
Alma Mater Studiorum - Università di Bologna
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Abstract

The revolution in digital communications witnessed over the last decade had a significant
impact on the world of Business Intelligence (BI). In the big data era, the amount
and diversity of data that can be collected and analyzed for the decision-making
process transcends the restricted and structured set of internal data that BI systems
are conventionally limited to. This thesis investigates the unique challenges imposed
by three specific categories of non-conventional data: social data, linked data and
schemaless data. Social data comprises the user-generated contents published through
websites and social media, which can provide a fresh and timely perception about
people’s tastes and opinions. In Social BI (SBI), the analysis focuses on topics, meant
as specific concepts of interest within the subject area. In this context, this thesis
proposes meta-star, an alternative strategy to the traditional star-schema for modeling
hierarchies of topics to enable OLAP analyses. The thesis also presents an architectural
framework of a real SBI project and a cross-disciplinary benchmark for SBI. Linked
data employ the Resource Description Framework (RDF) to provide a public network
of interlinked, structured, cross-domain knowledge. In this context, this thesis proposes
an interactive and collaborative approach to build aggregation hierarchies from linked
data. Schemaless data refers to the storage of data in NoSQL databases that do not
force a predefined schema, but let database instances embed their own local schemata.
In this context, this thesis proposes an approach to determine the schema profile of a
document-based database; the goal is to facilitate users in a schema-on-read analysis
process by understanding the rules that drove the usage of the different schemata. A
final and complementary contribution of this thesis is an innovative technique in the
field of recommendation systems to overcome user disorientation in the analysis of a
large and heterogeneous wealth of data.
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Chapter 1

Introduction

1.1 Business Intelligence
The term Business Intelligence (BI) indicates a wide range of IT applications whose
goal is to help managers in the decision making process by collecting, managing and
analyzing data. In particular, the goal in BI is to provide corporate decision makers
with software solutions that help them identify and understand the key business
factors, so as to make the best decisions for the situation at the time [63]. The BI
pyramid shown in Figure 1.1 describes the progressive extraction of knowledge from
the raw data of a company, as well as the roles played by different technologies for
the decision-making process. The enabling components at the core of a BI platform
are a data warehouse (DW), i.e., a repository that stores information according to a
multidimensional schema, and OLAP (On Line Analytical Processing) interfaces, which
allow users with limited IT skills to explore the data and gain valuable information.
OLAP analyses are traditionally carried out on the data owned by the companies,
which are typically well-structured in accordance with the relational model.

The revolution in digital communications witnessed over the last decade had a
significant impact on the world of BI. For starters, the term BI 2.0 has been coined
to refer to the newest wave of tools and software for BI that propose a dynamic,
collaborative and web-based approach to BI [125]. Most importantly, the amount and
diversity of data that can be collected and analyzed for the decision-making process
has increased exponentially. It is widely common to use the term big data to refer to
those data that impose important challenges from (at least) one the following four
perspectives: volume (when the required storage capacity surpasses the one of common
machines), velocity (when data is generated continuously and at a higher rate than
it can be collected), variety (when contents are either unstructured or structured in
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Fig. 1.1 The business intelligence pyramid.

vary different ways), veracity (when the quality and trustworthiness of data can be
questioned). This is also commonly known as the rule of the four Vs [77]. Nonetheless,
big data have a rather generic definition and the term has been overly used (if not
abused) in the literature. For the purpose of this thesis, we introduce a more detailed
classification —based on the characteristics of those data — that helps us to outline
the unique challenges imposed by each category and the roles respectively played in
the BI process.

• Social data. The planetary success of social networks and the widespread
diffusion of portable devices has enabled simplified and ubiquitous forms of
communication and has contributed, during the last decade, to a significant shift
in human communication patterns towards the voluntary sharing of personal
information. Everyone is able to connect to the Internet anywhere and anytime,
and to continuously send messages to a virtual community centered around blogs,
forums, social networks, and the like. This has resulted in the accumulation of
enormous amounts of user-generated content (UGC), that include geolocation,
preferences, opinions, news, etc. This huge wealth of information about people’s
tastes, thoughts, and actions is obviously raising an increasing interest from
decision makers because it can give them a fresh and timely perception of the
market mood; besides, the diffusion of UGC is so widespread that it can directly
influence the phenomena of business and society in a decisive way [21, 146, 181].



1.1 Business Intelligence 3

• Linked data. The World Wide Web has radically altered the way we share
knowledge by lowering the barrier to publishing and accessing documents as
part of a global information space, where hypertext links allow users to tra-
verse this information space using web browsers. Linked data have extended
this concept from documents to data: by employing the Resource Description
Framework (RDF) and the Hypertext Transfer Protocol (HTTP), structured
data are published on the web and linked to other data in different data sources.
[13] The adoption of linked data has created a valuable network of structured
and interlinked data that bears knowledge from the most diverse domains (from
books, music and movies, to scientific publications, clinical trials and statistical
data) and that has enabled a wide set of applications. For instance — besides
simple browsing and searching activities — linked data can be a powerful tool in
the hands of the decision makers to integrate and extend the corporate knowledge
on a specific domain [1].

• Schemaless data. Recent years have witnessed the progressive erosion of the
relational DBMS predominance to the benefit of DBMSs based on different
representation models (e.g., document-oriented and key-value). Most new models
adopt a schemaless representation for data, although this does not mean that
data are stored without a schema: it rather means that schema is a soft concept
and that the instances referring to the same concept in the same collection can be
stored using different “local” schemata, in order to better fit the specific features
of each instance. As they allow designers to easily change and handle different
data structures, schemaless databases (often referred to as NoSQL databases)
have become the preferred way to store heterogeneous data with variant schemata
and structural forms — eventually leading to the creation of so-called data lakes
[176]. From the perspective of a decision maker, data lakes conveniently fit
the innovative data analysis strategy called schema-on-read: unlike the schema-
on-write strategy, which forces a schema on the data when it is written to the
database (i.e., the typical strategy in a relation database), schema-on-read applies
a schema when data is read from the database. This grants a high flexibility
to decision makers, as they can read and interpret the data according to their
specific requirements at the moment of the analysis [31].

Noticeably, this kind of information can provide insights of crucial — if not fun-
damental — importance for decision makers. We call them non-conventional data,
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as opposed to the restricted and structured set of internal data that BI systems are
conventionally limited to.

1.2 Motivations and Contributions
The contribution of non-conventional data to the decision-making process is as much
valuable as it is diverse, according to the nature of the considered data. Social
data provide a fresh and timely perception of the market mood and can be used to
better understand the phenomena of business and society. Linked data provide a
structure and interlinked knowledge that can be exploited to integrate and extend
the available corporate knowledge. Schemaless data are a large and heterogeneous
source of information whose structure and requirements can be determined on-the-fly
to accommodate different users and different business scenarios.

It is clear that no standard approach can be adopted to cope with all kinds of
non-conventional data. Nonetheless, we identify the following branches of BI 2.0 that
(also) address the issue of integrating different kinds of non-conventional data into the
BI process.

• Social Business Intelligence (SBI) is the discipline of effectively and efficiently
combining corporate data with social data to let decision-makers analyze and
improve their business based on the trends and moods perceived from the
environment [47]. In the industrial world, the analysis of social data often relies
on commercial tools known as social media monitoring tools: they provide a fixed
set of dashboards to analyze the data and rely on some ad-hoc KPIs, so they lack
in providing flexible user-driven analyses. Conversely, SBI is more focused on the
“big picture”, so as to give decision makers an unprecedentedly comprehensive
picture of the ongoing events and of their motivation. As in traditional BI, the
goal of SBI is to allow users with a limited expertise in databases and ICT to
carry out powerful and flexible analyses; this goal is typically achieved by storing
information into a data warehouse, in the form of multidimensional cubes to be
accessed through OLAP techniques.

• Exploratory Business Intelligence is a trending approach that indicates the
enrichment of the decisional process by including, besides data extracted from
the corporate sources (such as ERPs and CRMs), also external data (coming,
for instance, from the web). The focus is on the fact that the recognition and
acquisition of these external data is carried out by the user in an exploratory way,
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i.e., she navigates the information at her disposal and chooses what should be
acquired and what should not (a process also known as surf and save). The data
to be acquired is often referred to as situational data, to emphasize the fact that
they have a narrow focus on a specific business problem and, typically, a short
lifespan for a small group of decision makers with a unique set of needs [111]. A
further push towards exploratory BI is now coming from the wide success of data
science, meant as the cross-discipline of extracting knowledge and insights from
large volumes of data in various forms, either structured or unstructured, either
internal or external to the company.

• Pervasive Business Intelligence has emerged with the rise of BI 2.0 and highlights
the key aspects that such tools should cope with in order to meet the new and
ambitious requirements of business users. In particular, the pervasiveness of BI
tools refers to a series of characteristics such as personalization (i.e., to customize
the result according to the user who takes advantage of it), timeliness (i.e., to
promptly provide the business information for decision-making) and integration
(i.e., to enable the access to information from any available source) [166]. The
aspect of integration gains considerable importance in presence of corporate data
lakes, where the data can be interpreted differently according to the specific
requirements and vision of the user. Besides, the raising popularity of data
enthusiasts (i.e., users that need the ability to analyze data even without formal
training in data science) heightens the need of BI tools that answer the issues of
pervasiveness [120].

Whereas the integration of non-conventional data in the BI yields great value for
the business, we also recognize that this large and heterogeneous wealth of data can
become overwhelming for the user — who may end up struggling to garner the most
valuable information for decision making. On the one hand, decision makers heavily
rely on OLAP tools, as they have a universally recognized key role in supporting
flexible and effective exploration of multidimensional cubes in data warehouses; on the
other hand, it is commonly agreed that the huge number of possible aggregations and
selections that can be operated on data may make the user experience disorientating
[85]. Providing users with tools and techniques that help them in getting the most out
of the available data becomes an even more important task in this context. For this
reason, a complementary part of this thesis is dedicated to the study and enhancement
of recommendation systems, which supervise the user’s activity by providing suggestions
for the “next step” in the analysis process. Such work falls within the Pervasive BI
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discipline as well, since recommendation systems constitute one of the answers to the
personalization aspect of pervasiveness.

1.2.1 Social BI

In the analysis of social data, a key role is played by topics, meant as specific concepts of
interest within the subject area [53]. Users are interested in knowing how much people
talk about a topic, which words are related to it, if it has a good or bad reputation, etc.
Thus, topics are obvious candidates to become a dimension of the multidimensional
cubes for SBI. In this context, we give the following contributions:

• We formally introduce the meta-star as an alternative to the traditional star-
schema for modeling hierarchies of topics, which combines meta-modeling, navi-
gation tables and traditional dimension tables.

• We discuss how meta-stars can be exploited to formulate meaningful queries in
the SBI context, by providing examples and highlighting the differences from
queries on the star schema.

• We provide the execution plans and a cost model for meta-stars.

• We evaluate meta-stars in terms of efficiency and space occupation.

Our experience in the field of SBI has grown also thanks to our involvement in
different real-world projects. Most importantly, we participated in WebPolEU 1, a
project aimed at analyzing the correlation between social media and the European
elections of 2014. We make use of the experience gained in such project to provide the
following contributions:

• We introduce the architectural and methodological framework that we propose
to carry out an SBI project.

• We discuss the architectural choices adopted in WebPolEU and evaluate them in
terms of effectiveness, efficiency and sustainability.

• We describe a cross-disciplinary benchmark for SBI, called SABINE, obtained
through a series of enrichments on the data collected with WebPolEU and released
to the public.

1http://webpoleu.net

http://webpoleu.net
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The meta-star modeling technique is discussed in Chapter 3; the experience on
the WebPolEU project is discussed in Chapter 4; finally, the SABINE benchmark is
discussed in Chapter 5.

1.2.2 Exploratory BI

In the context of Exploratory BI, we focus on linked data as a valuable source to
gather the knowledge required to integrate and extend the corporate multidimensional
cubes. Since linked data are often chaotic and badly organized, especially from the
schema point of view , data scientists are often prevented from taking full advantage
of the informative wealth lying within them. The contributions that we provide in this
context are summarized as follows:

• We propose iMOLD (Interactive Multidimensional Modeling of Linked Data) as
an interactive and collaborative approach to build aggregation hierarchies from
linked data.

• We formally define five aggregation patterns found in ontologies and provide the
algorithms for detecting them in RDF linked data and translating them into
multidimensional hierarchies.

• We provide a case study and an extensive user evaluation to demonstrate the
applicability and the advantages of the proposed approach.

The discussion of the iMOLD approach is provided in Chapter 6.

1.2.3 Pervasive BI

As anticipated, the discipline of Pervasive BI is address in terms of integration (i.e., to
enable access and analysis on schemaless data) and personalization (i.e., to address
the issue of disorientation in the user’s experience).

In the context of the integration, we recall that corporate data lakes have the main
advantage of increasing the flexibility in storing the data, due to the absence of a
unique, well-defined schema. However, this turns to a disadvantage when moving from
operational applications to analytical applications and business intelligence. As BI
analyses typically involve large sets of data, a single analysis may involve instances
with different — possibly conflicting — schemata. It is then crucial for the user to
understand the rules that drove the usage of different schemata, so as to start an
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integration activity that identifies a common schema to be adopted. To this end, we
provide the following contributions:

• We propose an approach to perform the activity of schema profiling in a document-
based database, which first identifies the distinct schemata in a collection of
documents and then adopts a decision tree algorithm to determine the usage of
each schema.

• We implement a classification algorithm (based on the well-known C4.5) that
builds on two original features: the coupling of value-based and schema-based
conditions and the introduction of a novel measure of entropy.

• We evaluate our approach in term of effectiveness and efficiency against both
synthetic and real-world dataset.

In the context of personalization, we first state that different approaches have
been taken in the literature to address the issue of user disorientation; in particular
both preference-based (e.g., [64, 86]) and recommendation techniques (e.g., [157, 57])
were specifically devised for OLAP systems. Our work is specifically focused on
recommendations and propose an innovative approach stemming from collaborative
filtering. In particular, we provide the following contributions:

• We propose a collaborative approach inspired by clickstream analysis which
provides recommendations in the form of sequences of OLAP queries (i.e., OLAP
sessions) instead of individual OLAP queries.

• We devise a sophisticated algorithm that not only identifies the most suitable rec-
ommendation for the user, but also adapts it to fit the specific user’s preferences.

• We perform an extensive evaluation of the approach in terms of quality, effective-
ness and efficiency assessment.

• We propose CubeLoad, a parametric benchmark generator of OLAP session,
which was used to generate the dataset for the experimental evaluation of the
recommendation approach.

The work in the area of schema profiling is discussed in Chapter 7; the benchmark
generator CubeLoad is discussed in Chapter 8; the work concerning the recommendation
system is discussed in Chapter 9.



Chapter 2

Background

In this chapter we provide an introduction to the fundamental concepts that constitute
the basis of BI. First, we describe the features of a DW, which is at the core of any
BI solution. We continue by providing an overview of the traditional architectures for
data warehousing and introducing the paradigm behind OLAP analysis. Then, we
provide a formal definition of the key elements of the multidimensional model, which
will be recalled in the following chapters. We conclude by introducing the basic logical
modeling technique of a DW, i.e., the star schema.

2.1 Data Warehouse
The data warehouse (DW) is the main component in a BI platform and is defined
as “a collection of data that supports the decision-making process” [63]. The goal
of the DW is to provide data in a format that is most suitable for the analysis by
the decision makers. The ability to rapidly access all the available information is of
crucial importance for any company. Such information is mainly extracted from the
wealth of data stored in operational databases by means of a progressive selection and
aggregation process, as shown in Fig. 2.1.

The role of a DW is fundamentally different from the one of operational databases,
which are typically used in all kinds of applications. Operational database are used
to store operational data, i.e., data created by business operations involved in daily
management processes (e.g., purchase management, sales management, invoicing). The
process of managing operational data is typically defined as OLTP (online transactional
processing) and is characterized by a mainly transactional workload: a high number
of users continuously interact with the database to carry out simple read and write
operations (e.g., add a product to the basket). Conversely, the process of data
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Fig. 2.1 The progressive selection and aggregation process to extract valuable informa-
tion from operational data sources

analysis by decision makers is defined as OLAP (online analytical processing) and is
characterized by a low number of users that periodically interact with the database
to carry out complex read operations (e.g., identify the products that maximize the
profit). Since directing such a workload on an operational database would be highly
inconvenient, a DW is typically used for OLAP purposes.

The complexity of OLAP queries lies not only in the large amounts of data to
process, but also in the involvement of historic data and in the collection of data from
different data sources. Data warehouses must then comply with the problem of data
historicization on the one hand (as they need to keep track of the evolution of the data,
which is typically lost by overwrites in operational databases), and the problem of data
integration on the other. In particular, [63] identifies the following requirements for a
data warehouse:

• accessibility to users not very familiar with IT and data structure;

• integration of data on the basis of a standard enterprise model;

• query flexibility to maximize the advantages obtained from the existing informa-
tion;

• information conciseness allowing for target-oriented and effective analyses;

• multidimensional representation giving users an intuitive and manageable view
of information;

• correctness and completeness of integrated data.

Data warehouses fulfill these requirements by providing the following features [82]:
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Fig. 2.2 A sample multidimensional cube.

• Subject-orientation: the focus of the data warehouse is on enterprise-specific
concepts, such as customers, products, sales, and orders. On the contrary,
operational databases hinge on many different enterprise-specific applications.

• Integration and consistency: data warehouse provide a unified view of the data
gathered from multiple data sources, such as data extracted from production and
then stored to enterprise databases, or even data from a third party’s information
systems. In general, data warehouses do not add new information, but they
rearrange the existing information that was already available.

• Persistence: data warehouses periodically capture a snapshot of the operational
data and integrate it with the previously collected data, in order to provide a
complete picture that covers years of transactions.

To facilitate OLAP analyses, the DW is typically broken up into different data
marts, each representing a subset or an aggregation of the data stored in the primary
DW. A data mart includes a set of information pieces relevant to either a specific
business area, a corporate department, or a category of users. The data mart is
composed by different facts (e.g., orders and sales) that are the basic concepts of
the multidimensional schema. Each fact is analyzed by different perspectives, called
dimensions (e.g., products and stores). Each dimension is associated to a hierarchy
characterized by different levels of aggregation, called attributes. The actual values
of each attribute (e.g., a specific product or store) are referred to as members. Each
instance of a fact is called an event (e.g., a particular order or a specific sale); it is
described by the values of a set of relevant measures (e.g., the quantity sold) that
provide a quantitative description of the event, and it is identified by the combination
of members on each dimension that is relates to (e.g., the sale of a specific product in
a specific store on a specific date). Starting from these concepts, the multidimensional
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Fig. 2.3 The conceptual DFM representation of the multidimensional cube in Fig. 2.2.

data can be represented by an n-dimensional cube, where n is the number of dimensions.
Each cell of the cube includes a value for each measure. To represent the conceptual
design of a data warehouse, the dimensional fact model (DFM) is typically used [61].

Example 1 Figure 2.2 shows a three-dimensional cube representing the sales in a
store chain. The dimensions are products, stores, and dates. Each cell represents the
sales of a given product in a given store and in a given date; the highlighted cell shows
that, on the 22nd of September, 2016, 8 units of Nexus 6 (member of level Product)
have been sold in BigWare (member of level Store). Note that the cube is sparse, as it
is (naturally) not guaranteed that each product is sold every day and in every store.
Figure 2.3 shows the conceptual representation of the same cube according to the DFM.
The central box represents the fact (Sales) with its measures (Unit sales, Store cost
and Profit); each dimension is associated to a hierarchy of levels, where arches between
levels represent many-to-one relationship (in outward direction from the cube). For
instance, the products (e.g., Nexus 6) can be aggregated into types (e.g., smartphones)
and into categories (e.g., mobile technology).

2.2 DW Architecture
A common classification divides DW architectures in three main classes, depending on
the number of levels they involve. Figure 2.4 shows the three kinds of architectures.

• In a single tier architecture, the user (i.e., the decision maker) directly performs
her analyses on the operational data. This is typically achieved by means of a
middleware software that shows to the user a virtual representation of the data
marts without relying of a supporting physical tier: the only physical tier is
composed of the operational data sources.
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• In a two-tier architecture, a data warehouse is physically implemented to store
the data marts. This architecture introduces an ETL process (extraction, trans-
formation and loading that extracts the data from the operational sources, filters
and cleanses the data (e.g., to remove inconsistencies and fill the gaps) and inte-
grates them into a common schema. The DW tier provides a single, centralized
repository that allows the separation of the OLAP workload from the OLTP one.

• In a three-tier architecture, an additional physical tier is inserted between the
operational sources and the DW. The goal of the operational data store is to
act as a reconciled tier, which materializes the operational data obtained after
integrating and cleansing source data. This kind of architecture physically
separate the ETL process of data filtering and cleansing from the ETL process
that populates the DW. Although this solution leads to more redundancy of the
source data, it provides a common reference data model for a whole enterprise
and allows additional operations to be accomplished on the ODS (e.g., execution
of daily reports or enrichment of the reconciled data).

An important remark is that this thesis is focused on non-conventional data, which
— by definition — do not correspond to the operational sources mentioned in the
architectures. As mentioned in Chapter 1, we will investigate the use of social and
linked data (which can be summarized as external data, i.e., data coming from the
web) as well as schemaless data (which are typically stored in data lakes, i.e., large
repositories of heterogeneous data). The incorporation of external data and data lakes
in a company information system can take different shapes and there are no standard
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reference architectures. As a result, the architectures adopted in the different specific
scenarios will be individually presented in the following chapters of this thesis.

2.3 OLAP Analysis
The interactive navigation of DW information by the user is known as OLAP analysis.
Typically, the data are analyzed at different levels of aggregation by applying subsequent
OLAP operators, each yielding one or more different queries. The user can scout the
multidimensional model and choose the next operator based on the outcome of the
previous ones. In this way, the user creates a navigation path that corresponds to an
analysis process for facts according to different points and at different detail levels.
This is also informally called an OLAP session. In the following we describe the most
common OLAP operators, referring to the cube of sales of Figure 2.3:

• Roll-up causes an increase in data aggregation and removes a detail level from a
hierarchy (e.g., from product to type).

• Drill-down is the complement to the roll-up operator; it reduces data aggregation
and adds a new detail level to a hierarchy (e.g., from category to type).

• Slice-and-dice reduces the number of cube dimensions after setting one of the
dimensions to a specific member (e.g., product=“Nexus 6”); the dicing operation
reduces the set of data being analyzed by a selection criterion.

• Pivot implies a change in layouts, aiming at analyzing a group of data from a
different viewpoint.

• Drill-across allows to create a link between concepts in interrelated cubes, to
compare them.

• Drill-through switches from multidimensional aggregate data to operational data
in sources or in the reconciled tier.

2.4 Multidimensional Model
In this section we provide a formal definition of the main concepts in the multidimen-
sional model that will be used in the following chapters of the thesis.
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Definition 1 (Multidimensional Schema) A multidimensional schema is a couple
M = ⟨Hier, Meas⟩ where Hier is a finite set of hierarchy schemata, and Meas is a
finite set of measures, i.e., numerical attributes.

Given a measure m ∈ Meas, we will use Dom(m) to define the numerical domain
of m.

Definition 2 (Hierarchy Schema) A hierarchy schema H ∈ Hier is a couple H =
⟨L, ≻⟩ where L is a set of levels, and ≻ is a roll-up partial order of L. We will write
lk≻̇lj to emphasize that lk is an immediate predecessor of lj in ≻, and Lev(H) to refer
to L.

Let use defined H = {h1, ..., hn} as the set of hierarchies that respectively conform
to the the hierarchy schemata in Hier. Given a hierarchy hi ∈ H, the top level of the
order typically defines the name of the corresponding dimension and determines the
finest aggregation for the hierarchy. Conversely, the bottom level is denoted by ALLi,
has a single possible member and determines the coarsest aggregation for the hierarchy.
Given a level lk ∈ L, we define Dom(lk) the set of members of the level.

Example 2 The multidimensional schema in Figure 2.3 has three dimensions, namely
DATE, STORE and PRODUCT, and measures Unit sales, Store cost and Profit. The
roll-up order in the product dimension is such that Product ≻P RODUCT Type ≻P RODUCT

Category. The domain of level Product includes member “Nexus 6”, while the domain
of level Type includes member “smartphone”.

To define a multidimensional cube (or simply cube) we must first introduce the
notion of group-by set. A group-by set includes one attribute for each hierarchy, and
defines a possible way to aggregate data. A coordinate of a group-by is a point in the
n-dimensional space defined by the attributes in that group-by set.

Definition 3 (Group-by Set) Given a multidimensional schema M, let Dom(Hier)
= Lev(H1) × ... × Lev(Hn) where Hi ∈ Hier, 1 ≤ i ≤ n; each B ∈ Dom(Hier) is a
group-by set in M. Let B = ⟨lk1 , ..., lkn⟩ and Dom(B) = Dom(lk1) × ... × Dom(lkn);
each b ∈ Dom(B) is called a coordinate of B.

Example 3 Example group-by sets in the multidimensional schema in Figure 2.3 are:

• B1 = ⟨ Month, Store, Category ⟩

• B2 = ⟨ Year, Country, Type ⟩
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A cube is populated with facts, each recording a useful information for the decision-
making process. A fact is characterized by a group-by set B that defines its aggregation
level, by a coordinate of b ∈ Dom(B), and by a value for one measure.

Definition 4 (Fact) Given a multidimensional schema M, a group-by set B and a
measure m ∈ Meas, a fact (or event) is a couple eB,m = ⟨b, v⟩, where b ∈ Dom(B)
and v ∈ Dom(m). The space of all facts for M is:

EM =
⋃

B,m

(Dom(B) × Dom(m)) (2.1)

Finally, we define a cube as follows.

Definition 5 (Cube) A cube is a set of facts C ⊆ EM such that no two facts char-
acterized by the same coordinate exist in C.

2.5 Logical modeling: the star schema
The multidimensional structure can be represented in accordance to three different
logical models.

• MOLAP (Multidimensional OLAP) systems use multidimensional structures to
represent cubes; for instance, multidimensional vectors can be used, where each
vector is associated with a set of coordinates in the space of all facts. MOLAP
system provide the simplest representation of data warehouse data and deliver
top performance because of their perfect suitability for OLAP tasks. The main
problem, however, is the one of data sparsity, as multidimensional DBMSs have
to store every cell in the fact space, even if only a small percent of them actually
includes any information [25].

• ROLAP (Relational OLAP) systems adopt the well-known relational model, i.e.,
the database industry standard which every professional database designer is
familiar with. ROLAP systems rely on decades of evolution of relational DBMSs,
which have received much more research and industry attention than MOLAP
systems. One of the main advantages of ROLAP systems is its propensity to scal-
ability, as there is no sparsity in relational systems when storing multidimensional
data.

• HOLAP (Hybrid OLAP) systems adopt a hybrid model, which relies on both
the multidimensional and the relational model to exploit the respective unique
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advantages. Different strategies can be adopted to achieve such goal; for instance,
a cube can subdivided into chunks, where the dense ones are stored in MOLAP
mode and the sparse ones are stored in ROLAP mode.

In this thesis we will work on ROLAP systems, where the reference multidimensional
modeling technique is the so-called star schema. A star schema consists of the following:

• A set of relations (DT1, ..., DTn) called dimension tables, each of them corre-
sponding to a dimension. Every DTi features a primary (typically surrogate) key
and a set of attributes describing its dimension at different aggregation levels.

• A fact table (FT ) referencing all the dimension tables. The primary key of the
FT is the composition of the set of foreign keys referencing dimension tables; an
FT also includes an attribute for every measure.

Dimension tables essentially rely on denormalization to store all the levels of the
hierarchy in the same relation; whereas this causes redundancy and requires more disk
space to store the data, it also reduces the number of joins needed to retrieve information.
The absence of normalization does not typically raise concerns as hierarchies are mostly
static.

Example 4 Given the cube in Figure 2.3, the query to obtain the sum of the profit
for each store in each product category would be the following.

SELECT DT_STORE.Store, DT_PRODUCT.Category, SUM(FT.Profit)
FROM DT_STORE, DT_PRODUCT, FT
WHERE FT.keyS = DT_STORE.keyS AND FT.keyP = DT_PRODUCT.keyP
GROUP BY DT_STORE.Store, DT_PRODUCT.Category;

The star schema also has a series of variants that accommodate different specific
requirements. For example, the snowflake schema is obtained from the star schema by
reintroducing some degree of normalization in dimension tables, for instance to allow a
portion of hierarchy to be shared by multiple dimension tables. Also, slowly-changing
dimensions [95] can be used to handle historicization of the data by introducing
additional attributes in the dimension tables. In Chapter 3 we will introduce a brand
new modeling technique (called meta-star) to store dimensional data in a dynamic and
heterogeneous scenario as the one of Social BI.





Chapter 3

Meta-star: a modeling approach for
social data aggregation

In this chapter we propose meta-stars, a modeling approach for multidimensional
hierarchies that is alternative to the traditional star schema and that effectively
supports the analysis of social data. Its basic idea is to use meta-modeling coupled
with navigation tables and with dimension tables: navigation tables support hierarchy
instances with different lengths and with non-leaf facts, and allow different roll-up
semantics to be explicitly annotated; meta-modeling enables hierarchy heterogeneity
and dynamics to be accommodated; dimension tables are easily integrated with standard
business hierarchies. After describing the meta-star approach, we formalize its querying
expressiveness and give a cost model for the main query execution plans. Then, we
evaluate meta-stars by presenting experimental results for query performances and
disk space.

3.1 Introduction
As mentioned in Chapter 1, social data come in the form of user-generated content
(UGC), i.e., any form of content created and published by a user, from simple blog posts
to audio and video files [99]. The issue of extracting most information out of the UGC
(and using it) is a hot research theme in different areas, such as information retrieval,
text mining, and natural language processing; each community contributes to this
common goal by employing different techniques. In the perspective of SBI, the data to
be combined have very different features: while corporate data are structured, reliable,
and accurate, UGC is unstructured or poorly structured, possibly fake, often vague
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and imprecise; however, both types of data are crucial for an effective decision-making
process.

The category of UGC that most significantly contributes to the decision-making
process in the broadest variety of application domains is the one coming in the form of
textual clips [146, 181]. Clips can either be messages posted on social media (such as
Twitter, Facebook, blogs, and forums) or articles taken from on-line newspapers and
magazines. Digging information useful for decision-makers out of textual UGC requires
first crawling the web to extract the clips related to a subject area, then enriching them
in order to let as much information as possible emerge from the raw text. The subject
area defines the project scope and extent, and can be for instance related to a brand or
a specific market. Enrichment activities range from the simple identification of relevant
parts (e.g., author, title, language) if the clip is semi-structured, to the use of either
natural language processing or text analysis techniques to interpret each sentence and
if possible assign a polarity to it (i.e., sentiment analysis or opinion mining [107]).

In the analysis of textual UGC, a key role is played by topics, meant as specific
concepts of interest within the subject area [53]: users are interested in knowing how
much people talk about a topic, which words are related to it, if it has a good or bad
reputation, etc. A topic could be a word having a specific role in the users’ business
glossary (e.g., a product, a product type, or a brand), or it could be a common word
that at some time becomes relevant to the subject area. Depending on the tool or
technique adopted for UGC analysis, each topic is normally coupled with some measures
taken either at the clip/sentence level (e.g., number of occurrences of that topic in each
clip) or for each single occurrence (e.g., sentiment of each occurrence of that topic in
each clip). Such a detailed information is useful, e.g., for early-alerting applications [59]
in which users need to timely react to some specific message; however, to effectively
summarize the mood raised by a topic, topic measures must be aggregated using clip
metadata, e.g., by author, media type, or language, which can be easily done through
OLAP-style analyses.

On the other hand, OLAP analyses of single, specific topics are often not sufficient
to give users a clear and comprehensive picture of the social mood. Like for any other
dimension, users are also very interested in grouping topics together in different ways
to carry out more general and effective analyses —which requires the definition of a
topic hierarchy that specifies inter-topic roll-up (i.e., grouping) relationships so as to
enable aggregations of topic measures at different levels. Once a topic hierarchy is
available, it can be used to compute aggregated measures.
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3.1.1 Motivation

Topic hierarchies are quite different from traditional hierarchies (like the temporal and
the geographical one) for several reasons [29]:

♯1 From the point of view of their instances, topic hierarchies are irregular in several
ways. According to the terminology introduced in [134] they are non-onto, which
means that hierarchy instances can have different lengths and also non-leaf topics
can be related to facts (e.g., clips may talk of smartphones as well as of the Galaxy
III). Topic hierarchies are also non-covering (some hierarchy levels may be missing
in some instances) and non-strict (many-to-many relationship between topics may
exist)1. Note that, in ROLAP (Relational OLAP) contexts, a non-onto hierarchy
can be represented either by coupling a classic dimension table with a navigation
table that explicitly represents the transitive closure of the node relationships, or by
creating a parent-child (i.e., recursive) dimension table [95]. Conversely, a non-strict
hierarchy can be dealt with using many-to-many bridge tables [95].

♯2 Trendy topics are heterogeneous (e.g., they could include names of famous people,
products, places, brands, etc.) and change quickly over time (e.g., if at some time
it were announced that using smartphones can cause finger pathologies, a brand
new set of hot unpredicted topics would emerge during the following days), so a
comprehensive schema for topics cannot be anticipated at design time and must
be dynamically defined. For some topics a classification could even be hard due to
their fuzzy nature, or unnecessary due to their transitoriness. So, from the point of
view of their schemata, we can intuitively say that topic hierarchies are fluid.

♯3 Some topics (e.g., products) are normally part of the hierarchies that store business
data. Thus, modeling those topics in such a way as to enable direct integration with
the EDW (Enterprise Data Warehouse) is highly desirable.

♯4 Relationships between topics can have different roll-up semantics: for instance, the
relationship semantics in “Galaxy III has brand Samsung” and “Galaxy III has
type smartphone” is quite different. In the multidimensional model this distinction
can only be (implicitly) enforced by leaning on the semantics of aggregation levels,
which is possible for a regular hierarchy (“Smartphone” is a member of level Type,
“Samsung” is a member of level Brand) but not for a non-onto hierarchy because all
topics are members of the same Topic level.

1Non-onto hierarchies are also called unbalanced [129] or recursive [63], while non-covering hierarchies
are also called ragged [129] or incomplete [63]
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Example 5 In our motivating example, a marketing analyst wants to analyze people’s
feelings about mobile devices. A basic cube she could use to this purpose is the one
counting, within the textual UGC, the number of occurrences of each topic related
to subject area “mobile technologies”, distinguishing between those expressing posi-
tive/negative/neutral sentiment as labeled by an opinion mining algorithm (e.g., the
one in [164]). Figure 3.1 shows a sample set of topics for mobile technologies and chain
stores and the roll-up relationships the analyst deems interesting (e.g., when analyzing
topic “Samsung”, the analyst may wish to also include occurrences of topics “Galaxy
III” and “Galaxy Tab”), while Table 3.1 gives some sample facts with four measures
(the total number of occurrences is higher than the sum of positive and negative ones,
because most occurrences are normally unbiased; the average sentiment is computed by
averaging the numerical sentiment scores for the occurrences). Note that, since this
example is from the marketing area, most topics reasonably correspond to values of
attributes (e.g., products) in the EDW; in other settings, topics could also be more
common words such as “finger pathologies” in our example, or emerging trends like
“hands-free” and “wearable device”. Now, let the analyst be specifically interested in
three types of analysis of the UGC: (i) brand reputation, aimed at assessing the people’s
perception of each brand; (ii) talking volume, whose goal is to count the overall occur-
rences of mobile tech topics; and (iii) health rumors, aimed at capturing the customers’
concerns about touchscreens and the possible pathologies they may cause. In the first
case, the perception of Samsung will be measured by counting the positive and negative
occurrences of topics “Samsung”, “Galaxy III”, and “Galaxy Tab”; in the second case,
all occurrences of all tech-related topics except “Nokia” and “Samsung” will be counted;
in the third case, only the occurrences of “Touchscreen” and “Finger Pathologies” will
be considered. The results are shown in Table 3.2; it appears that, depending on the
analyst’s goals, facts can be aggregated in different ways by navigating or not navigating
inter-topic relationships with the different semantics shown in grey in Figure 3.1.

3.1.2 Goal

In light of the above, topic hierarchies in ROLAP contexts must clearly be modeled
with more sophisticated solutions than traditional star schemata. Though some
attempts have been made in the literature to address some of the mentioned issues
(e.g., [181, 29]), no solution to all of them has been found so far. The approach
we propose in this chapter is called meta-stars, and it couples meta-modeling with
navigation tables and with dimension tables to improve flexibility and expressiveness
when modeling topic hierarchies [47–49]. Meta-stars are flexible because, differently
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Fig. 3.1 A topic hierarchy for the mobile technology subject area; inter-topic roll-up
relationships are represented by arrows and labelled (in grey) with their semantics

Table 3.1 Sample (fake) facts for topics
Topic positiveOcc negativeOcc totalOcc avgSentiment

4.8in Display 10 2 180 2.1
8MP Camera 0 3 12 -0.2

E5 30 10 100 1.0
Lumia 920 10 10 50 0.0
Galaxy III 20 5 1005 0.1

Galaxy Tab 22 0 102 2.0
Nokia 20 10 35 5.0

Samsung 50 10 400 2.5
Tablet 5 5 30 0.1

Smartphone 60 20 1600 1.8
Mobile Tech 10 20 3000 -0.1
Touchscreen 60 10 100 3.2
Finger Path. 0 25 25 -4.6

Mall 5 5 200 0.1
Meraville 3 0 50 2.3

MediaWorld 10 5 2000 0.5

from traditional solutions that mainly model regular hierarchies with a fixed and
pre-defined structure, they use a single schema to cope with hierarchies with very
different features. Indeed, navigation tables support non-onto, non-covering, and
non-strict hierarchies (requirement ♯1); meta-modeling enables heterogeneity and
dynamics of topic classification to be accommodated without requiring changes to the
underlying schema (requirement ♯2); finally, dimension tables are easily integrated with
standard business hierarchies (requirement ♯3). On the other hand, meta-stars are
more expressive than traditional solutions because they can model unclassified topics
(requirement ♯2) and because different roll-up semantics can be explicitly annotated
(requirement ♯4), which in turn enables a brand new class of semantics-aware OLAP
queries.

As discussed in Section 3.6, an obvious consequence of the adoption of navigation
tables is that the total size of the solution increases exponentially with the size of the
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Table 3.2 Brand reputation, talking volume, and health rumors analyses
Topic positiveOcc negativeOcc totalOcc
Nokia 60 30

Samsung 92 15
Mobile Tech 6079
Touchscreen 35

topic hierarchy. This clearly limits the applicability of the meta-star approach to topic
hierarchies of small-medium size; however, we argue that this limitation is not really
penalizing because topic hierarchies are normally created and maintained manually by
domain experts, which suggests that their size can hardly become too large.

The remainder of the chapter is organized as follows:

• In Section 3.2 we discuss the related literature.

• In Sections 3.3 and 3.4 we present our approach and the types of queries it
supports.

• In Section 3.5 we show query execution plans and propose a cost model.

• In Section 3.6 we propose a set of experimental tests.

• In Section 3.7 we draw the conclusions.

3.2 Related Literature
OLAP techniques are normally applied to multidimensional cubes storing structured
business data. However, several research paper focus on the possibility of enhancing
OLAP analyses and broadening its scope to unstructured content. Overall, as sketched
in Table 3.3, the literature related to our approach can be classified into three partially
overlapping areas: OLAP analyses on textual documents, advanced data warehouse
modeling, and analysis of social contents. In the following we briefly comment on each
cited paper, with more emphasis on those that come closer to our work. Table 3.3 also
summarizes a comparison between previous approaches and ours in terms of supported
features.

In [51] cubes are exploited to compute multidimensional aggregations on classified
documents, using measures such as keyword frequency, document count, document
class frequency; the hierarchies used for analyses are based on a given ontology, which
limits the approach flexibility. A cube for analyzing term occurrences in documents
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Table 3.3 Related literature classification and comparison
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[146] X X no no yes no
[181] X X X no part. yes no
[53] X X X no no yes no
[29] X X X part. part. yes no
[134] X yes no yes part.
[129] X part. no yes no
[51] X part. no no no
[101] X no no yes no

[144, 145] X part. no yes no
[10] X no yes no no
[110] X yes no yes part.
[115] X n.a. n.a. n.a. n.a.
[113] X n.a. n.a. n.a. n.a.
[138] X no no yes no

Our approach X X yes yes yes yes

belonging to a corpus is proposed in [101]; the categorization of terms is obtained from
a thesaurus or from a concept hierarchy such as Wordnet. A measureless cube for
OLAP analysis of semi-structured documents is presented by [144]; a novel OLAP
operation called focus is introduced to specify a subject of analysis and aggregate data
accordingly. Similarly, [10] proposes a multidimensional model for OLAP analysis of
XML documents based on a measureless fact where a semantic dimension is coupled
with standard dimensions like date and place. In a related paper [145], a top keyword
aggregation function is defined to represent a set of documents by their most significant
terms using the well-known tf-idf weighing function. Finally, [138] shows how OLAP
and information retrieval functionalities can be integrated to access both structured
data stored in a data warehouse and unstructured data in form of documents; a global
ontology models the business domain and provides the mappings to connect OLAP
and information retrieval.

A work sharing some similarities with ours is the one in [146], that presents
an architecture to extract tweets from Twitter and load them to a data warehouse.
Conceptual models for Twitter streams from both OLTP and OLAP points of view are
also proposed. However, both models are focused on the inter-relationships between
tweets and between users (the influencer/followers mechanism), and little attention is
paid to classifying and analyzing tweet topics. An approach for disambiguating and
categorizing the entities in the tweets aimed at discovering topics is described in [115];
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Wikipedia is used as a knowledge base to this end. The results obtained are used for
determining users’ topic profiles, and the possibility of analyzing them using OLAP
techniques is not considered. The real-time identification of emerging topics in tweets
is studied in [113]. Bursty keywords are extracted first, then grouped to identify trends;
however, trends are analyzed using a front-end with limited flexibility.

In [53] a multidimensional model is proposed that shares with meta-stars the goals
of integrating sentiment data in a traditional EDW and that of supporting non-onto
hierarchies. However, neither facts for non-leaf topics, nor multiple semantics of
aggregation, nor non-strict hierarchies are allowed. Besides, schema dynamics is not
supported. Finally, the model is defined on a specific subject area (i.e., analysis of
market data) and is not formalized in the general case. Topic modeling is also the goal
of the approach in [181], that extends traditional cubes to cope with a topic hierarchy
and to store probabilistic content measures of text documents learned through a
probabilistic model. The topic hierarchy is a tree that models parent-child relationships
between topics of interest.

In [29] the authors model non-onto and non-strict topic hierarchies as DAGs of
topics. On the one hand, the proposed solution has higher expressivity with respect
to traditional hierarchies due to the presence of topic-oriented OLAP operators; on
the other hand, it lacks in providing a semantics for the topics in the DAG, that
are organized and aggregated only according to their position in the DAG. In other
words, with reference to Example 5, the user cannot ask for the average sentiment
of each single smartphone since there is no evidence of which instances have type
“Smartphone”.

Apart from the specific social context, advanced modeling of multidimensional
hierarchies has been studied by several authors [110, 134]. However, none of the
proposed solutions completely match the topic hierarchy requirements.

To the best of our knowledge, in the commercial world no solution is offered to
run OLAP analyses on UGC. The platform whose functionalities are closest to those
achieved by our approach is SAS, that exploits its in-memory engine (called SAS
In-Memory Analytics Server) to store facts and dimensions in a single, flat in-memory
table. The SAS solution supports manual definition of topic hierarchies and their
navigation; however, it has inherent limits due to memory availability and does not
allow the UGC to be integrated with the information stored in the EDW.
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Fig. 3.2 A conceptual representation of a cube for analyzing textual UGC

3.3 Meta-Stars
Different multidimensional cubes can be stored in a corporate data warehouse, focused
for instance on the perceived sentiment for the topics in the subject area, on the
correlations between topics, on the trending topics, and so on as determined by the
semantic enrichment process (Figure 3.2 shows a simple cube for Example 5, that
can also be used for any other subject area). Typical indicators associated to these
cubes are the topic share (ratio between the number of occurrences of a topic and the
total number of occurrences of all topics in a given time interval), the topic awareness
(ratio between the number of clips mentioning a topic and the total number of clips),
the market beat (percentage of positive/negative opinions on a topic), the average
sentiment (average of biased opinions on a topic). Clearly, topics are first-class citizens
for most analyses that decision-makers find interesting in this field. Thus, expressive
and flexible solutions are required to model topics in DM cubes.

It is almost impossible to devise a fixed schema for a subject area at design time and
force all newly-discovered topics to fit that schema. However, a large part of topics can
be effectively classified into levels, such as Product and Brand in our motivating example,
that mostly correspond to aggregation levels in traditional business hierarchies. Like
in traditional multidimensional modeling, the relationships between these topics can
be captured by a hierarchy schema, to be expressed via roll-up partial orders. With
the following definitions, we lay the foundations for meta-stars by formally modeling
hierarchy schemata and topic hierarchies (i.e., instances of hierarchy schemata) in an
implementation-independent manner.

Recalling Definition 2 of a hierarchy schema, note that:

• There is no explicit semantics attached to topic inter-relationships: the semantics
of the relationship between two topics is implicitly coded by the couple of levels
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these topics belong to (e.g., the relationship between Product and Brand has
semantics has).

• Inter-topic relationships are not constrained to be many-to-one.

• Disjoint hierarchies (like the ones rooted in Mobile Tech and MediaWorld in our
motivating example) are supported.

Example 6 In our motivating example it is L = {Product, Type, Category, Brand,

Component, Store, Chain} and Component≻̇Product≻̇Type≻̇Category, Product≻̇Brand,
Store≻̇Chain (see also Figure 3.3, gray boxes).

The connection between hierarchy schemata (intension) and topic hierarchies (ex-
tension) is captured by Definition 6, that also annotates roll-up relationships with their
semantics.

Definition 6 (Topic Hierarchy) A topic hierarchy conformed to hierarchy schema
H = (L, ≻H) is a triple of (i) an acyclic directed graph G = (T, U), where T is a set
of topics and U is a set of inter-topic roll-up relationships; (ii) a partial function Lev :
T → L that associates some topics to levels; and (iii) a partial function Sem : U → ρ

that associates some roll-up relationships to their semantics (with ρ being a list of
user-defined roll-up semantics). A topic is said to be classified if it is associated to a
level via function Lev, unclassified otherwise. Graph G must be such that

1. for each arc (t1, t2) ∈ U such that Lev(t1) = l1 and Lev(t2) = l2, it is either (i)
l1≻̇l2 or (ii) l1 ≻ l2 provided that (t1, t2) is not transitively implied by the other
arcs in U ;

2. for each couple of arcs (t1, t2), (t3, t4) ∈ U such that Lev(t1) = Lev(t3) and
Lev(t2) = Lev(t4), it is Sem((t1, t2)) = Sem((t3, t4)).

The constraints on G are aimed at ensuring consistency between the topic hierarchy and
the hierarchy schema. In particular, the first constraint states that the relationships
between classified topics must not contradict the roll-up partial order; the distinction
between conditions (i) and (ii) aims at avoiding transitively implied arcs while sup-
porting missing levels (non-covering hierarchies). For instance, the arc from “Galaxy
III” to “Smartphone” is allowed because Product≻̇Type, while an arc from “Galaxy III”
to “Mobile Tech” is forbidden because transitively implied. The arc from “Galaxy III”
to “Touchscreen” is allowed because the latter is unclassified. Multiple arcs between
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Fig. 3.3 The annotated topic hierarchy for the mobile technology subject area

topics of the same levels (non-strict hierarchies, e.g., the one between components and
products) and directed paths of any length (non-onto hierarchies) are also supported.
As to the second constraint, it states that all the roll-up relationships between topics
of the same two levels must share the same semantics.

Finally, Definition 7 provides a compact representation for the semantics involved
in any path of a topic hierarchy.

Definition 7 (Roll-up Signature) Let G+ be the transitive closure of G, and let t1

and t2 be two classified topics such that (t1, t2) ∈ G+ (i.e., Lev(t1) ≻ Lev(t2)). The
roll-up signature of (t1, t2), denoted RUS(t1, t2), is a binary string of |ρ| bits, where
each bit corresponds to one roll-up semantics and is set to 1 if at least one roll-up
relationship with that semantics is part of any directed path from t1 to t2 in G, is set
to 0 otherwise. Conventionally, RUS(t, t) is a string of 0’s for each t.

Example 7 In Figure 3.3 the topic hierarchy of Figure 3.1 is reconsidered and anno-
tated with levels and roll-up semantics. Note that topics “Touchscreen” and “Finger
Pathologies” are unclassified, and that the relationship between components and products
is many-to-many. If ρ = (isPartOf, hasType, hasBrand, hasCategory, has, causedBy,
of), then RUS(8MP Camera, Samsung) = 1010000 (because the two paths from “8MP
Camera” to “Samsung” include roll-up relationships with semantics isPartOf and
hasBrand), while RUS(8MP Camera, Smartphone) = 1100000.

The approach we propose to model on ROLAP platforms a multidimensional cube
including a topic hierarchy (like the one in the example of Figure 3.2) extends a classical
star schema. The fact (e.g., OCCURRENCE) can be represented by a standard fact
table, and each hierarchy other than the topic one (e.g., Clip) can be represented
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by a standard dimension table. On the other hand, to model the topic hierarchy
we use a new data structure called meta-star. Meta-stars directly support irregular
hierarchies (requirement ♯1), allow different roll-up semantics to be explicitly annotated
(requirement ♯4), and enable schema fluidity to be accommodated (requirement ♯2).
This is achieved by coupling two tables: a topic table where each tuple models a topic
(essentially, a dimension table extended with a column Level for storing topic levels),
and a roll-up table that extensively represents inter-topic relationships (essentially, a
navigation table extended with a column for storing roll-up signatures). De facto, with
this solution we meta-model hierarchy schemata because, by including column Level in
the topic table, we represent an intensional information at the extensional level.

To make meta-stars more easily integrable with standard business hierarchies
(requirement ♯3) and provide better performance for queries that do not require
advanced topic aggregation, the designer can fine-tune the meta-star solution by
deciding which levels are to be modeled also in a classic way, i.e., by adding dedicated
columns to the topic table. We will call static these levels (Lstat in Definition 8) because,
like in a star schema, a schema change that involves them requires a change in the
relational schema —while any change to the other levels can be accommodated at the
tuple level thanks to meta-modeling.

Definition 8 (Meta-Stars) The meta-star for topic hierarchy (G, Lev, Sem) with
G = (T, U) and static levels Lstat ⊆ L includes:

1. A topic table storing one tuple for each distinct topic t ∈ T . The schema of
this table includes a primary surrogate (i.e., DBMS-generated) key IdT, a Topic
column, and a Level column. The tuple associated to topic t has Topic = t and
Level = Lev(t) if t is classified, Level = NULL otherwise. Besides, the topic table
has an additional column for each static level l ∈ Lstat. If Lev(t) ∈ Lstat, the tuple
associated to topic t has value t in column Lev(t), value Ancl(t) in each column
l such that l ∈ Lstat and Lev(t) ≻ l, and NULL elsewhere. If Lev(t) ̸∈ Lstat, all
additional columns in the tuple associated to t are NULL.

2. A roll-up table storing one tuple for each topic in T and one for each arc in G+.
The tuple corresponding to topic t has two foreign keys, ChildId and FatherId,
both referencing the topic table and storing the surrogate of topic t, and a column
RollUpSignature that stores RUS(t, t), i.e., a string of 0’s. The tuple corresponding
to arc (t1, t2) stores in ChildId and FatherId the two surrogates of topics t1 and t2,
while column RollUpSignature stores RUS(t1, t2).
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TOPIC_T ROLLUP_T
IdT Topic Level ChildId FatherId RollUpSignature
1 8MPCamera Component 1 1 0000000
2 GalaxyIII Product 2 2 0000000
3 GalaxyTab Product . . . . . . 0000000
4 Smartphone Type 1 2 1000000
5 Tablet Type 1 3 1000000
6 MobileTech Category 2 4 0100000
7 Samsung Brand 2 7 0010000
8 Finger Path. – 4 6 0001000
9 Touchscreen – 8 9 0000010

. . . . . . . . . 2 9 0000100
. . . . . . . . .
1 4 1100000
1 5 1100000
1 7 1010000
1 9 1000100
2 6 0101000
3 6 0101000

. . . . . . . . .
1 6 1101000

. . . . . . . . .

Fig. 3.4 Meta-star modeling for the mobile technology subject area when no levels are
static

To enable an easier reading, we will first consider the case in which Lstat = ∅, i.e.,
the designer has chosen to make no levels static.

Example 8 The topic and the roll-up tables for our motivating example when Lstat = ∅
are shown in Figure 3.4. The 12-th tuple of the roll-up table states that the roll-up
signature of couple (8MP Camera, Smartphone) is 1100000, i.e., that the path from
one topic to the other includes semantics isPartOf and hasType.

As shown in Section 3.4, meta-stars yield higher querying expressiveness thanks
to the presence of roll-up signatures by enabling a brand new class of semantics-
aware OLAP queries. Meta-stars also better support changes in the schema of topic
hierarchies, through the combined use of meta-modeling and of the roll-up table. A
whole new set of emerging topics, possibly structured in a hierarchy with different
levels, can be accommodated —without changing the underlying relational schema—
by:

• adding new values to the domain of the Level column;

• adding tuples to the topic and roll-up tables to represent the new topics and
their relationships

• extending roll-up signatures with new bits for the new roll-up semantics.
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TOPIC_T
IdT Topic Level Product Type Category
1 8MPCamera Component – – –
2 GalaxyIII Product GalaxyIII Smartph. MobTech
3 GalaxyTab Product GalaxyTab Tablet MobTech
4 Smartphone Type – Smartph. MobTech
5 Tablet Type – Tablet MobTech
6 MobileTech Category – – MobTech
7 Samsung Brand – – –
8 Finger Path. – – – –
9 Touchscreen – – – –

. . . . . . . . . . . . . . . . . .

Fig. 3.5 Meta-star modeling for the mobile technology subject area when Lstat =
{Product, Type, Category}

The newly-added levels will immediately become available for querying and aggregation,
with no DML operations nor modifications to the application logic needed. Similarly,
any other revision of the topic hierarchy (including updates and/or removals of topics,
levels or roll-up relationships) can be accommodated by operating at the tuple level.

We observe that, in the general case, the summarizability property as defined in
[106] (i.e., the correct computation of aggregate values with a coarser level of detail
from aggregate values with a finer level of detail) may not hold for topic hierarchies
due to their inherent nature: indeed, summarization leads to incomplete results in a
non-onto or non-covering hierarchy, while it leads to double counting in a non-strict
hierarchy [134].

As stated by Definition 8, the designer can fine-tune the meta-star solution by
deciding which levels Lstat ⊆ L are made static. For the sake of simplicity, in the
remainder we only consider the case in which the levels in Lstat are related by many-
to-one relationships, so that they can be modeled like in a classic dimension table.
More precisely, we assume that for each couple of levels l1, l2 ∈ Lstat such that l1 ≻ l2,
each topic t in l1 is connected in G to at most one topic of l2, which we denote with
Ancl2(t).

Example 9 The topic table for our motivating example when, for instance, Lstat =
{Product, Type, Category} is shown in Figure 3.5. Note that levels Component and
Product are related by a many-to-many relationship, so the presence of Component in
Lstat would be incompatible with the presence of Product, Type, and Category.

Choosing static levels is done at design time, based on a trade-off between efficiency
and effectiveness. In particular, the designer should consider that:

• levels that are also part of the EDW should be made static in order to enable
the integration with enterprise data;
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• queries that do not require advanced topic aggregation would benefit (in terms
of performance) from making the involved levels static;

• portions of the topic hierarchy that are likely to be involved into relevant changes
are discouraged from being made static.

Remarkably, query formulation in presence of static levels is simplified, because it may
be no longer necessary to use the roll-up table (see Section 3.4.4).

3.3.1 Slowly-Changing Topics and Levels

Historicization of hierarchies is a relevant issue in data warehouse design since it allows
users to better focus their analyses and enables the execution of queries that use
different hierarchy versions. Hierarchies subject to changes in their data are normally
referred to as slowly-changing dimensions [95], and different techniques can be adopted
to cope with them. In particular, in a star schema implementation of a cube, a Type-2
solution is one where data versions are tracked by creating multiple tuples in the
dimension table for the same natural key (e.g., several tuples in the product dimension
table corresponding to different classifications into types of the same product at different
times); each fact in the fact table is then referred to the specific tuple that was valid
when the fact took place, so that the historical truth can easily be reconstructed by a
simple star join. A more powerful solution is so-called full logging [63], that adds a
couple of timestamps to dimension tables to explicitly model the temporal validity of
each version so as to enable more expressive queries. While handling different data
versions is essentially a technical problem, dealing with changes in the schema of
hierarchies is still a research issue, with only a few proposed solutions in the literature
(e.g., [60]).

Although meta-stars natively support data and schema changes, keeping track of
the different versions requires some further expedient. First of all we observe that,
thanks to meta-modeling and differently from traditional star schemata, meta-stars
can track also schema changes using the same solutions devised for slowly-changing
dimensions. This means that not only data changes (i.e., creation of a new member,
deletion of a member, and inter-member relationship update), but even schema changes
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(i.e., creation of a new level, deletion of a level)2 can be tracked in a meta-star without
affecting the schema of topic and roll-up tables.

Both Type-2 and full-logging solutions can be applied to meta-stars. As in star
schemata, a Type-2 solution does not impact on the meta-star schema and is imple-
mented by properly setting the ETL process only. Conversely, full logging impacts
on the meta-star schema; more precisely, tracking changes in the roll-up partial order
requires timestamps in the roll-up table only, while all the other operations also involve
the topic table since a change in a topic/level must be reflected in all the related arcs
of G+.

Example 10 A full-logging solution for our motivating example is shown in Figure
3.6. On Jan. 31, 2014 a change in the hierarchy schema occurred: level SubCategory
was introduced and topic “Smartphone” was moved from Type to SubCategory. A new
tuple with IdT 10 was added to TOPIC_T, while the previous version (the tuple with
IdT 4) run out of validity; the related arcs in ROLLUP_T were updated accordingly.

Though Type-2 and full-logging solutions are more powerful when applied to meta-
stars, they should be used carefully because their impact on cardinality of roll-up
tables is very strong. Indeed, a roll-up table explicitly stores the transitive closure of
inter-topic relationships, so any change in a topic, a level, or an arc may affect several
tuples.

3.4 Querying Meta-Stars
In this section we show how meta-stars support OLAP queries with increasing expres-
siveness and complexity, starting from queries using only static levels to end-up with
semantics-aware queries.

OLAP queries normally return the values of one or more measures aggregated
according to a group-by set including a few hierarchy levels, optionally filtered according
to a selection. For instance, with reference to the conceptual schema depicted in Figure
3.2, a possible query could return the total number of positive occurrences of topics
“Smartphone” and “Mediaworld” in clips written in Italian during each month of 2014. In
this case the measure returned is positiveOcc, the query group-by is {Topic,Month}, and

2Though the roll-up partial order between levels is part of the hierarchy schema, its historicization
is handled at the instance level in both stars and meta-stars; while from the extensional point of view
inter-level relationships can be reconstructed from the relationships between level members, from the
intensional point of view they are explicitly stored only in meta-data repositories, not in dimension
table schemata.
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TOPIC_T
IdT Topic Level From To Master
1 8MPCamera Component Jan 01 2014 - 1
2 GalaxyIII Product Jan 01 2014 - 2
3 GalaxyTab Product Jan 01 2014 - 3
4 Smartphone Type Jan 01 2014 Jan 31 2014 4
5 Tablet Type Jan 01 2014 - 5
6 MobileTech Category Jan 01 2014 - 6
7 Samsung Brand Jan 01 2014 - 7
8 Finger Path. – Jan 01 2014 - 8
9 Touchscreen – Jan 01 2014 - 9
10 Smartphone SubCat Feb 1 2014 - 4
. . . . . . . . . . . . . . . . . . . . .

ROLLUP_T
ChildId FatherId RollUpSignature From To

1 1 0000000 Jan 01 2014 -
. . . . . . 0000000 . . . . . .
1 2 1000000 Jan 01 2014 -
2 4 0100000 Jan 01 2014 Jan 31 2014
2 10 0100000 Feb 01 2014 -
4 6 0001000 Jan 01 2014 Jan 31 2014
10 6 0001000 Feb 01 2014 -
. . . . . . . . . . . . . . .
1 4 1100000 Jan 01 2014 Jan 31 2014
1 10 1100000 Feb 01 2014 -

. . . . . . . . . . . . . . .

Fig. 3.6 Full-logging solution for the mobile technology subject area

the selection predicate is Topic IN {’Smarthpone’,’MediaWorld’} AND Year = ’2014’
AND Language = ’Italian’. From a conceptual point of view, answering an OLAP
query of this type amounts to properly building groups of members for each dimension
of the underlying multidimensional schema, then aggregating measure values for each
combination of these groups. For instance, the query above is answered by building two
groups of topics (the first including only member “Smartphone”, the second including
only member “Mediaworld” as shown in Figure 3.7, dark gray circles) and 12 groups of
clips, each including all the Italian clips written during a single month of 2014; then,
the values of measure positiveOcc for the facts related to each of the 2 × 12 couples of
groups are summed together and returned, possibly in the form of a pivot table (see
Figure 3.7, bottom-right).

While the semantics explained above for OLAP queries is commonly understood
and shared, in presence of irregular, fluid, and semantically-rich hierarchies —such as
the topic one— some further possibilities arise. In particular, since facts can also be
associated to non-leaf topics, multiple semantics of aggregation can be made available
to users. For instance, computing the number of occurrences of “Smartphone” may
either mean considering only the UGC mentioning the word “Smartphone”, or also
considering the UGC mentioning products of type smartphones (such as Galaxy III),
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Fig. 3.7 Topic groups in a query without topic aggregation (dark gray circles) and with
semantic topic aggregation (light gray triangles)

or also considering the UGC mentioning a component of a product of type smartphone
(such as 8MP Camera). To deal with these alternative semantics, we need to extend
the definition of OLAP query, which is done in the following. To keep the formalism
simple, we will formalize only the part of a query that determines how groups of topics
are created (which, with a slight abuse of terminology, we will call topic query), while
the building of groups of members for the other dimensions (in our example, the groups
of clips) and the subsequent aggregation of facts will still be the same of a standard
OLAP query as outlined above.

Definition 9 (Schema-Aware Topic Query) Given topic hierarchy (G, Lev, Sem)
with G = (T, U), a schema-aware topic query q is a triple of (i) a group-by component,
that is a level l ∈ L; (ii) an optional selection, that takes the form of a conjunction of
Boolean predicates of type l′ = t (where l ≻ l′ and Lev(t) = l′); and (iii) a semantic
filter θ consisting of a subset of allowed roll-up semantics, coded as a binary string
of |ρ| bits (where each bit corresponds to one roll-up semantics and is set to 1 if the
corresponding roll-up semantics is allowed, to 0 otherwise).

A schema-aware topic query works much like a classical OLAP query, except for the
semantic filter. Its interpretation is that of building a set Φ of groups of topics including
a group φti

= {t ∈ T : (RUS(t, ti) & θ) = RUS(t, ti)} 3 for each topic ti that has level
l and satisfies the selection (a topic ti satisfies predicate l′ = t if there is a directed
path in G from ti to t). While the group-by component and the selection determine
which groups will be part of Φ, the semantic filter determines the composition of each
group. In particular:

3Symbol “&” denotes the bitwise AND operator.
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• Queries with θ = 00 . . . 0 are called queries without topic aggregation, because
the group for topic ti only includes ti.

• Queries with θ = 11 . . . 1 are called queries with full topic aggregation because,
for each group, they require navigating the topic hierarchy to aggregate the
occurrences of a set of related topics; in this case there is no filter on roll-up
semantics, i.e., all topics t from which ti can be reached in G are included in the
group for ti regardless of the semantics of the roll-up relationship from t to ti.

• In all the other cases, we will talk of queries with semantic topic aggregation
because only some roll-up semantics will be considered. In particular, condition
(RUS(t, ti) & θ) = RUS(t, ti) allows for using the semantic filter θ as a mask,
because it only returns true for the couples (t, ti) whose roll-up semantics is 0 in
(at least) all the positions where θ is 0, i.e., it includes in aggregation the paths
in G+ that include only roll-up relationships whose semantics is allowed in θ.

However, not all topics in T belong to a level, so there is a need for a further class
of queries that work independently of the hierarchy schema. In these queries, the topics
of interest are explicitly listed in the group-by component:

Definition 10 (Schema-Free Topic Query) Given topic hierarchy (G, Lev, Sem)
with G = (T, U), a schema-free topic query q is a couple of (i) a group-by component,
that is a set of topics T ′ ⊆ T , and (ii) a semantic filter θ consisting of a subset of
allowed roll-up semantics, coded as a binary string of |ρ| bits (where each bit corresponds
to one roll-up semantics and is set to 1 if the corresponding roll-up semantics is allowed,
to 0 otherwise).

The interpretation of a schema-free query is that of building a set Φ of groups of topics
including a group φti

= {t ∈ T : (RUS(t, ti) & θ) = RUS(t, ti)} for each topic ti ∈ T ′.
The composition of groups is determined like for schema-aware queries, so the same
distinction based on topic aggregation can be made.

Example 11 A schema-free query without topic aggregation for our motivating ex-
ample is the one with group-by component T ′ = {Smartphone, MediaWorld} and se-
mantic filter 0000000 (no roll-up semantics allowed) that returns Φ = {{Smartphone},

{Mediaworld}} (see Figure 3.7, dark gray circles). Using the same group-by component
and semantic filter 0100000 (only hasType semantics is allowed), the query is with se-
mantic topic aggregation and returns Φ = {{Smartphone, E5, Lumia 920, Galaxy III},

{Mediaworld}} (see Figure 3.7, light gray triangles). On the other hand, a possi-
ble schema-aware query with semantic aggregation is the one with group-by Type,
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selection Category = ’Mobile Tech’, and semantic filter 1100000, that returns Φ =
{{Smartphone, E5, Lumia 920, Galaxy III, 4.8in Display, 8MP Camera}, {Tablet,
GalaxyTab, 8MP Camera}}.

Examples of the SQL formulation on meta-stars for different types of queries will
be given in the following three subsections. The last subsection will discuss SQL
formulation when some levels are static.

3.4.1 Translating Group-by Components into SQL

The group-by component T ′ of a schema-free query is translated into SQL by including
the Topic column into the GROUP BY clause and adding a predicate in the WHERE
clause to select the topics in T ′. For instance,

SELECT TOPIC_T.Topic, SUM(FT.totalOcc)
FROM TOPIC_T, DTCLIP, FT
WHERE FT.IdT = TOPIC_T.IdT AND FT.IdC = DTCLIP.IdC AND

TOPIC_T.Topic IN (’Touchscreen’, ’Finger Pathologies’) AND DTCLIP.Date = ’06/22/2013’
GROUP BY TOPIC_T.Topic;

is a query without topic aggregation that returns the total number of occurrences for
two topics on June 22, 2013 (DTCLIP is a separate dimension table storing clips, see
Figure 3.2).

In a schema-aware query, the predicate on Topic is replaced by one on Level. For
instance, the query with group-by component Brand (number of total occurrences for
each brand) is formulated as follows:

SELECT TOPIC_T.Topic, SUM(FT.totalOcc)
FROM TOPIC_T, DTCLIP, FT
WHERE FT.IdT = TOPIC_T.IdT AND FT.IdC = DTCLIP.IdC AND

TOPIC_T.Level = ’Brand’ AND DTCLIP.Date = ’06/22/2013’
GROUP BY TOPIC_T.Topic;

3.4.2 Translating Semantic Filters into SQL

In both queries shown in Section 3.4.1 the topic hierarchy is not navigated, i.e., only
occurrences of the very topics of interest are counted (θ = 00 . . . 0). Hence, those queries
can be formulated on the topic table without involving the roll-up table. Conversely,
in a query with full topic aggregation (θ = 11 . . . 1) the topic hierarchy is extensively
navigated, i.e., each topic of interest is considered together with its descendants when
computing the number of occurrences, so the roll-up table must be joined with the
topic table. For instance, this is the case for the talking volume analysis of Example 5,
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that can be expressed as a schema-free query with T ′ = {Mobile Tech} and returns
the total number of occurrences for “Mobile Tech” and all its descendants:

SELECT SUM(FT.totalOcc)
FROM TOPIC_T, ROLLUP_T, DTCLIP, FT
WHERE FT.IdT = ROLLUP_T.ChildId AND ROLLUP_T.FatherId = TOPIC_T.IdT AND

FT.IdC = DTCLIP.IdC AND
TOPIC_T.Topic = ’Mobile Tech’ AND DTCLIP.Date = ’06/22/2013’;

(no GROUP BY clause is necessary here because a single topic is selected).
While the query above could also be formulated on a classic star schema extended

with either a navigation table or a parent-child dimension table to model recursion, a
query with semantic topic aggregation uses the semantic filter to determine the way
the topic hierarchy is navigated so as to produce custom aggregations. For instance,
this is the case with the brand reputation analysis of Example 5, that is expressed as a
schema-aware query and returns the number of positive and negative occurrences of
each brand and of its products:

SELECT TOPIC_T.Topic, SUM(FT.positiveOcc), SUM(FT.negativeOcc)
FROM TOPIC_T, ROLLUP_T, FT
WHERE FT.IdT = ROLLUP_T.ChildId AND ROLLUP_T.FatherId = TOPIC_T.IdT AND

TOPIC_T.Level = ’Brand’ AND
BITAND(ROLLUP_T.RollUpSignature,001000) = ROLLUP_T.RollUpSignature

GROUP BY TOPIC_T.Topic;

A similar (but schema-free) query is the one for health rumors analysis, that returns
the negative occurrences for touchscreens and the related pathologies:

SELECT SUM(FT.negativeOcc)
FROM TOPIC_T, ROLLUP_T, FT
WHERE FT.IdT = ROLLUP_T.ChildId AND ROLLUP_T.FatherId = TOPIC_T.IdT AND

TOPIC_T.Topic = ’Touchscreen’ AND
BITAND(ROLLUP_T.RollUpSignature,000001) = ROLLUP_T.RollUpSignature;

3.4.3 Translating Selections into SQL

For a schema-aware query with selection, aliases must be introduced to use different
“versions” of the topic table and the roll-up table must be used to establish a relationship
between the topics in the group-by level and those in the selection. For instance, the
query below computes the average sentiment for each type of category “Mobile Tech”:

SELECT T2.Topic, AVG(FT.avgSentiment)
FROM TOPIC_T T1, TOPIC_T T2, ROLLUP_T R, FT
WHERE FT.IdT = R.ChildId AND T1.IdT = R.FatherId AND R.ChildId = T2.IdT AND

T1.Topic = ’Mobile Tech’ AND T2.Level = ’Type’
GROUP BY T2.Topic;
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In a query with semantic topic aggregation, also the roll-up table must be aliased
to support navigations in both directions. For instance, the query below computes the
average sentiment for each type of category “Mobile Tech” and all its subtopics:

SELECT T2.Topic, AVG(FT.avgSentiment)
FROM TOPIC_T T1, ROLLUP_T R1,

TOPIC_T T2, ROLLUP_T R2, FT
WHERE FT.IdT = R2.ChildId AND R2.FatherId = T2.IdT AND

T1.IdT = R1.FatherId AND R1.ChildId = T2.IdT AND
T1.Topic = ’Mobile Tech’ AND T2.Level = ’Type’

GROUP BY T2.Topic;

3.4.4 Impact of Static Levels

Clearly, static modeling only impacts on the SQL formulation of schema-aware queries
that use levels in Lstat. So, for instance, if Lstat = {Product, Type, Category} like in
Example 9, the total number of negative occurrences for each mobile tech type in
Italian clips during the last month can be simply obtained by including level Type in
the GROUP BY clause and adding a selection on Category in the WHERE clause:

SELECT TOPIC_T.Type, SUM(FT.negativeOcc)
FROM TOPIC_T, DTCLIP, FT
WHERE FT.IdT = TOPIC_T.IdT AND FT.IdC = DTCLIP.IdC AND

TOPIC_T.Level = ’Type’ AND TOPIC_T.Category = ’Mobile Tech’ AND
DTCLIP.Month = ’ Jan 2014’ AND DTCLIP.Language = ’Italian’

GROUP BY TOPIC_T.Type;

Predicate Level = ’Type’ is used to discard the group of tuples where Type IS NULL
and to avoid topic aggregation. Some control on topic aggregation can be applied,
limited to static levels, using the WHERE clause. So, for instance, the following query
has an implicit semantic filter θ = 0100000 because it also counts the occurrences of
product topics:

SELECT TOPIC_T.Type, SUM(FT.negativeOcc)
FROM TOPIC_T, DTCLIP, FT
WHERE FT.IdT = TOPIC_T.IdT AND FT.IdC = DTCLIP.IdC AND

TOPIC_T.Level IN (’Type’, ’Product’) AND TOPIC_T.Category = ’Mobile Tech’ AND
DTCLIP.Month = ’ Jan 2014’

GROUP BY TOPIC_T.Type;

How to automatically and transparently translate into SQL a query expressed
by a user through a graphical OLAP-like interface is itself a research problem. In
our prototypical implementation, query translation is simplified by the adoption of a
drastic rule that formulates in static terms all schema-aware queries with full topic
aggregation and that only involve levels in Lstat, as seen in the example above. For
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Table 3.4 Features of meta-stars for testing
Topic hier. ♯ topics = |TOPIC_T| Fan-out Hier. height |ROLLUP_T|

G1 106 4 4 562
G2 658 8 4 4002
G3 27306 4 8 318578

future implementations we envision a component (to be plugged into the OLAP engine)
capable of writing an optimized SQL formulation of each query based on data statistics
and on the cost model described in Section 3.5.

3.5 Query Execution Plans and Cost Model for
Meta-Stars

As made clear in the previous sections, meta-stars entail higher flexibility and expres-
siveness than classical star schemata both from the point of view of the hierarchy
structures supported and from that of the queries enabled. However, this also leads
to extra costs in terms of storage space and, in some cases, query execution time. To
quantitatively evaluate the querying efficiency of meta-stars vs. the one of traditional
star schemata (see Section 3.6), in this section we discuss the main execution plans for
topic queries and present a cost model for these plans.

From the point of view of hierarchy structures, we recall that meta-stars natively
support irregular, fluid, and semantically-rich hierarchies. To enable a meaningful
meta-star vs. star comparison, we restrict our attention to covering and strict topic
hierarchies (i.e., no levels missing and no many-to-many relationships) and we use no
static levels. We implemented both meta-stars and stars on the Oracle 11g RDBMS
and we populated them with three different topic hierarchies as shown in Table 3.4
(in the star implementation, topics are stored into a traditional dimension table DT).
All topic hierarchies are height-balanced but have different height and fan-out (i.e.,
number of subtopics for each topic); clearly, the number of topics and the size of the
roll-up table increase exponentially with the hierarchy height. Two fact tables, storing
1 and 10 millions of tuples respectively, were also created. B+-tree indexes were created
on all foreign keys, on the Level and Topic columns, and on all columns of DT used in
group-by’s or selection; no materialized views were created.

From the point of view of the queries supported, we summarize in Table 3.5 the query
types that can be expressed on star schemata. Plans for queries without aggregation
are the same for stars and meta-stars, so they will not be further discussed; we will
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Table 3.5 Query types supported by star schemata
without topic aggreg. with full topic aggreg. with semantic topic aggreg.

schema-free partially partially no
schema-aware yes yes no

focus our evaluation on queries with (semantic or full) topic aggregation, that represent
the worst case for meta-stars because they require access to the roll-up table. On the
topic hierarchies described above we ran 60 queries with different features and analyzed
the plans followed by Oracle. It turned out that the set of execution plans adopted is
quite restricted, so we focused on the 6 most representative ones, that cover 80% of
queries and are depicted in Figure 3.8. Plans for meta-stars and stars are shown on
the left and on the right, respectively; interestingly, the optimizer often chooses the
same type of access in both cases. The two top plans are those followed for schema-free
queries; the middle ones for schema-aware queries without selection; the bottom ones
for schema-aware queries with selection. Importantly, the top-right plan refers to the
subclass of schema-free queries that can be expressed on a star schema, i.e., those
where the topic list includes one or more classified topics belonging to the same level.
Some specific comments follow:

• Hierarchy data are always accessed before fact data. Using index access vs. full
scan obviously depends on selectivity (more precisely: on the number of topic
groups for ROLLUP_T, on the total number of topics aggregated for FT); nested
loops join is always associated to indexed access, hash join to full scans.

• Index access is adopted only when selectivity is very strict (roughly, when less
than 1% of tuples is selected).

• Differently from a query with full topic aggregation, in a query with semantic
topic aggregation the access to the roll-up table also entails a selection of tuples
based on the semantic filter (not shown in the figure for simplicity).

• Due to the presence of the roll-up table, cardinality estimations of join results
made by the DBMS are less accurate on meta-stars than on stars, hence, when
using meta-stars there is higher probability that a non-optimal plan is picked.

Based on the plans previously described we devised a cost model to simulate the
DBMS behavior. Tables 3.6 and 3.7 show the cost formulae (derived from [52]) for
the basic operations used in the plans; the cost of a complete plan is estimated by
choosing the cheapest alternative for each step of the plan and properly assembling
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Fig. 3.8 Execution plans for schema-free queries (top), schema-aware queries (middle),
and schema-aware queries with selection (bottom), considering a meta-star (left) and a
star (right) implementation. Gray boxes represent alternative operations.

the formulae. Costs are expressed in numbers of page reads/writes. We tested our cost
model on the set of 60 queries used to determine the execution plans; the average gap
between the costs estimated with the model and the actual ones is lower than 10%,
which is a surprisingly good result.

3.6 Evaluation
In this section we discuss how meta-stars perform both in absolute terms and with
respect to traditional star schema implementations. Execution times are computed
using the cost model described in Section 3.5 with a fact table of 10 millions of tuples,
and considering an average read/write time of 2.27 × 10−4 seconds per disk page (as
measured on the Oracle 11g RDBMS with disk page size set to 8 KB, on a 64-bits
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Table 3.6 Building blocks of our cost model; for an explanation of the notation see
Table 3.7

Operation Cost
FULLSCAN(T ) NPT

IXACCESS-CLUST(T ,a,pred) h− 1 +
⌈

Sel(pred) ·NLT,a

⌉
+ ⌈Sel(pred) ·NPT ⌉

IXACCESS-UNCLUST(T ,a,pred) h− 1 +
⌈

Sel(pred) ·NLT,a

⌉
+ ⌈NKa · Sel(pred)·

·Φ (NRT /NKa, NPT )⌉
NLJOIN(T1,T2,predT1 ) Cost(T1) + ⌈Sel(predT1 ) ·NRT1 · Cost(T2)⌉
HASHJOIN(T1,T2,predT1 ,predT2 ) NPT1 + NPT2 + 2(Sel(predT1 ) ·NPT1 + Sel(predT2 ) ·NPT2 )
GROUPBY(T ) 2NPT (⌈logNB−1 NPT ⌉+ 1)

Table 3.7 Explanation of the notation used in Table 3.6
Notation Meaning
NRT Number of tuples in table T
NPT Number of disk pages for table T
NKa Number of distinct values of column a
NB Main memory sort area size (in disk pages)
NLT,a B+-tree index size
h B+-tree index height
Sel(pred) Selectivity of predicate pred
Cost(T ) Access cost to table T (either full scan or indexed)

AMD Opteron quad-core 2.09GHz virtual machine with 8GB RAM and RAID 10 disk
architecture, running Windows Server 2008 R2 Standard SP1). Note that meta-stars
cannot be comprehensively evaluated using any existing benchmark, because all of
them (e.g., TPC-DS [136]) include regular hierarchies and standard queries only. For
this reason we had to create an ad-hoc benchmark including queries like the ones
considered in Section 3.4.

We start by observing that for queries without topic aggregation and queries like
those in Section 3.4.4, that take advantage of static levels to avoid accessing the roll-up
table, performances of meta-stars are clearly the same of star schemata, so in this
section we will only consider queries with topic aggregation operating on the part of
meta-stars that does not include static levels. First we will consider queries with full
topic aggregation; for clarity we will separately discuss the costs for accessing topics
(including those for accessing the roll-up and topic tables in meta-stars, those for
accessing the dimension table in stars) and those for accessing facts (including those
for accessing the fact table, for joining with topic data, and for grouping the results).
Then we will consider queries with semantic topic aggregation, that are not supported
by star schemata. Finally, we will evaluate meta-stars from the point of view of disk
storage requirements.



3.6 Evaluation 45

454.545 681.818 1363.636 1590.909 1818.182 2045.455 2727.273
681.81818 909.09091 1363.6364 1363.6364 1363.6364 1363.6364 1363.63636

0	


1	


2	


3	


4	


0	
 200	
 400	
 600	
 800	
 1000	
 1200	
Ex
ec

ut
io

n 
tim

e 
(in

 se
c.

)	


Thousands of topics	


Schema-free queries, loose selectivity	


Meta-star	
 Star	


0	

1	

2	

3	

4	

5	


0	
 200	
 400	
 600	
 800	
 1000	
 1200	


Ex
ec

ut
io

n 
tim

e 
(in

 m
se

c.
)	


Thousands of topics	


Schema-free queries, strict selectivity	


Meta-star	
 Star	


0	

2	

4	

6	

8	


10	

12	


0	
 200	
 400	
 600	
 800	
 1000	
 1200	
Ex
ec

ut
io

n 
tim

e 
(in

 se
c.

)	


Thousands of topics	


Schema-aware queries, coarse group-by	


Meta-star	
 Star	


0	

20	

40	

60	

80	


100	


0	
 200	
 400	
 600	
 800	
 1000	
 1200	
Ex
ec

ut
io

n 
tim

e 
(in

 se
c.

)	


Thousands of topics	


Schema-aware queries, fine group-by	


Meta-star	
 Star	


Fig. 3.9 Query execution time (only access to the topic hierarchy) vs. number of topics
for different query types

3.6.1 Time (for Accessing Topics)

Figure 3.9 shows the query executions times, on both meta-stars and stars, for a
six-levels topic hierarchy with fan-out ranging from 1 to 16, so as to determine an
increasing number of topics from 11 to more than one million (roll-up table cardinality,
i.e., number of inter-topic relationships, from 41 to more than 12 millions). All queries
are with full topic aggregation. For schema-free queries we distinguish two cases: loose
selectivity, where the group-by component includes one topic near to the roots of the
topic hierarchy (hence with several subtopics to be aggregated), and strict selectivity,
where the group-by component includes one topic near to the leafs of the topic hierarchy
(hence with few subtopics to be aggregated); in both cases, to enable a star formulation
we will restrict to the case where the group-by component is a classified topic. Similarly,
for schema-aware queries we distinguish between coarse group-by, where the group-by
level is near to the roots of the hierarchy schema (which means few groups with several
topics each), and fine group-by, where the group-by level is near to the leaves of the
hierarchy schema (several groups with less topics each). Time trends are similar for
meta-stars and stars, because as mentioned in Section 3.5 the plan structure adopted is
basically the same. Remarkably, for schema-free queries accessing stars requires more
time than accessing meta-stars because the dimension table is always accessed using
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Fig. 3.10 Query execution time (only access to the topic hierarchy) vs. selectivity
—worst case

an unclustered index (it is ordered on its surrogate key), while the roll-up table can be
ordered on the FatherId column to enable a more convenient access. The worst case
for meta-stars takes place for schema-aware queries when the number of topics is very
high and the group-by level determines several groups, because in this case the DBMS
accesses the (large) roll-up table via full scan.

Figure 3.10 shows the execution times for schema-aware queries with selection. We
considered the worst case for meta-stars, i.e., fine group-by and high number of topics
(namely, eight hierarchy levels, fan-out 7, about one million topics and 14 millions arcs),
and we applied a progressively looser selection on topic groups. The chart shows that
the performance gap between the two implementations is smaller for strict selections.
The drastic change in the meta-star cost is determined by a change in the execution
plan: when the selectivity exceeds 1.5% the optimizer moves from indexed access to
full scan of the roll-up table.

3.6.2 Time (for Accessing Facts)

As to fact table access and join as well as group-by operations, the plans (hence, the
execution times) are the same both when using stars and meta-stars. Figure 3.11
shows the fact table cost and the group-by cost in function of the percentage of fact
table tuples to be accessed (same experimental setting used for Figure 3.10). The
group-by cost is not relevant and its increase is obviously determined by the increase
in the number of tuples to be grouped. The fact table cost is the predominant one; the
steep increase it shows when the selectivity exceeds 0.22%, is due to the fact that the
optimizer moves from indexed access to full scan of the fact table.
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Fig. 3.11 Query execution time (only access to fact table, join, and group-by) vs.
selectivity —worst case

RUS Secondi #Topic #Gruppi Sel RUS Secondi #Topic
127 31 21845 1 100% 120 17 21824
63 11 5461 1 25% 56 13 5440
31 5 1365 1 6% 24 12 1344
15 3 341 1 2% 8 11 320
7 2 85 1 0%
3 1 21 1 0%
1 1 5 1 0%

RUS Secondi #Topic #Gruppi Sel RUS Secondi #Topic
127 >2000 21845 1 100% 120 154 21824
63 >700 5461 1 25% 56 116 5440
31 356 1365 1 6% 24 108 1344
15 176 341 1 2% 8 104 320
7 86 85 1 0%
3 27 21 1 0%
1 9 5 1 0%
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Fig. 3.12 Query execution time vs. selectivity of the semantic filter

3.6.3 Queries with Semantic Topic Aggregation

Here we deal with queries with semantic topic aggregation, that are not supported by
traditional star schemata. Figure 3.12 shows the overall execution time in function
of the semantic filter selectivity. Remarkably, the times displayed in this chart are
the actual ones measured on the Oracle DBMS (on a hierarchy with eight levels and
fan-out 4).

The chart has been obtained considering a fact table including 10 millions of facts
and the G3 topic hierarchy whose features are described in Table 3.4. Expectedly, the
execution time increases with selectivity because an increasing number of topics is
accessed, however, the slope is less steep than the one in Figure 3.10; this is because
semantic filtering is directly carried out on the roll-up table (see Figure 3.8, middle-left
plan) without requiring further joins with the topic and roll-up tables as required by a
query with selection (see Figure 3.8, bottom-left plan).
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Fig. 3.13 Disk space vs. number of topics

3.6.4 Space

The toll to be paid for the impressive performance of meta-stars even in presence of
large topic tables, is clearly the larger disk space they require. Figure 3.13 shows the
disk space to hold the data for the test discussed above. It emerges that most of the
space is used for the fact table, while the roll-up table severely impacts on the overall
space only for very high numbers of topics. Actually, the number of topics monitored
in real SBI applications is far from reaching such cardinality, so the right-hand halves
of these charts should be considered as stress tests in this context.

The size of the roll-up table and its impact on the query execution times are also
related to the topic hierarchy height. We will not include specific charts for this since
the trend they show are very similar to the ones already discussed.

3.7 Conclusions
In this chapter we proposed meta-stars as an expressive solution to model topic
hierarchies for SBI based on some specific requirements: irregularity and fluidity of
hierarchies, integrability with business hierarchies, and semantics-aware aggregation
[47–49]. Noticeably, the choice of the subset of levels to be modeled as static rules the
trade-off between the fluidity of topic classification and aggregation and the efficiency
of integrating UGC-related facts (accessed via topic hierarchies) with business-related
facts (accessed via standard hierarchies).

To improve our approach we are currently working on the following issues:

1. Static levels: while in this chapter we modeled static portions of the topic
hierarchies in a redundant fashion (i.e., by modeling inter-topic relationships both
in a denormalized form and within roll-up tables), to improve performances it is
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sometimes possible to exclude these portions from roll-up tables so as to reduce
their size. Understanding under what circumstances this can be done while
preserving full querying expressiveness and correctness (in particular, in presence
of many-to-many relationships), so as to enable a performance-aware tuning
of static levels, requires some further investigation. Delivering an optimization
algorithm for writing efficient SQL formulation of user queries is also an open
research problem.

2. Topic hierarchy generation: the frequent changes in the set of relevant topics
requires that their values and relationships are continuously maintained. Though
the basic topics can be automatically derived from the enterprise business hier-
archies, in general they will be manually inserted, possibly by the users. Since
feeding the topic and the roll-up tables appears to be a cumbersome task, we are
working towards modeling the topic hierarchy through an ontology that can be
automatically turned into a meta-star.

3. Coupling SQL and OWL: in the same direction, we are also considering the
possibility of using the OWL language to directly query the topic hierarchy. This
can avoid the storing of the roll-up table that, as already said, could become very
large and represents the main limitation when adopting the meta-star approach
on large topic hierarchies.





Chapter 4

An architectural and
methodological framework for
Social BI

In this chapter we dig deeper into the analysis of social data by discussing the architec-
tural and methodological aspects of an SBI solution. Since SBI solutions can come in
a variety of shapes and with different demands, it may be hard for the designer to find
the right cost-benefit compromise depending on the project goals and time horizon and
on the available resources. In this context, we discuss the main factors that impact this
compromise aimed at providing a guideline to the design team. First we list the main
architectural options and their methodological impact. Then we discuss a case study
focused on an SBI project in the area of politics, aimed at assessing the effectiveness
and efficiency of these options and their methodological sustainability.

4.1 Introduction
With SBI process we refer to the one whose phases range from web crawling to users’
analyses of the results. In the industrial world, the SBI process is often implemented in
the so-called social media monitoring tools [161], i.e., commercial tools and platforms
available for the analysis of UGC, such as Brandwatch, Tracx, and Clarabridge. Their
main feature is the availability of a fixed set of dashboards that analyze the data from
some fixed points of view (such as topic usage, topic correlation, and brand reputation)
and rely on some ad-hoc KPIs (e.g., topic counting and sentiment), so they lack in
providing flexible user-driven analyses.
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In the academic world, the SBI “big picture” has not been deeply investigated
so far. In [43] we proposed a reference architecture and an iterative methodology
for designing SBI applications, showing how its adoption can make the activities for
developing and maintaining SBI processes more efficient and the SBI process itself
more effective. Nonetheless, SBI projects come in a variety of shapes, characterized by
different relevance and sophistication degrees for each design task and architectural
component, which results in quite different demands in terms of skills, computing
infrastructure, and money. Hence, finding the right cost-benefit compromise depending
on the project goals, on its time horizon, and on the available resources may be quite
hard for the designer.

During the last few years we have been involved in different SBI projects. In
particular, in the context of the WebPolEU project we developed an SBI platform
aimed at investigating the connection between politics and social media. The project
used UGC written in three languages and was focused on the 2014 European Election.
Based on this experience, we discuss in this chapter the main factors that impact the
above-mentioned compromise aimed at providing design guidelines to the SBI design
team [42]. In particular, we give the following contributions.

• In Section 4.2 we discuss the related work in the area.

• In Section 4.3 a reference architecture for SBI is described.

• In Section 4.4 we introduce WebPolEU, the project in the area of politics used
as a case study in this chapter.

• In Section 4.5 we discuss, for each component of the SBI process, the main
technical options and their expected impact on the project complexity and
effectiveness.

• In Section 4.6 we present the result of our case study and give a quantitative
characterization of the above options. and in Section 4.7 we draw the conclusions.

4.2 Related Literature
As stated in Section 4.1, only a few papers have focused on the full picture of SBI
so far. Complete architectures for SBI have been proposed in [146] and [53]; in both
cases, the basic blocks of the architecture have been identified, but still with a limited
expressiveness. In particular, in [146] a comprehensive solution for the extraction of
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Twitter streams and the enhancement and analysis of their meta-data is presented; the
approach of [53] extracts sentiment data about products and their features from selected
opinion websites and builds opinion facts. An important step towards increasing the
expressiveness of SBI queries has been taken in [29], where a first advanced solution
for modeling topic hierarchies has been proposed. Another step in this direction has
been made in [47], where topic hierarchies are modeled by handling their dynamics
and irregularity so as to enable full OLAP analyses of social data. In terms of OLAP
analysis over UGC, a cube for analyzing term occurrences in documents belonging to a
corpus is proposed in [101], although term categorization is very simple and does not
support analyses at different levels of abstraction. In [145] the authors propose to use
textual measures to summarize textual information within a cube.

As to the enabling technologies for the SBI process, a number of academic works
have focused on specific issues that find application on strictly correlated fields. First
of all, web crawling is a central issue in information retrieval, in whose context powerful
languages to automatically and precisely capture the relevant data to be extracted
were studied (e.g., [46]). In terms of semantic enrichment of raw clips and text
understanding, different techniques have been studied in several areas of computer
science. Whereas most of these techniques are typically tuned to perform well on a
limited set of selected (web) sources, their accuracy tends to decrease when applied
to a heterogeneous collection of documents extracted from multiple kinds of sources.
In general, NLP approaches try to obtain a full text understanding [178], while text
mining approaches rely on different techniques (e.g., n-grams) either to find interesting
patterns in texts (e.g., named entities [147], relationships between topics [151], or clip
sentiment [133]) or to classify/cluster them [175]. Also hybrid approaches between
classical NLP and statistical techniques have been tried, either user-guided, as in [88],
or automated and unsupervised, as in [53].

4.3 Architectural and Methodological Framework
The reference architecture we proposed in [43] to support the SBI process is depicted in
Figure 4.1. Its main highlight is the native capability of providing historical information,
thus overcoming the limitations of social media monitoring tools in handling the data
reprocessing typically required by cleaning and semantic enrichment needs. In the
following we briefly comment each component.
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Table 4.1 Summary of main architectural options

Component Option Pros Cons
dashboard effective summary of trends low flexibility
text search detailed content analyses increased storage

Analysis OLAP high flexibility increased storage; extra ETL

text mining enables advanced analyses complexity; expert analyst re-
quired

relational clip buffering, reprocessing,
and cleaning; structured

increased storage; perfor-
mances

ODS
NoSQL clip buffering, reprocessing,

and cleaning; scalability
low control of data transforma-
tion and quality

designer-managed good control of quality large effort
Crawling provider-managed small effort low control of quality

crawler meta-data enables clip classification and
aggregation some complexity in collecting

crawler sentiment enables analysis of sentiment;
no tuning unreliable for non-neutral clips

Sem. Enr. inf. retrieval enables topic occurrence analy-
sis low text understanding

NLP analysis
enables analysis of sentiment;
also reliable for non-neutral
clips

complex tuning; affected by
clipping quality

domain expert enables analysis of sentiment;
fully reliable costly; subjective

• The Operational Data Store (ODS) stores all the relevant data about clips, their
authors, and their source channels; the ODS also represents all the topics within
the subject area and their relationships.

• The Data Mart (DM) stores integrated data in the form of a set of multidimen-
sional cubes which support the decision making process.

• The Document-Base stores the clips in textual form and the related meta-data
to be used for text search.

• Crawling carries out a set of keyword-based queries aimed at retrieving the clips
(and the available meta-data) that are in the scope of the subject area. The
target of the crawler search could be either the whole web or a set of user-defined
web sources (e.g., blogs, forums, web sites, social networks).

• Semantic Enrichment works on the ODS to extract the semantic information
hidden in the clip texts. Such information can include its topic(s), the syntactic
and semantic relationships between words, or the sentiment related to a whole
sentence or to each single topic it contains.

• The ETL process turns the semi-structured output taken from either the crawler
or the CRM into a structured form and loads it onto the ODS. Then it integrates
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Fig. 4.1 A reference architecture for the SBI process

data about clips and topics with the business data extracted from the EDW
(Enterprise Data Warehouse), and loads them onto the DM.

• Analysis enables users to explore the UGC from different perspectives and control
the overall social mood.

From the methodological point of view, we observe that the roles in charge of
designing, tuning, and maintaining each component of the SBI process may vary from
project to project, and so may vary the complexity of each design activity and the
control the designer and the user have over it. Specifically, as claimed in [43], SBI
projects can be classified into:

• Best-of-Breed. A best-of-breed policy is followed to acquire tools specialized in
one of the parts of the SBI process. In this case, the designer has full control of
the SBI process by finely tuning all its critical parameters.

• End-to-End. Here, an end-to-end software/service is acquired and tuned. De-
signers only need to carry out a limited set of tuning activities that are typically
related to the subject area, while a service provider or a system integrator ensures
the effectiveness of the technical phases of the SBI process.

• Off-the-Shelf. This type of projects consists in adopting, typically in a as-a-
service manner, an off-the-shelf solution supporting a set of standard reports and
dashboards. The designer has little or no chance of impacting on activities that
are not directly related to the analysis of the final results.

Moving from level best-of-breed to off-the-shelf, projects require less technical capabili-
ties from designers and users and ensure a shorter set-up time, but they also allow less
control of the overall effectiveness and less flexibility.
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(a) (b)

Fig. 4.2 A DFM representation of the topic (a) and clip (b) hierarchies for WebPolEU

4.4 A Case Study on EU Politics
The WebPolEU Project1 aims at studying the connection between politics and social
media. By analyzing digital literacy and online political participation, the research
evaluates the inclusiveness, representativeness, and quality of online political discussion.

SBI is used in the project as an enabling technology for analyzing the UGC
generated in Germany, Italy, and UK during a timespan ranging from March, 2014
to May, 2014 (the 2014 European Parliament Election was held on May 22-25, 2014).
In the architecture we adopted, topics and related taxonomies are defined through
Protégé; we use Brandwatch as a service for keyword-based crawling, Talend for ETL,
SyN Semantic Center by SyNTHEMA for semantic enrichment (specifically, for labeling
each clip with its sentiment), Oracle to store the ODS and the DM, MongoDB to store
the document database for full-text search, and Mondrian as the multidimensional
engine. Given the nature of the subject area, no EDW and no CRM are present in the
architecture. We used the Indyco CASE tool to design the DM, and we developed an
ad-hoc OLAP & dashboard interface using JavaScript, D3, and Saiku.

To enable topic-based aggregations of clips in the OLAP front-end, the classes in
the domain ontology describing the subject area (that was designed together with the
domain experts by classifying the topics emerged during macro-analysis) have been
arranged into a topic hierarchy (see Figure 4.2(a)). To effectively model the topic
hierarchy, taking into account its specificities (it is heterogeneous, dynamic, non-onto,
non-covering, and non-strict), the meta-star approach has been used [47].

1http://webpoleu.net

http://webpoleu.net
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4.5 Architectural Options
The techniques to be used to support the processes appearing in Figure 4.1 may
change depending on the context of each specific project, resulting in heavier or lighter
architectures. In the light of our experience with SBI projects of different types, in the
following subsections we discuss the main options available to the design team, as well
as their methodological impact.

4.5.1 Analysis

A component for analyzing the UGC is always present in SBI architectures, and it can
take a variety of shapes characterized by quite different capabilities:

• Dashboards effectively summarize the trends and behaviors within the subject
area, but only support a small number of predefined views and navigations (e.g.,
by topic or by geography).

• Text search enables very detailed analyses of the UGC up to the single-clip
level, by supporting searches on both the clip text and its related meta-data.

• OLAP provides very flexible analyses based on the multidimensional metaphor,
which enables users to understand in depth the market mood by slicing and
drilling according to different dimensions such as time, topic, geography, UGC
source, and the related hierarchies.

• Text mining enables advanced analyses on textual data such as clip clustering
and new topic discovery [50].

Standard commercial SBI systems normally provide only dashboards and text search,
and only a few of them support text mining (e.g., SAS Text Miner and Temis).
Providing OLAP capabilities requires an additional layer of multidimensional data
to be added to the architecture, as well as additional ETL processes that obviously
increase the overall complexity. In the WebPolEU implementation, a set of cubes (see
Figure 4.3) are provided; noticeably, their schemata are largely project-independent,
except for the topic hierarchy whose content and structure strictly depends on the
domain ontology. Besides, to enable text search functionalities, the relational ODS is
coupled with a document-oriented database.
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4.5.2 ODS

In principle, the ODS component could even be dropped (in which case, the two
ETL processes in Figure 4.1 could be unified) since the users do not access it directly.
However, the presence of the ODS —in compliance with three-tier data warehouse
architectures— is warmly recommended in SBI for several reasons:

• Buffering and early analysis. Crawling and semantic enrichment activities
have a very different timing due to the complexity of enrichment. The ODS can
be seen as the buffer that makes the two phases independent of each other, so as
to give users the possibility of timely accessing a subset of information that (i)
enables some relevant early analyses; (ii) has a key methodological role for tuning
the crawling and enrichment processes at the next iteration. Such information
ranges from the clip meta-data returned by the crawler (e.g., source, author, and
clip count) to some quick-and-dirty semantic enrichment.

• Clip reprocessing. Semantic enrichment is inherently an iterative process, due
to changes in topics and in the domain ontology which may occur even months
after the clips were retrieved. Storing clips in an ODS, where they can be easily
queried at any time, makes reprocessing feasible.

• Data cleaning. It is well known that data cleaning techniques are more effective
when applied to materialized data rather than when they are applied on-the-fly
to a data flow. In the specific case of SBI, cleaning is necessary, for instance, to
correct wrong character sequences, to repair enrichment/crawling errors which
may produce wrong or incomplete results, and to filter off-topic clips based on
relevance measures computed on both text and meta-data.

In our prototypical implementation, a relational ODS is used to store clips and their
meta-data together with topics and their relationships. However, other alternatives
could be explored. Choosing a NoSQL repository is mainly a matter of scalability,
strictly related to the quantity of data to be stored and processed. In WebPolEU,
about 10 millions of raw clips were retrieved and about 1.3 billions of entity occurrences
were produced by semantic enrichment. Although this size is still manageable with
traditional RDBMS, larger projects may make NoSQL solutions more attractive. In
our experience, the main advantages of using an RDBMS are:

• The ODS plays the role of a hub for ETL data flows, and its tuples are subject
to several updates to trace the process steps. This determines a transactional
workload which is better handled if the ACID properties are preserved.
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• The presence of a well-defined, structured, and normalized schema is very useful
to process the clip meta-data.

4.5.3 Crawling

The crawling component is the main entry point to the SBI system for all the data
that will be analyzed. From a technical point of view, the problem with crawling is to
ensure that a satisfactory compromise is achieved between retrieving too much content
(which adds harmful noise and leads to useless efforts during semantic enrichment and
analysis, as well as during all test activities) and retrieving too little content (which
may dramatically reduce the reliability of analysis results). The two drivers that can
be used to tune this compromise are clipping and querying.

Clipping is the process through which an indexed web page is parsed and every
building section of the page itself is identified in order to exclude from the information
extraction process all those contents that are not relevant and do not contain any
useful information [179, 180]. Bad clipping implies that the crawler will introduce
into the system UGC filled with useless text such as hyperlinks, which will make the
information almost incomprehensible for the semantic enrichment engine and often
also for a human being —and also negatively affect the performance and quality of
semantic enrichment activities.

Besides an accurate page clipping, the other ingredient for an effective crawling
is a proper set of crawling queries. The standard way to identify relevant UGC from
the web is by using Boolean keyword-based queries, where keywords considered as
relevant or descriptive for the project scope are combined using different operators
to instruct the crawler on the topics we are interested in and the ones that are out
of scope. The operators typically provided by crawlers can be roughly classified into
Boolean (e.g., AND, OR, NOT), proximity (e.g., NEAR/n), meta (e.g., country, site,
author); wildcards are supported.

In the light of the above, it is apparent that managing and tuning the specific
features of crawling to ensure its effectiveness is a burdensome and very time-consuming
task. Noticeably, the roles in charge of these activity drastically depend on the project
type as defined in Section 4.3: (i) in best-of-breed projects, all technical activities are
in charge of the designer; (ii) in end-to-end projects, crawling templates are created
and maintained by a service provider who is responsible of the clipping quality, but
crawling queries are managed by the designer; (iii) in off-the-shelf projects, designers
and users jointly carry out macro-analysis, but all other activities are largely in the
hands of the service provider —which means that the designer can control the crawling
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effectiveness only to a limited extent [43]. So, from a project management point of
view, the main trade-off involved in crawling is between (i) do it yourself —but it will
take a lot of time and effort and (ii) let the provider do it for you —but then you will
have little control on the overall quality.

4.5.4 Semantic Enrichment

The semantic enrichment process is maybe the one showing the widest spectrum of
possible technological alternatives, with a very relevant impact on the expressiveness
of the supported OLAP queries and on the accuracy of the results. Basic semantic
enrichment techniques may be sufficient if users are only interested in analyzing
raw data (e.g., counting the number of occurrences of each topic in the UGC); in
some cases (for instance, for languages —like German— whose inherent complexity
discourages automated analysis and interpretation of sentences), semantic enrichment
is done by manually tagging each sentence with its sentiment. In our WebPolEU
project, semantic enrichment is achieved as the combination of different (and possibly
alternative) techniques:

• Crawler meta-data: each clip is equipped with several meta-data, which are
mainly related to the web source (e.g., http address and web site nation), to the
author (e.g., name, sex, and nationality), and to the clip itself (e.g., its language).
As shown in Figure 4.2(b), in WebPolEU these meta-data are used to build the
clip hierarchy.

• Information retrieval: the content of the clips can be analyzed by searching the
raw text for user-defined topics (or their aliases). Although this type of analysis
is not based on an in-depth comprehension of clip semantics, it returns a quick
and valuable first level of analysis of the texts. In particular it allows to count
the number of occurrences of a given topic and the number of co-occurrences of a
pair of topics in a clip. Figures 4.3(a,b) show the IR Clip and IR Topic Occurrence
cubes of the DM; each event of IR Clip represents a clip and its topics, while each
event of IR Topic Occurrence represents the occurrence of a single topic within a
clip.

• Crawler sentiment: the crawler often provides its own sentiment score. In
WebPolEU we use Brandwatch, whose sentiment analysis module is based on
mining rules developed for each supported language and assigns a single sentiment
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(a) (b)

(c) (d)

Fig. 4.3 A DFM representation of IR and NLP cubes. Topic and clip hierarchies have
been hidden to simplify the picture

to each clip. In both the IR Clip and IR Topic Occurrence cubes, the crawler
sentiment for each clip is modeled as a measure.

• NLP analysis: it is the deepest analysis raw texts undergo. As shown in Section
4.3, the commercial system SyN Semantic Center is in charge of extracting the
single entities, their part-of-speech, and their semantic relationships from the raw
data. Two cubes are derived through NLP analysis. The first one, NLP Entity
Occurrence (Figure 4.3(c)), differs from IR Topic Occurrence since it also stores
all the entities (i.e., lemmas, annotated with their part-of-speech) discovered in
the text. The second one, NLP Semantic CoOccurrence (Figure 4.3(d)), stores
semantic relationships and explicitly models couples of topics/entities in the same
sentence together with an optional qualifier (e.g., Angela Merkel had lunch with
Matteo Renzi).

• Domain expert: differently from social media monitoring solutions, SBI projects
allow additional meta-data to be provided by domain experts by means of the
domain ontology coded in the topic hierarchy (see Figure 4.2(a)) and by additional
meta-data to be added to the other hierarchies.

4.6 Case Study Analysis
Carrying out an SBI project requires to find the right trade-off between its effectiveness,
efficiency, and sustainability, respectively expressed in terms of correctness of the
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Table 4.2 Number of topic occurrences detected by IR and NLP (a) and number of
positive, neutral, and negative clips detected by NLP, by IR, and agreed upon by NLP
and IR (b)

ITA ENG
# Topic Occ. NLP 14 215 K 23 399 K

# Topic Occ. IR 15 401 K 25 006 K
# Shared Occ. 12 922 K 21 497 K

(a)

ITA ENG
Sentiment NLP IR Agreed NLP IR Agreed

Pos. 566 K 36 K 19 K 1090 K 142 K 107 K
Neu. 893 K 2340 K 888 K 1368 K 2973 K 1337 K
Neg. 934 K 17 K 14 K 817 K 159 K 112 K

(b)

results obtained, appropriateness of the response time, and time/money required to
run the project. In this section we provide a quantitative evaluation of these aspects
with reference to our case study.

Overall, the number of collected clips in WebPolEU was around ten millions,
which decreased to six millions after dropping non-relevant sources and duplicate clips.
Noticeably, the quantity of information generated by the semantic enrichment process
is much larger (|NLP Entity Occurrence| ≈ 500M for each language) and places the
project on the edge of big data. The topics were provided by the team of socio-political
researchers involved in WebPolEU; the number of topics is about the same (around 500)
for Germany, Italy, and UK, since the same issues were discussed in the three nations.
Although the number of clips collected for Germany (933 K) is quite lower than that
for Italy and UK (about 3 M each), the number of occurrences generated is not so
different; this is because the lower number of clips for Germany is counterbalanced by
their greater average length.

4.6.1 Effectiveness

Our first goal is to evaluate different semantic enrichment techniques in terms of the
trade-off they offer between added value on the one side, and resource demand/effort
on the other. In particular, we will compare the approach based on crawler meta-data,
crawler sentiment, and information retrieval (called IR in the following) against the
approach based on NLP analysis (called NLP). We will focus on the Italian and English
clips since they were both enriched using the same tools (Brandwatch for IR and SyN
Semantic Center for NLP). As shown in Table 4.2(a), the two techniques find the same
topic occurrences in a clip in most cases. This shows that the KPIs based on topic
counting, which are widely adopted for UGC analysis, does not necessarily require
the adoption of sophisticated ontology-based techniques and a full comprehension
of sentence syntax and semantic. Conversely, these techniques are required when
analyzing semantic co-occurrences is one of the users’ goals.
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Table 4.3 IR and NLP sentiment accuracy for each sub-sample

Clipping Quality Text Complexity Negative Neutral Positive
IR NLP IR NLP IR NLP

Standard 16.7% 62.7% 85.1% 39.9% 21.7% 68.3%
High Hard 15.2% 36.4% 100.0% 44.4% 0.0% 100.0%

Overall 15.9% 49.5% 92.5% 42.2.% 10.8% 84.2%
Standard 20.0% 55.0% 87.8% 54.9% 28.6% 57.1%

Low Hard 0.0% 0.0% 100.0% 0.0% – –
Overall 10.0% 27.5% 93.9% 27.4% 28.6% 57.1%

Text Complexity Negative Neutral Positive IR NLP
IR NLP IR NLP IR NLP

Standard 18.3% 58.8% 86.4% 47.4% 25.1% 62.7% 43.3% 56.3%
Hard 7.6% 18.2% 100.0% 22.2% 0.0% 100.0% 43.0% 36.2%

Overall 13.0% 38.5% 93.2% 34.8% 16.7% 75.2% 43.2% 47.2%

The real power of NLP comes into play when analyzing sentiment. Table 4.2(b)
shows that Brandwatch, which adopts a rule-based technique for sentiment analysis,
hardly assigns a non-neutral sentiment to a clip: most of the clips that Brandwatch
labels as positive/negative are positive/negative for SyN too, while the two systems
often disagree on neutral clips.

There is not much point in discussing the differences in IR and NLP sentiment
without knowing which is the correct one. For this reason we evaluated the accuracy of
the returned sentiment by asking five domain experts to manually tag a sample of the
clips. The sample includes about 600 clips from the English corpus, equally divided
by media type and NLP sentiment (as computed by Syn). Besides defining the clip
sentiment as either negative, neutral, or positive, the domain experts were also asked to
rate, for each clip, its clipping quality (i.e., the amount of non-relevant text present in
the clip), which could impact on the difficulty of assigning the right sentiment, and its
intrinsic text complexity (i.e., the effort of a human expert in assigning the sentiment
due to irony, incorrect syntax, abbreviations, etc.). Table 4.3 shows the IR and NLP
sentiment accuracy (i.e., percentage agreement with the consensus sentiment) for each
sub-sample; a correct interpretation of the results requires some further explanation
due to the different cardinalities of the sub-samples. It is apparent that the experts
rated most of the clips as neutral —thus, a dummy classifier always stating neutral
would most probably be very successful! Before commenting the tables, we recall that
the lower bound on accuracy is 33%, which is the percentage of success of a random
classifier.
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• The high accuracy achieved by IR on neutral clips is not actually due to its real
capability of discerning between negative, neutral and positive clips, but rather
to its inability/caution in assigning a non-neutral sentiment. Indeed, its accuracy
on negative and positive clips is below that of a dummy classifier.

• When using NLP, detecting positive sentiments turns out to be much easier than
identifying negative ones. This happens because positive opinions are normally
characterized by enthusiastic words, while negative ones are often blurred by
irony, which can hardly be detected. This is confirmed by the experts, that
mostly label positive clips as having standard complexity.

• For clips whose texts complexity has been classified as hard, both IR and NLP
often fail in assigning the right sentiment.

• The clipping quality impacts more on NLP than on IR accuracy. It would be
interesting to investigate if this is related to the deeper level of text understanding
NLP tries to achieve.

As to analysis, the last phase of the SBI process, we can only give some qualitative
assessment. Moving from standard dashboards to user-driven OLAP analysis has been
recognized as truly valuable by the WebPolEU users since it enables them to flexibly
and autonomously navigate data to get a deeper insight on the ongoing trends, leaning
on hierarchies to better analyze data.

4.6.2 Efficiency

We start this section by mentioning how the architecture in Figure 4.1 has been
implemented in the WebPolEU project. ETL and analysis run on an 8-cores server with
64 GB of RAM; the text search engine runs on a 7-nodes cluster (each node equipped
with a 4-cores processor and 32 GB of RAM); the semantic enrichment component
runs on a 6-nodes virtual cluster (each node equipped with a 12-cores processor and 10
GB of RAM). As to the data volume, the raw crawler files take 79 GB, the ODS 481
GB, the DM 116 GB, and the documents for text search 65 GB. Noticeably, since the
OLAP cubes in the DM mainly store numerical data, their required storage is lower
than that of the ODS.

Table 4.4 shows the time required for running the main ETL flows with reference to
all clips (a 20× parallelization was adopted to maximize the throughput) and the time
for the bi-directional ETL flow between the ODS and NLP semantic enrichment as a
function of the clip length (here times were measured on a single-process basis). These
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Table 4.4 Average processing time in seconds for 10 000 clips; to the right, average
time for NLP semantic enrichment of one clip

ETL Flow Time per
10 K Clips

Crawling → ODS 2868
ODS ↔ IR Sem. Enrich. 180

ODS ↔ NLP Sem. Enrich. 23 035
ODS → DM (IR) 13

ODS → DM (NLP) 68
ODS → Document-Base 16 0
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Table 4.5 Execution time for chart, OLAP and free-text queries

Exec. Time (sec.)
Query Type Min Avg Max Query Example

IR Charts 1.2 7.4 25.5 Daily trend of UK topic occurrences for each channel type and party
NLP Charts 0.8 62.2 288.7 Top 5 entities related to the “Cameron” topic

IR OLAP 0.3 7.7 50.1 Average crawler sentiment for each party and country
NLP OLAP 0.4 14.7 79.4 Average sentiment for each topic sector and clip type

Free-text 0.2 1.1 2.9 “Europe” AND “Politics” (filter on Clip.Source = “telegraph.co.uk”)

results confirm that NLP semantic enrichment deeply impacts on the time and space
required to feed the DM, so its adoption should be carefully evaluated. Interestingly,
both processing time and data size are higher for Italian clips due to the greater
complexity of the Italian language.

We close our efficiency analysis by showing, in Table 4.5, the execution time for
an analysis workload including 33 queries, which can be classified into three groups
corresponding to the main functions of a typical SBI platform: charts, OLAP analysis,
and free-text search. The first group includes the queries whose output is used to draw
the charts available in the WebPolEU interface (e.g., tag cloud, trends, etc.), while the
other two groups were created by auditing and sampling the queries actually issued by
WebPolEU users. Although the average query time is higher for NLP queries (because
the corresponding cubes have higher cardinalities), all the groups are compatible with
interactive analyses.

4.6.3 Sustainability

The first design iteration for WebPolEU took 84 person-days overall; of these, 18
were for designing the domain ontology (including topic definition), 21 for designing
and testing semantic enrichment (in particular for tuning the dictionary), and 26 for
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designing and testing crawling queries. The second iteration was mostly used for tuning
the ETL (20 person-days out of 30).

The main critical issues related to each activity are listed below:

• Ontology design: the correctness of the results is deeply affected by the number
of topics and aliases defined. For example, with reference to Figure 4.2, the
number of occurrences for each topic sector depends on the topics and aliases
summarizing that sector, hence, including an unbalanced number of topics for
the different sectors may lead to an unfair analysis. Keeping a proper level of
detail for different sectors requires a deep knowledge of the domain and related
vocabulary.

• Crawling design: commercial solutions (like Brandwatch) normally limit the
length of the crawling queries; this makes it harder to properly define the subject
area, which is necessary to filter off-topic clips. Finding the proper formulation of
queries with constraints on their length and number may become a real nightmare.

• ETL & OLAP design: although parsing a JSON file is a trivial task, handling
all the possible unexpected character sequences is more tricky and requires
continuous tuning along the whole project. On the other hand, unexpected
character sequences often determine a failure of semantic enrichment.

4.7 Conclusions
In this chapter we have analyzed the main factors that impact on the costs and benefits
of the main architectural options for SBI [42]. A summary of the pros and cons of the
different options, as emerging from our case study, is shown in Table 4.1. Remarkably,
it turned out that crawling and semantic enrichment are the components that impact
the most on the overall cost-benefit compromise. Here we summarize a few rules of
thumb for making a good choice:

• The accuracy of both NLP and IR sentiment can be high on very specific sources
and closed domains (such as the CRM of a bank or the movie reviews [76]), but
it easily drops as soon as the domain becomes wider. Since a relevant effort is
required to properly handle sentiment, the design team should carefully evaluate
the use of sentiment analysis techniques by trading-off the accuracy achievable
with the related costs.
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• Although Twitter provides a partial analysis of the social environment, the
shortness of tweets and the high percentage of non-neutral clips make it a good
candidate to be the main source for an effective sentiment analysis. Indeed,
experimental data show that Twitter clips yield the highest accuracy for NLP
sentiment (56.6%, vs. 51.5% of forums and 42.4% of news).

• Dashboards are the standard way for visualizing and analyzing data in SBI
projects since they yield an immediate, easy-to-understand, and well-focused
representation of results. However, as the role of SBI systems becomes more
important in companies, full-OLAP capabilities will increasingly be provided
because they clearly enable more flexible and accurate analyses of the UGC.

• Off-the-shelf projects provide quick-and-dirty answers but preclude the possibility
of carrying out in-depth analysis, tuning, reprocessing, and integration with
enterprise data. They should be pursued either at an early stage of adoption of
SBI solutions to assess the real value of social data for the company, or if the
available resources are very limited.





Chapter 5

SABINE: a modular benchmark for
Social BI

In this chapter we conclude the study on social data by presenting SABINE, a modular
benchmark for SBI in the domain of European politics. SABINE is meant to fill the
gap left by the lack of publicly-available, real-world data for experimenting approaches,
which often restrains research in the SBI area. The benchmark includes 6 millions
bilingual clips crawled from 50 000 web sources, each associated with metadata and
sentiment scores; an ontology with 400 topics, their occurrences in the clips, and
their mapping to DBpedia; two multidimensional cubes for analyzing and aggregating
sentiment and semantic occurrences. We also propose a set of research challenges
that can be addressed using SABINE; remarkably, the presence of an expert-validated
ground truth ensures the possibility of testing approaches to the whole SBI process as
well as to each single task.

5.1 Introduction
From a scientific point of view, SBI stands at the crossroads of several areas in
Computer Science such as Database Systems, Information Retrieval, Data Mining,
Natural Language Processing, and Human-Computer Interaction. Figure 5.1 sketches
a functional overview of the overall SBI process and highlights it cross-disciplinarity.
Though the ongoing research in these single fields has made available a bunch of results
and enabling technologies for SBI, an overall view of the related problems and solutions
is still missing. Besides, the peculiarities of SBI systems open new research problems
in all the previous areas. On the other hand, research developments in SBI are often
restrained by the lack of publicly-available, real-world data for experimenting and
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comparing approaches, and by the inherent difficulties in determining a ground truth
for assessing the effectiveness of an approach.

To fill this gap, in this chapter we present SABINE (SociAl Business INtelligence
bEnchmark), a modular benchmark in the domain of European politics with specific
reference to the 2014 European elections. SABINE includes: 6 millions bilingual clips
crawled from 50 000 web sources, each one associated with metadata and sentiment
scores; an ontology with 400 topics, their occurrences in the clips, and their mapping
to DBpedia; and two multidimensional cubes for analyzing and aggregating sentiment
and semantic occurrences for SBI analytics purposes. Remarkably, the presence of
a manually-validated ground truth for each phase of the SBI process ensures the
possibility of testing approaches to the whole process as well as to each single task. In
this direction, our proposal is completed by a set of research challenges that can be
addressed using SABINE; the task selection we propose is large and diverse enough to
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Table 5.1 SABINE figures

Figure ENG ITA
# Web Sources 23 K 25 K
# Topics 409 434
# Topic Aliases 709 798
# Entities 2868 K 1242 K
# Clips 3275 K 2394 K
Avg Clip Length (# Chars) 2026 1677
# Entity Occurrences 511 M 218 M
# Topic Occurrences 23 M 14 M
# Semantic Occurrences 48 M 35 M

be sufficiently representative of a wide range of research tasks, ranging from content
analysis, to semantic analysis, up to the more comprehensive SBI analytics.

The outline of the chapter is as follows.

• In Section 5.2 we describe the benchmark content.

• In Section 5.3 we discuss the techniques adopted for building SABINE.

• In Section 5.4 we propose a set of SBI-related research tasks for SABINE.

• In Section 5.5 we draw the conclusions.

5.2 The Content of SABINE
SABINE has been built as one of the results of the WebPolEU project, already
presented in Section 4.4. The UML model of the SABINE content (except for the
multidimensional part, whose content is described by Figure 5.4) is shown in Figure 5.2,
while its quantitative features are summarized in Table 5.1 (see [42] for a more detailed
profiling of the clips). The main content components of SABINE can be described as
follows.

5.2.1 Topics and Mappings

SABINE provides about 400 relevant topics organized in a topic ontology built by
domain experts (a team of five socio-political researchers). The topic ontology (modeled
by classes Topic, Topic class, Subclass, and Topic relation in Figure 5.2) represents the
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Fig. 5.3 The topic ontology represented as a UML class diagram

set of concepts and relationships that, on the domain experts’ judgement, are relevant
to the subject area; its role in the SBI process is twofold: to act as a starting point for
designing effective crawling queries on the one hand, and to support analyses based on
relevant concepts (e.g., how often the public debt policy is mentioned) and on their
aggregations (e.g., how often the sector of economics and its policies are discussed) on
the other. The class diagram for the topic ontology of the socio-political subject area
of SABINE benchmark is shown in Figure 5.3; for instance, topics “public debt” and
“austerity” are instances of topic class Policy and are related to topic “economic policy”
(Sector). To enable more accurate analyses, a large set of topic aliases (class Alias in
Figure 5.2) has been identified and is available for topics (e.g., “tory” is an alias for
“conservative”).

Inter-Language mappings (class Interlanguage mapping) between corresponding
topics in the two benchmark languages have been manually created by the domain
experts. In most cases these mappings simply express an exact translation (e.g.,
“immigration” is mapped onto “immigrazione” with semantics owl:sameAs), whereas
they are based on weaker semantic relationships when a concept is differently expressed
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in the two languages (e.g., “immigration” is mapped onto “migrante irregolare” —which
means illegal migrant— with semantics sabine:related). A mapping has been found only
in 86% of cases since, according to the experts’ judgement, some topics are specific
of either UK or Italy (e.g., “Scottish National Party” and “Quirinale”). Furthermore,
topics have been linked to their corresponding DBpedia resources (classes DBpedia
resource, Wikipedia page, Link, and Linkage). Linkage has been carried out automatically
as described in Section 5.3.6 and then validated by domain experts.

5.2.2 Clips and Annotations

The benchmark provides a large corpus (around 6 millions) of raw clips (class Clip)
extracted by the Brandwatch crawler from a broad set (almost 50 000) of web sources
including social networks, blogs, and web sites. The most frequent clip sources are
Facebook (53.8% of the clips) and Twitter (27.5% of the clips). The corpus is bilingual
and comparable, i.e., it includes text in two languages (English and Italian) regarding
similar topics [23, 132]. Each clip is associated with a set of metadata (class Crawler
annotation); 40 attributes overall are provided, partly returned by the crawler (e.g.,
title, date, source MozRank, author information, and geo-localization) and partly
manually annotated by the domain experts (e.g., source type).

Clips are enriched with other relevant information resulting from clip text analysis.
In particular, each clip is associated with all its occurring entities and their parts-of-
speech or POSs (classes POS entity, Entity, and Occurrence). An entity is a concept that
emerged from text analysis but is not necessarily a topic; parts-of-speech (POSs) are
the roles taken by entities within a clip sentence (e.g., noun, verb, preposition). Among
the set of entity occurrences, a relevant role is taken by the occurrences of topics and
their aliases (class Topic occurrence). Finally, text analysis also led to the detection
of more complex linguistic patterns involving multiple entities in the same sentence
(classes Semantic occurrence and Functional relation). In particular, each semantic
occurrence relates two entities (first and second member, respectively) by means of
either a functional relation (e.g., agent or qualifier) or a predicate corresponding to an
entity.

All clips are also annotated with two sentiment values (class Sentiment). The first
one (crawler sentiment) is categorical (i.e., negative, neutral, positive); it has been
determined for each clip by the Brandwatch crawler through rule-based techniques.
The second one (NLP sentiment) is numerical; it has been determined by the SyN
semantic engine for each clip sentence, then averaged for each clip (see Section 5.3.5).
Finally, a subset of 2400 clips have also been labeled with a crowd sentiment, and half



74 SABINE: a modular benchmark for Social BI

of these 2400 clips have further been labeled by domain experts (expert sentiment).
This subset of manually-labelled clips has been created using a stratified sampling
strategy based on the type of clip source (e.g., social network and blog) and on the
clip sentiment.

Example 12 Here is an example of a SABINE clip: “Another compassionate con-
servative. Making fun of a parkinson’s victim. Michael J Fox has more courage than
you will ever hope to have”. Some metadata for this clip are source=“facebook.com”,
channel_type=“facebook”, source_type=“Social network / Social media”, country=“US”,
and fb_role=“audience”. The only occurring topic is “conservative”; among the oc-
curring entities we mention “compassionate”, “victim”, and “courage” (with POSs
adjective, noun, and noun respectively). Text analysis led to find different semantic
occurrences of entities with their POSs, for instance the one between “compassionate”
and “conservative” (with POS adjective and noun, respectively, and functional relation
qualifier) and the one between “have” and “courage” (with POS verb and noun, respec-
tively, and functional relation object). The expert sentiment for this clip is −1 (i.e.,
negative), while both the crawler and the NLP sentiment are positive (because neither
of the approaches was able to detect the irony in the sentence “Another compassionate
conservative”). Another example of clip is “US President Barack Obama criticized
Russia in a telephone call [. . .]”, which shows a semantic occurrence between entities
“Barack Obama” (POS proper noun) and “Russia” (POS proper noun) involving entity
“criticize” as a predicate.

5.2.3 Multidimensional Cubes

These are ROLAP cubes providing an easy-to-query representation of the clip content
and of the outcome of the clip enrichment process. The first cube, Sentiment, is centered
on clips, and represents the set of topics appearing in each clip as well as the sentiment
values computed for that clip. The second cube, Semantic Occurrence, is centered on
the semantic occurrence of POS entities within clips and explicitly models couples
of entities in the same sentence together with an optional predicate. The conceptual
schemas of these cubes are depicted in Figure 5.4 using the DFM notation [63], where
cube measures are listed inside the box, dimensions are circles directly attached to
the box, and hierarchies are shown as DAGs of dimension levels. In particular, the
hierarchy built on dimension Clip includes the crawler annotations, while the one built
on Topic (called topic hierarchy from now on) derives from the topic ontology of Figure
5.3 and enables topic-based aggregations of clips in the OLAP front-end. For instance,
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a roll-up from Politician to Party and Party Family on the Sentiment cube allows to
obtain the opinions about a wing as an average of the opinions about all the politicians
belonging to the parties of that wing.

(a)

(b)

Fig. 5.4 A DFM representation of the Sentiment (a) and Semantic Occurrence (b) cubes
(for drawing simplicity, some levels of the topic hierarchy are hidden)

5.3 SABINE Construction Techniques
To develop SABINE we followed the ad-hoc methodology described in [43], which has
been conceived to support and speed up the initial design of an SBI process on the
one hand and to maximize the effectiveness of the experts’ analyses by continuously
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optimizing and refining all the process tasks on the other hand. Quick tuning iterations
are probably the most distinctive feature of this type of projects, and are necessary
to cope with the high fickleness of the topics covered in social conversations. In the
following subsections we give further details on the techniques used for each task of
the SBI process, using Figure 5.1 as a reference.

5.3.1 Ontology Design

Designing the topic ontology of the European politics subject area was mainly a
methodological issue. Consistently with the methodology we followed [43], we initially
carried out a macro-analysis to identify the themes relevant to the subject area (e.g.,
“culture”) and a first set of topics (e.g., “school”). Then, the ontology design phase
was specifically dedicated to collecting, for each theme, a comprehensive set of topics
and to arrange them within an ontology (using Protégé) by expressing inter-topic
relationships. Along the whole project lifetime, the topic ontology was weekly tuned
and refined (in collaboration with domain experts) to accommodate new topics, topic
classes, and relationships; the final result is shown in Figure 5.3.

As already mentioned, the topic hierarchy depicted in Figure 5.4 was derived from
the topic ontology by applying standard techniques for multidimensional modeling of
operational data sources, so as to enable topic-based aggregation of clips in an OLAP
fashion.

5.3.2 Crawling

For keyword-based crawling we adopted the Brandwatch service (www.brandwatch.
com), a commercial solution to ensure a satisfactory coverage of web sources during
the project duration (three months). Brandwatch adopts a template-based engine, that
is, it extracts only the informative UGC by detecting and discarding advertisements
and banners (a process called clipping); it also drops duplicate clips using content
aggregators.

The two main design activities related to crawling are source selection and crawling
query design. As to source selection, Brandwatch already comes with its source base;
however, our domain experts provided a set of about 100 additional domain-specific
web sites (e.g., www.davidcameron.com) to be added to the source base and crawled.
Similarly, a large number of non-relevant sources (e.g., www.tripadvisor.co.uk) had
to be progressively eliminated from the source base because they were generating

www.brandwatch.com
www.brandwatch.com
www.davidcameron.com
www.tripadvisor.co.uk
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too many off-topic clips. Overall, in WebPolEU, dropping non-relevant sources and
duplicate clips led to cut the number of collected clips from ten to six millions.

Keyword-based queries in Brandwatch rely on a set of 23 Boolean operators that
allows to express filters on both textual features (e.g., the distance between two words)
and metadata (e.g., the author’s country and the web site name). We initially created
a set of queries based on the topics in the domain ontology and on a few additional
ones we discovered during source selection. To reduce the number of off-topic clips, a
content relevance analysis was weekly performed by first asking the domain experts
to manually label off-topic clips within a sample, then tuning the crawling queries to
exclude those clips so as to increase the percentage of in-topic clips.

Example 13 As an example of how a query was transformed to exclude off-topic
clips, we show the one aimed at retrieving the clips mentioning George Osborne (a
conservative politician), which had to be changed from

(raw:“Osborne”) OR “george osborne”

to
(raw:“Osborne” NOT (ozzie OR ozzy)) OR “george osborne”

5.3.3 Text Analysis

For text analysis we used the SyN-Semantic Center (www.synthema.it) commercial
engine. SyN was used for splitting clips in sentences and for extracting the single
entities, their part-of-speech, and their semantic occurrences. The linguistic and
semantic text analysis made by SyN is based on morpho-syntactic, semantic, semantic
role, and statistical criteria. At the heart of the lexical system lies McCord’s theory of
slot grammars [114]. The system analyzes each sentence, cycling through all its possible
constructions and trying to assign the context-appropriate meaning to each word by
establishing its context. Each slot structure can be partially or fully instantiated and it
can be filled with representations from one or more statements to incrementally build
the meaning of a statement. The core of the system is the SyN ontology, developed
through twenty years of experiences and projects.

5.3.4 Topic Search

With this term we refer to the task of indexing all the occurrences of a topic (or
one of its aliases) within a clip. We relied on two different techniques for searching

www.synthema.it
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topic occurrences in SABINE. The first one is a simple text matching technique that
retrieves the exact occurrences of topics and aliases, implemented in-house as a Java
algorithm. The second one is based on the results of the text analysis made by SyN,
which extracts all the occurring entities in a clip; in this case, topic occurrences are
obtained by linking topics and aliases to the corresponding entities.

Clearly, both techniques have pros and cons. By avoiding all kinds of text analysis,
the first technique typically trades a better performance in terms of speed with a
lower accuracy of the results. In particular, the results tend to include the occurrences
where a topic (or an alias) is used in the clip with different semantics from the one
originally meant in the topic ontology. This problem arises when topics (or aliases) in
the ontology are too generic.

Example 14 “Osborne” is an alias of topic “George Osborne”. By identifying the exact
matches of the word “Osborne”, the first technique wrongly associates the occurrences
of other people with the same surname (e.g., Peter Osborne, father of George) to the
topic “George Osborne”. Although this problem is similar to the one seen in Example
13 for crawling query design, it poses a different challenge (essentially because Peter
Osborne frequently appears in in-topic clips).

The second technique presents the opposite challenge: by carrying out an in-depth
comprehension of the clip semantics, the entities produced by SyN tend to be very
specific, possibly leading to the pulverization of the same concept into a wide set of
entities. Therefore, this problem arises when topics (or aliases) in the ontology are
intentionally generic.

Example 15 “university” is a topic of class Policy. The text analysis made by SyN
produces a different entity for each specific university found in the clips (e.g., “Oxford
University”, “University of Cambridge”, etc.). As a consequence, all these entities must
then be manually associated with topic “university”.

The adoption of both techniques enabled us to double-check the results and to
track down the causes of conflicting results. Eventually, mismatches were manually
solved in most cases, yielding a 91% agreement between the two techniques (over 14
millions occurrences).

5.3.5 Sentiment Analysis

Sentiment analysis is probably the hardest task in SBI; for this reason we included in
SABINE both system-based and human-based sentiment scores. While system-based
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scores can be used as a baseline for testing other automatic techniques, human-based
scores represent the ground truth.

• Crawler sentiment. This score, computed by Brandwatch, tags each clip of
SABINE. The sentiment analysis component of Brandwatch is based on mining
rules specifically developed for each language supported.

• NLP sentiment. SyN includes its own sentiment analysis component [126]
whose score takes into account the negative or positive polarization of words
and concepts, as well as the syntactical tree of the sentence being analyzed.
SyN is sophisticated enough to modify the polarization of words based on the
related adverbs, adjectives, conjunctions, or verbs, by taking in account specific
functional-logic complements; it even tries to identify idiomatic or colloquial
expressions and give an interpretation to negations. Each clip of SABINE is
tagged with this score as well.

• Expert sentiment. This score was defined for a sample of 1200 clips (600
English + 600 Italian) by asking our domain experts to manually tag them. The
clips are equally divided by media type and NLP sentiment (as computed by
SyN). Besides defining the clip sentiment as either negative, neutral, or positive,
the domain experts were also asked to rate, for each clip, its clipping quality
(i.e., the amount of non-relevant text present in the clip due to an inadequate
template used by the crawler when clipping), which could impact on the difficulty
of assigning the right sentiment, and its intrinsic text complexity (i.e., the effort
of a human expert in assigning the sentiment due to irony, incorrect syntax,
abbreviations, etc.).

• Crowd sentiment. This score was given to a sample of about 2400 clips
(1200 + 1200, including the clips tagged by experts) through a crowdsourcing
process. To this end, we selected a crowd of around 900 workers within a class of
bachelor-degree students in the field of humanities and political science at the
University of Milano (average worker age is 21). Crowdsourcing activities were
performed during one month and each worker tagged 46 clips on average. As a
support we employed our Argo system (island.ricerca.di.unimi.it/projects/argo/,
in Italian), which provides crowdsourcing functionalities based on multi-worker
task assignment and consensus evaluation techniques [18]. In Argo, each clip to
evaluate was represented as a choice task, meaning that each worker receiving a
task to execute was asked to read a clip and select her preferred answer among

island.ricerca.di.unimi.it/projects/argo/
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three available options, namely positive, negative, and neutral sentiment. Each
clip was assigned to a group of 6 different workers. A group member autonomously
tagged each clip received and independently produced the answer according to
her personal feeling and judgement. Each worker also had the opportunity to
refuse a clip in case she recognized to have insufficient expertise for its sentiment
evaluation. Given a clip, its sentiment score was defined as an answer agreement
(i.e., consensus) among the members of the group that tagged that clip. Two
workers agree on a clip when they assigned the same score to that clip. In Argo,
consensus evaluation was enforced through a weighted-voting mechanism called
supermajority, in which the answer of a worker has a weight corresponding to her
reliability.1 Supermajority was used to verify that the sentiment score having the
highest degree of consensus within a group was supported by a qualified majority
larger than 50% [18]. In this case, such score was assigned the corresponding clip.
Conversely, when a qualified majority of workers was not found within the group,
the task was uncommitted and scheduled for re-execution by a different group of
workers with higher reliability.

5.3.6 Data Linking

The goal of data linking is to link ontology topics to the Linked Data Cloud (linkeddata.
org). In SABINE, this has been done by coupling automated techniques with manual
validation and revision by domain experts; the single steps of the process are described
in the following.

1. Topic aliases were used to retrieve a set of candidate DBpedia resources for each topic
t through the DBpedia Lookup Service (wiki.dbpedia.org/projects/dbpedia-lookup).

2. The degree of similarity between t and the retrieved candidates (if any) was evaluated
through the HMatch matching algorithm [19]. HMatch takes into account both the
linguistic information available for t (i.e., its aliases) and the ontological information
(i.e., the topic class of t).

3. Topic t was linked to the DBpedia resource r, among the candidates, yielding the
highest degree of similarity. The link between t and r is formally defined as a
4-tuple of the form Lt,r = ⟨t, r, σt,r, ρt,r⟩, where σt,r is a real number in the range
[0, 1] representing the degree of similarity between t and r, and ρt,r represents the
semantics of the relation holding between t and r.
1The worker’s reliability depends on the answers she provides to the assigned tasks; specifically, it

is increased when the answer contributes to reach the consensus and it is decreased otherwise [18].

linkeddata.org
linkeddata.org
wiki.dbpedia.org/projects/dbpedia-lookup
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4. Each resulting link Lt,r was submitted to domain experts to specify the most
suitable semantics ρt,r, choosing among (i) owl:sameAs (t and r have exactly the
same meaning); (ii) sabine:narrower / sabine:broader (the meaning of t is more
specific/generic than the one of r); (iii) sabine:related (there is a positive association
between the meanings of t and r2. If none of the previous options was deemed
suitable by the domain experts, the link was marked as incorrect.

5. The links with semantics different from owl:sameAs and all the incorrect links were
submitted to a second validation round, where domain experts manually found
additional DBpedia resources to be associated with the corresponding topic with
owl:sameAs semantics.

Example 16 As an example we propose the following link between topic “school” and
DBpedia resource dbpedia:State_school:

⟨“school”, dbpedia:State_school, 0.75, owl:sameAs⟩

In the first round of validation, experts confirmed that “school” can be linked to
dbpedia:State_school, but with semantics sabine:broader (since school is broader than
dbpedia:State_school). The resulting link was

⟨“school”, dbpedia:State_school, 0.75, sabine:broader⟩

Since the semantics is different from owl:sameAs, the link was submitted to the second
validation round, where we asked experts to manually find a DBpedia resource which
actually has an owl:sameAs relation with “school”. Experts found the DBpedia resource
dbpedia:School, which leads to the addition of a second link for topic “school”. The
links resulting from the two validation rounds are then

⟨“school”, dbpedia:State_school, 0.75, sabine:broader⟩

⟨“school”, dbpedia:School, 1.0, owl:sameAs⟩

In Table 5.2, we show some statistics about validation and refinement of English
topics. Most of the automatically retrieved links have been considered correct with
owl:sameAs semantics (67%); 17% of the remaining links have been evaluated as correct

2Note that we modeled relations similarly on SKOS (www.w3.org/TR/skos-reference/)
concept relations. The reason why we redefined relation semantics rather than using SKOS is that
topics and DBpedia resources are not defined as SKOS concepts.

www.w3.org/TR/skos-reference/
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Table 5.2 Results of the domain expert validation and revision for the English topics

Relation semantics # links Avg. similarity
owl:sameAs 252 0.812
sabine:narrower 7 0.721
sabine:broader 39 0.756
sabine:related 17 0.781
incorrect 62 0.22
sub-total 377
expert-provided resource 135 0.433
total 512

but with semantics different from owl:sameAs. In particular, the automatic linking
procedure tends to provide specific (rather than generic) DBpedia resources for topics.
The automatic approach was incorrect in 16% of cases. We note also a positive
correlation between the average degree of similarity associated with links and the
positive evaluation provided by experts. This is important for associating a reliable
degree of similarity to the links in the final benchmark. Finally, for 135 topics, domain
experts provided a DBpedia resource as an owl:sameAs counterpart for the topic.

5.4 Research Tasks
In this section we describe the main research tasks that can be supported and evaluated
using SABINE. Remarkably, to enable partial, ad-hoc downloads for each task, we
subdivided SABINE into separate components shown as packages in Figure 5.5. A
package models a component of the benchmark that can be downloaded separately;
one package depends on another when an object of the former references an object of
the latter. For each task, in Table 5.3 we summarize the SABINE component(s) to be
taken in input, the expected task output, the ground truth we provide, and possible
metrics for evaluating the task results with reference to the ground truth.

5.4.1 Content Analysis Tasks

Sentiment analysis. At the state of the art, the available techniques for sentiment
analysis provide a satisfactory level of accuracy in narrow domains with limited dic-
tionary and topics of discussion (e.g., movie reviews [107]). Finding an appropriate
sentiment for a clip is still an open problem in wide domains and when sarcasm and



5.4 Research Tasks 83

Clips MD CubesTopics and MappingsCrawler Annotations

Sentiment

Topic Occurrences

Sentiment Cube Semantic Occurrence Cube

Italian Clips English Clips

Topic Ontology
Linked DBpedia Resources

Inter Language Mappings

Italian Clips with
Validated Sentiment

English Clips with
Validated Sentiment

Topic Subclass

Topic class

Topic relation

Alias

DBpedia resource Linkage

Wikipedia page Link

Crawler annotation

Interlanguage mapping

Clips

Clip

Sentiment

Entity

Occurrence

POS entity

Sem. occurrence

Functional relation

Topic occurrence

Fig. 5.5 Components of SABINE and their composition and dependency relationships

Table 5.3 Task overview

Task Input Output Ground truth Evaluation
Content Analysis Tasks
Sentiment analysis Clips Clip sentiment Sentiment Precision; Recall
Topic search Clips; Topic Ontology Topic occurrences in

clips
Topic Occurrences Precision; Recall;

Interpolated preci-
sion

Document classifi-
cation

Clips Classes of clips Crawler Annotations Purity; Mutual in-
formation; Rank
index

Semantic Analysis Tasks
Cross-language
analysis

Topic ontology; Clips Matches between En-
glish and Italian top-
ics

Inter-Language
Mappings

Precision; Recall

Topic discovery Clips Topics Topic Ontology Precision; Recall
Data linking Topic Ontology Links between topics

and
DBpedia resources

Linked DBPedia Re-
sources

Precision; Recall;
Interpolated preci-
sion

SBI Analytics Tasks
Multidimensional
modeling

Topic Occurrences;
Sentiment; Clips;
Crawler Annotations;
Topic Ontology

Multidimensional
cubes

MD cubes Sum squared error

SBI analytics Clips Query answers MD Cubes Sum squared error

irony are used —which is often the case for the clips in SABINE. The challenge we
propose here is to assign a sentiment score (either positive, negative, or neutral) to
each clip. As described in Section 5.3.5, SABINE provides four sentiment scores with
different levels of certification. Noticeably, the 1200 clips tagged by domain experts
have also been annotated with the level of difficulty (either normal or hard) the experts
encountered in assigning the sentiment and with the presence/absence of undesired
and irrelevant text due to crawler errors.
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Topic search. Entity search in raw text is a classic information retrieval task. The
approaches in this area typically uses lemmatization and stemming to increase their
recall. Entity search turns to semantic search when additional information such as
synonyms [17], ontologies [40], and context [137] are exploited. The research challenge
we propose here is to find the occurrences of the given topics within the corpus of
clips. The benchmark can be used to check the efficiency and effectiveness of original
techniques. As to effectiveness, the ground truth provided by SABINE consists of the
occurrences of the topics in the clips as obtained through two different and independent
techniques (see Section 5.3.4). Both traditional and semantic search techniques can be
applied since (i) topic aliases provide a set of synonyms for topics, and (ii) the topic
ontology provides the complete list of topics and their relationships (e.g., a Sector
includes several Policies; a Politician belongs to a Party).

Document classification. Document classification aims at associating a document
with one or more document classes. There is a wide literature on this subject and a
variety of different approaches have been proposed, including for example probabilistic
techniques such as Naive Bayes models [102], techniques based on the vector space model
of documents and on support vector machine [103], and techniques based on matrix
decomposition [112]. Document classification may lead to different results according
to different perspectives, especially when classification is driven by subjective criteria

— as in the case of sentiment analysis. Consequently, for document classification we
propose to rely on the crawler annotations, i.e., metadata associated to the documents
according to objective criteria (see Section 5.2). In particular, annotations include
the dimensions of language, author, source, and date. For author, source, and date,
metadata also provide further levels of aggregation. Each of these dimensions can
be used to group clips in different classes with the desired level of aggregation, from
relatively small and specific classes to large and generic ones. Examples of clip classes
along the date dimensions are those grouping clips by date of publication (specific)
and those grouping clips by year (generic). According to the classification scheme
derived from the crawler annotations, it is then possible to evaluate a classification
approach either with a supervised strategy, where classes are known a-priori, or with
an unsupervised strategy, starting from the clips only. The goal in both cases is to
rebuild the same classification that can be derived from crawler annotations.
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5.4.2 Semantic Analysis Tasks

Cross-language analysis. This area has several relevant applications. For example,
cross-language information retrieval addresses the problem of finding information in
one language in response to queries expressed in another, while cross-language text
categorization uses labeled documents in one language to classify documents in an-
other language. A requirement shared by these applications is the availability of a
bilingual dictionary. Traditional approaches assume that such dictionaries are either
given a priori (and typically obtained through a time-consuming manual effort) or
automatically acquired from parallel corpora [45]. Since parallel corpora are still a
scarce resource in several languages and contexts, recent researches employ comparable
corpora [23, 132] and unsupervised object matching methods [72, 140]. Both methods
are promising in terms of language portability because they do not require external
language resource. The research challenge we propose in SABINE is to automatically
derive the best match between inter-language topics. The input is the sets of topics
in the two languages as well as the set of clips representing comparable corpora. The
benchmark includes the correct matches, which have been manually defined by the
domain experts.

Topic discovery. Several contributions have been provided in the area of topic dis-
covery, mainly in the research field of topic modeling starting from Latent Semantic
Analysis (LSA) approaches [100] back in the 90’s to Latent Dirichlet Allocation (LDA)
approaches [14] in the 2000’s. Besides latent analysis, other important contributions are
based on clustering techniques [108, 183]. More recently, combinations of LDA, mainly
based on Gibbs sampling, and clustering have been proposed to handle topic modeling
with very large text collections [121]. Topic modeling is an important reference in the
social sciences domain and it has been applied to several research issues, including the
impact and dissemination of research [35], social media [15], and the study of changes in
technology & innovation [182]. Judging about the presence of a topic in a document is
a highly subjective and domain-dependent task. Thus, evaluating automatic solutions
requires a gold standard of high quality, where topics are validated by domain experts.
We propose to exploit our topic ontology and topic occurrences in clips, which were
both validated by domain experts, in order to evaluate topic discovery strategies and
tools. In particular, we envisage both supervised strategies, where the number and
categories of topics are given a-priori, and non-supervised strategies, where topics are
discovered from the clips only and then the topics discovered are compared with those
validated by our experts. The evaluation may be based on the set of topics that are
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discovered in the corpus, without considering which topic occurs in which clip, or be
extended to assess also the topic occurrences in clips.

Data linking. In general terms, data linking is the task of determining whether two
object descriptions can be linked one to the other to represent the fact that they refer
to the same real-world object in a given domain or the fact that some kind of relation
holds between them [41]. Usually, this task is performed based on the evaluation of
the degree of similarity among different data instances describing real-world objects
across heterogeneous data sources, under the assumption that the higher the similarity
between two data descriptions, the higher the probability that the two descriptions
actually refer to the same object. In our challenge, we propose to link a subset of
the topics with their corresponding DBpedia resources. The ground truth we provide
has been manually validated by domain experts for both English and Italian. In the
field of data linking, a clear and widely accepted definition of the meaning of links
between data is still missing. In general, the results of data linking is a set of links
associated with same-as semantics and these links are represented using (or abusing)
the owl:sameAs OWL relation. However, in the literature there is a wide spectrum of
different techniques, capable of discovering different kinds of possible links between
object descriptions, ranging from weak correspondences to strong relations of identity.
Aimed at supporting validation also for approaches capable of discovering the specific
semantics of data links, we provide not only same-as links between topics and DBpedia
resources, but also a set of links with other semantics, including analogy, generic
similarity, specialization, and generalization (see Section 5.3.6). The evaluation of
automatic techniques for data linking can be performed either by verifying if the correct
DBpedia resource has been associated with a topic, disregarding the semantics of the
association, or by taking into account also the semantics of the link discovered and
checking if it is compatible with the links provided by domain experts.

5.4.3 SBI Analytics Tasks

Multidimensional modeling. The goal here is to design a set of multidimensional
cubes that summarize and store the knowledge generated by semantic enrichment,
in terms of both efficiency and effectiveness. Possible design solutions range from
traditional star schemata to more sophisticated approaches like meta-stars [48] or those
proposed in [29]. The cubes included in the MD Cubes component can than be used as
a baseline for comparison.
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SBI Analytics. The research tasks proposed so far can be considered technical tasks
aimed at enriching raw clips and enable SBI analyses. To complete the benchmark
we also propose a functional task, namely, finding the answers to a set of enquiries
proposed by our domain experts:

• Q1: Which is the most discussed sector in relationship with each political party?

• Q2: Which are the most discussed topics for each source type?

• Q3: Are there any topics whose volume of discussion significantly changes from
UK to Italy? Note that this is a cross-language enquiry and requires to find out
those topics whose number of occurrences are most unbalanced between Italian
and English clips.

• Q4: How does the sentiment about each politician and technocrat change along
time?

The ground truth we provide for this task are the answers obtained by directly querying
our multidimensional cubes. The domain experts verified that these answers are fully
compatible with the real social and political phenomena they directly observed during
the election period, thus certifying the validity of the ground truth. Remarkably, this
task enables an end-to-end assessment of a whole SBI process starting from clips,
possibly enriched with different combinations of the benchmark components.

5.5 Conclusions
In this chapter we have presented SABINE, a benchmark of semantically annotated
social content in the domain of European politics. SABINE aims to constitute a
publicly-available, real-world data benchmark for experimenting and comparing the
most commonly performed SBI tasks, crossing the various involved disciplines ranging
from Database Systems, Information Retrieval, Data Mining, up to Natural Language
Processing and Human-Computer Interaction. SABINE has been designed and properly
packaged for modular download to enable the evaluation of a wide variety of research
tasks, either separately or in combination, ranging from those more focused on content
analysis, to those related to semantic analysis up to more comprehensive SBI analytics,
by ensuring that interesting and technical challenges of the tasks will emerge from
benchmark implementation.

A main technical advance of SABINE is the availability of multiple, complemen-
tary, and validated enrichments of the social content (i.e., textual clips) in form of
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metadata, annotations, sentiment scores, and DBpedia mappings. The availability of a
user-validated ground truth, either by domain experts or by crowdsourcing or both,
for each enrichment phase represents a further technical advance of SABINE, to target
the purpose of providing a comprehensive and effective benchmark environment.

To download SABINE: SABINE is available for download at big.csr.unibo.it/?q=
sabine; packages are made available as compressed archive files containing JSON
files (the Clips package), OWL files (the Topics and Mappings package and all its
sub-packages), and CSV files (all other packages).

big.csr.unibo.it/?q=sabine
big.csr.unibo.it/?q=sabine


Chapter 6

iMOLD: a collaborative approach
for Exploratory BI on linked data

In this chapter, we outline an approach that enables data scientists to extend and
complete the hierarchies in their corporate multidimensional cubes through a user-
guided process that explores selected linked data and derives hierarchies from them.
This is done in an interactive way, by first letting the user navigate linked data in the
light of her view of the business, then by detecting in the linked data the recurring
modeling patterns that express roll-up relationships between RDF concepts, and finally
by translating these patterns into multidimensional knowledge to extend the corporate
cubes. Specifically, five different aggregation patterns are distinguished, and the
algorithms for detecting them are described. Finally, a case study based on DBpedia
is proposed and the results of an evaluation test made with real users are discussed.

6.1 Introduction
The possibility to access and integrate external data in the corporate knowledge is
an effective means to enrich the decision-making process. Semantic web technologies
(and ontologies in particular) offer a strong contribution in this direction by explaining
the semantics of the data [2]. A relevant role in this context is played by linked data,
whose shared, structured, and interlinked nature should make them easily accessible
and searchable. Unfortunately, as we anticipated in Chapter 1, linked data are often
chaotic and badly organized, especially from the schema point of view: for instance,
about 96% of the rdf:Properties in DBpedia are not typed. This often prevents data
scientists from taking full advantage of the informative wealth lying with linked data.
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The goal of the approach we propose in this chapter, named iMOLD (Interactive
Multidimensional Modeling of Linked Data), is to enable data scientists to extend and
complete the corporate multidimensional cubes by retrieving aggregation hierarchies
from linked data. This is done in an interactive way, by first letting the user explore
linked data in the light of her view of the business, and then finding aggregation
patterns to shape new hierarchies for cubes and feed them with data. To give this
process collaborative capacity, the knowledge it creates is accumulated within a shared
internal ontology, so that each user can reuse and adapt the work already done by
others in the company.

The original contributions of this work can be summarized as follows:

1. We introduce a framework for Exploratory BI based on a user-guided process
that explores linked data, builds aggregation hierarchies out of them, populates
these hierarchies with data, and integrates them into the corporate cubes.

2. We identify five aggregation patterns found in ontologies.

3. We provide algorithms for detecting these patterns in RDF linked data and
translating them into hierarchies.

Remarkably, while several works in the literature address the problem of building
multidimensional schemata starting from source data, most of them are meant to be
used at design-time in the context of so-called supply-driven design and consider well-
structured data sources (e.g., Entity/Relationship diagrams and relational schemata)
where hierarchies can be easily detected by following functional dependencies (repre-
sented, respectively, by many-to-one relationships and by foreign keys). Conversely,
(i) our approach operates at exploitation time to integrate the corporate cubes with
situational data; (ii) it can be regarded as a mixed approach to design, because it
combines (pattern-based) access to data —typical of supply-driven design— with user
interaction —typical of demand-driven design; (iii) the modeling heterogeneity of linked
data and the impossibility of describing the multiplicity of properties in the RDFS
vocabulary make hierarchy detection more complex.

The chapter outline is as follows.

• In Section 6.2 we summarize the related work.

• In Section 6.3 we provide the necessary background on multidimensional modeling
and linked data modeling.

• In Section 6.4 we give an overview of the iMOLD approach.
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• In Section 6.5 we present the different aggregation patterns.

• In Section 6.6 we describe in detail the core techniques we use to find these
patterns in linked data and translate them into hierarchies.

• In Section 6.7 we propose a case study for iMOLD and discusses the results of
an evaluation test involving real users.

• In Section 6.8 we draw the conclusions.

6.2 Related Literature
There have been several efforts towards automating and semi-automating the discov-
ery of multidimensional schemata from available data. Such approach is known as
supply-driven design and consists of exploring the data sources in order to identify
potential aggregation patterns that would allow to arrange data in a multidimensional
fashion. [149] provides a comprehensive discussion on different techniques used to
identify dimension hierarchies from available data. In all cases, discovering functional
dependencies (FDs) is the cornerstone to automatically build hierarchies. Typically,
most approaches look for FDs at the schema level, since instance-based approaches
have been shown to be computationally too expensive for real scenarios [84].

Besides traditional approaches assuming the existence of a conceptual representation
of the domain (e.g., a E/R or UML class diagram) or a well-formed (at least in Boyce-
Codd normal form) logical relational database schema, some efforts have focused on
less structured data models such as XML or logics-based formalisms. As mentioned,
all of them focus on FD discovery at the schema level. The most relevant works
related to ours are [171, 150]. [171] identifies FDs from XML schemata represented as
a graph. The graphical representation of the XML schema facilitates finding the FDs,
which is examined in the direction expressed by the arcs and according to cardinalities
included in the dependency graph. Cardinalities are either provided or inferred from key
attributes. Where no cardinality information can be inferred they shift to an instance-
based approach by querying schema-compliant XML documents. [150] redefines the
concept of FD for logics-based formalisms under open-world assumption. The paper
presents new inference algorithms to identify FDs and, based on them, aggregation
hierarchies. However, such approach works at the schema level (i.e., no instances are
queried).

Now that a huge amount of data is available in the linked data cloud, providing
techniques for its effective exploration is becoming more and more important [69, 74].
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In this area researches have focused on providing intuitive and effective techniques for
visualizing [73] and navigating [117] linked data, provide a high level and conceptual
view of large linked data clouds [20] and on integrating and learning information
from them [165]. In this line, several efforts focused on deploying multidimensional
schemata on linked data to facilitate its exploration and visualization, according
to the cube metaphor, have recently emerged (e.g., [124, 93, 90]). However, only
[123] presents an approach to automate the discovery of dimension hierarchies on
linked data. Similarly to our approach, the authors aim at automatically discovering
multidimensional conceptual patterns (i.e., resembling a multidimensional star schema)
that summarize linked data based on probabilistic graphical models. They propose the
use of the statistics about the instance data to generate the multidimensional schemata
and therefore to identify hierarchies.

Following the visionary ideas behind concepts such as small analytics for big data
[163], fusion cubes [1], drill-beyond [37], or the global cube [91], OLAP and multidi-
mensional analyses are highlighted as a perfect match for assisting and supporting
the user when exploring the Web of Data. However, there is still a lack of research
to automate the discovery of multidimensional schemata and enable automatic data
exploration/crossing in the linked data setting. As a first step in this direction, a
conceptual framework to perform exploratory OLAP over linked data has been pro-
posed in [81]; the idea is to derive the multidimensional schemata from different data
sources in order to run OLAP queries on the respective SPARQL endpoints. A key
point recognized by the authors is that, due to the large volume and complexity of
public knowledge bases, a user-guided process for multidimensional schema detection
must be implemented. We believe iMOLD to be the first significative advance towards
this goal. As already mentioned, iMOLD follows an instance-based approach but it
neglects the problems identified in [84] by avoiding a pure supply-driven approach
and incorporating the user to lead the process (as typically done in demand-driven
approaches). As a consequence, iMOLD can be regarded as a mixed approach based
on aggregation patterns. Unlike [123], we do not follow a probabilistic approach but
one based on data modeling patterns (as typical of software engineering approaches)
extracted from instances. Furthermore, by involving the user to guide the search we
reduce the computational complexity of sampling instances.



6.3 Background 93

Animal 

Species 

Family 

Mammal 

Cat Dog 

Pluto Snoopy Duchess 

Class 

Felid Canid 

Lion 

Simba 

level
member
roll-up/part-of
relationship

LEGEND

Fig. 6.1 An example of multidimensional modeling: levels and roll-up relationships
(left), members and part-of relationships (right)

6.3 Background

6.3.1 Multidimensional modeling

In terms of multidimensional modeling, we build on Definitions 1 and 2 provided in
Chapter 2 by providing also the definition of a hierarchy.

Definition 11 (Hierarchy) A hierarchy h that conforms to a hierarchy schema H
is a triple h = ⟨L, ≻, U⟩ where:

• L is the set of levels, where each level has a domain made by a set of members;

• ≻ is the partial order of L;

• U is the set of roll-up relationships in h; a roll-up relationship u ∈ U is a triple
(lk, ρ, lj) where lk, lj ∈ L s.t. lk≻̇lj and ρ is the semantics of the relationships 1.

For simplicity, in this chapter we will consider roll-up relationships that abstract a
many-to-one part-of relationship on the members of lk and lj, such that each member
of lk is part of exactly one member of lj.

Example 17 Consider the sample hierarchy in Fig. 6.1. Levels are shown as white
circles; for instance, Species rolls-up to (i.e., is a child of) Family. Members are shown
as black circles; for instance, Canid and Felid (member instances of Family) are part of
member Mammal (member instance of Class).

1Considering also the semantics ρ in the definition of roll-up relationship is necessary to cope with
the case in which the same two levels are involved in two different relationships (e.g., persons can
roll-up to cities according to two different semantics, namely lives in and was born in).
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6.3.2 Linked data modeling

The Linked Data initiative was envisioned by Tim Berners-Lee as “published data
that can be machine-readable, its meaning is explicitly defined, it is linked to other
external data sets and can be linked to from other external data sets” [13]. In linked
data, Universal Resource Identifiers (URIs) are used as names for available resources
(note the universal scope of URIs as identifiers) and the HTTP protocol should be
used to dereference URIs so that people can locate and look up those names.

The formalism used to describe and link resources is the Resource Description
Framework language (RDF), a W3C recommendation. The basic RDF block is the
triple, a binary relationship between a subject and an object; i.e., <subject predicate
object>. The subject and the predicate must be resources (i.e., identified by a URI),
whereas the object can be either a resource or a literal (i.e., a constant value such a
string or an integer).

A set of RDF triples form an RDF graph. Indeed, it is rather usual to refer to RDF
graphs as ontologies since RDF is considered to be the most basic ontology language.
RDF Schema (RDFS), a W3C recommendation, was introduced to express basic
constraints on RDF triples. By means of the RDFS core classes (namely rdfs:Resource,
rdfs:Class, rdfs:Literal, rdf:Property, and rdf:Statement) and of some predefined properties
one can distinguish between instances and classes (by using the rdf:type property),
express property and class taxonomies by means of inclusion statements (by means of
rdfs:subClassOf and rdfs:subPropertyOf) and type properties by specifying the allowed
classes at its domain and range (by means of rdfs:domain and rdfs:range). RDF2

ontologies can infer implicit knowledge from asserted triples (e.g., the subClassOf and
subPropertyOf properties are transitive). The W3C recommends using the Protocol and
RDF Query Language (SPARQL) to query RDF ontologies. Interestingly, SPARQL
enables reasoning on RDF graphs by means of the SPARQL RDFS entailment regime3.
Typically, RDF published graphs are exposed by means of (publicly available) SPARQL
endpoints.

According to [13], reference RDF ontologies (typically referred to as RDF vocabular-
ies; e.g., SKOS, FOAF, Schema, etc.4) should be created for each domain and reused
whenever possible. Specific ontologies must then reuse the resources introduced in
RDF vocabularies (i.e., refer to them in the newly created triples). Reusing instances
or classes promotes linking data by pointing to external resources, whereas reusing

2Unless explicitly said, from here on we will use term RDF to refer to both RDF and RDFS.
3http://www.w3.org/TR/sparql11-entailment
4A detailed list of available vocabularies is at: http://lov.okfn.org/dataset/lov

http://www.w3.org/TR/sparql11-entailment
http://lov.okfn.org/dataset/lov
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properties facilitates the graph interpretation by using referent semantics defined in
the vocabulary. QB4OLAP [39] is a reference conceptualization that extends the
RDF Cube Vocabulary (QB5) with additional resources to allow structuring the cube
dimensions in hierarchies and levels, relate measures with aggregation functions and
represent observations at different aggregation levels, enabling roll-up and drill-down
operations over RDF-based data [39]. As result, QB4OLAP captures all the constructs
of the MultiDim model [168] and therefore all the multidimensional modeling features
described in Section 6.3.1 —except for cardinalities, since RDF does not provide
constructs to assert the cardinality of a property nor functional properties.

Following the reusability principle, we use QB4OLAP to annotate the aggregation
hierarchies identified on RDF data. Similarly, we use SM4AM [170] to annotate the
metadata generated during the discovery of aggregation patterns. SM4AM is able
to represent user-related metadata such as queries, preferences and statistics, as well
as system-related metadata such as data profiling and traceability metadata. In this
chapter, we reuse the SM4AM Data Quality, Navigational, and Ratings artifacts to
respectively store metadata regarding the source of the analyzed data, the users’
interactions, and the users’ preferences when using our tool. Section 6.4 elaborates on
how these QB4OLAP and SM4AM are used in our approach.

6.4 Approach Overview
The work of this chapter is inspired by the fusion cubes vision [1], where a corporate,
stationary data warehouse can be dynamically extended by the users on a self-service
basis, by including some external situational data. In particular, this work supports
the data acquisition step of [1], which requires a system capable of fetching relevant
situational data from selected sources. Among the potential sources for situational
data (e.g., sensor data, logs, social networks, etc.), linked data are a good candidate
for building aggregation hierarchies, as they typically express a structured knowledge
(either focused on a specific domain or cross-domain).

The basic idea of iMOLD is to extend the hierarchies in the corporate cubes
through a user-guided process that explores selected linked data, derives hierarchies
from them, and populates these hierarchies with data. This is done by identifying
in the linked data the recurring modeling patterns that express roll-up relationships
between RDF concepts and translating them into multidimensional knowledge, to be
stored locally and shared with every user for reuse purposes. The knowledge base built

5http://www.w3.org/TR/vocab-data-cube

http://www.w3.org/TR/vocab-data-cube


96 iMOLD: a collaborative approach for Exploratory BI on linked data

Assessment

Acquisition

Integration

Internal 
Ont.

Corporate Cubes
Linked Data

External 
Ont.

SPARQL SPARQL

Fig. 6.2 Functional view of the iMOLD approach

and maintained by the system to store such information is called Internal Ontology
(IO), whereas any source of linked data will be referred to as an External Ontology
(EO).

From a functional point of view, the user locates a concept of interest in a selected
EO (e.g., the concept of city on DBpedia), then she uses it as a starting point to
build her hierarchies. The typical scenario that we envision (shown in Fig. 6.2) can be
subdivided into three iterative phases.

1. Assessment: the user accesses the IO to check whether the concept of interest
is already present and which conceptual schemata have already been built around
it. The user is able to reuse the information previously acquired, either by herself
or by other users in the company. Therefore, it is expected that this phase will
increasingly acquire importance as the IO is filled with new information over
time.

2. Acquisition: if the concept of interest is not present in the IO or it is not
satisfactorily modeled (either because it is outdated, not relevant, or misaligned
with the user’s requirements), the user can search for aggregation patterns in
the EOs, build her own hierarchy by selecting the concepts of interest, provide
appropriate names to levels, and integrate the results into the IO.

3. Population: the user launches a set of system-generated queries that create and
populate new dimension tables with the data selected. These dimension tables
are then integrated with those in the corporate cubes to enable richer analyses.

The first phase is mainly a matter of delivering a smart user interface for effectively
browsing the IO. The third phase requires to automatically create and execute some
SPARQL queries to extract data, to transform and load them into ad hoc dimension
tables, and to establish a correlation between rows in these dimension tables and rows
in the corporate dimension tables. The only demanding step in this phase is the last
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Fig. 6.3 The Internal Ontology (for simplicity, a property at the class level is represented
as an arc linking the domain class to the range class, which implies the correct definition
of the property by means of the rdfs:domain and rdfs:range properties)

one, which requires inter-member mappings to be found; though this problem has not
been deeply investigated in the literature, some existing approaches could be adapted
to implement it (e.g., [22, 87, 62]). The second phase, on which this chapter is focused,
is the one that raises the most challenging and novel research issues.

In the remainder of this section we explain how the IO is structured. The IO is
the container of all the information discovered and acquired by the users through
the exploration of the EOs, and its role is similar to the one of catalogs in relational
DBMSs. As already mentioned, the IO is collaboratively built and maintained by the
users for reuse purpose. This means that the content of the IO is not limited to the
information acquired from the EOs, but it also contains the metadata that enable its
future reuse. In particular, the IO can be subdivided into two areas, as depicted in
Fig. 6.3:

• Multidimensional Knowledge (MK), the core area that stores the multidi-
mensional interpretation of the data explored in the EOs, i.e., the aggregation
hierarchies detected.

• Users’ Knowledge (UK) that marks the portions of the MK selected by the
different users to build their hierarchies, thus serving as a sort of log.

The structure of each area mainly relies on the existing vocabularies that already
propose a solution in these contexts. In particular, we adopt QB4OLAP for the MK,
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and SM4AM for the UK. However, the mere reuse of the two vocabularies is not
sufficient: not only we need to instantiate the metamodel provided by SM4AM, but
we also need to extend the original vocabularies with custom classes and properties.
To this end, we define a new namespace (http://big.csr.unibo.it/imold#, prefix: imold)
to create the instance of the metamodel and the additional classes and properties. In
the following paragraphs we briefly discuss the content of the two areas of the IO; a
complete glossary for the classes and properties used in the IO is included in Table
A.2 in the Appendix.

As anticipated, the concepts found in the EOs are annotated in the MK according to
the QB4OLAP vocabulary. In particular, we instantiate the classes qb4o:LevelProperty
and qb4o:HierarchyStep to define, respectively, hierarchy levels and roll-up relation-
ships between them, while the multiplicities of the latter are specified through the
qb4o:Cardinality class. The mapping of levels and roll-up relationships on the EO (i.e.,
the identification of the original classes and properties from which these concepts are
extracted) is made through three custom properties, imold:asMembersHasInstances-
Of, imold:asMembersHasSubClassesOf, and imold:correspondsTo, which materialize the
link between the IO and the EO. Noticeably, imold:asMembersHasInstancesOf and
imold:asMembersHasSubClassesOf are used to retrieve the members of each level when
hierarchies are populated with data. Finally, we extend QB4OLAP vocabulary with
custom annotation properties in order to store statistical information regarding a level
property or a hierarchy step (e.g., the number of instances of a class).

In the UK, we use the SM4AM vocabulary to define a model for the meta-
data that need to be saved. Specifically, we define the class imold:User (instance
of sm4am:User) to model the users and we define the concepts of imold:LevelPreference
and imold:RollupPreference (both instances of sm4am:UserAction) to represent the prefer-
ence towards a specific level of the hierarchy or a specific roll-up relationship expressed
by a user. Each preference is linked to its corresponding instance in the MK through
the imold:isLevelPreferenceOf or imold:isRollupPreferenceOf property (both instances
of sm4am:usesSchemaComponent), but it can be linked to multiple users through the
imold:byUser property (instance of sm4am:byUser), meaning that different users may
share one or more preferences on the MK.
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Table 6.1 Hierarchy-related concepts and their representations within the different
aggregation patterns

Concept Patt. (1a) Patt. (1b) Patt. (1c) Patt. (2a) Patt. (2b)
Parent Level Class Class —/Class Powertype Powertype
Roll-up rel. Assoc. — — — —
Child Level Class Class Class/— Class Powertype
Parent member Instance Instance Instance Class Class
Part-of rel. Assoc. Assoc. Assoc. Instantiation General.
Child member Instance Instance Instance Instance Class

6.5 Aggregation Patterns in Ontologies
To semantically enrich the ontological knowledge about the data at hand, we propose
to identify aggregation patterns in RDF data that would most likely correspond to
potential hierarchies. To this end, we make two assumptions:

1. Though the EOs that we query may be incomplete (since they follow the open
world assumption) and not fully correct, their data are statistically representative.

2. OLAP aggregation hierarchies only come from many-to-one relationships.

In the following, to explain the aggregation patterns, we will use the UML terminol-
ogy as a reference for better clarity. Table 6.1 summarizes the five RDF patterns that
can give rise to roll-up relationships; each cell shows how each hierarchy-related concept
(as defined in Section 6.3) is represented according to each pattern. Out of all the
concepts in the UML metamodel, we consider only those that have a correspondence in
RDFS. Thus, as to classifiers, we consider classes (i.e., rdfs:Class) and datatypes (i.e.,
rdfs:Datatype); as to relationships, we consider associations (i.e., generic rdf:Property),
generalizations (i.e., rdfs:SubclassOf), and instantiations (i.e., rdf:Type). Therefore,
hierarchy levels and members can be mapped into either classes or data types, while
roll-up and part-of relationships can be mapped into associations, generalizations, or
instantiations. Out of all possible combinations, only the five in Table 6.1 make sense in
this context, and they can be classified depending on whether they are association- or
generalization-based. In the following they are described in more detail, using Fig. 6.4
as a general reference and the sample hierarchy depicted in Fig. 6.1 as an example.

6.5.1 Association-Based Patterns

OLAP aggregation hierarchies express part-whole relationships [3], which in UML are
typically represented as either associations (e.g., a product has a brand) or aggregations
(e.g., a city is part of a region). The part-of semantics of UML aggregation is not
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Fig. 6.4 RDF aggregation patterns represented in UML (top) and their multidimensional
counterpart (bottom)

explicitly modeled in RDF, so we will just consider associations, which are the immediate
superclass of aggregations in the UML metamodel and are represented in RDF using
properties. So, as exemplified in Fig. 6.4, pattern (1a) corresponds to two classes (e.g.,
ex:Family and ex:Class in Fig. 6.5.a) related by an RDF property.

In cross-domain ontologies, associations are rarely defined at the model level, i.e.,
through rdfs:domain and rdfs:range properties; even in those cases, they are typically
defined for very abstract classes only (e.g., property yago:isLocatedIn has yago:yago-
PermanentlyLocatedEntity as domain and yago:yagoGeoEntity as range). So, because
of the incompleteness of linked data (assumption ♯1 in Section 6.5), we need to relax
pattern (1a) by allowing the property not to exist at the level of classes, giving raise to
pattern (1b).

The third association-based pattern is (1c), which applies when the instances are
associated to a data type instead of a class (i.e., we have literals instead of objects).
Everything works as for the other two variants, but in this case there is no class
modeling the parent (child) level. Consequently, the name of the parent (child) level
must be either provided by the user or derived from the name of the property.

Either if the property exists at the class level or only at the instance level, we cannot
rely on the existence of multiplicities. Thus, in all three patterns we have to sample
the associated instances to check the proportion of existing many-to-one relationships
(e.g., we retrieve from the SPARQL end-point how many instances of Class are related
to each instance of Family). Then, also considering assumption ♯1 in Section 6.5 about
potential incorrectness of linked data, these patterns are identified only if the average
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Fig. 6.5 The hierarchy in Fig. 6.1 modeled in RDF using associations (a) and general-
izations (b); in thick dashed lines, the correspondence between ontology concepts and
hierarchy levels
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Fig. 6.6 Alternative RDF representation for the aggregation between ex:Family and
ex:Class

cardinality of the association is close to one on the side of the parent, i.e., only if an
approximate functional dependency holds [96, 78].

We close this section by observing that the ontology designer may have modeled
the conceptual aggregation in one direction or the other. For instance, the aggregation
between ex:Family and ex:Class in Fig. 6.5.a could also have been modeled with the
RDF property ex:hasFamily, where ex:Class is the domain and ex:Family is the range, as
depicted in Fig. 6.6. For this reason, in patterns (1a) and (1b) the child and parent
roles can be inverted with regard to those shown in Fig. 6.4. Note that this cannot
happen with pattern (1c), because the subject of an RDF triple cannot be a literal.

6.5.2 Generalization-Based Patterns

The second group of patterns is based on generalization. Generalizations express
an is a semantics that induces a subsumption between sets of instances of related
classes. In this sense we can say that, if one set of instances is superset of another, the
corresponding classes are generalization of one another —for instance, Felid generalizes
Cat and Lion since the set of animals instances of Felid is superset of the set of animals
instances of Cat and Lion, and the same holds for Canid and Dog. But then, animals can
be grouped into felids and canids, or into cats, lions, and dogs, and the former grouping
is coarser than the latter, which in OLAP terms translates to a part-of relationship
between members Cat + Lion and Felid on the one hand, between Dog and Canid on
the other. This suggests that there is roll-up relationship between two different levels,
which we will call Species and Family.

From the example above we can conclude that, differently from what seen in the
previous subsection, here the classes in the EO (Felid, Cat, etc.) correspond to members
instead of levels. So, to find an expression of levels in this case, we must look further.
Indeed, though generalizations are binary relationships between pairs of classes, from a
conceptual point of view they can be grouped depending on the criteria used (a.k.a.
powertype or generalization set in UML terminology). Thus, in pattern (2a), the
class corresponding to the child level is specialized into subclasses (i.e., subsets), each
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corresponding to a parent member, using the parent level as powertype. For instance,
as depicted in Fig. 6.5.b, class Animal is transitively specialized into Dog, Cat, and Lion
based on powertype Species. Therefore, these three subclasses (i.e, subsets) give rise
to three parent members of level Species, and their instances (Snoopy, Pluto, etc.) to
child members of level Animal.

Powertypes are not made explicit in RDF. In principle, they could be explicitly
represented at the metalevel, i.e., using metaclasses (e.g., class Dog could be an instance
of metaclass Species). However, this type of metamodeling is extremely rare in linked
data (for instance, in DBpedia and YAGO there are just a very few metaclasses, and
all of them are so abstract that they cannot be useful for building domain-specific
hierarchies), so the user will have to provide names for the levels corresponding to
powertypes upon detecting the pattern.

While in pattern (2a) child members correspond to instances (notice that the
rectangle is white) in the linked data, in (2b) they correspond to classes (grey rectangle).
This may happen because of incompleteness or because of a different level of abstraction
chosen by the ontology designer. In this case, the different classes corresponding to
child members (e.g., Canid and Felid in Fig. 6.5.b) would be generalized into a superclass
(e.g., Mammal) that would be the corresponding parent member. Usually, the parent
and child levels (Class and Family, respectively) will not be represented in the ontology,
because they correspond to powertype, so they will be provided by the user.

As we will show in Section 6.6.2, the combination of (2a) and (2b) allows to
iteratively build OLAP hierarchies based on conceptual generalization relationships.
Remarkably, though generalization-based patterns are less intuitive than association-
based ones, they do not require data to be queried, nor they rely on probabilistic
assumptions like those made for association multiplicities.

We finally note that, in case of an overlapping powertype (i.e., individuals are
instances of more than one subclass and subsets are not disjoint), a many-to-many
relationship arises; since in multidimensional modeling only many-to-one relationships
are normally considered (assumption ♯2 in Section 6.5), we will not consider this case.
Besides, there is also a possibility of having a multiple specialization (i.e., the same class
can be a specialization of several superclasses), which can be interpreted as multiple
many-to-one relationships with different semantics thus generating a branch in the
hierarchy. For instance, Fig. 6.7 shows how the generalization of ex:Dog, ex:Cat, and
ex:Lion into Domestic and Wild leads to creating a branch towards level Dom/Wild.
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Fig. 6.7 Double specialization for classes ex:Dog, ex:Cat, and ex:Lion

6.6 Acquisition
In this section, the core phase of iMOLD is described in detail; its goal is to build
aggregation hierarchies out of ontological knowledge by letting users extract the specific
roll-up relationships of interest.

As previously stated, the acquisition of multidimensional knowledge is done by
detecting aggregation patterns on a selected EO. Exploring an EO in its entirety to find
every potential roll-up relationship is clearly unfeasible. Noticeably, some approaches
have been devised in the literature for effectively exploring the linked data cloud
using advanced visualization techniques or providing high-level conceptualizations (e.g.,
[73, 20]). However, since in this work we focus on how to give a multidimensional
shape to linked data, we intentionally adopt a very basic approach for supporting
the user interaction with the EO. Consequently, we simply require the user to first
choose a class of interest c in an EO, to be used as an entry point for pattern
detection. This class corresponds to a hierarchy level l, so it is mapped into the MK by
creating an instance imold:c of qb4o:LevelProperty; since the members of l correspond
to the instances of c, a connection between imold:c and c is established via property
imold:asMembersHasInstancesOf (e.g., see Species in Fig. 6.8).

Every detection is focused, besides on c, on a direction dir, which can be either
outbound or inbound; this means that, given c and dir, we detect the patterns by
exploring the triples where c (or its instances) is either the subject (dir = ’outbound’)
or the object (dir = ’inbound’). Indeed, given a relationship a (either part-of or
subclass-of) between subject s and object o, a is equally detected and modeled in the
MK either by starting from s and moving to o in the outbound direction, or by starting
from o and moving to s in the inbound direction.

Each pattern is mapped into a roll-up relationship, which is systematically included
in the MK for possible reuse, while it may be included or not in the UK (hence, in
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Fig. 6.8 Mapping the MK into the EO (top) and the UK (bottom)

the user hierarchy being built) upon the user’s judgement. The detection process
is done in a breadth-first fashion: this means that c is completely analyzed in its
relationships with other classes or datatypes but no recursive detection is done to avoid
an exponential explosion. The roll-up relationships selected by the user lead to new
classes, from which the user can iteratively perform new searches.

In Section 6.5, we have defined two groups of aggregation patterns: one based on
associations and one based on generalizations. Following this distinction, two different
approaches are adopted to detect such patterns; Sections 6.6.1 and 6.6.2 will explain
them in detail. For simplicity, we will start by assuming that the two groups of patterns
are always applied separately; in Section 6.6.3 we will briefly discuss under which
conditions they can be mixed. Then, in Section 6.6.4 we illustrate the user experience
we have conceived and implemented to support the acquisition phase. Finally, in
Section 6.6.5 we discuss some issues related to collaboration and knowledge reuse in
iMOLD.

The detection of all patterns relies on a SPARQL query, to be directly submitted to
the SPARQL endpoint of a selected EO. As the goal of patterns is to reach new concepts
of interest from a starting one, the possible presence of materialized entailments in the



106 iMOLD: a collaborative approach for Exploratory BI on linked data

EO may lead to overwhelming complexity, both in the executed queries and in the
retrieved results. For this reason, the queries use specific filters aimed at avoiding using
triples derived from inferred classifications (e.g., <ex:a rdf:type ex:c> if <?a rdf:type
?b> and <?b rdfs:subClassOf ?c>); these filters are omitted in the query descriptions
given below for the sake of simplicity.

Finally, we recall that a key feature of linked data is that of creating connections
between different ontologies, so as to enable the reuse of knowledge. In an ontology, this
connection is provided by pointing to objects of a different ontology with their original
URIs. An example is the triple <dbpedia:Barcelona rdf:type yago:City108524735>,
specified in DBPedia, which reuses a class defined in YAGO, therefore providing a link
between the two ontologies. In iMOLD, the connectivity of linked data is exploited to
enable users to jump from the currently explored ontology to a different one whenever
the application of a pattern detects an external concept (i.e., one whose namespace
is different from the one of the starting concept). This transition can be seamlessly
made by launching the next searches for patterns on the SPARQL endpoints of both
ontologies and then merging the results; however, for the sake of simplicity, in the
following subsections the description of the acquisition algorithms will consider a single
endpoint.

6.6.1 Acquisition of Association-Based Patterns

In the case of associations, the goal of the patterns is to determine whether a property
p involving c can be mapped to a roll-up relationship, where the domain and range of
p are mapped to a child and a parent level (or vice versa) in the hierarchy.

Definition 12 (Association) An association is a triple a = (d, p, r) where p is a
property, d is a class that represents the domain of p, and r is either a class or a
datatype that represents the range of p. Association a is characterized by its right
cardinality rightCard(a), i.e., the average number of distinct instances of r linked
to each instance of d through p, and by its left cardinality leftCard(a), i.e., the
average number of distinct instances of d linked to each instance of r through p. Given
a = (d, p, r), we denote with a−1 its inverse, a−1 = (r, p, d).

An association a is a roll-up relationship if its multiplicity is either many-to-one
or one-to-many; in particular, a corresponds to a roll-up relationship u = a if its
multiplicity is many-to-one, to a roll-up relationship u = a−1 if its multiplicity is
one-to-many. Since the RDFS vocabulary does not provide means to describe the
multiplicity of a property, the only way to determine the multiplicity of a is through a



6.6 Acquisition 107

Table 6.2 Parameters used for detecting association patterns

Parameter Constraint Default Description

maxCard > 0 1000 Upper bound to the number of instances of c to be
sampled

multT ol ≥ 1 1.1 Tolerance for giving -to-one multiplicity to an associa-
tion

maxRels > 0 20 Upper bound to the number of roll-up relationships to
be returned

Algorithm 1 Detect Association-Based Patterns
Input pt: a pattern (either 1a, 1b, or 1c), EO: an external ontology, MK: the multidimensional knowledge, c: a

starting class, dir: a direction (either ’outbound’ or ’inbound’); maxCard, multT ol, and maxRels: the search
parameters

Output U : a set of roll-up relationships
1: if card(c) ≤ maxCard then ◃ Random offset for query q
2: offset← 0
3: else
4: offset← Random(0, card(c)−maxCard)
5: U ← ∅ ◃ Initialize U
6: q ← Query(c, dir, pt, maxCard, offset) ◃ Create q...
7: A← Execute(EO, q) ◃ ...and execute it against EO
8: for each a ∈ A do ◃ Find the roll-up relationships in A
9: if rightCard(a) ≤ multT ol then ◃ If a is many-to-one...
10: U ← U ∪ {a} ◃ ...add it to U
11: else
12: if leftCard(a) ≤ multT ol) then ◃ If a is one-to-many...
13: U ← U ∪ {a−1} ◃ ...add its inverse to U

14: MK ←MK ∪NewRURel(U) ◃ Update MK
15: U ← T op(U, maxRels) ◃ Keep the top-maxRels relationships
16: return U

statistical analysis at the instance level, which means inspecting the relationships in
which the instances of d and r are involved.

All association patterns share the need for inspecting instances. Therefore, the
detection of these patterns can be implemented with a single generic method, discussed
below. First of all, we emphasize that finding the roll-up relationships involving a given
class d (which asks for determining the multiplicities of all associations involving d by
querying their instances) may require a huge number of triples in the EO to be accessed.
On the one hand, SPARQL endpoints may fail to provide the results of such a query
within a reasonable time, as they may not have enough computational power available
—or they may even put a restriction on the maximum number of triples processable by a
query, possibly leading to an incomplete result. On the other hand, the list of resulting
roll-up relationships may be too long and potentially chaotic for the user. For this
reasons, we provide some parameters aimed at decreasing the complexity of both the
search and the listing of results, at the price of introducing some uncertainty. These
parameters are shown in Table 6.2 together with their default values and explanations.
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The pseudocode for detecting association-based patterns is shown in Algorithm
1. We start by randomly generating an offset, aimed at inducing some randomness
in the selection of the sample from the instances of c (lines 1—4). Then, a SPARQL
query q is generated by function Query (line 6); given a starting class c and an offset,
q returns a set A of associations involving c in direction dir, together with the left and
right cardinality of each association. The specific form of q depends on the pattern pt

and on the search parameters; for instance, this is the query generated for pattern (1a)
in the outbound direction (see Table A.1 in the Appendix for an explanation of the
variables):

SELECT ?p ?class (?nProp/?nO AS ?rightCard) (?nProp/?nS AS ?leftCard) ?nO ?nS
WHERE
{ SELECT ?p ?class (COUNT(*) AS ?nProp) (COUNT(DISTINCT(?o)) AS ?nO)

(COUNT(DISTINCT(?s)) AS ?nS)
WHERE
{ ?p rdfs:domain ?c . ◃ Step 1: retrieve the properties of c

?p rdfs:range ?class .
?s a ?c . ◃ Step 2: retrieve the property instances
?s ?p ?o .
?o a ?class

}
GROUP BY ?p ?class ◃ Step 3: group the property instances to get the list of associations

}

The query for pattern (1b) does not work at the class level, and adds a check on the
maximum number of instances of c to avoid overloading the endpoint:
SELECT ?p ?class (?nProp/?nO AS ?rightCard) (?nProp/?nS AS ?leftCard) ?nO ?nS
WHERE
{ SELECT ?p ?class (COUNT(*) AS ?nProp) (COUNT(DISTINCT(?o)) AS ?nO)

(COUNT(DISTINCT(?s)) AS ?nS)
WHERE
{ { SELECT ?s ◃ Step 1: select instances of c

WHERE
{ ?s a ?c .
}

LIMIT ?maxCard
OFFSET ?offset

} .
?s ?p ?o . ◃ Step 2: retrieve the properties of each s

?o a ?class . ◃ Step 3: retrieve the classification of each o

}
GROUP BY ?p ?class ◃ Step 4: group the property instances to get the list of associations

}

When pattern (1c) is applied (i.e., when literals are inspected), at Step 3 the class
of ?o, ?class, is replaced by its datatype, str(datatype(?o)). However, note that this
pattern can only be applied in the outbound direction, because literals can only be
objects in RDF triples.
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Function Execute (line 7) submits q to the SPARQL endpoint of the EO. In the
lines from 8 to 13, the associations in A are filtered according to their multiplicities and
added to U . Threshold multTol is applied to left and right cardinalities to determine
if each association a can be considered as either many-to-one or one-to-many (lines
9 and 12). Then, all roll-up relationships in U are added to the MK using function
NewRURel (line 14). The mapping of each u = (l, p, l′) into the MK is carried out as
follows:

• l and l′ are mapped into two instances of qb4o:LevelProperty; the members
of l and l′ correspond to the instances of the domain and range of p, so a
connection with the corresponding classes in the EO is established via property
imold:asMembersHasInstancesOf;

• property p is mapped into an instance of qb4o:HierarchyStep, which is linked to
the two corresponding qb4o:LevelPropertys by means of the qb4o:parentLevel and
qb4o:childLevel properties, and also linked to its counterpart on the EO by means
of the imold:correspondsTo property;

• the newly-created instances of qb4o:LevelProperty and qb4o:HierarchyStep are
enriched with metadata about their labels, descriptions, and multiplicities.

Finally, U is sorted and its top-maxRels elements are returned to the user, who
will select those to be included in her UK. As to sorting, since computing graph-based
ranking measures through a SPARQL endpoint would be hardly feasible, a local ranking
strategy must be defined. To this end, let u be a roll-up relationship and c be the level
of u corresponding to the starting class; we claim that a valuable indicator for the
relevance of u is given by the support supp(p) of p in c, i.e., the percentage of instances
of c that are involved in p.

Example 18 With reference to the example depicted in Fig. 6.5.a, Fig. 6.8 (top) shows
the relationship between the MK and the EO. For instance, level Species in the MK has
instances of class ex:Species in the EO as members. Fig. 6.8 (bottom) shows how the
UK is related to the MK. Here, we represent the fact that user John Doe is interested
in species, families, and in their roll-up relationship with semantics belongsTo.

6.6.2 Acquisition of Generalization-Based Patterns

Generalization-based patterns are cheaper to detect than association-based ones because
(i) no query at the instance level is required and (ii) the only inter-class link that
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must be considered is rdfs:subClassOf. On the other hand, their interpretation is less
intuitive, because the kind of transformations applied to concepts move them along
the instantiation-classification dimension. Whereas distinct classes always correspond
to distinct levels in association-based patterns, in generalization-based ones distinct
subclasses that belong to the same superclass can be grouped together to become
members of a single level, which corresponds to the powertype of the subclasses.
Furthermore, differently from association-based patterns, generalization-based ones
always require additional information from the user to give names to powertypes.

Definition 13 (Generalization) A generalization is an association g = (d, p, r)
where d and r are the subclass and the superclass, respectively, and p = rdfs:subClassOf.
We denote with PT (g) the (user-provided) powertype to which g belongs.

Consistently with our acquisition approach, the generalizations g involving a given class
c are detected by navigating the rdfs:subClassOf properties according to direction dir:
the superclasses of c are found by bounding d to c and taking dir = ’outbound’, while
the subclasses of c are found by bounding r to c and taking dir = ’inbound’. In both
cases, an interaction with the user is necessary to filter out non-relevant generalizations;
more specifically:

• A class c may be specialized according to different powertypes. Since powertypes
are normally not modeled in RDF, when operating in the inbound direction the
user must manually select the subclasses of c that belong to the powertype of
interest and provide its name.

• Multiple specialization is allowed in RDF. Thus, when operating in the outbound
direction, the user must manually select one or more superclasses of interest when
searching for generalizations of c.

To create multi-level aggregation hierarchies, generalizations must be iteratively
navigated. This can be done adopting either (i) a top-down strategy, where a general
concept is selected first and the inbound direction is followed to iteratively find its
subclasses; or (ii) a bottom-up strategy, where a detailed concept is selected first and
the outbound direction is followed to iteratively find its superclasses; or (iii) a mix of
these two. In any case, the identification of a powertype leads to creating a new level
in the MK.

The pseudocode for detecting generalization-based patterns —working for both the
top-down and bottom-up strategies— is shown in Algorithm 2. The first operation (line
2) is the creation of a SPARQL query q that returns the set S of either the superclasses
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Algorithm 2 Detect Generalization-Based Patterns
Input EO: an external ontology, MK: the multidimensional knowledge, c: a starting class, dir: a direction (either

’outbound’ or ’inbound’), H: a hierarchy including a level lc corresponding to c
Output U : a set of roll-up relationships
1: U ← ∅ ◃ Initialize U
2: q ← Query(c, dir) ◃ Create q...
3: S ← Execute(EO, q) ◃ ...and execute it against EO
4: for each s ∈ S do ◃ Find the roll-up relationships corresponding to S
5: if dir =’inbound’ then ◃ Moving top-down: s is a subclass of c
6: g = (s, rdfs:subClassOf, c)
7: if H only includes level lc then ◃ First iteration
8: U ← {(lc, subClassOf, P T (g))}
9: else ◃ Other iterations
10: U ← {(lc, subClassOf, P T (g)), (P T (g), subClassOf, P ar(lc))}
11: else ◃ Moving bottom-up: s is a superclass of c
12: g = (c, rdfs:subClassOf, s)
13: U ← {(lc, subClassOf, P T (s))}
14: MK ←MK ∪NewRURel(U, H) ◃ Update MK
15: return U

or the subclasses of c, according to direction dir. For instance, the query generated for
dir = ’inbound’ is as follows:

SELECT DISTINCT ?type
WHERE
{ ◃ Retrieve the superclasses of c

?type rdfs:subClassOf ?c .
}

Then, function Execute (line 3) submits q to the SPARQL endpoint of the EO.While
mapping each class of S into a generalization g is trivial because it simply depends
on the direction dir (lines 6 and 12), mapping each g into a roll-up relationship in U

and then into the MK is more complex, as the way the mapping is done also depends
on the current state of the aggregation hierarchy, H. To explain how this is done, for
simplicity we restrict to the case in which pattern (2a) is applied, i.e., the members
of the bottom level of the hierarchy to be built correspond to instances (the mapping
process for pattern (2b) is similar). We start by describing the process for the top-down
strategy (dir = ’inbound’, lines 5—10), using Fig. 6.9 as a reference example.

0. Before the first iteration, the user has selected the starting class c (Animal in
Fig. 6.9.a) which has been mapped into a level of the MK (i.e., an instance of
qb4o:LevelProperty) as already described.

1. At the first iteration (line 7), pattern (2a) is applied and the subclasses of c are
found (e.g., Mammal in Fig. 6.9.b). For each powertype gs declared by the user,
a new level lgs (Class in the example) is created in the MK as an instance of
qb4o:LevelProperty and the corresponding subclasses are mapped in the MK as
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Fig. 6.9 Top-down strategy for detecting generalization-based patterns; the link
between the instances in the MK and their classes (i.e., qb4o:LevelProperty and
qb4o:HierarchyStep) is omitted for simplicity
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members of lgs via property imold:asMembersHasSubClassesOf. Moreover, the
imold:asMembersHasInstancesOf property of the level lc corresponding to c is
pushed down to the subclasses of c (in the example, from Animal to Mammal and
its siblings), to denote that the members of lc are currently represented by all
the instances of these subclasses. Finally, a new roll-up relationship from lc to
lgs is created as an instance of qb4o:HierarchyStep.

2. At each following iteration (line 9), let Par(lc) be the parent of lc in H. For
instance, taking Fig. 6.9.c, let now c correspond to Canid, which implies that lc

and Par(lc) correspond to Animal and Family, respectively. Even in this case,
after the subclasses of c have been found (e.g., Dog), a new level l is created in the
MK for each powertype declared by the user (e.g., Species). However, since the
new level must be inserted in the hierarchy between lc and Par(lc), the existing
roll-up relationship from lc to Par(lc) is replaced by two roll-up relationships,
one from lc to lgs and one from lgs to Par(lc).

Note that, when a top-down strategy is followed to build a hierarchy H, the domain
of H (meant as the domain of the finest level in H) progressively gets more selective
as new levels are explored. For instance, in the example of Fig. 6.9, from all animals it
shrinks to all canids. So, if all animals are actually relevant to the user, she has to
explore all the other subclasses (by explicitly navigating through reptiles, birds, etc.).
This is because Alg. 2 adopts a “lazy”, class-wise approach, i.e., it maps into the MK
(as members) only the classes that are explicitly selected by the user. Remarkably, the
algorithm can be easily modified to implement a more “eager”, level-wise approach
where exploration is implicitly carried out by levels. For instance, at the iteration
depicted in Fig. 6.9.c, this means enabling the user to select the subclasses of interest
not only from the subclasses of Canid, but even from those of Felid and all the other
families.

To conclude this section, we briefly exemplify the process for the bottom-up strategy
(dir = ’outbound’, lines 11—13). Let c be the starting class, s one of its superclasses,
and gs its powertype. Differently from the top-down case, here the hierarchy domain
progressively enlarges as new levels are discovered, so when the roll-up relationship
from lc to lgs is added, lc must be renamed to s. Let for instance Dog be the starting
class c, initially represented in the MK with a level lc named Dog as depicted in
Fig. 6.10. If Canid is selected in the EO as a relevant superclass of Dog, with powertype
Species, a new level named Species is created, lc is renamed to Canid, and a new roll-up
relationship from Canid to Species is added.



114 iMOLD: a collaborative approach for Exploratory BI on linked data

imold:Dogex:Dog
imold:asMembersHasInstancesOf

imold:Speciesex:Canid
imold:asMembersHasSubClassesOf

ex:Dog imold:Canid

imold:subClassOf1

qb4o:parentLevel

qb4o:childLevelimold:asMembersHasInstancesOf

a)

b)

MKEO

Fig. 6.10 Bottom-up strategy for detecting generalization-based patterns

6.6.3 Mixed patterns

Association- and generalization-based patterns explore different but coexisting aspects
of an EO. This means that, starting from any class in the EO, both kinds of patterns
can succeed in detecting (and mapping to the MK) roll-up relationships. However,
because of their different mapping of classes into levels, a mix of association- and
generalization-based patterns is feasible only under specific conditions. Firstly we
will examine how associations can be inspected after applying generalization-based
patterns, then how generalizations can be inspected after applying association-based
patterns.

Consider a linear hierarchy H of n levels built by generalization-based patterns,
where l1 is the finest level and ln is the coarsest one. Now let a = (c, p, r) be a
one-to-many association, where c is a class linked to a level of H; two cases arise:

• c is linked to l1, so the members of l1 correspond to the instances of all
the classes in the EO (including c) that are linked to l1 by means of the
imold:asMembersHasInstancesOf property. Then the roll-up relationship u =
(lc, p, lr) can be added to H (clearly, since l1 also has l2 as a parent, u is added
as a new branch of the hierarchy). However, since the members of l1 also include
the instances of other classes (i.e., the selected siblings of c), there is no certainty
that a holds for the other classes as well, possibly resulting in a low support
for u. An example of this situation is presented in Section 6.7 with reference to
extending the domain of level Museum.

• c is linked to li, i = 2, . . . , n, so the members of li correspond to the selected
subclasses of all the classes in the EO that are linked to li by means of the
imold:asMembersHasSubClassesOf property. Since in this case the instances of c

have no correspondence in H, a cannot be mapped into a roll-up relationship.
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Let us now examine the opposite situation. Let H be built using association-based
patterns; then the members of li (i = 1, . . . , n) correspond to the instances of the class
in the EO that is linked to li by means of the imold:asMembersHasInstancesOf property.
Now let c be a class linked to a level lc of H, and g = (d, p, c) be a generalization
detected via a top-down strategy. Recalling how the first iteration of the top-down
strategy is done (Section 6.6.2), selecting g causes a transformation of lc: indeed, its
members will no more correspond to the instances of c, but to the instances of the
selected subclasses of c (i.e., d and its sibling possibly selected). As a result, the
associations previously detected from (and to) c may not hold anymore and the current
roll-up relationships involving lc may be invalidated. Therefore, g can be safely selected
only if every association that previously involved c is also valid for at least one of
its selected subclasses. Finally, let g′ = (c, p, r) be a generalization detected via a
bottom-up strategy. The transformation that lc undergoes if g′ is selected is just an
extension of its domain, in which its previous members (i.e., the instances of c) are
preserved and possibly joined by the instances of the selected siblings of c. Therefore,
the requirement for the associations involving c to be still valid is always satisfied in
this case.

Example 19 Consider the situation depicted in Fig. 6.11, in which two different
EOs are used: ex1, which models single animals, and ex2, which models the species
taxonomy. The user first selects the Animal concept in ex1, which leads to creating
level Animal in the MK. Then, by detecting pattern (1a) she finds roll-up relationship
belongsTo, which leads her to discover the Species level and add it to the hierarchy.
Within ex2, the user now detects pattern (2a) using the top-down strategy and selects
concept Mammal with powertype Class, so level Class with member Mammal can be
added to the hierarchy. Finally, the user detects pattern (2b) and selects concepts Canid
and Felid with powertype Family, so the hierarchy is completed with level Family.

6.6.4 User Experience

Implementing the acquisition phase of iMOLD poses one more important challenge,
that is, how to provide a clean and simple user interface that hides the complexity of the
detection process to let the user focus on the creation of hierarchies. We preliminarily
note that the variety and veracity aspects of public ontologies make a complete
automation of the acquisition process unfeasible, due to the inherent difficulties in
reliably inferring the quality and relevance of the data explored. Additionally, there is a
large degree of subjectivity in judging both the quality and the relevance of ontological
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Fig. 6.11 Detecting mixed patterns in two linked EOs

data, so these evaluations may change from user to user. Finally, some concepts (e.g.,
powertypes) must be explicitly provided by the user. As a result, we claim that some
degree of user supervision is mandatory to ensure the effectiveness of acquisition.

Acquisition builds on two basic operations:

• Select a concept of interest: with this operation, the user locates a class
on a selected EO to identify a starting point for acquisition, i.e., to enable the
subsequent detection of patterns. In practice, the user simply has to provide a
search string and the ontology to query; then the system queries the SPARQL
endpoint and retrieves a list of matching classes (together with their metadata).
The matching classes are shown to the user, ranked by decreasing cardinalities
(i.e., number of instances). As the user selects one class, her selection is stored in
the MK and the UK.

• Detect a pattern: with this (iterative) operation, the user aims at creating a
hierarchy involving the previously-selected class. Once the user has selected the
specific pattern to be detected, the SPARQL endpoint of the EO is queried to
find new roll-up relationship and update the MK accordingly. The system shows
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the list of candidate relationships, and as the user selects one (or more) of the
results, her selections are saved in the UK as shown in Fig. 6.8.

To increase the effectiveness and the inclusiveness of the user experience, iMOLD
proposes two alternative (and freely interchangeable) interaction approaches, both
supporting the basic operations described above but tailored on users with different
background and expertise. Both approaches are supported by the combined view shown
in Fig. 6.12, which includes two panels: an ontological panel where the user has a
picture of the classes and properties of the EO (represented with black dots and labeled
arcs, respectively), and a multidimensional panel where the user sees how classes and
properties translate to an aggregation hierarchy using a graphical notation inspired by
the Dimensional Fact Model [63] (levels and roll-up relationships are represented with
white dots and directed arcs, respectively).

• The ontology-driven experience is oriented to users who have good familiarity
with ontologies and semantic web. Here the focus is set on the EO, a low-level
view of the IO is provided, and a more intense user interaction is required. The
user has a strict control over the acquisition phase; she can precisely specify the
aggregation patterns to detect and finely tune the search parameters shown in
Table 6.2 to refine the search based on her preferences. By clicking on a class in
the ontological panel, a wizard for detecting a pattern is launched.

• The OLAP-driven experience is targeted to users who have good familiarity with
the field of data warehousing and multidimensional modeling. Here the focus
is set on the hierarchy being built, a high-level view of the IO is provided, and
a lower degree of interaction is required. In this case pattern detection and
search parameters are transparent to the user, who simply interacts by iteratively
selecting, given a level l of interest on the multidimensional panel, one or more
multidimensionally-inspired operations:

– the search for a parent level of l, which triggers the detection of association-
based patterns and that of generalization-based ones with top-down strategy;

– the search for a child level of l, which triggers the detection of association-
based patterns;

– the extension of the domain of l, which triggers the detection of generaliza-
tion-based patterns: with bottom-up strategy first, to find the parent levels
of l (i.e., the superclasses of the class corresponding to l), and then with



118 iMOLD: a collaborative approach for Exploratory BI on linked data

Fig. 6.12 The user interface of iMOLD, featuring the ontological (left) and the multidi-
mensional (rigth) panel

top-down strategy to find new members for l and its parent levels (i.e., the
subclasses of the superclasses previously found).

For every operation, the system uses for all search parameters the default values
shown in Table 6.2.

6.6.5 Collaboration and Reuse

One of the features of iMOLD is that of enabling users to collaborate by sharing and
reusing their findings. This can be achieved thanks to the MK and the UK. The MK
stores all the levels and roll-up relationships ever selected by all users, thus avoiding
further accesses to the SPARQL endpoint for a user interested in a concept previously
explored by others. The UK shows which levels and roll-up relationships have been
selected by users, thus enabling each user to share her point of view on analyses with
the others. Both activities take place during the assessment phase (see Section 6.4),
and could employ advanced techniques for ontology exploration such as [73].

During the acquisition phase, collaboration is achieved in two distinct ways. On
the one hand, the ranking of the roll-up relationships discovered by Algorithm 1 is
completed by showing, for each relationship, with which frequency it has been selected
by other users, i.e., its “popularity”. On the other hand, the user experience described
in Section 6.6.4 is further enhanced by including a specific suggest operator to be
used, while exploring a given concept, to discover what previous users have done while
exploring that same concept. By choosing this operator, the user can see the list of
the roll-up relationships ever selected by other users.
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Computing the popularity and implementing the suggest operator both require to
measure the frequency of a roll-up relationship a, which entails counting the instances
of property imold:RollupPreference related to the qb4o:HierarchyStep that corresponds
to the property and the two classes involved in a (see Figure 6.3). For instance, the
SPARQL query that ranks the roll-up relationships with child ?childLevel stored in the
MK with according to their frequency can be written as follows:

SELECT ?parentLevel ?property (COUNT(?pref) as ?frequency)
WHERE
{ ?pref a imold:RollupPreference ;

imold:isRollupPreferenceOf ?rollupRel .
?rollupRel a qb4o:HierarchyStep ;

qb4o:childLevel ?childLevel ;
qb4o:parentLevel ?parentLevel ;
imold:correspondsTo ?property .

?childLevel a qb4o:LevelProperty .
?parentLevel a qb4o:LevelProperty

}
GROUP BY ?parentLevel ?property
ORDER BY ?frequency DESC

6.7 Case Study and User Evaluation
To demonstrate the potential of our approach, in the first part of this section we
present a case study in which a fictional user builds a hierarchy, one step at a time,
by exploring a small portion of DBpedia. In the second part, we propose a more
quantitative evaluation by discussing the results of some tests made with real users.

To evaluate the iMOLD approach we chose to focus on the so-called cross-domain
ontologies, as their chaotic status makes it harder for both humans and machines to
efficiently extract structured and coherent knowledge. While the generic theme of
this kind of ontologies opens to a broad set of examples in different domains, some
degree of uncertainty and incorrectness appears in the data. Indeed, differently from
small and confined ontologies that are typically developed in-house and provide a
reliable representation of the area of interest, big and cross-domain ontologies are more
inclined to errors and imprecisions, especially if they are built through a collaborative
effort across the web. In particular, we focus the case study on DBpedia, one of the
best-known public ontologies available on the web, which is also compliant with the
linked data principles and covers a wide range of domains.

The prototype we built is implemented as a web application and fully supports the
user experience described in Section 6.6.4. The back-end functionalities are implemented
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in Java; in particular, we extensively rely on the Jena Library, as it provides solid
APIs for the communication with remote SPARQL endpoints and for in-memory
manipulation of a local ontology. As to the IO, we currently store it within a simple
RDF file; however, the migration to a triplestore is planned in future evolutions of the
prototype. Finally, we used Javascript to implement the user interface and we adopted
the D3 library for the graphical visualization of the IO.

6.7.1 Case Study

As a case study we consider a social BI scenario [43] in which a fictional user user
is collecting and analyzing reviews about museums and is interested in discovering
a hierarchy rooted in museums. The most obvious candidate as a starting concept
is class dbo:Museum, which currently hosts 1884 instances. A few simple queries on
dbo:Museum show that the distinct properties that make use of its instances as either
domain or range in the triple are 387 and 156, respectively, for a total of 125086
instances. Although not impressive, this numbers prove that a manual approach to
identify the properties that map to roll-up relationships would be at least wearying, if
not unfeasible.

Table 6.3 Detecting the parents of Museum

p (property/semantics) r (range/parent) supp(p) supp(r)
dbp:imagesize xsd:integer 64.5% —
dbp:established xsd:integer 50.7% —
dbo:location dbo:City 40.9% 1.4%
dbo:location dbo:Country 40.6% 4.8%
dbo:location yago:MemberStatesOfTheUnitedNations 32.6% 36.6%
dbo:location dbo:Settlement 32.5% 36.6%
dbo:location yago:MemberStatesOfNATO 18.6% 85.2%
dbo:location yago:CountriesBorderingTheAtlanticOcean 17.3% 38.6%
dbp:location yago:English-speakingCountriesAndTerritories 17.0% 21.8%
dbp:visitors xsd:integer 14.9% —

To begin the exploration of the EO following the ontology-driven experience,
we assume that the user clicks on the dbo:Museum class on the ontological panel
and activates the detection of association-based patterns in the outbound direction
to find the parents of level Museum. The results of the application of association-
based patterns are shown in Table 6.3, where each row corresponds to a many-to-one
association a = (d, p, r) with domain d = dbo:Museum and range r, i.e., to a roll-up
relationship with semantics p from Museum to r; supp(p) is the percentage of instances
of dbo:Museum for which p is present, while supp(r) is the percentage of instances of r

for which p is present.
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Among the associations where r is a class (i.e., those detected with patterns (1a)
and (1b)), the only relevant property is dbo:location, which provides the geographical
position of each museum. Interestingly, this property links to instances that belong
to different classes (see rows 3–9 of Table 6.3). This is due to multiple classification,
which is widely used in DBpedia. For example, objects like dbr:Italy and dbr:Spain are
not just instances of dbo:Country, but also of yago:MemberStatesOfTheUnitedNations
and yago:MemberStatesOfNATO. The iMOLD interface helps the user in this case by
orienting her towards the classes with most references (i.e., higher support). As to
the associations where r is a literal (i.e., those detected with pattern (1c)), property
dbp:established (which indicates when each museum was opened) could be interesting
for analysis. Conversely, properties dbp:imagesize and dbp:visitors are not likely to be
selected by the user, as the first one is clearly not relevant while the second one has a
very low support.

For the sake of the example, we assume that the user selects association (dbo:Museum,

dbo:location, dbo:City). The following detection of association-based patterns from
dbo:City leads to finding new associations, among which the most relevant is (dbo:City,

dbo:location, dbo:Country). Assuming that this one is selected, a 3-level linear hierarchy
is eventually built: Museum, City and Country.

Table 6.4 Extending the domain of level Museum

r (superclass/new name of level) d′ (sibling class/member for new level) card(d′)
dbo:Building dbo:Castle 457

dbo:HistoricBuilding 7024
dbo:Hospital 1855
dbo:Hotel 1200
dbo:Library 889
dbo:Prison 620
dbo:ReligiousBuilding 3731
dbo:Restaurant 725
dbo:ShoppingMall 2499
dbo:Skyscraper 3

Back to our social BI scenario, we now assume that the user wants to broaden
its scope from museums only to other places of interests that are subject to reviews,
such as hotels and restaurants. In the context of the OLAP-driven experience, she can
click on the Museum level of the multidimensional panel and activate the operation
to extend the domain of that level. As a consequence, the generalizations g = (d, p, r)
with domain d = dbo:Museum and property p = rdfs:subClassOf are explored to find
the superclasses r of dbo:Museum, then for each r its other subclasses d′ are explored
to find candidate new members for level Museum. The results are shown in Table 6.4.
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Class dbo:Museum has only one superclass, dbo:Building. The user can now select the
siblings that relate the most to her area of interest (e.g., dbo:Hotel and dbo:Restaurant)
and provide the name of the powertype (in this case, Type could be an option). As a
result, the hierarchy is changed by (i) renaming level Museum into Building, whose mem-
bers are now the union of the instances of dbo:Museum, dbo:Hotel, and dbo:Restaurant;
and (ii) adding level Type as a parent of Building, with members Museum, Hotel, and
Restaurant. As explained in Section 6.6.3, the roll-up relationship from Museum to City
is not affected by the transformation of Museum into Building, but its support may
be changed; hence, the existence of associations (dbo:Hotel,dbo:location,dbo:City) and
(dbo:Restaurant,dbo:location,dbo:City) should be checked.

Table 6.5 Extending the domain of level Type

r (superclass/new name of level) d′ (sibling class/member for new level) card(d′)
dbo:ArchitecturalStructure dbo:AmusementParkAttraction 499

dbo:MilitaryStructure 372
dbo:Tunnel 70
dbo:Venue 657

The domain extension operation can be iteratively activated to explore a larger
part of the EO. For instance, extending level Type leads to searching for the siblings of
dbo:Building; the results are shown in Table 6.5.

If dbo:AmusementParkAttraction and dbo:Venue are selected as relevant concepts and
the new powertype is named Category, the hierarchy is further extended by (i) renaming
Building into ArchitecturalStructure and adding new members (i.e., the instances of
dbo:AmusementParkAttraction and dbo:Venue); and (ii) adding level Category as a parent
of Type, with members Building, AmusementParkAttraction, and Venue. Level Type does
not incur in any change; however, further user explorations will be required to add the
specializations of dbo:AmusementParkAttraction and dbo:Venue as new members of this
level.

The final shape of the hierarchy is the one shown in Fig. 6.12.

6.7.2 User Evaluation

To give a quantitative assessment of the benefits of our approach and compare the
effectiveness of the ontology-driven and OLAP-driven scenarios, we conducted a set
of tests with a group of 21 real users, mainly PhD and master students with basic or
advanced knowledge of ontologies and multidimensional modeling. The goal of the
tests was to evaluate the execution of the same task (i.e., build a hierarchy starting
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Table 6.6 Average results of user test for the three tasks (times are expressed in minutes)

Figure SPARQL-based task Ontology-driven task OLAP-driven task
Total time 71.6 26.7 21.8

- Exploration time - 19.6 14.7
- System time - 3.0 3.3
- Browsing time - 4.1 3.8

Num. interactions 11 27 25
Score (1..5) 2.3 3.4 3.1

from a concept selected from the DBpedia ontology) according to the two interaction
scenarios of iMOLD.

To prepare the tests, three concepts in different application domains were chosen
(namely banks, museums, and screenwriters), and for each concept a task was stated
using either the multidimensional or the ontological terminology (e.g., extend the
domain of level Museum by building a multi-level hierarchy to include also hotels and
other types of architectural constructions, then build a hierarchy to aggregate these
constructions according to the currencies of the countries they are located in). Each user
was asked to read an instruction sheet explaining the iMOLD goals, how to operate the
interface in both scenarios, and the five aggregation patterns; then, (s)he was asked to
execute two tasks, one for each interaction scenario, on two randomly-chosen domains.
To determine a testing baseline, we also asked to execute an additional task using
plain SPARQL to the users who had some knowledge of this language; in this case, the
users were relieved from the construction of the hierarchies in the IO and only had to
manually draw the inferred hierarchy.

Table 6.6 shows the average results obtained for each task. By monitoring the user
activities on the prototype, we split the time taken to complete each task (total time)
into three blocks: exploration time (i.e., the time taken by the user to check the status
of the hierarchy and choose the next operator to be applied), system time (i.e., the time
taken by the system to detect one or more patterns and provide the list of candidate
relationships), and browsing time (i.e., the time taken by the user to browse these
relationships and select one or more of them). The table also shows the average number
of interactions made by each user, referring to the number of SPARQL queries, of
pattern searches, and of multidimensional operations, respectively for SPARQL-based,
ontology-driven, and OLAP-driven tasks. Finally, the hierarchies built by each user
have been manually evaluated for correctness and completeness and scored on a scale
from 1 (worst result) to 5 (best result); row score shows the average results.

In SPARQL-based tasks, users have mostly failed in achieving an acceptable result
despite spending a considerable amount of time. The main difficulties encountered
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are the design of the queries to apply association-based patterns (an activity that
took away almost half of the total time) and the interpretation of generalization-based
patterns: although most users built a correct hierarchy with two levels, no one was
able to build a correct hierarchy with three levels. This is due to the fact that mere
query results obviously do not support users in finding the correct interpretation key.

Conversely, the iMOLD prototype enabled users to adequately complete the exercise
in a short time. Indeed, manually writing the queries requires a lot more time than
simply launching the queries automatically written by iMOLD; so, in the same time
iMOLD users employed to acquire a comprehensive picture of the ontology, SPARQL
users could only catch a very partial glimpse of it. Users spent less time on OLAP-
driven tasks than on ontology-driven ones (22 minutes against 27), showing that
the OLAP-driven experience succeeds in reducing the amount of work for the user.
Interestingly, however, most users declared to feel more comfortable with the ontology-
driven experience, especially when mixing patterns was necessary: in fact, the low-level
view adopted for the former experience reduces the potential misinterpretations of
the multidimensional mapping of the patterns, thus enabling users to better identify
the correct relationships. This is reflected in the results, where the average score for
ontology-driven tasks is slightly better than that of the OLAP-driven ones (3.4 against
3.1); one more clue in this direction comes from the fact that the best results in the
OLAP-driven task came from the users who had already carried out the ontology-driven
one (3.3 against 2.8).

To measure the efficiency of iMOLD, we also measured the average system and
decision times for the single patterns. The results show that the slower pattern to
be executed is 1b in the inbound direction (15 seconds on average). This is expected,
because many-to-one relationships in EOs tend to be expressed from subjects to objects
rather than vice versa (i.e., one-to-many relationships as the one in Fig. 6.6 are less
used); as a result, the number of triples to be considered by the SPARQL query in the
inbound direction is sensibly higher, causing higher system times. On the other hand,
pattern 1b in the outbound direction turns out to be the one with the highest decision
time (38 seconds on average, vs. a few seconds for generalization-based patterns). This
is also expected, as this pattern is the one that statistically returns the highest number
of candidate relationships.
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6.8 Conclusions
In this chapter we have presented iMOLD, an approach to build aggregation hierarchies
at exploration time to integrate the corporate cubes with situational data. We assume
these situational data come in the form of linked data in RDF format, whose lack of
concrete schema presents important challenges. Specifically, we have identified five
different patterns that go beyond the classical functional dependencies approach for
multidimensional design, and also consider the possibility of defining aggregations
hierarchies based on taxonomies and combinations of both.

Though iMOLD is a significant step towards integrating linked data into corporate
cubes, some relevant aspects still need to be considered. First of all, there is a possibility
that some hidden FDs are present in linked data; for instance, with reference to our
working example, each animal may be associated to its species and family, but an
explicit connection between species and families may be missing in the source ontology.
In this case, using algorithms for instance-based discovery of approximate FDs (e.g.,
TANE [78]) would enable hierarchies to be more accurately reconstructed. One more
issue is related to automatic recognition and management of cycles in source data,
which can give rise either to shared hierarchies (e.g., a building is located in a country
and was designed by an architect who was born in a country, but the two countries may
be different) or to convergences (e.g., a museum is located in a country and is managed
by an institution of the same country). Finally, the approach could be extended to
detect not only hierarchies to enrich corporate cubes, but also new cubes from linked
data.





Chapter 7

Profiling hidden schemata on
schemaless data

In this chapter we propose a technique, called schema profiling, to capture the hidden
rules explaining the use of different schemata within a collection in document-oriented
databases; we express these rules in the form of a decision tree (schema profile).
Consistently with the requirements we elicited from real users, we aim at creating
explicative, precise, and concise schema profiles. The algorithm we adopt to this end is
inspired by the well-known C4.5 classification algorithm and builds on two original
features: the coupling of value-based and schema-based conditions within schema
profiles, and the introduction of a novel measure of entropy to assess the quality of a
schema profile. A set of experimental tests made on both synthetic and real datasets
demonstrates the effectiveness and efficiency of our approach.

7.1 Introduction
One of the main advantages of schemaless DBMSs is the flexibility the designers (and
the implementers) have in changing data structures. Such flexibility reduces the time
needed to release new versions of the applications and makes it easier to add new
information, to handle emerging requirements, and to recover from errors occurred
during schema design. These features are particularly relevant for development teams
adopting agile methodologies, which are inherently iterative and evolutive. Most
frequently, schema changes are due to either (i) evolutions in time of the application
logic that manages data, or (ii) new user requirements, or (iii) the need for uniformly
handling instances with specific features. Typical changes consist in adding or dropping
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some attributes, changing their names or types, and “restyling” the structure of the
instances for example by moving a set of attributes into a sub-structure.

Unfortunately, this increased flexibility and the absence of a unique, well-defined
schema turn to disadvantages when moving from operational applications to analytical
applications and business intelligence. Business intelligence analyses typically involve
large sets of data, so a single analysis often involves instances with different —and
possibly conflicting— schemata; in turn, this requires some extra effort to understand
the rules that drove the use of alternative schemata, and an integration activity to
identify a common schema to be adopted for analysis. These task are even harder
when no detailed documentation is available, because the analyst has to search for the
necessary knowledge either in the code that manages data or in the data themselves.

In this chapter we propose a technique to capture the hidden rules explaining the
use of different schemata within a collection in document-oriented databases. We call
this activity schema profiling. Schema profiling technique is beneficial in different
contexts:

• when trying to decode the behavior of an undocumented application that manages
a document-base;

• when carrying out a data quality project on schemaless data;

• when adopting a schema-on-read approach to query a document-oriented database
[109, 34];

• when designing a data warehouse on top of a schemaless data source, for instance
a corporate data lake.

Identifying the rules of schema usage is much like building a descriptive model
in a classification problem. A classifier is a model that predicts to which of a set of
classes a new observation belongs, based on a training dataset containing observations
whose class membership is known. Besides for predicting, classifiers are also used to
describe the rules for assigning a class to an observation based on the other observation
features —which corresponds to our goal if we consider the schema of a document as
its class. So we can rely on the existing literature on classification to build schema
profiles; in particular, based on the requirements we collected from potential users of
our approach, among the different types of classifiers we consider decision trees.

Straightly reusing traditional decision trees for schema profiling would mean classi-
fying documents based on the values of their attributes only. However, this would often
lead to trees where a single rule serves different classes (i.e., different schemata are
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{	  	  "Ac&vityType"	  :	  "Walk",	  
	  	  	  "User"	  :	  	  
	  	  	  {	  	  "UserID"	  :	  23,	  
	  	  	  	  	  	  "Age"	  :	  42	  
	  	  	  	  }	  
}	  

Ac&vityType	  

CardioOn	   User	  

BPM	   User.Age	  

Ac&vityType=“Run” Ac&vityType=“Walk”

CardioOn=true CardioOn=false ∃	  

s2 s3 s4 s5

∃	  

s1

“Bike”

s3 s1
∃	  

∃	  

{	  	  "Ac&vityType"	  :	  "Run",	  
	  	  	  "Dura&on"	  :	  10,	  
	  	  	  "CardioOn"	  :	  true,	  
	  	  	  "BPM"	  :	  80	  
}	  

{	  	  "Ac&vityType"	  :	  "Run",	  
	  	  	  "Dura&on"	  :	  20,	  
	  	  	  "CardioOn"	  :	  true,	  
	  	  	  "BPM"	  :	  	  
}	  

{	  	  "Ac&vityType"	  :	  "Run"	  
}	  

{	  	  "Ac&vityType"	  :	  "Walk",	  
	  	  	  "User"	  :	  	  
	  	  	  {	  	  "Name"	  :	  "Jack",	  
	  	  	  	  	  	  "Age"	  :	  61	  
	  	  	  	  }	  	  
}	  

{	  	  "Ac&vityType"	  :	  "Walk",	  
	  	  	  "Dura&on"	  :	  60	  	  
}	  

{	  	  "Ac&vityType"	  :	  "Bike",	  
	  	  	  "Dura&on"	  :	  130	  	  
}	  

v1 v2

v3

v4

v5 v6

v7

d1
d2

d3

d4

d5
d6

d7User.Age≤60 User.Age>60

Fig. 7.1 A schema profile in the physical fitness domain

explained by the same rule), which would be give an imprecise information. To address
this issues, in our technique documents are also classified using schema-based conditions
related to the presence or absence of attributes. To better understand this point, con-
sider for example Figure 7.1, showing a portion of a decision tree (which we call schema
profile) built in the domain of physical fitness to profile a collection of documents
generated by training machines or by their users through mobile applications. Each
internal node in the tree is associated to a document attribute a and can express either
a value-based condition (white box; each outgoing arc is related to one or more values
of a, e.g., User.Age < 60) or a schema-based condition (grey box; the two outgoing arcs
represent the presence or absence of a in the document, e.g., ∃BPM). Each path in
the tree models a rule; it leads to a leaf (represented as a circle) that corresponds to
a schema found for the documents that meet all the conditions expressed along that
path (document examples are shown in dashed boxes). So, for instance, schema s2 is
used in all the documents for which ActivityType = “Run”, CardioOn = true, and field
BPM is present (independently of its value, or even if a value is missing).

Another drawback of traditional decision trees is that they often give several rules
for the same class. While this may be correct for some specific collections (e.g., schema
s1 in Figure 7.1 appears in two leaves, i.e., it is explained by two different rules), in
general we wish to keep the number of rules to a minimum aimed at given users a more
concise picture of schema usage. This is achieved in our approach by adopting a novel
measure of entropy to be coupled with the one typically used to characterize and build
decision trees.

The outline of this chapter is as follows.
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• In Section 7.2 we discuss the related literature.

• In Section 7.3 we analyze the desiderata of real users that inspired our approach.

• In Section 7.4 we provide the necessary formal background.

• In Section 7.5 we introduce a novel measure of entropy, called schema entropy,
which contributes to assess the quality of a schema profile.

• In Section 7.6 we describe an algorithm that implements a divisive approach to
deliver precise, concise, and explicative schema profiles by mixing value-based
and schema-based conditions to better capture the rules explaining the use of
different schemata within a collection.

• In Section 7.7 we present a set of experimental results on both synthetic and real
datasets.

• In Section 7.8 we draw the conclusions.

7.2 Related Literature
The task of schema discovery is not new to the academic world. Early works focused on
finding ways to describe semi-structured data retrieved from web pages and were mainly
based on the Object Exchange Model (OEM). The general idea was to automatically
derive a concise [128, 172, 118] or approximate [127, 174] labeled graph model to
allow efficient querying of data. In the latter group, approximation was achieved by
applying clustering algorithms on the data, so that a different model could be defined
for each syntactically-similar group. As XML became a standard for data exchange
on the web, researchers had to deal with the widespread lack of DTDs and XSDs
for XML documents. Works such as [54, 70, 12] focused on extracting the regular
expressions that described the contents of the elements in a set of XML documents.
Most commonly, the derived schema was necessary to help software tools in processing
XML documents for various tasks (e.g., search, translation, validation) or to integrate
data through schema matching.

With the replacement of XML with JSON, similar issues are now being addressed
on this new standard, with the goal to capture and represent the intrinsic variety of
schemata within a collection of JSON objects. [83] proposes to build a unique schema
for a set of JSON objects returned by an API service; its goal is to eventually create
a unified model of the schemata derived from a set of API services. The schema
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representation is based on a class model, where each nested object is represented by
a distinct class and whose properties are the union of the simple attributes within
the object. [97] proposes and evaluates two different graph structures that model
the union of all the attributes in a collection of JSON objects, aimed at measuring
the heterogeneity of a collection and at detecting attributes with low support for
data quality investigations. [153] proposes a reverse-engineering process to derive a
versioned schema model for a collection of JSON objects. Here, the authors introduce
the concept of versions: instead of considering the mere union of the attributes within
a nested object (here called entity), a new version of the same entity is created for every
intensional variation detected in the JSON objects. This kind of schema modeling
allows both to trace back the original schemata of the single JSON objects (so as to
perform validity checks on new objects) and to compute the union of the attributes
within the single entities. Oddly, the frequency of each version is not considered in
the approach. In [173] a clustering technique is first applied to the JSON objects of a
collection to identify the groups of similar schemata corresponding to specific business
objects. Afterwards, the schemata of each group are summarized into a skeleton, i.e., a
rooted tree containing the smallest set of core attributes according to a frequency-based
formula. The proposed skeleton is a valid instrument to facilitate the recognition of the
underlying schemata by the user and to significantly reduce the cost of computations
on the summarized objects without compromising the accuracy of the results. However,
the assumption that schema-similarity is the metric that characterizes the different
object types is potentially misleading; indeed, this is not always true in our experience.

Overall, the ultimate goal of the works mentioned so far is to provide either a
synthetic [173, 97] or a comprehensive [83, 153] way to describe the intensional aspects
of the documents, not only for an easier recognition of the schemata, but also to enable
automated activities such as querying, integration, and validation. However, to the
best of our knowledge, no approach has ever considered the extensional point of view
to explain the different usages of schemata.

With the increasing diffusion of document-based stores, several tools are currently
known to perform schema detection on the available DBMSs. Starting from MongoDB1,
a handful of free tools to help users in the analysis of the hidden schema have been
designed by third-party developers, such as variety.js2, schema.js3 (both MongoDB

1https://www.mongodb.org/
2https://github.com/variety/variety
3http://skratchdot.com/projects/mongodb-schema/

https://www.mongodb.org/
https://github.com/variety/variety
http://skratchdot.com/projects/mongodb-schema/
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tools) and mongodb-schema4 (a module for NodeJS). In ElasticSearch5, the embedded
functionality of dynamic mapping automatically infers the schema to enable search
capabilities on the documents. In Couchbase6, the Spark connector can perform
automatic schema inference that will enable Spark SQL operations. Also Apache Drill7,
which supports a variety of NoSQL databases, dynamically infers the schema at query
time —although it is used only internally and cannot be exported by the user. In the
end, by applying different strategies for conflicting attributes and datatypes, each of
these tools derives a unique schema which collects the union of the attributes found
in the documents; at best, some statistics are collected for each attribute, such as
the datatypes used and its support. Finally, it is worth mentioning that the JSON-
schema initiative8 has risen with the idea to provide standard specifications to describe
JSON schemata; however, its adoption is still quite limited and restricted to validation
software.

In parallel to schema discovery, plenty of research focused on the issues related to
schema matching. [11] provides a comprehensive summary of the different techniques
envisioned for generic schema matching, which ranges from the relational world to
ontologies and XML documents. Other papers have also investigated the applications of
mining techniques specifically to XML documents: for instance, [122] and [104] provide
clustering algorithms to be applied to XML schemata, while [66] provides an overview
of the different similarity measures that can be used to cluster XML documents.

An interesting branch of schema matching is the one that exploits contextual
information in the data. For example, [16] proposes an enhancement of schema
matching algorithms by extending matches (which refer to table attributes) with
selection conditions, which enables to identify the cases in which the match is actually
valid. The principle of analyzing instance values is used also by [130] and [32], which
apply machine learning techniques to schema matching. Interestingly, while these works
use contextual information to identify schema matching conditions, we use contextual
information for the opposite reason, i.e., to justify schema heterogeneity.

Our approach relies on decision trees to describe the features that rule the schema
usage. The huge amount of data stored by NoSQL databases could possibly undermine
the efficiency of the algorithms for decision tree learning. Early works in this direction

4https://www.npmjs.com/package/mongodb-schema
5https://www.elastic.co/guide/en/elasticsearch/reference/2.3/mapping.html
6http://developer.couchbase.com/documentation/server/4.0/connectors/spark-1.

0/spark-sql.html
7https://drill.apache.org/
8http://json-schema.org/

https://www.npmjs.com/package/mongodb-schema
https://www.elastic.co/guide/en/elasticsearch/reference/2.3/mapping.html
http://developer.couchbase.com/documentation/server/4.0/connectors/spark-1.0/spark-sql.html
http://developer.couchbase.com/documentation/server/4.0/connectors/spark-1.0/spark-sql.html
https://drill.apache.org/
http://json-schema.org/
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propose techniques to incrementally build a decision tree: the goal is to eventually
provide the same tree that a static algorithm would have provided, but in an incremental
manner, which allows for early results to be displayed and for a more careful selection
of the training instances [167], [26], [89]. Approximation of the final result has been
introduced first by scalable approaches, which rely on efficient bootstrapping [56] or
subsampling [33] of the training data. A whole new set of challenges was then brought
by big data and its 4Vs (variety, volume, velocity and veracity); [177, 98] are recent
surveys that discuss the latest problems and advancements in this area. Finally, [27] is
an interesting work that proposes an implementation of the original C4.5 algorithm
[142] on the Hadoop platform. Noticeably, the purity measures and stop criterion we
propose in this paper are general enough to be applied to all decision tree algorithms
independently by their specific implementations.

7.3 Requirements for Schema Profiling
The first stage of our work has been devoted to capture user requirements for schema
profiling. We selected a group of users (typically data designers or programmers of the
data management application) and interviewed them to understand their goals, the
type of information they require, and the visualization format they prefer for the results.
We also asked them to “manually” describe their own documents and explain the
reasons that determine the use of each specific schema so as to better understand the
relevant features of a description, its imprecisions and limits, and the main difficulties
users may encounter in its construction.

The main hints we obtained are summarized below:

• Users need an easy-to-read, graphical, and compact schematization of schema
usage. When asked to give their own description of documents, they delivered a
tree-based representation, each node representing a condition on either instances
(e.g., Date ≤ 2016) or schemata (e.g., Date is present).

• Value-based conditions are more relevant than schema-based ones. This is because
schema-based conditions (i.e., presence/absence of some given attributes in a
document) obviously describe the difference between schemata but do not provide
any clues about the the reason of this difference.

• Users tend to describe the conditions that, according to their domain knowledge,
are most significant first. The importance of a condition is subjective to some ex-
tent, but it is typically related to the usage of different applications/functionalities
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rather than to the actual inter-schema similarity. Indeed, we found documents
with very similar schemata that are used in quite different contexts; this suggested
to discard solutions, like [173], that exploit clustering techniques or skeleton con-
cepts to reduce the total number of schemata and provide an initial summary of
schemata.

• Even for very experienced users, it is quite difficult to provide a precise and
complete description of the conditions ruling the schema usage. In most cases
either the given description was incomplete (i.e., users were not able to provide all
the rules for obtaining a precise characterization of each single schema) or even
wrong (i.e., the rules provided did not correctly split the documents according to
their schemata).

Based on these considerations, we claim that an automated approach to schema profiling
is potentially beneficial and should have the following features:

• the result must take the form of a decision tree (called schema profile from now
on) to provide a comprehensible description;

• the schema profile should be explicative, i.e., it should give priority to value-based
conditions;

• the schema profile should be precise, i.e., it must accurately characterize each
single schema;

• the schema profile should be concise, i.e., it must provide a small set of rules.

7.4 Formal Background
The central concept of a document-oriented database is the notion of a document,
which encapsulates and encodes data in some standard format. Formats in use include
XML, YAML, JSON, and BSON; the most widely adopted format is currently JSON,
which we will use as a reference in this work.

The JSON grammar specifies that an object is formed by a set of name/value pairs,
commonly referred to as elements. A value can be either a primitive value (i.e, a
number, a string, or a Boolean), an array of values, an object, or even null. Names
cannot be repeated within the same object, but they can be repeated at different
nesting levels. An important feature of JSON is that arrays have no constraint on the
type of their values, i.e., an array can simultaneously contain numbers, strings, other
arrays, as well as objects with different internal structures.
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{	  	  "Ac&vityType"	  :	  "Run"	  ,	  
	  	  	  "Dura&on"	  :	  108	  ,	  
	  	  	  "CardioOn"	  :	  true,	  
	  	  	  "Notes"	  :	  null	  ,	  
	  	  	  "Details"	  :	  	  
	  	  	  {	  	  "MusicTracks"	  :	  [	  4	  ,	  8	  ]	  ,	  
	  	  	  	  	  	  "Comments”:	  
	  	  	  	  	  	  [	  {	  	  "UserID"	  :	  15	  ,	  	  
	  	  	  	  	  	  	  	  	  	  	  	  "Comment":	  "Well	  done!"	  
	  	  	  	  	  	  	  	  	  }	  ,	  	  
	  	  	  	  	  	  	  	  {	  	  "UserID"	  :	  16,	  
	  	  	  	  	  	  	  	  	  	  	  "Vote"	  :	  "6/10"	  
	  	  	  	  	  	  	  	  }	  ]	  ,	  
	  	  	  }	  ,	  
	  	  	  "User"	  :	  	  
	  	  	  {	  	  "UserID"	  :	  23	  ,	  
	  	  	  	  	  	  "Name"	  :	  "Jack"	  ,	  
	  	  	  	  	  	  "Age"	  :	  42	  ,	  
	  	  	  	  	  	  "FacebookID"	  :	  "jack42"	  
	  	  	  	  }	  
}	  

{	  	  …	  
	  	  	  "Comments"	  :	  	  
	  	  	  {	  	  "type"	  :	  "array"	  ,	  
	  	  	  	  	  	  "items"	  :	  	  
	  	  	  	  	  	  [	  {	  	  "type"	  :	  "object"	  ,	  
	  	  	  	  	  	  	  	  	  	  	  	  "proper&es"	  :	  	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  	  "UserID"	  :	  {	  "type"	  :	  "number"	  }	  ,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  "Comment"	  :	  {	  "type"	  :	  "string"	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  }	  ,	  	  
	  	  	  	  	  	  	  	  	  {	  	  "type"	  :	  "object"	  ,	  
	  	  	  	  	  	  	  	  	  	  	  	  "proper&es"	  :	  	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  	  "UserID"	  :	  {	  "type"	  :	  "number"	  }	  ,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  "Vote"	  :	  {	  "type"	  :	  "string"	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  ]	  
	  	  	  }	  ,	  
	  	  	  ...	  
}	  

Path Type
	  
Ac&vityType 	  primi&ve	  
Dura&on 	  primi&ve	  
CardioOn 	  primi&ve	  
Notes 	  primi&ve	  
Details 	  object	  
Details.MusicTracks 	  array	  
Details.Comments 	  array	  
User 	  object	  
User.UserID 	  primi&ve	  
User.Name 	  primi&ve	  
User.Sex 	  primi&ve	  
User.FacebookID 	  primi&ve	  
	  
	  
	  
	  
	  
	  

(a) (b) (c)

Fig. 7.2 A JSON document representing a training session (a), a portion of its JSON
schema (b), and its r-schema (c)

Definition 14 (Document and Collection) A document d is a JSON object. A
collection D is a set of documents.

Figure 7.2.a shows a document representing a training session containing an array of
objects with different schemata (element Comments).

The JSON schema initiative provides the specifications to define the schema of a
document; however, as highlighted in the example in Figure 7.2, the resulting schemata
are quite verbose and they provide a complex representation of arrays. Indeed, the
schema of an array is defined as the ordered list of the schemata of its values; in other
words, two arrays share the same schema only if they contain the same number of
values and these values share the same schemata in the same order. For the purpose of
this study we adopt a more concise representation for the schema of a document, called
reduced schema, which does not enter into the content of arrays, but simply denotes
the presence of an array structure.

Definition 15 (R-Schema of a Document) Given document d, the reduced schema
(briefly, r-schema) of d, denoted rs(d), is a set of attributes, each corresponding to
one element in d. Attribute a ∈ rs(d) is identified by a pathname, path(a), and by
a type, type(a) ∈ {primitive, object, array}. While path(a) is a string in dot notation
reproducing the path of the element corresponding to a in d, type(a) is the type of that
element (type primitive generalizes numbers, strings, Booleans, and nulls).

Note that, although r-schemata are defined as sets of attributes, their pathnames code
the document structure (short of the internal structure of arrays).
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Example 20 Figure 7.2 shows a sample document, its JSON schema (as per the
specifications of the JSON schema initiative), and its r-schema. Note how, in the
r-schema, the complexity and heterogeneity of array Comments is hidden in attribute
Details.Comments with generic type array.

To put together the relevant information coded by different r-schemata, we need to
define a sort of global schema for the documents within a collection. This is done as
follows.

Definition 16 (R-Schema of a Collection) Given collection D, we denote with
S(D) the set of distinct r-schemata of the documents in D (where two attributes in the
r-schemata of two documents are considered equal if they have the same pathname and
the same type). The r-schema of D is defined as

rs(D) =
⋃

s∈S(D)
s

Given s ∈ S(D), with denote with |D|s the number of documents in D with r-schema s.

Intuitively, rs(D) includes all the distinct attributes that appear in the r-schemata of
the documents in D. Since our goal is to explain the usage of syntactically different
documents, no approach to determine attribute equivalence (e.g., [173]) is adopted.

The last concept we need to introduce are schema profiles.

Definition 17 (Schema Profile) Let D be a collection. A schema profile for D is
a directed tree T where each internal node (including the root) corresponds to some
attribute a ∈ rs(D) and can be either value-based or schema-based:

• a schema-based node has exactly two outgoing arcs, labelled as ∃ and ̸ ∃ respec-
tively;

• a value-based node has two or more outgoing arcs, each labelled with a condition
expressed over the domain of a.

Value-based nodes can only correspond to attributes of type primitive. Given node v,
we denote with Dv ⊆ D the set of documents that meet all the conditions expressed
by the nodes in the path from the root to v, with S(Dv) ⊆ S(D) the set of distinct
r-schemata of the documents in Dv, and with |Dv|s the number of documents with
r-schema s ∈ S(Dv) belonging to Dv.
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Intuitively, each internal node in a schema profile models a condition (on a value-based
column of the dataset if the node is value-based, on a schema-based column if it
is schema-based), and each path models a rule that includes a set of conditions for
selecting one or more r-schemata. We also remark that Definition 17 can accommodate
both binary and n-ary trees; in Section 7.5 we will show that binary trees are preferable
to n-ary trees in our context.

Definition 17 does not explain how to treat missing attributes and missing values.
The approach we adopt to deal with this issue is consistent with the one used by
the decision tree algorithm we chose, i.e., C4.5 [142] in its Weka implementation. In
particular, we assume that a document d such that a ̸∈ rs(d) (missing attribute)
or d.a = null (missing value) always meets all the conditions expressed by a value-
based node corresponding to a. As a consequence, in presence of a value-based node
corresponding to a, such document d is considered to belong to two or more leaves;
in other words, the sets Dvj

for j = 1, . . . , m are not necessarily disjoint. Algorithm
C4.5 also adopts a weighting mechanism in these cases; specifically, when computing
leaf cardinalities (namely, |Dvj

| and |Dvj
|s in Section 7.5), a document d such that

d ∈ Dv′ ∩ Dv′′ is weighted depending on how the other documents are distributed in v′

and v′′ [142].

Example 21 Figure 7.1 shows an n-ary schema profile with two schema-based nodes
(User and BPM) and three value-based nodes (ActivityType, CardioOn, and User.Age).
In this case, it is D = {d1, . . . , d7} and S(D) = {s1, . . . , s5}. The schema profile has
leaves v1, . . . , v7, with Dv1 = {d1, d2}. Note that document d3 belongs to both v2 and v3,
since attribute CardioOn is missing.

7.5 Evaluating Schema Profiles
In Section 7.3 we claimed that, according to the users’ feedback, a good-quality schema
profile should be explicative, precise, and concise. In the following subsections we
discuss how these three features can be quantitatively evaluated.

7.5.1 Explicativeness

Divisive approaches build decision trees by first creating a single node that includes all
the observations, then by iteratively splitting each node into two or more nodes that
include subsets of observations. The split point is chosen in a greedy fashion by trying
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to maximize the quality of the classification. In our context, splits come in different
flavors.

Definition 18 (Split) Let D be a collection and a ∈ rs(D) be an attribute in the
r-schema of D. Let T be a schema profile for D and v be one of its leaves. A split
of v on a, denoted µa(v), transforms T into a schema profile T ′ where two or more
new leaves are added to T as children of v and v is an internal node corresponding
to a. In particular, µa(v) is a schema-based split if v is a schema-based node in T ′

(i.e., v has two children and the corresponding arcs are labelled as ∃ and ̸ ∃); µa(v) is
a value-based split if v is a value-based node in T ′ (i.e., v has two or more children
and the corresponding arcs are labelled with a condition expressed over the domain of
a). Value-based splits are made as follows:

• If a is numeric, µa(v) has two children and the corresponding arcs are labelled
with conditions a ≤ “val” and a > “val”, respectively.

• If a is categorical, µa(v) can be either binary or multi-way. In the first case, it
has two children and the corresponding arcs are labelled with conditions a = “val”
and a ̸= “val”, where “val” is a value of the domain of a. In the second case, it
has one child for each value “val” in the domain of a and each corresponding arc
is labelled with condition a = “val”.

Example 22 Figure 7.3 shows an example of schema-based split at an early stage of
the building of the schema profile of Figure 7.1. Initially, T has three leaves v1, v2, v3

(resulting from a multi-way, value-based split on the categorical attribute ActivityType).
The schema-based split on attribute User creates a new schema profile where v3 becomes
a schema-based node with two children, u1 and u2. A further value-based split on the
numeric attribute User.Age creates two additional leaves as depicted in Figure 7.1.

As mentioned in Section 7.3, we consider a schema profile to be explicative if it
prefers value-based nodes over schema-based nodes, because the latter acknowledge
that there is a difference between two r-schemata but do not really explain its reason.
Thus, we will evaluate explicativeness using the number of schema-based nodes: the
lower this number, the more explicative the schema profile.

7.5.2 Precision

A distinguishing feature of divisive approaches is the function they adopt to quantify
the “purity” of the leaves where observations are classified, where a leaf is said to be
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Fig. 7.3 Schema profile before (a) and after (b) a schema-based split

pure if all its observations share the same class. The most common function used to
this end is entropy [159], whose definition —properly contextualized to our application
domain— we include below.

Definition 19 (Entropy and Gain) Let D be a collection, S(D) be the set of dis-
tinct r-schemata of the documents in D, and T be a schema profile for D with leaves
v1, . . . , vm. The entropy of leaf vj is

entropy(vj) = −
∑

s∈S(Dv)

|Dvj
|s

|Dvj
|

log
|Dvj

|s
|Dvj

|
(7.1)

where |Dvj |s
|Dvj |

is the probability of r-schema s within leaf vj. Leaf vj is said to be pure if
entropy(vj) = 0. The entropy of T is then defined as the weighted sum of the entropies
of the leaves of T :

entropy(T ) =
m∑

j=1

|Dvj
|

|D|
· entropy(vj) (7.2)
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where |Dvj |
|D| is the probability of leaf vj. Let µa(vj) be a split that creates two or more

leaves, u1, . . . , ur, resulting into a schema profile T ′; the gain related to µa(vj) is defined
as the difference between the entropy of T and the one of T ′:

gain(µa(vj)) = entropy(T ) − entropy(T ′) =

=
|Dvj

|
|D|

· entropy(vj) −
r∑

k=1

|Duk
|

|D|
· entropy(uk) (7.3)

Entropy is strictly related to precision as informally defined in Section 7.3: within a
schema profile with null entropy, all the documents included in each leaf share the
same r-schema, thus the schema profile has maximum precision.

Entropy tends to decrease with each split; the higher the gain (i.e., the decrease in
entropy), the more convenient the split. It is well-known [30] that gain-based criteria
are biased and tend to privilege multi-way splits on attributes with several values. A
classical solution to this problem is to consider binary splits only, or to add a weighting
factor to normalize the gain for different attributes (so-called gain ratio criterion) [141].

7.5.3 Conciseness

Entropy is focused on node purity, hence its minimization often leads to split observa-
tions of the same class among several leaves; this is more frequent when the number of
classes is high [154], as normally happens in our context. While this is a secondary
problem in generic classification problems, where the precision of the resulting model
is more important than its readability, it becomes critical in schema profiling since
it conflicts with the conciseness requirement. Indeed, in our context, each r-schema
might end up for being explained by a wide set of rules, thus precluding users from
getting a concise picture of schema usage.

Example 23 Let D be a collection with 100 documents, 4 r-schemata s1, . . . , s4, and
two attributes, A and B. The values of the attributes for the different r-schemata are
listed in Figure 23.a (symbol “–” means “any value”), while two possible schema profiles
are shown in Figures 23.b,c. From the point of view of schema usage, the tree in (c) is
clearly the one that best represents the collection, with each r-schema being reached by
a single path in the tree. Nevertheless, the tree chosen by an entropy-based algorithm
would be that in (b), where s4 is doubled. Indeed, called v the root, the split of v on
attribute A has gain 1.39, while the split on B has gain 0.47.
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Fig. 7.4 A collection (a) and two possible schema profiles (b,c) (see Example 23)

To evaluate conciseness of schema profiles, in this section we propose a measure
called schema entropy. As stated in Section 7.3, our requirement is reduce the number
of rules provided by maximizing the cohesion of the documents that share the same
r-schema —a maximally concise schema profile is one where there is a single rule for
each r-schema. So we invert the original definition of entropy to relate it to the purity
of the r-schemata instead of the purity of the leaves: in terms of entropy, a leaf is pure
if it contains only documents with the same r-schema; in terms of schema entropy, an
r-schema is pure if all its documents are in the same leaf. The schema entropy of a
degenerate schema profile where all the documents are included into a single node (the
root) is 0; clearly, when a split is made, the schema entropy can never decrease, so the
concept of gain is replaced by that of loss (the lower the loss, the more convenient the
split).

Definition 20 (Schema Entropy and Loss) Let D be a collection, S(D) be the set
of distinct r-schemata of the documents in D, and T be a schema profile for D with
leaves v1, . . . , vm. The schema entropy of r-schema s ∈ S(D) is

sEntropy(s) =
m∑

j=1

|Dvj
|s

|D|s
log

|Dvj
|s

|D|s
(7.4)

The schema entropy of T is then defined as

sEntropy(T ) = −
∑

s∈S(D)

|D|s
|D|

· sEntropy(s) (7.5)

Let µa(vj) be a split resulting into schema profile T ′; the loss related to µa(vj) is defined
as:

loss(µa(vj)) = sEntropy(T ′) − sEntropy(T ) (7.6)
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Definition 20 implies that the loss of split µa(vj) is 0 iff, for each r-schema s ∈ S(Dvj
),

all the documents with r-schema s belonging to Dvj
are put into a single leaf of T ′. As

a consequence, all schema-based splits have null loss.

Example 24 With reference to Example 7.4, the split on attribute A has loss 0.16,
while the split on attribute B has loss 0; therefore, the schema profile in Figure 7.4.c is
the most convenient from the point of view of schema entropy.

Let m be the number of leaves and n the number of r-schemata; we note that:

• The schema entropy of a schema profile T can be 0 only if m ≤ n (because clearly,
if m > n, at least one r-schema appears in more than one leaf).

• The entropy of a schema profile T can be 0 only if m ≥ n.

Although these observations apparently suggest that entropy and entropy schema are
conflicting, actually their goals are not mutually exclusive. Indeed, splitting a node so
that documents with the same r-schema are kept together, means putting documents
with different r-schemata in separate children; so, the splits determining low or null
loss tend to yield a high gain as well. In Section 7.6 we will show how our approach
builds on both entropy and entropy schema to achieve a trade-off between conciseness
and precision of schema profiles.

We close this section with an important remark. As already stated, our definition of
schema profile (Definition 17) accommodates both binary and n-ary trees —depending
on whether binary or multi-way splits are allowed. However, we observe that an n-ary
schema profile can always be translated into binary form without changing its entropy
and schema entropy (because they only depend on how documents are partitioned
among the leaves). Besides, multi-way splits on high-cardinality categorical attributes
produce a strong fragmentation of r-schemata into leaves and an undesired increase in
schema entropy. For these reasons, in the following we will focus on binary schema
profiles.

7.6 Building Schema Profiles
As already mentioned, our algorithm is inspired by C4.5 [142] in its Weka implementa-
tion (named J48). C4.5 implements a divisive approach that starts by creating a single
node that includes all the observations in the dataset; as such, according to Definition
19, this root node has maximum entropy. Then the algorithm iteratively splits each
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leaf into two new leaves that include subsets of observations; since the final goal is to
minimize the entropy, at each iteration the split that maximizes the gain is greedily
chosen. Eventually, some post-processing can be applied to reduce the size of the tree.
The algorithm stops when either all the leaves are pure or all the splits are statistically
irrelevant.

In our domain, recalling the user requirements illustrated in Section 7.3, we can
informally state our final goal as follows:

Given collection D find, among the schema profiles for D with null entropy, one that
(i) has minimum schema entropy on the one hand, and (ii) has the minimum number
of schema-based nodes on the other.

Null entropy ensures that each leaf includes documents belonging to one r-schema only
(i.e., the schema profile is precise), schema-entropy minimization calls for having a
single rule to explain each r-schema (the schema profile is concise), while minimization
of schema-based nodes ensures that most conditions are meaningful (the schema profile
is explicative). Obviously, to fit this goal, the splitting and stop strategies of the C4.5
algorithm have to be modified by considering schema entropy on the one hand, and by
taking into account the distinction between schema-based and value-based splits on
the other.

A solution for our problem can be always found since, as no two r-schemata with
exactly the same attributes exist, any schema profile can be extended using schema-
based nodes until each leaf includes documents belonging to one r-schema only (i.e.,
the schema profile has null entropy). On the other hand, the (trivial) schema profiles
including only schema-based nodes have null schema entropy but they do not meet
subgoal (ii). Indeed, subgoals (i) and (ii) may be conflicting; to rule the trade-off, in
our approach we allow schema-based splits only if no value-based split satisfies the
following quality criterion:

Definition 21 (Valid Split) A value-based (binary) split µa(v) is valid if
loss(µa(v)) ≤ ϵ and gain(µa(v)) ≥ ω, where ϵ, ω ≥ 0 are thresholds.

As we will show in Section 7.7, through ϵ and ω users can fine-tune the trade-off
between subgoals (i) and (ii) so as to obtain satisfactory schema profiles depending on
the specific features of the dataset. More specifically: the higher ϵ, the more the user
is privileging schema profiles with a few schema-based nodes —i.e., explicative ones;
the higher ω, the more the user is favoring schema profiles whose value-based nodes
considerably decrease entropy —i.e., concise ones.
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Algorithm 3 BuildSchemaProfile (BSP)
Input T , a schema profile; v, the leaf of T to be split; ϵ and ω, two thresholds
Output T , a new schema profile where v is split
1: bestSplit← ∅
2: rsv ← ∪s∈S(Dv)s ◃ Set of attributes in the r-schemata of the documents in v

3: for a ∈ rsv s.t. type(a) = primitive do ◃ Evaluate value-based splits
4: µa(v)← F indBestSplit(a, ϵ, ω)
5: if µa(v) is valid ∧ µa(v) ≺ bestSplit then
6: bestSplit← µa(v)
7: if bestSplit = ∅ then ◃ If no valid value-based split is found...
8: for a ∈ rsv do ◃ ...evaluate schema-based splits
9: µa(v)← SchemaBasedSplit(a)
10: if µa(v) ≺ bestSplit then
11: bestSplit← µa(v)
12: for u ∈ Children(µa(v)) do ◃ For each leaf u generated by the split...
13: AddChild(T, v, u) ◃ ...add u to T as a child of v...
14: if |S(Du)| > 1 then ◃ ...and, if u is not pure, ...
15: T ← BuildSchemaP rofile(T, u) ◃ ...split it
16: return T

Consistently with the final goal stated above, we define a criterion for comparing
two splits as follows:

Definition 22 Given two splits µ(v) and µ′(v) (possibly on different attributes), we
say that µ(v) is better than µ′(v) (denoted µ(v) ≺ µ′(v)) if either (i) loss(µ(v)) <

loss(µ′(v)), or (ii) loss(µ(v)) = loss(µ′(v)) and gain(µ(v)) > gain(µ′(v)).

The pseudocode of Algorithm 3 (called BSP from now on) implements our approach.
It is a recursive procedure that splits a generic leaf v of the tree T representing the
schema profile; it is initially called with a degenerate tree consisting of one single
node, and stops when all leaves are pure. Value-based splits are tried first (lines 3
to 6); candidate attributes for splitting are those that are present in at least one of
the documents in Dv. For each candidate attribute a, function FindBestSplit finds
the best binary split by computing gain and loss for each condition on a (as per
Definition 18) and using Definition 22 for split comparison. If no valid value-based
split is found for the given threshold ϵ, schema-based splits are tried (lines 8 to 11).
Function SchemaBasedSplit(a) returns the schema-based split for attribute a; since
all schema-based splits are considered to be valid, one schema-based split is always
found at this stage. Finally, T is extended by adding the new leaves generated by the
best split found as children of v (lines 12 to 15). If a new leaf u is pure, recursion stops;
otherwise, u is recursively split.

In practice, the Weka J48 algorithm we use for experimental comparisons requires
a dataset structured as a table where each row represents an observation (in our case,
a document) and each column represents a feature to be used for classification; one
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Table 7.1 Portion of the dataset for our running example
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s0 Bike null null null . . . 1 0 0 0 0 . . .
s1 Run false null null . . . 1 1 0 0 0 . . .
s1 Walk false null null . . . 1 1 0 0 0 . . .
s2 Run true 120 null . . . 1 1 1 0 0 . . .
s3 Run true null null . . . 1 1 0 0 0 . . .
s4 Walk true null 42 . . . 1 1 0 1 1 . . .
s5 Walk true null 65 . . . 1 1 0 1 1 . . .

additional column is used to store the class each observation belongs to. So we define
the dataset associated to a collection as follows.

Definition 23 (Dataset) Let D be a collection. The dataset associated to D is a
table with the following structure:

1. a column named rsId;

2. one schema-based column named exists_path(a)_type(a) for each attribute a ∈
rs(D); and

3. one value-based column named path(a)_type(a) for each attribute a ∈ rs(D)
such that type(a) = primitive.

The dataset includes a row for every d ∈ D, such that

1. rsId stores a unique identifier given to rs(d) within S(D);

2. exists_path(a)_type(a) = 1 if a ∈ rs(d), 0 otherwise;

3. path(a)_type(a) stores the value taken by a in d if a ∈ rs(d), null otherwise.

Example 25 Table 7.1 shows a portion of the dataset for our running example; for
space reasons, some columns are omitted.
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Table 7.2 Dataset features

Name Origin |D| |S(D)| #columns Optimal Balanced
SD1 yes yes
SD2 synthetic 10 K 8 4 + 7 no yes
SD3 yes no
RD1 fitness 5 M 6 6 + 10 yes no
RD2 fitness 767 K 139 35 + 38 no no
RD3 sw develop. 473 K 122 90 + 149 no no

7.7 Experimental Results
In this section we evaluate the efficiency and effectiveness of our approach; we recall
from Section 7.5 that our tests are focused on binary trees. For testing we use a set of
both synthetic and real-world datasets, whose characteristics are summarized in Table
7.2. Optimal indicates whether there exists a schema profile that is both concise (i.e.,
with null schema entropy) and explicative (i.e., with no schema-based nodes); Balanced
indicates whether all the r-schemata have roughly the same number of documents;
#columns is the number of value-based columns plus the number of schema-based
columns in the dataset.

Synthetic datasets (i.e., SD1, SD2 and SD3) are relatively small and have been
created using a simple rule-based generator: we devised two schema profiles (shown in
Figure 7.5) and then used them as a model to generate the data. The four value-based
columns correspond to primitive attributes, shared by all documents (i.e., no value-
based column has missing values); the presence/absence of three more object attributes
allows eight r-schemata to be distinguished. SD1 is the simplest dataset, where each
r-schema has about 1/8 of the 10 000 documents. SD2 presents a balanced but non-
optimal situation obtained by assigning, for each r-schema, multiple values to attribute
subtype —thus forcing a loss in schema entropy when splitting on that attribute. Lastly,
SD3 is generated with the same rules as SD1 but presents an unbalanced situation,
where four r-schemata have 9/10 of the documents.

As to real-world datasets, RD1 and RD2 have been acquired from a company that
sells fitness equipment, and they contain the registration of new workout sessions
and the log of the activities carried out during a workout session, respectively. RD3
has been acquired from a software development company and contains the log of the
errors generated by the deployed applications. These three datasets have a key role
in evaluating our approach, because they include a large number of documents and
present a higher number of attributes and r-schemata.
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Fig. 7.5 The schema profiles used to generate the synthetic datasets SD1 and SD2
(top), and SD3 (bottom)

While synthetic datasets have been directly created by a rule-based generator,
real-world datasets have been derived from MongoDB collections as follows: we first
used a Javascript script for MongoDB to parse the documents, extract the r-schemata,
and export the data in tabular form; then, an R script has been used to pre-process
data (e.g., to discretize numeric columns and reduce the number of distinct values in
categorical columns) before submitting them to BSP.

7.7.1 Effectiveness

To evaluate the effectiveness of our approach we must verify whether BSP is really
capable of identifying the rules that drive the use of different schemata in documents,
which can be done by comparing the schema profiles obtained by BSP with a baseline.
The schema profiles are also compared with those obtained from the original version of
the Weka J48 algorithm, which only uses entropy. Since schema-based splits typically
yield higher gain than value-based ones (and, therefore, are favored by J48), we also run
J48 on reduced versions of the datasets that only include value-based columns; we will
label with J48-V and J48-VS the schema profiles obtained by ignoring or considering
schema-based attributes, respectively.
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To compare two schema profiles we consider the document partition induced by the
tree leaves but also the tree structure (as two trees differing in their split attributes
and/or structure may induce similar partitions of the documents); more specifically:

• To measure the difference in document partition we rely on the HR-index [79],
which is a fuzzy variation of the well-known Rand index [143]. The basic idea
behind the Rand index is that two partitions p1 and p2 are similar if the couples
of documents that are together (separate) in p1 are also together (separate) in
p2. The HR-index simply extends this idea to fuzzy partitions. The value of the
index ranges from 0 (completely different partitions) to 1 (identical partitions).

• To measure the difference in tree structure we adopt a variation of the classic
tree edit-distance (TED), which originally defines the distance between two trees
as the length of the minimal cost-sequence of node-edit operations (i.e., insert,
delete, or rename) that transforms one tree into the other [158]. TED cannot be
directly calculated between two schema profiles, as it works only on labeled trees
with no semantics on the arcs; therefore, given schema profile T , for the sake of
TED calculation we define a simplified tree where

– each internal node is labeled with the name of its split attribute;

– each leaf is labeled with keyword “leaf”; and

– the conditions on the arcs are removed.

Importantly, TED does not take into account the depth of a node in the tree
(i.e., an edit operation on the root costs the same as an edit operation on a leaf).
Since this would have a strong impact when comparing decision trees (where the
order of decisions is a crucial aspect), we adopt a modified version of TED which
weighs the cost of an edit operation made on a node with the depth of that node;
in particular, given a tree of height p and a node v at depth α (1 ≤ α ≤ p), the
cost of an edit operation on v is 1/α. The minimum value for TED is 0 (identical
trees), while the maximum value clearly depends on the size of the compared
trees.

For synthetic datasets, our testing baseline are the schema profiles used to create
the datasets (Figure 7.5). Table 7.3 shows the results of the tests made on these
datasets to measure the quality of schema profiles with reference to the following three
critical situations (the value of ω is set to zero in these tests, as its manipulation has
no remarkable effect on the synthetic datasets due to their small size):
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Table 7.3 Effectiveness tests on synthetic datasets
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T1 SD1
J48-V — 0 8 0% 0 0

J48-VS — 0 8 14% 0 0
BSP 0.1 0 8 0% 0 0

T2 SD1
J48-V — 1.92 38 0% 9.06 0.061

J48-VS — 0 8 29% 1.33 0
BSP 0.1 0 8 14% 0.5 0

T3 SD1
J48-V — 2.65 33 0% 9.03 0.097

J48-VS — 0 8 42% 1.67 0
BSP 0.1 0 8 42% 1.17 0

T4 SD2
J48-V — 0.59 15 0% 3.45 0

J48-VS — 0 8 28% 2.32 0.013

BSP 0.1 0 8 14% 1.48 0.013
0.3 0.21 10 0% 0 0

T5 SD3
J48-V — 0.10 12 0% 4 0.001

J48-VS — 0 8 14% 2.33 0.125
BSP 0.1 0 8 0% 0 0

1. Incomplete information: in this case the use of different schemata is ruled by
either the values of attributes that are not present in the documents (i.e., in the
application logic there is a conditional instruction that creates documents with
different schemata depending on the value of some variable v, but the value of v

is not stored in the documents) or the values of non-primitive attributes for which
there is no value-based column in the dataset (e.g., arrays). We start from the
simplest dataset, SD1 (test T1), and progressively remove value-based columns
Subtype (test T2) and Level (test T3); threshold ϵ is set at 0.1 for BSP. Table 7.3
shows that, in T1, both BSP and J48-V produce a schema profile identical to the
baseline (both TED and HR-index are zero). Conversely, the structure of the tree
obtained by J48-VE is different: since the algorithm does not take into account
the difference between value- and schema-based columns, it chooses to create
schema-based splits —because they yield a higher gain— though this is in contrast
with our goal of explicativeness. Obviously, as value-based columns are removed,
the algorithms are no more able to reproduce the baseline (as reflected by the
values of TED); however, they behave quite differently. The split strategy of BSP
is specifically designed to keep documents with the same r-schema together; as a
result, BSP resorts to schema-based conditions to recover the lost information
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and eventually provides the same document partitioning as the baseline (e.g., by
replacing the split on Subtype with the split on Exists_b in T2). The entropy
measure guiding J48 does not equally encourage conciseness, thus J48-V finds
alternative splits among those that only minimize entropy. This leads J48-V
to build a more complicated schema profile (as shown by the higher number of
leaves) with a document partitioning that differs from the baseline. The baseline
partitioning is reproduced by J48-VS instead, although schema-based conditions
are overused. Overall, TED shows that the schema profile provided by BSP is
always the closest to the baseline.

2. Non-optimal dataset: in dataset SD2, the use of different schemata is ruled by
complex conditions that are not considered by our search strategy; hence, no
concise and explicative schema profile can be found and one of these two features
must be sacrificed. Test T4 shows how this trade-off can be achieved by adjusting
the value of ϵ. With the lowest value of ϵ (i.e., 0.1), BSP is less tolerant to the
separation of documents of the same r-schemata into different leaves (i.e., to the
definition of multiple rules for the same r-schema); this results in BSP preferring
schema-based conditions and generating a concise (8 leaves and zero schema
entropy) but inaccurate (with high TED and non-zero HR-index) schema profile.
The baseline actually splits the documents of r-schemata s1 and s2 into 4 leaves
(as shown in Figure 7.5), and this result can be achieved by increasing ϵ to 0.3
—at the expense of a substantial loss in terms of schema entropy. As to J48-V
and J48-VS, the results show that they perform very poorly: the former is able
to reproduce the baseline partitioning, but at the expense of a complex tree;
the latter provides a more concise tree, but schema-based conditions are used
quite differently, eventually leading to a schema profile that is quite far from the
baseline.

3. Unbalanced dataset: in this case the documents are unevenly distributed among
the r-schemata. In this case we run a single test (T5) on the unbalanced dataset
SD3, with threshold ϵ still set at 0.1. The results show that only BSP is capable
of perfectly reproducing the baseline, as the schema entropy measure favors a
pure separation of the r-schemata even if the entropy gain is limited (due to the
unbalanced distribution). Conversely, the entropy measure tends to maximize
the gain by separating the documents belonging to the most frequent r-schemata,
even if the documents of the less frequent r-schemata end up to be split in
multiple leaves. Both J48-V and J48-VS provide a schema profile quite different
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from the baseline, as the first inverts the order of the value-based conditions,
while the second still tends to rely on schema-based conditions.

For our real-world datasets a complete baseline is not available. As evidenced in the
introduction, this is quite common when the applications undergo several evolutions
and retrieving all the rules driving schema usage requires a huge effort from users
and direct access to the application logic. In particular, for all real dataset except
RD1 (which is quite simple), our users, after a four-hours meeting, have only been
able to provide a very small schema profile consisting of the two or three (value-based)
conditions that —to the best of their knowledge— are representative of the schema
usage.

Given such premise, we start by studying the behavior of BSP with different values
of ϵ and ω. The three diagrams in Figure 7.6 show the effects of the two thresholds on
the schema profile for RD2 in terms of conciseness (given by the number of leaves and
by the schema entropy) and its explicativeness (given by the percentage of value-based
nodes). The first observation is that, when a very concise schema profile is requested
by the user (i.e., ϵ = 0 and the schema entropy is therefore forced to be null), the major
risk is to renounce to explicativeness (as shown by the low percentage of value-based
nodes). As ϵ is increased, the general tendency is to create more explicative schema
profiles. However, by allowing splits that increase the schema entropy, BSP may be
inclined to choose those splits that single out only a small fraction of the documents
(i.e., splits yielding a very low loss, but also a very low gain); in this case, the risk is to
obtain a very complex schema profile. Conversely, the increase of ω favors conciseness
by filtering out the aforementioned splits. The obvious drawback is the decrease of
value-based conditions: if the only available splits have a gain lower than ω, BSP has
no choice but to rely on schema-based splits.

As the order of the conditions is very relevant, users may be interested more in
the upper parts of the schema profile than in the lower ones. So, with the next test
we analyze the structure of the schema profile by segmenting the tree at different
levels of depth. Figure 7.7 shows the level-by-level decomposition of the schema
profile generated on RD2. Based on the results of the previous test, we set ϵ = 0.01
and ω = 0.1. The figure shows that the entropy rapidly decreases, while the low
schema entropy ensures the conciseness of the schema profiles across every stage. Most
importantly, the percentage of schema-based nodes is kept quite low within the first
levels, denoting a good degree of explicativeness of the upper part of the schema profile.
Schema-based conditions tend to increase in the lower parts, where a good degree of
separation of the r-schemata has already been achieved (as proven by the low entropy).
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Fig. 7.6 The effects of different values of ϵ and ω on RD2

As a final test, we evaluate the quality of the schema profiles generated for real-world
datasets with respect to the baseline provided by the user. Since the baseline is limited
to two or three value-based conditions, a comparison against complete schema profiles
would inevitably be unfair and reveal great dissimilarities. Therefore, the values of
TED have been determined by limiting each schema profile to a number of levels
that equals the one in the baseline; the calculus of the HR-index is omitted for the
same reason. As with synthetic datasets, the comparison is also made with J48-V and
J48-VS. The values of ϵ and ω for RD1 and RD3 have been determined by a statistical
evaluation, as previously shown for RD2. Table 7.4 shows the results of the test. The
most obvious observation is the higher complexity of the schema profiles generated
by J48-V, together with its lack of conciseness —which is expected. In RD1, both
J48-VS and BSP provide a very concise schema profile; however, only the one by BSP
matches with the baseline, as the first split chosen by J48-VS is a schema-based one.
The overuse of schema-based columns by J48-VS is evident in RD2 and RD3, where a
very concise but not explicative schema profile is found. The quality of the schema
profile by BSP is validated by TED, which shows that BSP always gets the closest to
the baseline.
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Table 7.4 Effectiveness tests on real-world datasets
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RD1
J48-V - - 2.16 48 0% 0

J48-VS - - 0 6 60% 1
BSP 0.01 0.1 0 6 80% 0

RD2
J48-V - - 3.69 521 0% 2.33

J48-VS - - 0 115 93% 1.33
BSP 0.01 0.1 0.10 228 69% 1.33

RD3
J48-V - - 2.07 243 0% 1

J48-VS - - 0 85 73% 1
BSP 0.01 0.01 0.10 231 50% 0.5

7.7.2 Efficiency

The driving factor in estimating the complexity for computing the gain and loss of a
split is the number of documents, |D| (since the number of r-schemata, |S(D)|, and the
number of leaves, m, are clearly quite lower than |D|). Under this assumption, we know
from the literature that the complexity for evaluating all the possible splits of leaf v on
attribute a by computing their gain and loss is O(|Dv|) if a is categorical (including the
case in which a is a schema-based columns), O(|Dv| · (log|Dv| + 1)) if a is numeric [152].
Within an iteration of BSP, this cost is paid whenever functions FindBestSplit and
SchemaBasedSplit are called. In turn, the number of calls depends on the number of
attributes belonging to rsv.
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Table 7.5 Efficiency tests on real-world datasets
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RD1
J48-V - - 172 1270 - 225 K -

J48-VS - - 43 27 12 2839 K 3290 K
BSP 0.01 0.1 42 26 11 3320 K 3162 K

RD2
J48-V - - 125 7515 - 27 K -

J48-VS - - 139 2784 550 59 K 184 K
BSP 0.01 0.1 116 2851 602 57 K 91 K

RD3
J48-V - - 156 4282 - 36 K -

J48-VS - - 229 991 1095 124 K 138 K
BSP 0.01 0.01 191 1984 558 64 K 39 K

Formally modeling the complexity of the basic operations is not sufficient to
evaluate the overall BSP execution time. The number of recursive calls is related to the
effectiveness of the purity measures, to the availability of useful value-based attributes,
and to the inherent complexity of the dataset. To properly analyze this holistic bundle
of factors we compare the BSP execution time with the ones of J48-V and J48-VS on
real-world datasets9. For the same tests of Table 7.4, Table 7.5 shows:

• the average execution times (in seconds) to build the schema profiles;

• the number of times that functions FindBestSplit and SchemaBasedSplit are
called (shown as #FBS and #SBS, respectively);

• the average number of documents involved when functions FindBestSplit and
SchemaBasedSplit are called (shown as Avg #docs per FBS and Avg #docs per
SBS, respectively);

Note that (i) the number of iterations does not necessarily reflect the size of the tree,
because J48 adopts post-pruning techniques that eventually reduce the size of the
schema profile; (ii) the time for post-pruning is not considered because of its irrelevance
(not greater than a second); (iii) BSP is not penalized by the added calculation of
schema entropy, since this requires the same data used to calculate the entropy (as per
Definition 20).

9Synthetic datasets are not considered for evaluating efficiency since their execution time is below
one second.
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By looking at the results, we initially observe that BSP is always faster than J48-VS;
this is due to the fact that, differently from BSP, J48-VS always tries all schema-based
splits. In RD1 and RD3, this is confirmed by the higher value of #SBS, while in
RD2 it is explained by the average number of involved documents: whereas BSP and
J48-VS make approximately the same number of calls to the functions, BSP resorts to
schema-based splits only in the lower levels of the schema profile (in fact, the average
number of documents processed per SBS is half the one of J48-VS), thus gaining a
better performance on the upper levels. As to J48-V, the effect of the absence of
schema-based columns is twofold: on the one hand, the performance of function FBS
is obviously faster, since less attributes must be processed; on the other hand, the split
strategy (which only relies on the entropy gain related to value-based splits) does not
converge quickly to a schema profile with null entropy, thus requiring a much larger
number of calls to the FBS function.

7.8 Conclusions
In this chapter we have presented an approach to schema profiling for document-
oriented databases. To the best of our knowledge, ours is the first approach to schema
profiling based on extensional information. The idea is to capture the rules that explain
the use of different schemata within a collection through a decision tree whose nodes
express either value-based or schema-based conditions. Guided by the requirements
elicited from users, we have proposed an algorithm called BSP that builds precise,
concise, and explicative schema profiles. The experimental tests have shown that BSP
is capable of achieving a good trade-off among these features and of delivering accurate
(as compared to a baseline) schema profiles.

Our future work in this field will develop along two different perspectives. On
the implementation side, we will incorporate user interaction in the schema profile
building algorithm to give users a closer control on the trade-off among the different
features of schema profiles and to inject additional knowledge in it. From a more
research-oriented point of view, we will investigate how to take advantage of schema
profiles when querying document collections; for instance, we will use schema profiles
to give more effectiveness and flexibility to schema-on-read approaches to analytical
queries in business intelligence contexts [109, 34].





Chapter 8

Cubeload: a benchmark generator
of OLAP sessions

In this chapter we present CubeLoad, a parametric generator of workloads in the form
of OLAP sessions, based on a realistic profile-based model. Differently from OLTP
workloads, OLAP workloads are hardly predictable due to their inherently extemporary
nature. Besides, obtaining real OLAP workloads by monitoring the queries actually
issued in companies and organizations is quite hard. On the other hand, hardware
and software benchmarking in the industrial world, as well as comparative evaluation
of novel approaches in the research community, both need reference databases and
workloads. After describing the main features of CubeLoad, we discuss the results of
some tests that show how workloads with very different features can be generated.

As we recall from Section 1.2.3, this work is preparatory to the work on OLAP
recommendations presented in Chapter 9.

8.1 Introduction
Differently from OLTP workloads, that are 90% frozen within operational applications,
OLAP workloads are hardly predictable due to their inherently extemporary nature.
Besides, obtaining real OLAP workloads by monitoring the queries actually issued in
companies and organizations is quite hard because (i) OLAP queries are at the core
of the decision-making process, hence they are jealously guarded by managers and
administrators, and (ii) reconstructing OLAP sessions by interpreting the query log of
a multidimensional engine operating in a multi-user context is very complex.

On the other hand, hardware and software benchmarking in the industrial world,
as well as comparative evaluation of novel approaches in the research community, both
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need reference databases and workloads. To this end, some efforts have been done
over the years to provide standard benchmarks. Specifically, in the OLAP context, the
TPC-DS benchmark [136] has been recently developed; it is based on a fixed set of star
schemata including 7 fact tables and 17 dimension tables, and it provides a workload
featuring queries that address complex business problems and use a variety of access
patterns.

The TPC-DS benchmark is carefully designed and offers a solid reference. How-
ever, especially in research papers, there is often a need for using benchmarks based
on schemata with varying characteristic and on multiple alternative workloads with
different features. For instance, it could be interesting to understand how the perfor-
mance of a proposed approach varies with the number of dimensions in a cube, with
the average branching factor of hierarchies, with the maximum length of sessions, or
with the average selectivity of queries. In particular, generating parametric OLAP
workloads is crucial to the experiments made in the context of OLAP prediction and
recommendation, where the features of sessions and queries may have a strong impact
on the approach effectiveness and efficiency. So, the papers in this context often rely
on synthetically generated OLAP workloads, where queries and session are built in a
completely random way based on a set of structural and statistical parameters [6–9].
Unfortunately, while these synthetic workloads serve well for efficiency tests, they
cannot provide significant results for effectiveness tests because they do not lean on a
realistic user model.

To fill this gap, in this chapter we present CubeLoad, a parametric generator of
OLAP workloads [148]. The main features of CubeLoad are:

• No predefined multidimensional schema is used. The benchmarker1 can create
a workload for any multidimensional schema provided it has been exported in
XML compliant with the Mondrian format.

• The workload is generated in the form of sessions, each including a variable
number of aggregate queries. The main parameters used are related to a realistic
profile-based workload model.

• Sessions are generated according to a set of four templates, that model recurrent
types of user analyses.

1To distinguish users of OLAP front-ends from the users of CubeLoad, we will call benchmarkers
the latter.
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• If an instance of the multidimensional schema is available (in particular, in the
form of a set of dimension tables), its data are used for generating instance-
dependent (hence, more realistic) workloads.

• The generated workload is exported in XML to ensure maximum usability.

CubeLoad is written in Java and can be downloaded at http://big.csr.unibo.it/ down-
loads/CubeLoad.zip. It can be freely used by researchers, practitioners, and vendors
whenever they need to create parametric bulk OLAP workloads for benchmarking and
testing.

The chapter outline is as follows.

• In Section 8.2 we discuss the related literature.

• In Section 8.3 we describe the overall functional architecture of CubeLoad.

• In Section 8.4 we present the workload model

• In Section 8.5 we present the session templates.

• In Section 8.6 we discuss the results of some tests we made to profile the generated
workloads

• In Section 8.7 we draw the conclusions.

8.2 Related Literature
A milestone in OLAP benchmarking is the TPC-DS [136], that models the decision
support functions of a retail product supplier relying on multiple snowflake schemata
with shared dimensions. The TPC-DS provides four classes of queries; in particular,
the class of iterative OLAP queries is distinguished by the tendency of one query to be
related to the previous query so as to create sequence of queries —essentially, OLAP
sessions. Queries are randomly generated starting from four templates; however, there
is no way of parameterizing the generation of sessions.

In [65] the authors introduce the concept of workload profile as a way for summarizing
the features of an OLAP workload to support designers during logical and physical
design. However, the profile used there has a merely statistical nature, and has no
relationship with classes of users. Besides, only stand-alone queries are generated.

A workload for evolutionary analytics is proposed in [105] together with several
test metrics and with a methodology for running the workload. The emphasis there is
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not on standard OLAP sessions but rather on queries that evolve over time (which
may imply much more drastic changes than those obtained through OLAP operations)
and are formulated over changing data and schemata.

A Data Warehouse Engineering Benchmark (DWEB) that allows to generate various
ad-hoc synthetic data warehouses and workloads is presented in [28]. Though the
DWEB workload is parameterized to fulfill data warehouse design needs, it does not
create queries in sessions and is ruled by statistical parameters rather than by realistic
assumptions.

The author of [135] starts from the query generator of the TCP-DS to define a set
of rules that transform a SQL query into another SQL query similar to the original.
However, this transformation works at a merely syntactical level (e.g., a new query
can be created by changing the comparison operator in the selection predicate) and
does not consider OLAP operations such as slicing and drilling.

In [162] the authors introduce a query generator to evaluate the quality of a query
optimizer. Similarly to ours, the generator presented is schema-independent and is able
to produce valid queries on any database. However, only OLTP queries are generated
and, therefore, there is no mention of query sessions.

Finally, a benchmark on star schemata that extends the TPC-H is presented
in [131]; the emphasis here is more on data schemata than on queries, so only 4
non-parameterized OLAP sessions (called query flights here) are provided.

8.3 Overview
A functional overview of the CubeLoad architecture is sketched in Figure 8.1. The main
input is the multidimensional schema on which the workload is to be generated. To
provide this input we adopt the XML specification used by Mondrian for its metadata
[80].

To generate realistic selection predicates and enable report sizes to be estimated,
dimension data are needed. These data can be fed into CubeLoad using the CSV
(comma-separated values) format, which can be easily obtained by benchmarkers by
exporting dimension tables.

Internally, CubeLoad includes five components:

1. The user interface, that allows benchmarkers to select the XML multidimen-
sional schema to be used and choose values for global and profile parameters.
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Fig. 8.1 Functional overview of CubeLoad

2. The file interface, in charge of reading and parsing XML and CSV input files
and of writing XML output files.

3. The multidimensional schema manager, that builds an internal representa-
tion of cubes and dimension data.

4. The session generator, that runs the basic procedures for creating sessions
respecting the constraints posed by global and profile parameters.

5. The template manager, that gives the session generator additional rules for
creating sessions based on each template.

8.4 The Workload Model
The output of CubeLoad is an OLAP workload, defined as a set of sessions, i.e., a
sequence of OLAP queries (see Chapter 2 for a formal definition of OLAP sessions). We
call report the result of a single query; its size is the number of facts returned. Roughly,
the size of a report can be estimated as the product of the domain cardinalities for
all levels in the query group-by, reduced by considering the selectivity factors of the
selection predicates; more accurate estimates can be computed if the sparsity of the
cube is known [24].
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In company settings, users of OLAP front-ends are normally grouped into profiles
with different skills (e.g., CEO, marketing analyst, department manager) and involved
in business analyses with different features (e.g., more or less repetitive, more or less
complex). Importantly, different profiles generally have quite different permissions for
accessing data; often, a profile has one or more segregation predicates, i.e., it can only
view a specific slice of the cube data (e.g., a department manager can only access the
sales for her department).

When a user logs to the OLAP front-end, she is typically shown a page where some
predefined queries (which we call seed queries) are linked. Sometimes seed queries
include a prompt, meaning that the front-end asks the user to select one value out
of the domain of a level (often, the year). After choosing and executing one of these
queries, the user starts applying a sequence of OLAP operations that progressively
transform a query into another so as to build an analysis session. Features such as the
number of seed queries available, the maximum size and complexity of reports returned
by seed queries, and the average length of sessions may significantly depend on the
typical ICT skills and business understanding for the users of each profile —besides on
the quality of the OLAP fron-end.

To simulate the above setting, CubeLoad uses a set of parameters that rule workload
generation and are distinguished into global parameters and profile parameters. The
global parameters rule:

• the number of distinct user profiles to be simulated. Each profile simulates
a specific class of OLAP users and is characterized by different values of the
profile parameters. Each session is generated for one profile, so the sessions in
the resulting workload can be naturally grouped into clusters; the more different
the parameters for the profiles, the sharper the clusters.

• the maximum number of measures that can be returned by a single query.
A report including several measures is hardly readable by anyone, so the value
for this parameter mainly depends on how sophisticated the visualization modes
supported by the OLAP front-end are.

• the minimum and maximum size of seed query reports. The size (i.e.,
number of cells) of a query result depends on the query group-by and on the
presence of selection predicates. While during an unconstrained OLAP sessions
users can (either consciously or unconsciously) formulate a query that returns a
report with either negligible or huge size, seed queries are typically created by
front-end programmers in such a way that their report size is reasonable. This is
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reason the reason why in our model the size of seed query reports ranges within
a parametric interval.

• the number of surprising queries, whose meaning will be explained in Section
8.5 in relationship to the explorative template.

Each profile is then associated to a further set of parameters, that rule:

• the number of seed queries. Specialists’ profiles have a large number of seed
queries; managers’ profiles may have a low number of seed queries.

• the minimum and maximum length of sessions. The values for these
parameters depend on the ICT skills of the users of each profile and on the
complexity of the analyses they usually carry out.

• the number of sessions to be created. The more intensive the use of the OLAP
front-end for the users of a profile, the higher the value of this parameter.

• the fraction of seed queries that include a year prompt. This fraction
depends on the time scope of decision-making tasks for each profile (operative
profiles typically analyze daily to monthly trends, while managerial profiles are
often interested in yearly trends).

• the presence of a segregation predicate. A segregation predicate is typically
present in departmental or geographically-distributed profiles (e.g., production
manager and sales manager for Italy).

The workload model is summarized in Figure 8.2 in the form of a UML class
diagram.

8.5 Session Templates
Each session generated by CubeLoad for a given profile starts from one of the seed
queries for that profile and evolves, consistently with global and profile parameters,
according to a template. In its current implementation, CubeLoad uses four different
templates for generating sessions:

1. Slice-and-Drill. In several OLAP front-ends, the default behavior when a user
clicks on a row/column of a pivot table is to disaggregate the values for that
row/column into its components, which in OLAP terms means slicing and drilling
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Fig. 8.2 UML workload model

down. For instance, starting from a report showing sales per state and year,
clicking on 2013 would trigger a query showing sales per state and month of 2013,
while clicking on Florida would trigger a query showing sales per Florida cities
and year. In sessions based on this template, (non-segregated) hierarchies are
progressively navigated by choosing a hierarchy h, a member v of the current
group-by level l and creating a new query with selection predicate l = v and
group-by on the level l′ that precedes l within h (i.e., l′≻̇l).

2. Slice-All. Users are sometimes interested in navigating a cube by slices, i.e., in
repeatedly running the same query but with different selection predicates. In
sessions based on this template, a level l of the group-by of the seed query is
chosen, and new queries are generated by keeping the same group-by and adding
selection predicates on the different members of l. For instance, starting from
a query asking for the monthly sales by state for the video department, the
subsequent queries could ask for the same report for the audio, the photo, and
the PC departments.

3. Explorative. Some queries may return reports that are particularly interesting
for most users, for instance because they show unexpected results (e.g., they
show that the impact of a social policy is not the one that had been predicted)
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or have a strong impact on business (e.g., they show that the level of qualified
employment in a given area is extremely low, which requires a corrective action
to be taken). Following [156], we call them surprising queries. The motivation
for this template is the assumption that several users, while exploring the cube in
search of significant correlations, will be “attracted” by one surprising query. So,
sessions based on this template tend to converge “near” to one of the surprising
queries, then they evolve casually. Note that the overall number of surprising
queries is fixed by a global parameter, while each surprising query is randomly
generated.

4. Goal-Oriented. Sessions of this type are run by users who have a specific
analysis goal, but whose OLAP skills are limited so they may follow a complex
path to reach their destination. All the goal-oriented sessions starting from
the same seed query q end in the same (randomly-generated) query p, but the
sequence of OLAP operations to be applied to reach p from q is generated
randomly.

Figure 8.3 shows an intuition of sessions based on the four templates in a qualitative
group-by/selection predicate space.

8.6 Experiments
To verify that the CubeLoad parameters and templates actually allow a wide spectrum
of workloads to be generated, and to help benchmarkers better understand the rela-
tionships between those parameters/templates and the workload features, we use a
similarity function that was specifically proposed in [7] for comparing OLAP queries
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and sessions. The query similarity function, σque, is a combination of three components:
one related to group-by’s, one to selection predicates, and one to measure sets.

Definition 8.6.1 (Similarity of OLAP queries) Let q and q′ be two queries on
the same n-dimensional schema. The similarity between q and q′ is

σque(q, q′) = 0.35σgbs(q, q′) + 0.50 · σsel(q, q′) + 0.15 · σmeas(q, q′) ∈ [0..1]

where:

• The similarity between the group-by’s of q and q′, {l1, . . . , ln} and {l′1, . . . , l′n}
respectively, is

σgbs(q, q′) = 1 −
∑n

i=1
Distlev(li,l′i)

Li−1

n

where Li is the total number of levels in the i-th hierarchy, hi, and Distlev(li, l′i) ∈
[0..Li − 1] is the distance between its two levels li and l′i.

• The similarity between the selection predicates of q and q′, {p1, . . . , pn} and
{p′1, . . . , p′n} respectively, is

σsel(q, q′) = 1 −
∑n

i=1
Distpred(pi,p

′
i)

Li

n

where the distance Distpred(pi, p′i) between predicates pi and p′i, both formulated
on levels of hierarchy hi, is 0 if they are expressed on the same level and using
the same constant, 1 if they are defined on the same level but not on the same
constant, greater than 1 if they are defined on different levels.

• The similarity between the measure sets returned by q and q′, Meas and Meas′

respectively, is
σmeas(q, q′) = |Meas ∩ Meas′|

|Meas ∪ Meas′|

The session similarity function, σali(s, s′) ∈ [0..1], is based on the best alignment
between the queries belonging to sessions s and s′. The best alignment is computed
by means of the Smith-Waterman algorithm, which efficiently matches subsequences
of two given sequences by ignoring the non-matching parts [160]. It is a dynamic
programming algorithm based on a matrix whose value in position (i, j) expresses the
score for aligning subsequences of s and s′ that end in queries si and s′j, respectively.
This score is computed starting from the similarity between the queries included in the
aligned subsequences [7].
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Table 8.1 CubeLoad parameters used for generating the three sample workloads

Sample workload W1 W2 W3
Number of profiles 1 1 1

Max number of measures 2 2 2
Size of seed query reports 10 ÷ 100 10 ÷ 100 10 ÷ 100

Number of surprising queries 5 2 1
Number of seed queries 50 5 1

Length of sessions 7 ÷ 12 7 ÷ 12 7 ÷ 12
Number of sessions per seed query 4 40 200

Year prompt fraction 0.25 0.50 1.00
Segregation predicate No Yes Yes

To explore the range of possibilities of CubeLoad we generated three sample
workloads with the following “extreme” features:

1. Workload W1 is a sparse one, i.e., the sessions generated are quite different one
from another. This result is mainly obtained by using a high number of seed
queries and generating a few sessions per seed.

2. Workload W2 is a clustered one, i.e., the sessions generated are similar to each
other in five groups. This is mainly obtained by defining five seed queries.

3. Workload W3 is a dense one, i.e., the sessions generated are all quite similar to
each other. This is mainly obtained by defining a single surprising query and by
generating all sessions starting from the same seed query.

For a fair comparison, all three workloads include the same numbers of sessions (200);
the values for the other parameters are summarized in Table 8.1.

A qualitative analysis of these three workloads can be made by observing Figure
8.4, that shows for each of them the session-to-session similarity. Each row and column
corresponds to one of the 200 sessions of the workload, so each cell shows the similarity
between two different sessions of the same workload: white means σali = 0, black
σali = 1, gray shades mean 0 < σali < 1. As expected, in Figure 8.4.a we find a very
low average similarity between sessions, while in Figure 8.4.c the average similarity
is much higher. In Figure 8.4.b we can easily find the five cluster as areas with
higher-than-average similarity. A quantitative confirmation of this fact can be found
in Figure 8.5, that shows for each workload the average session-to-session similarity
and its standard deviation: they are both lower for the sparse workload W1 (where all
sessions are different), while they increasingly grow higher for the clustered workload
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Fig. 8.4 Session-to-session similarities for the three sample workloads

W2 (where sessions in the same cluster are very similar to each other and very different
from those in the other clusters) and the dense workload W3 (in the latter case, the
standard deviation is high because the four templates adopted inevitably introduce a
scattering in the sessions generated).

Figure 8.5 also shows the propensity of each workload to being clustered. The
indicator we adopted to this end is the Hopkins statistics [75]. Given a workload W ,
i.e., a set of n sessions, we first generate a set S of m fake sessions (m ≪ n) that are
randomly and uniformly distributed in the space of possible sessions. For each fake
session si ∈ S, let ui be its distance from the nearest-neighbor session in W (where
Distance(s, s′) = 1 − σali(s, s′)). Then, m sessions are randomly chosen from W ; let
wi be the distance of the i-th of these sessions from its nearest-neighbor in W . The
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Hopkins statistics is then defined as

κ =
∑m

i=1 wi∑m
i=1 ui + ∑m

i=1 wi

For workload W1, κ is near to 0.5; this means that the distance of each session in W1
from its nearest-neighbor is very similar to the distance of each fake session, i.e., that
W1 has a random distribution. For W2 is quite small; this is because the wi’s are
small, which means that sessions are well clustered. For W3 κ is even smaller, because
all sessions are part of a single, dense cluster.

Finally, Figure 8.6 gives a quantitative explanation of the differences between
our four templates by showing the similarity σque between the first query and the
subsequent queries for sessions based on each template. In the slice-and-drill template,
the saw-tooth trend arises because when a sequence of slice-and-drill clicks along
hierarchy h leads to a query grouped by the finest level of h, the simulated user
behavior is to go back to the seed query and start a new slice-and-drill sequence along
a different hierarchy (three such sequences are clearly visible in the figure). In the
slice-all template, only the specific member appearing in the query selection predicate
is changed during the session, so the query similarity is mostly constant and quite
high. In the explorative template, the session rapidly converges towards the surprising
query (the sixth query in the session in this case), then it moves randomly in the query
space (in this case, it tends to reapproach the seed query). Finally, in the goal-oriented
template the session randomly moves towards its goal query.
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8.7 Conclusions
In this chapter we have described the features of CubeLoad, a generator of OLAP
sessions aimed at simulating realistic workloads [148]. The sessions generated are
currently based on four templates and ruled by a set of parameters. The template
features and the impact of parameters on the resulting workload have been discussed
with the support of some tests using a similarity function specifically devised for OLAP
sessions.

Some comparison between CubeLoad and TPC-DS is useful at this point. Overall,
the focus in the TPC-DS is more on the complexity of single queries rather than on
query sessions. Indeed, while the query model is more expressive than in CubeLoad
because nesting is supported, three of the four classes of queries provided in the TPC-
DS (namely, ad hoc queries, reporting queries, and data mining queries) only include
stand-alone queries; as such, they could be generated with CubeLoad by setting the
maximum length of sessions to 1 and properly tuning the maximum size of seed query
reports (differently from the first two classes, data mining queries are characterized
by high cardinality of the results). Conversely, the class of iterative OLAP queries
comprises four base sessions each including exactly 2 queries; more sessions can be
generated from each base session by randomly changing a selection predicate. In two of
the base sessions, the subsequent queries are not related by the application of a single
OLAP operator like in CubeLoad, so they can be quite “distant” from each other, but
still they are finalized to the same analysis goal. In the other two base sessions, the
two subsequent queries differ from their selection predicate. Thus, an effective way to
generate sessions like these ones with CubeLoad is to use the goal-oriented and the
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slice-all templates and fix the number of seed queries to 4, with a session length equal
to 2.

Our future work on this topic will be mainly aimed at enhancing the capabilities
of CubeLoad in three directions: (i) by allowing benchmarkers to distinguish skilled
and non-skilled profiles, so as to enable a finer tuning of the workload features; (ii)
by defining other templates, so as to make CubeLoad more flexible and usable for a
wider array of benchmarks; and (iii) by adopting a more complex query model, so as
to make the generated workloads more realistic still. From the engineering point of
view, we plan to refactor the CubeLoad code according to an open architecture where
each benchmarker can write her own templates in the form of a plugin.





Chapter 9

A recommendation approach for
OLAP analyses based on OLAP
sessions

In this chapter we propose a recommendation approach for OLAP exploration of
multidimensional cubes stemming from collaborative filtering. The founding claim is
that the whole sequence of queries belonging to an OLAP session is valuable because
it gives the user a compound and synergic view of data; for this reason, our goal is
not to recommend single OLAP queries but OLAP sessions. Like other collaborative
approaches, ours features three phases: (i) search the log for sessions that bear some
similarity with the one currently being issued by the user; (ii) extract the most relevant
subsessions; and (iii) adapt the top-ranked subsession to the current user’s session.
However, it is the first that treats sessions as first-class citizens, using new techniques for
comparing sessions, finding meaningful recommendation candidates, and adapting them
to the current session. After describing our approach, we discuss the results of a large
set of effectiveness and efficiency tests based on different measures of recommendation
quality.

9.1 Introduction
OLAP is the main paradigm for accessing multidimensional data in data warehouses.
As anticipated in Section 2.3, OLAP provides a set of operations (such as drill-down and
slice-and-dice) that transform one multidimensional query into another, so that OLAP
queries are normally formulated in the form of sequences called OLAP sessions [7, 155].
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During an OLAP session the user analyzes the results of a query and, depending on the
specific data she sees, applies one operation to determine a new query that will give her
a better understanding of a business phenomenon. The resulting query sequences are
strongly related to the user’s skills, to the analyzed phenomenon, to the current data,
and to the OLAP tool adopted. Since the huge number of possible aggregations and
selections that can be operated on data may make the user experience disorientating,
different approaches were taken in the literature to address this issue; in particular, in
the area of personalization, both preference-based (e.g., [64, 86]) and recommendation
techniques (e.g., [157, 57]) were specifically devised for OLAP systems.

In this chapter we are specifically interested in recommendations. The original
claim underlying our approach is that an OLAP session issued by a user is not just
a casual path aimed at leading her to a single, valuable query (the one at the end of
the session). Indeed, as stated in [119] with reference to clickstream analysis, path
data contain information about a user’s goals, knowledge, and interests. Undoubtedly,
in the case of OLAP interactions, sessions are first-class citizens: the whole sequence
of queries belonging to a session is valuable in itself, because (i) it gives the user a
compound and synergic view of a phenomenon; (ii) it carries more information than a
single query or set of queries by modeling the user’s behavior after seeing the result of
the former query; and (iii) several sessions may share the same query but still have
quite different analyses goals. For this reasons, like done in [68] for recommending sets
of pages to users of a Web site, we propose an approach whose goal is not to recommend
single OLAP queries, but rather OLAP sessions. Some existing approaches recognize
that sessions carry much more information about users’ behavior than queries and
recommend OLAP queries based on an analysis of past sessions (e.g., [155]); still, like
all the other previous work on OLAP recommendation, they are focused on suggesting
only single queries to users. In this sense our approach is highly innovative in the
OLAP field, and therefore it requires brand new techniques.

Consistently with collaborative filtering approaches, our goal in deciding which
sessions to recommend is to reuse knowledge acquired by other users during previous
sessions. So let scur be the current user session for which we have to give a recom-
mendation, and D be the session log. The approach we propose features three phases:
alignment (search D for sessions that are similar to scur and optimally align each of
them with scur), ranking (extract from the selected sessions the common subsessions
and rate them according not only to their degree of similarity with scur, but also to
how frequent they are in D), and fitting (adapt the top-ranked subsession r to scur and
recommend the resulting session r′) [5]. To assess session similarity we readapt the
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alignment-based similarity function specifically devised for OLAP sessions in [7]. Note
that OLAP users are normally grouped into profiles (e.g., CEO, marketing analyst,
department manager); in this case, the session log can easily be partitioned by profiles
so that each user can get recommendations based on sessions performed by users that
share her background and expertise.

The qualifying properties of the recommendations we aim to give are relevance:
this is obtained by ranking the log subsessions according to their frequencies so as
to identify dense area of analysis that could be interesting for users; foresight: this is
achieved by allowing even a subsession that is “far” from the alignment point with
the current session (i.e., intuitively, far in the future) to be recommended; novelty:
thanks to the fitting phase, the recommendation we give may not be part of the log;
and suitability: during the fitting phase, the top-ranked subsession found in the log is
adapted to the current session.

The outline of the chapter is as follows.

• In Section 9.2 we discuss the related literature.

• In Section 9.3 we provide the formal background and introduce the working
example.

• In Section 9.4 we present our approach to recommendation and describe its
phases.

• In Section 9.5 we discuss the results of experimental tests.

• In Section 9.6 we draw the conclusions.

9.2 Related Literature
Recommender systems [4] are now well established as an information filtering technology
and used in a wide range of domains. They are traditionally categorized as either
content-based (suggestions are based on the user’s past actions only), collaborative
(suggestions are based on similarities between users), or hybrid combinations.

A comprehensive survey of collaborative recommender systems evaluation is pre-
sented in [71]. Recommender systems are mostly evaluated with accuracy-based
measures [67], typically predictive accuracy like MAE, or classification accuracy like
precision and recall.

Accuracy alone fails to capture the usefulness of recommendations, so other objective
metrics related to suitability are being developed.
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For instance, coverage [71, 55] is the degree to which recommendations cover the
set of available items and the degree to which recommendations can be generated to
all users. Novelty directly measures non-obviousness, often by referring to a fixed list
of obvious recommendations, while serendipity measures how far novel recommenda-
tions may positively surprise users, for instance by reporting the rate of useful novel
recommendations.

Recently recommender systems started to gain interest in the database community,
with approaches ranging from content-based [36] to collaborative [38] query recom-
mendation, especially to cope with the problem of interactively analyzing database
instances [94, 92]. This problem is particularly important in a data warehousing
context, where one prominent use of such systems is to analyze the warehouse instance
with OLAP queries as a basis for decision support.

In a data warehouse context, the peculiarities of the multidimensional schema and
queries can be leveraged. In [157], operators are proposed to analyze a query answer
by automatically navigating to more detailed or less detailed aggregation levels, in
order to detect surprising values to recommend. In [155], the log is represented as two
Markov models: one that describes the transitions between query patterns (where a
pattern is a simplified query expression) and one that describes transitions between
selection predicates. These two models are used to construct the most probable query
that follows the current query.

More recently, [86] proposes a content-based recommendation approach that synthe-
sizes a recommendation by enriching the current query answer with elements extracted
from a user’s profile. [57] introduces a generic framework for query recommendation,
where a distance measure between sessions is used to compare log sessions with the
current session, and the set of final queries belonging to the closest log sessions are
recommended and ranked according to their distance with the final query of the current
session. [58] proposes to recommend a graph of former queries, based on the application
of the operators of [157] on the query log, to detect surprising values regarding the
current query answer. In [9], queries are recommended using a probabilistic model of
former sessions, inspired by [155], where a similarity tailored for OLAP queries is used
to group queries.

The existing approaches for query recommendation in data warehouses are sum-
marized in Table 9.1 where, for each approach, we indicate (1) the category of the
recommender system: content-based, collaborative filtering, or hybrid; (2) the source
of information, i.e., whether the approach is log-driven, answer-driven, or both; (3)
whether the approach is session-based and, if so, whether sequential aspects are con-
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Table 9.1 Query recommendation approaches in data warehouses

Ref. Cat. Input Output Quality
Source Session? Model Tech. Form Source Tech. metrics

[157] CB ans. not seq. ans. stoch. tuples instance sel. acc.
[155] CF log seq. expr. stoch. query curr. synth. -
[57] H log seq. ans. sim. query log sel. acc.
[86] CB ans. no ans. pref. query curr. synth. -
[58] H log/ans. not seq. ans. stoch. query log sel. acc.
[9] CF log seq. expr. stoch. query log sel. acc., cov.
Ours CF log seq expr. sim. session log/curr. synth. acc., cov., nov., fore.

sidered or not; (4) the query model used, i.e., whether the approach leverages query
expressions or query answers; (5) the technique used to process the input, i.e., whether
the approach is similarity-based, preference-based, or stochastic; (6) the form (query or
tuples) of the recommendation; (7) whether the recommendation is taken from a log,
from the database instance, or from the current query; (8) the technique used to output
the recommendation, i.e., if it is simply selected from the source or if it is synthesized
from it; and finally (9) the metrics used for assessing the quality of recommendations:
accuracy, coverage, novelty, foresight.

The first lesson learned from this literature review is that sessions are rarely
treated as first-class citizens. Sequential aspects are seldom taken into account, and
no approach ever considered recommending a sequence of queries. Approaches taking
sessions into account only use them as input, to construct a model subsequently used
for recommending. In addition, the stochastic approaches that consider sessions use
a first order Markov Model, and therefore base their predictions only on the user’s
current query. Recommendation can be too much prescriptive (only one query) or too
little prescriptive (a graph of queries). Besides, recommendations are rarely synthesized
queries, but more often queries chosen among past queries stored in some query log or
tuples retrieved from the database instance. Many of the techniques proposed rely on
query answers, which may result in a poor scalability compared to techniques using
only query expressions, as reported in [38] in the case of databases. Finally, none of
the former approaches assesses the system quality beyond accuracy and coverage. The
approach we propose in this article overcomes these limitations. Sessions are treated as
first-class citizen all along the process, query expressions are leveraged with a similarity
tailored for OLAP sessions, the recommendation is synthesized from the log and the
current session, and the quality of the recommender system is assessed using suitability
metrics.
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9.3 Background
In this chapter we start from Definitions 1, 3 and 1 of multidimensional schema,
group-by set and cube (provided in Section 2.4) to define OLAP queries and sessions.
The basic form of an OLAP query, centered on a single cube, is characterized by a
group-by set, a selection expressed by a conjunctive predicate, and a set of measures.

Definition 24 (OLAP Query) An OLAP query on a cube C is a triple q = ⟨b, P, M⟩
where:

1. b ∈ Dom(B) is a group-by set;

2. P is a set of selection predicates, i.e., boolean clauses of type lk = value where
lk ∈ L

3. M is a set measures such that M ⊆ Meas.

An OLAP query q can be decomposed into fragments, where each fragment is either (i)
a level l ∈ b, or (ii) a predicate p ∈ P , or (iii) a measure m ∈ M .

Example 26 An example of query on the multidimensional schema in Figure 2.3 is
q = ⟨(Product, Month, Country), (Country=Italy), (Unit sales, Profit )⟩.

An OLAP session is an ordered sequence of correlated queries formulated by a
user on a multidimensional schema; each query in a session is typically derived from
the previous one by applying an OLAP operator (such as roll-up, drill-down, and
slice-and-dice).

Definition 25 (OLAP Session) An OLAP session is a sequence s = ⟨q1, q2, . . .⟩ of
queries on schema M. A log D is a set of sessions.

Moreover, given a session s, we will denote with length(s) the number of queries
in s, with s[w] (1 ≤ w ≤ length(s)) the w-th query of s, and with s[v, w] (1 ≤ v ≤
w ≤ length(s)) the subsession of s spanning from its v-th query to the w-th one. The
last query of s, s[length(s)], is briefly denoted with s[.], so s[v, .] is the subsession of s

spanning from its v-th query to the end.
The reference database used in this chapter is IPUMS, a public database storing

census microdata for social and economic research [116]. Its CENSUS multidimensional
schema has five hierarchies, namely RESIDENCE, TIME, SEX, RACE, and OCCUPATION,
and several measures. The complete roll-up orders are shown in Figure 9.1.



9.4 Our Approach 179

City 

State 

Region 

AllCities 

Race 

RaceGroup 

MRN 

AllRaces 

Year 

AllYears 

Sex 

AllSexes 

Occ 

AllOccs 
RESIDENCE RACE 

TIME 

SEX OCCUPATION 

City,Year,Sex 

City,Year,AllSexes City,AllYears,Sex State,Year,Sex 

Region,Year,Sex State,Year,AllSexes State,AllYears,Sex 

AllCities,Year,Sex Region,Year,AllSexes Region,AllYears,Sex 

City,AllYears,AllSexes 

State,AllYears,AllSexes 

AllCities,AllYears,Sex AllCities,Year,AllSexes 
Region,AllYears,AllSexes 

AllCities,AllYears,AllSexes 

Fig. 9.1 Roll-up orders for the five hierarchies in the CENSUS schema
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Fig. 9.2 A log for our working example

In the following sections, we will use a simplified version of the CENSUS schema,
featuring only the RESIDENCE, TIME, and SEX, while the experimental tests in Section
9.5 will be carried out on the complete schema. All examples will be based on a log
that consists of 3 sessions, s1, s2, and s3, each including 6 queries. For simplicity,
predicates and measures are not changed during each session, while group-by’s are
changed as shown in Figure 9.2 with reference to a portion of the multidimensional
lattice of the CENSUS schema.

9.4 Our Approach
Let scur be the current OLAP session and D be a log of past sessions. As sketched in
Figure 9.3, our approach to compute a recommendation for scur based on D includes
three consecutive phases, described in detail in the following subsections:

1. Alignment, described in Section 9.4.1, that selects from D a set of sessions that
are similar to scur by finding an optimal alignment between each of them and
scur. For each session d in this set, its future is defined as the subsession of d

following the query that has been aligned with the last query of scur (i.e., with
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Fig. 9.3 The three recommendation phases

the last query currently issued by the user). The set of futures obtained in this
way constitutes the set F of candidate recommendations for scur.

2. Ranking, detailed in Section 9.4.2, that chooses a base recommendation r as a
subsession of a candidate recommendation in F by considering both its similarity
with scur and its frequency in D.

3. Fitting, described in Section 9.4.3, that adapts r to scur by looking for relevant
patterns in the query fragments of scur and r and using them to make changes
to the queries in r, so as to deliver a recommendation r′.

Noticeably, the user has a possibility of influencing the recommendation by acting
on a parameter called minimum foresight, denoted δ, used in the ranking phase to
select the base recommendation. With this threshold, the user indicates how distant
from the current query the recommended session should be: higher values result in
recommendations being farer from, and less strictly related to, the current session.
Automatically adjusting this value based on the history of the user interactions with
the system is beyond the scope of this work and is left as future work.
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9.4.1 Alignment

The goal of this phase is to identify in the log D a set F of candidate recommendations
for the current session scur. To do so, first we try to find an alignment between scur

and each session d in D. The alignment algorithm we adopt is an adaptation of the one
that was proposed in [7] to effectively capture the similarities between OLAP sessions;
in turn, that algorithm is based on the Smith-Waterman algorithm [160], whose goal is
to efficiently find the best alignment between subsequences of two given sequences by
ignoring their non-matching parts.

The Smith-Waterman algorithm is a dynamic programming algorithm that computes
the optimal alignment between two sequences s and s′ based on a score matrix. In
position (v, w), this matrix reports a score that expresses how well s and s′ match when
they are aligned ending in elements s[v] and s′[w]; each score is recursively calculated
by progressively adding the similarities between all pairs of matching elements in
the two sequences (the similarity between two elements can also be negative, to
express that they do not match). Intuitively, the algorithm seeks an optimal trade-off
between the cost for introducing a gap in the matching subsequences and the cost
for including a poorly matching pair of elements. In the extension proposed in [7] for
OLAP sessions, sequence elements correspond to queries. A query similarity function,
σque ∈ [0..1], is defined as a combination of three components: one related to group-by’s
(based on how distant the two group-by’s are in the multidimensional lattice), one
to selection predicates (based on the distance of the levels on which predicates are
formulated), and one to measure sets (their Jaccard index). A similarity threshold
is then used to distinguish matches from mismatches. Besides, a time-discounting
function is introduced to promote alignments based on recent queries, and a variable gap
penalty is used to discourage discontinuous alignments. The output of the alignment
algorithm when applied to two sessions s and s′ is their best alignment a, defined
by two matching subsessions s[vstart, vend] (denoted s(a)) and s′[wstart, wend] (denoted
s′(a)). If an alignment between s and s′ is found we say that s and s′ are similar,
denoted s ∼ s′, and their similarity (computed as explained in [7]), is denoted with
σses(a) ∈]0..1]. Otherwise it is s ̸∼ s′.

For our alignment phase we use a variant, denoted SWcand, that promotes alignments
between the end of scur and the beginning of each log session d, so as to favor log sessions
capable of providing a “long” candidate recommendation. This is achieved by modifying
the two-dimensional logistic sigmoid function originally used as a time-discounting
function as defined below and shown in Figure 9.4:
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Fig. 9.4 The sigmoid function used for SWcand (|scur| = 10, |l| = 15, γmin = 0)

Algorithm 4 Alignment
Input scur: the current session, D: the log
Output F : set of candidate recommendations
1: F ← ∅ ◃ Initialize F
2: for each l ∈ L do
3: a← SWcand(scur, l) ◃ Try to align d with scur

4: v ← position in d of l(a)[.]
5: if l ∼ scur and s

(a)
cur[.] = scur[.] and l[v + 1, .] ̸= ∅ then ◃ An alignment is found ending in scur[.]

6: f ← l[v + 1, .] ◃ Find the candidate recommendation
7: F ← F ∪ {f}
8: return F

γcand(v, w) = 1 − 1 − γmin

1 + e
−20
|l| w+ 5

|scur | v+ 10
|scur |

,

where v is a position in scur, w is a position in d, and γmin is the minimal value desired
for γcand (i.e., the minimal weight given to query alignments considered as irrelevant).
The constants have been experimentally tuned in order to answer to the specific desired
behavior: −20

|l| defines the proportion of queries in d whose alignment with the last
queries of scur has to be favored; 5

|scur| defines the proportion of queries in scur whose
alignment with the first queries of s has to be favored; 10

|scur| defines a minimal weight
to consider between the first queries of scur and d.

The pseudocode for the whole alignment process is given in Algorithm 4. For each
log session d such that d ∼ scur (line 2), its future is determined as the subsession
f = d[v + 1, .] (line 6) where v is the position of the last query aligned (line 4). If the
last query aligned in scur is scur[.], i.e., the last query in scur, and d has a non-empty
future f (line 5), then f is added to the set F of candidate recommendations (line 7).
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Fig. 9.5 A current session, its aligned log subsessions, its candidate recommendations,
its base recommendation, and its recommendation

Example 27 With reference to the log of Figure 9.2, let the current session scur be
the one whose group-by’s, selection predicate, and measure set are shown in Figure
9.5. An alignment is found between scur and each session in the log. In particular,
scur is aligned with log subsessions s1[1, 3] (with similarity 0.15), s2[1, 3] (similarity
0.21), and s3[2, 3] (similarity 0.29); in the last case, similarity is higher (though the
matching subsession is shorter) because the component of query similarity related to
measure sets is higher. So, in this example the set of candidate recommendations is
F = {s1[4, 6], s2[4, 6], s3[4, 6]}, obtained by considering the futures of the aligned log
subsessions.

9.4.2 Ranking

The goal of this phase is to examine F to determine the most suitable base recommen-
dation r, which will then be refined in the fitting phase. Consistently with collaborative
filtering approaches, we identify the densest areas in F so as to define r as the most
relevant subsession in F . More precisely, this phase requires first to compute pairwise
alignments between all sessions in F , and to use those alignments to assign a relevance
score to each query q ∈ fi, for each fi ∈ F . Then, a relevance score is computed for
each subsession that has been successfully aligned in each fi by averaging the scores
of its queries. Finally, r is chosen as the subsession with the highest relevance among
those that meet the minimum foresight constraint δ set by the user. Note that the
ranking methods normally used in collaborative filtering approaches can hardly be
adapted to the context of databases [38], and even less in our context because (i) we
work with two different levels of aggregation: queries and sessions; and (ii) we compare
objects (queries in our case) in terms of similarity and not of identity.
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Algorithm 5 Ranking
Input scur: the current session, F : set of candidate recommendations, δ: minimum foresight
Output r: base recommendation
Variables: Aij : sets of alignments
1: for each fi ∈ F, q ∈ fi do ◃ Initialize query scores
2: q.relevance← 0
3: maxRelevance← 0
4: for each fi ∈ F do
5: for each fj ∈ F, j > i do
6: Aij ← SWrank(fi, fj) ◃ Compute pairwise alignments...
7: for each a ∈ Aij do ◃ ...and update query scores
8: for each q ∈ f

(a)
i do

9: q.relevance← q.relevance + σses(a)
10: for each q ∈ f

(a)
j do

11: q.relevance← q.relevance + σses(a)
12: for each j ̸= i, a ∈ Aij do

13: avgRelevance←

∑
q∈f

(a)
i

q.relevance

length(f
(a)
i

)
◃ Compute score for f

(a)
i

14: a′ ← SWrank(f (a)
i , scur) ◃ Align f

(a)
i with scur to compute foresight

15: if avgRelevance > maxRelevance and (1− σque(f (a)
i [.], scur[.])) · (1− σses(a′)) ≥ δ then

16: maxRelevance← avgRelevance

17: r ← f
(a)
i

18: return r ◃ Return the subsession with the highest score

The pseudocode for this phase is sketched in Algorithm 5. The for loop starting
at line 4 aims at finding, for each candidate recommendation fi, its subsession yielding
the highest relevance score. This is done by first computing the pairwise alignments
between fi and all the other sessions in F making use of a different version of the
alignment algorithm. In this version, called SWrank, no time-discounting function
is used (as we do not need to favor alignments in particular positions), and every
possible alignment is returned; so, differently from SWcand, the result of SWrank(fi, fj)
is not only the best alignment but a set of alignments Aij between fi and fj . For each
alignment a ∈ Aij, in lines 7-11 we increase the scores of all aligned queries in fi and
fj by the similarity σses(a). Eventually, the queries with the highest scores will be
marking the densest areas in F , i.e., those that have been traversed the most by the
sessions in F . Then, in lines from 12 to 17, the query scores are used to compute a score
for each subsession of fi corresponding to an alignment found with another session in
F . In particular, for subsession f

(a)
i aligned in a, its relevance score is computed as the

average score of its queries. To check that the constraint on δ is met, the foresight of
f

(a)
i is estimated in line 15 as the distance between its last query and the last query of

the current session, weighted on the distance between the whole f
(a)
i and scur.

Example 28 With reference to our working example, the subsession in F yielding the
highest score (0.32) is s2[4, 6], which becomes the base recommendation r (see Figure
9.5).
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9.4.3 Fitting

The goal of this phase is to adapt the base recommendation r to the current session
scurr, i.e., to move r closer to scurr while preserving its intrinsic logic. This is achieved
by characterizing (i) the differences between scur and its aligned counterpart in the
log session d from which r is extracted and (ii) the user’s behavior during scur. These
characterizations adapt the technique of [6], that is itself inspired by label ranking, a
form of classification that has been shown to be effectively handled by association rules.
In [6] we proposed to modify a query using association rules extracted from a query
log. Our fitting phase therefore consists of extracting association rules from scur and d.
Two types of rules, called Type-1 rules and Type-2 rules respectively, are extracted and
used to transform r as sketched in Algorithm 6. Type-2 rules are those introduced in
[6] and have been proved successful in a similar context, while Type-1 rules are novel
and ensure that the final recommendation remains focused on the fragments frequently
used in the current session. The main difference between the two types is the sessions
they are computed from, which impacts the form of the rules.

A Type-1 rule aims at establishing a correlation between a query fragment x (either
a measure, a group-by level, or a selection predicate) used in d and a query fragment
y of the same type used in scur, so that r can be transformed by substituting all
occurrences of x with y. These rules take the form x → y and are extracted from
couples formed by a query qi of scur and q′j, the query of d aligned with qi (line 1 of
Algorithm 6). For instance, session d may be characterized by a recurrent selection
predicate Year = 2013 and be focused on measure AvgCostGas, while session scur

may be characterized by Year = 2011 and measure AvgPerWt; in this case, two rules
(Year = 2013) → (Year = 2011) and AvgCostGas → AvgPerWt will be extracted aimed
at making the base recommendation r more similar to the current session by focusing
r on 2011 and AvgPerWt rather than on 2013 and AvgCostGas.

Type-2 rules aim at finding query fragments used frequently together in scur (line
2), and have the form X → y with X a set of fragments of scur and y a fragment of scur.
For instance, rule {AvgCostGas, (Year = 2011)} → Region captures the fact that the
trends of measure AvgCostGas for 2011 are mainly analyzed in scur on a region-by-region
basis. If in r the same measure for 2011 is analyzed by State instead, this rule can
be used to adapt r by changing query group-by’s from State to Region. Noticeably,
letting both types of rules potentially work with all query fragments ensures that the
full range of transformations between OLAP sessions are covered.

Rules of both types are ranked according to the geometric mean of the following
figures, which have been experimentally selected: (i) the support of the rule; (ii)
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the confidence of the rule; (iii) the average position in scur where the head fragment
y appears (to favor recent fragments); (iv) the support of the head fragment y in
scur (to favor frequent fragments). Note that, for Type-1 rules, support is given by
supp(x → y) = |{(qi,q

′
j) s.t. qi∈scur,q′

j∈d,x∈q′
j ,y∈qi}|

|scur| , while for Type-2 rules it is supp(X →
y) = |{qi s.t. qi∈scur,X∪{y}⊆qi}|

|scur| . The confidence of a rule X → Y (where X and Y are sets
of fragments) is conf(X → Y ) = supp(X∪Y )

supp(X) .
The rules extracted are used to change the fragments Fr shared by all the queries

of the base recommendation r (line 3 of Algorithm 6). This ensures that the fitting
process respects the intrinsic logic of r, without producing two identical queries in the
recommended session. First, Type-1 rules x → y are considered (lines 5 to 11), in
descending order (line 6), as follows. If fragment x exists in r and not in scur, then
this fragment is replaced by y in r. Every modified fragment is marked so as not to
be adapted any more (line 10). Then, Type-2 rules X → y are considered (line 12 to
22), in descending order (line 13), only for changing the queries that include the rule
body X (line 14), as follows. If the rule head y is a selection predicate or a level and is
not already present in the query (line 15), then it replaces the corresponding fragment
(i.e., the one belonging to the same hierarchy) of the query (line 17). If y is a measure
that is not already present in r (line 19), then it is added to the measure set of the
query (line 21). Like for Type-1 rules, once a fragment is modified, it is marked so it is
not modified any more (line 21).

Note that, as an effect of the fitting phase, there is a possibility that the recommen-
dation produced, r′, includes some queries that are identical to queries that were part
of scur (i.e., queries that the user has already formulated during the current session).
Such a recommendation would be completely useless. So, in this case, we go back to the
ranking phase and take as a base recommendation the next most relevant subsession.

Example 29 In our working example, the only applicable rules are the Type-1 rules
AvgCostGas → SumIncTot and (Region =MA) → (Region =Mountain), which transform
r into r′ by changing its measure set and its selection predicate as shown in Figure 9.5.

9.5 Experimental Results
This section describes the results of the experimental tests we performed. After
explaining the measures we use to assess the quality of a recommendation, we report
and discuss the test results from both the effectiveness and efficiency points of view.
The benchmark we adopted for our tests is based on a set of synthetic logs over
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Algorithm 6 Fitting
Input scur: the current session, r: the base recommendation, d: the log session from which r was extracted
Output r′ : the recommended session
1: T1 ← ExtractT ype1Rules(scur, l) ◃ Extract rules
2: T2 ← ExtractT ype2Rules(scur)
3: F r ←

⋂
q∈r

q ◃ Set of shared fragments in r

4: r′ ← r
5: while F r ̸= ∅ and T1 ̸= ∅ do ◃ Apply Type 1 rules
6: (x→ y)← T opRank(T1)
7: if x ∈ F r and x ̸∈ q ∀q ∈ scur then
8: for i = 1 to length(r′) do
9: r′[i]← r′[i] \ {x} ∪ {y}
10: F r ← F r \ {x}
11: T1 ← T1 \ {x→ y}
12: while F r ̸= ∅ and T2 ̸= ∅ do ◃ Apply Type-2 rules
13: (X → y)← T opRank(T2)
14: if X ⊆ F r then
15: if y is a group-by level or a selection predicate and ∃z ∈ F r corresponding to y then
16: for i = 1 to length(r′) do
17: r′[i]← r′[i] \ {z} ∪ {y}
18: F r ← F r \ {z}
19: else if y ̸∈ q ∀q ∈ r′ then
20: for i = 1 to length(r′) do
21: r′[i]← r′[i] ∪ {y}
22: T2 ← T2 \ {X → y}
23: return r′

the CENSUS schema. The sessions in each log were generated using CubeLoad, the
benchmark generator presented in Chapter 8.

9.5.1 Assessing the Quality of Recommendations

Consistently with the literature on recommender systems (see Section 9.2), we assess the
accuracy and coverage of our recommender system first, and then use more elaborated
measures to assess the suitability of recommendations.

Accuracy is measured by extending the classical precision and recall measures to
take session similarity into account. Let D be a log and S be a set of current sessions
for which recommendations are to be computed. Given session s ∈ S, let fs be its
actual future (i.e., the sequence of queries the users would have formulated after s[.] if
she had not been given any recommendation) and rs be the future recommended by
our system. Recommendation rs is considered to be correct when rs ∼ fs, i.e., when it
is similar to the actual future of s.

Let FS = {fs ; s ∈ S} and RS = {rs ; s ∈ S}. The set of true positives is then
defined by

TP = {rs ∈ RS ; rs ∼ fs}
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i.e., the set of recommended futures similar to their actual counterparts. The set of false
positives is FP = RS \ TP and the set of false negatives is FN = {fs ∈ FS ; fs ̸∼ rs}.
Then, recall is |T P |

|T P |+|F N | and precision is |T P |
|T P |+|F P | = |T P |

|RS| .
The global accuracy is measured using the F-measure [169]:

F = 2 Precision · Recall

Precision + Recall

while the coverage is |RS|
|S| .

To assess the suitability of a recommendation rs for a current session s we adopt
two more measures. Foresight, measured like in Section 9.4.2, indicates how “far” from
the current query of s the last query of rs is, weighted by the distance between the
two sessions:

Foresight(s) = (1 − σque(s[.], rs[.])) · (1 − σses(a))

(where a is the best alignment between s and rs, and σses = 0 if no alignment can be
found). Novelty indicates how distant rs is from the sessions in the log:

Novelty(s) = minl∈L(1 − σses(a′))

(where a′ is the best alignment between d and rs).

9.5.2 Effectiveness Tests

This section presents the results of the seven groups of tests we conducted to assess
the accuracy and coverage of our recommender system, as well as the suitability of
the generated recommendations. All tests were conducted on a 64-bits Intel Core i7
quad-core 3.4GHz, with 8GB RAM, running Windows 7 pro SP1.

A set of tests on a log D generated by CubeLoad is executed by iteratively (i)
picking one session d ∈ D; (ii) taking subsession d[1, 4] as the current session and
subsession fd = d[5, .] as its actual future (except for the third group of tests, where
the position of the current query is varied); (iii) finding a recommendation rd for d[1, 4]
using the remaining sessions, D \ {d}, as the log sessions. As explained in Section 9.5.1,
rd is considered to be correct when rd ∼ fd, non correct otherwise.

The aim of the first group of tests we carried was to tune our approach, i.e., to
determine a good trade-off between accuracy and coverage. To this end we recall
from Section 9.4.2 that the base recommendation is chosen, among the candidate
recommendations, as the one with the highest relevance score; this suggests to check
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Fig. 9.6 Accuracy vs. coverage trade-off in function of the base recommendation
minimum relevance

how often selecting a subsession with low relevance leads to a wrong recommendation. So
in this tests we gave a recommendation only if the base recommendation had relevance
higher than a minimum relevance threshold, otherwise we gave no recommendation.
The results in Figure 9.6 show how the accuracy and coverage change when the
minimum relevance increases, on a log of 200 sessions. When the minimum relevance is
0 no filtering of base recommendations is made, so coverage is about 90%. Expectedly,
precision increases with the minimum relevance, while coverage —and therefore recall—
decrease quite rapidly, meaning that base recommendations often have low relevance.
However, the curve for precision clearly shows that our approach is well capable of
delivering good recommendations even out of base recommendations with low relevance.
These facts are well summarized by the F-measure curve, showing that the best overall
performance is achieved when the minimum relevance is 0. Therefore, no minimum
relevance threshold was posed for all the following tests.

The focus of the second group of tests was to observe how the approach performs
on logs with different characteristics. To this purpose, we tuned CubeLoad parameters
to create two series of logs: the first one with different densities, the second one
with different session lengths. Note that a clustered log is meant as one with dense
groups of similar sessions (specifically, each session is similar to about 30 other sessions
on average), whereas in a sparse log all sessions tend to be dissimilar from each
other (each session is similar to about 15 other sessions on average). The minimum
foresight δ was set to 0. As shown in Figure 9.7 (top left), the coverage increases as
sessions get more clustered, while precision is not significantly affected; this behavior
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Fig. 9.7 Effectiveness vs. log and session features

is consistent with that of collaborative filtering approaches, where the capability of
giving a recommendation depends on the quantity of data that matches the user’s
query. Also, Figure 9.7 (top right) shows that it is hard to give good recommendations
when log sessions are short; indeed, the shorter the log sessions, the less likely for the
recommendation to be similar to the (even shorter) actual future —therefore, the lower
the precision. As to the average foresight, in these tests it is expectedly low because
δ = 0. Finally, the average novelty is relatively higher but still it does not exceed 0.3,
again as a consequence of having set δ = 0; the reason for this relationship between
novelty and δ will be explained below (see comments to the fourth group of tests).

The core question of the third group of tests was: which is the best time in the
user’s OLAP journey to give her a recommendation? In other words, we analyzed how
the recommendation effectiveness changes with the length of the current session on
a log with medium density and medium length of sessions (again with δ = 0). The
results in Figure 9.7 (bottom) show that increasing the length of current sessions has a
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Fig. 9.8 Effectiveness vs. minimum foresight

clear positive effect on accuracy: this is compatible with the intuition that a longer
past is more explanatory of the user’s behavior and intentions, thus leading to the
delivery of better recommendations.

The fourth group of tests was aimed at measuring the effectiveness of the parameter
δ set by the user to rule the minimum foresight of the base recommendation. The
log used for these tests is again the one with medium density and medium length of
sessions, and current sessions have length 4. Figure 9.8 enables a comparison of the
accuracy and suitability measures with the fitting phase of our approach switched on
(plain lines) and off (dashed lines); in this regard, some interesting observations can be
made:

• The average foresight of the base recommendation (no fitting) is always higher
than the minimum foresight δ, which confirms the correctness of the approach.
However, the average foresight of the final recommendation (with fitting) is slightly
lower: in fact, fitting inevitably reduces the foresight by applying modifications
that move the base recommendation closer to the current session.

• Fitting has a strong impact on the recommendation correctness. Not only preci-
sion is improved by fitting when δ = 0, which indeed is the motivation for the
fitting phase, but the increase in precision caused by fitting with higher values of
δ is remarkable. The reason is that, when δ is high, the base recommendation
tends to be very distant from the current session, so it is probably not simi-
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lar to the actual future; however, fitting is quite effective in making the base
recommendation compatible with the current session.

• The novelty of the base recommendation is always very low; this is expected, as
the base recommendation is just a portion of a log session, hence it will always
have a strong similarity with the session from which it was extracted. The novelty
of the given recommendation is much higher, indicating that the recommendation
is actually something new with respect to what we have in the log. Interestingly,
the novelty reaches very high values when δ is also high. This can be explained by
considering that the sessions in the log tend to be clustered into some high-density
areas; to achieve a high foresight for a current session taken from one of these
clusters, base recommendations are mostly chosen from a low-density inter-cluster
areas of the log, so fitting transforms them into something very different from
the other log sessions.

The fifth group of tests investigates how the recommendation accuracy changes
with continued usage of the system. These tests were made on the same three logs used
for the second group of tests (a sparse one, a clustered one, and an intermediate one),
and the results were averaged. The sessions in each log were then randomly grouped
in groups of 20: at the first step, the 20 sessions in the first group were put in the log,
and the 20 sessions in the second group were used as current sessions; at the second
step, the 20 sessions in the second group were added to the log and the 20 sessions in
the third group were used as current sessions; and so on. As a result, the log size is
increased by steps of 20 in a way that simulates real usage of the system. Figure 9.9
shows the results. As expected, recall and coverage increase quickly with the log size;
precision is quite stable and above 80% even when the log is very small.

The sixth group of tests is focused on the robustness of the approach in terms of
stability of the recommendation. Figure 9.10 shows the similarity between the base
recommendation and the other candidate recommendations ordered according to their
relevance (averaged on groups of 20). The curve smoothly decreases, which means that
the most relevant subsessions, as ranked during the ranking phase, are all quite similar
to each other. This means that small variations in the current session or in the log
features will not change drastically the final recommendation returned.

Finally, we compared our approach with the one proposed in [57] (slightly modified
to recommend sessions instead of ordered sets of queries), using a log of 200 sessions
with minimum relevance 0 and minimum foresight 0. The approach of [57] is clearly
outperformed in terms of accuracy, with a precision of 0.52 (against 0.94) and a recall
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Log	  size 20 40 60 80 100 120
Prec 0.944 0.772 0.941 0.922 0.889 0.871
Rec 0.467 0.433 0.617 0.633 0.750 0.733
Cov 0.483 0.550 0.667 0.700 0.850 0.850

F-‐meas 0.610 0.546 0.737 0.735 0.812 0.790Prec	  
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Fig. 9.9 Effectiveness vs. log size
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sparse 12.86 12.60 19.56 17.7 0.0
medium 12.65 16.87 20.38 19.4 0.0
clustered 12.79 26.85 28.38 28.7 0.0

Extremly	  dense
199 14.71 1.22
199 18.35 1.30
199 28.23 1.67

Log	  size Alignment Ranking Fitting AVG
50 6.98 4.54 31.44 4.4 0.2
100 8.88 7.21 25.80 8.9 0.1
150 10.86 10.65 21.27 13.3 0.1
200 12.65 16.87 20.38 19.4 0.0

49 6.465 1.156
99 11.255 1.375
149 14.591 1.259
199 18.35 1.30
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Fig. 9.11 Efficiency vs. log features (all times in msec.; unless otherwise stated, all logs
have size 200; labels report the average number of candidate sessions)

of 0.52 (against 0.87). This is explained by the fact that this approach always computes
a recommendation (coverage 1 against 0.92) that is chosen from the log (novelty 0
against 0.18, foresight 0.18 against 0.05).

9.5.3 Efficiency Tests

Computing effective recommendations is useless if they are not returned in a time
frame compatible with OLAP interactions. Figure 9.11 shows the execution times for
our system considering logs with different features. Execution times are split according
to the three phases: alignment, ranking, and fitting. Overall, execution times rarely
exceed 50 msec., which is perfectly compatible with a human-computer interaction.

Before analyzing in more details the system behavior, we briefly discuss the compu-
tational complexity of the three phases. Algorithm 4 looks for the best Smith-Waterman
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alignment between the current session and those in the log, thus its computational
complexity is O(|D|×v2) where v is the average length of the log sessions [7]. Algorithm
5 ranks the candidate sessions computing an all-against-all Smith-Waterman alignment,
thus its computational complexity is O(|F |2 × v2) where F is the set of candidate
recommendations. Finally, Algorithm 6 applies fitting to the base recommendation;
its computational complexity is mainly ruled by Type-2 rules extraction, requiring
to extract all rules, even infrequent ones, which has an exponential complexity (see
e.g., [139]). The time taken remains acceptable though, since the average number
of fragments f that are common to all the queries of a base recommendation is low.
Type-1 rules extraction is polynomial, due to the nature of the rules extracted. However,
Type-1 rules extraction takes as input the set of fragments of both the current session
and the log session, whose size can be greater than f , especially in the presence of
small logs, where the similarity between the log session and the current session is likely
to be low. Clearly, the execution time of each phase depends on the one hand on the
cost of the basic operation carried out (i.e., alignment for Algorithms 4 and 5), on the
other hand on the number of times such operation is executed. In the light of this
premise, the following considerations hold:

• The costs for alignment and ranking increase with the log size |D| and the average
session length |v|, which jointly determine the number of alignments found with
the current session.

• Though fitting works on a single session, its cost is predominant due to the
high computational complexity of rule extraction. Unexpectedly, the execution
time of fitting increases as the log size decreases; this is due to the fact that the
extraction of Type-1 rules is computationally more expensive when the current
session is less similar to the log session, which is more likely in the case of smaller
logs.

• As to the two remaining phases, as suggested by the complexity estimates
reported above, the predominance of either alignment or ranking depends on
the relationship between |F |2 and |D|: the cost of ranking tends to become
higher than that of alignment for large and clustered logs, that determine several
candidate recommendations thus making |F |2 > |D|.

As to the comparison with [57], the tests show that our approach is slightly worse
in terms of efficiency (50 msec. against 17.8 msec.) due to the extra costs paid for the
fitting phase; however, as discussed in Section 9.5.2, the higher effectiveness largely
compensates for this lower efficiency.
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9.6 Conclusions
In this chapter we have proposed a collaborative filtering approach to recommendation
of OLAP sessions that reuses knowledge acquired by other users during previous sessions
[5]. Like other collaborative approaches, ours follows a three-phases process, but it
is the first that treats sessions as first-class citizens, using brand new techniques for
comparing sessions, finding meaningful recommendation candidates, and adapting them
to the current session. We have extensively evaluated it by discussing its efficiency and
its effectiveness from different points of view. Though our approach ensures that the
returned recommendations have several desirable properties (such as novelty, relevance,
and foresight), we plan to further improve it under different aspects:

• We have observed that large logs and longer log sessions are necessary to obtain a
good coverage (see Figures 9.7 and 9.9). To cope with this well known cold-start
problem, extending our approach with non collaborative recommendations (like,
e.g., [157]) is a promising research direction.

• As shown in Figure 9.10, several candidate recommendations with high relevance
can normally be found. Though we have chosen to recommend only the top-
1 session, the approach can be easily reworked to recommend a top-k set of
sessions. In this case, the approach effectiveness could benefit from query result
diversification [44].

• The user should be enabled to easily understand in which direction a recommen-
dation will guide her through multidimensional data. Since we are recommending
sessions rather than single queries, and sessions are complex objects, a visualiza-
tion problem arises. Solving this problem requires to (i) understand the set of
features that describe an OLAP session direction at best, and to (ii) find a good
visualization metaphor.

• Our approach has been tested with synthetic, yet realistic workloads. However,
given real OLAP logs, characterizing user sessions and analyzing sessions and
queries to filter out the irrelevant ones (e.g., those showing an erratic behavior
due to a trial-and-error user approach), remain open problems, that should be
solved to better adapt our approach to different kinds of users. We are currently
working to collect real, user-annotated logs, as well as user feedback on our
recommender system.



Chapter 10

Conclusions and future work

In this thesis we presented a series of contributions given in the field of business intelli-
gence, with the goal to enhance the decision-making process by allowing the integration
and analysis of non-conventional data. The pertinence of these contributions falls
within different disciplines of BI 2.0, namely Social BI, Exploratory BI and Pervasive BI.

The field of Social BI revolves around the analysis of social data, as they repre-
sent an important source to perceive trends and moods from the environment. On
one hand, we contributed by presenting an architectural and methodological frame-
work to design a Social BI solution: we analyzed the main factors that impact on
the cost-benefit trade-off in choosing the architectural components and we proposed
insights and suggestions, based on real experience on a Social BI project (WebPolEU).
Eventually, this lead to the release of SABINE, a cross-disciplinary benchmark built
on the data collected in WebPolEU. By providing a variety of validated enrichments
of the social contents and a user-validated ground truth, with SABINE we enable
experimentations and comparisons with reference to the most commonly performed
tasks in Social BI.

On the other hand, we proposed meta-stars as an expressive solution to model
hierarchies of topics in OLAP cubes. Meta-stars answer the requirements of irregu-
larity and fluidity in the topic hierarchy, integrability with business hierarchies and
semantic-aware aggregations. The extensive evaluations also proved that meta-stars
grant higher expressiveness and dynamicity than traditional dimension tables without
affecting significantly performances and space occupation. Nonetheless, there is still
margin for improvement on different aspects. For starters, the static modeling of some
portions of the topic hierarchy can be optimized to avoid unnecessary redundancies
and to improve the performance of SQL queries. Secondly, we are working to enable
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the control over the topic hierarchy by means of an ontology: not only would it open
to an automatic procedure to build and maintain meta-star, but it would allow to
directly query the topic hierarchy on the ontology (by coupling SQL and OWL) without
requiring the materialization of a large roll-up table.

As for Exploratory BI, we investigated how the cross-domain knowledge lying within
linked data can be integrated with corporate cubes. To this end, we proposed iMOLD,
an interactive and collaborative approach that enables users to explore many-to-one
relationships in the linked data and to translate them into multidimensional hierarchies.
At the heart of iMOLD is the identification of five different RDF patterns that go
beyond the classical functional dependencies approach for multidimensional design.
Though iMOLD is a significant step towards linked data integration, several aspects
are open to future developments. In terms of linked data exploration, algorithms
for instance-based discovery of approximate functional dependencies can be used to
retrieve non-explicit FDs that are hidden in the data (e.g., TANE [78]). Moreover, the
approach can be improved with the automatic recognition and management of more
complex kinds of modeling (e.g., cycles, convergences and many-to-many relationships).
Finally, an interesting development would be to extend the approach to detect entire
cubes (and not only hierarchies) from linked data.

In the field of Pervasive BI, we focused on schemaless data and addressed the is-
sue of making sense of the heterogeneous wealth of data stored in a corporate data lake.
In particular, we proposed an approach to capture the rules that explain the use of
different schemata within a collection by means of a decision tree. The distinguishing
aspects are the coupling of value-based and schema-based conditions to explain the
schema usage, as well as the adoption of a split strategy guided by the requirements
elicited from users, who asked for precise, concise, and explicative schema profiles. The
effectiveness of the approach is demonstrated in the experimental evaluation, which
show a high accuracy in delivering schema profile that match the provided baseline.
As for future developments, a first work will consist in incorporating user interaction
in the schema profile building algorithm, in order to give users a closer control on the
elaboration of the schema profiles; ultimately, this would lead to a more comprehensive
understanding of the schema usage and to a finer accommodation of the characteristics
of the collection. Furthermore, schema profiling is the first step to enable effective
analyses over data lakes in business intelligence contexts. To this end, we will also
investigate how schema profiles can be exploited in schema-on-read approaches to
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improve the effectiveness and flexibility of analytical queries [109, 34].

Finally, a complementary part of this thesis was dedicated to the address the issue of
user disorientation in OLAP analyses — an issue that the inclusion of non-conventional
data tends to amplify, as it further increases the wealth of information at the user’s
disposal. In this direction, we entered the field of recommendations and proposed an
innovative approach that provides users with OLAP sessions instead of single queries.
We presented an algorithm that uses brand new techniques to identify meaningful
candidates and to adapt them to the user’s current session. The effectiveness of the
approach was demonstrated by evaluating several desirable properties in a recommen-
dation, such as novelty, relevance, and foresight. Our plan for future works is oriented
to the improvement of different aspects of the algorithm: (i) solving the well known
cold-start problem by extending our approach with non collaborative recommendations
(like, e.g., [157]); (ii) reworking the approach to propose a series of recommendations, in
accordance with the principle of result diversification [44]; (iii) proposing a visualization
metaphor to facilitate the user in understanding the directions that different sessions
take in the multidimensional space; (iv) collecting real, user-annotated workloads in
order to build a characterization of users and allow the proposal of more personalized
recommendations.

Contextually to this work, we also proposed a benchmark generator for OLAP
sessions, named CubeLoad, which enabled the generation of synthetic workloads for the
experimental evaluation of the recommendation algorithm. The benchmark uses several
parameters to generate a profile-based workload model and relies on four realistic
templates that simulate the typical behaviors of OLAP users. The set of tests carried
out showed how it is possible to generate very different workloads by carefully tuning
the provided parameters. Nonetheless, several improvements can be made to the
benchmark, starting from the adoption of a more sophisticated query model so as to
generate more complex queries. Furthermore, the aspect of realism can be enhanced
by considering more templates and parameters (e.g., by allowing the distinction of
skilled and non-skilled profiles); to this end, an appealing opportunity is to refactor the
CubeLoad code according to an open architecture, so that users can collaboratively
contribute by proposing different templates in the form of plugins.
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iMOLD glossary

Appendix iMOLD
The glossary for the variables used in the SPARQL queries and the IO are shown in
Tables A.1 and A.2, respectively.

Table A.1 Variables used in the SPARQL queries for detecting patterns

Name Type Pattern Value
?c input ass., gen. URI of c
?maxCard input ass. parameter maxCard
?offset input ass. query offset

?p output ass. a property linked to c
?class output ass. a class to which the instances o belong
?rightCard output ass. right cardinality of a
?leftCard output ass. left cardinality of a

?nO output ass. range cardinality, i.e., number of distinct instances of
class involved in p

?nS output ass. domain cardinality, i.e., number of distinct instances
of c involved in p

?type output gen. the superclass of c

?s auxiliary ass. an instance of c
?o auxiliary ass. an instance linked to s through p
?nProp auxiliary ass. number of properties p connecting s to o
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Table A.2 Glossary for the classes and properties in the Internal Ontology

IO area URI Definition
MK qb4o:DimensionProperty Defines a dimension (e.g., the Time dimension)

MK qb4o:Hierarchy
Defines a hierarchy within a dimension; a dimension
may contain many hierarchies (e.g., TimeByWeeks,
TimeByMonths)

MK qb4o:LevelProperty Defines a generic level (e.g., Day)

MK qb4o:HierarchyStep Defines a roll-up relationship between two instances of
qb4o:LevelProperty

MK imold:asMembersHasInstancesOf
Links an instance of qb4o:LevelProperty to one or more
classes in the EO; it states that the members of the
level are the instances of the linked classes.

MK imold:asMembersHasSubClassesOf
Links an instance of qb4o:LevelProperty to one or more
classes in the EO; it states that the members of the
level are the subclasses of the linked classes

MK imold:correspondsTo

Links a qb4o:HierarchyStep to the corresponding
property in the EO; it is also used to link a
qb4o:LevelMember to the corresponding owl:Thing (ei-
ther a class or an instance) in the EO

MK imold:classMetadata
Allows to annotate all necessary metadata re-
garding the class in the EO referenced by the
qb4o:LevelProperty (e.g., the source ontology)

MK imold:propertyMetadata
Allows to annotate all necessary metadata regard-
ing the property in the EO referenced by the
qb4o:HierarchyStep

UK imold:User (rdf:type sm4am:User) Lists the users of the company

UK imold:LevelPreference
(rdf:type sm4am:UserAction) Each instance represents
the preference of one or more users towards a specific
qb4o:LevelProperty

UK imold:RollupPreference
(rdf:type sm4am:UserAction) Each instance represents
the preference of one or more users towards a specific
qb4o:HierarchyStep

UK imold:isLevelPreferenceOf
(rdf:type sm4am:usesSchemaComponent) Links
an imold:LevelPreference to the referred
qb4o:LevelProperty

UK imold:isRollupPreferenceOf
(rdf:type sm4am:usesSchemaComponent) Links
an imold:RollupPreference to the referred
qb4o:HierarchyStep

UK imold:byUser
(rdf:type sm4am:byUser) Links the instances of
imold:LevelPreference and imold:RollupPreference to the
various imold:Users that expressed them

— sm4am:usesSchemaComponent Meta-property to link SM4AM instances to
QB4OLAP instances

— sm4am:User Meta-class to represent users
— sm4am:UserAction Meta-class to represent user actions

— sm4am:byUser Meta-property to link a sm4am:UserAction to its
sm4am:User
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