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Abstract 

Thyroperoxidase (TPO) is the enzyme that synthesizes thyroid hormones (THs). TPO inhibition by 

chemicals can result in decreased TH levels and developmental neurotoxicity, and therefore 

identification of TPO inhibition is of high relevance in safety evaluation of chemicals. In the present 

study, we developed two global quantitative structure-activity relationship (QSAR) models for TPO 

inhibition in vitro. Rigorous cross- and blinded external validations demonstrated that the first 

model, QSAR1, built from a training set of 877 chemicals, was robust and highly predictive with 

balanced accuracies of 80.6% (SD = 4.6%) and 85.3%, respectively. The external validation test set 

was subsequently merged with the training set to constitute a larger training set totaling 1,519 

chemicals for a second model, QSAR2, which underwent robust cross-validation with a balanced 

accuracy of 82.7% (SD = 2.2%). An analysis of QSAR2 identified the ten most discriminating structural 

features for TPO inhibition and non-inhibition, respectively. Both models were used to screen 72,524 

REACH substances and 32,197 U.S. EPA substances, and QSAR2 with the expanded training set had 

an approximately 10% larger coverages compared to QSAR1. Of the substances predicted within 

QSAR2’s applicability domain, 8,790 (19.3%) REACH substances and 7,166 (19.0%) U.S. EPA 

substances, respectively, were predicted to be TPO inhibitors. A case study on butyl hydroxyanisole 

(BHA), which is extensively used as an antioxidant, was included to exemplify how predictions from 

the developed QSAR2 model may aid in elucidating the modes of action in adverse outcomes of 

chemicals. Overall, predictions from QSAR2 can for example be used in priority setting of chemicals 

and in read-across cases or weight-of-evidence assessments. 
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1. Introduction 

Thyroid hormones (THs) participate in multiple biological processes from early development and 

throughout adulthood [1–3]. In the fetus and neonate, THs play an essential role in 

neurodevelopment [4], where they are involved in neuron differentiation, proliferation and 

migration, dendritic branching and synaptogenesis, and myelination [1,5]. In early gestation, the 

fetus depends entirely on maternally-derived THs until the fetal thyroid gland becomes functional at 

approximately gestational week 12 in humans and gestational day 17-18 in rats [1,6,7]. Maternal THs 

continue to contribute to fetal TH levels throughout gestation in both humans and rats [1,6]. Studies 

have shown that even a moderate and transient decrease in maternal TH levels during pregnancy is 

associated with permanent adverse neurological changes in the offspring [8]. In animal models and 

humans altered cognition, socialization and motor function as well as hearing loss have been 

observed following moderate to severe hypothyroidism [6,9–17]. Even low levels of TH insufficiency 

during fetal development may result in measurable IQ deficits in children [9,13–18]. In adulthood, 

dysregulated TH levels can give reversible clinical symptoms of hypo- or hyperthyroidism [8] and are 

correlated with pathological processes involved in adverse outcomes such as cancer, obesity and 

type II diabetes mellitus [19,20].  

Humans are exposed to tens of thousands of man-made chemicals through food, drugs, air, water 

and consumer products [21–24]. Large data gaps exist for most of these xenobiotics on their 

potential thyroid disrupting properties [25]. Xenobiotics can disturb TH homeostasis through many 

different mechanisms, including altered TH synthesis, transport, metabolism, and thyroid hormone 

receptor activation as well as disruption of the hypothalamus-pituitary-thyroid axis [10,25–28]. The 

same xenobiotic may act through more than one mechanism [25]. Because of the severity of the 

adverse effects that can be expected from chemical disruption of thyroid homeostasis, especially 

during early development, there is a need to develop a strategy for the identification and testing of 

thyroid-active compounds. As a step towards replacing expensive and time-consuming whole animal 

studies with alternative methods in chemical risk assessments, the Organisation for Economic Co-



  

5 
 

operation and Development (OECD) launched a new program on the development of Adverse 

Outcome Pathways (AOPs) in 2012 [29]. An AOP describes the sequential chain of causally linked 

events at different levels of biological organization starting from a so-called molecular initiating 

event (MIE) going through a number of downstream linked key events (KEs), and ends at an adverse 

health or ecotoxicological effect [29,30]. According to the OECD, AOPs are the central element of a 

toxicological knowledge framework to support chemical risk assessment based on mechanistic 

reasoning. AOPs can help industry and regulators use results from alternative methods, such as in 

vitro and in silico methods, in chemical risk assessments [31], e.g. by applying the AOP in OECDs 

Integrated Approaches to Testing Assessment (IATA) context [29,32,33]. Multiple thyroid-related 

AOPs have been suggested [34,35]. One AOP under development determined to have a strong 

overall weight-of-evidence (WoE) describes a series of linked events from the MIE, thyroperoxidase 

(TPO) inhibition, leading to hypothyroxinemia, and resulting in altered neurodevelopment and 

neurological dysfunction in the offspring [36, see also 4 and 25]. TPO is a heme-containing 

multifunction enzyme essential in TH synthesis [37,38]. Recently, a high-throughput screening (HTS) 

in vitro assay for TPO inhibition was developed by the U.S. Environmental Protection Agency (EPA) 

National Center for Computational Toxicology (NCCT) [39] and used to screen 1,126 ToxCast Phase I 

and II chemicals including structurally diverse environmental chemicals and failed drugs [34,40,41]. 

The assay is based on microsomes from rat thyroid tissue and requires the amount from 

approximately one rat to assess quantitative TPO inhibition of 1.5 chemicals [39]. An additional set 

of 771 ToxCast chemicals (known as the ‘Endocrine 1000’ or ‘E1K´ set) [41,42] was subsequently 

screened in the same HTS TPO inhibition assay (Simmons et al., in prep).  

The goal of the present study was to use the ToxCast data to develop in silico models, and apply the 

models to large inventories of man-made chemicals to predict their potential to inhibit TPO. For this 

purpose, we first used experimental TPO inhibition results for 1,126 ToxCast Phase I and II chemicals 

to prepare a training set of 877 chemicals, which was then used to train and cross-validate a global 

binary Quantitative Structure-Activity Relationship (QSAR) model. QSARs are mathematical models 
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that relate chemical structure descriptors with an experimental continuous (e.g. EC50) or categorical 

(e.g. positive/negative) activity. Once established, these in silico models can be used as a non-testing 

approach to predict the activities of untested chemical structures (an introduction to QSAR can e.g. 

be found in [43] and [44]). The E1K dataset was used to prepare a test set of 646 chemicals, which 

was applied to externally validate the QSAR model. Next, the test set was merged with the training 

set to form a larger training set of 1,519 chemicals, which was subsequently used for training and 

cross-validating a second QSAR model. An analysis of the structural features in the second QSAR 

model was performed to identify the top features that discriminated TPO inhibitors from non-

inhibitors. Both QSAR models were used to screen two large EU and U.S. chemical inventories 

containing man-made substances potentially present in e.g. the environment and consumer 

products for their possible TPO inhibition activity. The screened EU inventory consist of 72,524 

REACH pre-registered substances (PRS) extracted from the online Danish (Q)SAR Database structure 

set [45,46]. Briefly, REACH pre-registration concerns existing substances that companies plan to 

register under REACH as so-called phase-in substances and the full PRS list contains a total of 

145,299 unique substances/entries [47]. The U.S. inventory was originally curated by the U.S. EPA as 

a part of the CERAPP project [48] and contains 32,464 unique structures to which humans are 

potentially exposed. The structures were curated from sources such as the ACToR CPCat database 

[21], the DSSTox database [49], the Canadian Domestic Substances List, the Endocrine Disruption 

Screening Program set and EPI Suite training and test sets [41,42,48]. Predictions from these 

screenings will inform a tiered approach to prioritize possible thyroid modulating chemicals for 

further evaluation and could be used, together with relevant AOP(s), in IATA WoE assessments 

[29,33,50]. We also conducted a case study to highlight how the developed QSAR models for TPO 

inhibition can support hypotheses regarding the mode of action for chemical-induced adverse 

outcomes observed in in vivo studies. 
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2. Materials and Methods 

2.1 Experimental Datasets 

We used two datasets provided by U.S. EPA NCCT with chemical structure information and HTS 

screening results for TPO inhibition in vitro to train and validate two QSAR models. The chemicals 

screened contained diverse chemical structures including environmental and industrial chemicals, as 

well as some failed drugs [41]. The chemicals in both datasets were not selected specifically for this 

project or based on suspected TPO inhibition activity, and the original datasets include internal 

replicated samples. The experimental results consisted of data from the HTS Amplex®UltraRed-

thyroperoxidase (AUR-TPO) in vitro assay [39], which had further undergone a selectivity filtering 

procedure to identify potentially false positive results due to non-specific activity decrease in the 

AUR-TPO assay [34]. Briefly, all chemical structures were initially screened at a single, high 

concentration (~87.5µM). The chemicals associated with 20% or greater decreases in maximal TPO 

activity were subsequently screened for possible concentration-response. The concentration-

response data were processed as described previously using the ToxCast data pipeline whereby each 

chemical was assigned a ‘hit-call’ of 1 if active in AUR-TPO, or a ‘hit-call’ of 0 if inactive in AUR-TPO 

[51]. Actives in the AUR-TPO assay were further processed through a selectivity filtering algorithm, 

which integrates results from cytotoxicity and luciferase inhibition assays to identify possible non-

specific positive results in the AUR-TPO assay [34]. The chemical structures, assays, data analysis and 

selectivity filtering procedure have been described in more details previously [34,39,40,51]. We 

classified the chemicals into three categories (Figure 1): 1) chemicals that had a <20% activity 

decrease in the single, high concentration screening or had been assigned a ‘hit-call’ of 0 in the 

concentration-response AUR-TPO screening were classified as inactive in this assay; 2) chemicals 

with a ‘hit-call’ of 1 in AUR-TPO and a selectivity score greater than 1 were classified as active for 

TPO inhibition; and 3) chemicals with a ‘hit-call’ of 1 in AUR-TPO but with a selectivity score of 1 or 

less were classified as inconclusive for TPO inhibition.  
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The first dataset provided to the QSAR model developers at the Technical University of Denmark 

National Food Institute (DTU Food) consisted of structure information and experimental results for 

1,126 ToxCast Phase I and II chemicals [34,40,41], including replicates, and was used for preparing a 

training set referred to as training set 1 (Figure 1). The second E1K dataset of an additional 771 

chemicals from ToxCast [41,42], initially containing only structural information, was used for 

preparing a test set of 646 chemicals for external validation of the selected QSAR model built from 

training set 1 (see 2.3) (Figure 1). After determining the external validation statistics, the 

experimental results of the test set structures were made available to the model developers at DTU 

Food. The test set and training set 1 were then merged to form a second, larger training set referred 

to as training set 2 (Figure 2).  

2.2 Structure Preparation 

All chemical structures in the two U.S. EPA NCCT provided datasets had previously undergone an 

extensive quality control and structure curation procedure as part of the ToxCast program [41,52]. 

The QSAR software applied in this study handles organic chemical structures with an unambiguous 

2D structure. We apply an overall definition of structures acceptable for QSAR processing in all our 

in-house QSAR software [45,46], as structures:  

 containing at least two C atoms 

 containing only the atoms H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and/or I; and, 

 that are not mixtures consisting of two or more organic components  

The structures that did not fulfill these criteria were removed from the two datasets. Further 

processing of the structural information included stripping off ions and neutralization of the organic 

parent structures, i.e. all structures were used in their non-ionized form (Figure 1).  

Next, identical QSAR-ready structures within the first dataset were identified and their assigned 

experimental results were compared. For identical structures with concordant activities, only one of 
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the structures was kept. If a group of identical structures had discrepant activities then the whole 

group was removed from the dataset. Next, structures with inconclusive experimental results, i.e. 

‘hit-call’ of 1 in AUR-TPO and a selectivity score of 1 or less, were removed and the dataset now 

constituted training set 1 (Figure 1). The same duplicates removal procedure was performed by U.S. 

EPA NCCT scientists on the DTU Food experimentally-blinded E1K set, which then constituted the 

test set (Figure 1). Some of the QSAR-ready structures in the test set were identical to structures in 

training set 1 and were therefore excluded from the external validation. When the test set 

experimental results were made available to DTU Food, and training set 2 was prepared by merging 

the test set and training set 1 (Figure 2), the experimental results of the identified structural 

duplicates were compared. Again, if they had concordant experimental result only one of the 

structures was kept, while all the structures were removed in case of disagreement between the 

experimental results. 

2.3 QSAR Modeling and Selection  

We used the commercial software Leadscope® Predictive Data Miner (LPDM), a component of 

Leadscope® Enterprise Server version 3.2.4 [53], to build the QSAR models. Briefly, for each chemical 

structure in a training set LPDM automatically performs a systematic sub-structural analysis using a 

template library of more than 27,000 predefined structural features and calculates nine molecular 

descriptors (AlogP, Hydrogen Bond Acceptors and Donors, Lipinski Score, Molecular Weight, Parent 

Atom Number, Parent Molecular Weight, Polar Surface Area, Rotatable Bonds) [54]. The structural 

features and molecular descriptors are included in a default descriptor set. In addition, the user may 

call a functionality in LPDM to generate and add new training set-dependent structural features 

(scaffolds) to the descriptor set. The pre-defined structural features, added scaffolds and numeric 

molecular descriptors are included in an initial descriptor set. From the initial descriptor set, an 

automatic descriptor selection procedure in LPDM selects the top 30% descriptors according to 

Yates X2-test for a binary response variable. For the current training set 1 and 2 with binary 

responses, predictive models were built using partial logistic regression (PLR) with further selection 
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of descriptors in an iterative procedure, and selection of the optimum number of PLR factors based 

on least predictive residual sum of squares. LPDM has the option of building composite models, a 

type of ensemble model [55], for training sets with an imbalanced distribution of actives and 

inactives. With this option a number of sub-models are created by specifying the desired ratio of 

actives to inactives per sub-model training set, so that each of the sub-models contains the smaller 

class and a sample of the bigger class. The positive prediction probability (see 2.4) for a query 

chemical from a composite model is defined as the average of the positive prediction probabilities of 

all sub-models having the test chemical in the applicability domain (AD) [56]. This is in contrast to 

single models where the entire training set is used to train one single model. 

Multiple modeling approaches were applied in LPDM to build seven predictive models for TPO 

inhibition first using training set 1 (Figure 2):  

1) single (i.e., non-composite) 

2) single with scaffolds 

3) single with scaffolds and a reduced set of structural features 

4) composite 

5) composite with scaffolds 

6) composite with scaffolds and a reduced set of structural features 

7) composite model combining model 3 and the sub-models from model 6  

 

In 1 and 4, the descriptors were selected among the default descriptors, i.e. the molecular 

descriptors and the predefined structural features, and used to build a single model and a composite 

model, respectively. Next, scaffolds were generated in LPDM for the training set structures and 

added to the initial descriptor set, which subsequently was used for descriptor selection for models 

2 and 5. In models 3 and 6, the scaffold-enriched descriptor set was reduced using a built-in function 

in LPDM (i.e., ‘Remove most features – (removes less similar features)’) that removed certain similar 

structural features before the descriptor selection. This step was employed to achieve a higher-

quality set of fewer structural features, eliminate highly similar or redundant ones, and reduce the 
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risk of overfitting. In model 7, the single model 3 and the sub-models from composite model 6 were 

combined to constitute a new composite model with equal weight of all its sub-models.  

All seven models underwent a ten times two-fold cross-validation by the LPDM algorithm. The 

algorithm transfers knowledge of the selected descriptor set from the parent model when building 

the cross-validation models, and we therefore do not use it for our measures of absolute predictive 

performance, but only to guide relative performance-based selection between the seven preliminary 

models. Among the seven predictive models built from training set 1, we selected the model with 

the highest performance from the LPDM cross-validation for further validation and screening studies 

(Figure 2). The selected model, called QSAR1, was then closed for further development. 

2.4 Applicability Domain Definition 

The definition of the AD applied in this project consists of two components: 1) the definition of a 

structural domain in LPDM, and 2) a DTU Food in-house class probability refinement on the output 

from LPDM:  

1) For a test compound to be within LPDM’s structural domain it was required that: all molecular 

descriptors used in the model could be calculated, it contained at least one structural feature used in 

the model, and it had at least 30% Tanimoto similarity with a training set compound [56]. The 30% 

Tanimoto similarity was a default cut-off in the LPDM software. For a test compound outside this 

structural domain no prediction call (active/inactive) was generated by LPDM. For test compounds 

within the LPDM structural domain, a positive prediction probability, p, between 0 and 1, was given 

together with the prediction call; actives having a p ≥ 0.5 and inactives having a p < 0.5 [56].  

2) To exclude less reliable predictions, i.e. those with a positive prediction probability close to the 

cutoff p = 0.5, we required p ≥ 0.7 for active prediction calls and p ≤ 0.3 for inactive prediction calls. 

Predictions within the LPDM structural domain but with an associated positive prediction probability 

in the interval 0.3 to 0.7 were thus defined as outside of the AD and excluded from the statistical 

analyses. 
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2.5 Validation of the Models  

Next, the closed QSAR1 model underwent an external validation blinded to DTU Food using the test 

set to evaluate its predictive performance (Figure 2). U.S. EPA NCCT compared the DTU Food 

generated test set prediction calls within the AD (see 2.4) with the corresponding experimental 

results and calculated sensitivity, specificity, balanced accuracy and coverage. Sensitivity is the 

percentage of experimental actives correctly predicted, specificity is the percentage of the 

experimental inactives correctly predicted, and balanced accuracy is the average of the sensitivity 

and specificity [57]. The coverage is the proportion of test set compounds that had predictions 

within the model’s AD.  

The assigned experimental activities for the test set were then made available to DTU Food, who 

merged the test set with training set 1 to constitute the larger training set 2 (see 2.2). Training set 2 

was used to build seven predictive models using the same modeling and LPDM cross-validation 

approaches described for training set 1 in section 2.3, and of these the best performing model was 

selected (Figure 2). The selected model, called QSAR2, was closed for further development. 

As described above, the LPDM cross-validation algorithm was, due to the issue with transfer of 

knowledge to the cross-validation models, only used to guide the selection of the best performing 

model among the seven models built from training set 1 and 2, respectively. The two selected and 

closed models, QSAR1 and QSAR2, were each subsequently subjected to a DTU Food in-house five 

times two-fold stratified cross-validation procedure to further estimate their robustness and 

predictive performance (Figure 2). This was done by randomly removing 50% of the structures from 

the training set, preserving the ratio of actives and inactives. Then a cross-validation model was built 

on the reduced training set using the same modeling approach as the full, parent model, but without 

transferring any established information such as selected descriptors from the parent model. The 

cross-validation model was applied to predict the 50% of the training set that had been removed. 

Likewise, a cross-validation model was made using the removed 50% of the training set, and this 
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model was used to predict the remaining 50%. This procedure was performed five times resulting in 

ten cross-validation models. Sensitivity, specificity and balanced accuracy were calculated for the in-

AD predictions for each of the ten cross-validation models, and the mean and standard deviation 

(SD) were computed to give overall statistical measures of the predictive performance and 

robustness of the parent model based on the full-training set. The coverage, i.e. the mean 

percentage of how many of the predicted substances that had predictions within the AD of the ten 

cross-validation models, was also calculated. 

2.6 Structural Features in QSAR2 

To identify structural features in QSAR2 related to TPO inhibition or non-inhibition, respectively, all 

features in the model were sorted in descending order by: 

                

where n is the number of training set 2 structures containing the given feature, and    is the mean 

TPO inhibition experimental activity (1 for actives and 0 for inactives) of the n training set structures.  

With this metric the QSAR2 structural features that discriminate well between the two classes, i.e. 

actives and inactives, and are contained in the largest number of training set 2 structures are given 

the highest ranking. Based on this sorting, the top ten structural features with an    ≥ 0.8, i.e. 

structural features associated with activity, and an    ≤ 0.02, i.e. structural features associated with 

inactivity, respectively, were identified (Figure 2). The cutoff of    ≤ 0.02 was chosen instead of 0.2, 

which would have been symmetric to the    ≥ 0.8 cutoff for activity associated structural features, 

due to the larger proportion of inactive structures in the training set.  

2.7 Screening Large Chemical Inventories 

The structures in the REACH-PRS inventory were originally curated from deliverable 3.4 of the 

OpenTox EU project and had previously been processed through the structure preparation steps 

described in section 2.2 [58]. The 72,524 QSAR-ready REACH-PRS structures included structural 
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duplicates, and the REACH-PRS set thus contained a total of 60,281 unique structures (Figure 2). The 

U.S. EPA inventory was also previously processed through the structure preparation steps described 

in section 2.2 and 32,197 unique QSAR-ready structures remained. Both the REACH-PRS set and the 

U.S. EPA set were screened through the QSAR1 and QSAR2 TPO inhibition models to identify 

substances with the potential to inhibit TPO. We applied both QSAR1 and QSAR2 to be able to assess 

the effect of adding the test set structures to training set 2 with regard to their coverages and the 

prevalence of predicted TPO inhibitors in the two models. While QSAR2 is likely to provide a better 

coverage of the inventories, the lack of an external validation of QSAR2 may for some purposes 

suggest that QSAR1 is a more appropriate tool. 

The overlaps in substances as well as unique structures between U.S. EPA and REACH-PRS were 

identified (Figure 2). The proportion of the QSAR-predicted U.S. EPA and REACH-PRS substances 

within the AD of QSAR1 and QSAR2 and the activity distributions of the predictions were calculated.  

3. Results and Discussion 

This is to our knowledge the first study to develop global binary QSAR models for TPO inhibition and 

apply them to predict two large and structurally diverse chemical inventories containing man-made 

substances for their TPO inhibiting potential.  

3.1 The Training and Test Sets 

The number of QSAR-ready structures and the distribution of active and inactive experimental 

results in training set 1, the test set and training set 2 are summarized in Table 1. The numbers given 

in the table reflect the situation after removing structures that were either unsuited for QSAR 

processing in the applied software, structural duplicates or had inconclusive experimental results. In 

training set 1 this resulted in the removal of 72 structures due to structural QSAR criteria, i.e. 

structures not acceptable for QSAR processing, 21 due to structural duplicates (four of these due to 

conflicting experimental results), and 156 due to inconclusive experimental results; in total 249 out 
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of the 1,126 initial structure entries. In the external validation test set , a total of 125 out of the 771 

initial E1K structure entries were removed; 14 due to structural QSAR criteria, 23 due to overlap with 

training set 1 structures, 14 due to internal structural duplicates (two of these due to conflicting 

experimental results), and 74 due to inconclusive experimental results. When merging training set 1 

and the test set, which at this point was un-blinded to DTU Food, the experimental results of the 23 

structures removed from the test set due to overlap with training set 1 structures were compared 

with their corresponding training set 1 experimental results. In four cases the experimental results 

disagreed, and these structures were therefore removed from the final training set 2 (Table 1). 

The chemical structures in the provided datasets had undergone thorough quality control and 

curation [41,52]. In addition, since the datasets originated from the same source, i.e. U.S. EPA NCCT, 

and all chemicals had been screened in the same testing protocols and undergone the same data 

processing, this has likely contributed to decrease the experimental variability. The quality of the 

AUR-TPO assay has been assessed previously [34,39] and indicated excellent performance with 

robust Z-prime factor from 0.77 to 0.83, where values above 0.5 generally indicate excellent 

performance to distinguish between actives and inactives, and high intralaboratory repeatability 

with the robust coefficient of variance being 3–4%. The data in training set 1 and 2 and the test set 

where therefore assessed to be of high quality [34,39] and expected to be a good basis for QSAR 

model development. The AUR-TPO assay measures the fluorescence intensity from the commercial 

peroxidase substrate, Amplex®UltraRed (AUR), which is converted to Amplex UltroxRed by a 

peroxidase in the presence of hydrogen peroxide. A decrease in fluorescence intensity in response to 

a chemical is an indirect measure of TPO inhibition. The reaction chemistry and oxidation product of 

AUR is proprietary and the exact reaction(s) inhibited and its reversibility cannot be identified [34]. 

Therefore, the AUR-TPO assay read out has multiple potential confounders, including: non-specific 

enzyme inhibition; reactive, autofluorescent or fluorescence quenching chemicals; and other sources 

of interference with the peroxidase reaction [34,39]. When comparing results from the AUR-TPO 

assay with results from the lower throughput orthogonal guaiacol oxidation assay, the AUR-TPO 
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assay was previously found to have a sensitivity of 86% and a specificity of 39% [34]. Part of the high 

sensitivity of AUR-TPO could be due to a higher rate of false positive results from confounding non-

specific activity decrease, a known problem with loss-of signal assays. Identification and removal of 

such potentially AUR-TPO false positive TPO inhibitors in the datasets was attempted by the 

application of the selectivity score filter [34] and the inconclusive category, i.e. AUR-TPO positives 

with a selectivity score less than 1, see section 2.1. However, not all mechanisms potentially causing 

non-specific activity decrease, e.g. fluorescence quenching, have been addressed in the selectivity 

score [34] and so the presence of false positive TPO inhibitors in the training and test sets cannot be 

excluded. Furthermore, the tiered screening approach in AUR-TPO with a cutoff of 20% activity 

decrease in the initial single, high-concentration screening [34] may have produced some false 

negatives as it cannot be excluded that a portion of the chemicals causing an activity decrease below 

the 20% cutoff would have been positive if screened for concentration-response. In addition to the 

potential confounding effects in the raw experimental outputs, the models applied for the ‘hit-call’ 

assignment and the selectivity score algorithm are also subject to some degree of uncertainty in 

their results.  

3.2 QSAR Modeling and Selection 

Table 2 shows the LPDM cross-validation results for the seven models built from training set 1 and 2, 

respectively. As mentioned above, the LPDM cross-validation was used to guide relative 

performance-based selection between the seven preliminary models. As can be seen in Table 2, the 

composite modeling approaches 4 to 7 outperformed the single models 1, 2 and 3 in the LPDM 

cross-validation with regard to the balanced accuracy (Table 2). This is most likely an effect of the 

imbalanced distribution of actives and inactives in both training sets with a ratio of approximately 

1:6 (Table 1). The composite model feature in LDPM was implemented to handle such imbalanced 

training sets to include also a high proportion of the bigger class and thereby optimize the size of the 

AD [56].  
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In this work we employed a new approach where a single, unbalanced model (i.e., model 3) was 

added as a sub-model, together with the balanced sub-models from a composite model (i.e., model 

6), to form a new composite model (i.e., model 7). This addition caused a significant reduction in the 

number of false positive predictions (FPs) produced in the LPDM cross-validation as compared to 

model 6 alone (see Table 2). For both training set 1 and 2 this resulted in a remarkable increase in 

the LPDM cross-validation specificity while causing only a smaller reduction in sensitivity (Table 2), 

and together this explains why model 7, in both cases, outperformed the other composite models 4, 

5 and 6. To conclude, model 7 was the best performing among the seven models for both training 

set 1 and 2, and therefore selected for both training sets, and these models were named QSAR1 and 

QSAR2, respectively (Table 3). 

3.3 Predictive Performance of the QSAR Models 

The two selected and final models, QSAR1 and QSAR2, underwent a five times two-fold DTU Food in-

house cross-validation procedure to evaluate their predictive performance and robustness. QSAR1 

also underwent a DTU Food blinded external validation with the test set. The results from the 

validation studies are presented in Table 3 and demonstrate high predictive performance, i.e. 

balanced accuracies of 85.3% by external validation for QSAR1 and 82.7% by cross-validation for 

QSAR2, respectively.  

Adding the test set to training set 1 to build QSAR2 served multiple purposes. One purpose was to 

explore how much the added test set would enlarge the AD of the model and thereby increase the 

coverages of the two large chemical screening inventories, U.S. EPA and REACH-PRS. The coverage of 

QSAR2 was roughly 6% larger in the cross-validation (Table 3) and 10% larger for both screening 

inventories (Table 5) than the respective coverages of QSAR1. A second purpose of adding the test 

set in QSAR2 was to explore the possible improvements in predictive performance. To do this, we 

first built the smaller QSAR1 model and performed both a rigorous five times two-fold cross-

validation procedure and an external validation with the test set. As can be seen in Table 3 the 
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validation procedures show that QSAR1 has high predictive performance and is a robust model, i.e. a 

balanced accuracy of 85.3% in external validation and 80.6% with an SD of 4.6% in the cross-

validation. A comparison of the statistical parameters from the two validation methods indicates 

that the rigorous cross-validation procedure applied does not overestimate the model’s predictive 

performance, but rather, outputs conservative estimates. This conservative nature of the cross-

validation is likely due to the rigorous procedure of removing 50% of the full training set to build the 

cross-validation models. Such a procedure is especially hard on the proportionally few actives in 

training set 1, i.e. 130 out of 877 (Table 1), which is also reflected in the relatively high SD of 10% in 

the sensitivity of the ten QSAR1 cross-validation models (Table 3) as well as its lower mean value 

(72.3%) compared to the sensitivity from the external validation (79.7%). The structures in the test 

set used for the DTU-blinded external validation of QSAR1 were not selected due to specific TPO 

inhibition concerns or to serve as a representative test set for QSAR1, but instead selected because 

they are included in the U.S. EPA regulatory ToxCast universe based on potential for exposure, and 

not because of prior concern about endocrine disruptive effects [41,42].  

The procedure of performing both independent and robust cross-validation and a large, 

representative and prospective external validation is optimal when evaluating a model’s predictive 

performance, but external validation has the disadvantage of withholding what may in many cases 

be valuable data from the model itself [43,59]. Adding all available data to a training set can, in 

addition to expanding the AD, also result in a model with a higher predictive performance, 

depending on the characteristics of the added data. The QSAR2 model could not undergo an 

external validation procedure due to lack of another external test set. Previous studies have shown 

that robust cross-validations give reliable estimates of a model’s predictive performance (e.g. 

[59,60]). For QSAR1, the applied two-fold cross-validation procedure gave a conservative measure of 

performance in comparison to the external validation. Based on this, we anticipate that QSAR2 will 

have a similar or higher predictive performance if it underwent a robust external validation with a 

test set generated using the same protocol and data processing. As can be seen from Table 3, the 
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cross-validation sensitivity was slightly increased in QSAR2 (75.6%) compared to QSAR1 (72.3%) and 

the sensitivity SD was reduced from 10.1% to 5%. This is most likely the effect of an increase in 

actives from 130 in training set 1 to 230 in training set 2, which renders the 50% exclusion in the 

cross-validation procedure less influential on the sensitivity. As there were already many inactives in 

training set 1, the addition of more inactives to training set 2 did, as expected, not have the same 

high impact on the specificity, which went from 89.0% (SD 2.8%) in QSAR 1 to 89.8% (SD 1.5%) in 

QSAR2.  

3.4 Top Structural Features in QSAR2 

The ten most frequent and discriminating predictive structural features associated with actives and 

inactives, respectively, in QSAR2 are shown in Figure 3. Among the highest ranking structural 

features associated with activity were versions of phenols, anisole and aniline. The most frequent 

structural features associated with inactivity included ethers, esters, aryl halides and a tertiary 

amine. To our knowledge structural docking or pharmacophore studies for TPO have not been 

performed (Simmons et al., in prep). 

3.5 The Screening Results 

We found a total of 27,444 substances present in both the U.S. EPA and the full REACH-PRS 

inventories. There were 19,279 unique structures in common in the two inventories (Table 4). To our 

knowledge this is the first study that has quantified the overlap between these two inventories, both 

with regard to overall substance and unique structure overlap. The high overlap between the U.S. 

EPA set and the REACH-PRS set was not surprising since both inventories represent collections of 

man-made, environmental chemicals in the U.S. and EU, respectively.  

Both the U.S. EPA and REACH-PRS inventories were screened using QSAR1 and QSAR2 for TPO 

inhibition. In Table 5 the coverage of the two substance inventories, i.e. the proportion of the full set 

predicted within the AD of the model, and the number of active and inactive predictions are 

presented for each model. As expected, the coverage of QSAR2 was larger than QSAR1 of both 
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screening sets. The percentage of chemicals in the two inventories with active predictions in the AD 

of the two models ranged from 16.5% to 19.3% (Table 5). Although slightly higher this is not very 

different from the percentage of experimentally determined actives of 14.8% to 15.5% in the 

training and test sets (Table 1). As mentioned earlier, the chemicals in the experimental datasets 

were not selected on the basis of expected TPO inhibition effects. It is not known to what extent the 

slightly higher percentages of TPO inhibitors in the two predicted screening sets are due to false 

positive predictions or if they reflect a true TPO inhibitor prevalence. The validation studies showed 

that both QSAR1 and QSAR2 have specificities >10% higher than their respective sensitivities (Table 

3), and therefore both models are expected to, in a balanced universe, make relatively more false 

negative than false positive predictions.  

3.6 Butylated Hydroxyanisole as a Potential Thyroid Hormone Disruptor 

We searched the two chemical inventories for possible examples of human-relevant chemicals with 

known indications for adverse neurodevelopmental outcomes. Included in both the U.S. EPA and the 

REACH-PRS set were the two isomers of butylated hydroxyanisole (BHA, CASN 25013-16-5), 2-tert-

Butyl-4-hydroxyanisole (2-BHA, CASN 88-32-4) and 3-tert-Butyl-4-hydroxyanisole (3-BHA, CASN 121-

00-6) (Figure 4). BHA is manufactured and/or imported to the EU in a total of 100-1,000 tonnes per 

year and is used as an antioxidant and preservative in e.g. food, food contact materials, cosmetics, 

and pharmaceuticals [61–63]. It is an anticipated human carcinogen [64] and is has been noted to 

have published evidence of developmental neurotoxicity (DNT) in mammals [65,66]. Both in vitro 

and in vivo published studies indicate that the BHA isomers have endocrine-modulating potential, 

with most evidence for estrogenic and androgenic effects [63,67–72]. Based on this, BHA is on both 

the EU list of potential endocrine disruptors [73,74] and on the SIN (Substitute It Now!) List [75,76]. 

However, more data is needed to fully elucidate BHA’s potential as an endocrine disruptor and its 

mode of action(s) in DNT [63].  
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Both 2- and 3-BHA were predicted active for TPO inhibition by QSAR2, and 3-BHA was included in 

the QSAR2 training set as a TPO inhibitor. Studies in rats and pigs indicate that exposure to BHA 

(mixture of the two isomers) in utero can cause effects such as changed thyroxine serum levels, 

altered thyroid gland function and histology, and altered brain weight and behavior in the offspring 

[66,67,72]. TPO inhibition is as mentioned above identified to be the MIE in an AOP for thyroid-

related neurodevelopmental adverse effects (under development) [41]. The three common top 

activity-associated structural features from QSAR2 in the two isomers were identified as described in 

section 2.6 and is shown in Figure 4. Two of the features, “Scaffold 297” and “benzene, 1-alkoxy-,4-

hydroxy” were among the top ten structural features associated with activity in QSAR2 (Figure 3). 

“Scaffold 297” was present in eleven training set 2 structures of which nine were experimentally 

active for TPO inhibition. The “benzene, 1-alkoxy-,4-hydroxy” structural feature was present in five 

training set 2 structures that were all experimentally positive.  

The QSAR2 training set including flags for the test set structures of QSAR1 as well as the full 

experimental  background data set used to prepare the QSAR sets are available for download at the 

following link: http://qsar.food.dtu.dk/download/TPO_inhibition_QSAR_training_set.zip. Work is 

underway to make the training sets available from the U.S. EPA ToxCast website. Furthermore, 

predictions for around 640,000 structures in QSAR2, including the 72,524 REACH-PRS structures, will 

be made available from the online Danish (Q)SAR Database [46]. QSAR2 will also be made available 

for prediction of user-submitted structures in a coming free online Danish (Q)SAR Models sister-site 

to the Danish (Q)SAR database at the DTU homepage [46].  

4. Conclusions 

The present study reports the development, validation, and application of two global, binary 

composite QSAR models for TPO inhibition in vitro. The first model, QSAR1, showed high predictive 

performance in both cross-and external validation with balanced accuracies of 80.6% (SD = 4.6%) 

and 85.3%, respectively. QSAR2, the second model, enlarged with the external test set of QSAR1, 

http://qsar.food.dtu.dk/download/TPO_inhibition_QSAR_training_set.zip
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showed improved robustness and predictive performance in cross-validation compared to QSAR1, 

i.e. a balanced accuracy of 82.7% (SD = 2.2%), and this was largely driven by an increase in sensitivity 

from 72.3% (SD = 10.1%) of QSAR1 to 75.6% (SD 5.0%) of QSAR2. The top-10 structural features in 

QSAR2 related to TPO enzyme inhibition and non-inhibition, respectively, were identified. The two 

QSAR models were used to screen two large chemical inventories from the U.S. and EU containing 

structurally diverse man-made chemicals to which humans are potentially exposed. QSAR2 showed 

an increase in coverage of ~10% for both inventories relative to QSAR1, and of the substances 

predicted within QSAR2’s AD, 8,790 (19.3%) REACH-PRS substances and 7,166 (19.0%) U.S. EPA 

substances, respectively, were predicted to be TPO inhibitors. Among the predicted TPO inhibitors 

were the two isomers of BHA, which have previously been shown to cause both TH and neurological 

effects in animal studies. These QSAR predictions may contribute to elucidating the mode of action 

by which BHA results in these altered TH levels and neurological adverse outcomes. Overall, 

predictions from the two models can be used to prioritize chemicals for further testing and in 

considerations of possible concerns for downstream adverse outcomes (e.g., DNT) [77,78]. They may 

also be used e.g. in read-across cases or in IATA WoE assessments.  
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Tables and Figures 

 

Table 1. Number of structures in the QSAR-ready training sets 1 and 2, and test set with the distribution of 
active and inactive experimental results for TPO inhibition. 

Datasets Total number of unique structures Active (%) Inactive (%) 

Training set 1 877 130 (14.8) 747 (85.2) 

Test set* 646 100 (15.5) 546 (84.5) 

Training set 2** 1519 230 (15.1) 1289 (84.9) 
*The experimental results of the test set were masked to DTU Food model developers until after being predicted in QSAR1.  
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** some of the training set 1 structures were tested again together with the test set structures, and of these four structures had different 
activities compared to the training set 1 activity. The three training set 1 structures were removed from training set 2.  

 

Table 2. The results from the LPDM cross-validation of the seven built models from training set 1 and 2, 
respectively. 

Model  LPDMs 10 times two-fold cross-validation results 

Training set 1 
Sensitivity 

(%) 
Specificity 

(%) 
Balanced accuracy 

(%) 
TP* FP* TN* FN* 

1 43.0 96.8 69.9 49 21 626 65 

2 48.2 96.0 72.1 55 26 621 59 

3 50.0 96.3 73.2 57 24 623 57 

4 72.9 82.7 77.8 94 105 502 35 

5 81.4 78.2 79.8 105 136 498 24 

6 84.5 80.3 82.4 109 123 502 20 

7 74.6 92.5 83.6 97 55 676 33 

Training set 2 
Sensitivity 

(%) 
Specificity 

(%) 
Balanced accuracy 

(%) 
TP* FP* TN* FN* 

1 46.5 96.9 71.2 99 40 1153 114 
2 49.8 96.1 73.0 106 46 1147 107 

3 46.5 96.7 71.6 99 39 1154 114 

4 79.1 79.9 79.5 182 233 928 48 

5 75.7 79.5 77.6 174 240 931 56 

6 76.1 78.4 77.3 175 253 918 55 

7 71.3 92.6 82.0 164 95 1187 66 
*TP: true positives, FP: false positives, TN: true negatives, FN: false negatives. The numbers are averages of the ten iterations as given by 
LPDM. 

 

Table 3. Modeling approach applied and the predictive performances for QSAR1 and QSAR2. 

Model Statistical Parameter Cross-Validation*, % 
(SD, %) 

External Validation**, % 
(actual numbers) 

QSAR1 
Approach 7 
Sub-models: 7 

Sensitivity 72.3 (10.1) 79.7 (47/(47 + 12)) 

Specificity 89.0 (2.8) 90.8 (266/(266 + 27)) 

Balanced accuracy 80.6 (4.6) 85.3 ((79.7 + 90.8)/2) 

Coverage 51.6 (4.7) 54.5 (352/646) 

QSAR2 
Approach 7 
Sub-models: 7 

Sensitivity 75.6 (5.0) - 

Specificity 89.8 (1.5) - 

Balanced accuracy 82.7 (2.2) - 

Coverage 57.8 (5.4) - 
*A five times two-fold cross-validation, ** A blinded external validation with the experimental results of the test set being masked to the 
model developers at DTU Food. 

 

Table 4. The overlap in substances and unique structures between the U.S. EPA and REACH-PRS inventories.  

Overlap analysis U.S. 
EPA* 

REACH-
PRS** 

Total 
number 

In common Unique to a set 

REACH-PRS 
in U.S. EPA 

U.S. EPA in 
REACH-PRS 

REACH-
PRS 

U.S. 
EPA 

Structure entries 32,197 72,524 104,721 27,444 19,279 45,080 12,918 

Unique structures 32,197 60,281 92,478 19,279 19,279 41,002 12,918 
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*U.S. EPA: QSAR-ready structures from an U.S. EPA selected inventory of man-made chemical structures to which humans are potentially 
exposed, ** REACH-PRS: QSAR-ready structures from the REACH pre-registered substances list 

 

Table 5. The coverage (AD) and the number of active/inactive predictions of the U.S. EPA and REACH-PRS 
inventories in QSAR1 and QSAR2. 

 Total QSAR 1 QSAR2 

  In AD (%) Active (%) Inactive (%) In AD (%) Active (%) Inactive (%) 

U.S. 
EPA* 

32,197 16,898 (52.5) 
2855 
(16.9) 

14,043 
(83.1) 

19,392 
(60.2) 

3201 
(16.5) 

16,191 
(83.5) 

REACH-
PRS** 

72,524 38,661 (53.3) 
7,128 
(18.4) 

31,533 
(81.6) 

45,540 
(62.8) 

8,790 
(19.3) 

36,750 
(80.7) 

REACH-
PRS 
unique 

60,281 32,334 (53.6) 
5,879 
(18.2) 

26,455 
(81.8) 

37,784 
(62.7) 

7,166 
(19.0) 

30,618 
(81.0) 

*U.S. EPA: QSAR-ready structures from an U.S. EPA selected inventory of man-made chemical structures to which humans are potentially 
exposed, ** REACH-PRS: QSAR-ready structures from the REACH pre-registered substances list 

 

 

Figure 1. An overview of the dataset preparation procedure. S-C, single concentration screening; C-R, 
concentration response screening. *The experimental results of the dataset were blinded to the modelers at 
DTU Food 
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Figure 2. An overview of the datasets, modeling, structural feature sorting and screening.    is the mean TPO 
inhibition experimental activity and n is the number of training set structures.  
* The experimental results of the dataset were blinded to the modelers at DTU Food until after external 
validation had been performed. 
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Figure 2. The structural features used in QSAR2 were sorted on |0.5 -    (TPO inhibition activity)|∙ n, and the ten 
most frequent and discriminating structural features alerting for activity(   (TPO inhibition activity) > 0.8) and 
inactivity (   (TPO inhibition activity) < 0.02) are shown here. Ak matches saturated carbon and X matches the 
halogen atoms Cl, Br, I or F. Numbers in the upper left corners display the ratio of TPO inhibitors/non-
inhibitors in training set 2 for the specific structural feature. 

 

 

 

 

 

 

 

 
Figure 3. The two isomers of BHA and the three predictive structural features alerting for activity in QSAR2 
selected based on highest |0.5 –   (TPO inhibition activity)|*n and an    > 0.8. *3-BHA (CASN 121-00-6) was 
included in the training set and is the closest analog to 2-BHA (CASN 88-32-4). 
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Highlights: QSAR Models for Thyroperoxidase Inhibition and Screening of U.S. and EU Chemical 

Inventories 

 Development of two QSAR models for TPO inhibition 

 Highly performing and robust models according to cross- and external validations 

 Predictions of two large U.S. and EU chemical inventories for TPO inhibition 

 Identification of structural features associated with TPO inhibition 

 

 


