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Abstract

In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the
modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-
FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with
small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared
different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most
suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb–1700 bp (Phenylalanine
Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on
chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of
these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As
a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for
synteny between the Rosa chromosomes and Fragaria.
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Introduction

Genome structure and function may be studied when compar-

ing the genetic positions of genes with their physical locations on

chromosomes. In former times, to assign linkage groups to physical

chromosomes it was needed to create monosomic addition lines,

nullisomic lines, chromosome substitution lines or translocation

lines [1–3]. This is a very time consuming task. Nowadays, a more

efficient approach exists by direct visualization of genetically

mapped markers on chromosomes using fluorescent in situ

hybridization (FISH) to locate large genomic clones (BAC, YAC,

cosmids etc.) containing the markers. However, FISH with large

genomic DNA fragments often results in many non-specific

hybridization due to the presence of huge amounts of repetitive

DNA in plant genomes [4,5]. To overcome this problem, FISH

using direct labeled individual genes can be applied [6–8]. This

approach however still is very challenging for most ornamental

species and in particular for woody species, such as Rosa.

The genus Rosa, a member of the Rosaceae, consists of

approximately 200 species and 20000 cultivars, most of complex

hybrid origin. The genus has a wide phenotypic variability and a

high level of genetic heterozygosity [9]. Despite the crop’s long

domestication history, intensive breeding and economic impor-

tance, relatively little is known about the genetics and cytogenetics

of roses [10,11]. Nevertheless, several characteristics of rose make

it a worthy candidate for a model system for genomic research in

woody species [11].

Performing cytogenetic analyses for roses is difficult because of

their genome size (the diploid genome size is 0.83 to 1.30 pg/2C;

[12]) and very small chromosomes. The mitotic index is generally

low in shoot and root tips, root development is weak and roots are

thin in mature individuals for several Rosa species [13]. The basic

chromosome number of roses is 7 [14,15] and ploidy levels range

from diploid (2n = 2x = 14) to octoploid (2n = 8x = 56) [16]. A

number of basic cytogenetic studies, including chromosome counts

and karyotyping, have been done on roses [14–31]. A karyotype

with indication of 45 S and 5 S rDNA sites was constructed for

some wild species [24–27]. Repetitive sequences, such as 45 S and

5 S rDNA, are rather easy to map, compared to low-copy genes.

Reports of physical mapping of low copy genes are found in

several genera, such as tomato [32], rice [33], barley [34], wheat

[35], sugar beet [36], Sorghum [37], maize [7], Populus trichocarpa

[38] and safflower [39], among others. However, physical

mapping of low-copy genes remains a problem in lots of other

species and genera and also in Rosa. Moreover, in most reports

showing conventional FISH results, the target DNA sequences

were over 10 kb. Since EST-markers are good candidates to

anchor linkage groups to physical chromosomes, lowering the
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probe-size detection limit should be obtained. Significant im-

provements in detection limits have been reported, such as the use

of a cooled-charge-coupled device (CCD) camera and primed in

situ DNA labeling (reviewed by Figueroa and Bass [40]). An

alternative FISH method used to detect very small probes is

tyramide signal amplification (TSA)-FISH, or Tyramide-FISH, a

multi-step procedure involving (1) in situ hybridization with a

labeled probe, (2) signal amplification by streptavidin-horseradish

peroxidase (SA-HRP) and tyramides and (3) detection and

imaging of the amplified signal [41]. This method was originally

introduced by Bobrow et al. [42] for microplate immunoassays.

Raap et al. [43] introduced the use of fluorescent tyramide

conjugates as substrates for Horse Radish Peroxidase (HRP) into

FISH technology. With Tyramide-FISH, the detection sensitivity

can be increased up to 100 times compared to the conventional

FISH procedures [44]. Tyramide-FISH has been successfully used

in human genetics for single-copy gene detection [41,45–52]. In

plants, however, Tyramide-FISH has only been used in a few

studies [53–56].

Molecular markers have been developed in roses to enhance

breeding efficiency through the identification and characterization

of genes controlling important traits [9,57,58]. Major efforts for

the construction of genetic linkage maps in the Rosa genus have

been concentrated at the diploid level [57,59–63,]. Four mapping

populations allowed the construction of an integrated consensus

map consisting of about 600 markers distributed across 7 linkage

groups, with an overall length of 530 cM [58]. Recently, interest in

mapping at the tetraploid level has been renewed [64,65]. Some

major rose traits have been located on the rose genetic maps, such

as flower color and double corolla [59] and resistance to powdery

mildew [61,62,63]. To date, no genome sequence is available for

the Rosa genus that allows validation of the positions of markers

located to linkage maps. But Rosa is well-supported by the closest

sister taxon, which contains the genus Fragaria, and also shows

sequence homology with Malus and Prunus [65–68]. Developing

markers in EST fragments of genes can be based on this sequence

homology with other Rosaceae. Although SSRs are widespread in

the plant genome, the number of ESTs containing an SSR motif

can be quite limited [69]. EST-SNPs have more potential as a

functional marker. Due to the conserved nature of the coding

sequence, these markers are also appropriate for the comparison of

genetic maps between species [70,71]. High Resolution Melting

(HRM) analysis is the method of choice for EST-SNP genotyping,

because SNP sequence information is not a prerequisite [72].

HRM was originally introduced as a method for mutation

scanning in human genetics [73] and has the ability to

simultaneously detect and genotype DNA polymorphisms [74].

The use of HRM for EST-SNP marker development and consecutive

mapping in plants has already been reported in several crops such as

barley [72], alfalfa [75] and apple [76] but not yet in rose.

The combination of the opportunities of Tyramide-FISH and

the HRM molecular marker system may result in an effective

integration of physical and genetic maps. The present study had

two main aims: 1) to optimize the Tyramide-FISH technology for

roses in order to cytogenetically map single-copy genes and 2) to

connect their physical position with their genetic position on the

linkage groups of Rosa wichurana (Moghaddam et al. 2012) using

HRM technology.

Materials and Methods

Plant Material
The plant material used in this study was Rosa wichurana, Rosa

‘Yesterday’ and 90 F1 hybrids of Rosa ‘Yesterday’ x Rosa wichurana.

Both parent plants and the hybrid progeny are diploid

(2n = 2x = 14). The plants were own-rooted and grown in the

field. For chromosome slide preparations, cuttings of Rosa

wichurana were made. Rooted cuttings were transferred to

terracotta stone pots and grown in the greenhouse without

artificial light or temperature regulation. The conditions inside the

greenhouse were thus dependent on the moderate climatic

conditions typical for the East Flanders region of Belgium.

Chromosome preparation
Somatic metaphase chromosome spreads were prepared from

shoot meristems collected and pretreated according to [13].

Briefly, young shoot meristems (2–3 mm) from which upper green

leaves were removed, were collected in ice-cold 1 mM 8-

hydroxyquinoline and 0.1% colchicine solution and incubated

for 3.5 hours at room temperature in the dark. Afterwards,

meristems were fixated in 3:1 ethanol:glacial acetic acid for 45–60

minutes and stored in 70% ethanol at 220uC. Chromosome slide

preparation was carried out according to the spreading protocol of

Pijnacker and Ferwerda [77] or to the ‘‘SteamDrop’’ method of

Kirov et al. [78].

Primer and probe design
DNA of Rosa wichurana, Rosa ‘Yesterday’ and their hybrids was

extracted from young leaves using the Qiagen DNeasy Plant Mini

Kit (Chatsworth, CA). The genes PAL, P5CS and OOMT were

isolated according to Razavi et al. [79] starting from ESTs

available in the Genome Database of Rosaceae [80]. These genes

are known to be involved in abiotic stress response (Phenylalanine

Ammonia Lyase (PAL) and Pyrroline-5-Carboxylate Synthase (P5CS),

[81,82]) and rose scent production (Orcinol O-Methyl Transferase

(OOMT), [83]), which are important traits for roses.

To have good probes to use in Tyramide-FISH, we designed

primers in order to obtain PCR fragments of about 1500 bp (see

Table 1). Plasmid DNA of the cloned gene fragments was labeled

using the Biotin Nick Translation Mix (Roche) according to the

manufacturer’s instructions. As a control, the pTA71 plasmid

(containing a 9 kb fragment of 45 S rDNA, [84]) was labeled with

biotin.

To generate EST-SNPs for HRM, we searched for SNPs

between Rosa wichurana and Rosa ‘Yesterday’ in the sequences of

the cloned genes PAL, P5CS and OOMT. Primers flanking a single

SNP were developed for amplification of the EST-SNPs (Table 2).

Primers were tested on the parents and 5 siblings of the mapping

population Rosa ‘Yesterday’ x Rosa wichurana. Good primers were

then applied to the entire mapping population.

Tyramide-FISH optimization
Probe hybridization was performed according to Khrustaleva

and Kik [53] with minor modifications. Slides were fixed in 4%

buffered paraformaldehyde in 1xPBS (10xPBS: 1.3 M NaCl,

70 mM Na2HPO4, 30 mM NaH2PO4, pH 7.5) for 8 min before

the RNAse treatment and 10 min before denaturation. Inactiva-

tion of endogenous peroxidases was done by incubating the slides

in 0.01 M HCl for 8 min. Pepsin treatment was performed during

30 sec at room temperature. The hybridization mixture contained

50% (v/v) deionized formamide, 10% (w/v) dextran sulphate,

2xSSC, 0.25% sodium dodecyl sulphate and 2.00 ng/ml probe

DNA. The hybridization mix was denatured at 80uC for 5 min,

subsequently placed on ice for 5 min, and added to the

chromosome slides. Slides were then denatured for 5 min at

80uC and hybridization was carried out at 37uC overnight. A 82%

stringency washing was attained by washing the slides twice in

2xSSC for 5 min at 37uC, twice in 25% (v/v) formamide in
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0.4xSSC for 10 min at 42uC, and finally in 2xSSC for 3 min at

37uC.

For probe detection, three tyramide amplification systems were

used: direct detection (modified from Schriml et al. [47] and

Khrustaleva and Kik [53]), indirect detection (modified from

Schriml et al. [47] and Perez et al. [32]) and indirect detection

with two rounds of amplification. The incubation time with the

tyramide solution vary from 5 to 10 min. In the direct detection

system, tyramide-FITC (Tyr-FITC) or tyramide-Cy3 (Tyr-Cy3)

was used in dilutions 1:50. In the indirect detection system,

biotinylated tyramides (Tyr-Bio, PerkinElmer, Belgium) were used

in the dilutions 1:25 and 1:50 and the antibodies (Strepatavidin-

Cy3, or Streptavidin-Cy3) were 1:100 and 1:300 diluted. The

concentration of Tyr-Bio and Streptavidin-HRP (SA-HRP)

antibodies used in the first round of the indirect detection with

two rounds of amplification system were the same as in the indirect

detection system. In the second round of amplification SA-HRP

was diluted 1:300 or 1:200 and Tyr-Cy3 was used in dilutions

1:100, 1:300, 1:500 or 1:1000.

Images were taken using a fluorescence microscope Zeiss

AxioImager M2 (400x and 1000x magnification) equipped with an

AxioCam MRm camera and using Zen software (Zeiss, Zaventem,

Belgium). Calculation of chromosome size, centromere index and

signal positions was performed using the freeware computer

application Micromeasure software, version 3.3 [85].

Karyotype Analysis
A karyotype was constructed after measurement of five well-

spread metaphases using Micromeasure version 3.3 (http://

rydberg.biology.colostate.edu/Micromeasure) [85]. Measure-

ments were performed on DAPI stained images and chromosomes

were characterized on the basis of chromosome length and

centromeric index [86]. Chromosomes were then arranged in

order of decreasing length. The condensation index [(genome size

1C (Mbp)/mean length of total chromosome complement (mm)]

was also calculated. The FISH signal position (RD) was calculated

according to the formula: RD = distance from signal to

centromere 6100%/length of the chromosome arm.

Genotyping and linkage mapping of EST-SNP markers
HRM was performed as described in [87] but using only the

0.86 LightCycler 480 High Resolution Melting Master Mix

(Roche). LightCycler 480 Gene Scanning software was used for

genotyping. Three EST-SNPs for the candidate genes PAL,

OOMT and P5CS were amplified in the mapping population. A

scoring matrix was calculated in Microsoft Excel. Segregation

patterns of the new marker sets based on the HRM profiles for the

offspring plants of the mapping population were added to the

already existing mapping data described in Moghaddam et al.

[63]. Estimation of the linkage groups and regression mapping was

performed as described in De Keyser et al. [88] using JoinMap 4.0

[89]. Calculation settings for the mapping were: using linkages

with a recombination frequency smaller than 0.49 and LOD

higher than 1; goodness-of-fit jump threshold for removal of loci 5

and performing a ripple after adding 1 locus. Markers with severe

segregation distortion (Chi-square test significance higher than

0.005) and markers creating ‘‘tension’’ in the maps (according to

the Nearest Neighbours Fit) were removed from the final maps.

Determination of the position of OOMT, PAL and P5CS
genes on Fragaria vesca pseudo-chromosomes

Positions of the PAL and P5CS genes on the pseudochromo-

somes of Fragaria vesca (FraVesHawaii_1.0) were determined in the

gene database at NCBI. Localization of the OOMT gene was

identified by an alignment of a Rosa chinensis OOMT1 partial gene

sequence (AJ786302) with each of the F. vesca pseudochromosome

(CM001053.1-CM001059.1) using the BLASTN tool [90]. The E-

value threshold was fixed at e-15. To identify the closest

strawberry orthologous to the Rosa wichurana genes used in our

Tyramide-FISH experiments, a BLASTN search against distinct

copies of the strawberry genes was performed. As a query, the

parts of the Rosa wichurana sequences of the OOMT, PAL and P5CS

genes corresponding to the gene fragments used in the Tyramide-

FISH were used.

Results

Tyramide-FISH optimization
Using the direct detection system to detect the single-copy gene

PAL, many nonspecific signals were observed, although for the

control probe pTa71, 45 S rDNA sites could be detected (Fig. 1D).

Therefore, the indirect detection and indirect detection with two

rounds of amplification systems were optimized for single-copy

gene detection. In the indirect detection system, PAL (1700 bp)

could be observed when using a 1:25 dilution rate for Tyr-Bio, 8–

10 minutes tyramide incubation time and a 1:100 dilution rate for

SA-Cy3. These conditions gave the best signal-to-noise ratio as

determined by visual inspection. In the indirect detection with two

rounds of amplification system, signals for PAL became visible

under the following conditions: a first round using SA-HRP

(1:100), Tyr-Bio (1:25), 5 min tyramide incubation time and a

second round using SA-HRP (1:300), Tyr-Cy3 (1:500), 6 min

tyramide incubation time. Changing the concentration of SA-

HRP (1:200, 1:300) and Tyr-Cy3 (1:100, 1:300, 1:500 or 1:1000)

in the second round of amplification in the indirect detection with

two rounds of amplification system, resulted in slight differences in

the signal-to-noise ratio. The optimized indirect detection and

indirect detection with two rounds of amplification systems both

allowed visualization of the PAL signals in 30–40% of the observed

metaphases. Because indirect detection is more time consuming

than indirect detection, we used indirect detection for the

subsequent physical mapping of the genes.

Table 1. Overview of the primers used to isolate the genes PAL (Phenylalanine Ammonia Lyase), OOMT (Orcinol O-Methyl
Transferase) and P5CS (Pyrroline-5-Carboxylate Synthase).

Gene Primers (59-39) Tm (6C) Source sequence Amplicon (bp)

PAL ACCACTGGKTTTGGTGCWAC CCYTTGAASCCATAATCCAA 59.9 Prunus persica 1700

OOMT TGCACTACCAATCCATCCAA TGCCAAGTAACATTTGGCTTT 59.9 Rosa chinensis ‘Old Blush’ 1100

P5CS GCTGGCATCCCTGTTGTTAT CTTCGGATCGCTAATGAAGC 59.9 Prunus persica 1700

The length of the obtained amplicons is indicated as well as the Tm and source sequence.
doi:10.1371/journal.pone.0095793.t001
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Physical mapping of genes using ID
To be able to link the Tyramide-FISH signals to a certain

chromosome and to identify the NOR-bearing chromosome, the

karyotype of Rosa wichurana was constructed for the first time

(Table 3; Fig. 2). The karyotype contains 7 pairs of chromosomes

with the chromosome formula 5M+1SM+1ST. The length of the

chromosomes ranges between 2.2 mm and 3.7 mm (Table 3). The

smallest chromosome bears a NOR-satellite, as confirmed by

Tyramide-FISH with 45 S rDNA (Fig. 1 D). Chromosomes 1 and

7 can be easily distinguished based on their size and centromeric

indexes. In addition, it is also possible to discern the only

submetacentric chromosome 4. The condensation index of Rosa

wichurana is 28.162 Mbp mm21, based on the genome size of Rosa

wichurana (1C = 562 Mbp; [91]) and the mean total length of the

metaphase chromosomes (1n = 2061 mm).

The three genes used in this study were mapped on different

chromosomes (Fig. 1; Fig. 2). Signals from hybridization of the

PAL gene were visualized in the distal part of the long arm of the

smallest Rosa wichurana chromosome 7 (Fig. 1C, Fig. 2)

(RD = 77.062.1%). The signals were detected in 25–30% of the

analyzed metaphases. The OOMT gene was visualized in the

proximal position of the long arm of chromosome 1 (Fig. 1A,

Fig. 2) (RD = 22.663.2%). The signals were observed in 30–35%

of the analyzed metaphase cells. Tyramide-FISH for the P5CS

gene resulted in signals on chromosome 4 in 30–40% of the

analyzed chromosome spreads. The signals were localized in the

distal position (RD = 72.763.8%) on the long arm of this

chromosome (Fig. 1B, Fig. 2).

Positioning of EST-SNP on the genetic linkage map
HRM profiles of OOMT and PAL yielded different melting

curves between the parents; melting curves of the offspring were

identical to either one of both parental curves. Both markers were

scored as ,lmxll. according to JoinMap 4.0 [89]. The

segregation for PAL was slightly distorted (p = 0.005); 64% of the

offspring plants were scored as ,lm.. For OOMT, no segregation

distortion was detected. The HRM profiles of P5CS also differed

between the parents and segregated as 4 profiles in the offspring

plants (2 of them were identical to the parental profiles; Fig. 3).

Hence, this marker was scored co-dominantly as ,efxeg.

according to JoinMap 4.0 [89] in a ratio of 23:19:19:29 for

ee:ef:eg:fg, respectively. No segregation distortion was present for

P5CS. Segregation pattern-derived EST-SNP markers for PAL,

OOMT and P5CS were integrated in the existing genetic linkage

maps of Moghaddam et al. [63] (Fig. 4). P5CS was inserted into

consensus linkage group RwLG-B1; OOMT in group RwLG-B2

and PAL into group RwLG-B3 (Fig. 4). The OOMT gene was

previously mapped on linkage group 2 [58,105] that correspond to

our RwLG-B2. Two morphological traits, ‘‘flower size’’ (Rosa

‘Yesterday’ has double flowers, Rosa wichurana has simple flowers)

and ‘‘flower color’’ (Rosa ‘Yesterday’ has pink flowers, Rosa

wichurana has white flowers), were recorded as qualitative traits in

the mapping population [63]. ‘‘Flower size’’ and ‘‘flower color’’

are very old and well-known loci in rose linkage maps. The traits

were scored in the mapping population Rosa ‘Yesterday’ x Rosa

wichurana during 3 years in a qualitative manner [63]. A close

linkage between PAL and ‘‘Flower size’’ (3 cM) was observed.

OOMT and ‘‘Flower color’’ are on the same linkage group but with

a larger linkage distance (36 cM). Genetic mapping and

Tyramide-FISH results are in concordance as the three genes

were mapped on three different chromosomes and linkage groups.

The position of the PAL and P5CS genes near the end of the

linkage groups correspond with their positions on the chromo-

somes, which is also relative to the telomeric ends (Fig. 4). The

relative position of OOMT is central on RwLG-B1 and has a

proximal position on chromosome 1 (Fig. 4).

Anchoring of linkage groups to Rosa wichurana
chromosomes and Fragaria vesca pseudochromosomes

Searching for orthologous genes for OOMT, P5CS and PAL

genes in strawberry genome revealed that they are represented in

3, 4 and 2 genes paralogous, respectively (Table 4). Sequence

alignment showed that sequence diversity between the paralogous

ranges from 66% (for OOMT) to 91% (for P5CS) (Table 4). Two

paralogous OOMT genes are located on strawberry pseudochro-

mosome 6 (FvChr6) and one on FvChr3. Two paralogous P5CS

genes are located close to each other on FvChr7 and two on

FvChr6. Paralogous for the PAL genes were found on FvChr6 and

FvChr7. BLASTN comparison between the sequences of OOMT,

P5CS and PAL from Rosa wichurana and all found paralogous in

strawberry, revealed that three strawberry paralogues (highlighted

in Table 4) show a high similarity and/or sequence coverage to the

rose genes. These paralogues are used for making a comparison

between the physical locations of OOMT, P5CS and PAL genes on

the strawberry pseudochromosomes and the Rosa wichurana

chromosomes (Fig. 4). OOMT is located in the centre of FvChr6

(Fig 4) and, as revealed in our Tyramide-FISH, in the centromeric

region on chromosome 1 of Rosa wichurana (RwChr1; Fig 4). PAL is

located distally on FvChr6 (Fig 4) and distally on chromosome 7 of

Rosa wichurana (RwChr7; Fig 4)). P5CS is located distally on

pseudochromosome FvChr7 (Fig 4) and on the distal part of Rosa

wichurana chromosome 4 (RwChr4; Fig 4).

Discussion

Short DNA fragments could be visualized on physical
chromosomes using Tyramide-FISH

To the best of our knowledge this study reports the first

successful use of Tyramide-FISH in a plant genus with small

chromosomes. Previously, Tyramide-FISH has been applied to

Table 2. Overview of HRM primers for PAL (Phenylalanine Ammonia Lyase), OOMT (Orcinol O-Methyl Transferase) and P5CS
(Pyrroline-5-Carboxylate Synthase).

Gene Primers (59-39) Amplicon (bp) N6 of introns N6 of SNP’s

PAL TTGGAGGTTCAAGGAATTTACC CCAAGAAGCGAAAAAGCTCA 227 1 /z

OOMT GTTTGAGGCAGTTCCTCCTG GGTCTTGGTCCAGATCGAGT 223 1 1

P5CS GTGCTTGCAAACATGGAAGA TGGTGCTCTAGTTGGCAAAA 204 1 1

Amplicon length, amount of introns present in the amplicon and the number of SNPs in the amplicon are indicated.
zno sequence information is available for Rosa wichurana.
doi:10.1371/journal.pone.0095793.t002
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visualize short DNA fragments for large chromosomes of several

monocots including onion [53,92], barley [54], wheat [55] and oat

[56]. Despite the difficulty of using rose as a cytogenetic object, we

successfully visualized short DNA fragments (1.1–1.7 Kb) of genes

using Tyramide-FISH. Although rose chromosomes are very

small, the degree of chromosome condensation is rather low

(28.162 Mbp mm21). This value is comparable with tomato

(40.6 Mbp mm21, [93]) and humans (26.6 Mbp mm21, [94]), but is

more than seven times lower than in onion (249.6 Mbp mm21,

[95]). The nature of chromosome structure and chromatin

compaction influences the accessibility of target DNA. Low

chromatin compaction may positively influence the Tyramide-

FISH sensitivity by improving the probe penetration into the

chromosomes. On the other hand, less compact chromatin

theoretically can have a negative impact on Tyramide-FISH

because it contains smaller amounts of proteins (e.g., histones) and

electron rich amino acids (e.g., tyrosine, tryptophan) around the

site of hybridization. Tyramides, used for signal amplification, are

phenolic compounds that react and bind with these electron rich

moieties in the presence of HRP and hydrogen peroxide.

Therefore, a smaller amount of electron rich amino acids can

hamper a successful tyramide-conjugate coupling reaction after

oxidation by HRP [42].

We found that the commonly-used direct detection system with

fluorescent labeled tyramides (Tyr-FITC, Tyr-Cy3) was not

suitable for rose chromosomes. In that system, many nonspecific

signals hampered the identification of signals from the PAL gene.

Optimization using the indirect detection and indirect detection

with two rounds of amplification overcame this problem. The

indirect detection system has previously been applied to detect the

Rad51 gene on wheat chromosomes [55] and several EST clones

on human chromosomes [47]. In the study of Schriml et al. [47],

the indirect detection system using avidin-FITC provided the best

results, i.e., clear, distinct signals on one or both of the

homologues; whereas both the Tyr-Cy3 and Tyr-FITC (direct

detection) resulted in high background [47]. The frequency of

signal detections was about 30–40% in our study. This is

comparable with previous studies. In the study of Perez et al.

[55], the Tyramide-FISH procedure using Tyr-Bio was able to

detect target DNA sequences as small as 2 kb with a frequency of

37.5%. These frequencies are high enough to unequivocally locate

small sequences (,2 kb) using a few metaphase cells and shows the

effectiveness of our Tyramide-FISH detection system. In most

cases, we observed the Tyramide-FISH signals only on one

homologous. The same results were obtained on wheat [55] and

Allium (Kirov et al. unpublished data) where short DNA probes

were used. Since chromatin structure significantly influences FISH

results, the unequal distribution of the signals among the

homologous and the low frequency of the signals may be the

results of variation in chromatin accessibility and/or chromatin

disorder between chromosomes and metaphase plates, caused by

chromosome preparation procedure.

The HRM technology for EST-SNP marker generation has
several advantages

We successfully visualized the position of the OOMT, P5CS and

PAL genes on the Rosa wichurana chromosomes 1, 4 and 7,

respectively. Using EST-SNP markers for these genes, we could

anchor three linkage groups of Rosa wichurana to their physical

chromosomes for the first time. EST-SNP markers made it

possible to connect the physical position of the OOMT, P5CS and

PAL genes with their position on the genetic map. The HRM

technology allowed detecting SNPs in a fast and efficient way.

Unlike other technologies for gene mapping, HRM can be applied

immediately after PCR without further handling [73]. During a

single two-hour assay we amplified all 3 genes in a single-step

procedure on a 384-well plate. This dramatically increases the

genotyping throughput in a mapping population. Curve shapes

cannot always be assigned to specific alleles [96], but this was not

the case here. EST-SNP markers are situated in functional genes,

therefore these markers are a valuable tool for the integration of

the physical and genetic position of genes.

Fig. 1. Tyramide-FISH with indirect detection (A, B and C) and
direct detection (D) systems on metaphase chromosomes of
Rosa wichurana. Chromosomes were hybridized with OOMT (A), P5CS
(B), PAL (C) and pTA71 plasmid (D). (Bar - 10 mm).
doi:10.1371/journal.pone.0095793.g001

Fig. 2. Ideogram of Rosa wichurana chromosomes with an
indication of the physical position of the candidate genes for
OOMT (red), PAL (blue) and P5CS (green).
doi:10.1371/journal.pone.0095793.g002
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Tyramide-FISH showed single loci for members of
multigene families

Surprisingly, by using Tyramide-FISH we only observed single

loci for each gene even though they were described as members of

multigene families [97,98]. To estimate the copy number of genes

in a plant genome, a collection of EST sequences can be used [99].

For roses, more than 20000 rose EST sequences were uploaded in

NCBI [83,100–102] of which only 1936 EST sequences [101]

belong to Rosa wichurana. This number of EST sequences is not

enough for the estimation of the copy number of the three genes

that we studied in Rosa wichurana even not if EST sequences from

another Rosa species would be used in our analysis. Variations in

EST sequences can be explained by the copy numbers of a gene

but also by allelic variations. Some Rosa species may have up to 16

allelic variants (for ploidy level 2n = 8x) per gene. Therefore, for a

correct estimation of the copy number of the genes in Rosa

wichurana using a database of EST sequences, it should contain

more sequences (e.g. 120892 ESTs were used for tomato [99]) of

cDNA clones isolated from different tissues. Moreover, an EST

library represents only expressed genes and does not include

pseudogenes that can be visualized by Tyramide-FISH.

To clarify our result we performed BLASTN searches of all

PAL, OOMT and P5CS genes known in Fragaria, the closest relative

of Rosa [65,103]. It has a completely sequenced genome [104]. We

found 2, 4 and 3 hits for the PAL, P5CS and OOMT genes,

respectively, distributed along 3 Fragaria pseudochromosomes 3, 6

and 7. However, the similarity between the Fragaria orthologous

genes (66–76%) for OOMT and PAL genes is low. The 4 Fragaria

orthologous genes for P5CS genes showed a higher level of

intragenic similarity, but a pairwise alignment with the rose gene

fragment for P5CS used in our Tyramide-FISH indicated only one

strawberry orthologous gene with a high similarity (82%) and

query coverage (99%). Therefore, if the rose genome contains a

similar copy number of PAL, OOMT and P5CS and with similar

intragenic differences as in the Fragaria vesca genome, with the

hybridization and washing stringency we used in our study, we can

specifically detect the particular orthologues PAL, OOMT and

P5CS genes with high homology to the probe DNA sequence.

Thus, for each orthologue we can get a clear locus on the

chromosomes, which is a very important feature for anchoring

linkage groups to physical chromosomes.

Comparative analysis of physical gene positions between
Rosa wichurana and Fragaria vesca

A comparison of the physical position of the three genes

between the Rosa wichurana chromosomes and the Fragaria vesca

pseudochromosomes revealed that FwChr6 contains both ortho-

logous PAL and OOMT genes, although they are located on

different chromosomes of Rosa wichurana. Previously, Gar et al.

[65] genetically mapped a set of orthologous EST markers on Rosa

and compared this with their position on the Fragaria vesca

chromosomes. They showed 10 rearrangements including 4

translocations and 6 inversions changing the gene order between

Rosa and Fragaria vesca chromosomes. One of these rearrangements

involved FwChr6, which was shared by markers from 2 Rosa

linkage groups. Our results are thus in accordance with Gar et al.

[65]. Physical mapping on the rose chromosomes of additional

genes present on FwChr6 will shed light on the nature and the

scale of this rearrangement.

In conclusion, our results demonstrate that Tyramide-FISH is a

useful tool for physical mapping of short DNA fragments of genes

on Rosa chromosomes. We could physically map 3 genes on the

Table 3. Size and centromere index of the Rosa wichurana chromosomes.

Chromosome number Chromosome Length (mm) Relative Length (%) Centromere Index (%)

1 3.7060.30 17.8060.20 46.0061.20

2 3.20 0.60 17.0060.20 40.3061.30

3 3.0060.50 15.2060.20 44.3061.00

4 2.8060.40 14.0060.10 36.9060.70

5 2.6060.40 13.6060.10 41.4060.70

6 2.5060.40 12.4060.20 41.8061.10

7 2.2060.50 10.0060.10 23.4060.90

doi:10.1371/journal.pone.0095793.t003

Fig. 3. HRM melting profiles for P5CS. The melting curve for Rosa wichurana is part of the green cluster; Rosa ‘Yesterday’ is part of the red cluster.
Both clusters also contain curves of the siblings. Blue and pink clusters contain only the melting curves of siblings.
doi:10.1371/journal.pone.0095793.g003
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chromosomes of Rosa wichurana. Using the opportunities of the

Tyramide-FISH and the HRM technology, 3 linkage groups could

be anchored to 3 physical chromosomes of Rosa wichurana. An

integration of a cytogenetic and genetic map of rose is an

indispensable tool for assistance in map based cloning. Moreover,

the information obtained from the physical mapping of individual

rose genes can be applied for contig and pseudochromosome

Fig. 4. Integration of the gene position on the genetic map (RwLG) (partially) obtained by regression mapping in Joinmap 4.0
showing the consensus linkage groups with indication of the map position of P5CS (green), OOMT (red), PAL (blue) and the physical
chromosomes of Rosa wichurana (RwChr) and the pseudochromosomes of Fragaria vesca (FvChr). Framework of the genetic linkage map
follows Moghaddam et al. (2012).
doi:10.1371/journal.pone.0095793.g004

Table 4. Divergence among members of PAL, P5CS, OOMT orthologous genes of Fragaria and their similarity to Rosa wichurana
gene fragments used in this study.

Gene
Number of orthologous
genes found in Fragaria Fragaria orthologous gene localizations

Similarity between
Fragaria orthologous
genes

% similarity to Rosa wichurana
gene fragments (E-value; %
coverage)

PAL 2 FvChr7:15014006–15017322 FvChr6:34874086–
34877587

76% 75% (3e-35; 20%) 83% (0.0; 65%)

P5CS 4 FvChr7: 17624431–17630820 16924786–16929803
FvChr6: 8598452–8605103 33424492–33427031

78%–91% 82% (0.0;99%) 88% (2e-52;37%)
79% (2e-15; 21%) Not significantz

OOMT 3 FvChr3: 7085125–7086298 FvChr6: 15275992–
15277245 15267146–15267850

66–67% 70% (8e-37; 87%) 91% (0.0; 88%)
44% (8e-47; 62%)

Genes that were selected for the comparative analysis are highlighted.
z: Not significant: according to BLAST search.
doi:10.1371/journal.pone.0095793.t004
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anchoring to physical chromosomes which will assist future

genome sequencing in Rosa.
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