 

   )()(11)( 0 a
a

ta btScb  ,    (7a) 296 
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   )()(11)( 0 a
a

ta qtScq  ,    (7b) 297 

in which )( 0ab  and )( 0aq  are implementation cost and time of repair actions in link a  with a 298 

serviceability rating of 100%. Their values depend on the event type. While the c  parameter was taken 299 

as identical across Equations 6 and 7, in a more general formulation this presumption may be relaxed.   300 

Given possible weather conditions and probability of their occurrences specific to LGA, 301 

disruption-meteorological events, resulting damage types (e.g. cracking, disintegration, distortion, loss 302 

of skid resistance), potential damage extent in terms of maximum number of affected segments, and 303 

repair actions required in each case were generated. Each disruption meteorological event gives a set of 304 

link failure probabilities which are used to randomly generate operational (one) or failed (zero) link 305 

states to create each disruption-meteorological scenario. An overview of the scenario generation process 306 

is given in Fig. 6. Conditional probabilities capture correlations between damage characteristics and 307 

meteorological conditions. Thus, the result of scenario generation is the set of disruption-meteorological 308 

events with one/zero values for link functionality and characteristics associated to that disruption event 309 

such as the required repairs, available repairs, etc. Ultimately, resilience was assessed at 6-month 310 

intervals over a 15-year time horizon during which network component conditions continually evolved. 311 

Case Study Specifics  312 

Presented in what follows are modeling details involved in resilience quantification of the LGA case 313 

study. First, a budget B  for emergency preparedness and response of $25,000 was assumed. Also, 314 

maxT  was set to 8 hours, and c  in Equations 6 and 7 was taken to equal 1.5 (in lieu of relevant 315 

information from other sources this choice was based on preliminary run results). Resilience is measure 316 

of a system’s innate coping capacity and ability to adapt when confronted with a challenge. Thus, 317 

resilience is conceptualized here to include adaptive actions that can be taken quickly and relatively 318 

cheaply. Higher monetary and time budgets can be used; however, a system that would require 319 

significant resources for continued operations might not be considered resilient. Benchmark 320 

deterioration curve parameter set was assumed to hold for both taxiways and runways; with reference 321 

to Equation 4 these are 1n  and 7  years. Two separate threshold-based maintenance plans (MPs) 322 

were considered. In MP1 rehabilitation actions are taken whenever runway serviceability reaches 80% 323 

and taxiway serviceability reaches 60%. This is consistent with a repair interval of about 4.0 and 7.5 324 



Resilience of Networked Infrastructure with Evolving Component Conditions: A Pavement Network Application 

12 

 

years, respectively. In MP2 the rehabilitation thresholds were 60% for runways and 40% for taxiways. 325 

Respectively, these imply repair intervals of about 7.5 and 13.5 years.  326 

With both MPs, runways are maintained at higher average levels than are taxiways. MP1 327 

imposes more stringent rehabilitation demands as compared to MP2, and represents an airport pavement 328 

network that is, on average, in better condition. Moreover, the age of each runway at the beginning of 329 

the resilience analysis period was randomly set given ~U[0,4.0] and ~U[0,7.5] years for MP1 and MP2, 330 

respectively. Similarly, the starting age of the taxiways was randomly set given ~U[0,7.5] and 331 

~U[0,13.5] years for MP1 and MP2, respectively. This procedure generated a realistic situation where 332 

the serviceability across the network is non-uniform. 333 

MP1 and MP2 parameters are summarized in Table 1 which lists the initial ages of the different 334 

network components, as well as their associated serviceability rating and maintenance threshold. As 335 

may be seen, taxiways were grouped based on their orientation relative to the runways: parallel and 336 

perpendicular. Such distinction has some operational implication that is captured (internally) by the 337 

model. Condition evolution of taxiways and runways according to MP1 is plotted in Fig. 7(a). Similar 338 

information for MP2 is included in Fig. 7(c). Each chart includes four lines, representing changes in 339 

infrastructure serviceability over a 15 year period. Starting levels are dissimilar per Table 1 values. As 340 

can be seen, full rehabilitation to pristine conditions is presumed after a threshold is encountered, 341 

generating a repetitive pattern. Because starting serviceability levels are different, and because the 342 

rehabilitation threshold for taxiways and runways are different, the condition of the system at any point 343 

in time is spatially nonuniform. 344 

Results and Analysis 345 

The resilience indicators for the case study, calculated through Equation 3, are presented in Fig. 7. Charts 346 

7(b) and 7(d) display resilience calculation outcomes associated with MP1 (Fig. 7(a)) and MP2 (Fig. 347 

7(c)), respectively. Each chart contains 31 values covering an analysis period of 15 years at 6-month 348 

intervals. The resilience values fluctuate due to differences in component conditions between the 349 

different evaluation times, and also because of the statistical nature of generating scenarios. Specifically, 350 

each point in the figure is computed from an average performance value over 360 randomly generated 351 

disruption-meteorological scenarios. Model runs might be repeated over additional sets of randomly 352 
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generated scenarios to produce a range of resilience estimates or a single expectation over a larger set 353 

of possibilities. 354 

Two horizontal lines are superposed on each resilience chart, forming bands that encapsulate all 355 

run results. These lines represent a single upper bound (UB) evaluation and a single lower bound (LB) 356 

evaluation of the system resilience plus (or minus) two standard deviations that were calculated based 357 

on the spread in each case. The UB case denotes system resilience level with all components in pristine 358 

condition (pre-event). It is therefore unaffected by MP specifics. The LB case denotes a system 359 

resilience level with all components at their worst allowable condition simultaneously - according to the 360 

governing MP threshold. This LB value will differ between MPs and in the case shown is slightly higher 361 

for the more stringent MP1. Note that while pristine conditions are presumed in the computation of the 362 

resilience upper bound, and worst acceptable serviceability for the lower bound, the resilience bound 363 

values are computed over 360 randomly generated disruption-meteorological scenarios. Thus, they may 364 

vary as a function of the scenario generation output. The difference between UB and LB is about 17% 365 

for MP1 and about 20% for MP2. This difference directly depends on the value chosen for c  in 366 

Equations 6 and 7 and the set of generated scenarios.  367 

Overall, Fig. 7 reveals that the network resilience changes over time between the upper and 368 

lower bounds with values that depend, among other factors, on link conditions, link natural deterioration 369 

pattern, and prevailing MPs. 370 

 371 

Conclusions and Future Work 372 

This paper is concerned with quantifying the resilience of an airport pavement network while allowing 373 

for evolving component conditions. Application to a case study demonstrated that resilience is impacted 374 

by the initial condition of the infrastructure links, by their natural deterioration trends, and by prevailing 375 

maintenance policies and actions. The impact found was not negligible, indicating the need and value 376 

for such an approach. The method employed is flexible and can be further refined or compounded by, 377 

for example: (i) assigning different maintenance thresholds to different components or incorporating 378 

other repair policies; (ii) optimizing maintenance actions rather than assuming a given schedule or 379 
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protocol; or (iii) using any one of a number of serviceability models, including stochastic methods for 380 

predicting future condition.  381 

Note that for other pavement networks, such as a roadway network, the adopted resilience metric 382 

would be modified. In the case of the roadway network, a measure based on vehicular throughput or 383 

travel time/delay could be employed. In the latter case, a bi-level programming formulation might be 384 

adopted where the lower level would provide link travel time estimates given post-event roadway 385 

conditions and chosen resilience actions. Refer to Faturechi and Miller-Hooks (2015) for roadway 386 

resilience estimation in which pristine conditions are implicitly assumed; such estimates account for 387 

user response to system changes. 388 

Even though a specific case and type of application were considered, the findings here are of 389 

general nature; they imply that earlier resilience works report UB values (refer to Fig. 7). In other words, 390 

best-case resilience estimates are typically provided. For the current formulation this is equivalent to 391 

annulling c  in Equations 6 and 7. Moreover, in light of evolving component conditions, the definition 392 

of resilience may also require reexamination. Resilience is typically quantified relative to a pre-event 393 

baseline signifying pristine system performance. Because component conditions are allowed to evolve, 394 

pristine performance is not realistically achievable, while at the same time pre-event performance 395 

fluctuates (see Fig. 3). 396 

Commonly, optimization of MPs is based on life cycle cost analyses. A continuation of this 397 

work may include MPs that are associated with resilience quantification, i.e., investigating MPs in terms 398 

of effects on resilience. One option in this connection is making the MP a decision variable, with its 399 

own budget, and integrating in the decision process for preparedness (current model did not include 400 

maintenance cost and resources). Timing and location of repair decisions was not considered in the 401 

employed MP, but the approach here allows testing such strategies (e.g., Medury and Madanat 2013). 402 

So doing can lead to new implications for maintenance budget allocation/prioritization. Also of interest 403 

is performing an in-depth parametric/sensitivity analysis of each resilience calculation. This means 404 

investigating the solution details for resilience by event categories, differences in division of budget 405 

between preparedness and response, or any other changes in decision variables. These aspects will serve 406 

as topics for future work. 407 
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Tables  466 

 467 

 468 

Table 1. Details of Maintenance Plans 469 

Infrastructure 

Component 

Maintenance Plan 1 (MP1) Maintenance Plan 2 (MP2) 

Starting 

age 

(years) 

Starting 

Serviceability 

rating )0(aS  

Predefined 

Repair 

Threshold 

Starting 

age 

(years) 

Starting 

Serviceability 

rating )0(aS  

Predefined 

Repair 

Threshold 

Runway 1 3.1 90% 
80% 

3.8 84% 
60% 

Runway 2 1.7 98% 1.1 100% 

Taxiway-perpendicular 4.5 79% 
60% 

10.5 49% 
40% 

Taxiway-parallel 6.2 68% 3.2 89% 

 470 

  471 
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Fig. 1. Serviceability curves (Eq. (2)) showing the influence of: (a) n  parameter, and (b)   parameter. 475 

Superposed damage pictures illustrate the physical meaning of condition rating; image source: 476 
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Fig. 2. Illustration of a threshold-based maintenance policy 478 

Fig. 3. Approaches to infrastructure resilience: (a) pre-event system performance is timewise constant 479 

with all components in pristine condition; and (b) pre-event system performance fluctuates due 480 

to non-uniform component conditions 481 

Fig. 4. LGA runway and taxiway network layout 482 

Fig. 5. Overview of stochastic program for airport pavement network resilience computation employed 483 

in Faturechi et al. (2014) 484 

Fig. 6. Diagram of case study resilience quantification 485 

Fig. 7. Case study results: (a) evolution of serviceability according to MP1, (b) consequent system 486 

resilience under MP1, (c) evolution of serviceability according to MP2, and (d) consequent system 487 

resilience under MP2  488 
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Superposed damage pictures illustrate the physical meaning of condition rating; image source: 494 
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Fig. 2. Illustration of a threshold-based maintenance policy 498 
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Fig. 3. Approaches to infrastructure resilience: (a) pre-event system performance is timewise constant 501 
with all components in pristine condition; and (b) pre-event system performance fluctuates due 502 
to non-uniform component conditions 503 
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Fig. 4. LGA runway and taxiway network layout 507 

  508 



Resilience of Networked Infrastructure with Evolving Component Conditions: A Pavement Network Application 

23 

 

 509 
 510 

Fig. 5. Overview of stochastic program for airport pavement network resilience computation employed 511 
in Faturechi et al. (2014) 512 
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Fig. 6. Diagram of case study resilience quantification 515 
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 517 

Fig. 7. Case study results: (a) evolution of serviceability according to MP1, (b) consequent system 518 
resilience under MP1, (c) evolution of serviceability according to MP2, and (d) consequent 519 
system resilience under MP2 520 
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