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Blob filaments are coherent structures in a turbulent plasma flow. Understanding the evolution of

these structures is important to improve magnetic plasma confinement. Three state variables

describe blob filaments in a plasma convection model. A dynamical systems approach analyzes the

evolution of these three variables. A critical point of a variable defines a feature point for a region

where that variable is significant. For a range of Rayleigh and Prandtl numbers, the bifurcations of

the critical points of the three variables are investigated with time as the primary bifurcation

parameter. Bifurcation curves separate the parameter planes into regions with different critical

point configurations for the state variables. For Prandtl number equal to 1, the number of critical

points of each state variable increases with increasing Rayleigh number. For Rayleigh number

equal to 104, the number of critical points is the greatest for Prandtl numbers of magnitude 100.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4993613]

I. INTRODUCTION

The edge transport of a magnetically confined plasma is

dominated by recurring bursts of coherent plasma structures.

To improve the plasma confinement, it is crucial to understand

the evolution of these structures. The plasma structures are in

the low confinement (L-mode) regime known as blob fila-

ments (blobs) and in the high confinement (H-mode) regime

categorized as either edge localized mode (ELM) filaments or

inter-ELM filaments.1 Blobs are localized meso-scale coher-

ent structures in a turbulent flow, which are significantly

denser and hotter than the surrounding plasma. They are

highly localized in the plane perpendicular to the magnetic

field and elongate along the magnetic field.2 Blobs form at the

outboard mid-plane near the separatrix. The interchange insta-

bility causes the formation of finger-like structures that detach

from the core plasma and create blobs.3–6 The grad-B and cur-

vature drifts, caused by the nonuniform magnetic field, charge

polarize the blobs perpendicular to the directions of the mag-

netic field and the magnetic field variation. The resulting elec-

tric field generates an E� B-drift causing the blob to

propagate in the radially outward direction. The blobs propa-

gate far into the scrape-off-layer (SOL) and increase unwanted

plasma–wall interactions. During propagation in the SOL, the

blobs deform and may lose coherence.7–20 The inclusion of

finite Larmor radius effects in simulations enhances the blob

coherence.21–24

References 25–27 investigate the dependency of the

blob position, velocity, and amplitude on Rayleigh and

Prandtl numbers in a convection model. To describe the blob

evolution, they apply the common practice of visual interpre-

tation of time instant plots of the state variables. In fluid

flows, the streamline topology and the vortices can be ana-

lyzed using dynamical systems theory.28–32 This method can

analyze the topology of level curves of any function in the

plane.

The present paper applies this dynamical systems

approach to quantitatively describe the evolution of plasma

blobs. A plasma convection model describes the evolution of

seeded blobs. The electrostatic potential /, the thermody-

namic variable h, and the vorticity X are the two-dimensional

state variables describing the blobs. An extremum of a vari-

able defines a feature point for a region where that variable is

significant.33 Critical points of the electrostatic potential are

instantaneous stagnation points for the unsteady plasma flow.

Maxima of the thermodynamic variable are feature points for

the blob, and the creation of additional maxima indicates that

the blob splits into smaller blobs. Extrema of vorticity are fea-

ture points for vortices. For a range of Rayleigh and Prandtl

numbers, we determine for each of the state variables /, h,

and X the critical points and their type. We track the evolu-

tion, creation, and annihilation of the critical points as time

increases.

II. BIFURCATIONS OF STRUCTURES

Let H : M 7!R be any analytically or numerically given

function defined on a subset of the plane M � R2. We

assume that H also depends on time t and possibly some sys-

tem parameters. For our application, H represents the elec-

trostatic potential /, the thermodynamic variable h, or the

vorticity X given numerically from simulations. We fix all

parameters and consider a single time instant. We consider

H(x, y) as a Hamiltonian for the autonomous Hamiltonian

system

dx

ds
¼ @H

@y
;

dy

ds
¼ � @H

@x
: (1)

The phase curves of the Hamiltonian system (1) lie on the

level curves of H,
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dH

ds
¼ @H

@x

dx

ds
þ @H

@y

dy

ds
¼ @H

@x

@H

@y
� @H

@y

@H

@x
¼ 0:

A collection of level curves of H comprises the Hamiltonian

contour pattern. A point is an equilibrium of system (1), if

and only if it is a critical point of H. A saddle of H is a saddle

point for the corresponding Hamiltonian system (1), while a

local extremum of H is a center for the corresponding

Hamiltonian system (1).

We want to analyze the bifurcations of the critical points

of H. We consider the time as the primary bifurcation param-

eter and the system parameters as secondary bifurcation

parameters. In the analysis, we encounter three types of

bifurcations.29,34,35 Figure 1(a) shows the saddle-center

bifurcation, where a saddle and a center appear simulta-

neously through a cusp singularity as a bifurcation parameter

l is varied. This bifurcation is the Hamiltonian analogue to a

saddle-node bifurcation. A Hamiltonian with the symmetry

Hðx; yÞ ¼ Hðx;�yÞ allows the Hamiltonian pitchfork bifur-

cation in Fig. 1(b), where a center bifurcates into a saddle

and two centers. A Hamiltonian with the symmetry

Hðx; yÞ ¼ �Hðx;�yÞ allows the bifurcation in Fig. 1(c),

where two saddles and two centers appear simultaneously

through a degenerate saddle. We refer to this bifurcation as

the duplex saddle-center bifurcation.

The topological property called the Poincar�e index is a

useful tool to keep track of equilibria during bifurcations.

The index of a node, focus, or center isþ1 and the index of a

saddle is –1. The sum of the indices of the equilibria remains

constant during a bifurcation.36 To keep track of the bifurca-

tions we follow all critical points even when only some types

of critical points are of physical interest.

III. CONVECTION MODEL

We consider viscous plasma flow in a rectangular

domain at the edge of a magnetically confined plasma in the

plane perpendicular to the magnetic field B ¼ B0ez. The flow

is described using Cartesian coordinates (x, y) 2 M, where

M ¼ ½� 2
5

Lx;
3
5

Lx� � ½� 1
2

Ly;
1
2

Ly�. The normalized E� B drift

velocity field v ¼ ðvx; vyÞ> is

v ¼ ðez �r/Þ? ¼
�@y/
@x/

� �
: (2a)

Let X ¼ @xvy � @yvx be the scalar vorticity. Then, the nor-

malized electrostatic potential /ðx; y; tÞ is obtained from

r2
?/ ¼ X: (2b)

To describe the evolution of a generic thermodynamic vari-

able h(x, y, t) (e.g., density, pressure, or temperature) and the

vorticity X(x, y, t), we employ a normalized convection

model

@

@t
þ v � r?

� �
h ¼ jr2

?h; (2c)

@

@t
þ v � r?

� �
Xþ @h

@y
¼ �r2

?X: (2d)

Here, j is the nondimensional diffusion coefficient and � is

the nondimensional viscosity. These coefficients are related

to Rayleigh and Prandtl numbers by Ra¼ 1/(j�) and Pr

¼ �/j. We apply zero Dirichlet boundary conditions on all

four boundaries for each of the variables /, h, and X. The

thermodynamic variable is initialized as a Gaussian function,

hðx; y; 0Þ ¼ exp ð� 1
2

x2 þ y2ÞÞ
�

, while the vorticity and the

electrostatic potential are initialized to zero, /ðx; y; 0Þ
¼ Xðx; y; 0Þ ¼ 0.

In Eq. (2), the thermodynamic variable has the reflection

symmetry h(x, y, t)¼ h(x, –y, t), while the electrostatic

potential and the vorticity satisfy the symmetry /ðx; y; tÞ
¼ �/ðx;�y; tÞ and X(x, y, t)¼ –X(x, –y, t). These symme-

tries, together with the symmetric initial conditions, imply

that h is symmetric, while X and / are antisymmetric for all

times. System (2) is one of the simplest models used to

describe nonlinear plasma dynamics. References 25–27

model the evolution of plasma blobs with system (2), while

Refs. 7–10 also use similar convection models also to

describe plasma blob evolution.

IV. NUMERICAL METHOD

We define the size of the computational domain by

Lx¼Ly¼ 50. This is sufficiently large to ensure that the evo-

lution of the blobs is insignificantly affected by the boundary

conditions. To obtain the simulation data, we first fix Pr¼ 1

and solve the convection problem (2) for numerous Rayleigh

numbers. Then, we fix Ra¼ 104 and solve problem (2) for

numerous Prandtl numbers.

The FEM software package COMSOL Multiphysics
VR

is

used as the numerical solver.37 To obtain the required simu-

lation results with sufficient precision, we use a triangular

mesh and activate the adaptive mesh refinement, which auto-

matically refines the mesh in regions with large gradients of

h or X. The maximum number of mesh refinement iterations

FIG. 1. The Hamiltonian contour patterns during (a) the saddle-center bifur-

cation, (b) the Hamiltonian pitchfork bifurcation, (c) the duplex saddle-

center bifurcation. The left panel (l < 0) is before the bifurcation, the mid-

dle panel (l ¼ 0) is at the bifurcation, and the right panel (l > 0) is after

the bifurcation. Filled dots are Lyapunov stable equilibria and unfilled dots

are unstable equilibria. Thick lines are separatrices.
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is set to 10. This gives a mesh containing approximately

3� 105 domain elements. The convection problem is initial-

ized at t¼ 0 and runs with output time steps of Dt¼ 0.05

until t¼ 20. The mesh reinitializes and iteratively refines, at

t¼ 0, 2,…, 18, for a total of 10 times during each simulation.

In the analysis, we track the evolution, creation, and

annihilation of the critical points of /, h, and X. The eigen-

values determine whether a critical point is a saddle, maxi-

mum, or minimum. For each simulation, we determine the

critical points of /, h, and X numerically as follows: The

nullclines of the Hamiltonian system (1) are

Nx ¼ fðx; yÞ 2 M j @yHðx; yÞ ¼ 0g;
Ny ¼ fðx; yÞ 2 M j @xHðx; yÞ ¼ 0g:

Here, H represents either /, h, or X at a fixed time t. The

set of critical points of H is Nx \ Ny. To numerically deter-

mine the set of critical points, we first compute Ny. Points

in regions where h is smaller than 1% of hmax

¼ maxðx;yÞ2Mhðx; y; tÞ are removed from Ny. These regions

contain very few particles or little energy and are therefore

physically uninteresting. The nullcline set Ny consists of a

number of parametrized curve segments ciðsÞ; i ¼ 1;…;N.

Along each curve segment we compute @yHðciðsÞÞ and deter-

mine the values of sj for which @yHðciðsjÞÞ ¼ 0. The corre-

sponding points ci(sj) are the critical points of H. The type of

a critical point of H is determined from the eigenvalues k1,2

of the Hessian matrix of H evaluated in that point

D2H ¼ Hxx Hxy

Hyx Hyy

� �
:

Since D2H is symmetric, both eigenvalues are real. The criti-

cal point is a saddle if k1 and k2 are of opposite sign, a local

maximum if k1,2 are both negative, a local minimum if k1,2

are both positive, and a degenerate point if either k1 or k2 is

zero.

V. BIFURCATION ANALYSIS

This section analyzes the bifurcations of the critical

points of the electrostatic potential /, the thermodynamic

variable h, and the vorticity X as time increases from t¼ 0 to

t¼ 20 for a range of Rayleigh and Prandtl numbers. We use

the same set of simulation data for the analysis of /, h, and

X. We first fix (Pr, Ra)¼ (1, 104) and track the evolution,

creation, and annihilation of the critical points as time

evolves. We then fix Pr¼ 1 and track the creation and anni-

hilation of the critical points for numerous Rayleigh numbers

in the range Ra 2 [10, 105]. Similarly, we fix Ra¼ 104 and

track the creation and annihilation of the critical points for

numerous Prandtl numbers in the range Pr 2 [10�3, 104]. We

draw the bifurcation curves in the (t, Ra)- and (t, Pr)-parame-

ter planes.

A. Critical points of the electrostatic potential

The electrostatic potential defines the velocity field of a

plasma flow analogous to the way the stream function

defines the velocity field of a fluid flow. The critical points

of / define the instantaneous stagnation points of the flow.

Figure 2 shows representative time instant plots of / for

three different critical point configurations labeled ‹–fi

superimposed by the contour patterns of /. The symmetry

/ðx; y; tÞ ¼ �/ðx;�y; tÞ causes the x-axis to be the zero

level set and imposes a symmetry of the critical points such

that we can limit our comments to bifurcations in the upper

half-plane (uhp). Table I characterizes the different critical

point configurations of / by the number of each type of criti-

cal point.

For (Ra, Pr)¼ (104, 1), we consider /ðx; y; tÞ with time t
2 [0, 20] as a bifurcation parameter. The bifurcation diagram

in Fig. 3 shows the y-coordinates of the critical points of /
as a function of t. The electrostatic potential / is initialized

to zero, but quickly a minimum emerges at (x, y)� (0, 1.58)

such that / has the configuration ‹. At t¼ 10.13, a saddle-

center bifurcation creates a saddle and a minimum changing

the configuration to ›. At t¼ 14.91, this saddle and mini-

mum vanish again in a saddle-center bifurcation and / again

has the configuration ‹.

We fix Pr¼ 1, and for numerous Rayleigh numbers, we

determine all bifurcation values of t for the critical points of

/. Then, we fix Ra¼ 104, and for numerous Prandtl num-

bers, we determine all the bifurcation values of t. Figure 4

shows the bifurcation curves in the (t, Ra)- and (t, Pr)-planes.

Two types of saddle-center bifurcations are observed: The

saddle-center bifurcation (min) creates or annihilates a sad-

dle and a minimum in the upper half-plane, while the saddle-

FIG. 2. Representative critical point configurations for / corresponding to

different level curve topologies of /.

TABLE I. Number of saddles, maxima (max), and minima (min) in the

upper half-plane (uhp) and the lower half-plane (lhp) for different critical

point configurations of / shown in Fig. 2. The indexþ 2 is preserved.

Critical points of / ‹ › fi

Saddles in uhp and lhp 0 1 2

Max in uhp and min in lhp 0 0 1

Min in uhp and max in lhp 1 2 2

Total (uhp þ lhp) 2 6 10

082301-3 Dam et al. Phys. Plasmas 24, 082301 (2017)



center bifurcation (max) creates or annihilates a saddle and a

maximum in the upper half-plane. The bifurcation curves

divide these sections of the parameter planes into regions

with configurations ‹–fi. For fixed Pr¼ 1, no bifurcations

occur for Ra � 5:1� 103. The number of critical points of /
increases with increasing Rayleigh number. For fixed

Ra¼ 104, no bifurcations occur for Pr�3:0� 10�1 or

Pr � 9:0.

B. Critical points of the thermodynamic variable

The thermodynamic variable defines the physical shape

of the blob. A maximum of h is a feature point for the blob.

The creation of additional maxima indicates that the blob

splits into smaller blobs. We can use the number of maxima

of h as a measure for the level of coherence of a blob. A blob

with a single maximum is a fully coherent blob and a blob

with more maxima is less coherent.

Figure 5 shows representative time instant plots of h for

different critical point configurations labeled ‹–‡. Table II

characterizes the different configurations of h by the number

of each type of critical point.

The bifurcation diagram in Fig. 6 shows for (Ra,

Pr)¼ (104, 1) the y-coordinates of the critical points of h as a

function of t. The thermodynamic variable h is initialized

with a maximum at (x, y)¼ (0, 0) corresponding to the

critical point configuration ‹. Saddle-center bifurcations at

t¼ 8.55 and t¼ 11.69 change the critical point configuration

to › and further to fi. At t¼ 11.91, a Hamiltonian pitchfork

bifurcation, allowed by the reflection symmetry, changes the

critical point configuration to fl. Four more saddle-center

bifurcations bring the critical point configuration through

�–fl–––fl.

Figure 7 shows the bifurcation curves in the (t, Ra)- and

(t, Pr)-planes. We observe three types of bifurcations: The

saddle-center bifurcation (max) creates or annihilates a sad-

dle and a maximum in the upper and lower half-planes (lhp),

the saddle-center bifurcation (min) creates or annihilates a

saddle and a minimum in the upper and lower half-planes,

and the Hamiltonian pitchfork bifurcation splits a maximum

FIG. 3. Bifurcation diagram showing the y-coordinates of all critical points

of / for (Ra, Pr)¼ (104, 1) and time as a bifurcation parameter. Saddle-

center bifurcations occur at t¼ 10.13 and t¼ 14.91. The different critical

point configurations of / are shown in Fig. 2.

FIG. 4. Bifurcation curves for the critical points of / in a) the (t, Ra)-param-

eter plane for Pr¼ 1, b) the (t, Pr)-parameter plane for Ra¼ 104. The differ-

ent critical point configurations of / are shown in Fig. 2.

FIG. 5. Representative critical point configurations for h.

TABLE II. Number of saddles, maxima (max), and minima (min) in the

upper half-plane (uhp) and the lower half-plane (lhp) for different critical

point configurations of h shown in Fig. 5. The indexþ1 is preserved.

Critical points of h ‹ › fi fl � – † ‡

Saddles in uhp and lhp 0 1 2 2 1 3 0 2

Max in uhp and lhp 0 1 2 3 2 3 1 2

Min in uhp and lhp 0 0 0 0 0 1 0 1

Saddles on the x-axis 0 0 0 1 1 1 1 1

Max on the x-axis 1 1 1 0 0 0 0 0

Total (uhp þ lhp þ x-axis) 1 5 9 11 7 15 3 11
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on the x-axis into a saddle on the x-axis and two maxima

symmetrically located in the upper and lower half-planes.

The first bifurcation marks the time the blob starts to lose

coherence. For Pr¼ 1, no bifurcations occur for

Ra�5:3� 101. The number of critical points increases with

increasing Rayleigh number. For Ra¼ 104, no bifurcations

occur for Pr�1:1� 10�3 or Pr � 1:5� 103. The number of

critical points of h is the greatest for Prandtl numbers of

magnitude 100. Hence, blobs stay more coherent for small

Rayleigh numbers, and for small or large Prandtl numbers.

C. Critical points of the vorticity

The extrema of X define vortex centers and are feature

points of the vortices. A typical vortex analysis follows the

full evolution of the vortical regions enclosed by separatri-

ces. Here, we simply track the evolution of the extrema of

vorticity, and in this way, disregard all information about the

actual vortex shape. The sign of vorticity in an extremum

defines the direction of rotation of the vortex.

Figure 8 shows representative time instant plots of X for

different critical point configurations labeled ‹–‡. The sym-

metry Xðx; y; tÞ ¼ �Xðx;�y; tÞ causes the x-axis to be a zero

level set and imposes a symmetry of the critical points such

that we can limit our comments to bifurcations in the upper

half-plane and on the x-axis. Table III characterizes the dif-

ferent configurations of X by the number of each type of crit-

ical point.

The bifurcation diagram in Fig. 9 shows for (Ra,

Pr)¼ (104, 1) the y-coordinates of the critical points of X as

a function of t. The vorticity X is initialized to zero, but a

maximum at (x, y)� (0.0, 1.0) quickly emerges giving X the

critical point configuration ‹. A duplex saddle-center bifur-

cation, allowed by the symmetry Xðx; y; tÞ ¼ �Xðx;�y; tÞ,
changes the configuration to ›. A series of saddle-center

FIG. 6. Bifurcation diagram showing the y-coordinates of all critical points

of h for (Ra, Pr)¼ (104, 1) and time as a bifurcation parameter. Saddle-

center bifurcations occur at t¼ 8.55, 11.69, 12.85, 13.84, 14.87, and 18.54,

and a Hamiltonian pitchfork bifurcation occurs at t¼ 11.91. The different

critical point configurations of h are shown in Fig. 5.

FIG. 7. Bifurcation curves for the critical points of h in a) the (t, Ra)-param-

eter plane for Pr¼ 1, b) the (t, Pr)-parameter plane for Ra¼ 104. The differ-

ent critical point configurations of h are shown in Fig. 5. FIG. 8. Representative critical point configurations for X.
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bifurcations then creates or annihilates saddles and extrema,

which changes the critical point configuration through

fi–fl–�–––†––.

Figure 10 shows the bifurcation curves for the critical

points of X in the (t, Ra)- and (t, Pr)-planes. Three types of

bifurcations are observed: The saddle-center bifurcation

(max) creates or annihilates a saddle and a maximum in the

upper half-plane, the saddle-center bifurcation (min) creates

or annihilates a saddle and a minimum in the upper half-

plane, and the duplex saddle-center (min) creates two saddles

on the x-axis, a minimum in the upper half-plane and a sym-

metrically located maximum in the lower half-plane. For

Pr¼ 1, no bifurcations occur for Ra�6:5� 102. For

Ra¼ 104, no bifurcations occur for Pr�8:0� 10�3 or

Ra � 2:8� 103.

D. Discussion

The diagrams in Figs. 4, 7, and 10 qualitatively follow

the same pattern: For Pr¼ 1, the number of critical points

increases with increasing Rayleigh number and for Ra¼ 104,

the number of critical points is the greatest for Prandtl num-

bers of magnitude 100. The electrostatic potential / at each

time instant is related to the vorticity X by Eq. (2b).

However, the vorticity has many more critical points than

the electrostatic potential. A quantitative comparison of the

three diagrams show no direct relation between the

bifurcation values of t at which critical points are created or

annihilated. Hence, the analysis of one state variable only

characterizes the configurations of the feature points corre-

sponding to that variable. The analysis restricts to Ra� 105

and t� 20. By simultaneously increasing Ra and t further

beyond these values, the number of bifurcations grows to

the extent that it becomes both impractical and of limited

interest to systematically track and distinguish the different

bifurcations. The present method is unsuitable to describe

structures in such a turbulent flow.

VI. CONCLUSION

A convection model, with Rayleigh number, Ra, and

Prandtl number, Pr, as parameters, describes the evolution of

two-dimensional seeded plasma blobs. The blobs are

described in terms of three variables: the electrostatic poten-

tial /, the thermodynamic variable h, and the vorticity X.

The critical points of a variable define feature points where

that variable is significant. Extrema of the electrostatic

potential define stagnation points. Maxima of the thermody-

namic variable are feature points for the blob such that the

creation of additional maxima indicates a splitting of the

blob into smaller blobs. Extrema of vorticity are feature

points for vortices.

We apply a dynamical systems approach to analyze

bifurcations of the critical points of /, h, and X with time, t
2 [0, 20] as the primary bifurcation parameter. We fix the

Prandtl number to Pr¼ 1 and consider the Rayleigh number

as an additional bifurcation parameter. We then fix the

TABLE III. Number of saddles, maxima (max), and minima (min) in the

upper half-plane (uhp) and the lower half-plane (lhp) for different critical

point configurations of X shown in Fig. 8. The indexþ2 is preserved.

Critical points of X ‹ › fi fl � – † ‡

Saddles in uhp and lhp 0 0 1 2 3 4 5 1

Max in uhp and min in lhp 1 1 2 2 3 3 3 2

Min in uhp and max in lhp 0 1 1 2 2 3 4 0

Saddles on the x-axis 0 2 2 2 2 2 2 0

Total (hhp þ lhp þ x-axis) 2 6 10 14 18 22 26 6

FIG. 9. Bifurcation diagram showing the y-coordinates of all critical points

of X for (Ra, Pr)¼ (104, 1) and time as a bifurcation parameter. A duplex

saddle-center bifurcation occurs at t¼ 6.37 and saddle-center bifurcations

occur at 9.62, 12.65, 13.35, 15.44, 18.70, and 19.81. The different critical

point configurations of X are shown in Fig. 8.

FIG. 10. Bifurcation curves for the critical points of X in a) the (t, Ra)-

parameter plane for Pr¼ 1, b) the (t, Pr)-parameter plane for Ra¼ 104. The

different critical point configurations of X are shown in Fig. 8.
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Rayleigh number to Ra¼ 104 and use the Prandtl number as

an additional bifurcation parameter. The bifurcation curves

separate the parameter planes into multiple regions with dif-

ferent critical point configurations. The diagrams reveal that

for Pr¼ 1, the number of critical points of /, h, and X
increases for an increasing Rayleigh number. For Ra¼ 104,

the number of critical points is the greatest for Prandtl num-

bers of magnitude 100.

We have demonstrated that a bifurcation analysis of the

critical points is a feasible method to quantitatively describe

the evolution of coherent structures in a plasma physics con-

vection model.
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