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Abstract  

Analyzing the thermo-mechanical reliability of solid oxide cell (SOC) stack requires precise measurement 

of the mechanical properties of the different components in the stack at operating conditions of the SOC. 

It is challenging to precisely characterize the time dependent deformational properties of metallic 

components in the SOC stacks at the required level of stress and operational conditions (high temperature 

and controlled atmosphere). This work presents an improved methodology for characterizing the time 

dependent or viscoplastic properties of metallic alloys used in SOC stacks at high temperature and in 

controlled atmosphere. The methodology uses a mechanical loading rig designed to apply variable as well 

as constant loads on samples within a gas-tight high temperature furnace. In addition, a unique remotely 

installed length measuring setup involving laser micrometer is used to monitor deformations in the 

sample. Application of the methodology is exemplified by measurement of stress relaxation, creep and 

constant strain rate behaviors of a high temperature alloy used in the construction of SOC metallic 

interconnects at different temperatures. Furthermore, measurements using the proposed methodology 

are also verified with literature and experiments conducted using other machines.  
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1. Introduction  
In the development of solid oxide fuel/ electrolysis cells or in general solid oxide cell (SOC) technologies, 

thermo-mechanical stability of the SOC stack components at operational conditions is vital to ensure their 

reliable performance [1–5]. In addition to the ceramic electrodes, the performances of auxiliary 

components such as metallic interconnects are highly affected by the thermal and chemical environment 

during the operation of the SOCs. A typical issue that is directly related to the structural stability of the 

metallic interconnect involves loss of contact, for example, in planar SOCs stack due to  time dependent 

plastic deformations [1,2] and a weak interface between electrodes and the interconnect [6]. Loss of 

contact between the interconnect and planar electrodes is one of the problems that affects the reliability 

of outputs from SOC technologies [1,2,7,8]. Stresses generated due to thermal gradients in the SOC stack 

at operational conditions are often the main cause of plastic deformations in the interconnects, which 

may lead to possible loss of contact pressure at the interfaces of the stack components [7].   

It is therefore important to characterize, analyze and theoretically model the high temperature 

deformational behaviors of metallic alloys used in the construction of SOC stacks in order to understand 

and improve their performance. In this regard, mechanical testing setups that are able to replicate the 

loading and atmospheric conditions during operation of the SOCs are needed. These conditions involve 

high temperatures (as high as 1000 OC) and controlled atmospheres (e.g. hydrogen). In addition to a 

mechanism to apply the necessary level of load on test specimens, it is also beneficial for the experimental 

setup to have a methodology that can measure deformations in-situ.  

Commercially, there are testing machines designed to allow the user perform thermo-mechanical analysis 

on test specimens. Some of these machines are provided with a mechanism to control the test 

atmosphere and temperature, but they have limitations with regards to the amount of force applied on 

the test specimens (e.g. maximum of 3 N force in the case of thermal mechanical analyzer or TMA supplied 

by Netzsch Gmbh, Germany) [9].  To increase the stress level, the cross sectional dimensions of the sample 

can be decreased, but this is limited by practicalities like machining and gripping of the specimens. 

Alternatively, in a bending test, the length and height of the sample can be designed to reach the 

maximum desired stress at a given mechanical load. However, for non-linear creep responses, e.g. power 

law creep and primary creep, the varying stress across the height of the sample makes it difficult to de-

convolute the dependency on stress directly. This is far more directly measured in uniaxial tension 

experiments.  



Other testing machines have a larger load range with the ability to control the ambient temperature, but 

they are not supplied with a mechanism to control the atmosphere (e.g. Instron/MTS) [10]. Special gas 

tight furnaces can be designed for conventional mechanical test rigs, but as described in [11], this entails 

use of bellows or similar components, which introduce additional complications in load measurements 

(equalizing absolute pressures inside and outside).  

In addition, while studying the creep behavior of high temperature alloys used specifically in SOCs, it is 

important to also consider the geometry of the final components. For instance in the case of fuel cell 

interconnects, where thin metallic plates typically are used, the grain growth over time is restrained by 

the thickness of the plate and the grain size significantly influences the creep rate. Thus, using round bars 

can provide results that are not representative of the material behavior in the SOFC stacks [12]. 

Previous studies on characterizing the time dependent deformations of metallic alloys used in SOC 

technologies often rely on conventional mechanical testing instruments with a heating furnace around 

the test sample. The time dependent strain measurements, for example, in the case of constant load creep 

test, are then performed after unloading, subsequent cooling to room temperature and taking the 

specimens from the testing equipment for length measurement [8,13,14]. This procedure is repeated 

several times depending on the required time resolution of the test data and test duration. The method 

is cumbersome, especially when performing long time creep tests, but care should also be taken when 

analyzing the result through several loading/unloading and heating/cooling steps. Because the thermal 

expansions now act on a modified geometry and thus changes for each thermal cycle.  

Approaches to achieve in-situ load and displacement measurements for mechanical tests involving high 

temperature and controlled atmosphere have previously been presented by Frandsen et al. [11]. They 

used a camera to trace the deformation of SOFC anode supports through a porthole on a tube furnace to 

measure the deflection of the sample under four point bending [11]. The images are then analyzed to 

extract the position of the sample over time utilizing the known shape of the beam. A somewhat similar 

method together with a laser micrometer can be adapted to characterize the time dependent strain of 

samples loaded uniaxially. I.e. a laser micrometer can be setup in a way the laser beam is directed through 

a furnace to trace the change in the length of the sample loaded at high temperature and possibly in a 

controlled atmosphere. For uniaxial tension, higher precision is needed in the axial direction, as the 

deformations are much smaller. Thus in this work a laser micrometer, instead of an camera, is used.     



In this work a new high temperature mechanical testing setup is presented and verified. This setup allows 

for: 1) uniaxial loading resulting in a wide range of stress levels on a practical size of test samples (up to 

300 N), 2) control over test temperature (up to 900 oC) and atmosphere and 3) precise in-situ 

measurement of deformations by use of a laser micrometer and in-situ measurement of load. The first 

and second requirements would help to fill the gap between commercially available creep testing 

machines with regards to range of load, temperature and gas control. The third feature is also added to 

enhance the accuracy of displacement measurement of the equipment. The control and data collection is 

performed by use of a computer program developed using LABVIEWTM. Verification of the suggested 

experimental setup is also presented by various tests, comparison of the measurement results with those 

from literature and by using another instrument at room temperature.  Section-2 presents details of the 

experimental setup followed by verifications and use of the setup is discussed in Sections-3 and 4 

respectively.    

2. Experimental setup 
The experimental setup is constructed in-house consisting of the following main components, see also 

Figures 1 and 2: 

 A cross shaped and gas tight Kanthal tube with two horizontally placed portholes to allow a laser 

beam to be projected on the specimen through the furnace.  

 A furnace around the gas-tight Kanthal tube. 

 A cooling chamber, where load cells are placed, and which is directly connected with the gas tight 

tube.  

 Two load cells (Model 41/000005, RDPE), which support the sample fixture to measure vertical loads. 

 External actuator (Model ET32, Parker) acting through a sealing ring in the bottom of the cooling 

chamber. 

 An externally installed laser micrometer (LSM-506, Mitutoyo) i.e. laser emitter and receiver for 

displacement measurement by beaming through the portholes.  

 A display unit for the laser micrometer (LSM6200, Mitutoyo), which is used to set up, control and 

display readings from the laser micrometer.   

 A fixture and sample holder manufactured from Inconel 600 and designed to apply uniaxial load on 

the sample.  



 
Fig 1: 3D schematic representation of the main parts of the experimental facility (sectional view).  

The sample is mounted in a sample holder, which is fixed to a so-called T-stand. The T-stand rests on the 

load cells, and its upper fixed end is connected to the actuator through the sample. Moving the actuator 

will thus generate stress in the sample, which is balanced by the two load cells. The load cells are located 

in the cooling chamber, which shares the atmosphere with the heated Kanthal tube, and the load cells are 

thus within the gas-tight environment, see Figure 1.  



The combination of furnace and Kanthal tube can be moved up and down with the help of a furnace 

mounting rod in order to change samples. The laser emitter and receiver, constituting the laser scanning 

micrometer (LSM), are positioned in opposite direction of the furnace at the portholes allowing for the 

beam to pass through the furnace, see Figure 2. As shown by the 3D schematics in Figure 1, the LSM setup 

is also installed remotely from the loading mechanism having its own frame and horizontal rack to move 

and position it along the x-axis.  

The heating furnace is constructed using Silicon carbide (SiC) electric heating elements and temperature 

control is achieved using a thermo-couple mounted on the Kanthal tube. The sample temperature is 

measured using a separate thermo-couple mounted close to the sample. Programing of furnace heating 

schedules is achieved using Eurotherm temperature controllers.     

 
Fig 2: Schematic representation showing sectional view of the cross shaped Kanthal tube together with 

the positions of laser micrometer setup and test sample.   



2.1. Sample geometry  and sample holder  

Figure 3 (a) shows the sample geometry, which is chosen to achieve a maximum gauge length in relation 

to the LSM and in order to have distinct edges (crossbars) to track with the laser. The crossbars are 

intended to cast a shadow on the incoming laser beam (from LSM emitter) to the oppositely situated laser 

scanner (LSM receiver) of the LSM setup as shown in Figures 3 (b) and 5. During the experiment the 

elongation can therefore be traced by measuring the segment of the laser beam, which is between the 

crossbars (gauged part), see Section-2.3. Four holes in the sample remote from the gauged part of the 

sample are made to ensure there is no sliding between the sample and sample holder when applying the 

load. The length of the sample is chosen to match the height of the laser beam projected from the laser 

emitter, which is 70 mm in the case of the LSM used in this experimental setup. 

 
Figure 3: (a) Geometry of tensile and creep samples, (b) Sample with laser beam from LSM emitter and 

(c) Sample inside a sample holder and fixture (All the dimensions are in mm) 

The sample holders are manufactured using Inconel 600 and consists of two plates designed to clamp the 

specimen in between, see Figure 3 (c). Clamping of the specimen to the sample holder is supported by 

screw and nut (made from stainless steel) that passes through the two holes on each side of the sample. 

This is designed to prevent any sliding between the specimen and the sample holder during loading. Since 

the holes on the sample are placed far away from the gauge section, any stress concentrations around 

the holes are too remote to have significant effect on the deformation of the gauge section. The sample 



holder is then fixed to the sample fixture and hence to the loading mechanism using two pins made of 

dense alumina allowing it to rotate freely and thereby centering the load along the axis of the specimen.  

2.2. Loading mechanism and sample fixture  

The loading mechanism and sample fixture are designed to apply uniaxial loads on the sample placed in a 

vertical position. The design of the sample fixture is made to practically avoid any bending 

moment/eccentricity due to possible vertical misalignment between the lower and upper sample holders 

during application of load. Figure 4 (a) – (c) shows the schematic representation of the loading mechanism 

and how the uniaxial load is applied using the actuator as well as direct hanging loads. The sample holder 

is designed to hold samples prepared from sheet metals. However, it can easily be changed depending on 

the material and dimensions of interest.   

 
Fig 4: (a) Schematic representation of the loading mechanism, (b) Closer view of loading of the sample 

using the actuator and (c) Loading of sample using hanging loads.  

The load can be generated either by moving the actuator downwards, see Figure 4 (b), or by hanging a 

load on the sample fixture, see Figure 4 (c). In either case, when a load is applied, the alumina pins holding 



the sample in the sample fixture move down, and the sample is put under an increasing or constant tensile 

stress. The load measurements by the load cells include weight of the T-stand and sample fixture 

mechanism, and these are simply subtracted from the measured value of the load. The small variation 

that may occur due to oxidation of the fixture can be neglected, as the load on the sample is far larger 

than the oxidation induced change. The arrangement of load cells and measurement of force using the 

load cells is similar to the system described in reference [11].  

2.3. Measurement of displacement 

The displacement can be estimated from the movement of the actuator, when this is used for inducing 

the load. Because the actuator has a digital gauge feeding back its position with an accuracy of 

approximately 0.1 µm. However, the actuator is connected to the sample through a long rod and loading 

fixtures. During loading, compliance of the various structures on the actuator rod connected to the sample 

affects the measurement of deformation making it difficult to achieve an accurate deformation measure 

of the sample. Furthermore, moving this rod in and out of the thermal field in the furnace exposes the 

long rod to various thermal expansions across the position of the rod (discussed further in [11]). Therefore, 

in this setup an externally installed laser micrometer is made to scan the positions of the upper and lower 

crossbars on the sample independent of the loading mechanism.  

The LSM consists of a laser emitter, which emits a beam of laser into the furnace and hence to the sample 

through the portholes on the furnace. To protect the laser emitter and receiver from the high temperature 

in the furnace and ensure gas-tightness, the portholes are covered by windows mounted in water cooled 

gaskets. In addition, the LSM has a laser receiver installed at the opposite direction of the emitter (i.e. 

opposite side of the furnace) to receive the laser beam that passes through the furnace and thus also 

detect shadows from the specimen flanges. The receiver has the ability to detect changes to the laser 

beam, i.e. if obstacles are moving in front of the emitter. This is used to measure the elongation of the 

sample as described below. 

A schematic representation that shows how the LSM works together with a sample geometry (discussed 

in Section-2.1) is shown in Figure 5. Note that the various segments of the laser beam arriving to the laser 

receiver are designated by their segment number, see Figure 5, and in the current case Seg-3 is of interest. 

For further details on segmentation and its setup, one can refer to the user manual for the Mitutoyo laser 

micrometer.  



 

Fig 5: Schematic representation of laser beam projected on to the specimen and measured segments.   

3. Verification  

3.1. Temperature measurements  

The accuracy of temperature measurement of the set-up is very important for mechanical testing at high 

temperature, as the material parameters are sensitive to temperature changes. To be able to verify this, 

temperature measurements from the furnace control thermo-couple are compared with the intended 

heating profile of the furnace or furnace-setting program. As shown in Figure 6, the temperature 

measurement from the set-up agrees well with the data from the furnace setting program with an 

absolute error less than 0.65 oC.  



 
Fig 6: Comparison of temperature measurements with values from the furnace-setting program and the 

corresponding absolute error. 

3.2. Verification of displacement measurements  

With the laser beam projected through windows (with a glass protection) and a heated environment, the 

LSM is applied beyond its original specifications, and hence in the following the LSM is tested against 

known displacement measurements. A known change of length can be imposed with the help of the 

actuator, so the first verification is done by comparing the displacement measurements from the actuator 

movement and the laser micrometer. 

For this purpose, the same arrangement of sample discussed above is used, however this time with the 

central part of the sample missing and the upper and lower crossbars disconnected from each other, see 

Figure 7 (a). Thus, the change of the displacement measure from both the LSM and the actuator should 

be identical.   

During the experiment, the actuator is moved freely and data is collected both by the actuator digital 

gauge (recording the actuator position in time) as well as the LSM setup (recording the gap between the 

upper and lower crossbars). Comparison of displacement measures from the actuator and LSM setup is 

performed at three different conditions to investigate the effect of temperature and glass protection on 

the laser micrometer. These conditions include:   

1. Testing at room temperature (RT) without laser micrometer protection glass  

2. Testing at room temperature (RT) with laser micrometer protection glass in place  

3. Testing at High temperature (800 OC) with laser micrometer protection glass in place  



The absolute change in length measured by the actuator, ACTU , and the corresponding measure from the 

LSM, LSMU ,  is collected for four tests involving different movements of the actuator for the same period 

of time. The average difference, a , from the four tests between ACTU  and LSMU  at each time step is then 

calculated as:   

  ( )a ACT LSMt U U                                                                            (1) 

Figure 7 (b) shows the average difference, a , from four different tests for the above three types of test 

conditions.  As shown in the figure, the difference between length measurements by the actuator and the 

LSM are almost independent of the glass protection unit as well as furnace temperature.  In all the cases, 

the average difference is below 3 µm which corresponds to less than 0.01 % error on strain measured for 

a sample with an initial gauge length of 40 mm. The mean error from all the tests is 1.7 µm and the 

corresponding standard deviation is 0.5 µm. There is little deviation between the measurements done at 

the three conditions, and the length measurement method can thus be concluded to be precise at all 

conditions. 

 
Fig 7: (a) Specimen set-up to verify the LSM setup against actuator movement, (b) Mean difference 

between the measurements from the LSM setup and actuator gauge.  

3.3. Verification of the overall setup    

This section presents verification of the accuracy of measurements conducted using the proposed 

experimental setup. For this purpose, results from the current experimental setup are compared with 

experimental data from literature as well as experiments conducted using other mechanical testing 



machines. In the current study, samples are prepared from stainless steel (Crofer 22 APU) supplied in the 

form of cold-rolled and annealed plates with a thickness of 0.3 mm.  This is one of the metallic alloys 

commonly used for SOC interconnectors. Using the proposed test set up, the deformational behavior of 

Crofer 22 APU at constant strain rate and its elastic modulus at different temperatures are measured for 

comparison. 

The elastic parameters of Crofer 22 APU, particularly the Young’s modulus, E, is determined using 

monotonic loading of the sample at the given temperature. For uniaxial loading of the samples considered 

in this study, the slope in the linear (elastic) part of stress,  , versus strain,  ,curve is calculated after 

loading samples with a stroke rate of 1.25 mm/min at different temperatures. As discussed in 

reference[15], the stroke rate is assumed to be fast enough to minimize the effect of creep at high 

temperatures.  

E








                                                                                       (2) 

Multiple loading tests are performed to estimate the Young’s modulus from the load and deformation 

data. Figure 8 shows an example of stress versus strain plot with the corresponding fitting curves for 

Crofer 22 APU at 700 oC (the curves are displaced by 0.025 % for each successive measurement). Linear 

trends are observed at each loading cycle, indicating that no plastic deformations are present. 

 

Fig 8: Example of stress versus strain plots together with fitting curves to determine Young’s modulus.  



Comparison of results from the current study, see Table 1, are found to be consistent with the previously 

reported values by Chiu et al. [8] and the material data provided by, ThyssenKrupp VDM,  the 

manufacturer of Crofer 22 APU [16] for temperatures up to 600 oC. However, for higher temperatures, 

Chiu et al. have reported lower values than what have been obtained in this study.  This may have been 

caused by influence of plastic deformation, as the yield strength of Crofer 22 APU drops drastically above 

600 oC [8]. This is also supported by Boccaccini et al., who reported a higher value of Young’s modulus for 

the same material using an impulse excitation technique at 700 oC [17]. 

Table 1: comparison of Young’s modulus results with literature 

Temperature 

(oC) 

Young’s Modulus (GPa) 

This work Ref [8] Ref [16] 

25 222 ± 3.1 214 220 

200 212 ± 2.2 - 210 

400 180 ± 3.4 184 195 

600 149 ± 5.2 162 - 

700 128 ± 8.5 91 - 

800 75 ± 7.5 44 - 

 
In addition, the constant strain rate behavior of Crofer 22 APU at room temperature is measured using a 

commercial testing machine (Electromechanical material testing machine, Zwick/Roell Z030, Zwick GmbH 

& Co.KG). Figure 9 shows a comparison between stress-strain curves collected from the experimental 

setup suggested in this study with that of measured from the commercial testing machine. Results from 

the suggested setup agree well with the measurements collected from the Zwick/Roell machine.  

 

Figure 9: Comparison of constant strain rate behavior at room temperature [stroke rate = 2 mm/min].   



Finally, the reliability of the experimental setup while measuring loads and displacements in the sample 

at high temperature is also tested by performing different kinds of loadings under similar conditions. 

Figure 10 shows a comparison of stress-strain curves during monotonic and cyclic (loading and unloading) 

loadings on a sample of Crofer 22 APU at 700oC using a stroke rate of 0.12 mm/min. It was possible to 

reproduce a fairly similar maximum or saturation stress of Crofer 22 APU at the given temperature using 

different types of loading. Generally, the maximum difference in saturation stress from the two tests is 

less than 1.5 %. Note that since the saturation stress of Crofer 22 APU at 700 oC remains fairly constant 

over several cycles of loading, it can be taken as a reproducibility test for the measurement setup.    

 
  Figure 10: Comparison of stress vs strain curves for Crofer 22 APU during monotonic and cyclic loading 

at 700 oC [stroke rate =0.12 mm/min]  

Results shown in Table 1 as well as Figure 9 and 10 show the capability of the experimental setup 

developed in this study. Therefore, the developed setup can efficiently help to characterize the 

deformational behaviors of high temperature metallic alloys under their operational conditions. By 

modifying the sample holder mechanisms, the same system can also be used to study the performance of 

ceramic materials at high temperatures and controlled atmospheres.    

4. Application of the methodology for SOC metallic interconnects  

To illustrate the capability of the setup described in this study, experiments to characterize the viscoplastic 

behavior of a high chromium ferritic stainless steel, Crofer 22 APU, are conducted. Details about the alloy 

contents of the material can be found in the work reported by Chiu et al.[8]. Crofer 22 APU is typically 

used for metallic interconnects (MICs) for solid oxide fuel cell stacks operating under intermediate 



temperatures [7,8,13,14]. It has been reported by various authors that failure in the MICs due to time 

dependent inelastic deformation during operation of SOFC has significant effect on the reliability of the 

entire SOFC stack [2,7,8,18–20]. Hence precise characterization of the time dependent (viscoplastic) 

behavior of these materials at operational conditions of SOFCs is important. In this study, high 

temperature mechanical tests involving constant strain rate loading, stress relaxation as well as creep 

experiments are conducted so as to characterize the viscoplastic behavior of Crofer 22 APU using the 

experimental setup described in Section-2. 

During all the high temperature tests, first the temperature of the furnace is set to the required isothermal 

testing temperature. Heating of the furnace to the required temperature is performed using a heating 

rate of 6 oC/min. During ramping of the furnace temperature, the sample as well as the overall loading 

mechanism experiences thermal expansion and this could impose an unnecessary load on the sample 

before the test conditions are reached. To avoid any loading on a sample due to thermal expansion while 

ramping of the furnace temperature, the sample and loading mechanism are pushed up in a way to allow 

a vertical free movement during thermal expansion. Once the furnace has reached the required 

temperature, it is kept constant for half an hour before applying force. This is intended to stabilize the 

thermal distribution around the sample before applying any load.  

4.1. Constant strain rate test   

One of the tests that can be performed using the experimental setup suggested in this work is to 

characterize the constant strain rate behavior. To perform such tests, a loading fixture attached to the 

actuator, see Figure 4 (a) is used. The constant strain rate tests were conducted using actuator stroke rate 

of 0.12 mm/min. During loading, the change in length of the sample and total load from the load cells are 

recorded simultaneously.   

Figure 11 (a) presents the constant strain rate behavior of Crofer 22 APU at temperatures between 25 and 

800 oC and using stroke rate of 0.12 mm/min. This corresponds to, for example, an actual specimen strain 

rate of 2.51x10-4 1/s. These kinds of results do not only show the softening of the material with 

temperature, but also they are necessary to characterize the hardening in the materials at the respective 

temperatures after the onset of plastic deformation. For instance, the stress-strain curves in the case of 

700 and 800 OC saturate quickly once the deformation enters the plastic regime, whereas those below 

700 oC show a gradual hardening as the material deforms plastically. This property of Crofer 22 APU 

determines its transient/primary creep behavior of interconnects during the various operational cycles of 

SOFCs[15]. The high temperature stress-strain curves are almost consistent with the material data sheet 



provided by the manufacturer of Crofer 22 APU [16]. The observed differences are presumed to be due 

to the rate of loading of the samples.      

4.2. Stress relaxation tests   

Using the same sample fixture that has been used for constant strain rate test, it is possible to stretch the 

specimen to the required level of constant strain and allow the stress in the material to relax over time. 

In this work, the relaxation tests were conducted following loading of the sample with a faster stroke rate 

(1 mm/min) initially and keeping the constant deformation over time. To avoid any hardening during 

loading, the samples were stretched to a constant displacement where the initial stress before relaxation 

is below the 0.2 %-proof stress (stress at 0.2 % of strain) of the material at the respective temperature. 

Figure 11 (b) shows the stress relaxation properties of Crofer 22 APU at different temperatures between 

200 and 800 oC. The corresponding initial stresses at the start of relaxation are 53 MPa, 50 MPa, 51 MPa, 

47 MPa and 43 MPa respectively.  

 
Figure 11: (a) Comparison of constant strain rate behavior of Crofer 22 APU at different temperatures 

[stroke rate = 0.12 mm/min] (b) Relaxation behavior of Crofer 22 APU at different temperatures   

4.3. Creep test  

During creep tests, a constant force is applied on the sample using hanging dead loads, see Figure 4 (b), 

and the corresponding deformation in time is measured using the laser micrometer. The dead loads are 

made from dense alumina and they are attached to the sample holder by a rod going through the center 

of the loads, see Figure 4 (c). During heating to the required temperature, the hanging loads were 

supported by a plate mounted on the top of the actuator rod, and thus no load is applied to the sample. 

Once the furnace is heated to the required temperature, it was allowed to remain at that temperature for 



30 min before applying the load. The load is applied on the sample by moving the actuator rod and support 

plate down, such that loads are hanging on the sample. After the load is activated, the deformation of the 

sample is recorded in time using the laser micrometer.  

Since the measurement of deformation in the sample is started few seconds after the application of the 

load, and hence after elastic deformation, It can be assumed that the total deformation in the sample is 

attributed to creep (viscoplasticity). Figure 12 shows creep strain measurements in time for Crofer 22 APU 

at 600 and 700 oC at two levels of stresses. 

 
Figure 12: Creep behavior of Crofer 22 APU at (a) 600 and (b) 700 oC  

5. Conclusions  
Improving the mechanical reliability of devices operating at high temperature and specific atmospheres 

as solid oxide cell (SOC) stacks requires precise measurement of the mechanical properties of the different 

components at the given operating conditions. This work presents a novel experimental device for 

characterization of the mechanical material properties and in particular the viscoplastic properties at high 

temperature and in controlled atmosphere.  

The experimental device permits in-situ mechanical load measurements, contactless displacement 

measurements, while controlling atmosphere and temperature. The load cells are placed in the same 

atmosphere as the specimens allowing frictionless measurement of the load. This can be accomplished 

by use of the right thermal management in the rig. Different loading mechanisms for constant 

displacement rate, relaxation and creep experiments needed for characterization of viscoplastic behavior 



are shown. For the displacement measurements a novel method using an externally installed laser 

micrometer is used to monitor deformations of the sample.  

The application of the methodology is exemplified by measurement of the relaxation, creep and constant 

strain rate behaviors of metallic interconnects for SOCs at 600, 700 and 800 OC. Furthermore, 

measurements using the proposed methodology are validated using results from literature as well as 

experiments at room and high temperature.  
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