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Abstract  

Microbial production of plant derived, biologically active compounds has the potential to provide 

economic and ecologic alternatives to existing low productive, plant-based processes. Current 

production of the pharmacologically active cyclic triterpenoid betulinic acid is realized by 

extraction from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid 

pathway into S. cerevisiae and used this novel strain to develop efficient fermentation and product 

purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed 

or controlling a constant ethanol concentration in the fermentation medium, significantly enhanced 

production of betulinic acid and its triterpenoid precursors. The beneficial effect of excess ethanol 

was further exploited in nitrogen-limited resting cell fermentations, yielding betulinic acid 

concentrations of 182 mg/L and total triterpenoid concentrations of 854 mg/L, the highest 

concentrations reported so far. Purification of lupane-type triterpenoids with high selectivity and 

yield was achieved by solid-liquid extraction without prior cell disruption using polar aprotic 

solvents such as acetone or ethyl acetate and subsequent precipitation with strong acids.  

This study highlights the potential of microbial production of plant derived triterpenoids in 

S. cerevisiae by combining metabolic and process engineering. This article is protected by 

copyright. All rights reserved 

 

 

Keywords: yeast, process development, downstream processing, pentacyclic triterpenoids, 
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Introduction 

Pentacyclic triterpenoids received increasing attention over the last decade to exploit their 

biological activities, ranging from anti-inflammatory, anti-viral to anti-tumoral properties for 

applications in cosmetics, functional foods are as pharmaceuticals (Dzubak et al. 2006; Kuo et al. 

2009; Zhang et al. 2015). A potentially anti-tumoral compound is betulinic acid, a secondary plant 

metabolite, which exhibits a selective cytotoxicity against melanoma and other cancer cells (Potze 

et al. 2016; Wick et al. 1999; Zuco et al. 2002). It is naturally found in the bark of higher plants 

including white-barked birch (Betula spp.) and plane (Platanus spp.) trees (Jäger et al. 2009; 

O'Connell et al. 1988) and its current production is based on a multistep extraction from pulverized 

bark (Puder et al. 2007). Additional purification steps are necessary, including distillation, 

filtration, adsorption, and recrystallization for obtaining pure betulinic acid. It is assumed that the 

demand of solvents for the extraction and energy consumption of distillation steps have a 

significant economic and ecologic impact (Ressmann et al. 2017). The recombinant production of 

betulinic acid with tailored microbes might therefore provide a sustainable alternative.  

The yeast S. cerevisiae is a versatile production host and organism of choice for terpenoid 

synthesis. Expression of cytochrome P450 monooxygenases is more stable than in E. coli, cell 

compartments provide storage capacity for tri-, and tetraterpenoids (Gruchattka et al. 2013; Kirby 

and Keasling 2009; Wriessnegger and Pichler 2013), and a large toolset for genetic manipulation 

of S. cerevisiae is available (Maury et al. 2016). Moreover, the yeast’s native ergosterol pathway 

provides 2,3-oxidosqualene, the common precursor for several cyclic triterpenoids (Moses et al. 

2013). The heterologous betulinic acid pathway (Fig. 1) starts with the cyclization of 2,3-

oxidosqualene to lupeol by a oxidosqualene cyclase (OSC) and the subsequent oxygenation of 

lupeol to betulinic acid by a cytochrome P450 monooxygenase (CYP) and the corresponding 

cytochrome P450 reductase (CPR). 
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Recently, plant genes involved in synthesis of betulinic acid were identified and successfully 

expressed in S. cerevisiae (Fukushima et al. 2011; Huang et al. 2012). Only low betulinic acid titers 

of 0.1 mg/L were achieved with this first-generation strain (Huang et al. 2012) but further genetic 

improvements aiming for an increased flux into the mevalonate pathway and elevated cofactor 

supply enhanced betulinic acid titers to approximately 10 mg/L (Li and Zhang 2014; Li and Zhang 

2015). Besides strain engineering, an efficient microbial production process requires the 

development of suitable fermentation and product recovery strategies. Indeed, cultivation mode, 

and applied feed strategy substantially contribute to the economic feasibility of the process. 

Glucose-limited exponential fed-batches are described for the production of the sesquiterpenes 

santalene and farnesene (Tippmann et al. 2016) and for ginsenosides, triterpenoid saponins (Dai et 

al. 2013). In contrast, a co-feed of glucose and ethanol was successfully applied for the production 

of the sesquiterpene amorphadiene, while titers achieved from glucose limited fed-batch were fairly 

low (Westfall et al. 2012). Maximal amorphadiene titers were achieved by adding pulses of pure 

ethanol (Paddon et al. 2013; Westfall et al. 2012). A similar beneficial effect of ethanol excess was 

described for the production of ergosterol, a sterol derived from 2,3-oxidosqualene (Tan et al. 

2003). The development of fed-batch fermentations for the recombinant production of betulinic 

acid has not yet been described in literature and were the focus of this study. Suitable fermentation 

strategies and selective purification procedures were developed and evaluated, which enabled 

production of betulinic acid at high titers in recombinant yeast.  

Materials and Methods  

Yeast strains, media and cultivation conditions 

Betulinic acid producing S. cerevisiae CEN.PK BA4 (BA4) was used in all performed experiments. 

The detailed strain construction is presented in the Supporting Information. Shake flask and 

bioreactor fermentations were carried out using a modified WM8 minimal medium (Lang and 
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Looman 1995), which contained increased vitamin and trace element concentrations (myo-inositol 

100 mg/L, nicotinic acid 11 mg/L, pyridoxine-HCl 26 mg/L, thiamin-HCl 11 mg/L, biotin 

2.55 mg/L, Ca-pantothenate 51 mg/L, p-amino benzoic acid 0.2 mg/L; MgCl2∙6H2O 250 mg/L, 

CaCl2∙2H2O 104.5 mg/L, ZnSO4∙7H2O 6.25 mg/L, FeSO4∙7H20 3.5 mg/L, CuSO4∙5H2O 0.4 mg/L, 

MnCl2∙4H2O 0.1 mg/L, MnCl2∙2H2O 1 mg/L, Na2MoO4∙2H20 0.5 mg/L, CoCl2∙6H2O 0.3 mg/L, 

H3BO3 1 mg/L, KI 0.1 mg/L) and was complemented with 50 g/L glucose. In the nitrogen depletion 

experiments, the NH4Cl concentration was reduced to 0.939 g/L to enable nitrogen starvation. 

Working stocks of BA4 were prepared from 24 h cultures in WM8 medium, mixed with 40% (v/v) 

glycerol in equal volumes and stored at -80 °C. Pre-cultures (500 mL flask containing 50 mL 

medium) were inoculated with 1% (v/v) from thawed working stock. Shake flask pre-cultivations 

were performed for 24 h in rotary shakers at 30 °C, 200 rpm and 5 cm amplitude. Main-cultures in 

shake flasks or bioreactors were inoculated with pre-cultures to an initial cell density of 

0.08 gCDW/L. 

Fed-batch cultivation 

Batch bioreactor cultivations were performed in 1.3 L fermenters (BioFlow 115, New Brunswick, 

Eppendorf, Germany) with a working volume of 0.5 L, an aeration rate of 1 vvm, 30 °C, and pH 6 

controlled with NH4OH (10 M KOH for nitrogen-limited cultivations) and H3PO4. The dissolved 

oxygen (DO) level was kept above 30% using a stirring cascade. The batch medium was identical 

to the shake flask medium; during the feed phase, additional double concentrated WM8+ vitamin 

and trace element solution was added. For the pulse fed-batch, the DO signal was used to trigger 

substrate addition. When the DO signal exceeded a defined threshold (70% DO), pure ethanol or 

glucose was pumped into the fermenter for a defined time. To avoid instant reactivation of the 

trigger when the DO signal drop exceeded the pumping time, reinitialization of the trigger was 

paused for 30 min. The DO feed algorithm was implemented into the fermenter software 
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BioCommand (New Brunswick, Eppendorf, Germany). For reasons of comparison, glucose pulses 

contained equimolar amounts of carbon as 25 g/L ethanol, i.e. 32.6 g/L, and the broth volume was 

corrected by the added amount of water. The continuous ethanol feed was realized by monitoring 

the off-gas ethanol concentration with an ethanol sensor (BCP-EtOH, Bluesens, Germany) coupled 

to the I/O module of the fermenter (New Brunswick, Eppendorf, Germany). The fermenter software 

was used to control the ethanol feed pump via a feedback control loop.  

Nitrogen-limited resting cell fermentations were performed by applying a glucose-limited 

exponential fed-batch to generate biomass as described by van Hoek et al. (2000). The growth rate 

was set to 0.1 1/h and the feed solution contained 500 g/L glucose, 30 g/L KH2PO4, 5 g/L 

MgSO4∙7H2O, and 2.5 times concentrated vitamins and trace elements. After the CDW reached 

approximately 60 g/L, cells were harvested by centrifugation, resuspended in 0.5 L fresh WM8+ 

medium without any nitrogen and carbon source, and transferred into a clean bioreactor. The 

resting cell fermentation was started by initiating the DO-triggered ethanol-pulse feed. 

Sample preparation 

During cultivation, samples were taken for optical density (OD600), cell dry weight determination, 

and for quantification of extracellular metabolite and intracellular triterpenoid concentrations. 

Before sampling, bioreactors were carefully tilted to remove attachments from the inner reactor 

wall ensuring homogeneity. Samples were centrifuged for 10 min at 13,000 rpm. The cell free 

supernatant was analyzed using high performance liquid chromatography (HPLC) with UV and RI 

detection (see the Supporting Information for details). For terpenoid quantification, 800 µL of 

fermenter broth was transferred into a 2 mL tube and stored at -20 °C. For cell disruption and 

terpenoids extraction, 200 µL glass beads (0.5 mm), 80 µL 1 M HCl, and 800 µL 80:20 

chloroform:methanol mix were added and the tube was placed in a Mini-BeadBeater (BioSpec 

Products, USA) for 2 min. The sample tube was then centrifuged for 10 min at 13,000 rpm and 
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4 °C and 500 µL of the lower organic phase was transferred into a conical HPLC glass vial. The 

organic phase was evaporated in a centrifugal evaporator (SpeedVac SC100, Savant, USA) for 

15 min at 43 °C, and dried terpenoids were resuspended in 100 µL pyridine. Quantification of 

squalene, lupeol, betulin, betulinic aldehyde, and betulinic acid was performed using a reversed 

phase HPLC equipped with a charged aerosol detector. A detailed description of the applied HPLC 

methods is presented in the Supporting Information. Ammonium was quantified based on the 

method of Willis et al. (1996) using 24-well plates and a plate-reader (SynergyMX, BioTek, 

Germany). 

Determination of cell dry weight 

Cell dry weight (CDW) was either calculated by multiplying the OD600 signal with an 

experimentally pre-determined correlation factor or gravimetrically. For the gravimetrical method, 

a defined volume of the fermentation broth was centrifuged in pre-weighted tubes for 10 min at 

13,000 rpm. The supernatant was discarded and the tubes with the pellet placed upside down on a 

cellulose sheet for 3 min. The wet biomass was weighed and dried to constant mass at 105 °C and 

weighed again to correlate the wet to dry biomass. The OD600 to CDW correlation factor was 

determined accordingly using cell suspensions with OD600 between 0.05 to 15. 

Triterpenoid purification  

Triterpenoids were extracted from 0.08 g wet biomass. In case of liquid-suspension extraction 

(solvents used were n-amyl acetate, n-butyl acetate, 1-octanol, diethyl ether, and ethyl acetate) the 

solid material (biomass and crystals) was resuspended in 150 µL water before extraction. The 

amount of solvent added depended on the particular phase ratio. The extraction was carried out in 

an Eppendorf Thermomixer comfort at 1,400 rpm and 25 °C. The extract was separated by 

centrifuging the sample for 5 min at 13,000 rpm and withdrawing the extract phase with a syringe. 

The extraction time was defined as the time from solvent addition to extract removal.  
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To calculate product recovery yields, the initial content of betulin and betulinic acid in the sample 

was determined by extracting the triterpenoids twice with ethyl acetate at a phase ratio of 

10 gSolvent/gCDW for 15 h at 25 °C. The first extract was analyzed directly while the second extract 

phase was concentrated prior to analysis using a rotary evaporator at 45 °C and 0.3 bar. The 

extraction purity was calculated using the ratio of peak area of betulin or betulinic acid to the total 

peak area in the HPLC chromatogram. 

Extracts for the evaluation of adsorption or precipitation experiments were generated with an 

adapted protocol: For that, 40 mL fermentation broth was centrifuged for 10 min at 5,000 rpm. The 

supernatant was discarded and the tube placed upside down on cellulose paper for 5 min. Extraction 

was conducted in an overhead shaker (Grant Bio PTR 60) at 60 rpm for 1 h at 25 °C with acetone 

at a phase ratio of 8 gSolvent/gCDW. The mixture was centrifuged for 3 min at 5,000 rpm and the 

extract phase withdrawn via a syringe. 

For precipitation, 1 mL acetone extract was mixed with the antisolvent (water or acid) and the 

sample left at 25 °C for 3 h if not stated otherwise. Precipitate and supernatant were separated by 

centrifugation for 30 min at 13,200 rpm and the supernatant was removed with a syringe. The 

precipitate was resolved with 1 mL acetone and mixed at 25 °C and 1,400 rpm. 

Results 

Performance of engineered betulinic acid producing S. cerevisiae strain in batch cultivations  

Multi copy genomic integration of the oxidosqualene cyclase gene AtLUP1 from Arabidopsis 

thaliana and the P450 monooxygenase CYP716Al1 from Catharanthus roseus in combination with 

single, genomic integration of the P450 reductase encoding gene AtATR2 from Arabidopsis 

thaliana, overexpression of the native ERG1 and a truncated HMG1 (tHMG1) (Polakowski et al. 

1998) in S. cerevisiae CEN.PK resulted in strain BA4, which accumulated betulinic acid as well as 

its precursors betulin and betulinic aldehyde (Fig. 2). Biomass formation followed the typical 
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Crabtree-positive growth pattern on glucose. No specific accumulation of triterpenoids was 

observed during the glucose phase and volumetric titers increased only marginally. Once glucose 

was depleted, the cells started to consume ethanol and specific concentrations of squalene and 

betulin increased until stationary phase was reached and product accumulation ceased. In contrast, 

concentrations of betulinic aldehyde and betulinic acid per CDW were rather constant throughout 

the cultivation. This confirms prior findings from squalene overproducing S. cerevisiae CEN.PK 

expressing a truncated HMG gene, which likewise accumulated this triterpene only during the 

ethanol consumption phase (unpublished data).  

In shake flask cultivations, specific concentrations of betulin and betulinic acid of up to 

6.7 mg/gCDW and 2.1 mg/gCDW were achieved while the total triterpenoid concentration, i.e. the sum 

of all cyclic triterpenoid products including lupeol and betulinic aldehyde, reached 10.9 mg/gCDW. 

Batch cultivations run at different pH values revealed that a pH of 6 significantly shortened the 

fermentation time but resulted in lower total triterpenoid productivity compared to those achieved 

in shake flasks. During bioreactor cultivations accumulation of solid particles in a viscous layer on 

the inner reactor wall above the liquid level was observed (Fig. S1), which contained insoluble 

crystals and high amounts of triterpenoids. This phenomenon might have partially contributed to 

the concentration difference observed between shake flask and bioreactor experiments as these 

attachments might not be completely resuspended in the fermentation broth before sampling.  

Development of a fed-batch strategy 

To increase volumetric and specific titers of betulinic acid in BA4, different fed-batch fermentation 

strategies were evaluated. The application of carbon-limited feed modes (glucose, ethanol) resulted 

in low productivities and specific triterpenoid concentrations (data not shown) indicating the 

unsuitability of conventional carbon-limited fed-batch approaches for the production of 

triterpenoids. Next, feed strategies supplying excess ethanol were tested. The automated, repeated 
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addition of ethanol was triggered by an increase of the DO signal indicating ethanol depletion. 

Application of 25 g/L ethanol pulses resulted in a substantial increase of specific and volumetric 

product titers when compared to batch fermentations (Fig. 3A). Betulin was still the main 

triterpenoid (52% of the total triterpenoids), followed by betulinic aldehyde (22%), betulinic acid 

(18%), and lupeol (8%). For squalene, both specific and volumetric concentrations reached a 

maximum at 43 Interestingly, product formation reached a plateau after addition of the third ethanol 

pulse at a rather low biomass concentration of 34 g/L Cessation of both product formation and cell 

growth was observed in all fed-batch fermentations performed with BA4, and HPLC data from 

samples taken after the third pulse showed increasing acetate concentrations indicating increased 

cell stress (Fig. 3C). Application of glucose pulses was less efficient than ethanol. Although 

specific titers and productivities for betulinic acid were in the same range compared to the above 

described ethanol-pulse feed, titers of the other triterpenoids were reduced by more than 1.5-fold 

(Table I). In order to investigate the influence of the ethanol pulse concentrations on product 

formation, different ethanol-pulse feeds, ranging from 5-30 g/L, were tested. Higher pulse 

concentrations resulted in increased specific betulin titers while accumulation of betulinic aldehyde 

and acid was not enhanced and their specific concentrations remained almost constant.  

Application of a controlled ethanol feed  

The DO-triggered pulse fed-batch enabled the production of betulinic acid at high productivities 

by exploiting the beneficial effect of excess ethanol concentrations on strain performance. 

However, frequent transitions between starving and metabolizing states might have a negative 

effect on productivity. To maintain a constant ethanol level in the fermenter broth, we realized a 

controlled feed using the off-gas ethanol signal as input for a control loop regulating the ethanol 

feed rate. The controlled feed was deployed at the late phase of the initial glucose batch and the 

ethanol concentration was set to 7 g/L (Fig. 3B and D). Since no substrate limitation occurred, BA4 
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cells initially grew with the maximal growth rate on ethanol (0.07 1/h). Triterpenoid titers with 

betulin as main product increased linearly until the above described product plateau was reached 

after 72 h of cultivation (Fig. 3B). The betulinic acid concentration of 44 mg/L was slightly lower 

compared to the pulsed fed-batch but concentrations and productivities of the remaining 

triterpenoids were increased and a total pentacyclic triterpenoid concentration of 346 mg/L was 

reached within 72 h. Extracellular acetate levels increased exceedingly rapidly to 10 g/L coinciding 

with ceasing cell growth and product synthesis (Fig. 3D). Overall, regulating the ethanol level in 

the fermenter at a constant concentration allowed a fermentation devoid of rapid changes in stirring 

speed, resulting in increased product titer and product yield (Table II). 

Effect of nitrogen limitation on triterpenoid titers 

As triterpenoid production has to compete for carbon, redox and energy cofactors during cell 

growth, restriction of biomass synthesis by nitrogen limitation might enhance the flux into 

terpenoid synthesis (Shang et al. 2006). To evaluate this, two strategies were pursued: growth into 

nitrogen depletion and resting cell fermentations, in which cells from a glucose-limited exponential 

fed-batch were transferred into nitrogen-free fresh medium. Both strategies were coupled with the 

ethanol-pulse feed. Nitrogen depletion was achieved by reducing the initial nitrogen content to a 

level limiting growth above a biomass concentration of 6 gCDW/L. Notably, product ratios shifted 

towards betulinic acid, being the main triterpenoid produced under this condition (Fig. 4A), 

however, triterpenoid productivities were comparably low due to a low cell concentration. In 

contrast, maximal betulin and betulinic acid concentrations of 464 mg/L and 182 mg/L and a total 

triterpenoid titer of 854 mg/L were obtained in resting cell fermentation, the highest titers for the 

lupane-type triterpenoids reported so far (Fig. 4B). Carry-over of low amounts of ammonia from 

the fed-batch medium resulted in further growth within the first 4 h of the resting cell cultivation. 

During this micro-nitrogenous conditions and in the first 4 h following the exhaustion of exogenous 
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nitrogen sources, terpenoid synthesis was highest. The application of a nitrogen-limited 

exponential feed with ethanol excess was also investigated within this work (data not shown), 

however specific and volumetric triterpenoid titers were comparably low.  

Development of a downstream process for product recovery 

Separate analysis of cell pellet and supernatant revealed that only minor amounts of the 

triterpenoids were secreted into the medium. Interestingly, this intracellular accumulation of the 

product contrasts with previous findings by Zhou et al. (2016), who reported detection of these 

products in the medium. The intracellular product accumulation observed in our study motivated 

the evaluation of downstream process variants. Chemical and mechanical cell disruption 

techniques, preceding the extraction step, were initially tested to facilitate product extraction from 

the solid fraction, i.e., biomass and crystals. However, cell disruption did not affect extraction 

efficiency but increased impurity contents and was omitted in further experiments. Extraction 

strategies for product recovery from the solid fraction were liquid-suspension extractions, in which 

the water-immiscible solvents and the fermentation broth form distinct phases, and classical solid-

liquid extraction, in which water and solvent are completely miscible. Suitable extraction solvents 

were assessed based on solubility parameters estimated by the method of Bergs et al. (2013) or 

mined by extensive literature screening. In total, eight solvents were evaluated, including diethyl 

ether, which is used in industrial extraction of betulinic acid from tree bark, (Table SII). The polar 

aprotic solvents ethyl acetate and acetone used for liquid-suspension extraction and solid-liquid 

extraction, respectively, gave highest yields (Fig. 5A). This phenomenon of preferential 

distribution of nonpolar compounds in polar solvents has been described before (Cheng et al. 2011; 

Co et al. 2009; Follegatti-Romero et al. 2010; Tang et al. 2014) and explained by a favored entropic 

state of the molecule in the solvent. As a positive side-effect reduced co-extraction of other 

nonpolar metabolites in these polar solvents resulted in high purities (ratio of peak area of betulinic 
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acid to the sum of all peak areas of the components present in the chromatogram) compared to less 

polar solvents. For both, ethyl acetate and acetone, the kinetics of extraction at 25 °C was 

determined and the influence of different phase ratios on recovery yield and purity evaluated 

(Fig. 6A-D). A phase ratio of 4 gSolvent/gCDW and extraction time of 5 h with ethyl acetate and a 

phase ratio of 6 gSolvent/gCDW and 1 h extraction time for extractions with acetone turned out to be 

optimal and were used in all further experiments. As the extraction screening was done in early 

stages of the project when the fermentation strategy was still under optimization, some experiments 

were repeated with broth of the optimized fermentation protocol. The extraction performance for 

both solvents, but especially for acetone, increased. Yields of 90 ± 4% for ethyl acetate and 91 ± 2% 

for acetone with similar purities of betulinic acid were achieved while betulin was recovered to 

90 ± 2% and 82 ± 3% with ethyl acetate and acetone, respectively.  

Despite differences in polarity of the triterpenoids betulin and betulinic acid, assessed from 1-

octanol/water partition coefficients (betulin: 9.01, betulinic acid: 8.94) estimated with 

ACD/Chemsketch freeware, none of the screened extraction solvents was suited to selectively 

extract the acid. Equally, an additional purification step of adsorption/desorption with both ethyl 

acetate and acetone extracts using different adsorber materials as described in Winkelnkemper et 

al. (2011) turned out to be nonselective and gave low yields (data not shown). As the solubility of 

betulinic acid and other hydrophobic triterpenoids is pH-dependent and decreases at low pH (Jäger 

et al. 2007), we evaluated polar acetone-miscible antisolvents enabling precipitation for product 

recovery. We investigated mono-, di-, and tribasic inorganic (hydrochloric, sulfuric, and 

phosphoric acid) and organic acids (formic, acetic, citric, and oxalic acid) of different molarities 

(0.1 M and 1 M) and water at phase ratios ranging from 0.3 to 0.9 mLAcid/mLExtract. For all 

antisolvents investigated, a phase ratio above 0.7 mLAcid /mLExtract favored a high recovery of 

betulinic acid while the molarity of the acid did not significantly affect the recovery or purity of 
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the precipitate. Precipitation with neither of the antisolvents tested was selective as betulinic acid 

and betulin were recovered with similar yields (Fig. 5B). In addition, no trend in recovery was 

observed for acids of different acidity or of organic or inorganic origin. Interestingly, precipitation 

with hydrochloric and sulfuric acid resulted in yields above 100% for betulin and lupeol. Inspection 

of the HPLC chromatograms of resolved precipitate revealed that in those samples treated with 

0.9 M and 5 M hydrochloric acid (HCl) four peaks diminished (0.9 M HCl) or almost disappeared 

(5 M HCl) while the peaks of reference triterpenoids increased (Fig. 7). LC-MS measurement of 

the crude extract pointed to the presence of an additional hydroxy group at C-20 position or the 

presence of an acetyl group at position C-3 (Figure S5-S8). The unspecific cyclization of 2,3-

oxidosqualene by LUP1 is reported to yield lupanediol (3,20-dihydroxylupane) as a side product 

(Salmon et al. 2016; Segura et al. 2000), which is subsequently oxidized by CYP716Al1 to form 

the corresponding betulin-diols. In addition to that, we hypothesize that the alcohol 

acetyltransferase ATF1, involved in terpenyl acetate synthesis (Steyer et al. 2013; Verstrepen et al. 

2004), acted on the lupane-type triterpenoids yielding its acetate forms. The acidic environment 

during the precipitation step likely caused the dehydration of the tertiary hydroxy group of the 

triterpenoid diols or the deacetylation of the triterpenoid esters. Further optimization of the 

precipitation process by adjusting phase ratio and precipitation time resulted in betulin recoveries 

of almost 200% using 1 M HCl (phase ratio of 1.2 mLAcid/mLExtract, 3 h resting time, Table III). For 

water, a phase ratio of 1 mLAcid/mLExtract (high recovery and low volume of antisolvent) was 

favorable and the precipitate could be separated directly as no hydrolytic reaction occurred. 

Washing of the precipitate with water or hexane as proposed by Dräger et al. (2001) was tried but 

resulted in substantial product loss and only marginally increased purity. Despite the low purity, 

the developed downstream process is very promising as 78% or 95% of the betulinic acid were 

recovered from the fermentation broth and triterpenoids betulin, betulinic acid and lupeol were 



 
 

  
 A

cc
ep

te
d

 P
re

p
ri

n
t

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
 

15 

 

This article is protected by copyright. All rights reserved 

enriched to 64% and 72% using water or HCl, respectively. For further purification, 

chromatographic separation is recommended for which the analytical method used here might be 

transferred to preparative scale.  

Discussion  

Ethanol is the preferred carbon source for triterpenoid production 

In accordance with studies investigating yeast-based artemisinin and ergosterol production 

(Paddon et al. 2013; Tan et al. 2003; Westfall et al. 2012), feeding of ethanol was beneficial for 

cyclic triterpenoid production. Reasons for this improvement might be the elevated supply of the 

common precursor acetyl-CoA or the redox cofactor NADPH, of which 18 mol and 17 mol are 

required to synthesize one mol of betulinic acid. The acetyl-CoA synthetase gene ASC1 is subject 

to glucose repression but derepressed during ethanol oxidation (Chen et al. 2012; Kratzer and 

Schuller 1997; van den Berg et al. 1996) during which NADP+ is simultaneously reduced by 

aldehyde dehydrogenase Ald6 activity. Also, slow growth on ethanol or complete growth rest 

might have been advantageous for accumulation of triterpenoids as has been reported for ergosterol 

(Arnezeder and Hampel 1990). However, as the precursor squalene accumulated during ethanol 

oxidation, redox cofactor availability rather than acetyl-CoA supply might have been limiting 

betulinic acid synthesis. The application of nitrogen-limitation for non-growing cell fermentations 

might have increased the NADPH availability for product synthesis. In addition to that, an 

increased redox cofactor regeneration might be achieved by introducing an additional NADPH 

generating reaction, e.g. a mutated NADP+-dependent 2,3-butanediol dehydrogenase gene mBDH1 

and co-feeding of its substrate acetoin, reported by Li et al. (2015) to improve betulinic acid 

synthesis.  

High concentration of ethanol exerts cell stress, to which S. cerevisiae responds by stimulating 

ergosterol synthesis (del Castillo Agudo 1992; Teixeira et al. 2009). This metabolic adaptation 
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might boost the availability of the common precursor 2,3-oxidosqualene explaining the 2-times 

higher total triterpenoid productivities and the 2.4-fold increase in carbon yield in ethanol-pulse 

fed-batches compared to experiments with glucose as carbon source (Table I and II). 

Cessation of product formation and growth in prolonged fermentations at low cell concentrations 

and below the maximal triterpenoid load per cell observed under nitrogen-limitation indicates 

decreased cell viability due to accumulation of toxic intermediates or reactive oxygen species as 

has been reported for production of farnesene and artemisinic acid (Paddon et al. 2013; Sandoval 

et al. 2014). Formation of reactive oxygen species through uncoupling of NADPH oxidation and 

substrate oxidation is commonly observed in monooxygenase-type reactions and can severely 

affect cell viability by damaging proteins and destabilizing membranes (Blank et al. 2010; Farrugia 

and Balzan 2012; Perrone et al. 2008; Zangar et al. 2004). Overexpression of cytosolic catalase 

encoding CTT1 was shown to increase viability of artemisinic acid producing S. cerevisiae (Paddon 

et al. 2013) and might equally be a measure to increase the activity of triterpenoid producing yeast. 

Feedback-controlled ethanol feed enhances product yield 

The DO-triggered ethanol feed, similar to the control strategy presented by Paddon et al. (2013), 

was easy to set up and yielded good productivities. The positive effect of high ethanol 

concentrations in the culture medium outpaced the carbon loss from ethanol evaporation and 

product yields on ethanol slightly improved with increasing pulse concentrations. A second 

drawback of the pulse feed are the rapid metabolic switches between starvation and ethanol 

metabolism, potentially resulting in paused terpenoid synthesis and lowering productivity and 

product yield. This was overcome by controlling the ethanol concentration at a constant level, 

which resulted in significantly increased substrate yield and productivity justifying additional 

equipment costs for the required ethanol off-gas sensor coupled to the control-loop. Further testing 
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of different ethanol concentrations is required for finding an optimum between triterpenoid yield, 

productivity and evaporation.  

Multi-step oxygenation of lupeol in S. cerevisiae CEN.PK BA4 limits betulinic acid synthesis 

The accumulation of the pathway intermediate squalene to fairly high levels pinpoints to enzymatic 

limitations in the downstream betulinic acid synthesis pathways, demanding optimization of 

respective enzyme activities. However, the main bottleneck for betulinic acid production was the 

catalytic activity of the P450 monooxygenase (CYP716Al1) because the three-step oxidation of 

lupeol to betulinic acid was insufficient. Adaptation of the fermentation condition increased 

specific betulin concentration while betulinic acid accumulation stayed constant. Full conversion 

might require the integration of additional suitable alcohol and aldehyde dehydrogenases as 

reported for artemisinin production (Paddon et al. 2013).  

Solid-liquid extraction and precipitation eases recovery of lupane-type triterpenoids  

Good recoveries of the pentacyclic triterpenoids from the cell pellet were achieved by extraction 

with either ethyl acetate or acetone, followed by a precipitation step. With the tested extractants, 

solid-liquid extraction generally performed better than liquid-suspension extraction, as the latter 

forms a two-liquid phase system, in which the water phase shields the biomass preventing direct 

access. Liquid-suspension extraction with ethyl acetate was one exception with similar 

performance as solid-liquid extraction with acetone, but had slower extraction kinetics probably 

due to mass transfer limitations in the two-liquid phase system. Another advantage of acetone based 

extraction is its time-independent selectivity, which is in contrast to ethyl acetate extraction for 

which the purity of betulinic acid decreased at prolonged extraction durations. One drawback of 

the use of acetone is the relatively low solubility of triterpenoids in this solvent as the necessity of 

high phase ratios to achieve efficient extraction (Cheng et al. 2011) might increase costs for solvent 

recovery in a large-scale process.  
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Although high product recoveries were achieved, the established downstream process was not 

selective for betulinic acid. Consequently, for the establishment of a production process a further 

chromatographic or crystallization step will be necessary. These elaborate purification steps are 

economically acceptable as both lupeol and betulin are valuable products.  

Conclusion 

The developed fermentation and purification strategies provide a suitable basis for upstream and 

downstream processing for the microbial synthesis of triterpenoids. Triterpenoid titers and 

productivities were improved by more than 5-fold and 4-fold, respectively compared to simple 

shake flask experiments and are, so far, the highest triterpenoid productivities reported for 

recombinant S. cerevisiae. Recoveries above 80% of betulin and betulinic acid from the 

fermentation broth were possible applying a simple downstream procedure. Low specific 

productivity of the engineered strain and potential toxic effects resulting in total cessation of 

triterpenoid synthesis after prolonged fermentation times are the main bottlenecks for a competitive 

microbial betulinic acid production. Further metabolic engineering of the production host is 

required to increase specific productivity and product specificity, and to either maximize the 

triterpenoid load of the cell or enable product secretion.  
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Table I. Comparison of productivities, volumetric, and specific concentrations of betulinic acid producing S. cerevisiae BA4 in batch and 

fed-batch cultivations. Total triterpenoid concentrations correspond to the sum of lupeol, betulin, betulinic aldehyde, and betulinic acid.  

 Time  Betulin  Betulinic acid  Total triterpenoids 

 h  mg/L mg/gCDW mg/L/h  mg/L mg/gCDW mg/L/h  mg/L mg/gCDW mg/L/h 

Batch flask 73  91 ± 3 6.7 ± 0.2 1.2 ± 0.0  28 ± 1 2.1 ± 0.1 0.4 ± 0.0  149 ± 7 10.9 ± 0.5 2.0 ± 0.1 

Batch reactor 34  26 ± 5 2 ± 0.4 0.7 ± 0.2  13 ± 3 1 ± 0.2 0.3 ± 0.1  59 ± 11 4.6 ± 0.9 1.5 ± 0.3 

Ethanol pulse 

25 g/L 
72  167 ± 8 5.2 ± 0.3 2.3 ± 0.1  57 ± 3 1.8 ± 0.1 0.8 ± 0.0  319 ± 20 9.9 ± 0.6 4.4 ± 0.3 

Glucose pulse 92  93 ± 5 2.8 ± 0.1 1 ± 0.1  52 ± 3 1.5 ± 0.1 0.1 ± 0.6  206 ± 13 6.1 ± 0.4 2.2 ± 0.1 

Ethanol feed 72  182 ± 13 3.9 ± 0.0 2.5 ± 0.2  44 ± 3 1 ± 0.0 0.6 ± 0.0  346 ± 28 7.5 ± 0.6 4.8 ± 0.4 

N-depletion 

+ ethanol pulse 
147  22 ± 2 3.2 ± 0.3 0.1 ± 0.0  29 ± 1 4.4 ± 0.1 0.2 ± 0.0  68 ± 3 10.1 ± 0.4 0.5 ± 0.0 

N-limitation 

+ ethanol pulse 
88  464 ± 3 6.6 ± 0.0 5.2 ± 0.0  182 ± 5 2.6 ± 0.1 2.1 ± 0.1  854 ± 24 12.1 ± 0.3 9.6 ± 0.3 
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Table II. Triterpenoid yield on applied carbon substrate from fed-batch bioreactor cultivations. Yield (Y) is expressed as % Cmol product 

per Cmol substrate. B-betulin, BA-betulinic acid, Tot-sum of all oxidized lupeol products. 

 YB/S YBA/S YTot/S 

Batch reactor 0.11 0.05 0.24 

Ethanol pulse (25 g/L) 0.23 0.08 0.44 

Glucose pulse 0.08 0.04 0.18 

Ethanol feed 0.36 0.08 0.68 

N-depletion + EtOH pulse 0.04 0.06 0.44 

N-limitation + EtOH pulse 0.25 0.10 0.47 
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Table III. Recovery of lupeol, betulin, and betulinic acid under optimized precipitation conditions. The area percentage of the component 

peaks in the chromatogram might be interpreted as the purity of the molecule. The average values of three different fermentation batches 

and duplicate precipitation experiments are presented. The phase ratio was set to 1.2 mLAcid/mLExtract at 3 h resting time. 

Antisolvent Component Recovery [%] Area-% in chromatogram 

Water 

Lupeol –* ≤ 2 

Betulin 90 ± 4 53 ± 10 

Betulinic acid 86 ± 4 9 ± 1 

1 M HCl 

Lupeol –* 24 ± 11 

Betulin 195 ± 34 41 ± 4 

Betulinic acid 104 ± 13 7 ± 1 

*Not calculated as lupeol was not calibrated 
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Figure 1. Schematic of the heterologous betulinic acid pathway in S. cerevisiae.  
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Figure 2. Specific triterpenoid (A) and extracellular metabolite and biomass concentrations (cell dry weight, 
CDW) (B) during batch shake flask cultivation of S. cerevisiae BA4 in WM8+ medium with 50 g/L glucose. 
For reasons of clarity lupeol is excluded but shown in figure S2. SQ-squalene, B-betulin, BAld-betulinic 

aldehyde, BA-betulinic acid.  
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Figure 3. Product and extracellular metabolite concentrations during fed-batch cultivation of S. cerevisiae 
BA4 in WM8+ medium. Cultivations were performed with a DO-triggered ethanol pulse fed-batch (A, C) and 
feed-back loop controlled ethanol fed-batch at constant ethanol concentration of 7 g/L (B, D). For reasons of 

clarity lupeol is excluded and shown in figure S3. SQ-squalene, B-betulin, BAld-betulinic aldehyde, BA-
betulinic acid, Glc-glucose, EtOH-ethanol, Ac-acetate, CDW-cell dry weight. Dashed lines indicate pulsed 

addition of 25 g/L ethanol.  
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Figure 4. Product concentrations during nitrogen-limited cultivation of S. cerevisiae BA4. Growth in WM8+ 
medium under nitrogen depletion and subsequent ethanol pulsing (A). Resting cell fermentation with ethanol 
pulse feeding of cells grown in glucose fed-batch and transferred into nitrogen free WM8+ medium (B). Time 
starts with the initiation of the glucose fed-batch. For reasons of clarity lupeol is excluded but shown in 
figure S4. SQ-squalene, B-betulin, BAld-betulinic aldehyde, BA-betulinic acid. Dashed lines indicate pulsed 

addition of 25 g/L ethanol.  
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Figure 5. Extraction yield and purity of different water miscible and immiscible solvents for the recovery of 
betulin and betulinic acid (phase ratio 10 gSolvent/gCDW, for 15 h at 25 °C) (A). Dependency of the antisolvent 
acidity on the recovery of betulin and betulinic acid (B). Acetone was used as extractant mixed with 1 M acid 

at a ratio of 0.9 mLAcid/mLExtract at 25 °C for precipitation. Antisolvents are ordered by decreasing acidity 
(strong to weak acid).  
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Figure 6. Comparison of betulinic acid yield (A, B) and purity (C, D) obtained with acetone and ethyl acetate 
as extractant in dependence on extraction time (phase ratio 10 gSolvent/gCDW, at 25 °C) and phase ratio at 

25°C.  
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Figure 7. Chromatograms of the crude acetone extract and of the resolved precipitates treated with 1 M and 
5 M HCl.  
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