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Abstract 

Transition metal complexes with a well-defined geometry are usually considered to 

display almost the same properties independently of the system where they are 

embedded. Here we show that the above statement is not true depending on the 

anisotropy of the host lattice, which is revealed in the form of the electric field created 

by the rest of lattice ions over the complex. In order to illustrate this concept we analyze 

the origin of the surprising large differences in the d-d optical transitions of two systems 

containing square-planar CuF4
2- complexes, CaCuF4 and center II in Cu2+-doped Ba2ZnF6, 

even though the Cu2+-F-distance difference is just found to be 1%. Using a minimalist 

first-principles model we show that the different morphology of the host lattices creates 

an anisotropic field that red-shifts the in-vacuo complex transitions to the 1.25 - 1.70 eV 

range in CaCuF4 while it blue-shifts them to the 1.70 - 3.0 eV region in Ba2ZnF6:Cu2+. This 

particular example shows how the lattice anisotropy strongly alters the optical 

properties of a given transition metal complex. This knowledge opens a new path to 

tune the spectra of this large family of systems.  
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1. Introduction 

Insulating materials containing Transition Metal (TM) cations are intensely studied as 

they display a wide range of chemical and physical properties that can be sensitive to 

external perturbation, in the form of either applied fields1-2, changes of temperature and 

pressure3-4 or chemical tuning5-6, like replacement of ligands7. This behavior is well 

illustrated by the phenomenon known as spin-crossover where the magnetic state of 

the TM system can be altered upon heating, application of an elastic stress or 

irradiation8-12. In the latter case (see e.g. Ref.12), light absorption leads to a change in the 

electronic state of the TM that is accompanied by a geometrical relaxation that prevents 

the system from returning to its ground state. What this example comes to highlight is, 

on one hand, the large importance of the geometry of the system around the TM ion 

over its properties and, on the other, that optical spectroscopy is a very important tool 

associated to the chemistry of TM systems, both to characterize and manipulate their 

properties.  

At the core of our understanding of the behavior of these systems is the idea that the 

TM ion forms, along with its close neighbors, the ligands, a chemical unit that has 

intrinsic properties and that is denominated complex. The theoretical foundation of this 

concept lies on the localization of valence electrons (also called active electrons) over 

the TM ion and its ligands13-14. Experimentally, this property is observed, for example, 

spectroscopically when studying the optical properties of a particular octahedral 

complex embedded in different cubic lattices. Good examples of this behavior are found, 

for instance, for MF6
4- complexes (M = Ni, Mn) in pure and doped cubic 

fluoroperovskites14-20 or in CrX6
3- units (X = F, Cl) formed in cubic elpasolites21-27. In such 

series of isomorphous lattices the optical absorption spectrum of a given complex is 

nearly unmodified with the lattice substitution as only the transitions that are 

dependent on the crystal-field splitting parameter, 10Dq, experience shifts smaller than 

0.2 eV due to changes of the metal–ligand distance, R, smaller14,16 than 5%. In this way, 

the concept of complex, not just as a stable chemical unit but also as a container of well-

defined properties, has gained much weight since its inception.  

However, successful this application of the concept of complex is, we believe important 

realizing its limits both for fundamental and practical reasons, since this could open new 

ways to control the properties of transition metal systems. In particular, we propose 

that the properties of a complex are transferable from a system to another only when 

the embedding media share similar morphological properties. On the contrary, when 

the embedding lattices are not isomorphous, the properties of the complex can change 

quite strikingly. A very visual example of this kind can be found at the CrO6
9- complex in 

Al2O3 and Be3Al2Si6O18, yielding ruby and emerald gemstones28-29, respectively. Even 

though the experimental metal-ligand distance is the same in both materials30-32 their 

colors are remarkably different. The origin of this effect is the internal electric field, ER(r), 

that the rest of lattice ions create on active electrons confined in the complex. This 
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anisotropic field modifies the separation among states and thus the energies of optical 

transitions30, 33. In the case of ruby the modest energy shift30 on the cubic field splitting 

parameter, 10Dq, due to ER(r) is around 0.2 eV, though sufficient to provoke the striking 

difference of color between this gemstone and emerald.  

In this work we aim to quantify the effect of the anisotropy of the lattice, as materialized 

in the internal field ER(r), over the properties of the TM complex and check its possible 

limits. To do so we will look for complexes where the effect of the anisotropy is much 

stronger than in the cases discussed before involving six-fold coordinated complexes. 

Thus, instead of studying nearly octahedral complexes, we will discuss the properties of 

square-planar systems where the axial and equatorial directions are far from being 

equivalent. In particular, we will focus on two systems involving the same CuF4
2- 

complex, whose optical spectra are quite different. The first system is the CuF4
2- complex 

appearing in the pure compound34-36 CaCuF4 (I4/mcm space group, Fig. 1 left) while the 

second is the center II detected37 by electron paramagnetic resonance (EPR) and 

electron nuclear double resonance (ENDOR) in Ba2ZnF6 (I4/mmm space group, Fig. 1 

right) nominally doped with 3% of CuF2. In this case, Cu2+ enters an interstitial site of the 

Ba2ZnF6 host lattice38 and forms a CuF4
2- complex. ENDOR data shows no evidence for a 

distortion of the square-planar symmetry implying that the four F- ligands involved in 

CuF4
2- are equivalent37. In the dominant center formed in Ba2ZnF6:Cu2+ (center I) Cu2+ 

replaces Zn2+ thus giving rise to a sixfold coordinated CuF6
4- complex37, 39, whose 

properties have previously been explored40.  

Optical measurements carried out on CaCuF4 show37 the existence of three transitions 

in the 1.25 eV - 1.70 eV domain (Fig. 2 top), assigned to the three d-d transitions 

expected for a tetragonal CuF4
2- complex. Concerning the optical spectrum of 

Ba2ZnF6:Cu2+ (centre II), there are also three transitions, which appear as shoulders and 

can be ascribed to CuF4
2-complexes39. However, such transitions are observed in the 1.7 

eV - 3.0 eV region in Ba2ZnF6 (Fig. 2 bottom) which, surprisingly, does not overlap with 

the domain where the d-d transitions of CaCuF4 are recorded. For this reason, it was 

early believed that the shoulder found at ~1.74 eV for CuF4
2- in Ba2ZnF6 can in fact be a 

d-d transition while those measured at ~2.23 eV and ~2.98 eV could be associated with 

charge transfer transitions39. In this work, we are going to use first-principles 

calculations to show that this is not the case and that the strong energy shift between 

the two sets of d-d transitions is due to the different nature of the anisotropic internal 

field, ER(r), in CaCuF4 and Ba2ZnF6:Cu2+. 

The present work is organized as follows. An account of the employed computational 

methods is given in the next section. In addition to briefly commenting on experimental 

data supporting the formation of square-planar CuF4
2- complexes in Ba2ZnF6:Cu2+ the 

main results obtained in the present study are discussed in Section 3. For the sake of 

completeness, a general view on the role played by ER(r) on different systems is also 

provided at the end of that section.  Finally, the discussion on the effect of the anisotropy 
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of ER(r) on the properties of TM complexes and its implication are included in the last 

section. 

2. Computational details 

Periodic geometry optimizations on CaCuF4 and the center II of Ba2ZnF6:Cu2+ have been 

performed by means of the CRYSTAL14 code41 under the framework of the Density 

Functional Theory (DFT). Calculations on the impurity system were performed using 

2x2x1 periodic supercells containing 72 ions. In order to be sure that impurity-impurity 

interactions between supercells are negligible selected calculations were repeated on 

3x3x1 supercells and the results were practically unmodified. 

In the CRYSTAL code, the Bloch wavefunctions are represented by a linear combination 

of atomic orbitals which, in turn, are expressed as a combination of Gaussian basis 

functions. All ions have been described by means of basis-sets taken directly from the 

CRYSTAL’s webpage42. In particular, we have used all-electron triple-ζ plus polarization 

(TZP) basis recently developed for Peitinger et al.43 for Cu, Zn, Ca and F and the 

pseudopotential basis HAYWSC-3111(2d)G_zagorac_2012 for Ba. Following previous 

works, we have used the B1WC hybrid exchange-correlation functional (including 16% 

of Hartree-Fock exchange) that has shown to be able to reproduce with great accuracy 

the geometry and properties of a large number of both pure and doped crystals44. 

Similar results have been found using the PW1PW hybrid functional45 (including 20% of 

Hartree-Fock exchange). 

For the calculation of the d-d electronic transitions we use an embedded cluster 

approach. Many advanced cluster embedding methods exist in the literature, from 

those focused on obtaining the exact electrostatic representation on the cluster46-47, to 

those trying to obtain a good representation of the electron density around the 

embedded region48-49, passing through intermediate solutions where several 

embedding layers taking into account short- and long-range interactions are 

considered.50-51 However, in order to clearly show the effect of the anisotropy of the 

electrostatic ER(r) field created by the rest of the crystal lattice ions on the complex, we 

use here just a CuF4
2- unit surrounded by point charges. The use of 5 atom clusters for 

describing the d-d transitions of these centers is consistent with the highly localized 

character of the unpaired electrons residing essentially in the CuF4
2- complex region. 

Supporting this view our periodic calculations yield a hole residing less than 2% outside 

that region. Calculations have been carried out with the Amsterdam density functional 

(ADF) code52, that allows performing DFT calculations on each specific electronic 

configuration and thus using a -SCF procedure to obtain the excitation energies. For 

this goal we have used the popular B3LYP hybrid functional53 in the spin-unrestricted 

Kohn-Sham formalism of the DFT and high-quality all-electron basis sets of triple-ζ plus 

polarization (TZP) type formed of localized Slater-type functions as implemented in the 

2016.101 version of the ADF code. Tests carried out with larger clusters indicate that our 
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results are stable when increasing the number of ions in the representation of the 

impurity’s environment. 

The internal electric field was generated by means of about 200 point charges with 

values previously fitted to reproduce the electric field corresponding to the infinite 

system14, 54-55. 

 3. Results and Discussion 

Bearing in mind that the formation of square-planar CuF4
2- units is not very common it 

is worth mentioning the experimental data that support the formation of such 

complexes in Ba2ZnF6:Cu2+. 

EPR data for center II in Ba2ZnF6:Cu2+ prove37 that the unpaired electron is located in an 

antibonding b1g(x2- y2) orbital. The superhyperfine tensor shows the admixture of the 

x2- y2> wavefunction of copper with the 2p(F) and 2s(F) wavefunctions of four equivalent 

fluorine ions. In order to discard that such data cannot be associated with an elongated 

CuF6
4- unit the inspection of the experimental g-tensor conveys a useful information56. 

As shown in Table 1, g- g0 for elongated CuCl64- complexes57-58 is 50% higher than for 

systems involving CuCl42- units59-60. In the same vein the values of g - g0 measured for 

CuF6
4- in the cubic perovskites61-62 CsCdF3 and KZnF3 are, respectively, 51% and 33% 

higher than the figure g- g0 = 0.43 reported37 for the center II in Ba2ZnF6:Cu2+. A similar 

situation holds when comparing the experimental g - g0 values (Table 1). All these facts 

thus support that such a center actually involves a square-planar CuF4
2- unit. 

As to the case of the pure compound CaCuF4 X-ray diffraction data clearly show the 

existence of CuF4
2- units that do not share common ligands (Fig. 1). The experimental g- 

g0 = 0.47 and g - g0  = 0.07 values35 are consistent with this fact. 

3.1 Local Equilibrium Geometry for CuF4
2- units in Ba2ZnF6 and CaCuF4 

In order to check the reliability of the present periodic calculations we have determined, 

in a first step, the lattice parameters and the value of the Cu2+ - F- distance, R, for the 

CaCuF4 pure compound. Such values together with the distance between a F- ligand of 

CuF4
2- and the nearest Ca2+ ion (Fig. 1) and the F – Cu - F angle are reported in Table 2 

and compared to experimental results36. It can be noticed that all calculated distances 

reproduce the experimental values with deviations smaller than 1%. Moreover, we have 

verified that d electrons from copper ions give a very sharp and narrow (about 1.5 eV) 

contribution to the density of states indicating that such electrons are well localized 

inside the CuF4
2- complexes. 

In the same vein, the calculated lattice parameters for the Ba2ZnF6 host lattice (Fig. 2), a 

= 4.093 Å and c = 16.174 Å, differ by less than 1% with respect to experimental figures38, 

a = 4.101 Å and c = 16.263 Å. 
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In addition, a Bader charge analysis leaded to total ionic charges Ca+1.67, Cu+1.30 and F-0.74 

for CaCuF4 and Ba+1.70, Zn+1.46 and F-0.81 for Ba2ZnF6, confirming that both materials have 

a significant ionic character.  

Bearing these facts in mind, we have explored in a subsequent step the actual position 

and the associated equilibrium geometry of the CuF4
2- complex embedded in the 

Ba2ZnF6 host lattice. Taking into account the lattice structure of Ba2ZnF6 (Fig. 1) we have 

considered two possible empty sites where Cu2+ can be accommodated forming square-

planar CuF4
2- complexes: (1) Cu2+ enters the layer B at the interstitial site surrounded by 

four F- ions at a distance R = 2.05 Å in the perfect lattice (Fig. 1). Nevertheless, in this 

case there would be in the perfect lattice an axial F- ion at 2.13 Å as well as another axial 

Ba2+ ion at a short distance (1.62 Å) from the ideal interstitial site. (2) Cu2+ enters the 

layer C at the interstitial site surrounded by four F- ions at a distance R = 2.05 Å and two 

axial Ba2+ ions located at a distance of 2.456 Å in the perfect lattice. 

DFT calculations performed assuming that Cu2+ enters layer B converge slowly and give 

rise to a distorted  pentacoordinated CuF5
3- complex which is not compatible with 

experimental findings37 for centre II. By contrast, such calculations give rise to the 

formation of a stable CuF4
2- complex if Cu2+ occupies the interstitial position at the layer 

C. This result thus concurs with the conclusions derived from experimental EPR and 

ENDOR data37 supporting that centre II in Ba2ZnF6:Cu2+actually involves an interstitial 

Cu2+ ion in layer C. 

The M - F distances (M = interstitial site in layer C) with the nearest F-  ions for the perfect 

lattice are given in Table 3 together with the corresponding values for M - Ba and M - Zn 

distances. These distances are compared in Table 3 with those calculated when the M 

site is already occupied by a Cu2+ ion. It should be noticed that the accommodation of 

Cu2+ in the M site requires a large outwards relaxation of two nearest Ba2+ ions equal to 

22.5% while it is only 5.5% for closest Zn2+ ions lying in the layer plane. The outward 

relaxation of close Ba2+ and Zn2+ ions help to obtain a Cu2+ - F- distance, R, smaller than 

the M - F distance (M = empty site) for the perfect lattice, equal to 2.055 Å. It should be 

remarked now that the calculated Cu2+ - F- distance, R = 1.874 Å, for CuF4
2- in Ba2ZnF6 

(Table 3) coincides, within 1%, with that measured36 for the same complex in the CaCuF4 

pure compound (Table 2 and Fig. 1). This relevant fact already stresses that the disparate 

optical spectra of CuF4
2- units in CaCuF4 and Ba2ZnF6 cannot be understood on the basis 

of a different value of the metal – ligand distance. 

3.2 Optical spectrum of CuF4
2- in CaCuF4: red shifts due to the internal field 

In a first step, we have calculated the energy of three d-d transitions for CaCuF4 

considering the isolated CuF4
2- unit and a value of the metal ligand distance R = 1.89 Å. 

The results of calculations are displayed in Table 4 where they are compared to 

experimental findings35 for CaCuF4. It can immediately be noted that the experimental 

figures are significantly smaller than the transition energies calculated for an isolated 
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complex. In particular, the experimental a1g(3z2- r2)  b1g(x2- y2) transition lies at 1.71 

eV and thus it is 0.9 eV smaller than the calculated energy (2.58 eV) for the isolated 

complex. This fact thus stresses that the energy of d-d transitions in CaCuF4 cannot 

properly be understood just considering the isolated CuF4
2- complex. 

It has been pointed out that the localization of active electrons in the complex does not 

necessarily mean that the optical transitions are understandable in terms of an isolated 

complex. Indeed, a charged complex has to be embedded in an insulating lattice and 

thus it can also be influenced by the electric field, ER(r), due to the rest of ions involved 

in the lattice14. As ER(r) has been shown30, 33, 63 to play a key role for explaining the 

different color of oxides containing Cr3+ or the d-d transitions in K2ZnF4:Cu2+ we have 

explored its influence in the case of CaCuF4. 

The values of d-d transitions in CaCuF4 derived considering that the CuF4
2- unit is also 

subject to the internal electric field, ER(r), are displayed in Table 4 as well. It can be 

remarked that the calculated values are now much closer to experimental findings 

although with differences of the order of 0.1 eV, similar to those derived for fluorides 

containing CuF6
4-complexes40, 63. In particular, the calculated energy for the a1g(3z2- r2) 

 b1g(x2- y2) transition (1.84 eV) is now close to the experimental value equal to 1.71 

eV. The reduction of d-d transitions energy in CaCuF4 induced by the internal electric 

field can be understood looking at the shape of the potential, VR(r), generating ER(r). The 

form of the corresponding potential energy (-e)VR(r) felt by an electron is portrayed in 

Fig. 3 when the electron coordinate, r, moves either along a Cu2+ - F- bond or 

perpendicularly to the plane containing the CuF4
2- unit. As shown in Fig. 3, in the first 

case (-e)VR(r) decreases as we move away from the copper site, r = 0, while the opposite 

happens when we go along the perpendicular direction to CuF4
2-. Therefore, the internal 

electric field in CaCuF4 is highly anisotropic as it tends to decrease the energy of the 

b1g(x2- y2) planar orbital and, at the same time, to increase the energy of the a1g(3z2- r2) 

orbital lying mainly along the perpendicular direction to the CuF4
2- plane. Both facts 

explain, albeit qualitatively, the significant reduction of the a1g(3z2- r2)  b1g(x2- y2) 

transition energy forced by the internal electric field in CaCuF4. 

Although, in principle, all ions of the lattice contribute to VR(r) the shape of VR(r) - VR(0) 

is mainly determined by the position and nature of ions lying close33 to those involved 

in the CuF4
2- unit. When the unpaired electron of the CuF4

2- complex lies in the planar 

b1g(x2- y2) orbital the closest ions to a ligand F- of the complex are two positive Ca2+ ions 

lying at a distance of 2.35 Å. By contrast, when the unpaired electron is placed in the 

axial a1g(3z2- r2) orbital the first ions that will act on such electronic density are two 

negative F- ions of the rest of the lattice lying at 2.80 Å. These facts allow us to 

qualitatively understand the anisotropy of VR(r) - VR(0) when r moves either along a Cu2+ 

- F- equatorial direction or along the axial direction perpendicular to the CuF4
2- plane.  

3.3 Optical spectrum of CuF4
2- in Ba2ZnF6: blue shifts due to the internal field 
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Once the equilibrium geometry around the interstitial Cu2+ ion in Ba2ZnF4 has been 

explored in section 3.1 we can now calculate the energy of three d-d transitions. 

Similarly to the procedure followed for CuF4
2- in CaCuF4, we have derived in a first step 

its value for the isolated CuF4
2- unit at the equilibrium metal – ligand distance R = 1.874 

Å. In a second step, we have included in the calculation the effects arising from the 

internal electric field, ER(r), on active electrons confined in the CuF4
2- complex. Results 

are displayed on Table 5. 

The calculated d-d transitions for the isolated CuF4
2- unit in Ba2ZnF4 are almost equal to 

those derived in CaCuF4 although their energies are around 0.03 eV higher following a 

reduction of 0.8% in the metal - ligand distance. Interestingly, such calculated energies 

for the isolated CuF4
2- unit are, in this case, smaller than the transition energies 

measured experimentally for CuF4
2- embedded in Ba2ZnF4. This situation is thus contrary 

to that encountered for CaCuF4. Nevertheless, as shown in Table 5, when the effects of 

the internal electric field, ER(r), are incorporated into the calculations the energy of the 

three d-d transition increases and the results are then closer to experimental findings. 

For instance, under the addition of ER(r) the calculated energy for the b2g(xy)  b1g(x2- 

y2) transition increases by 0.2 eV and thus coincides within 0.05 eV with that estimated 

experimentally39. With regards to the highest a1g(3z2- r2)  b1g(x2- y2) transition the 

inclusion of ER(r) increases its energy by 0.12 eV with respect to that obtained for the 

isolated complex. In this case the calculated value for the a1g(3z2- r2)  b1g(x2- y2) 

transition is about 8% smaller than the value estimated from the experimental optical 

absorption spectra for Ba2ZnF6:Cu2+. It should be noticed that such a transition is 

observed experimentally39 as a shoulder lying on a band whose intensity strongly grows 

when the energy increases. This fact, displayed in Fig. 2, can partially explain the 8% 

difference between the experimental estimation and the calculated value. 

Therefore, the present calculations strongly support that the three transitions observed 

as shoulders in the optical absorption spectrum of Ba2ZnF6:Cu2+ are in fact the d-d 

transitions of CuF4
2- units. The big difference with the optical spectrum of CuF4

2- in 

CaCuF4
 can now be understood looking at the shape of (-e)VR(r) for CuF4

2- complexes 

placed in Ba2ZnF6, portrayed in Fig. 3. It can be remarked that when we move along an 

equatorial Cu2+-F- direction (r along <100> directions) (-e)VR(r) is essentially flat while it 

decreases in the case of CaCuF4 (Fig. 3). Furthermore, when we move along the axial 

direction perpendicular to the CuF4
2- plane (r along <001> directions) (-e)VR(r) decreases 

when the distance increases (Fig. 5).Thus the  behavior of the anisotropic VR(r) potential 

for Ba2ZnF6:Cu2+ (centre II)  is opposite to that found for CaCuF4 (Fig. 3). 

Obviously, the origin of the anisotropy resides in the structure of the lattice and also the 

position occupied by the complex. We have verified that the form of (-e)VR(r) for CuF4
2- 

in Ba2ZnF6 greatly depends on the existence of two positive Ba2+ ions lying in axial 

positions as a result of the interstitial site occupied by Cu2+. Its influence on the energy 

of the a1g(3z2- r2) orbital is however mitigated by the strong outwards relaxation of two 
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Ba2+ ions, discussed in section 3.1, induced by the incorporation of Cu2+ at the empty 

site. 

As shown in Fig. 3, when r moves along <110> then (-e)VR(r) also decreases when the 

distance increases, a matter related to the presence of four nearest Zn2+ ions in the plane 

containing the CuF4
2- complex. This fact thus explains the increase of the b2g(xy)  

b1g(x2- y2) transition energy by 0.2 eV due again to the action of the internal electric field. 

For the sake of clarity, we have also calculated the energy of the lowest allowed charge 

transfer transition for CuF4
2- in Ba2ZnF6 which is found to be located at 6.03 eV. This 

result confirms that any of optical transitions observed for Ba2ZnF6:Cu2+ cannot have a 

charge transfer origin as initially argued in Ref39. This conclusion is consistent with both 

the optical electronegativity scale by Jørgensen64 and results obtained for CuCl42- whose 

first allowed charge transfer transition appears65-66 at 3.2 eV. As the substitution of Cl- 

by F- as ligand implies64 a blue shift of 3.4 eV then the onset of charge transfer 

excitations for CuF4
2- is expected to be above 6 eV.  

3.4 Differences between CuF4
2- in CaCuF4 and Ba2ZnF6: origin of the singularity 

Once we have proved that CuF4
2- in Ba2ZnF6 actually has a d-d spectrum very different 

from that of CaCuF4 it is worth pondering on the main reasons making possible this 

singular situation, described in the strongly different experimental spectra shown in Fig. 

2. 

There are three main factors behind such an unusual situation: (1) The main one is the 

anisotropic internal electric field that modifies, in first-order perturbation, the energy of 

involved orbitals giving rise to shifts of optical transitions30. These shifts are, in general, 

larger for square-planar than for sixfold coordinated complexes. So, for CuO4
6- 

complexes formed67-68 in CaCuSi4O10 ER(r) gives rise to negative shifts69 up to 0.9 eV on 

d-d transitions, a situation similar to that found for CaCuF4. By contrast, for CuF6
4- in 

K2ZnF4 such shifts40, 63 are smaller than 0.35 eV. (2) The character of the anisotropy 

depends on the structure of the embedding lattice and the position of the complex. So, 

in compounds like CaCuSi4O10, BaCuSi2O6 or CaCuO2 containing square-planar CuO4
6- 

complexes the internal electric field induces, in all cases, a red shift on the d-d 

transitions69. For this reason, the energy of the a1g(3z2- r2) b1g(x2- y2) transition 

changes only by 0.3 eV on passing from CaCuSi4O10 to CaCuO2. By contrast, ER(r) induces 

a red shift for CaCuF4 but a blue shift for CuF4
2- in Ba2ZnF6. This fact thus gives rise to 

shifts around 1 eV when comparing the energy of the a1g(3z2- r2)  b1g(x2- y2) transition 

in both systems. (3) The internal field has a stronger effect on optical transitions 

involving jumps between two states belonging to a different configuration.  Although 

this condition is well fulfilled by the three transitions explored for CuF4
2- in Ba2ZnF6 and 

CaCuF4 this is not the case for octahedral d3 or d5 complexes where there are excited 

states with the same electronic configuration of the ground state but a different spin17, 

19, 70. The energy of such excitations are weakly affected by the internal electric field as 



11 
 

the electronic density is modified by the addition of ER(r) only in second-order 

perturbations71. The 2E  4A2 crystal-field transition of Cr3+ in oxides and, to less extent, 

the 6A1  4A1 transition of octahedral Mn2+ complexes, are good examples of that 

behavior71.  

3.5 Role of the internal electric field on optical properties: general considerations 

The present results emphasize the importance of the ER(r) field to obtain a correct 

quantitative understanding of the properties of TM complexes without the need to use 

any fitting parameter, i.e. completely from first-principles. For this reason, we cannot 

discard a priori the influence of ER(r) on the electronic states of a complex unless we 

previously prove that it is negligible. This means that, in general, there are two 

contributions33, 40 to the separation between the levels of a complex and that critically 

determine, for example, the energy, E, of an optical transition corresponding to an axial 

TM system embedded in an insulating lattice 

        E = Eint(Req, Rax) + Eext       (1) 

Here, the first quantity means the intrinsic contribution coming from the isolated 

complex, which depends on metal-ligand distances, Req and Rax, while the second one, 

the extrinsic contribution, arises from the effects due to the internal electric field ER(r). 

It is firstly important noting that ER(r) is anisotropic even in cubic lattices. Owing to this 

fact the value of the crystal-field splitting parameter, 10Dq, measured for Cr3+-doped 

the cubic MgO lattice, where Rax = Req = R, is blue shifted33 by 0.2 eV due to the action of 

ER(r) leading to a final 10Dq value that is equal to that measured29 for the emerald 

gemstone, Be3Si6Al2O18:Cr3+. This fact is, in principle, surprising as the Cr3+-O2- distance 

in emerald30-31 (R = 1.97 Å) is smaller than that for the cubic center33 in MgO:Cr3+ (R = 

2.03 Å).   

An exception are materials with perovskite14 and elpasolite structures72, where the ER(r) 

field is found to be very flat in all directions thus implying that optical transitions can be 

well understood only through the isolated complex. For this reason, the experimental 

10Dq values derived for MnF6
4- complexes in fluoroperovskites directly reflect the 

equilibrium Mn2+-F- distance16, 19. A similar situation holds when we consider a CrF6
3- or 

CrCl63-complex21-24, 27 placed in different elpasolite lattices. Nevertheless, this idea is no 

longer true when we compare two host lattices that are not isomorphous as we have 

discussed for the 10Dq value33 for emerald, MgO or perovskite-based systems or as we 

have proved in sections 3.2 and 3.3 for Cu2+ square-planar complexes.  

A significant field of application for these ideas can be found in the spectroscopic 

properties of MX6 complexes (M = d9 ion, X = halide) in non-cubic host lattices that have 

often been explained on the basis of a Jahn-Teller effect including extra empirical 

parameters and neglecting any influence of ER(r). A relevant example of this procedure 

concerns the CuF6
4- complex embedded in the tetragonal K2ZnF4 lattice involving ZnF6

4- 
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units, which are practically perfect octahedra. Despite this fact the hole in K2ZnF4:Cu2+ is 

placed in the a1g(3z2-r2)  orbital73 and not in the b1g(x2-y2) one, such as it is found  for 

Cu2+-doped cubic perovskites like KZnF3 or CsCdF3 where a static Jahn-Teller effect takes 

place61-62. This remarkable difference reflects that in K2ZnF4:Cu2+ the internal field alone, 

displaying a tetragonal symmetry, produces an extrinsic gap ext = 0.35 eV between 

b1g(x2-y2) and a1g(3z2-r2) orbitals when the CuF6
4- complex is octahedral (Rax = Req), placing 

the a1g(3z2-r2) orbital above40, 63. Thus, this extrinsic gap breaks the orbital degeneracy 

that should appear in a Jahn-Teller system when Rax = Req. By contrast, in KZnF3:Cu2+ that 

extrinsic gap is null40, 74 as a result of the cubic symmetry of ER(r) and the equilibrium 

geometry is the result of a static Jahn-Teller effect. The existence of an extrinsic gap in 

K2ZnF4:Cu2+, but not in in KZnF3:Cu2+, also explains why the absolute value of the gap, 

, measured at the equilibrium geometry is clearly higher for the former system75 ( = 

0.70 eV) than for the latter where optical absorption data reveal76 that  should be 

below 0.5 eV. These results are in agreement with first principles DFT calculations74 

yielding  = -0.398 eV for KZnF3:Cu2+. Despite these arguments, it is said in a recent 

paper77 that the properties of K2ZnF4:Cu2+ and KZnF3:Cu2+ can be understood on the 

same grounds, thus ignoring the effects of the tetragonal internal field in the former 

system. This surprising  statement is based on an assumed experimental value  = 0.62 

eV for KZnF3:Cu2+, which, if correct, should be very close to  = 0.70 eV measured75 for 

K2ZnF4:Cu2+. However, that assumption is not supported at all by experimental data76 

and theoretical calculations74 on KZnF3:Cu2+ and thus it leads to a wrong conclusion. 

The internal field, ER(r), not only plays a key role for understanding63, 78 why K2MgF4:Ni+ 

has surprisingly a hole79 in b1g(x2-y2) but also for explaining the eventual failure of various 

empirical rules widely used in the realm of TM complexes. For instance, one would  

expect that, according to the spectrochemical series64, 80, the energy of  three d-d 

transitions of CuX4
2- (X = F, Cl) complexes would decrease when fluorine is replaced by 

chlorine as ligand. However, the three d-d transitions measured for CuCl42- complexes in 

(N-mpH)2CuCl4 are found81 at 1.55, 1.77 and 2.11 eV and thus all of them are lying above 

the corresponding transitions observed in CaCuF4 (Table 4). Obviously, the strong red 

shift induced by ER(r) on optical transitions of CaCuF4, discussed in section 3.2, plays an 

important role for explaining this anomaly. 

It is worth noting that the potential VR(r) created by the internal field ER(r) is different 

from the so-called Madelung potential, VM(0). The last one is the electrostatic potential 

created by all the ions in the lattice except the one where the potential is calculated on, 

while VR(r) is the electrostatic potencial (on an electron in r position) created by all ions 

outside the complex, i.e. it does not include the field created by the ligands. The effect 

of VR(r), particularly that related to the anisotropy, is connected to its variation at the 

metal-to-ligand bond region that allows observing different effects on different 

orbitals.30, 33 When r  0 (that is, the electron is almost on the metal of the complex) we 
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have VR(r) ≈ VM(0), and its main effect would be a rigid shift of all the 3d levels of the 

ion.  

For compounds with a significant ionic character, it has been found that the shape of 

ER(r) is nearly unmodified when replacing the actual charges on ions by the nominal 

ones. Accordingly, the extrinsic contribution to the b1g(x2-y2)  a1g(3z2-r2)  transition  in 

K2CuF4 is found to be74 nearly insensitive to the replacement of calculated charges by 

the nominal charges.  

Finally, it is worth stressing that Eq. (1) essentially assumes that, in any host lattice, 

active electrons are always lying in the complex and thus there is not any flow of charge 

to close ions of the complex30. Experimentally, this circumstance has been well proved 

by means of the ENDOR technique in cases82-84 like ruby, MgAl2O4:Cr3+ or KMgF3:Mn2+. 

Under that situation, the optical properties of a given complex can vary either due to 

changes of the metal ligand distance or the different shape of ER(r) induced by lattice 

substitution. Obviously, this kind of analysis cannot be applied when comparing two 

complexes where the number or the nature of ligands is not preserved, such as it 

happens when considering isolated CuF6
4- and CuF4

2- units that are actually different. 

Indeed the removal of two axial ligands in CuF6
4- for obtaining the square-planar CuF4

2- 

unit already involves a drastic change in the order of d-orbitals and the electronic 

density. 

4. Final Remarks 

In this work we have demonstrated that, when studying the properties of a transition 

metal complex, it is crucial to consider the anisotropy of the lattice that takes the form 

of an internal field ER(r) created by the ions of the lattice not belonging to the complex. 

If we designate by i an orbital of the complex, the energy shift due to the VR(r) potential 

is just determined, in first order perturbation30, by <iVR(r) - VR(0) i> and thus reflects 

the anisotropy of both  VR(r) and the electronic density. Accordingly, the biggest changes 

in an optical transition i  j appear when the involved orbitals are placed in regions 

where VR(r) - VR(0) looks very different. We have illustrated these ideas studying the 

properties of CuF4
2- complexes with very similar metal-ligand distances in two different 

lattices, CaCuF4 and Cu2+-doped Ba2ZnF6. We observed that the remarkably different 

optical spectra of these systems35, 39, that had led in the past to suggest that the 

transitions in Ba2ZnF6:Cu2+ had a charge-transfer character39, involve in both cases d-d 

transitions. This central result is supported by calculations where, aside from a full 

quantum-mechanical description of the complex, a point-charge electric field ER(r) is 

simply added.  

These minimalist calculations highlight the usefulness of the transition metal complex 

as a unit where the active electrons are localized. Moreover, they show a clear limitation 

in a very widespread application of the TM complex concept: not all the properties of 

the complex are intrinsic to it since the lattice anisotropy also plays an important role in 
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them. While the origin of the interactions is of a completely different nature the 

anisotropy in the aggregation of the units forming molecular crystal is also found to play 

an important role in the optical properties of excitons since, for example, the axial versus 

in-plane exchange interactions in π-π systems will clearly differ.85 

It is important to note here that although the cubic lattices are usually considered as 

isotropic, due to the sphere-like symmetry of all rank-2 tensors like the dielectric tensor, 

this is not the case for the internal electric field, ER(r), felt by a complex embedded in 

such a lattice that exhibits full cubic symmetry, i.e., lower than spherical. For this reason, 

the optical properties of complexes in perfect cubic lattices reflect, in general, the 

expected anisotropy of ER(r). Good examples of this effect are found in host lattices 

displaying a rock salt33 or an inverted perovskite structure71, 86, while cubic perovskites 

and elpasolites are an exception as ER(r) is very flat in the whole complex region14, 72. 

Thus, in cubic systems, as MgO, <100> and <111> directions - that coincide, respectively, 

with the orientation of eg and t2g orbitals - are not equivalent, a fact that opens a 

pathway to provide an extrinsic contribution33 to 10Dq due to the anisotropy of ER(r).  

This difference is more evident for six-coordinated quasi-octahedral complexes in 

tetragonal and hexagonal lattices where the existence of a preferential axis is evident. 

However, calculations consistently show that the shifts in optical transitions obtained 

for these systems are small40, of the order of a few tenths of an eV, when compared to 

the larger shifts found in square-planar systems where equatorial and axial directions 

are clearly different and anisotropy is openly displayed.  

A further parallelism can be drawn between our application of the lattice anisotropy 

with the sign of the axial zero-field-splitting parameter, D, that measures magnetic 

anisotropy in TM complexes that have a spin quantum number S > 1/2. In the same way 

that ER(r) lowers the energy of mainly axial orbitals in Ba2ZnF6:Cu2+ (center II) and 

equatorial orbitals in CaCuF4, D < 0 (D > 0) denotes the existence of an easy magnetic 

axis (plane) that is associated with the reduction of the energy of the states with a 

magnetic moment projected along that direction. Thus, in the same way that a strong 

effort is being put into the manipulation of the magnetic anisotropy of a system, the use 

of the lattice anisotropy can be used to tune the properties of TM complexes. In fact, 

subtle changes of orbital energies associated to the cubic to nearly square-planar 

configuration87-88 of Fe+-doped SrCl2 have been shown to be behind the origin of the 

huge magnetic anisotropy in this system89.  

The importance of lattice anisotropy is not limited to explain the spectroscopic 

properties of embedded complexes but can also play a key role for understanding the 

electronic and geometrical structure of TM compounds. Along this line, it has been 

shown that the nature of the electronic ground state and the associated orbital ordering 

of compounds like K2CuF4 or La2CuO4 are deeply influenced by the shape of the internal 



15 
 

electric field which in turns is shown by particular antiferro- and ferrodistortive patterns 

in the geometry of these systems90. 

It is worth noting now that similar issues are well-known to arise in biological 

chromophores91-92 but are less documented in the solid-state community. In this sense 

recent papers deal with the importance of the electrostatic field over chromophores, 

like those created by amino acids in the opsin protein over the retinal chromophore92, a 

key feature to understand human vision, or the mechanism for light emission in the 

firefly luminescent protein.91  

In summary, we have shown the importance of the lattice anisotropy as a key concept 

to understand transition metal complexes in crystals. This phenomenon is displayed 

even in systems believed to be “isotropic” and can be used to chemically modulate a 

wide-range of properties in this important family of compounds.  

Further work on electronic and structural properties of compounds containing d9 cations 

is now underway. 
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Figure 1. Left: Crystal structure of the tetragonal CaCuF4 material with square-planar 

CuF4
2- units. Right: Crystal structure of the tetragonal layered perovskite Ba2ZnF6 (layer 

sequence ABCABC...) showing the two Cu2+ centers, center I with a tetragonally 

compressed CuF6
4- complex and center II with a square-planar CuF4

2- unit. 
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Figure 2. Experimental peak positions at T = 5 K of the three d-d transitions (marked with 

arrows) corresponding to square-planar CuF4
2- units in CaCuF4 (in top and red line, 

electronic reflectance spectrum taken from Ref. [36]). This spectrum is compared with 

the transitions associated with the center II in Ba2ZnF6:Cu2+, observed, at T = 5 K, as 

shoulders in the polarized optical absorption spectra given in the bottom. Results for 

this system are taken from Ref.39 where data in σ-polarization are shown in light blue 

color while those in π-polarization are indicated in dark blue color. The peak at around 

1.6 eV in σ-polarization corresponds to the highest d-d transition (xy  3z2-r2) of the 

compressed CuF6
4- unit in Ba2ZnF6 (center I). The identification of the d-d transitions, all 

above 1.60 eV, corresponding to square-planar CuF4
2- complexes is helped by the fact 

that the only three d-d peaks of octahedral CuF6
4- units39-40, the dominant species 

formed in doped Ba2ZnF6, appear in the range 0.80 - 1.60 eV.  
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Figure 3. Potential energy (–e)[VR(r) - VR(0)] for the CuF4
2- complexes in CaCuF4 and 

Ba2ZnF6:Cu2+ (center I) along the directions Cu-F (x), diagonal in the complex plane (xy) 

and perpendicular to the complex plane (z). 
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System  Complex g  g  Ref. 

NaCl:Cu2+ CuCl64- 2.37 2.07 57 

CdCl2:Cu2+ CuCl64- 2.34 2.07 58 

(N-mpH)2CuCl4 CuCl42- 2.22 2.04 59 

K2PdCl4:Cu2+ CuCl42- 2.23 2.05 60 

KZnF3:Cu2+ CuF6
4- 2.57 2.14 62 

CsCdF3:Cu2+ CuF6
4- 2.65 2.12 61 

Ba2ZnF4:Cu2+ (II) CuF4
2- 2.43 2.07 37 

CaCuF4 CuF4
2- 2.47 2.07 35 

 

Table 1. Experimental g-tensor measured for CuX6
4- and CuX4

2- complexes (X = Cl, F) 

placed in insulating lattices. 

 

 

 a (Å) c (Å) R (Å) Ca-F (Å) F-Cu-F (º) 

Calculated  5.371 10.347 1.895 2.351 86.99 

Experimental 5.377      10.320 1.880 2.349 89.39 

 

Table 2. Calculated values of some geometrical parameters corresponding to the CaCuF4 

compound at equilibrium. a and c are the lattice parameters (Fig. 1), R is the Cu2+-F- 

distance, Ca-F the distance between a F- ligand of CuF4
2- and the nearest Ca2+ ion and F-

Cu-F the corresponding angle. Experimental results36, obtained at room temperature, 

are collected for comparison. As the linear thermal expansion coefficient, , is 

practically zero for a fluoride like KZnF3 below 100 K  and equal to 1.5 10-5  K-1  at room 

temperature93 the increase of R on passing from T = 0 K to room temperature for CaCuF4  

is expected to be  less than 0.01 Å. Thus the present comparison between the calculated 

R value at T = 0 K for CaCuF4 and that measured at T = 300 K makes sense. 
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M M - F M - Ba M - Zn 

Interstitial site 2.055 2.455 2.90 

Cu2+ impurity 1.874 3.00 3.06 

 

Table 3. Distances (in Å units) from the interstitial site in a layer C of the perfect Ba2ZnF4 

lattice to the four nearest F-  and four nearest Zn2+ ions in the layer plane as well as to 

the two axial Ba2+. These distances are compared with the corresponding ones 

calculated when the interstitial site is occupied by a Cu2+ impurity. In Ba2ZnF4 the 

experimental distances among ions38, measured at room temperature, are affected by 

an error of 0.02 Å. 

 

Transition  Isolated CuF4
2- CuF4

2- under ER(r) Experim.  

b2g(xy)  b1g(x2-y2) 1.55 1.37 1.25 

eg(xz,yz)  b1g(x2-y2) 2.13 1.80 1.65 

a1g(3z2-r2)  b1g(x2-y2) 2.58 1.84 1.71 

 

Table 4. Energy values (in eV) of three d-d transitions for CuF4
2- in CaCuF4 calculated for 

a metal-ligand distance R = 1.89 Å. In a first step, the three transitions have been derived 

considering only the isolated complex at the right equilibrium geometry. In a second 

step, the influence of the internal electric field generated by ions of the rest of the lattice 

on active electrons located in the CuF4
2- complex has also been taken into account. 

Experimental values35 are also reported for comparison.  

 

 

Transition  Isolated CuF4
2- CuF4

2- under ER(r) Experimental  

b2g(xy)  b1g(x2- y2) 1.57 1.78 1.74 

eg(xz;yz)  b1g(x2- y2) 2.16 2.19 2.23 

a1g(3z2- r2)  b1g(x2- y2) 2.61 2.73 2.98 

 

Table 5. Energy values of d-d transitions (in eV) for CuF4
2- in Ba2ZnF4 calculated for R = 

1.874 Å and compared to experimental findings39. Aside from results for the isolated 

complex those obtained including the internal electric field due to the Ba2ZnF4 lattice 

are also reported. Note that all transitions are observed as shoulders in optical 

absorption spectra. In particular, the highest d-d transition appears as a shoulder in a 

band whose intensity strongly grows when the energy increases.   
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Understanding the huge difference in the d-d transitions (up to 1.27 eV) in square-planar 

CuF4
2- units in CaCuF4 material and center II in Cu2+-doped Ba2ZnF6 requires to consider 

the anisotropic electric field due to the ions of each lattice.  
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