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Preface  

While working as an anesthesiologist in the past 14 years, I encountered multiple 

circumstances where the monitoring possibilities were  significantly inadequate for optimally 

steering patient treatment and as every physician knows, we are virtually helpless without the 

technical devices and pharmaceuticals.  

Out of these experiences, it became clear that there is a persisting need for more accurate and 

reliable monitoring devices in daily practice. 

The purpose of the research is to develop practical technical solutions for diagnostic and 

therapeutic problems encountered in daily clinical work.  

Thanks to my previous training in biomedical engineering, an inborn fancy for mathematics 

and informatics, and the unique opportunity for scientific collaboration with outstanding 

mentors, friends and research colleagues, I am grateful to have an opportunity to contribute to 

the advancement of medical equipment and treatment options. 

With the here presented and ongoing research, I hope to offer innovative new solutions to 

ultimately improve future patient care. 

 

  

 

 

 

Ghent, August 2016 

Alain Kalmar 
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Nederlandse Samenvatting 

In de anesthesie en reanimatiegeneeskunde is een snelle en accurate diagnostiek van groot 

belang om de nodige interventies te kunnen verrichten. Dit is tijdens reanimatie een extra 

uitdaging omdat vaak moet worden gehandeld in ongeplande en onverwachte situaties, vaak 

in suboptimale omgeving, en onder sterke tijdsdruk. In deze omstandigheden is er pertinente 

nood aan verbeterde diagnostiek en bijhorende technieken om de interventies juist bij te 

sturen. Daarnaast moet ook de anesthesie de vernieuwingen in chirurgische technieken 

continu ondersteunen, en de nodige diagnostiek ontwikkelen om deze veilig te kunnen 

verrichten met vrijwaring van de fysiologische homeostase en het voorkomen van 

complicaties. 

In vele klinische gevallen is het noodzakelijk om betrouwbare informatie te verkrijgen van 

fysiologische variabelen (zoals longen, hersenen of bloedbaan), liefst op een minimaal- of 

niet-invasieve wijze. 

In het eerste deel van dit proefschrift wordt de techniek en het praktisch potentieel van 

nauwkeurige drukmetingen beschreven. Op basis van geavanceerde analyse van de 

dynamische drukmetingen kan waardevolle additionele informatie worden verkregen over het 

te behandelen orgaansysteem. De gebruikte hardware wordt beschreven, en de fysische en 

fysiologische principes die de basis vormen van de gebruikte analyses. 

Het tweede deel van dit proefschrift beschrijft de medische problematiek van spoedintubatie 

in een reanimatiesetting, waarbij betrouwbare diagnostiek van de locatie van de 

beademingsbuis nog steeds een groot probleem is.  In een maximaal gecontroleerde 

omgeving, zoals een operatiezaal, zijn de omstandigheden en technische hulpmiddelen 

beschikbaar om de een veilige werkwijze te garanderen. Bovendien zijn verschillende 

diagnostische hulpmiddelen binnen handbereik om foute intubatie snel te detecteren opdat 

snel bijkomende maatregelen kunnen worden genomen. In spoedomstandigheden buiten het 

ziekenhuis zijn de condities voor intubatie veel minder gunstig, en zijn de meeste technische 

hulpmiddelen niet beschikbaar. In dit hoofdstuk worden de belangrijkste problemen bij 

spoedintubatie besproken, en de belangrijkste beschikbare hulpmiddelen die hierbij worden 

gebruikt. Hierbij is bijzondere aandacht voor de beperkingen van deze hulpmiddelen voor 

gebruik buiten het ziekenhuis. Nieuwe hardware en analysesoftware wordt voorgesteld die 

aan de belangrijkste voorwaarden voor gebruik in deze setting poogt te voldoen.  

Een ingediend octrooiaanvraag beschrijft de basisprincipes van een medisch hulpmiddel voor 

innovatieve drukmeting, en de software analyses voor een betrouwbare diagnostiek. Een 

eerste klinische studie bij patiënten onder narcose, beschrijft een validatie van de algoritmes 

voor automatische analyse van de locatie - in de luchtpijp of in de slokdarm - van de 

endotracheale tube. In deze studie werd de drukmeting verricht met katheters die in de 

endotracheale tube worden gelokaliseerd; de drukmetingen zijn uitgevoerd met conventionele 

medische druktransducers, gekoppeld aan een anesthesiemonitor; de drukgolven werden 
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continu geregistreerd op PC, en achteraf geanalyseerd met de automatische analysesoftware. 

De voordelen van het gebruik van drukmeting - in vergelijking met alternatieve technologieën 

- wordt toegelicht, en de onderliggende fysiologie waarop het algoritme is gebaseerd. De 

specifieke praktische voordelen van het algoritme worden besproken – in het bijzonder de 

snelheid van de diagnose, wat tijdens reanimatie van extra groot belang is – en het gebruik 

van elektronica die vlot kan worden ingebouwd in een draagbaar toestel. Deze studie toont de 

hoge betrouwbaarheid aan van het algoritme om bij mensen met gezonde longen de locatie 

van de endotracheale tube te identificeren.  

In de vervolgstudie wordt een ontwikkeld draagbaar toestel geëvalueerd bij patiënten met 

longziekten op intensieve zorgen. In het apparaat is het algoritme verder geoptimaliseerd voor 

volautomatische analyse met directe melding van de diagnose. Deze studie bevestigt enerzijds 

de accuraatheid in patiënten met longpathologie, en toont anderzijds de mogelijkheid van een 

volledig “stand-alone device” om op basis van de voorgestelde techniek een nagenoeg 

ogenblikkelijke diagnose te leveren met minimale nood voor interventie van de gebruiker. 

Naast het vrijwaren van een vrije luchtweg, is een tweede belangrijke doelstelling binnen de 

urgentiegeneeskunde het optimaliseren van  cardiorespiratoire reanimatie (CPR). De principes 

hiervan worden toegelicht in het volgende hoofdstuk, met nadruk op het belang van de 

intrathoracale drukveranderingen, en het potentieel van de correcte meting hiervan om 

verdere optimalisatie van CPR mogelijk te maken. De technologie hiertoe staat beschreven in 

een tweede octrooiaanvraag. In een klinische observationele studie bij patiënten tijdens 

reanimatie wordt de techniek gebruikt om hartmassage te kwantificeren aan de hand van de 

intrathoracale drukmetingen. 

Het derde deel van dit proefschrift beschrijft de problematiek van drukverhogingen in de 

hersenen tijdens neuro-endoscopie, en de noodzaak voor correcte meting hiervan. Een eerste 

artikel toont het gebruik van transcraniële Doppler voor het inschatten van de 

hersendoorbloeding tijdens neuro-endoscopie, en de beperkingen van de conventionele 

manier van drukmonitoring bij deze procedures. Dit illustreert de nood voor een betere 

diagnostiek om op een veilige manier conventionele neuro-endoscopische procedures te 

verrichten. Bovendien is er een specifieke vraag van de neurochirurgen om de kunnen spoelen 

met hogere druk, om hierbij meer complexe chirurgische procedures op minimaal-invasieve 

wijze te kunnen uitvoeren. De intra-operatieve drukmetingen die nu gebruikt worden tijdens 

endoscopische neurochirurgie tonen afwisselende periodes waarbij uiterst hoge intracraniële 

druk voorkomt. Hoewel het mogelijk is de druk te meten met de beschikbare hulpmiddelen, 

geeft deze conventionele methode vaak slechts heel onnauwkeurige metingen, wat een 

vertraagde diagnose oplevert bij gevaarlijk hoge intracraniële druk. De ontwikkeling en 

evaluatie van een nieuwe methode voor dergelijke drukmetingen die bruikbaar is in de 

klinische praktijk wordt getoond. Dit opent de mogelijkheid om meer geavanceerde neuro-

endoscopische procedures met hogere spoeldruk  te kunnen verrichten onder veilige controle 

van de intracraniële druk. Een derde octrooi toont het ontwerp van de gebruikte nieuwe 

techniek. Op basis van deze principes en chirurgische omstandigheden, tonen we een 

experimenteel model waarin de klinische neuro-endoscopische procedures kunnen worden 
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gesimuleerd met potentieel gewenste spoelsnelheden. Dit laat toe de nodige metingen te doen 

om het nieuwe device te evalueren. In een in-vitro studie wordt deze techniek uiteindelijk 

vergeleken met de conventionele methode van drukmeting. 

Een vierde deel behandelt het gebruik van dezelfde basisprincipes, in combinatie met nieuw 

ontworpen connectiesystemen om tot een prototype te komen van een nieuw medisch 

hulpmiddel voor adaptieve centraal-veneuze drukmonitoring en -medicatie toediening. De 

huidige techniek voor centraal-veneuze toegang wordt beschreven, met haar beperkingen, 

gevolgd door een vierde octrooi waar een nieuwe technologie wordt voorgesteld die aan een 

aantal nadelen van de conventionele methodes tegemoet komt.  

Vervolgens worden de principes toegelicht waarop de werking van het kathetersysteem is 

gebaseerd, en de productiemethode die gebruikt is voor de ontwikkeling van de prototypes in 

de eerste experimentele setups. De fysische eigenschappen die nodig zijn om te voldoen aan 

de klinische vereisten – in het bijzonder stroomweerstand en de vlotte plaatsing – worden 

besproken, en de vraagstukken die hierbij moeten worden opgelost om aan deze voorwaarden 

te voldoen. De materiaalkeuze en computer-geassisteerde ontwerptechnieken worden 

toegelicht, alsook aspecten van biocompatibiliteit waaraan moet worden voldaan om aan de 

technische vereisten te voldoen. 

In-vitro en in-vivo tests beschrijven de eigenschappen van de nieuwe methode in het licht van 

de belangrijkste klinische vereisten. Vervolgens wordt een uitgewerkt prototype voorgesteld 

voor klinisch gebruik.  

In het laatste hoofdstuk worden een aantal uitdagingen beschreven die nog moeten worden 

aangepakt om de hier beschreven prototypes tot een praktisch bruikbaar hulpmiddel uit te 

werken. 
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Summary in English 

In anesthesia and resuscitation, a fast and accurate diagnosis is of critical importance to 

initiate the necessary therapy. During resuscitation, there is the additional challenge of mostly 

unplanned and unexpected conditions, often in a suboptimal environment and under strong 

time pressure. In these circumstances, there is a pertinent need for improved diagnostics to 

optimise the interventions. In addition, the innovations in surgical techniques, must be 

supported by refinements of the anesthesia, in order to accommodate these developments, 

safeguard the physiological homeostasis, and prevent complications.  

In many cases it is necessary to obtain reliable measurements of physiological variables (such 

as lungs, brains or bloodstream), preferably in a minimal- or non-invasive manner. The first 

part of this thesis describes the technology and the clinical potential of more accurate pressure 

measurements. Based on advanced analysis of the dynamic pressure measurements, valuable 

additional information can be obtained about the organ system to be treated. The used 

hardware is described, and the physical and physiological principles that form the basis of the 

used analytics. 

The second section of this thesis describes the difficulties encountered during emergency 

intubation where reliable diagnosis of the location of the breathing tube is still a significant 

problem. In controlled environments like the operating theatre, conditions and technologies 

are optimised for maximal safety. In addition, many diagnostic tools are available for fast 

recognition of the need for additional intervention. Most of these conditions are absent in 

emergency situations, as the medical devices used in hospitals are largely unfit for use in 

these out-of-hospital conditions. The particular challenges for safe endotracheal intubation, 

and the main available devices to assist in intubation and diagnosis are discussed and the 

limitations of these devices are shortly explained, with an emphasis on the pre-hospital 

conditions. New hardware and diagnostic software is proposed that aims to satisfy the most 

important requirements for use in this setting.  

A filed patent describes the basic principles of a medical device for innovative pressure 

measurement, and the analysis software for reliable diagnostics. A first clinical trial in 

patients under anesthesia describes a validation of the algorithms for automatic analysis of the 

location - in the trachea or the oesophagus – of the endotracheal tube. In this study, the 

pressure measurement was carried out with catheters that are located in the endotracheal tube; 

the pressure measurements were performed with conventional medical pressure transducers, 

coupled with an anesthesia monitor; the pressure waves were continuously recorded on a PC 

and analysed afterwards with the automatic software. The benefits of the use of pressure 

measurements - in contrast with alternative technologies - are explained, and the underlying 

physiology on which the algorithm is based. The particular advantages of the algorithm are 

discussed, such as the speed of diagnosis - which is highly critical during resuscitation - and 

the reliance on potentially portable electronics. This study demonstrates the high reliability of 
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the algorithm in order to identify the location of the endotracheal tube in people with healthy 

lungs. 

In the subsequent study, a portable device was developed and evaluated in patients with lung 

diseases in intensive care. In this device, the algorithm is optimized for automated analysis 

with immediate reporting of the diagnosis. This study firstly confirms the accuracy in patients 

with lung pathology, and secondly shows the possibility of a fully automatic "stand-alone 

device" to provide a basically instantaneous diagnosis requiring minimal operator intervention 

utilising the proposed technique. 

In addition to securing the free airway, a second important objective in emergency medicine 

is to optimize cardiorespiratory resuscitation (CPR). The principles of which are explained in 

the next chapter, with emphasis on the importance of the intrathoracic pressure changes, and 

the potential of its correct measurement to further optimize CPR. Next, a second patent is 

described, demonstrating a technology to do this. Finally, in a clinical observational study in 

patients during the resuscitation, this technique is used to quantify chest compressions by 

making use of the intra- thoracic pressure measurements . 

The third section of this thesis describes the problem of pressure increase in the brain during 

neuro-endoscopy, and the need for its accurate measurement. The first article shows the use of 

transcranial Doppler for the assessment of cerebral blood flow during neuro-endoscopy, and 

demonstrates the limitations of the conventional way of monitoring the intracranial pressure 

during these procedures. This illustrates the need for better diagnostics to safely perform the 

conventional neuro-endoscopic procedures, and certainly to allow more advanced use of high-

pressure rinsing - which is desired by some neurosurgeons to permit more demanding surgical 

manipulations. The conventional intra-operative pressure measurements used during 

endoscopic neurosurgery demonstrate intermittent episodes with very high intracranial 

pressure. While feasible to perform with available devices, the conventional method provides 

very inaccurate measurements, with often delayed diagnosis of dangerous pressure levels. 

Because accurate pressure measurements are a prerequisite for advanced surgical techniques,  

a new device was developed and tested in order to obtain such measurements in a practical 

manner in clinical practice. A third patent shows the design of an alternative technique in 

order to perform those more accurate measurements. Based on the proposed principles and 

surgical challenges, an experimental setup was built to simulate the clinical neuro-endoscopic 

procedure with relevant rinsing flow rates, that allows the necessary measurements to 

evaluate the new device. An in-vitro study is described where the new technique is compared 

with the conventional method.  

A fourth section discusses the use of the same basic principles, combined with redesigned 

connection systems to produce a prototype of a new medical device for adaptive central-

venous pressure monitoring and medication administration. The current technique for central-

venous access is described, with its limitations, followed by a fourth patent where a new 

technology is proposed which meets a number of disadvantages of the conventional methods. 
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Subsequently, the principles on which the device is based are explained, and the production 

methods used to develop early prototypes of the first experimental setups. The physical 

properties that are required to address the clinical needs – most importantly flow resistance 

and ease of insertion – are discussed, and the challenges that must be met to comply with 

these constrains. Material choice and computer-assisted design techniques are explained, 

together with biocompatibility concerns that limit choices to realise the technical objectives. 

In-vitro and in-vivo tests describe the properties of the new method in relation to the main 

clinical requirements. Finally, a developed prototype is suggested for clinical use. 

The final chapter describes a number of challenges that need to be addressed to transfer the 

described prototypes into a clinical usable medical device. 
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1 
I1 Pressure measurements in medicine 

In anesthesia and intensive care medicine, medical management  often relies on pressure 

measurements. Most known is the blood pressure measurement, wherein the pressure in the 

arterial system is measured. Throughout medical history, a gradually growing understanding 

showed that a more detailed assessment of the blood pressure can provide more clinically 

useful information. 

A more accurate measurement includes two aspects: on the one hand a higher accuracy and 

higher reliability of the absolute value of the measurement is important in order to optimize 

the management. On the other hand, in addition to the single pressure value, a continuous 

measurement at a high sample rate permits to extract additional valuable information from the 

blood pressure signal. 

A illustrative historical example of this is the blood pressure measurement: After the first 

quantitative description of the blood pressure by Stephen Hales (18th century), and the 

development of the more convenient mercury manometer by Poiseuille (19th century), the 

first clinically useful non-invasive cuff -manometer was developed by Scipione Riva-Rocci in 

1896. This device could however only display the systolic blood pressure, and therefore gave 

one number as a blood pressure value. A first refinement has been realized by Nikolai 

Korotkoff, which enabled to also determine the diastolic blood pressure. This is today the 

most used way to quantify blood pressure. As such, while blood pressure measurement per se 

was known for more than a century, it became only clinically useful after improvements in 

(non)-invasiveness and accuracy. 

The development of a number of technologies that permit measurement of a continuous blood 

pressure signal in a minimally-invasive way makes it not only possible to obtain a much more 

accurate measurement of the diastolic and systolic blood pressure, but also enables analysis of 
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the pressure waveform. Computerized analysis of this signal permits to derive more advanced 

hemodynamic information, allowing significantly improved goal-directed therapy. 

Similarly, In the applications discussed in this thesis we attempted to obtain improved 

diagnostics by making use of  new possibilities in signal analysis, materials science, and 

physiological insights. 

In the first application, a continuous pressure measurement in the endotracheal tube is used by 

an algorithm to provide a fully automatic diagnosis of the location of the tube. This diagnosis 

is based on accurate continuous pressure measurement and an automatic algorithm, which 

utilizes the physiological differences in compliance between the lungs and the stomach for a 

fast and accurate diagnosis. In addition, the same hardware also permits to extract other 

diagnostic information from the pressure signals for the optimization of the CPR by making 

use of dedicated algorithms. Ventilation rate, compression frequency and thoracic pump 

efficacy are some of the demonstrated applications. 

In a second application in neuro-endoscopy, an accurate measurement of the intracranial 

pressure is essential to permit timely intervention when dangerous intracranial hypertension 

occurs, in order to prevent cerebral damage or bleeding in the eyes. The conventional 

techniques of intracranial pressure measurement are invasive or inaccurate. The new proposed 

method reports a very accurate pressure measurement in a non-invasive manner. Moreover, its 

a high sampling rate in addition to an accurate absolute measurement value also permits 

advanced waveform analysis to extract additional information on the intracranial 

hemodynamic conditions. 

A third application relates to central venous pressure measurement, which is routinely used to 

guide the fluid management and pharmacologic therapy. A new device is described to switch 

the central venous catheter in a simple and non-invasive manner from a single-lumen to a 

multi-lumen system, or vice versa. This permits an accurate central venous pressure 

measurement while simultaneously medication is administered on other lumens. This 

alternative to the conventional procedure of replacing central venous catheters reduces the 

risk of several possible complications, simplifies the procedure, and as such permits to 

quickly adapt the number of lumens to the clinical need. 

 

 

  



23 
 

 
 

2 
I2 Pressure measurement to guide therapy 

In many medical domains, and particularly in the field of anaesthesia and emergency 

medicine, real-time diagnosis is essential to permit immediate therapeutic intervention. The 

primary aim of a medical intervention can be defined as restoring or preserving the 

homeostasis of the body. As such, fast quantification of critical physiological values is 

essential to permit a targeted intervention.  Such interventions in these domains are often 

aimed at preserving mass transport within the body: blood through organs, or air to the lungs. 

These mass flows are driven by pressure gradients between two locations.  

While it is only one of the determinants of the true physiologic condition, the ease of 

measurement made pressure values historically the most used unit to assess the physiological 

conditions of the hemodynamic system and many organ systems. 

  

Advanced computation of pressure waveforms can provide additional information on the 

physiological status of a particular organ systems: This consists of waveform analysis of 

pressure changes over time (dP/dt), and pressure differences between two locations (ΔP).  

Conventional pressure measurements in vivo are used to assess the arterial and venous blood 

pressure, intracranial pressure, pulmonary pressure, intra-abdominal pressure or rarely at other 

locations using a rigid pressure tubing connected to a pressure transducer. 

“It is a source of regret that the measurement of flow is so much more difficult than the 

measurement of pressure. This has led to an undue interest in the blood pressure 

manometer. Most organs, however, require flow rather than pressure.” 

Jarisch A. Kreisslauffragen. Dtsch Med Wachenschr 1928;54:1213. 
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In this doctoral thesis, advanced in vivo pressure measurement techniques, and the necessary 

hardware and software were developed to improve the diagnostic value for therapeutic 

intervention in different organ systems. 

In this introduction, three parts are considered: 

1. The physiological principles applied in the developed concepts. 

2. The instruments and technology used for the development of the devices. 

3. The clinical applications for the new devices. 
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3 
I3 Physiological principles 

I3.1 Compliance and elastance 

When in a closed volume - such as the lungs - the pressure is increased (ΔP), the degree to 

which the organ distends (ΔV) is the compliance 𝐶 =
∆V

∆P
. The compliance of the organ at any 

given time during the change in volume is defined as the dynamic compliance 𝐶𝑑𝑦𝑛 =
dV

dP
. 

Elastance is the reciprocal of compliance, hence the change in pressure for a given change in 

volume. Measurement of the dynamic compliance of either lungs, central venous system, 

cerebrospinal fluid or arterial vessels can yield critical diagnostic information.  

I3.2 The starling resistor 

The driving force of blood/air flow is 

the difference between upstream and 

downstream pressure of the system. In 

a rigid tube, the flow will therefore be 

determined by the pressure difference 

between inflow and outflow.  In a tube 

with a collapsible wall however - such 

as (venous) blood vessels or 

bronchioli - an external pressure 

around the collapsible part may 

become predominant if the pressure in 

the vessel drops below a threshold value. In many medical conditions (e.g. obstructive 

pulmonary diseases), or during resuscitation (coronary perfusion) and surgery (neuro-

 
The starling resistor 

Flow is determined by upstream pressure (Pup), downstream 

pressure (Pdn) and external pressure (Pext) 
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endoscopy, laparoscopy), this can become a major determining factor of organ perfusion/air 

flow.  

The perfusion pressure is the pressure driving blood through the 

vascular bed, and therefore the difference between inflow 

(arterial) and outflow (venous) pressures. When, however, an 

organ (such as the brain) is contained within a rigid enclosure 

(the scull), an increase in extravascular pressure (the intracranial 

pressure) will immediately result in a force compressing the 

vascular system. As long as the intravascular pressure is higher 

than the extravascular pressure, the perfusion pressure remains ΔP = Pa - Pv. Conversely, once 

the intracranial pressure becomes higher than the venous pressure, the veins collapse and act 

as a Starling resistor: ΔP = Pa – Pic. Equivalent effects occur during laparoscopy, intracranial 

neuro-endoscopy, and cardiac/pulmonary perfusion during CPR. Therefore, a third local 

pressure measurement - in addition to arterial and venous pressure - is necessary to determine 

the driving pressure of blood flow.  

I3.3 From pressure to flow 

Poiseuille’s law describes that a steady laminar flow of an incompressible fluid through a pipe 

of constant circular cross-section that is substantially longer than its diameter induces a 

pressure difference over a length L, which is directly proportional to the flow Q. Therefore, a 

measured pressure difference over the 

length of a tube gives an estimation of the 

flow through the tube. In the proposed 

research, this principle is used for 

estimating the flow of air through a 

ventilation tube. 

The equation indicates that the radius (to 

the forth power) is one of the principal 

determinants of blood flow and even small 

changes in lumen diameter will have significant effects. It is by this mechanism that vascular 

resistance can change rapidly to alter regional and global blood flow1. Still, for a given degree 

of vascular resistance, the flow is directly proportional to the pressure difference. This 

principle is valid for the vascular resistance as well as the resistance of an organ.   

  

  ∆𝑃 = R x Q =
8µL

𝜋𝑟4
x Q 

Hagen-Poiseuille equation 

or   𝑄 =
∆𝑃𝜋𝑟4

8µL
 

 

  ∆𝑃 = 𝑃𝑎 −  𝑃𝑣  

or 

  ∆𝑃 = 𝑃𝑎 −  𝑃𝑖𝑐  
Perfusion pressure 
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1. Based on two pressure readings over a distance inside the tube (ΔP), the flow Q is 

estimated using Poiseuille’s law.  

This calculated flow Q can also be written as:  𝑄 =
𝑑𝑉

𝑑𝑡
 

2. The pressure change over time at the distal end of the tube (= inside the organ of 

interest) is measured: 

𝛿𝑃 =
𝑑𝑃

𝑑𝑡
  

3. The flow through the tube, divided by the pressure change in the organ equals the 

compliance. This is obtained as: 

𝑄

𝛿𝑃
=

𝑑𝑉

𝑑𝑡
𝑑𝑃

𝑑𝑡

=  
𝑑𝑉

𝑑𝑃
= 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒  

I3.4 From pressure to compliance 

During ventilation of the lungs, or during endoscopic flushing of the 

cerebral ventricles, air/fluid flows through a tube into the organ. The 

compliance of a hollow organ is not a constant value, but is 

dependent on the volume that it already contains. Typically, the 

more an organ is stretched, the less additional volume it will accept 

for a further increase in pressure. Therefore, assessment of the compliance gives an estimate 

of the physiological properties and condition of the organ. 

 

I3.5 From pressure to Volume 

During surgery or other medical events, significant changes in blood volume may occur - 

either directly due to blood loss, or indirectly due to extravasation of intravascular water to 

the interstitium, or other losses. It is imperative to keep the blood volume available for the 

heart within physiological boundaries in order to preserve homeostasis. Direct measurement 

of the total available blood volume however is very difficult in clinical context, but (dynamic 

changes in) arterial and/or venous pressure measurement give an acceptable estimate of the 

fluid status of the patient. Reliable assessment of variations in central-venous blood pressure 

measurements are consequently often used to guide fluid therapy. 

  

  𝐶 =
∆𝑉

∆𝑃
 

Compliance 
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4 
I4 Equipment and methods 

The new devices developed permit improved diagnostic and therapeutic appliances based on 

advanced pressure measurements. The hardware to achieve the goal of reliable assessment of 

the desired physiological information in a clinical setting needs to comply with several 

preconditions such as accuracy, high sampling frequency, medical safety, easy 

implementation and high reliability in clinically demanding circumstances, disposable and 

preferably be cost efficient. Common electronic pressure transducers, and associated pressure 

tubings can comply with these preconditions, if a fitting architecture is combined with a 

suitable mathematical approach of the physiological casus. 

I4.1 Pressure transducers 

A semiconductor pressure 

transducer is an electronic 

component that generates an 

electric signal as a function of a 

mechanical pressure imposed on 

the component. Several 

technologies exist to build 

pressure transducers, depending 

on the desired specifications.  

The semiconductor pressure 

transducers used are economical, small, consume very little power – allowing for battery-

powered hand-held devices, and permit reliable sapling rates up to at least 250Hz.        

      

 

Fig 1: Universal disposable medical pressure transducer. The fluid 

connectors (at the left) are connected to an invasive catheter, which 

conducts the pressure to the pressure transducer (black square). This 

electronic component receives a DC excitation voltage of 5V on two 

wires. On the two other wires, voltage is measured by the monitor, with a 

sensitivity of 5 μV/V/mmHg.  (e.g. a blood pressure of 130 mmHg and an 

excitation voltage of 5V delivers a voltage of 3,25 mV)  
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Architecture of the used pressure sensors 

Depending on the reference pressure used to quantify the measured pressure, several types of 

pressure sensors exist.  The absolute pressure sensor measures the pressure relative to the 

perfect vacuum. Negative absolute pressure is therefore non-existent.  The differential 

pressure sensor measures the pressure difference between two locations.  The gauge 

pressure sensor, which is a differential pressure sensor in which one side is open to the 

ambient atmosphere. This type is universally used in medical applications, and also in this 

research. With gauge pressure sensors, negative pressures often occur, for instance during 

inspiration, where a negative gauge pressure in the thorax drives the atmospheric air into the 

lungs.   

Different pressure-sensing technologies are used to convert a mechanical pressure to an 

electronic signal. In medical applications, the force collector type is predominantly used. 

These sensors use a force collector (such as a diaphragm) to measure strain or deflection due 

to the applied pressure over an area. The displacement of the force collector can be translated 

to an electronic signal trough 

different physical principles such as 

capacitive properties (changes in 

capacitance when pressure deforms 

the diaphragm), or electromagnetic, 

piezoelectric, or optical properties. In 

medicine, the most commonly 

employed force collector sensor is 

the piezoelectric strain gauge, which 

uses the piezoresistive effect: the 

resistance of the element changes as 

pressure deforms the material. 

Ultimately, the pressure transducer generates an electronic signal as a function of the exerted 

pressure. This signal must be further processed to yield diagnostic value. 

Clinical embodiment of the used pressure sensors 

Measuring the pressure inside a specific organ/body can be approached by two methods:  

1. An electronic sensor directly placed inside the body.  

  The pressure is locally converted into an electric signal. The main restriction of this 

approach is the location of the electronic device inside the body. This raises many 

biocompatibility issues, and often needs expensive devices. 

 

2. A pressure tubing (catheter) is inserted in the body, through which the pressure is guided 

via a fluid or gas medium to an external pressure transducer.  

   

Fig 2: The Piezoelectric strain gauge.  

An Applied force induces stress in the crystal, driving negative and 

positive ions onto opposed surfaces. The amount of accumulated 

charge is directly proportional to the applied force, and changes the 

electrical resistance of the sensor. This can be measured very 

precisely when configured into a Wheatstone bridge circuit. 
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  This is often more practical, less invasive, and allows for cheap disposable pressure 

tubings to be connected to reusable/disposable electronic devices. The principal 

disadvantage of this approach is the added sources of artefacts. The impedance of the 

tubing system can modify the signal of dynamically changing pressure values:  

 While an ideal pressure sensor has no internal compliance (= no internal volume shifts 

due to pressure changes), in practice a small volume shift in the pressure sensor 

embodiment itself does occur. This restricts the minimal internal diameter of the pressure 

tubings. 

 The pressure tubings are rigid, but still have a certain compliance. When a 

compressible medium (such as air) is used in the pressure tubings, an additional increase 

in compliance follows.  

 An additional risk of clogging of the tubings further restraints the dimensions of the 

pressure tubings within certain values, particularly when fast pressure changes, or high 

frequency oscillations need to be monitored.  
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I4.2 Pressure tubings 

The pressure must be conducted from the location of interest (in the body) to the external 

semiconductor sensor using pressure tubings. Depending on the mechanical properties of the 

conduction medium (water, air, …), the clogging risk, and the dynamic pressure changes to be 

monitored, the internal diameter of the tubings and the rigidity of the material must be within 

certain boundaries. Because none of the applications proposed in this thesis is currently 

commercially available, material choice and dimensions of the tubings still had to be 

determined. 

 In the device developed for monitoring intrathoracic pulmonary pressure (chapter II), the 

conducting medium is air. Because of the compressible nature of air and a significant 

internal volume of the pressure transducer, a certain volume of air must flow through the 

tube to permit proper pressure transduction. Since accurate pressure waveform assessment 

with a sampling rate of at least 50Hz is required, and because there is a high clogging risk 

(with saliva/mucus), tubings with relatively high internal diameter are required. This type 

of pressure measurement through the endotracheal tube was never reported before. 

Therefore a suitable dimension had to be determined, allowing accurate pressure readings 

through the catheter, while minimally obstructing the airflow through the endotracheal 

tube. We made use of polyethylene disposable catheters with an internal diameter of 1mm. 

 

 In the intracranial pressure monitoring system (chapter III), only slow-changing pressures 

over several seconds must be monitored. In addition, a very small outer diameter catheter 

is desired, since it must be advanced through a neuro-endoscope with minimal obstruction 

of the rinsing channel. For the in-vitro flow study, an electronic tip-sensor was used to 

ascertain an accurate measurement. In addition, a very small, fluid filled polyimide 

catheter was selected as an economic alternative. This rigid polymer permits very thin-

walled catheters, resulting in a minimal outer diameter for a given inner diameter while 

preserving the desired mechanical properties. This allows advancing the catheter through 

the inflow rinsing channel of the neuro-endoscope, with only minimal increase in flow 

resistance. The most suitable dimension was determined within the main boundary 

conditions: small enough for minimal flow resistance through the flushing channel; large 

enough to permit accurate dynamic pressure transduction. 

 

 Likewise, in the central venous pressure measurement device (chapter IV), polyimide 

capillaries were selected to permit accurate pressure transduction while minimally 

interfering with the flow through the main channel of the central venous catheter.  

I4.3 Software for development of the algorithms 

All algorithms were developed by Alain Kalmar in visual basic software. A particular 

advantage of this environment is that all algorithms can be first conceived in VBA for excel, 

which eases visualisation of curves and management of data significantly. Those algorithms 

were directly transferred to visual basic for  implementation in the stand-alone real-time 
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software on PC and  integration in the dedicated electronic hand-held device described in 

chapter II.4. 
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5 
I5 Developed applications  

The studies on pressure waveform characteristics in different organ systems, and the 

subsequent development of prototype devices to implement the gained insights for practical 

diagnostic purposes led to three different applications: 

 A hand-held device for the automatic detection of oesophageal intubation in emergency 

situations. 

 An improved monitoring technique with a significantly increased accuracy for intracranial 

pressure measurements during endoscopic neurosurgery. 

 A device for safe and efficient reversible upgrading of a single lumen central venous 

catheter to a multilumen catheter with separate channels for accurate pressure monitoring 

or separate administration of medication. 

  



36 
 

 

  



37 
 

 
 

6 
I6 Clinical and scientific results 

The studies resulted in the publication of 4 full papers and 4 patent applications: 

1. A Novel method to detect accidental oesophageal intubation based on ventilation 

pressure waveforms.  

Resuscitation 2012; 83: 177– 82. 

2. Automatic detection of oesophageal intubation based on ventilation pressure 

waveforms shows high specificity in patients with pulmonary conditions. 

Resuscitation. 2016; 105: 36-40. 

3. Excessive chest compression rate is associated with insufficient compression depth in 

prehospital cardiac arrest.  Resuscitation. 2012; 83: 1319-23. 

 

4. Pressure monitoring during neuroendoscopy: new insights 

Br J Anaesth. 2011 Aug;107(2):218-24. 

5. Koen Monsieurs, Alain Kalmar  

Methods and systems for analysing resuscitation. PCT/EP2009/066851  

6. Koen Monsieurs, Alain Kalmar  

Methods and systems for ventilating or compressing. PCT - WO2011/154499. 

7. Frank Dewaele, Alain Kalmar  

Endoscopic pressure detection assembly. PCT/EP2009/066851 

8. Frank Dewaele, Alain Kalmar, Bart Blanckaert, Cyriel Mabilde 

Capillary tube assembly. PCT/EP2011/062810 
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1 
II1 Emergency endotracheal intubation 

 

II1.1 The anatomy of endotracheal intubation 

When a patient needs to be mechanically ventilated or the 

airway needs to be protected against undesirable material such 

as stomach acid, a cuffed plastic tube must be advanced 

between the vocal cords into the trachea (windpipe). The 

entrance of the trachea lies anterior of the neck, requiring the 

use of a laryngoscope and specific training to visualise the 

vocal cords and advance the endotracheal tube. Dorsal of the 

trachea lies the oesophagus. Erroneous oesophageal 

intubation is one of the main causes of avoidable failed 

resuscitations. 

 

II1.2 Challenges in emergency situations 

In the operating theatre, ideal conditions are created for optimal 

visualisation of the vocal cords. The patient is positioned at a 

convenient level for visualisation, and the anaesthesiologist, 

supported by a trained nurse performs the task. In case of 

difficult visualisation, advanced tools are available such as video 

laryngoscopy, or fibre bronchoscopy.  Subsequently, many 

additional tools are available to assess the correct location of the endotracheal tube, such as 

auscultation, waveform capnography or spirometry. 

Figure 2: video laryngoscopy. 

 

Figure 1: endotracheal intubation 

Source: UpToDate 
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In emergency situations such as out-of hospital cardiac arrest, acute neurologic syndromes, 

traffic accidents or disaster medicine, intubation circumstances are much less ideal: patient 

positioning and lightening circumstances are often extremely inconvenient, and most 

conventional technologies for subsequent assessment of tube position are unavailable or 

unreliable, resulting in erroneous intubation, often with fatal outcome. This demonstrates a 

need for a new method to evaluate endotracheal tube position which is convenient and reliable 

in such circumstances. 

 

II1.3 Disposable kit for dual endotracheal pressure measurement 

After successful endotracheal intubation, synchronous pressure measurement at the distal and 

proximal end of the endotracheal tube can potentially give clinically valuable information 

about the quality of chest compressions, of cardiac activity, pulmonary conditions and the 

location of the endotracheal tube. In order to 

permit these measurements, we developed a 

disposable kit which allows easy use in 

emergency settings, and can at least initially 

be used for clinical research. If the proof of 

principle is delivered through the use of this 

device, a more advance dedicate 

endotracheal tubes can be envisaged for 

routine use, where our system is integrated 

in the endotracheal tube itself.  

 

II1.4 Development of a device for oesophageal intubation 

detection 

The compliance of the trachea/lungs was expected to be radically different from the 

compliance of the oesophagus/stomach. Therefore we performed test ventilations on intubated 

pigs, both in the lungs and in the oesophagus and recorded the pressure waveforms in two 

locations of the endotracheal tube. This revealed a distinct pattern in either tube location. 

Based on this information, we developed an automated algorithm to quantify these 

differences, when applied on synchronous pressure readings in the endotracheal tube.  

Because the hardware used to detect accidental oesophageal intubation could equally be used 

for optimising cardiopulmonary resuscitation (CPR), this increases the practical potential of 

the used methodology. A sequence of studies was performed to develop a pre-commercial 

prototype and evaluate its validity. 

 
Figure 3: Disposable kit consisting of a semi-rigid 

catheter with a lumen of one mm that is introduced 

through the endotracheal tube down to its distal end, with 

a second catheter connected to the proximal end of the 

tube. 
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1. In a first study in 40 healthy anaesthetised patients, an algorithm was validated to have 

a very high sensitivity and specificity to differentiate between oesophageal and 

tracheal intubation.  The disposable kit was introduced in the endotracheal tube and 

connected to conventional universal disposable pressure sensors. The pressure 

waveform was registered on the anaesthesia monitor and recorded on a PC for 

subsequent offline analysis with the dedicated algorithm.  

Resuscitation 2012; 83: 177– 82. 

 

2. As a subsequent step, an electronic handheld device was 

developed (in cooperation with Prof P. Rombouts) 

consisting of two-channel device where pressure 

transducers, signal filters, amplifiers, digitisation, data 

logger and Bluetooth hardware are integrated. The signal 

was transmitted to a PC for subsequent data analysis 

using the same algorithm as the first study. Because the 

algorithm relies on the difference in the dynamic 

compliance between pulmonary and gastric system, it was 

unclear whether the high specificity to confirm tracheal 

intubation would be preserved in patients with 

pathologically low pulmonary compliance. Therefore, the 

new hardware was utilised in a second study to analyse tracheal ventilation pressure 

profiles in patients on intensive care with very severe pulmonary disease. This study 

confirmed  the reliability of the hand-held hardware and  the reliability of the 

algorithm in a patient population with decreased pulmonary compliance. 

Resuscitation. 2016; 105: 36-40. 

 

3. In a third step, a next generation stand-alone device was developed with newer 

electronics, and integrated algorithms for automatic detection of a ventilation cycle 

and diagnosis of tube location. A green/red LED was used to communicate the 

diagnosis. In addition, the algorithm needs to be validated in the appropriate target 

population, namely prehospital patients. This population is different from 

anaesthetised patients because of the presence of pneumonia, pulmonary oedema, loss 

of muscle tone in the oesophagus, and the presence of CPR artefacts on the pressure 

signal. This clinical validation is an essential step to assure that the technology is 

robust even in the most challenging patients and working conditions. The new device 

was used in a clinical evaluation in patients in emergency out-of-hospital 

resuscitations at Antwerp University Hospital. Data analysis is ongoing. 

 

Figure 4: prototype stand-

alone device 
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2 
II2 Methods and systems for analysing resuscitation 

 
 

Adapted from: “methods and systems for analysing resuscitation” 

Date of PCT filing: Dec.10. 2009 

Inventors: K Monsieurs, AF Kalmar 

 

Abstract 

This invention relates to a system generating control signals for compressing or ventilating, 

respectively. The system comprises a computing device dedicated to process, for a 

resuscitation, information regarding a compression parameter and/or ventilation parameter, as 

function of a parameter indicative of blood circulation, a process component for evaluating 

the different values of the chest compression parameter and/or ventilation parameter as 

function of the parameter indicative of the blood circulation. The obtained function will 

generate a value for chest compression parameter and/or the ventilation parameter 

respectively, and a control signal generator for generating control signals according to the 

derived ventilation parameter or chest compression parameter.  
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II2.1 Field of the invention 

The present invention relates to a medical device for analysing resuscitation, for example in 

case of intubation of a patient, or for optimising chest compression depth and ventilation 

pressure. 

 

 

II2.2 Background of the invention 

When a patient needs positive pressure ventilation or chest compression (resuscitation), a 

number of clinical issues may arise, such as: 

 Oesophageal intubation 

Wrong intubation into the oesophagus, if detected too late, may result in the death of 

the patient because of a lack of oxygen and ventilation. It is a common problem in 

emergency situations, both during cardiac arrest and in patients with spontaneous 

circulation. 

 

 Hyperventilation and air trapping during CPR 

This results in decreased coronary perfusion pressure and in excess mortality in animal 

studies. Early detection and avoidance of hyperventilation and subsequent increased 

intrathoracic pressures during resuscitation may be an accurate means for preventing 

failure of resuscitation and for increasing survival chances and therefore is an 

important clinical issue. 

 

 Assessment of the quality of CPR 

During resuscitation, several variables, such as chest compression rate and depth, 

intrathoracic pressure variation, ventilation frequency and pressure should be within 

certain limits for optimal outcome. Continuous monitoring of these variables allows 

for optimisation of the resuscitation effort, both in manual and automated 

resuscitation. 

II2.3 Summary of the invention 

The present invention demonstrates applications permitting:  

1. An accurate detection of the proper position of an endotracheal tube, substantially 

independent of the person who needs to perform the detection 

2. An accurate analysis of resuscitation 

3. An accurate and quick detection of spontaneous cardiac activity 
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Measurement of P1, P2 Waveform 
(Streaming data enters at 50Hz) 

II2.4 Schematic description of the diagnostic algorithm 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Is there compression detection in 

relevant period ? 

Yes : use S-derived values 

No : use P-derived Values 

 

Sequence for alarming : 

 Oesophageal intubation : f(dS1/dt, dS2/dt, S1, S2, dP/dx) 

 Ventilation rate   

 Spontaneous respiration / gasping :  f(minimal S1, minimal dS/dt, nAUCV1, dP) 

 Positive End Expiratory Pressure (PEEP) 

 Insufflation duration & Area Under Curve/time 

 Compression rate 

 Pressure gradient during compression 

Calculate S1, S2, C1, C2 
S = smoothed P over … msec   

C=S-P 

Calculate  dP1/dt, dP2/dt,  

dS1/dt, dS2/dt, dC1/dt, dC2/dt, dP/dx 
(dP/dt = temporal pressure gradient of the ventilatory pressure curve) 

 

 

 

 

diagnose insufflation diagnose expiration 
diagnose compression 

dC/dt surpasses Threshold_3  

and P1 > P2 

dS/dt below 

Threshold_2  

 

dS/dt surpasses 

Threshold_1  

 Determine ventilation 

parameters of actual 

ventilation : 

- Peak pressure S1, Peak 

pressure S2 

- Maximal dS/dt, minimal 

dS/dt 

- Insufflation duration 

 

 

 

-  

 

 Determine ventilation 

parameters of last 

ventilation : 

- AUCV1, AUCV2, nAUCV1 

- PEEPV1, PEEPV2 

- Minimal P1, Minimal P2 

- Maximal dP/dx (dP = P1 – 

P2)   

- Minimal dP 

- Determine moment of 

insufflation, ventilation 

duration, ventilation rate 

 

 

 Determine compression 

parameters of last 

compression : 

- AUCC1, AUCC2 

- Maximal compression 

pressure C1 

- maximal dC1/dt 

- determine moment of 

compression 

- Compression duration 

- Compression rate 

 

 

 

 

 

 

 

 

 

 

-  

 

   

Figure 1: Schematic flow chart illustrating an algorithm. 
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Raw pressure-waveform (P): 

  

      

         Ventilation curve (S)      Compression curve (C) 

 

 

 

 

                                dS/dt        dC/dt  

 

   

 

             dS/dt below diagnosis expiration        dC/dt surpasses diagnosis compression 

    dS/dt surpasses  diagnosis insufflation  

 

Figure 2: Example of an automatic analysis of the raw pressure recording Px to extract information on ventilation and 

compression. This illustrative figure was not part of the patent application. The curve P is a recording at 150Hz of a patient 

being mechanically ventilated while performing chest compressions. The curve results from a superposition of the effects of  

ventilation and chest compressions. An averaging algorithm calculates Sx from the pressure curve Px. The Sx-curve reflects the 

intrathoracic pressure curve resulting from ventilation as if no chest compressions were performed. Subsequently, the Sx-curve 

is subtracted from the Px-curve to calculate the Cx-curve. The Cx-curve reflects the intrathoracic pressure curve resulting from 

chest compressions as if no ventilation was performed. The Cx-curve looks very similar to the Px-curve, but the Y-axis 

demonstrates that the values oscillate around 0 mmHg. The apparent continued presence of ventilatory oscillations are a result 

of the cyclic negative pressures in the Px-curve resulting from stronger recoil with subsequent more pronounced negative 

pressures. In order to operationalize specific events, the first derivative of both the S1-curve and the C1-curve is calculated. 

When the first derivative crosses a certain threshold, a specific event is diagnosed: 

- A sharp increase in the S1-curve (resulting in a high dS/dt value) is a result of insufflation of air.  

  when dS/dt increases above a threshold value , insufflation is diagnosed.  

 

- A sharp decrease in the S1-curve (resulting in a deep negative dS/dt value) is a result of expiration of air. 

 when dS/dt drops below threshold value , expiration is diagnosed.  

 

- A sharp increase in the C1-curve (resulting in a high dC/dt value) is a result of chest compression. 

 when dC/dt increases above threshold value , chest compression is diagnosed.   

mmHg 

mmHg mmHg 

mmHg/s mmHg/s 

 
 

 
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II2.5. Clinical decision making 

Further automated analysis of the pressure signals and their derivatives, may help in the 

clinical decision making regarding:  

 

 Oesophageal intubation detection 

The difference in compliance between the lungs and the oesophagus results in very 

significant differences in the characteristics of :  

1. the pressure gradient over time of the endotracheal pressures  (dP/dt) 

2. the pressure gradient between two different measuring points at a given time (ΔP). 

Using the pressure curves obtained during the initial ventilation cycles, e.g. during the 

first four ventilation cycles, quick distinction can be made between the tracheal and 

oesophageal pressure patterns. This information will allow the health care provider to 

establish correct intubation or to remove and replace the tube. 

 Assessment of chest compression and compression rate 

The pressure gradient (dP/dt) may be used for determining the onset and release of 

chest compressions, and further determination of the quality of the chest compression 

rate and the resulting intrathoracic pressures variations.  

 

 Assessment of return of spontaneous circulation 

Spontaneous circulation may be evaluated based on a pulse pressure. The combination 

of pulse pressure, identified as the maximal pressure difference in between a sequence 

of a negative dP/dt followed by a positive and subsequently negative dP/dt, may allow 

confirmation of spontaneous circulation with higher sensitivity/specificity. 

 

 Assessment of ventilation variables 

Ventilation variables such as ventilation cycle, ventilation frequency, the fraction of 

the time during which the ventilatory pressure is higher than a certain value, 

presence of PEEP (Positive End-Expiratory Pressure) and return of spontaneous 

respiration. 

 

II2.6 Integration of pressure values with other parameters 

In order to further improve the information obtained with the system, information from 

endotracheal pressure analysis can be integrated with other parameters to improve the 

sensitivity/specificity of automatic diagnostic algorithms. For example, appearance of a peak 

in the intrathoracic pressure systematically following the R-wave on an ECG indicates a 

higher probability of the presence of a true spontaneous cardiac compression than conclusions 

drawn when the ECG-information is absent.  
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II2.7 Further reading 

See appendix 1 for a more detailed description of the patent 
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3 
II3 A novel method to detect accidental oesophageal 
intubation based on ventilation pressure waveforms 

Resuscitation 2012 Feb; 83: 177– 82. 

Kalmar AF, Absalom A, Monsieurs KG. 

 

II3.1 Abstract 

Background: Emergency endotracheal intubation results in accidental oesophageal intubation 

in up to 17% of patients. This is frequently undetected thereby adding to the morbidity and 

mortality. No current method to detect accidental oesophageal intubation in an emergency 

setting is both highly sensitive and specific. We hypothesized that, based on differences 

between the mechanical properties of the oesophagus and the trachea/lung, ventilation 

pressures could discriminate between tracheal and oesophageal intubation. Such a technique 

would potentially not suffer some of the limitations of current methods to detect oesophageal 

intubation in emergency conditions such as noisy environment (making clinical assessment 

difficult) or low/no flow states (reducing the applicability of capnometry). The aim of our 

study was thus to develop and assess a technique that may more rapidly and accurately 

differentiate oesophageal from tracheal intubation based on airway pressure gradients. 

Materials and methods: Forty adult patients undergoing elective surgery were included. In 

20 patients the trachea was intubated with an endotracheal tube; in 20 patients the oesophagus 

was purposefully intubated using an Easytube® (Rüsh, Germany). In all patients, a thin air-

filled catheter was inserted through the tube lumen until its tip was 1 cm from the distal end, 

and connected to a pressure transducer. Pressure was recorded simultaneously from a second 

catheter at the proximal end of the tube. For the first three manual ventilations in each patient, 
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a parameter (D) based on temporal (ΔP/Δt) and spatial (ΔP) pressure gradients (and reflecting 

flow divided by elastance) was calculated and evaluated for its ability to discriminate between 

oesophageal and tracheal intubation. 

Results and discussion: For all tracheal ventilations, D-values were >0.5 (range 0.6–47.9), 

while for all oesophageal ventilations D-values were <0.5 (range 0.0005–0.07). 

Conclusion: This technique has the potential to provide a diagnosis of failed intubation 

within seconds with high sensitivity and specificity. 

 

II3.2 Introduction 

In the elective operating theatre, accidental oesophageal placement of an endotracheal tube is 

not uncommon, but is usually detected by a combination of clinical assessment, spirometry 

and capnography. Moreover, in this setting, the lungs are usually adequately preoxygenated, 

which substantially increases the apnoea time before the onset of hypoxia and limits the risk 

of hypoxic injury. 

In emergency situations, the incidence of accidental oesophageal intubation is higher, not only 

in patients undergoing cardiopulmonary resuscitation, but also in patients with spontaneous 

circulation, such as in patients with severe neurotrauma or acute respiratory failure. In these 

situations, which mostly occur in the pre-hospital setting, intubation is commonly performed 

by personnel with less experience of intubation (than practicing anaesthetists), under 

conditions that are far from optimal. These factors contribute to an unrecognized oesophageal 

intubation rate of up to 17%, which adds significantly to the morbidity and mortality of these 

patients.1–3 Apart from causing hypoxia and hypercapnia, oesophageal ventilation causes 

gaseous distension of the stomach, which will hinder tracheal ventilation even after successful 

subsequent intubation and cause a risk of regurgitation and pulmonary aspiration in these 

(often non-fasted) patients.4 

In the absence of direct vocal cord visualization (which is not always possible during 

emergency intubation), the most widely used methods of confirming tracheal intubation are 

clinical assessment (observation of chest movement and auscultation of the chest and 

epigastrium) and the use of end-tidal carbon dioxide monitoring5 (waveform, color change or 

digital readout). However, the latter technique cannot always confirm an appropriately placed 

tube, since chest compressions do not always generate sufficient blood flow to provide an 

end-tidal carbon dioxide measurement. Moreover, mouth-to-mouth resuscitation before 

intubation or the presence of carbonated beverages in the stomach may cause false positive 

carbon dioxide readings after oesophageal intubation.6 Several newer methods have been 

developed to detect misplaced tubes. These include acoustic methods (such as automated 

analysis of lung auscultation,7 vibration8 or reflectometry9), ultrasound performed at the 

suprasternal notch,10,11 the use of an oesophageal detector device12 (assessment of the suction 

of air through the tube by means of a self-inflating bulb or a syringe) and chest impedance 
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measurements.13 Léon et al.14,15 used a combination of proximal pressure and spirometry 

readings to propose a diagnostic oesophageal detection device using neural network 

technology. More recently, analysis of pressure–volume relationships of the endotracheal tube 

cuff was shown to be useful in detecting oesophageal intubation in pigs.16 All show some 

promise but either lack practicality or have insufficient sensitivity and specificity, especially 

during cardiac arrest.17 An oesophageal detector device is sensitive for detecting misplaced 

tubes, but lacks specificity and if relied upon, will result in removal of about 30% of correctly 

placed tubes in cardiac arrest patients.18 Chest impedance measurements from surface 

electrodes appear to be highly sensitive and specific, but are impractical since they are only 

valid in stable conditions where the electrodes are first carefully applied at specific locations 

and calibrated in a spontaneously breathing patient before endotracheal intubation.13,19  

There is therefore a clinical need for a device that is small enough to be practical in 

emergency situations and that can detect oesophageal intubation within seconds, even in the 

absence of cardiac output. We hypothesized that, based on differences between the 

mechanical properties of the oesophagus and the trachea/lung, ventilation pressures could 

discriminate between tracheal and oesophageal intubation. Thus, in the current study we 

investigated if analysis of temporal and spatial pressure gradients within the endotracheal tube 

can reliably differentiate between oesophageal and endotracheal intubation.  

 

II3.3 Methods  

After approval by the Ethics Committee of the University Medical Center Groningen, written 

informed consent was obtained from 40 consecutive adult patients. Exclusion criteria were: 

known oesophageal pathology, expected difficult oral intubation, American Society of 

Anesthesiology (ASA) status > II, age <18 or >75 years. 

The first group consisted of 20 patients scheduled for a surgical procedure under general 

anaesthesia and requiring tracheal intubation. Upon arrival in the operating theatre, standard 

monitoring was applied: ECG, pulse oximetry and non-invasive automated arterial blood 

pressure. For induction of anaesthesia, a syringe pump with propofol 6 mg/kg/h was started, 

anaesthesia was induced with propofol (1–2 mg/kg) and sufentanil (0.25 g/kg) and 

cisatracurium (0.15 mg/kg) were administered. Anaesthesia was maintained with propofol and 

the trachea was intubated with an endotracheal tube (Lo-ContourTM, Mallinckrodt, 

Hazelwood, MO, USA). The length of the endotracheal tube was 32 cm, the internal diameter 

was 8 mm. After securing the airway, an adapted straight 7.6 mm connector (type 1947, 

Intersurgical®, Berkshire, UK) was connected to the proximal end of the endotracheal tube. 

Via this connecting piece (Fig. 1), a thin polyethylene disposable air-filled catheter (Vygon 

71100.20, Ecouen, France) with an internal diameter of 1 mm was introduced in the tube, 

positioned at 1 cm from its distal end and connected to a pressure transducer (Truwave PX-

600F, Edwards Lifesciences LLC, Irvine, CA, USA) via a luer-lock connection. A second air-

filled catheter was attached at the connecting piece itself and connected to a second pressure 
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transducer. Both systems were calibrated against atmospheric pressure and both pressure 

transducers were connected to a Philips IntelliVue MP70 monitor (Philips Medizinsysteme, 

Boeblingen, Germany) and linked to a portable computer. The trachea was manually 

ventilated three times as in normal test ventilations after intubation with a 2 l ventilation bag 

(type 2820, Intersurgical®, Berkshire, UK). The pressure waveforms were sampled at 50 Hz 

and recorded using Rugloop II data-manager software (Demed, Temse, Belgium).  

 

In the second group, 20 other consecutive patients scheduled for a surgical procedure under 

general anaesthesia, but not requiring tracheal intubation, were also included. These patients 

were given the same anaesthetic regimen. To simulate accidental oesophageal intubation but 

at the same time allowing secure ventilation of the lungs, the oesophagus was intubated under 

direct laryngoscopy using a 41 Fr Easytube® double lumen Airway (Teleflex Medical, NC, 

USA) and both cuffs were inflated. The Easytube® is a supraglottic airway device consisting 

of a double-lumen tube with one lumen ending more distally than the other. During 

positioning of the Easytube® (blindly when used routinely) the distal end is either located in 

the oesophagus or in the trachea while the more proximal lumen ends in the pharynx. After 

inflation of the proximal and distal cuffs, a free airway and protection against aspiration are 

achieved. The length of the oesophageal lumen of the Easytube® was 31 cm; the internal 

diameter was 8 mm. Then, the oesophageal lumen of the Easytube® was manually ventilated 

three times with a 2 l ventilation bag (type 2820, Intersurgical®, Berkshire, UK) and the 

pressure waveforms were recorded as described previously. These manual ventilations were 

performed simulating normal test ventilations after intubation. Special care was taken to 

perform the ventilations similarly in the oesophageal group and in the tracheal group. 

II3.3.1 Data analysis  

In subsequent offline analysis, the pressure data were converted to ASCII format and 

imported into Microsoft Excel. Custom developed Visual Basic for Applications (VBA) 

Figure 1: Endotracheal tube with connecting piece and two air-filled catheters. The proximal 

catheter is attached to the connecting piece, the distal (painted blue) enters the connecting piece 

and is inserted into the endotracheal tube.  
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software (written by A. Kalmar) was used for visualization and analysis of the ventilation 

pressure waveforms.  

During the insufflation portion of a manual ventilation cycle, very different pressure/volume 

relationships for the trachea and oesophagus can be expected because of differences in 

compliance, a valve-like effect of the oesophagus wall on the orifice of the tube, and sudden 

opening of the lower oesophageal sphincter (LOS). As a result, during oesophageal 

insufflation, the distal tube pressure will rise at a higher rate, while the pressure gradient from 

the proximal to the distal end of the tube will be lower (Fig. 2).  

II3.3.1.1 Analysis of pressures during insufflation (parameter 1)   

First, for every ventilation cycle, we analyzed the inspiratory waveform, to identify the time 

at which the maximum increase in distal tube pressure (ΔPdist/Δt with Δt = 300 ms) occurred 

(Fig. 2, γ). The proximal and distal pressures at that time point were then determined, and 

used to calculate the spatial pressure difference along the tube (ΔP). Finally, we calculated a 

parameter 1, which correlates inversely with the maximal compliance, reflecting elastance as 

follows: dist
dist P

P

dtdP
E 




/
, at the moment of maximal dPdist/dt. 

II3.3.1.2 Cumulative pressure gradients during expiration (parameter 2)   

Because we considered that the exhaled volume of air would be significantly less after 

oesophageal ventilation compared to tracheal ventilation, we developed a second parameter 

that correlates with expiratory flow and volume. 

The start of the exhalation period (α, see Fig. 2) was defined as the moment within the 

ventilation cycle after the occurrence of distal peak pressure when the distal pressure becomes 

higher than the proximal pressure. The end of the exhalation time (β, see Fig. 2) was 

arbitrarily determined as 2 s later. Over the interval [α − β], the cumulative absolute 

difference was determined as  




proxdist PPxP /  (grey area in Fig. 2). 

The mechanical meaning of this parameter is the flow through the tube (since only flow can 

cause a pressure difference) during exhalation. As the lungs are much better equipped to 

accept and return the air volume, the value of this parameter will be much higher in tracheal 

than in oesophageal ventilation.  
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II3.3.1.3 Parameter 3   

Thirdly, for every ventilation cycle, a D-value was determined as the ΣΔP-value divided by 

the E-value. As such, the D-value represents flow divided by elastance. In addition, the 

proximal peak pressure (PPprox) was determined as a measure of ventilation force.  

II3.3.2 Statistical analysis  

Based on pilot measurements in pigs (not published), a high sensitivity and specificity was 

expected. Therefore a sample size of 20 patients in each group was considered appropriate. 

Statistical analysis was performed using SigmaPlot V10.0 (Systat software©, CA, USA).  

 

 

Figure 2: Examples of distal and proximal pressure waveforms recorded in the trachea and oesophagus. At the 

beginning of oesophageal insufflation, the lumen of the oesophagus is being filled with air with very small pressure 

increase. Once the oesophageal lumen is filled, there is a very fast increase in wall stress and consequently a fast 

increase in pressure (γ) at low flow. When the ventilation pressure overcomes the lower oesophageal sphincter 

pressure (δ) the increase in pressure is less steep and there is a fast increase in flow. During exhalation, there is a 

steep decrease in distal pressure. The point at which the distal ventilation pressure becomes lower than the proximal 

pressure is defined α. 2 s later is defined β. The grey area reflects ΣΔP. 
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The Chi-square test, the Student’s t-test and the Fisher’s exact test were used to determine 

statistical differences between groups for demographic variables. A P-value <0.05 was 

considered significant. Results are presented as median (25th–75th percentile) and range.  

Within-group differences among first, second and third ventilations were tested using the two-

tailed Student’s t-test for paired observations. These tests were performed for E-values, ΣΔP-

values and for PPprox. Between-group differences were tested using the two-tailed Student’s t-

test for unpaired observations. .  

II3.4 Results  

 

Table 1 shows the demographic data of the patients in both groups. None of the patients 

showed any signs of oesophageal discomfort in the postoperative period and all patients could 

leave the post-anaesthesia care unit within a normal period. Fig. 2 shows typical distal and 

proximal pressure waveforms of tracheal and oesophageal ventilations respectively.  

Sixty tracheal and 58 oesophageal ventilations were recorded. In two patients, there was an 

inadvertent recording of only two oesophageal ventilations. Fig. 3 shows the individual E-

values, ΣΔP-values and D-values calculated from the tracheal ventilations (left) and from the 

oesophageal ventilations (right). Minimum, lower quartile, median, upper quartile and 

maximum values are summarized in Table 2. 

 

 Tracheal Oesophageal P-value 

Female/Male 6/14 13/7 0.016 
Age (yrs) 61 (20-81) 51 (20-80) 0.15 

Weight (kg) 76 (60-109) 77 (60-103) 0.43 

Length (cm) 175 (160-192) 175 (158-190) 0.90 

Body Mass Index (kg m-2) 25 (20-31) 25 (20-35) 0.63 

- 

 

 

Table 1: Demographic data of patients included in the oesophageal and tracheal groups.  Values are presented as 

proportions or median (range). 

  Min 25th Median 75th Max 

E-Value 
Tracheal 6 15 23 45 177 

Oesophageal 443 1011 1407 1841 3037 

ΣΔP 
Tracheal 70 180 246 294 571 

Oesophageal 1 2 6 14 56 

D-Value 
Tracheal 0.6 4.3 10.2 16.1 47.9 

Oesophageal 0.0005 0.0016 0.0041 0.0102 0.0751 
 
Table 2: Lowest value, 25th percentile, median value, 75th percentile and highest value of the calculated discriminative 

parameters in tracheal (n=60) and oesophageal (n=58) ventilations. 
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Figure 4 shows box-plots of the E-

values for the first, second and third 

ventilations in the tracheal and 

oesophageal groups respectively. In 

the tracheal ventilations, median E-

values of the first, second and third 

ventilations were 23, 24 and 22 

respectively. The E-values in the 

second (P = 0.86) and third (P = 

0.49) tracheal ventilations were not 

significantly different from the first 

ventilation. Median PPprox of the 

first, second and third ventilations 

were 20, 21 and 20 cm H2O 

respectively. The PPprox in the 

second (P = 0.11) and third (P = 

0.13) tracheal ventilations were not 

significantly different from the first 

ventilation. In the oesophageal 

group, median E-values of the first, 

second and third ventilations were 

1055, 1604 and 1679 respectively.  

The E-values of the second (P = 

0.004) and third (P < 0.001) 

oesophageal ventilations were 

significantly different from the first 

ventilation.  

Median PPprox of the first, second 

and third ventilations were 24, 26 

and 25 cm H2O respectively. The 

PPprox in the second (P = 0.01) and third (P = 0.002) oesophageal ventilations were 

statistically different from the first ventilation. E-values between tracheal and oesophageal 

ventilations differed significantly (P < 0.001). The median (IQR) distal pressures (Pdist) at the 

moment of maximal dPdist/dt were 22 (20–25) cm H2O in the oesophageal measurement and 9 

(7–11) cm H2O in the tracheal measurements.  

In the tracheal as well as the oesophageal group, there were no significantly different results 

among the first, second and third ventilations for ΣΔP-values and D-values. A threshold value 

of 0.5 for the D-value was 100% sensitive and specific for tracheal intubation in the patients 

we studied. 

 

 

Figure 3: E-values (A), ΣΔP (B) and D-values (C) recorded from 20 
patients in the trachea (left) and from 20 patients in the 
oesophagus (right). A and B are represented on a linear scale, C is 
represented on a logarithmic scale. 
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II3.5 Discussion 

In patients undergoing elective intubation 

in the operating theatre, parameters 

reflecting flow and elastance, calculated 

from analysis of pressure profiles in the 

endotracheal tube, were able to 

discriminate between tracheal and 

oesophageal intubation in all cases. This 

result is based on the different mechanical 

properties of the trachea/lung system and 

the oesophagus.  

During insufflation of the oesophagus, a 

very steep increase in distal pressure (and 

consequently a high dPdist/dt) is seen at the 

moment where there is not yet significant 

flow (this is before opening of the LOS). Any ventilation will always cause a significant 

volume flow of air, but in case of oesophageal insufflation, this volume will only be 

insufflated after opening of the LOS. This is reflected in a sudden divergence of the distal and 

proximal pressure curves (Fig. 2, δ). Consequently, at the moment of maximal dPdist/dt (Fig. 

2, γ), there is a very low ΔP. On the other hand, during tracheal ventilation, because of the 

much higher compliance of the lungs, the maximal dPdist/dt is reached at high flows, resulting 

in a relatively much lower E-value. 

Although median PPprox of consecutive oesophageal (but not tracheal) ventilations varied 

somewhat, we judged these differences to be clinically insignificant. Figure 4 shows that no 

significant differences in E-values were found between consecutive tracheal ventilations, but 

highly significant differences were found between consecutive oesophageal ventilations. This 

is probably a consequence from changing compliance caused by earlier gastric insufflations. 

As can be visually appreciated in figure 2, the difference in pressure between the proximal 

and distal pressure curves in the period between points ˛ and ˇ is much higher in tracheal than 

in oesophageal insufflations. Both the E-value and the ΣΔP-value represent different aspects 

of the response to ventilation of trachea and oesophagus. Therefore, an integration of these 

two parameters resulted in a parameter with even more discriminative power, as shown in 

figure 3C where the ratio of the ΣΔP-value and the E-value results in the discriminating D-

value. Every tracheal ventilation resulted in a D-value higher than 0.5, and every oesophageal 

ventilation resulted in a D-value lower than 0.5. Moreover, the lowest tracheal D-value was 

eight times higher than the highest oesophageal D-value. 

The proposed method uses a distal catheter in the endotracheal tube. Because using only a 

proximal pressure measurement would be more convenient, we have also analyzed ventilation 

pressure characteristics based on the proximal measurements only.  

 

Figure 4: Box plots of E-values for the first, second and 

third ventilations in the tracheal and oesophageal groups. 

The E-values of the second (P = 0.004) and third (P < 0.001) 

oesophageal ventilations were significantly different from 

the first ventilation. 
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However, while clear correlations between proximal pressure characteristics and the 

oesophageal/tracheal location were found, no reliable discriminating criteria could be 

established using only proximal pressure readings. As can be visually appreciated in figure 2, 

the waveform characteristics of the proximal pressure measurement in oesophageal and 

tracheal insufflation are not dramatically different, while the distal waveforms do have 

distinctly different features. These systematic dissimilarities, combined with a flow-related 

parameter are in our opinion essential for a highly discriminative parameter. The technique 

developed by Léon et al.14,15 was tested using mechanical ventilation only and was based on 

the combination of two distinct techniques (spirometry and pressure measurements) which is 

an important limitation for its clinical application. 

There are some limitations to this study. We performed ventilations manually as during 

normal practice, but we have not measured ventilation volume and the rescuer was not 

blinded for the position of the tube. This may have introduced a bias towards more careful 

ventilations in the oesophagus. However, because parameter E is determined at the moment of 

maximal ΔP, it is unlikely that smaller ventilation volumes have a significant effect on the 

performance of the algorithm. Moreover, ΣΔP is determined during exhalation and reflects the 

exhaled volume of air which is probably less after oesophageal insufflation compared to 

tracheal ventilation. 

Secondly, our study was performed under controlled conditions, with patient characteristics 

different from emergency patients. Our patients were fasted, they were not ventilated before 

intubation, they had no apparent lung disease and they were paralyzed using cisatracurium. 

Further research should elucidate if the algorithm remains accurate in patients with acute or 

chronic lung disease or in patients that are not completely paralyzed. Since low D-values 

(<0.5) would indicate a system with poor compliance, such result should be interpreted as 

either oesophageal intubation or extremely low-compliant lungs. Our observation that the 

sensitivity remains optimal for subsequent oesophageal ventilations suggests that gastric 

insufflation prior to the test ventilation (occurring frequently in emergency situations) may 

not decrease the reliability of the algorithm.  

Thirdly, different tubes were used in the tracheal and oesophageal intubation groups. While 

the diameter of the Easytube® was identical to the diameter of the endotracheal tube, the 

Easytube® was slightly longer. In case this difference would have influenced the calculated 

parameters of oesophageal insufflation, oesophageal pressure profiles using an endotracheal 

tube would have made the differences in the calculated discriminative parameters even larger. 

This is because a shorter oesophageal tube would make the spatial pressure gradients during 

oesophageal insufflation even lower, which would if anything, amplify the difference. 

Finally, the contribution of the LOS to the increase in pressure in the oesophagus during 

insufflation of air is not known. In stable haemodynamic conditions, the LOS opening 

pressure is about 20 cmH20. Both in pigs and in humans, LOS pressure is reduced during low 

perfusion conditions such as shock and cardiac arrest.20,21 Propofol, sufentanil and 
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cisatracurium do not influence the LOS pressure.22,23 It remains possible, though, that 

calculated D-values will be less discriminative in patients with impaired LOS function. 

Further studies are required to confirm the applicability of this new technique in patients with 

reduced LOS opening pressure, and to compare it with current methods such as end-tidal CO2 

measurement. 

 

II3.6 Conclusion 

In patients undergoing elective intubation in the operating theatre, analysis of ventilation 

pressure profiles using manual ventilation discriminated between tracheal and oesophageal 

intubation with high sensitivity and specificity. The advantage of this method is that it can be 

incorporated into a rapid, real-time automated diagnostic algorithm. Future studies should 

confirm the efficacy in patients with lung disease and with impaired circulation such as shock 

or during cardiac arrest.  
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4 
II4 Automatic detection of oesophageal intubation 
based on ventilation pressure waveforms shows high 
specificity in patients with pulmonary conditions. 

Adapted from : Resuscitation. 2016; 105: 36-40. 

Kalmar AF, Absalom A, Rombouts P, Roets J, Dewaele F, Verdonck P, Stemerdink A, Zijlstra 

JG, Monsieurs KG. 

 

II4.1 Abstract 

Background: Unrecognized endotracheal tube misplacement in emergency intubations has a 

reported incidence of up to 17%. Current detection methods have many limitations restricting 

their reliability and availability in these circumstances.  

There is therefore a clinical need for a device that is small enough to be practical in 

emergency situations and that can detect oesophageal intubation within seconds. In a first 

reported evaluation,  we demonstrated an algorithm based on pressure waveform analysis, 

able to determine tube location with high reliability in healthy patients. 

The aim of this study was to validate the specificity of the algorithm in patients with abnormal 

pulmonary compliance, and to demonstrate the reliability of a newly developed small device 

that incorporates the technology. 

Materials and methods: Intubated patients with mild to moderate lung injury, admitted to 

intensive care were included in the study. The device was connected to the endotracheal tube, 
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and three test ventilations were performed in each patient. All diagnostic data were recorded 

on PC for subsequent specificity/sensitivity analysis.   

Results and discussion: A total of 105 values in 35 patients with lung injury were analysed. 

With the threshold D-value of 0.1, the system showed a 100% sensitivity and specificity to 

diagnose tube location. 

Conclusion: The algorithm retained its specificity in patients with decreased pulmonary 

compliance. We also demonstrated the feasibility to integrate sensors and diagnostic hardware 

in a small, portable hand-held device for convenient use in emergency situations. 

 

II4.2 Introduction 

Unrecognised misplacement of the endotracheal tube (ETT) during endotracheal intubation 

and ventilation, has a reported incidence of 2.9% - 16.7% and is a frequent cause of morbidity 

and mortality in emergency intubations.1,2,3 In optimal conditions, such as in the operation 

room during elective surgery, correct positioning of the tube is simple in most cases, and 

correct tube position can be ensured by using techniques aiming to improve tube placement 

(such as direct visualisation of the vocal cords) and by techniques to check the position of the 

tube after placement (such as observation of chest expansion, chest auscultation, 

capnography, spirometry or more advanced methods such as ultrasound4 or flexible 

bronchoscopy). Each of these methods has limitations and is often less reliable or even 

impractical in the emergency setting, and require significant training for proper interpretation. 

Capnography with interpretation of the characteristic CO2 waveform and the EtCO2 value is 

currently the most reliable method to assess tracheal intubation, with a very high sensitivity 

and specificity both approaching 100%, although the specificity drops to 70% - 88% in 

patients with cardiac arrest.5 Moreover, during cardiopulmonary resuscitation many of these 

methods require interruption of chest compressions.6,7 In airborne emergency teams, weight 

constraints form an additional limitation.  

During endotracheal intubation in an acute setting, for example during out-of-hospital 

cardiopulmonary resuscitation (CPR) or management of facial trauma victims, the risk of 

oesophageal intubation is substantially increased compared to the controlled operating room 

setting. Sub-optimal working conditions and the presence of medical personnel less 

experienced in endotracheal intubation may contribute to an increased risk of oesophageal 

intubation. In addition limited monitoring and the urgency of the situation may contribute to 

delayed detection of a misplaced tube. In the acute setting, up to 17% of endotracheal tubes 

(ETTs) are positioned in the oesophagus, despite the performed checks.3,8 Unrecognised 

oesophageal intubation leads to hypoxia and hypercapnia, causing brain damage and 

eventually death. Even when detected in a timely manner, oesophageal intubation can 

increase the difficulty of correct re-intubation and increase morbidity and mortality due to 

aspiration.9,10 
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Chest auscultation is the most commonly used method to confirm ETT placement, but as 

mentioned it usually requires interruption of chest compressions during CPR.5,6 In the 2015 

European Resuscitation Council (ERC) Guidelines for resuscitation, quantitative waveform 

capnography is recommended as the standard for confirming correct ETT placement.11 Well-

known limitations of capnography in cardiac arrest victims exist however, as the capnography 

signal may be falsely low as a result of low cardiac output, low pulmonary flow, airway 

obstruction, or epinephrine use.12,13 

Consequently, in order to decrease the incidence of unrecognised oesophageal intubation,  

there is a need for a diagnostic device that is reliable, very easy to interpret, ultra-portable, 

economic and preferably integrable in existing devices, providing automatic immediate 

diagnosis after intubation from the first ventilation onwards. In addition such a device should 

involve minimal interruption of CPR, be independent of cardiac output, and practical in 

demanding out-of-hospital circumstances and suboptimal working conditions.  

Because pressure sensors are reliable, reproducible, durable, very small, require very low 

power consumption and calibration, and can measure from a distance through low-cost 

pressure catheters, a device based on pressure readings could potentially fulfil all the above 

mentioned requirements. 

As shown and quantified in our previous research, the distinct difference in compliance 

between the trachea/lungs versus the oesophagus/stomach can be exploited to determine 

misplacement of the ETT. In a first study on two cohorts of 20 healthy patients enrolled for 

elective surgery, this method could discriminate between oesophageal and tracheal intubation 

with 100% sensitivity and 100% specificity14, based on pressure measurements in the ETT 

recorded through conventional pressure gauges on an anaesthesia monitor, with subsequent 

offline data-analysis on a PC. The advantage of this new method, compared to the currently 

available methods, is that it is potentially conclusive after just one ventilation with a very high 

sensitivity and specificity.  

In short, the algorithm calculates a measure of elastance (E-value) during the insufflation 

phase, and a measure of dynamic compliance (∑-value) during the expiration phase. A 

discriminative D-value is calculated, as 𝐷 =
∑

E
. Tracheal ventilations typically result in higher 

D-values (because of a high dynamic compliance during expiration and low elastance during 

insufflation), whereas oesophageal ventilations result in lower D-values.  

In the first reported evaluation14, our algorithm was assessed using pressure waveforms 

collected from patients with American Society of Anesthesiology (ASA) physical status I or 

II. This implies that the study population had healthy lungs with a normal compliance. Many 

patients requiring emergency intubation, however, may not fit these criteria. In patients with 

severe obstructive or restrictive pulmonary disease, lung compliance differs significantly from 

that found in healthy lungs.15 Since particularly in those circumstances it is essential for the 

algorithm to preserve its reliability, we performed a second study to evaluate our method in a 
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more demanding patient population with decreased pulmonary compliance, caused by 

problems such as acute respiratory distress syndrome (ARDS).  

Because of the lower compliance of the lungs in those pathological conditions, and 

considering the physiological principle on which the algorithm is based, we anticipated that 

the algorithm might misdiagnose tracheal for oesophageal intubation, and consequently have 

a lower specificity in this population. Therefore, the aim of the study was to validate the 

specificity of the algorithm in patients with abnormal pulmonary compliance, admitted to an 

intensive care unit (ICU).  

A secondary aim was to demonstrate the reliability of a newly developed small device that 

incorporates the technology and algorithm mentioned above. The hand-held device can be 

connected to an ETT and has integrated pressure sensors and electronics, enabling real-time 

analysis of the pressure waveforms and immediate alerts in the case of malpositioning of the 

endotracheal tube. For this research setting, the pressure waveforms are also transmitted 

through a Bluetooth connection to a laptop for data analysis and display of the waveform. 

 

II4.3. Methods 

II4.3.1. Study design and setting 

After approval by the Ethics Committee of the University Medical Centre Groningen, a 

convenience sample of patients in the intensive care unit were included. Inclusion criteria 

were controlled mechanical ventilation and at least mild to moderate lung injury. To quantify 

the severity of the pulmonary disease, a Murray score was calculated for each patient16. The 

Murray score is calculated based on alveolar consolidation on chest radiography, PaO2/FiO2 

ratio, Positive End-Expiratory Pressure (PEEP) and lung compliance. Exclusion criteria were: 

colonisation with multi-resistant bacteria, possible adverse effects on the patient (the decision 

was left to the treating physician of the ICU), pregnancy and age < 18 years.  

II4.3.2. Study protocol and data collection 

In the current study, only tracheal pressure waveforms were 

recorded. To record the waveforms, a connecting piece was 

attached to the in-site tube, as described previously.13 This 

connecting piece comprised one disposable thin air filled catheter 

(Vygon 71100.20 with an internal diameter of 1 mm) inserted 

through the tube lumen until 1 cm from the distal end, and a 

second catheter located at the proximal end of the tube. The 

catheters were connected with a luer-lock to our custom-made 

battery-powered device containing two pressure transducers (Fig. 

1). The device collected the pressure waveforms and determined 

tube location. Synchronously, the waveforms were sent to a 

 

Figure 1: hand-held stand-

alone diagnostic device 
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laptop through a Bluetooth connection for subsequent real time and off-line data analysis. 

After a patient was considered eligible for inclusion, hemodynamic stability and adequate 

oxygenation confirmed by pulse oximetry were assured before the measurement was 

performed. Mechanical ventilation was stopped and the connecting piece was attached to the 

ETT and a self-inflating ventilation bag (Intersurgical, Wokingham, UK). The patient was 

ventilated 3 times by a nurse experienced in resuscitation, and asked to ventilate at her 

discretion as if it were the first ventilations after endotracheal intubation. The pressure 

waveforms and metadata were collected on a laptop. Subsequently, the connecting piece was 

detached and the mechanical ventilator was reconnected and mechanical ventilation resumed. 

The fully automatic algorithm was used in the data analysis. This algorithm first performs an 

automatic ventilation detection, and secondly performs the compliance and elastance 

calculations on each identified ventilation cycle. The calculated E-values and ∑-value are 

shown in figure 2. As a reference, the values of the tracheal and oesophageal ventilation 

pressure curves in healthy patients from our previous study14, calculated with the same 

algorithms, are also presented. The specificity (ability to detect true tracheal intubation) of the 

algorithm was determined, when used in patients with pulmonary disease.  

To determine the sensitivity and specificity more precisely, at a threshold D-value of 0.1, a 

Log(D-value) was calculated to obtain a parametric distribution of the D-values in each 

group. The mean and standard deviation (SD) of the distribution of log(D) was calculated for 

the three groups. From these mean (SD) values the normal distribution curve, and the 

sensitivity/specificity to detect oesophageal intubation was calculated assuming a threshold 

value of 0.1. 

 

II4.4. Results  

Mean (SD) age of the 

patients was 61 (15) years. 

Mean (SD) weight and 

height were 80 (18) kg and 

173 (8) cm respectively, 

and 63% of patients were 

male. The mean (SD) body 

mass index was 27 (6) kg 

m-2.   The mean (SD) 

Murray score was 1.4 (0.6). 

The handheld device 

operated as expected, and 

generated D-values, in all 

patients in which it was 

 
Figure 2: Scatterplot of Σ-values versus E-values of the first three tracheal 

ventilations in all patients with pulmonary disease (n=35), compared with the first 

three oesophageal (n=20) and tracheal (n=20) ventilations in elective patients  

without pulmonary morbidity. The dimension of the E-value is mmHg/sec ; the 

dimension of the Σ-value is mmHg x sec / 250 
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used. 

A total of 105 ventilations in 35 patients were analysed.  Lung pathologies present in the 

included patients included pneumonia, atelectasis and traumatic lung injury. Figure 2 shows 

the relationship between the E-values and ∑-values of the first three ventilations in each 

patient (n=35) with pulmonary disease in this study, compared with the first three 

oesophageal and tracheal ventilations in elective patients (n=2x20) in our former study14 using 

the same automatic algorithm. 

The median (IQR, range) peak 

ventilation pressure during the test 

ventilations was 18 (13-25, 8-36) cm 

H2O. All D-values are presented in 

figure 3. The median (IQR, range) 

D-value was 34 (14-99, 0.17-832). 

All these values – as well as all of 

the D-values in the elective patients 

without pulmonary disease - were 

above the threshold value of 0.1, 

while 100% of oesophageal D-

values were below this threshold 

value. When a grey zone of the D-

value between 0.05 and 0.5 is 

applied, 6.7% (7 ventilations in 5 

patients) of tracheal ventilations in lung diseased patients, and 3.4% (2 ventilations in 2 

patients) of oesophageal ventilations would fall inside the grey zone. This results in a “very-

high certainty” specificity of 95.8% and “very-high certainty” sensitivity of 96.6%, with a 

“moderately-high certainty” in 4.2% and 3.4% of tracheal and oesophageal intubations 

respectively.  

The log(D-value) showed a 

parametric distribution with a mean 

(SD) D-value of 1.48 (0.89), 1.79 

(0.48) and -2.63 (0.71) in the “lung 

disease tracheal”, “elective 

tracheal”, and “oesophageal 

ventilation” groups respectively, 

from which the corresponding 

probability distribution curves are 

shown in figure 4. Still considering 

a threshold value of 0.1, in patients with pulmonary disease and in patients with healthy lungs 

that would yield a specificity of 99.74% and 99.99% respectively, and a sensitivity of 98.94% 

to detect oesophageal intubation. The sensitivity/specificity at different threshold values are 

depicted in Table 1. 

 
Figure 3: D-values of the first three tracheal ventilations in all 

patients with pulmonary disease (n=35), compared with the first three 

oesophageal and tracheal ventilations in elective patients without 

pulmonary morbidity. The dotted line shows a threshold value of 0.1. 

The fine lines show threshold values of 0.05 and 0.5. 

Figure 4: Probability distribution of D-values of tracheal ventilations 

in patients with pulmonary disease and of oesophageal and tracheal 

ventilations in elective patients without pulmonary disease. 
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Assuming the grey zone 

approach with threshold 

values of 0.1 and 1, the 

sensitivity/specificity 

analysis based on these 

probability distributions 

results in a “very-high 

certainty” specificity of 

95.24% and 99.99% in 

diseased and healthy lungs respectively, and a “very-high certainty” sensitivity of 98.94%, 

with a “moderately-high certainty” sensitivity to detect oesophageal intubation of 99.99%. 

 

II4.5. Discussion 

We have shown that the tracheal waveform analysis of synchronous pressure measurements 

can reliably confirm tracheal ventilation with near 100% specificity in patients with decreased 

pulmonary compliance. The integrated result of the analysis can be reported as a single value 

reflecting differences of flow and elastance of both systems. This permits a straightforward 

verification by medical practitioners of correct intubation. Using our device, one test 

ventilation immediately after intubation provides an instant diagnosis of tube (mis)placement 

within 2.5 seconds with a sensitivity and specificity of nearly 100%, even in patients with 

pulmonary disease. 

In order to achieve this high sensitivity, 

an analysis of the dynamic pressure 

patterns during insufflation, as well as 

during expiration is necessary. Figure 2 

shows that relying on only one variable 

is not sufficiently accurate. As 

previously explained14 and depicted in 

figure 5, during insufflation an E-value 

is calculated reflecting the elastance 

(pressure increase for a given volume 

increase). It can be thought of as the 

gradient of the tangent of the tracheal 

pressure curve at the moment of the 

highest pressure increase. 

Technically, the E-value is calculated as 

E = 
d𝑃𝑑𝑖𝑠𝑡/𝑑𝑡

∆𝑃/∆𝑥
 𝑋 𝑃𝑑𝑖𝑠𝑡 at the moment of maximal increase in distal pressure (Fig. 5, γ) within a 

300ms timeframe, with dPdist/dt being the rate of distal pressure increase; ∆𝑃/∆𝑥 being the 

pressure difference between the distal and the proximal measurement in the ETT (and as such 

   

Figure 5: Example of tracheal distal and proximal pressure 

waveforms. The E-value is calculated at the moment of 

maximal increase in distal pressure, and reflects the elastance at 

point γ. The  Σ-value is the area between the distal and proximal 

pressure curve (α-β) during exhalation (grey area) and reflects a 

volume of exhaled air. 

 D-value pulmonary disease healthy lungs oesophageal 

 0.01 99.99 99.99 81.41 

 0.05 99.91 99.99 97.00 

 0.10 99.74 99.99 98.94 

 0.50 97.76 99.99 99.95 

 1.00 95.24 99.99 99.99 
  

Table 1: sensitivity (tracheal ) / specificity (oesophageal) to diagnose correct 

tube location as a function of the predetermined threshold D-values. 
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a measure of inspiratory flow); and Pdist being the distal pressure. The ∑-value can be 

conceived as the volume of air exhaled during expiration, visualised as the grey area in figure 

5. Mathematically it is defined as  ∑ = ∫ [𝑃𝑑𝑖𝑠𝑡  𝑥 𝑑𝑡] − ∫ [𝑃𝑝𝑟𝑜𝑥 𝑥 𝑑𝑡 ]
𝛽

𝛼

𝛽

𝛼
 expressed as mmHg 

x s, but since technically the pressure values are discrete measurements at 250 Hz, it is 

calculated as ∑ = ∑ [𝑃𝑑𝑖𝑠𝑡 − 𝑃𝑝𝑟𝑜𝑥]
𝛽
𝛼  , which is significantly less demanding for the CPU of 

the device. Consequently,  ∑ is expressed as mmHg x sec / 250; E is expressed as 
mmHg/s

mmHg
 𝑥 𝑚𝑚𝐻𝑔, or mmHg/s.  

In order to make the algorithm more predictable and computable, some substitutions of 

physiological variables by pressure values are performed: in determining elastance during 

inspiration, the flow is substituted by a pressure difference. Whereas the law of Hagen-

Poiseuille describes the exact relationship between the pressure and flow, calculating the 

exact flow would unnecessarily complicate the computations, increasing the demand of the 

CPU, without improving the accuracy of the diagnosis, in particular since the variables in the 

Hagen-Poiseuille equation are either constant within one device (such as the diameter of the 

tube or the distance between measuring points), or not accurately known (such as the dynamic 

viscosity of the humid air, or the additional flow resistance due to the pressure catheter). 

As such, from a physiological point of view, the E-value reflects the elastance of the 

lungs/oesophagus during insufflation, and therefore would in principle have as dimension 

mmHg/l; the ∑-value reflects the volume of exhaled air, in principle having a dimension l. 

The D-value, being 
∑

E
 would therefore have a dimension 

l2

mmHg
. For practical reasons however, 

no dimensions are used in the interpretation of the E-value, ∑-value or D-value. 

Figure 2 shows that for neither the E-value nor the ∑-value on their own, a threshold value 

can be determined with an acceptably high sensitivity and specificity. Figure 3 however 

demonstrates that the ratio of both values, labelled the D-value, gives a 100% sensitivity and 

specificity in all our patient recordings when a threshold value of 0.1 is respected, both in 

patients with normal lungs and in patients with decreased pulmonary compliance. Because of 

the moderate number of patients included in our studies however, we cannot exclude that in 

exceptional cases a false diagnosis may be made. Therefore, in a fully-automatic system, we 

may envisage that a green or red LED-light is activated in case of a D-value above 0.5 or 

below 0.05 respectively. Indicators of “moderate certainty” may be used for D-values 

between 0.1 and 0.5 (“probably tracheal intubation”), and for D-values between 0.05 and 0.1 

(“probably oesophageal intubation”) respectively. 

Because of the sensitivity and specificity being very close to 100%, the precise sensitivity and 

specificity calculated by conventional sensitivity analysis was undetermined. Therefore, a 

statistical approach was taken where the Log(D-value) was calculated to obtain a parametric 

distribution of the D-values in each group. Table 1 shows that in patients with healthy lungs, 

threshold values between 0.01 and 1 yield a very high specificity to exclude oesophageal 

intubation, while a threshold D-value of 0.5 and 1 yield a sensitivity to detect oesophageal 
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intubation of 99.95 and 99.99 respectively. In patients with diseased lungs, these threshold 

values result in a specificity 97.76 and 95.24 respectively. A sensitivity to detect oesophageal 

intubation of 99.99% is only reached with a threshold D-value of 1. This threshold value 

would result in a specificity of 95.24% in diseased lungs and 99.99% in healthy lungs 

respectively.  

Because of the paramount importance of detecting oesophageal intubation, a threshold D-

value of 1 should be advocated, even though a moderately lower specificity in patients with 

pulmonary conditions will result.  

In a practical portable device, two “certainty” levels would be appropriate, reflecting a  “very-

high certainty” and “moderately-high certainty” diagnosis of correct ETT location. Therefore, 

a grey zone between 0.1 and 1 should be proposed, where a moderately-high certainty 

diagnosis would be concluded. D-values outside this grey zone correspond with a specificity 

and sensitivity of 99.99% 

This study has several limitations. First of all, only tracheal ventilation measurements were 

performed in this patient population. For ethical reasons, oesophageal intubation and 

insufflation was deemed unacceptable in fragile intensive-care patients. Still, however, the 

aim of the study was to investigate the accuracy of the algorithm in patients with pulmonary 

conditions, and therefore only tracheal ventilations were deemed sufficient. Further, elastance 

and discriminative values are likely to be similar for oesophageal intubation regardless of the 

presence or absence of lung pathology. Still, it is unknown what the oesophageal pressure 

readings would be in ICU patients. Among other factors, raised intra-abdominal pressure may 

influence the pressure patterns during oesophageal ventilation. It is therefore important to 

acknowledge that the accuracies described reflect the sensitivity to detect tracheal ventilation 

in patients with pulmonary disease, while no firm conclusions can be drawn on the sensitivity 

to detect oesophageal intubation in ICU patients in general. 

Secondly, the test ventilations to evaluate the diagnostic device were not performed in 

patients who were apnoeic or who had been resuscitated for several minutes. Nevertheless, 

the physiological conditions of the lungs in ventilated patients with normal tidal volumes 

which have not been recruited for at least ten minutes is the closest clinically feasible 

approximation of hypopnoeic patients in emergency situations. Since a recruitment 

manoeuvre in these patients is consistent with good clinical practice, it is appropriate to 

measure the pressure waveforms during such a recruitment manoeuvre. 

Thirdly, only one type of ventilation device was used, and the manual ventilation manoeuvres 

may not have been identical to ventilations performed in a stressful emergency setting. The 

reported median (IQR) ventilation pressures of  18 (13-25) cm H2O show rather conventional 

ventilation pressures. In addition, because the algorithm compensates for differences in 

ventilation pressure, this should not significantly alter the calculated D-value. 
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II4.5. Conclusion 

Our previously published algorithm to detect oesophageal intubation retained its specificity in 

patients with decreased pulmonary compliance. We also demonstrated the feasibility to 

integrate sensors and diagnostic hardware in a small, portable hand-held device for 

convenient use in emergency situations. Further research will have to confirm our results in 

the out-of-hospital emergency setting. 
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5 
II5 Pressure measurement in cardiopulmonary 
resuscitation 

II5.1 The cardiocirculatory system 

The human body continuously needs oxygen and nutrient delivery towards the tissues in order 

to preserve homeostasis. Therefore the heart must preserve the blood flow, and the breathing 

muscles must preserve continuous air delivery to the longs. These two circulatory systems 

work in parallel by virtue of the heart muscle and the respiratory muscles. In the lungs, O2 and 

CO2 are exchanged between the air and the blood. Once either of those systems fails (due to 

primary failure of the muscle or because of obstruction somewhere in the circulatory system), 

oxygen delivery will become at risk.  As soon as oxygen delivery stops, consciousness is lost 

within a few seconds, and irreversible brain damage occurs after a few minutes. Irreversible 

damage in other organs occurs after several minutes to hours.  

II5.2 Principles of cardiopulmonary 

resuscitation 

Cardiopulmonary arrest has many primary causes, but 

the immediate therapy consists of taking over the 

function of the failing systems : chest compressions 

and/or artificial ventilation. In both cases, pressure 

gradients are induced using external mechanical force to 

sustain the transport of blood/air. Compressing the chest 

induces direct compression of the heart between the 

chest bone and the  spine, and simultaneously increases 

the pressure in the thoracic cavity. Both effects induce 

 

Figure 1: Compression positions for 

external chest compressions. A dominant 

hand is placed over the lower half of the 

sternum in the centre of the chest (Cha 

KC. J Emerg Med. 2013 ) 

J Emerg Med. 2013 Mar;44(3):691-7. 
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increased pressure in the heart and move blood towards the arterial system. Artificial 

ventilation (with a face mask or endotracheal intubation) creates an oscillating pressure 

gradient of air between the lungs and the external world with subsequent flow of air. In both 

cases, force is exerted (on the chest or on the ventilation balloon) which is supposed to result 

in a certain movement of blood/air. Exact measurements of the induced pressures have the 

potential to improve the quality of resuscitation and create an opportunity for improved 

automation. 

II5.3 The cardiac versus thoracic pump 

There are two postulated mechanisms of blood flow during cardiopulmonary resuscitation. 

The "cardiac pump" theory postulates that blood flows because the heart is squeezed between 

the chest bone and the spine. The "thoracic pump" theory postulates that blood flows from the 

thorax to the arterial system because of a general increase in intrathoracic pressure, 

compressing the heart from all directions. The intrathoracic pressure thus exceeds 

extrathoracic vascular pressure while the flow is restricted to the venous-to-arterial direction 

because of venous valves that prevent retrograde flow at the thoracic inlet.1 

The‘cardiac pump’ mechanism consists 

of direct compression of the left and 

right ventricles between the sternum and 

vertebral column, creating a pressure 

gradient between the ventricle and the 

aorta (or pulmonary artery in the case 

ofthe right ventricle). The ventricle then 

refills during the decompression phase. 

For an optimal venous return, the 

intrathoracic pressure needs to be as low 

as possible 

The “thoracic pump mechanism” is 

based on intrathoracic pressure swings 

due to chest compression, establishing an 

arteriovenous pressure gradient across the heart forcing blood to move down the gradient and 

to flow from the thoracic to the systemic circulation. For chest compressions to induce 

maximal intrathoracic pressure oscillations, a relatively high intrathoracic pressure must be 

sustained during the chest compression.  

 

II5.4 Venous return 

A first requisite to permit successful cardiac output, is that blood can fill the heart before 

compression/contraction starts. Blood circulation consists of blood being pumped out of the 

 

Figure 2: Cardiac (A) pump  versus Thoracic (B) pump 2 
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heart, passing through the periferal tissues, and returning to the heart via the venous system. If 

the capacitance of the venous system is increased, or the total volume has decreased, this 

venous return can become inadequate, restricting the cardiac output and blood pressure. In 

addition, any condition that increases the intrathoracic pressure will decrease the venous 

return to the heart, thus ultimately negatively affecting the cardiac function. 

 

II5.5 The thoracic pump & venous return : a difficult compromise 

As a result of chest compression, the 

intrathoracic pressure waveform consists 

of  a superposition of ventilation 

pressures and chest-compression induced 

oscillations (Fig. 3). Notice the much 

higher amplitude of the fast pressure 

oscillations at high ventilation pressures 

compared to low ventilation pressures. 

Optimising the ventilation pressures for 

maximal cardiac output during CPR 

requires balancing two counteracting 

factors:  

1. An optimal venous return requires an intrathoracic pressure as low as possible - 

preferably negative (ie below atmospheric pressure). 

2. An optimal thoracic pump function requires an intrathoracic pressure considerably 

higher than conventional pressures. 

Moreover, the intrathoracic pressure for an optimal thoracic pump is different for every 

patient, and is dependent on chest anatomy. This indicates that individualised optimisation of 

the intrathoracic pressure is arguably necessary to optimise the hemodynamic effectiveness of 

the chest compressions.  

 

  

 

Figure 3: Illustration of peak airway pressure (A), peak 

ventilation pressure (B), positive end-expiratory pressure 

(C) and intrathoracic pressure variation  ΔCP (D).  Notice 

the variations in ΔCP during the ventilation cycle. 
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II5.6 The Thoracic pump : Unravelling the effect of compression 

and ventilation.  

Adapted from Resuscitation 2010; 81S: S1–S114: AS033  

Kalmar A.F., De Smedt L.E.G., Maertens V.L., Absalom A., Monsieurs K.G. 

 

The intrathoracic pressure variation (ITPV) during resuscitation  results from pressure 

generated by chest compression and ventilation. Consequently, a certain intrathoracic air 

volume within the lungs is necessary to optimise the intrathoracic pressure variations and 

therefore also the “thoracic pump” induced by chest compressions. In order to quantify this 

interaction, we studied the relation between chest compression depth, ventilation pressure and 

ITPV during resuscitation.  

After approval by the Ethics Committee of Ghent University Hospital, 51 patients undergoing 

out-of-hospital resuscitation by a physician-staffed team were included. The compression 

depth (CD) during manual chest compression was measured using an accelerometer (Zoll, 

US). After intubation, the airway pressure (a surrogate for intrathoracic pressure) was 

measured and recorded. In a subsequent offline data analysis, the accelerometer and airway 

pressure data were synchronised offline using custom Visual Basic code in Excel. For every 

chest compression, ITPV (the difference between the compression-induced peak and nadir 

pressure) was separated from the concomitant ventilation pressure (Pvent). The relationship 

between ITPV and CD was analysed with linear regression for a CD range of 2.5–6 cm. The 

ranges of ventilation pressure 0–10 and 10–30cm H2O were analysed separately because of a 

breakpoint in the regression line. In order to weigh each patient equally, the median ITPV 

value at each Pvent or CD within each patient was used for regression analysis.  

 

The relationship between ITPV and Pvent was described as follows: ITPV = a * Pvent + b  

For Pvent 0–10cm H2O :  ITPV = 2*Pvent + 6   (R2 = 0.96)  

For Pvent 10–30cm H2O : ITPV = 0.6*Pvent + 29  (R2 = 0.94)  

The relationship between ITPV and CD was as follows: ITPV = a * CD + b 

For CD 2.5–6 cm :   ITPV = 0.3*CD + 19   (R2 = 0.82)  

 

This shows that an increase of Pvent from 0 to 10 cm H2O increased ITPV with 20cm H2O, 

while an increase of CD by 2 cm increased ITPV by only 0.6cm H2O. 

These findings suggest that the effect of chest compression depth on ITPV is small, but can be 

increased very significantly by Pvent. Further studies are needed to investigate the relation 

between ITPV, cardiac output and survival.  
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6 
II6 Methods and systems for ventilating or 
compressing 

 
 

Adapted from : “methods and systems for ventilating or compressing” 

Date of PCT filing : Jun. 09. 2011 

Inventors : K Monsieurs, AF Kalmar 

 

Abstract 

A system for providing control signals for ventilating or compressing, respectively, includes 

an information receiving device that receives, for a resuscitation, information regarding a 

compression parameter and/or ventilation parameter, as function of a parameter indicative of 

blood circulation, a processing component for evaluating the different values of the chest 

compression parameter and/or ventilation parameter as function of the parameter indicative of 

blood circulation and deriving based on said information a value for the ventilation parameter 

and/or chest compression parameter respectively, and a control signal generator for generating 

control signals according to the derived ventilation parameter or chest compression parameter.  
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II6.1 Field of the invention 

The present invention relates to a medical device for analysing resuscitation, for example in 

case of intubation of a patient, or for optimising chest compression depth and ventilation 

pressure. 

 

 

II6.2 Background of the invention 

When a patient needs positive pressure ventilation or chest compression (resuscitation), a 

number of clinical problems may arise : 

1. The Lazarus phenomenon 

There are numerous case reports of restoration of a spontaneous circulation after 

cessation of resuscitation efforts. This phenomenon, also referred to as the “Lazarus 

phenomenon” is mainly explained by trapping of air during ventilation and the 

presence of “positive end expiratory pressure” (PEEP) resulting in inefficacy or failure 

of the resuscitation. As trapped air escapes and the positive end expiratory pressure 

disappears after cessation of the resuscitation, this may allow blood to start flowing to 

the heart again and therefore result in restoration of circulation even after CPR efforts 

have been stopped. 

2. Hyperventilation 

Animal studies have also shown that hyperventilation during resuscitation results in 

decreased coronary perfusion pressure and in excess mortality. In a small clinical 

observational study of 13 patients with cardiac arrest, high ventilation rates and 

increased intrathoracic pressures were recorded. Early detection and avoidance of 

hyperventilation and subsequent increased intrathoracic pressures during resuscitation 

may be an accurate means for preventing failure of resuscitation and for increasing 

survival chances and therefore is an important clinical issue. 

Current state of the art methods to assess quality of resuscitation mainly use impedance 

measurement of the chest wall and accelerometers placed on the breastbone. The quality of 

ventilation is often currently addressed by impedance measurements between two electrodes 

attached to the chest of the victim. This provides reasonably accurate measurements of 

ventilation frequency and very rough measurements of volume. The quality of chest 

compression is determined by accelerometers placed on the breastbone of the victim. These 

provide reasonably accurate measurements of compression frequency and dept. 

All these technical solutions to improve the quality and safety of intubation, ventilation and 

chest compression are in their early stages of clinical application and there is room for 

improvement. 
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II6.3 Summary of the invention 

Advantages of the present invention :  

1. to provide good methods and systems for controlling ventilation and/or compression 

adapted to the requirements of the individual patient.  

2. an individualized resuscitation method can be obtained, optimized for the patient 

treated at that moment. This allows determining the cardiac and thoracic pump 

potential during resuscitation in individual patients, thus also allowing individual, 

patient-dependent, optimization of the cardiac output. 

3. Anatomical and physiological differences between patients can be taken into account 

as values of individual measurements are used for optimizing the ventilation and 

compression specifically for the individual patient. 

4. A more efficient resuscitation can be 

provided. The information may 

comprise information regarding a 

chest compression parameter and/or 

ventilation parameter as function of a 

tracheal pressure difference by chest 

compression. The latter may be a 

parameter indicative of blood 

circulation. Pressure differences 

occurring upon chest compression or 

blood circulation show an optimum 

for a given ventilation volume. 

Determination of the optimal ventilation conditions for obtaining optimum pressure 

difference occurring upon chest compression – and therefore an optimum thoracic 

pump - can thus be performed, which may result in optimum blood circulation.  

5. An automated ventilator or compressor can be obtained whereby the optimum is found 

through a feedback loop, resulting in patient optimized conditions without the risk for 

applying too strong ventilation or compression. An iterative algorithm may be 

conceived to optimise ventilation pressure and compression depth for optimal 

intrathoracic pressure variation (ΔCP) with minimal impact on venous return.  

  

 

Figure 1: The effect of ventilation pressure on the amplitude 

of the  intrathoracic pressure oscillations (ΔCP). 
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II6.4 Example of an application 

We performed a study in 45 patients where 

an out-of-hospital cardiopulmonary 

resuscitation was performed and airway 

pressure was measured at the proximal end of 

the endotracheal tube. The pressure 

difference by chest compression ΔCP was 

determined for each chest compression and 

the ventilation pressure VP at the time of 

compression was calculated. The pressure 

difference by chest compression ΔCP is a 

parameter indicative of the blood circulation. 

A high pressure difference may allow for a 

good blood circulation. Statistical analysis 

was performed to explore the relationship 

between pressure difference by chest 

compression ΔCP and ventilation pressure 

VP. Figure 2 indicates the variability in 

pressure difference by chest compression 

ΔCP within and between individuals. 

Individual patients are sorted by increasing 

median for the pressured difference by chest 

compression ΔCP. For each patient, the 

median, 25th and 75th percentile (box) and 

the 10th and 90th percentile (whiskers) of the 

recorded ΔCP's are shown. The pressure 

difference by chest compression ΔCP ranged 

from 0 cm H2O to 82 cm H2O. The median 

value for pressure difference by chest 

compression ΔCP was 31 cm H2O. Initially a 

positive correlation between pressure difference by chest compression and ventilation 

pressure was found. When ventilation pressure initially increased from 0 to 15 cm H2O, the 

pressure difference at chest compression ΔCP was almost 4 times amplified. The latter can be 

seen in figure 3 correlating the initial pressure difference by chest compression and 

ventilation pressure. 

  

 

Figure 2: Variability in ΔCP within and between 

individuals 

 

 

Figure 3: Correlation between ΔCP and VP 
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Forward blood flow during 

cardiopulmonary resuscitation (CPR) 

is believed to be the result of direct 

compression of the heart (the “cardiac 

pump”) and intrathoracic pressure 

(ITP) differences (the “thoracic 

pump”). The ITP during CPR is a 

combination of pressure generated by 

ventilation (VP) and pressure 

differences generated by chest 

compression (ΔCP). Not only can 

chest compression be optimized by 

selecting a ventilation pressure, but 

also for different patients, different 

resuscitation conditions should be 

applied, since the pressure difference 

generated by chest compression 

varies greatly within and between patients. The obtained pressure profile for the individual 

patient may depend on the age, gender, stiffness of the thoracic wall, etc. Consequently, also 

the optimum conditions for resuscitation of individual patients differ significantly, as can be 

taken into account using embodiments of the present invention. 

  

 

Figure 4: Effect of ventilation pressure on ΔCP in three different 

patients 
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7 
II7 Excessive chest compression rate is associated 
with insufficient compression depth in prehospital 
cardiac arrest.  

Resuscitation. 2012 Nov;83(11):1319-23. 

Monsieurs KG, De Regge M, Vansteelandt K, De Smet J, Annaert E, Lemoyne S, Kalmar AF, 

Calle PA. 

 

II7.1 Abstract 

Background and goal of study: The relationship between chest compression rate and 

compression depth is unknown. In order to characterise this relationship, we performed an 

observational study in prehospital cardiac arrest patients. We hypothesised that faster 

compressions are associated with decreased depth.  

Materials and methods: In patients undergoing prehospital cardiopulmonary resuscitation by 

health care professionals, chest compression rate and depth were recorded using an 

accelerometer (E-series monitor/defibrillator, Zoll, USA). Compression depth was compared 

for rates <80/min, 80–120/min and >120/min. A difference in compression depth ≥0.5 cm was 

considered clinically significant. Mixed models with repeated measurements of chest 

compression depth and rate (level 1) nested within patients (level 2) were used with 

compression rate as a continuous and as a categorical predictor of depth. Results are reported 

as means and standard error (SE). 

Results and discussion: One hundred and thirty-three consecutive patients were analysed 

(213,409 compressions). Of all compressions 2% were <80/min, 62% between 80 and 
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120/min and 36% >120/min, 36% were <4 cm deep, 45% between 4 and 5 cm, 19% >5 cm. In 

77 out of 133 (58%) patients a statistically significant lower depth was observed for rates 

>120/min compared to rates 80–120/min, in 40 out of 133 (30%) this difference was also 

clinically significant. The mixed models predicted that the deepest compression (4.5 cm) 

occurred at a rate of 86/min, with progressively lower compression depths at higher rates. 

Rates >145/min would result in a depth <4 cm. Predicted compression depth for rates 80–

120/min was on average 4.5 cm (SE 0.06) compared to 4.1 cm (SE 0.06) for compressions 

>120/min (mean difference 0.4 cm, P < 0.001). Age and sex of the patient had no additional 

effect on depth. 

Conclusions: This study showed an association between higher compression rates and lower 

compression depths. Avoiding excessive compression rates may lead to more compressions of 

sufficient depth.  

 

II7.2 Introduction 

Following the International Consensus on Science and Treatment Recommendations on 

Resuscitation, the European Resuscitation Council (ERC) 2010 Guidelines for 

Cardiopulmonary Resuscitation (CPR) recommend for rescuers to compress the sternum of an 

adult victim of cardiac arrest “at least 5 cm (but not more than 6 cm)” at a rate of “at least 

100/min (but not more than 120/min)”.1,2 The previous ERC Guidelines (2005) recommended 

to compress the sternum “4 to 5 cm” at a rate of “about 100/min”.3 The main reason for this 

change in guidelines are studies showing that deeper compression depth is associated with 

higher success of defibrillation and a higher chance of admission to hospital.4,5 Therefore, 

sufficient compression depth is key to survival. Professional rescuers, however, often do not 

deliver high quality CPR regarding compression rate and depth.6–8 The reasons for this are not 

fully known. Recently, Field et al. found that compression depth decreased from 4.0 cm at 

80/min to 3.5 cm at 160/min when health care professionals performed continuous 

compressions on a manikin.9 Their results suggest an inverse relationship between 

compression rate and depth. The latest Consensus on Science and Treatment 

Recommendations on Cardiopulmonary Resuscitation (2010) recognised the knowledge gaps 

in the relationship between compression rate and depth.1 In order to characterise the 

relationship between compression rate and depth, we performed an observational study in 

prehospital cardiac arrest patients. 

II7.3 Methods 

II7.3.1 Aim of the study 

The aim of the study was to quantify the relationship between compression rate and 

compression depth during prehospital cardiac arrest by professional rescuers. Our hypothesis 

was that higher compression rate is associated with lower compression depth. 
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II7.3.2 Procedure 

This observational study was conducted in the Ghent area with a population of approximately 

150,000 inhabitants. From March 2009 until October 2010 all prehospital resuscitation events 

attended by the physician-staffed second tier ambulance of Ghent University Hospital were 

registered with a Zoll E-series defibrillator and CPR-D Padz® (Zoll, Chelmsford, USA) The 

ambulance was staffed by an emergency medical technician, a nurse specialised in emergency 

medicine and a resident or consultant in emergency medicine or anaesthesiology. ERC 

Guidelines 2005 were followed. 

All patients were resuscitated on a solid surface. In most cases, a first tier ambulance staffed 

with two emergency medical technicians would also be at the scene, ensuring chest 

compression during advanced life support. The Ethics Committee of Ghent University 

Hospital approved the study and allowed deferred consent. 

II7.3.3 Materials 

Immediately after arrival of the second tier ambulance, CPR-D Padz® were placed on the 

victim’s chest according to the manufacturer’s instructions. The CPR-D Padz® incorporate an 

accelerometer measuring displacement of the chest during compressions. The defibrillator 

provided real-time audible and visual feedback of compression quality (rate and depth). A 

sliding window of five compressions was analysed. If the recorded depth failed to achieve 4 

cm in three of the five compressions, the unit periodically generated a voice prompt saying, 

“push harder” When the four cm threshold was achieved in two of three compressions, the 

“good compression” voice prompt was played. According to the manufacturer, the accuracy 

of the compression depth measurement was ±0.6 cm 95% of the time.10 Compression rates 

below 80/min resulted in the automatic activation of a metronome sounding at a rate of 

100/min. In addition to the audible feedback, visual feedback was provided consisting of a 

display showing a vertical bar for every compression indicating depth, plus a horizontal bar 

indicating overall good compression depth and rate when full. As an inherent feature of the 

Zoll software, potentially excessive compression depth or rate was not corrected. 

II7.3.4 Data collection 

For every compression, the defibrillator automatically stored depth, rate and a time stamp on a 

memory card that was uploaded after the event with RescueNetTM Code Review, Enterprise 

Edition version 5.12 (Zoll, Chelmsford, USA). The resulting files were exported in a text 

format and imported into Excel for Windows. For each compression the rate was then 

calculated using the time interval to its preceding compression. Therefore the first 

compression of a series of compressions was not taken into account. Data on sex of the 

patient, age, presenting rhythm and return of spontaneous circulation were extracted from the 

ambulance run sheets. 
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II7.3.5 Inclusion and exclusion criteria 

Inclusion criteria for analysis were: presence of informed consent and age of 18 years or 

more. Exclusion criteria for analysis were the absence of a data file (accelerometer not applied 

or a technical problem), an incomplete data file or resuscitation performed in a driving 

ambulance generating random compression data. 

II7.3.6 Statistical analysis 

To examine the relationship between chest compression depth and rate, a mixed model was 

used with repeated measurements of chest compression depth and rate (level 1) nested within 

patients (level 2). Multilevel models have several advantages: they use all available data, can 

properly account for correlation between repeated measurements on the same subject, can 

handle missing data adequately, and have great flexibility to model time effects.11–13 Different 

specifications of the variance-covariance structure were considered and model selection was 

based on the procedures described in Verbeke and Molenberghs,11 information criteria 

(Akaike Information Criterion, Bayes Information Criterion) and interpretability of the 

results. First, a mixed model was estimated with chest compression depth as criterion, fixed 

linear and quadratic effects for chest compression rate as time-varying predictors, age and sex 

as time-invariant covariates, and random intercepts and random linear (subject-specific) 

slopes as random effects. For inference on the fixed effects, the Kenward–Roger denominator 

degrees of freedom method was used. This model (without the terms that were not significant) 

was used to make compression depth estimates (and 95% confidence intervals) at particular 

values of compression rate. In addition, a similar mixed model was estimated but with 

compression rates divided into a categorical variable comprised of three categories: <80/min, 

80–120/min, and >120/min. P-Values are reported as two-tailed. 

P ≤ 0.05 was considered significant. Statistical analysis was performed using Statistical 

Analysis Software (SAS) (version 9.2, Cary, NC, USA). 
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II7.4 Results 

II7.4.1 Demographics 

Demographic data are shown in Table 1. 

 

II7.4.2 Compression data 

Out of the 161 eligible patients, 133 patients could be analysed. Each subject had on average 

1605 (SD 1068, min 86, max 5108) repeated measurements of chest compression rate and 

depth (a total of 213,409 compressions). 

 

Of all compressions, 36% were <4 cm deep, 45% between 4 and 5 cm, 19% >5 cm, 2% were 

<80/min, 62% between 80 and 120/min and 36% >120/min. Thirty percent of all 

compressions were performed with a correct depth and rate according to the ERC 2005 

Guidelines. Figure 1 shows the distribution of compression depth per rate category. In 95 out 

of 133 (71%) patients the mean compression depth in the rate category >120/min was lower 

than in the category with compression rate between 80 and 120/min; in 77 out of 133 (58%) 

this difference in compression depth was statistically significant. In 40 of 133 (30%) the 

difference was considered clinically significant because the mean depth decreased with 0.5 

cm or more. Table 2 shows the results of the mixed model that examines the relation between 

chest compression rate and depth with age and sex of the patient as covariates.  

 Included patients 
N=133 (83%) 

Excluded patients 
N=28 (17%) 

P-Values 

Age (years) 67 (16) 61 (18) 0.13 
Female 41 (31%) 6 (21%) 0.32 
Initial Rhythm   0.32 
Asystole 93 (70%) 17 (61%)  
VF/VT 18 (14%) 4 (14%)  
PEA 22 (16%) 7 (25%)  
ROSC 56 (42%) 15 (53%) 0.27 
 
Table 1: Demographics. SD: standard deviation; VF: ventricular fibrillation; VT: ventricular tachycardia; PEA: 
pulseless electrical activity; ROSC: return of spontaneous circulation. Values as mean (SD) or count 
(percentage). 

 

Fixed effects Regression weight (SE) F test (df, df) P-Values 

Linear effect rate (/ min) 0.03287 (0.002084) F(1, 163) = 248.77 <0.0001 
Quadratic effect rate (/ min) −0.00019 (0.000003) F(1, 210,000) = 3840.31 <0.0001 
sex 0.03140 (0.1417) F(1, 130) = 0.05 0.83 
Age −0.00772 (0.004136) F(1, 130) = 3.49 0.06 
 
Table 2: Demographics. SD: standard deviation; VF: ventricular fibrillation; VT: ventricular tachycardia; PEA: 
pulseless electrical activity; ROSC: return of spontaneous circulation. Values as mean (SD) or count 
(percentage). 
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The linear regression weight for 

compression rate (0.03) indicates that 

chest compression depth increases with 

increasing chest compression rate but the 

negative quadratic regression weight for 

chest compression rate2 (−0.0002) 

indicates that this linear increase levels 

off and turns into a decrease in chest 

compression depth at higher chest 

compression rates. This is illustrated in 

figure 2, showing that chest compression 

depth slowly increases for chest 

compression rates between 20 and 

86/min; from then on, a higher chest 

compression rate results in a smaller 

chest compression depth (first slowly but 

later on more quickly).  

 

At 86/min, the deepest chest compression is predicted being 4.5 cm (95% CI 4.3–4.7). At 

100/min and 120/min, the estimated chest compression depths are 4.5 cm (95% CI 4.3–4.6) 

and 4.3 cm (95% CI 4.1–4.4), respectively. Rates of more than 145/min would result in depths 

below 4 cm (the upper 95% CI limit of the estimated depth at a rate of 145/min is 4 cm 

implying that under resampling the estimated compression depth at 145/min would be below 

 

Figure 2: Relationship between chest compression rate and depth. Horizontal line indicates minimum compression 
depth (4 cm) according to ERC 2005 Guidelines. Vertical lines indicate compression rate with deepest compression 
depth (86/min), and compression rate when higher rates generate insufficient compression depth (145/min).  
Interrupted lines indicate 95% confidence intervals. 

 

 

Figure 1: Distribution of depth according to rate category. 
Black bars indicate <4 cm depth, white bars 4–5 cm depth, 
crossed bars >5 cm depth. 

 



95 
 

 
 

4 cm in 95% of the cases). At lower compression rates, compression depth remains fairly 

stable and only at a predicted rate of 34/min, compression depth reaches the lower limit of 4.0 

cm. Very low compression rates were uncommon, therefore the clinical significance of this 

finding is limited.  

In general, we conclude that compression depth remains above 4 cm over a wide range of 

rates, but excessively fast compressions lead to insufficient depth. Furthermore, Table 2 

shows that there are no significant effects of age and sex of the patient. Next, a mixed model 

was used with chest compression rate as a categorical predictor. Categorisation according to 

the 2005 Resuscitation Guidelines resulted in very unbalanced categories: 2% (<80/min), 62% 

(80–120/min) and 36% (>120/min).  

The estimated chest compression depth for the three categories is depicted in Table 3. This 

analysis confirms that chest compression depth is significantly different between the three 

categories, F(2, 210,000) = 4424.94, P < 0.0001. In line with figure 2, chest compression 

depth was maximal at a chest compression rate in the category 80–120/min and less deep in 

the adjacent categories. This model also shows that age and sex were not significantly 

different, respectively, F(1, 130) = 1.56, P = 0.21, F(1, 130) = 0.05, and P = 0.82. 

 

 

II7.5 Discussion 

We showed that, during prehospital resuscitation by professional rescuers, compression rates 

between 80 and 120/min were associated with deeper compression depths as compared to 

rates >120/min. A difference of 0.5 cm depth was considered clinically significant because 

Edelson and colleagues showed that every 0.5 cm increase in compression depth doubled the 

odds of successful defibrillation.4 Moreover, using a multilevel model we showed that the 

predicted deepest compression depth (4.5 cm) occurred at a rate of 86/min. From thereon, 

compression depth declined gradually and only at a rate of about 145/min compression depth 

would become unacceptably low according to the ERC Guidelines 2005.  

Our findings support the results from a manikin study by Field et al. showing that faster 

compressions lead to reduced compression depth.9 In our study, high compression rates were 

common and may be explained by stress or by the inability of rescuers to assess and control 

the compression rate. Very low compression rates were uncommon and may be associated 

 Least square mean estimate (SE) 

<80/min  4.35 (0.06) 
80–120/min  4.45 (0.06) 
>120/min  4.08 (0.06) 
 
Table 3: Prediction of chest compression depth (cm) based on chest compression rate divided into three 
categories with age and sex as covariates: estimated means. SE: standard error. All three means differ 
pairwise at P < 0.0001 in an adjusted Tukey–Kramer comparison. 
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with specific activities potentially interrupting chest compressions such as aspiration, 

intubation and defibrillation. 

We have measured compression depth and rate using accelerometer technology with 

feedback. Feedback during CPR has shown to improve the quality of CPR but an effect on 

survival has not been demonstrated.14,15 The Zoll defibrillator did not correct rescuers who 

compressed too fast. On the other hand, the defibrillator activated a metronome at 100/min 

when compression rate was <80/min. Manikin studies have shown that a metronome not only 

guides compression rate but can also increase or decrease compression depth.9,16–19 Chung 

and colleagues reported that an increase in rate also increased compression depth in a manikin 

study. 17 This is in contrast with the findings by Field et al. who reported the opposite.9 

Potential explanations for the decrease in compression depth in the Field study may be the 

longer compression periods as compared to the Chung study (2 min versus 1 min), the shorter 

recovery periods between each compression period (3 min versus 20 min), and the higher 

compression rates (up to 160/min versus 140/min), all potentially leading to more fatigue and 

probably reflecting reality better. 

To prevent loss of compression depth, rescuers should be advised not to compress at rates 

exceeding 145/min. The mechanism whereby excessively fast compressions lead to 

insufficient depth is unknown, but may be linked to patient-related factors such as chest 

mechanics, and rescuer-related factors such as physical inability to deliver deep compressions 

at high rates and fatigue. 

A first limitation of the study is that the results were obtained with specific feedback provided 

by the Zoll E series defibrillator. Because the specific instructions by the defibrillator were 

not recorded, it is unknown to what extent rescuers followed the instructions and how they 

were influenced by them. Furthermore, it cannot be excluded that other feedback systems may 

influence the relationship between compression depth and rate differently. Second, apart from 

age and sex, other patient factors such as chest compliance are likely to influence the 

relationship between compression rate and depth, but because the Zoll technology does not 

incorporate a pressure sensor, we were unable to measure them.20 Third, rescuer-related 

characteristics (weight, height, fatigue) were not studied because during a resuscitation 

attempt by an advanced life support team several rescuers alternate at delivering compressions 

and it is currently not possible to determine the individual contribution of each rescuer. 

Fourth, although incomplete release is an important determinant of the quality of 

resuscitation, the defibrillator was not able to measure it. Fifth, our study was performed 

using feedback according to ERC Guidelines 2005. As the ERC Guidelines 2010 recommend 

a depth of “at least 5 cm”, this may change to relationship between compression rate and 

depth. 
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II7.6 Conclusions 

Using a defibrillator with an accelerometer measuring compression rate and depth, in about 

one third of cardiac arrest patients compression rates >120/min were associated with a 

clinically significant lower compression depth as compared to compressions of <120/min. In a 

predictive model, deepest compressions were provided at a rate of 86/min, and a depth of <4 

cm occurred at a compression rate of >145/min. Avoiding excessive compression rates may 

lead to more compressions of sufficient depth.  
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Figure 1: The ventricular system 

Source: Wikimedia creative commons 

 

1 
III1 Intracranial pressure during neuroendoscopy 

III1.1 Anatomy of the ventricle system  

The ventricular system is a set 

of four interconnected cavities 

(ventricles) in the brain. The 

ventricles are filled with 

cerebrospinal fluid (CSF) 

which bathes and cushions the 

brain and spinal cord within 

their bony confines. CSF flows 

from the lateral ventricles into 

the third ventricle, and then the 

fourth ventricle. From the 

fourth ventricle it can pass into the central canal of the spinal cord. 

 

III1.2 Cerebral Perfusion pressure   

The cranium can be considered as a box with three components: blood, cerebrospinal fluid 

(CSF), and brain tissue. While both the blood and CSF have poor compression capacity, the 

brain is easily compressible. If the pressure inside the cranium increases, the blood vessels are 

compressed, which can ultimately result in a decreased blood supply of the brain. In normal 

conditions, the intracranial pressure is low, thus the cerebral perfusion pressure = mean 

arterial pressure – venous pressure (CPP = MAP – VP). If however the intracranial pressure 

(ICP) becomes higher than the venous pressure, then CPP = MAP – ICP.  
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III1.3 Neuroendoscopic procedures 

Neuroendoscopy is a minimal-invasive technique, often 

used to cure hydrocephalus, take biopsies or removing 

tumors or cysts. During neurosurgical procedures, an 

endoscope is advanced through a burrhole in the skull, into 

the lateral ventricles, and further advanced into the third 

ventricle.  

A neuroendoscope consists of a long tube with several 

channels inside. Typically, there is an inspection lumen for 

receiving a visualisation instrument (e.g. camera, fiber optic 

or rigid optic), two rinse lumina and one or two working 

channels to insert instruments. A rinse inlet lumen allows 

passage of fresh rinse medium (generally aqueous saline 

solution) to the distal tip of the endoscope, while a rinse 

outlet lumen provides a passage for removal of waste rinse 

medium from the intervention site.  

 

III1.4 intracranial hypertension during neuroendoscopy 

At high rinsing rates, very swift increases in ICP can occur, up to a level higher than the 

MAP. This implies a high risk of severe complications such as retinal ischemia (blindness), 

stroke, or hemodynamic adverse effects. While rinsing at high flow can increase the 

intracranial pressure dangerously, even in cases of low rinsing rates, debris floating in the 

rinsing fluid may obstruct the outflow channel, still inducing a high ICP. As a consequence, it 

is imperative during these procedures to have an accurate measurement of the ICP to guide 

the surgery and rinsing process.  

 

III1.5 Clinical evidence of unreliable conventional ICP 

measurement  

During routine neuro-endoscopic procedure, the conventional method to monitor the ICP is 

connecting a pressure transducer to the outflow channel of the neuro-endoscope. There were 

however several observations of Cushing reflexes – suggesting considerably increased ICP – 

which were not observable by this type of monitoring. This is illustrated1 in chapter III.2, and 

was also one of the conclusions of our publication in the British Journal of Anesthesiology.2  

 

Figure 2: depiction of a neuro-

endoscope in the ventricular cavities.  

Li KW, NelsonC, Suk I, Jallo GI 

Neuroendoscopy: past, present and future. 

Neurosurg Focus. 2008; 19: E1 

With permission 
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III1.5 In-vitro evaluation of advanced  ICP measurement  

In order to quantify the (in)accuracy of conventional ICP-measurement, and to evaluate a 

superior alternative, a model of neuro-endoscopy was produced and measurements at several 

potential  locations were performed. Ultimately, a new device was developed, and evaluated 

which meets all the requirements for practical use during neuro-endoscopic procedures.3 

Because of the market potential, Patent protection was applied for and granted  in 2014.4 

 

III1.6 Development of new applications of the device  

Interestingly, the hardware developed for our neuroendoscopic applications could also be 

further developed as a fundamentally new approach for central-venous access, and other 

applications, which could offer significant medical advantages, and a considerable market 

potential. Therefore, this was further developed into a prototype to perform in-vitro and in-

vivo tests. Again, patent protection was applied for and granted in 2014.5 
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2 
III2 Total brain ischemia during normal intracranial 
pressure readings due to obstruction of the outflow of 
the endoscope 

Adapted from: 

J Neurosurg Anesthesiol. 2005 Jul;17(3):175-6. 

Kalmar AF, Van Aken J, Struys MM. 

 

III2.1 Introduction 

In neurosurgery, as in many surgical disciplines, the use of minimal invasive approaches 

using the endoscope is progressively increasing1. During these procedures, the ventricular 

cavities are rinsed continuously. This rinsing inside the fixed volume of the intracranial 

cavities may cause a sudden increase of the intracranial pressure (ICP). Since the cerebral 

perfusion pressure (CPP) equals the mean arterial pressure (MAP) minus the ICP, the CPP 

decreases linearly with the increase in ICP. Detrimental effects can occur when an 

uncontrolled increase of the ICP is not detected in time3. 

A meticulous cerebral hemodynamic control is essential to provide an adequate CPP. To do 

this, we systematically monitor the blood pressure invasively together with the pressure inside 

the endoscope, which reflexes the ICP (as long as the outflow channel of the endoscope is not 

partially or totally obstructed).  

Though the necessity of invasive arterial blood pressure monitoring is still under discussion1, 

we consider it essential for two reasons. Firstly, since it is the CPP and not the ICP that 

determines the CBF, both MAP and ICP are needed to evaluate the brain perfusion. Secondly, 
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beat-to-beat blood pressure monitoring provides the fastest method to detect the occurrence of 

a Cushing reflex, which is a sensitive method to identify severely impaired brain perfusion3. 

In some instances, we also use a continuous Doppler-monitoring on the medial cerebral artery 

for direct evaluation of the cerebral blood flow. 

We report two events in one patient where severely decreased CBF, due to obstruction of the 

outflow channel of the endoscope, was not revealed by the ICP-readings. Both the continuous 

blood pressure monitoring and the Doppler-signal showed the manifest reduction of the CBF. 

 

III2.2 Case report 

A previously healthy 11 year old boy had a neuro-endoscopic biopsy of a tectum tumour. 

Anaesthesia was induced with propofol 2 mg/kg, remifentanil 0.1 µg/kg/min and the trachea 

was intubated (facilitated with cisatracurium 0.15 mg/kg). Anaesthesia was maintained with 

propofol 6 mg/kg/h, remifentanil 0.1 µg/kg/min, together with cisatracurium 0.15 mg/kg/h ; 

he was ventilated with an oxygen/air mixture (FIO2 : 40%) to have an end-tidal CO2 between 

30 and 35 mmHg. 

During the procedure we continuously monitored the arterial blood pressure using a radial 

artery catheter and the 'intracranial pressure' by connecting a pressure transducer to the 

outflow of the endoscope.  The level of the foramen of Monro was used as the zero-reference 

point for both pressure transducers. By this, we are able to calculate the CPP reasonably 

accurate. We also used a bilateral transcranial Doppler onto the medial cerebral artery to 

assess the cerebral blood flow during the endoscopy. All the physiological data were stored 

on a PC for subsequent off-line analysis. 

In the first 20 seconds of figure 1, we see an example of the waveforms during endoscopy 

when the ICP is low and there is an adequate CPP.  

The Doppler signal shows the flow in the medial cerebral artery during a satisfactory CPP. 

After 20 seconds we see that the ICP increases moderately, while the MAP remains stable. 

The Doppler signal already begins to diminish. At 53 seconds, the measured ICP suddenly 

drops to zero. Almost immediately, a rapid drop in the Doppler signal is noticed, suggesting a 

total arrest of the CBF. Within 20 seconds, the arterial blood pressure curve shows a gradual 

but very considerable tachycardia and hypertension, indicative for the onset of a Cushing 

reflex, which is the result of a decreased CPP. Together with the manifest hypertension, the 

Doppler signal partly returns. 

Based on these readings, we alerted the surgeon, who instantaneously withdrew his 

endoscope. Immediately, the Doppler signal and thus the CBF returned. Remarkably, after 

retraction of the endoscope, we can notice a clearly increased Doppler signal. The mean 
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amplitude of the Doppler signal in the ten seconds after endoscope retraction is at 197% of its 

value prior to the event.  

 

 

Figure 2 shows a similar event in the same patient. In the first 90 seconds, there are no clear 

cardiac pulsations visible on the ICP-trace. At 37 seconds, the Doppler signal starts to 

decrease; in particular the diastolic cerebral blood flow seems to halt, while initially the 

systolic velocity remains normal; the mean blood flow seems manifestly decreased. The 

absence of a pulsatile ICP-waveform suggests inadequate registration of the ICP. Although 

the ICP-waveform shows very brief peak-pressures of 60 mmHg at 60 seconds and at 80 

seconds, the numeric representation of the ICP on the anaesthesia monitor did not mention an 

unusual increase of the ICP. At around 60 seconds, the MAP starts to increase progressively; 

at 90 seconds, a tachycardia develops. At 97 seconds, suddenly a pulsatile ICP waveform 

reappears, showing a mean ICP of 50 mmHg. In the seconds following the reappearance of 

the ICP-pulsations the ICP decreases spontaneously, followed by a normalisation of the blood 

pressure and Doppler signal.  

 

 

Figure 1 & 2: Unrecognised total arrest of the cerebral blood flow on conventional ICP measurement.                                       

Recordings of two events of outflow-channel obstruction during a neuro-endoscopic procedure resulting in an uncontrolled 

increase of the ICP, which was not detected by the ICP-monitoring. Shown are the invasive arterial blood pressure (Art, 

mmHg), the pressure inside the endoscope (ICP, mmHg) and the Doppler signal on the right medial cerebral artery (CBF, 

flow velocity). In both events, a clearly decreased Doppler signal is seen, followed by a Cushing reflex and isolated small 

increases in ICP-readings.   
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In both cases, over a few minutes after restoration of the CBF, the blood pressure and heart 

rate returned to their initial values. The patient awoke in the operating room and was 

discharged from hospital 3 days later with no complications. 

 

III2.3 Discussion 

The anaesthesiologic work-out for neuro-endoscopic procedures considering the preservation 

of the CPP remains controversial. The necessity of invasive blood pressure monitoring during 

neuro-endoscopy is questioned because measuring the pressure inside the endoscope is 

assumed to be an adequate alternative1. Although in most cases this is correct, high flush-rates 

or intra-endoscopic obstruction of the outflow may make this method of assessing the ICP 

inaccurate. We present a patient having a neuro-endoscopic procedure where the measured 

pressure inside the endoscope strongly underestimated the actual ICP.  

At the moment of the obviously false ICP-readings, there was a lot of debris floating in the 

rinsing fluid. Almost certainly, the events were caused by an obstruction of the outflow 

channel inside the endoscope, which prevented the normal evacuation of the rinsing fluid and 

caused an inadequate ICP assessment.  

In the first event (figure 1), an obstruction of the outflow channel caused a total arrest of the 

CBF, illustrated by a disappearance of the Doppler signal and an unmistakable onset of a 

Cushing reflex. The significantly increased CBF observed after restoration of the ICP is very 

suggestive for a post-ischemic hyperaemia.  

In the second event (figure 2), after the reappearance of the pulsatile ICP-waveform, and thus 

presumably a restoration of the free outflow, we can see a spontaneous normalisation of the 

ICP, blood pressure and CBF. In this event, the problem was only noticed after the ICP was 

returning to safe values, so no intervention was done. 

In both events, the Doppler signal clearly indicates that the CBF was decreased very 

significantly while the ICP remained modest. 

Although a meticulous observation of the ICP-waveform could have alerted the 

anaesthesiologist that something unusual was happening, it would most probably not have 

been noticed purely relying on the routine ICP-readings. Indeed, the routine monitor did not 

show at any moment an ICP increase above 20 mmHg. 

Although the manifest tachycardia could have been seen on the ECG, a tachycardia can be 

produced by a multitude of causes and the "normal" ICP values would only have misled the 

anaesthesiologist. In both events, the small increase in ICP readings would not have been 

considered worrisome in the absence of a Cushing reflex notification. Consequently, 

deleterious events were avoided, because the anaesthetist relied on the onset of a Cushing 

reflex, and not on an increase of the ICP. The abrupt disappearance of the Doppler signal 
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together with the low-ICP readings made us assume the Doppler probes were dislocated. Only 

after the appearance of the Cushing reflex, we became aware of the problem. 

Therefore, in contrast to the statement made by Fabregas and Craen1, 2, we would like to 

conclude that continuous invasive blood pressure monitoring is essential during every neuro-

endoscopic procedure where an iatrogenic increase of the intracranial pressure is possible. A 

continuous monitoring of the pressure inside the endoscope is not a safe alternative for 

continuous invasive blood pressure monitoring. Moreover, even if the ICP-measurement is 

reliable, it is not the ICP value on itself, which is important, but a low CPP3. This is another 

compelling reason to measure the MAP invasively beat to beat during a neuro-endoscopic 

procedure. 
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3 
III3 Endoscopic pressure detection assembly 

 

 

 

Adapted from : “Endoscopic Pressure Assembly” 

Date of publication and mention of the grant of the patent: 03.09.2014 

Inventors : F Dewaele, AF Kalmar, B Blanckaert, C Mabilde 

 

III3.1 Field of the invention 

The present invention relates to a pressure detection assembly for determining pressure in a 

tissue cavity inspected by an endoscope. 

 

  



112 
 

III3.2 Background of the invention 

Endoscopy is employed in many surgical procedures such as neurosurgery, transurethral 

resection of the prostate/bladder, and many other procedures. In such procedures, a 

continuous flow endoscope is frequently used.  

 

Briefly, a continuous flow endoscope is adapted to allow rinse fluid simultaneously to enter 

and escape from a tissue cavity via separate entry and exit points. It was initially assumed that 

an open outlet channel would prevent a rapid build-up of pressure within the tissue cavity. 

However, in practice, detached tissue pieces, larger than a critical size, present in the tissue 

cavity are unable to pass through the rinse outlet port leading to obstruction of the outflow 

channel which can provide an erroneous pressure reading, and pressure-build up.  

 

There is thus a need for dynamic pressure assessment that is clinically feasible to implement, 

which provides a more accurate measurement of actual pressure in the ventricle, can be 

applied easily aseptically and avoids the problems associated with blockages. 

 

 

III3.3 Summary of the invention 

The embodiment of the invention is a pressure detection assembly adapted for use with a 

continuous flow endoscope. Its couplings provides a water impermeable seal to the rinsing 

inlet of the endoscope, configured for convenient advancement into the rinse lumen towards 

the distal tip. The outer diameter of the elongated tubular member is adapted to permit 

passage of rinsing fluid without substantial hindrance to the flow. 

 

The assembly provides a measurement of ambient pressure at the distal end of the endoscope 

that accurately reflects the pressure in the cavity of the intervention while the endoscope is 

rinsing. 

 

A particular clinical advantage consists of the possibility for exquisitely control of the 

intracranial pressure by using a closed-loop (feedback loop) system comprising pumps and/or 

valves and a controller to maintain pressure at the predefined level. The closed loop system 

may be advantageously employed to deliberately increase pressure at the intervention site, 

which pressure increase expedites clot formation in the case of a haemorrhage.  

 

The catheter can be made a disposable item, overcoming any problems of sterilisation. The 

assembly provides an economical solution to the problem, that can be deployed on existing 

endoscopes without significant adaptation. 

 

III3.4 Further reading 

See appendix 2 for a more detailed description of the patent.  
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4 
III4 Pressure monitoring during neuroendoscopy: new 
insights 

Br J Anaesth. 2011 Aug;107(2):218-24. 

Kalmar AF, Dewaele F, Van Canneyt K, Vereecke H, Absalom A, Caemaert J, Struys MM, 

Van Roost D. 

III4.1 Abstract 

Background: Significant increases in intracranial pressure (ICP) may occur during 

neuroendoscopic procedures. To detect and prevent serious and sustained increases, ICP 

should be monitored. At present, controversy exists on the optimal location of the monitoring 

sensor. Therefore, we conducted an in vitro study to estimate the pressure gradients between 

the ventricle, the ‘gold standard’ site, and the rinsing inlet and outlet. 

Methods: A head model and a standard endoscope were used. Rinsing was enforced by using 

a pressurized infusion bag. Using clinically relevant flow rates, pressure was measured at the 

rinsing inlet and outlet, in the ventricle, and at the distal end of the rinsing channel using a tip 

sensor or a capillary tube. 

Results: At a flow of 61 ml min-1, the steady-state pressures measured at the rinsing inlet, in 

the ventricle, and at the rinsing outlet were 38, 26, and 12 mm Hg, respectively. At 135 ml 

min-1, these increased to 136, 89, and 42 mm Hg. Transendoscopic pressure measurements 

were always within 1 mm Hg of the ventricular pressure. 
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Conclusions: During endoscopy, measurements at the rinsing inlet overestimated the 

ventricular pressure by ~50 mm Hg during heavy rinsing, whereas measurements at the 

rinsing outlet underestimated the pressure by ~50 mm Hg. An electronic tip sensor or a 

pressure capillary tube placed at the distal end of the lumen of the rinsing channel of the 

endoscope did not interfere with rinsing flow and produced measurements that were equal to 

ventricular pressures. 

 

III4.2 Introduction 

During the past 3 decades, there has been renewed interest in neuroendoscopy,1–6 such that 

endoscopic intraventricular procedures are common in most neurosurgical departments. 

During these procedures, there is a need for continuous rinsing of the ventricular cavities. 

Initially, it was assumed that an open outflow channel would prevent a rapid build-up of 

intracranial pressure (ICP). However, many publications have shown that significant increases 

in ICP may still arise during these procedures. The principal reasons for induced intracranial 

hypertension are high flow rinsing (used to improve visibility during bleeding7 or to maintain 

access in collapsing ventricles)8 and obstruction of the outflow channel by tissue debris,9 

blood clots,10 or kinking of the outflow tubes. Excessive increases in ICP should be avoided, 

since intracranial hypertension can lead to cardiovascular complications,11 12 herniation 

syndromes, retinal bleeding,8 10 and excessive fluid resorption.13  

Transcranial Doppler ultrasonography measurements during rinsing procedures have shown 

severe decreases in cerebral perfusion without systemic haemodynamic warning signs.14 ICP 

monitoring is thus important, but the optimal location of monitoring is controversial. 

Although direct measurement of ventricular pressure is the gold standard, insertion of a 

separate ventricular catheter for this purpose is clinically impractical and difficult to justify. 

Since fluids flow down pressure gradients, and flowing fluids generate pressure gradients, 

measurement at the rinsing inlet and outlet is likely to correlate poorly with ventricular 

measurements. Pressure measurements at the inlet and outlet can only provide valid 

estimations of the ventricular pressure when there is no flow (i.e. if the rinsing inlet and outlet 

are closed simultaneously, and pressures are measured after a suitable interval to allow for 

equilibration of pressures). This is seldom clinically practical, and it is especially impractical 

when high rinsing flows are required because of brisk bleeding. 

Our goal is to be able to perform accurate dynamic ICP assessments without the need for 

additional invasive procedures such as ventricular catheter insertion. In order to investigate 

the significance of the dynamic pressure gradients across an endoscope, we have compared 

measured pressure readings taken at the rinsing inlet and outlet with those measured via a 

separate ventricular catheter in a realistic head model using standard endoscopes and 

clinically relevant rinsing fluid flow rates. Additionally, we have developed a transendoscopic 

method of pressure measurement at the distal end of the endoscope through the irrigating 
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lumen, and have compared pressures measured at this site with those measured in the 

ventricle and at the rinsing inlet and outlet. 

 

III4.3 Methods 

III4.3.1 Experimental set-up 

A custom-made polypropylene head model 

(internal volume 2900 ml) was used for the 

in vitro measurements (Fig. 1). It was 

completely filled with 0.9% saline solution 

and sealed hermetically. A pre-coronal burr 

hole was made and closed with a rubber 

seal. A Caemaert endoscope (Richard 

Wolf, Knittlingen, Germany) was installed 

through the seal and fixated with a 

pneumatic holding device (Aesculap, 

Tuttlingen, Germany). The rinsing inflow 

and outflow channels of the endoscope 

have an internal diameter of 1.67 mm and a 

length of 350 mm. A second burr hole was 

made and sealed with a rubber seal. A 

standard external ventricular drain with an 

internal diameter of 1.3 mm (Integra 

NeuroSciences, Plainsboro, NJ, USA) was 

positioned through the seal into the fluid-

filled cavity. The rinsing system was 

installed in the standard manner for 

neuroendoscopic procedures: three-way 

stop cocks (Discofix, B. Braun, Melsungen, 

Germany) were connected at the rinsing 

inlet and at the rinsing outlet for pressure 

measurement (Fig. 1). Pressure transducers 

(PMSET 1DT-XX Becton Dickinson Critical Care Systems Pte Ltd, Singapore) were 

connected to the three-way stopcock and to the ventricular catheter via low compliance 

pressure tubing. 

All pressure transducers were flushed with saline, and zeroed at the level of the external 

acoustic meatus. 

 

Figure 1: Overview of the experimental set-up during the 

first measurement: a head model filled with 0.9% saline, the 

Caemaert endoscope with a pneumatic holding device, and 

pressure measurements at the level of the rinsing inlet (IN), 

the rinsing outlet (OUT), and through a ventricular drain 

(VD). The Codman unit is used in the next measurement. 
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The irrigation system was installed as per routine 

clinical practice: a pressurized flush bag of 0.9% 

saline was connected to the valve at the rinsing inflow 

of the endoscope via an infusion set with a standard 

flow regulator. The bag was placed under a constant 

pressure of 300 mm Hg using a Ranger Pressure 

Infusion System (Arizant Inc., MN, USA). 

An intravenous infusion set (Intrafix Primeline I.S., 

B.Braun, Melsungen, Germany) was used as an 

outflow tube. The luer lock was connected to the 

three-way stopcock at the rinsing outlet of the 

endoscope, and the opposite end was positioned at the 

level of the burr hole. For precise determination of the 

flow rate during pressure measurements, the effluent 

was collected into an accurate measuring glass for 

exactly 60 s. 

All pressure transducers were connected to an S5 

monitor (GE Health Care, Helsinki, Finland) which 

displayed the analogue pressure waveforms in real time, digitized the signals at a sampling 

frequency of 100 Hz, and transmitted them to a PC for electronic storage using S5 collect 

software (GE Health Care). 

 

III4.3.2 Measurements 

Four separate experiments were performed. At the start of each experiment, the endoscope 

was introduced into the ventricular cavities and a rinsing flow, set at ‘fast dripping speed’, 

was initiated, as per routine clinical practice. After baseline pressure measurements had been 

recorded, the flow rate was increased in small increments, using the flow regulator, until a 

flow of 210 ml min-1 was reached. After each change in flow, an equilibration time was 

observed until a steady plateau pressure was reached. For each flow rate, the plateau pressure 

was recorded. 

Measurement 1 

The ventricular pressures were measured (via the ventricular catheter) and compared with the 

pressures measured at the rinsing inlet and rinsing outlet. 

Measurement 2 

In a second step, the equipment set-up was modified to enable pressures to be measured at the 

distal end of the lumen of the endoscope. A connecting piece (Rotating Male Hub Tuohy 

 

Figure 2: Depiction of the solution in which 

an ICP tip sensor (arrow) is introduced 

through the rinsing inlet channel as far as the 

tip of the endoscope in order to measure 

static pressures. 



117 
 

 
 

Borst with Sideport nr 80346, Qosina, Edgewood, NY, USA) was attached to the endoscope, 

and a Codman MicroSensorTM ICP tip sensor (Johnson & Johnson Professional, Raynham, 

MA, USA) was introduced through the rinsing channel and advanced, so that it was located 1 

mm proximal to the distal end of the endoscope (Fig. 2). The tip sensor was also connected to 

the S5 monitor. The pressures it recorded were then compared with the pressure in the 

ventricle and at the rinsing outlet. 

Measurement 3 

The second protocol was repeated but instead of the Codman tip sensor, a polyimide pressure 

capillary tube was used. Using the same leak-proof connecting piece, the catheter was slid 

through the rinsing inflow channel until the tip was 1 mm proximal to the distal end of the 

endoscope. 

Measurement 4 

The first measurement protocol was repeated but with a short Caemaert endoscope. This 

endoscope also has a rinsing channel diameter of 1.67 mm, but a shaft length of 240 mm (as 

opposed to 350 mm in the standard instrument). 

 

III4.3.3 Data analysis 

In the subsequent analysis, for each flow, the steady-state pressures at the different measuring 

points were graphically represented. The relationship between flow and pressure was 

determined by linear regression. The difference between the pressure in the ventricle - which 

is considered the gold standard - and the other pressure measurement sites was calculated for 

each flow rate. 

The Reynolds number was calculated for each flow rate to evaluate whether laminar flow was 

likely. For each flow rate, at which laminar flow was likely (up to 180 ml min-1), the 

measured pressure gradients were compared with pressure gradients predicted by the Hagen–

Poiseuille equation: ΔP=8µLQ/πr4. 

Data were normally distributed and are presented as mean. 

 

III4.4 Results 

The evolution of the ventricular pressure during initiation of rinsing is shown in Figure 3. 

Before the rinsing was started, a ventricular pressure of 8 mm Hg was observed. At a flow of 

85 ml min-1, a peak pressure of 51 mm Hg was reached, before the pressure stabilized at 18 

mm Hg.  



118 
 

 

 

Figure 4 shows that when the rinsing flow was suddenly increased from a stable 40–185 ml 

min-1, the ventricular pressure increased from 25 to 122 mm Hg, while the pressure at the inlet 

increased from 42 to 223 mm Hg and the pressure at the outlet increased from 9 to 53 mm Hg.  

 

  

The pressure measured at the different points in relation to the flow is represented in Figures 

3C and 4. 

 

          

Figure 3A: Results of the first measurement. Evolution of the pressure, measured through the 

ventricular drain, during initiation of the rinsing process at a ‘fast dripping speed’ of 85 ml min-1. 

The pressure increases (α) from a baseline pressure of 8 mm Hg to a peak pressure of 51 mm Hg 

(β), and equalizes at 18 mm Hg after the siphoning effect (γ) of the outflow tube has taken place. 

         

 

Figure 3B:  Pressures measured at the level of the rinsing inlet, the ventricular drain, and the rinsing 

outlet after a sudden increase in the flow from 40 to 185 ml min-1. The rinsing inlet overestimates 

the ventricular pressure while the pressure at the rinsing outlet shows a dangerous underestimation. 
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The pressure gradients between the rinsing inlet, intraventricular, and rinsing outlet related to 

the flow are shown in Figure 3C. At a flow of 42 ml min-1, the measured pressures are 38, 26, 

and 12 mm Hg, respectively. At a flow of 135 ml min-1, the pressure increased to 136, 89, and 

42 mm Hg, respectively. 

Both the Codman tip sensor and the capillary tube measurement showed a maximal 

inaccuracy of 21 to 1 mm Hg at any flow (Fig. 5A and B). 

The short Caemaert endoscope (Fig. 4) showed a similar evolution of the pressure gradient 

between the rinsing inlet, intraventricular, and rinsing outlet. At a flow of 24 ml min-1, the 

measured pressures were 20, 14, and 7 mm Hg, respectively. At a flow of 148 ml min-1, the 

pressures increased to 146, 99, and 49 mm Hg, respectively (Fig. 4). 

          

Figure 3C: The same pressures as figure 3B, but a function of the flow (ml min-1). 

          

Figure 4: Results of the fourth measurement. The pressures measured over the short Caemaert 

endoscope are analogous to the results of the first measurement. 
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The Reynolds number, calculated for the dimension of the endoscope, is 663 at a flow of 50 

ml min-1 and 2650 at a flow of 200 ml min-1. At a flow of 61 ml min-1, the measured pressure 

gradients between the rinsing inlet, ventricle, and rinsing outlet were 18 and 19 mm Hg, 

respectively, while the theoretical pressure gradient, calculated by Poiseuille’s equation was 

17 mm Hg. At a flow of 130 ml min-1, the measured pressure gradients were 31 and 

31mmHg; the calculated was 27 mm Hg. At a flow rate of 210 ml min-1, the measured 

pressure gradients were 81 and 85 mm Hg, while the calculated gradient was 57 mm Hg. 

 

III4.5 Discussion 

During endoscopic neurosurgery, significant intracranial hypertension may occur during 

rinsing of the ventricular cavities. As this may cause severe complications, accurate 

monitoring of ICP is essential. To the best of our knowledge, the optimal location and method 

for monitoring ICP during endoscopic neurosurgery has not been determined. 

 

ICP measurements with an ICP tip sensor through the working channel have been proposed, 

but this may interfere with the surgical procedure.15 An intra-parenchymal ICP tip sensor will 

provide reliable measurements, but it is invasive and therefore less acceptable as a routine 

practice.16 

 

         

 

Figure 5A: Results of the second measurement. The pressures measured by the ICP tip sensor at the 

tip of the endoscope are exactly the same as those of the ventricular drain, the gold standard. The 

pressure measured at the rinsing outlet severely underestimates the ventricular pressure. 
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An epidurally placed ICP tip sensor is a less invasive, but a less reliable method.17 Moreover, 

in a recent study,18 comparing epidural pressures (measured with an electronic ICP tip sensor) 

with those measured at the endoscopic rinsing inlet, epidural pressures were found to be 

consistently higher than the inflow pressures. This result, which is counter-intuitive, suggests 

that the epidural space is a poor choice of location for estimating ICP. 

Although considered the gold standard, pressure measurement via a separately inserted 

ventricular catheter is generally unfeasible and difficult to justify. At the same time, 

measurements at the rinsing inlet and the rinsing outlet are unlikely to accurately reflect 

ventricular or ICP. 

We therefore constructed a head model, to assess the likely significance of these pressure 

gradients and to assess the accuracy of a novel technique to measure pressures at the distal 

end of the endoscopic lumen.  

After initiation of rinsing, the pressure changes witnessed in the ventricle of our head model 

(Fig. 3A) illustrate, first, the importance of using an outflow tube and, secondly, the 

importance of correct positioning of the distal end of the outflow tube. After initiation of 

rinsing (flow 30 ml min-1) in our model, only a transient period of intracranial hypertension 

was observed. The evolution of ventricular pressure changes during this period showed four 

phases (Fig. 3A). 

During the first phase, pressures increased as the endoscope and the tubing filled with rinsing 

fluid (Fig. 3A, a), until reaching a peak of 51 mm Hg (Fig. 3A, b). After the onset of the 

siphoning effect of the outflow tube, the ventricular pressure declined (Fig. 3A, g), until the 

ventricular pressure settled at 18 mm Hg, at which point the siphoning effect balanced the 

         

 

Figure 5B: Results of the third measurement. The pressures measured by the capillary tube at the 

tip of the endoscope are exactly the same as those of the ventricular drain, the gold standard. 
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hydrostatic pressure. If the distal end of the outflow tube is obstructed, absent, or at an 

incorrect level, a continuously elevated ICP will be induced by the hydrostatic pressure in the 

outflow channel. The total ICP will be the sum of the hydrostatic pressure and the pressure 

build-up caused by impedance in the outflow channel. Conversely, if the distal end of the 

outflow tube is located too low, the siphoning effect will cause a collapse of the ventricles. 

Increasing the rinsing flow resulted in a considerable increase in the pressure at all sites. In 

measurement 1, there were significant differences in pressure readings at the different 

locations. Monitoring at the rinsing inlet overestimated the ventricular pressure by 12 mm Hg 

when the flow rate was 42 ml min-1, and by 81 mm Hg at a flow rate of 210 ml min-1. On the 

other hand, monitoring at the rinsing outlet underestimated the ventricular pressure by 14 mm 

Hg at 42 ml min-1 and by 85 mm Hg at 210 ml min-1. Similar differences were found with the 

short endoscope - an overestimate of ~41 mm Hg and an underestimate of ~ 42 mm Hg at the 

inlet and outlet ports at a flow rate of 128 ml min-1. This pressure difference is caused by the 

dynamic resistance in the rinsing channel, and correlates well with the pressure gradients 

predicted by the Hagen–Poiseuille law (difference of 1–2 mm Hg at 61 ml min-1 increasing to 

7–8 mm Hg at 130 ml min-1). 

Transendoscopic monitoring of the pressure at the distal tip of the endoscope using an 

electronic Codman ICP tip sensor provided a very accurate assessment of the ventricular 

pressure (and thus of the ICP). Of course, the application of an extra monitoring device and 

the use of a disposable electronic ICP tip sensor introduce some practical and financial 

considerations. In order to find a cheaper and more practical method of transendoscopic 

pressure monitoring, we replaced the tip sensor with a fluid-filled capillary tube connected to 

a standard pressure transducer outside the head. The tip of the catheter was placed at the same 

location as the tip sensor (1 mm proximal to the distal end of the endoscope). With this 

capillary tube, the transendoscopic pressure measurements compared very favourably with 

ventricular pressure measurements (maximal error of +1 mm Hg). 

Since this pressure capillary tube partially obstructs the rinsing inflow channel, a reduction in 

rinsing capacity is expected. During the in vitro analysis, a decrease of only 17 ml min-1 was 

observed during heavy rinsing after introduction of the pressure capillary tube. 

Because induced intracranial hypertension only becomes clinically relevant at faster rinsing 

flow rates - above 50 ml min-1 - and the rinsing flow is relatively stable, the compliance of the 

intracranial system is of minimal influence on the observed pressure values. On the basis of 

the Monro-Kellie hypothesis19 - that with an intact skull, the sum of the volumes of the brain, 

the cerebrospinal fluid, and the intracranial blood is constant - the capacity for expansion of 

the intraventricular volume during fast rinsing flow rates is limited to the intracranial blood 

volume. During gradual increase in flow rate, the induced blood volume displacement caused 

by changes in rinsing pressure is minimal compared with rinsing volumes. In our model, the 

pressure waveform stabilizes almost immediately after adjustment of the rinsing speed. 

Nevertheless, when the pressure is increased rapidly and severely (Fig. 3B), it takes several 

seconds before stable pressure readings are observed. 
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Our study has several limitations. The findings are by nature specific to the materials and 

equipment used. Our conclusions are based on a set-up of enforced rinsing with pressure 

infusion bags; this is not universally practised. However, even set-ups using passive rinsing 

remain vulnerable to obstructed outflows. Secondly, the rinsing channel of the endoscope we 

used has a small internal diameter. Pressure gradients will be lower with endoscopes with 

larger channels, while endoscopes with narrower rinsing channels will show even greater 

pressure gradients. An example of the latter is the MINOP Ventriculoscope (Aesculap, 

Tuttlingen, Germany) in which the diameter of the rinsing channels is 1.4 mm.  

Thirdly, in this experimental set-up, there was no tissue debris, which is common in clinical 

practise, and which will increase further the gradient between ventricular and outlet pressures. 

If debris completely obstructs outflow, then of course the outflow measurement has no 

correlation with ventricular pressure and will severely underestimate it.  

Finally, the outflow of rinsing fluid around the endoscope via the burr hole and escape via the 

working channel were prevented in this study. 

In conclusion, the findings of this laboratory-based assessment suggest that clinically 

significant pressure gradients across the endoscope are generated during rinsing despite an 

open outflow tract. These gradients are generated by dynamic resistances in the rinsing 

channels (Poiseuille’s law). Measurement at the rinsing inlet gives a severe overestimate of 

the true ICP (up to 50 mm Hg) and if clinicians were to respond to these pressures, this would 

unnecessarily impede the rinsing efforts of the surgeon. Reliance on measurements at the 

outflow point, which provides systematic severe underestimates of the true ICP (up to 50 mm 

Hg), will delay crucial intervention. Transendoscopic measurement of the pressure at the 

distal end of the endoscope accurately reflects ventricular pressure. There was no significant 

difference in the pressure measured at the tip of the endoscope using a Codman ICP tip sensor 

and a pressure capillary tube. The use of a small pressure capillary tube in the rinsing inlet 

channel has no significant influence on the rinsing capacity. Since complications are even 

reported during a straightforward ETV (Endoscopic Third Ventriculostomy), we have to 

recommend pressure monitoring during every endoscopic procedure. 
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1 
IV1 Central venous access and pressure monitoring 

In many medical conditions, a catheter is inserted in a 

peripheral vein (the jugular vein, the subclavian vein or 

the femoral vein) and advanced in order to locate the distal 

end of the catheter in central venous system. ( = close to 

the heart). It is used to administer medication or fluids, 

obtain blood tests, and measure central venous pressure. 

 

IV1.1 Procedure of  central-venous catheter placement 

The skin is cleaned, a hollow needle is advanced through the skin until blood is aspirated, and 

the line is then inserted using the Seldinger technique: a blunt guidewire is passed through the 

needle, then the needle is removed, and the central line itself is then passed over the 

guidewire, which is then removed. This procedure involves several medical risks, is 

unpleasant for the patient, and is time consuming.  

 

IV1.2 Single-lumen versus multilumen central venous catheters 

Central venous catheters exist with a single lumen up to 5 

lumina. This allows for different medications to be 

administered independently, without mixing, and to do 

simultaneous fluid administration and accurate pressure 

measurement. A particular disadvantage of multilumen 

catheters is that the internal diameter of the different 
Figure 2: single, dual en triple lumen 
central venous catheter. 

 

Figure 1: Central venous catheter with 
distal tip in the vena cava superior. 
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lumina decreases significantly.  

The outside of any catheter is soft in order to be minimally traumatic in respect of 

endothelium damage due to insertion and cardiac pulsations. Standard multichannel catheters 

are made from a solid tube of a single material, into which individual channels are left open. 

As a result, the internal channel walls are relatively thick, and the catheter is stiffer compared 

with a single lumen device. Moreover, there is a loss of available lumen area. (figure 3). 

If the interior additional channels 

were to be made from a different 

material with more convenient 

stiffness, thinner walled catheters 

can be used.  

The presence of multiple lumina, 

especially when they are not in 

active use anymore, increases the 

risk of severe complications – 

such as infections or thrombotic events – very significantly. The American guidelines from 

the CDC1 therefore prescribe to use the minimal number of lumina necessary.  During the 

course of a hospitalisation the need for separate lumina and separate pressure measurement 

changes depending on the evolution of the condition of the patient, but at this moment, 

switching the number of lumina has many disadvantages, and therefore most patients have a 

needlessly high number of lumina for a large period of time.  

In addition, because a single lumen catheter, by virtue of its more elastic outer wall, is less 

harmful for the endovascular tissue, a single lumen catheter is to be preferred if possible: a 

more flexible catheter reduces endothelium damage and consequently thrombosis and emboli. 

Moreover, single lumen catheters have a more advantageous cross-sectional area for a given 

outer diameter, which is important when a high rate of fluid administration is required. 

A convenient and safe switching to more or less channels would therefore be advantageous.  

 

IV1.3 Complications in central-venous catheter (re)placement 

In most cases, the procedure is minimally traumatic. Still, it can give rise to complications 

such as pneumothorax, hematothorax, nerve damage, accidental puncture of arteries, and 

stroke. During the period of hospitalisation, the needed number of lumina often changes 

according to the medical circumstances. Conventional methods of swapping a single lumen 

catheter for a multi-lumen catheter entails several risks: the existing catheter is often removed 

on a guidewire, and the replacement catheter is fed on this guidewire. Driving a new sterile 

catheter through the colonised tissues involves a significantly increased risk of infection, 

especially in patients with a weakened immunity. Therefore, in most cases the practitioner 

 

Figure 3: internal lumen available in single, and multi-lumen 
catheters. 
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may perform an entirely new puncture, but this strategy involves all the risks of the first 

placement.  

 

IV1.4 Presented solution for flexible lumen number adaptation  

Based on the device we developed for accurate and convenient intracranial pressure 

measurement during neuro endoscopy, we made several prototype for easy upgrading of a 

single-lumen catheter to a multilumen catheter. Three major requirements must be set before 

any clinical application: 

1. Acceptable flow on all channels 

2. Guaranteed sterility and biocompatibility 

3. Easy and safe use in clinical practice, with fluent introduction in the main catheter. 

After several iterations, a device was developed which addresses these requirement. 

The straightforward conversion from a single-lumen to a multi-lumen or vice versa catheter 

decreases the number of manipulations, increases patient comfort, reduces infection risk, and 

risk of other complications. The cost of the procedure is also reduced because the need for the 

more expensive multilumen catheters is obviated, and more importantly, the time-consuming 

procedure of catheter replacement is avoided. 

We propose the use of a soft and flexible single lumen catheter, that can be later upgraded to a 

multi-lumen catheter using stiffer materials. Since the initial catheter is generally single 

lumen, it may be soft and, therefore, avoids trauma to the endothelium. Any rigidity of the 

later-inserted capillary tube will not cause damage the endothelium because it is introduced 

within the lumen of the initial catheter. It thus provides a different material choice for the 

internal lumina and external catheters. This allows for optimal use of soft material for the 

outer catheter, and the use of ultrathin walled rigid material for the internal capillary system. 

The use of different material for the additional lumen has a further advantage in that the 

capillary tube may be optimized for pressure measurements. For optimal transduction of a 

pressure change, rigid tubing material is preferred. 

A further use of requirement for multichannel catheters is the necessity to have a lumen that is 

exclusively used for a particular drug. Because of the high pharmacological activity and short 

half-life of certain drugs (for instance adrenaline), it is critical that its administration is 

uninterrupted and constant. If the drug would be administered through the main catheter 

channel, an interruption of the flow due to an empty fluid canister or a kink, the interruption 

of the drug administration and the subsequent overdose of drug after restoration of the fluid 

flow would be unacceptable. Secondly, when using a dedicated lumen for the drug, changes 

in drug administration have immediate pharmacological effect, while mixing it with the main 

channel may delay its effect. Another reason for administering drugs in separate channels is 
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pharmacological incompatibility, which means certain drugs cannot be mixed before dilution 

in the blood. 

Introduction of a capillary into an invasive tube such as venous catheter or central venous 

catheter and fixation of the adaptor to the coupling of such invasive tube is ideally performed 

under sterile conditions to prevent infections. It may be challenging for a practitioner to 

introduce the flexible capillary tube shaft into the proximal part of the invasive tube coupling 

without touching the sterile parts.  

Accordingly an applicator package, comprising the capillary tube assembly as described 

herein and an applicator was developed. The applicator and applicator package allow the 

sterile introduction of the capillary tube shaft into the invasive tube lumen. 
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2 
IV2 Capillary Tube Assembly 

 

 

 

Adapted from : “Capillary Tube Assembly” 

Date of publication and mention of the grant of the patent: 11.11.2014 

Inventors : F Dewaele, AF Kalmar, B Blanckaert, C Mabilde 

 

IV2.1 Field of the invention 

The present invention relates to the field of invasive medical tubing, more specifically to 

catheters and lumbar puncture needles. 
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IV2.2 Summary of some aspects of the invention 

IV2.2.1 Application for central venous catheters 

One application relates to a detachable device for 

adding one or more channels to the central venous 

catheter (CVC). It relates to the capillary tubes for 

increasing the number of lumina, the adaptor, 

intermediate coupling and the applicator (figure 1). 

The thin walled capillary tube permits addition of 

lumina with minimal obstruction of the main 

channel. 

The additional channel may be employed as a 

hydrostatic pressure detector, for measuring the 

pressure at the distal tip of the invasive tube.  

The capillary tube assembly allows one channel of 

the catheter to have separate pressure measurement 

and drug delivery functions, without sacrificing accuracy of the CVP measurement. 

In the next chapter, an elaborate description will be provided of a prototype of a medical 

device developed for convenient and reversible upgrading of a central venous catheters, 

named “secure lane”. 

 

IV2.2.2 Application for lumbar infusion tests 

In another application, the invention can be applied for diagnosis of normal pressure 

hydrocephalus. This condition is caused by an elevated intracranial pressure (ICP) due to 

reduced absorption capacity of cerebrospinal fluid. Several diagnostic procedures are 

currently used to make the diagnosis. One method is the lumbar puncture tap test (figure 2), 

which assesses the absorption capacity. For this test, saline is infused into the CSF space 

while the pressure is measured. A steep rise in pressure indicates reduced absorption. A 

clinician, wanting to diagnose normal pressure hydrocephalus 

using conventional techniques, will employ two lumbar 

puncture needles each inserted into the spinal lumbar cavity. 

One needle is used to inject a liquid medium (e.g. water) into 

the cavity while the second needle, attached to a pressure 

gauge, is employed to measure hydrostatic pressure in the 

cavity which corresponds to the intracranial pressure (ICP). 

Alternatively, measurement of the ICP may be performed using 

a single large diameter needle for both infusion and 

measurement. The use of two needles or a larger needle leads 

 

Figure 1: General architecture of the capillary 
tube assembly 

 

Figure 2: Lumbar infusion test 

                                           (© Mayo foundation) 

 



135 
 

 
 

to patient discomfort and an increased risk of side-effects. It is important that the ICP is 

measured reliably to allow the correct determination of the ICP as a function of the infusion 

rate, since this ratio has an important diagnostic value. 

Application of the invention permits minimal invasive performance of a lumbar infusion test: 

By employing the capillary tube assembly inserted into the needle used to inject liquid 

medium, a more accurate estimate of ICP is obtained, while the procedure requires the use 

only of a single lumbar puncture needle. The capillary tube assembly provides an economical 

solution to the problem of inaccurate pressure measurement, and can be deployed on existing 

invasive tube assemblies (e.g. multilumen catheter, lumbar puncture needle) without 

significant adaptation. 

 

IV2.3 Further reading 

See appendix 3 for a more detailed description of the patent. 
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3 
IV3 Secure Lane 

 

IV3.1 Design of the device 

A convenient device must be easily and safely attached to an in-situ central venous catheter, 

subsequently it must fluently slide into the in-situ catheter without kinking of the capillaries, 

and safely/reversibly attached. This must all be done in a sterile matter, with minimal 

complexity, teaching requirements or sterility precautions.  

 

IV3.2 Choice of materials 

Initially poly-imide was deemed most suitable because of its high stiffness (allowing for a 

very thin wall-thickness. Several polymers were evaluated on their mechanical characteristics. 

  

   

Figure 1: architecture of the Secure Lane. A (brown) triple-lumen capillary is advanced in a (black) injection-molded 
adaptor, and 3 (grey) extruded tubings are positioned over the separate capillary lumens. The (green) polymer piece 
is overmolded to secure the assembly. 
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Eventually, Pellethane®, an aromaticTPU was evaluated as most suitable. Particular 

convenient is its property of high stiffness at room temperature, a favourable attribute during 

insertion, which decreases significantly at 37°C, and is therefore less traumatic in situ. 

Because of these properties, this material is already used for other types of catheters and are 

already available as multi-lumen tubes. In addition, its biocompatibility has been established, 

this material also has a favourable wall thickness, and does not need an extra coating. 

We performed flow studies, where a syringe pump was used to have a precisely 

predetermined flow. The pressure needed to maintain a steady flow over a 30cm capillaries 

length was measured using conventional pressure sensors.  

These studies are performed to evaluate if the needed inflow pressure to attain clinically 

required flows are within the range of conventional syringe pumps.  

 

IV3.3 In-vitro fluid dynamics tests 

- In a first evaluation, 

several capillaries were 

evaluated to determine the 

pressure gradient as a 

function of the flow in 

capillaries of 30cm length 

with different diameters. 

Secondly, based on these 

findings and other 

biocompatibility properties 

- such as kink-resistance , 

thrombogenicity and  

elasticity – several types were chosen to integrate in the prototype. 

- Several prototypes were assembled with different types of capillaries for performing flow 

measurements of the capillaries in combination with single-lumen central-venous 

catheters. A favourable combination seems to be an upgrade from a single-lumen to a 

triple-lumen catheter making use of a capillary of 22G and a 23G (=2.6 Fr outer 

diameter), combined with a single lumen 16G catheter. Under a 1 meter water pressure, 

the free-flow rate over the main channel was decreased to 1360 ml/hour, which is 

comparable with the free-flow rate of the largest lumen in a conventional triple-lumen 

catheter. With conventional syringe pumps, fluid can be administered over the capillaries 

with respective flow rates of 300ml/h and 180 ml/h respectively. 

Figure 2: Infusion test using syringe pumps to evaluate the infusion 
pressure as a function of the flow through sample capillary tubes. 
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- The quality of the 

pressure waveform 

transduction 

through the 

capillaries was 

evaluated in a 

dynamic simulation 

tests. A computer 

operated 

electromechanical 

simulator was build 

where recordings of 

central venous 

pressure curves could be regenerated in a pressure tank. In this test simulation, the 

impedance of the capillaries was quantified and compared with the gold standard : 

measurement through a 18G single lumen catheter. All these data were recorded using a 

Datex® monitor and exported to PC for analysis. 

- A pulsed flow 

simulator was built for 

visualisation of 

pulsatile fluid flows – 

simulating flow in the 

caval vein - around a 

classical multilumen 

catheter and around the 

combination of an 

upgraded single lumen 

catheter. Red and blue 

ink was infused 

through different small 

lumina to visualise the 

degree of mixing in 

different combinations 

and configurations. 

 

  

 
Figure 3: electromechanical simulator, pressure gauges for parallel registration of 
generated pressure waves, visualisation of pressure waves for data export and 
quantitative analysis. 

 

  

Figure 4: Pulsed flow simulator to visualise the mixing of fluids in pulsatile 
medium, in different configurations. 
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IV3.4 In-vivo testing  

Theoretically perfect pressure gauges need no volume displacement in order to transmit the 

distal pressure to the electronic transducer. Standard disposable pressure transducers used in 

clinical practice however do have a minute but significant internal volume displacement. This 

causes an impedance to pressure oscillations which becomes more significant in small-lumen 

catheters. In order to determine the degree of impedance (visualised as flattening of the 

oscillations), recordings were made of the central-venous pressure waveform through the 

main (large-bore) lumen of the central venous catheter, as well as through the secure lane. 

This indicates that in the smallest lumina, the particular oscillations are flattened, but the 

mean central venous pressure remains accurate. These results were equivalent with the in-

vitro measurements. 

 

  
  

 

 

 
Figure 5: Attenuation of the central-venous pressure waveform of a pig through a jugular central-venous 
catheter shows a reliable signal through large-lumen catheters, but significant attenuation in small-lumen 
catheters. 

SL150 Z : Influence of continuous flow on the pressure measurement starting 

at 32 sec : apparent CVP increases 50 mmHg 

SL230 : moderate attenuation of CVP waveform, but reliable absolute values 

CVP-measurement in pig 

SL 150 Z : mean CVP is reliable 
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IV3.5 The applicator packaging 

The applicator package comprises the 

capillary tube assembly and a protective 

cover allows the capillary tube assembly to 

slide longitudinally within a void of the 

cover. The protective cover maintains the 

capillary tube assembly in a sterile 

environment until it is completely 

introduced in the main catheter. A stainless 

steel guidewire is located in the largest 

capillary channel to optimise stiffness 

during introduction. The guidewire is removed after correct placement of the secure lane. 

 

 

IV3.6 Advantages of our solution 

Because swapping of the catheter is no longer needed, this will obviate all the complications 

of swapping in most cases. In addition however, because upgrading to a larger number of 

lumina becomes extremely easy and atraumatic, there will be much less restrictions to start 

with the minimal number of lumina necessary – and therefore even more decrease many risk 

factors attributable to higher-lumen catheters – because in case of changing circumstances an 

upgrade/downgrade is readily available.  

  

          

 

       
Figure 7: capillary tube in its applicator packaging: The luerlock of the intermediate part is screwed to the main 
catheter, the secure lane is advanced into the catheter, and after the adaptor is tightened to the intermediate part, 
the applicator is removed. 

 

 
Figure 6: capillary tube in its applicator packaging 
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Many medical and financial advantages exist in favour of the upgrading system: 

 Catheter exchanges can be eliminated, reducing the number of catheters that are 

consumed by one patient. 

 Historically, there is often a multilumen used in case it would become necessary 

(which is often not the case).  With the new device available, a single lumen catheter 

can be used routinely, because the practitioner knows that he can upgrade easily 

whenever necessary. Therefore, the fact that upgrade is available reduces costs and 

risks because conventional multilumen catheters can be omitted routinely. 

 Less chance of infections because there are less catheter exchanges and because there 

are no unused connections. 

 Old or potentially contaminated SL’s can easily be replaced by a new one, also 

reducing the risk of infection. Because of the burdensome procedure of replacing a 

conventional catheter, the threshold to do so is conventionally much higher. 
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V 
 

Conclusion and challenges for further 
development 
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1 
V1 Conclusion & challenges  

From the results of these studies, it can be concluded that continuous pressure measurements, 

in combination with advanced waveform analysis provides valuable new information for 

clinical decision-making. While a pressure measurement is a relatively mature technology, 

newly developed architecture for minimal invasive measurements, as well as innovative 

combinations of physiological insights, mathematical modelling and the application of 

modern production technology and computing abilities can still result in significant additional 

diagnostic advances to improve patient care. 

The transition from proof-of-concept devices to medical-grade commercial products involves 

many factors that complicate this next step. Medical devices that comply with all the 

necessary requirements for clinical practice must conform with several requirements that limit 

the choice of the used technologies: biocompatibility concerns and the desire for minimal 

invasiveness constrains the choice of materials and device dimensions; moreover, because of 

infections risks, any invasive device should be single-use, which consequently imposes 

certain economical restrictions. Equipment dedicated for emergency medicine needs to be 

robust and reliable in a wide range of circumstances, and must be applicable in out-of-hospital 

environments. 

Three medical applications were developed. For each of those, further developments must be 

realised however before sufficiently reliable prototypes can be produced for clinical 

application that comply with all the raised restrictions.  
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V1.1 Oesophageal intubation detection 

The first two studies demonstrated the reliability of the hardware and algorithm to provide an 

immediate diagnosis within high sensitivity and specificity, using a hand-held device, even in 

patients with decreased pulmonary compliance. The studies also demonstrated that the 

prototype hand-held device with fully-automatic integrated algorithms gave reliable 

ventilation detection and tube location. Although these were clinical studies, the 

measurements were still performed in a hospital setting (operating theatre and intensive care 

of University Medical Centre Groningen respectively), while the main purpose of the device 

is in emergency medicine.  A next study is being performed at Antwerp University Hospital in 

emergency out-of-hospital conditions to investigate real-world settings. In addition to an 

evaluation of the accuracy of the algorithms, this study will also give further information on 

the mechanical reliability of the device and disposables in those circumstances.  

While the device for automatic detection is very promising in its ability to detect the 

endotracheal tube location starting from reliable pressure signals, several possible causes for 

inaccurate pressure signals exist however. Some of these are relatively easily manageable 

while other may be more challenging: electronic failure, or drift on the pressure sensors 

should be excluded or timely detected with added auto-diagnostic algorithms for system 

integrity. Mechanical problems with the pressure tubings however are much more 

challenging, as these are more probable to occur and less straightforward to detect and 

prevent. The most common problem is clogging of the pressure tubes due to mucus, blood or 

water which must be anticipated for a device designated for emergency medicine. In 

particular the distal pressure tubing is at risk of clogging since it is located at the distal end of 

the endotracheal tube. Clogging of the pressure tubes obviously gives unreliable signals, and 

risks to give a false or absent diagnosis.   

While automatic detection of this problem is in the used prototypes addressed, resolution of 

the clogging is currently not possible, but is most probably critical before a commercial 

device can be proposed. In essence, two options can be imagined to direct this problem :  

 either omitting any pressure tubes, and use direct pressure measurements at the location of 

interest using tip sensors. This solution has economic constraints at this moment, but 

technological advances may make those sensors less expensive. While different sensors 

would be used to obtain the pressure waveform, and the pressure tubings are omitted, the 

same algorithms as in the demonstrated devices can be used to analyse the pressure signals.  

 Alternatively, automatic detection of clogged tubes can be implemented, combined with a 

flushing mechanism to flush the tubes with compressed air. This adds the necessity to add a 

flushing system to the device, but permits the use of cheap disposables. In addition, different 

coatings or materials should be evaluated on their tendency to clog with mucus and blood, and 

on the ease with which the obstruction can be flushed away with air. 
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An evaluation of the technical challenges and economic considerations of both options must 

be carried out to determine the optimal strategy for further development.  

Finally, the prototype device was designed for clinical testing, but a more robust and 

ergonomic device will have to be designed before real clinical implementation and pre-

commercial testing can be considered. Material choice, ergonomics and aesthetic device 

design will have to be optimised, as well as compliance with the legal requirements for 

medical devices. 

 

V1.2 Optimisation and automation of cardiopulmonary 

resuscitation 

In addition to fast and reliable detection of oesophageal intubation, the hardware permits a 

distinctive  analysis of the pressure waveforms to deduct valuable physiological information 

on the ventilatory and cardiac support during CPR. Because there is a strong interaction 

between the effect of the positive pressure ventilation and the effect of cardiac compressions, 

the knowledge of this cardiopulmonary interaction may provide information to maximize the 

quality of the resuscitation. In a first step, a more ergonomic visualisation of the relevant 

information may help the resuscitator to optimise CPR.   

Iterative algorithms adapting the ventilation and compression settings based on those 

measurements can potentially optimise resuscitation efforts on an individualised basis for 

every patients. In essence, the combined proximal and distal pressure measurements allow to 

accustom the chest-compression depth and ventilation pressures during resuscitation, 

individually optimised as a function of the physiologic variables of the individual patient. 

While - because of practical reasons - a target compression depth is currently used as the 

reference variable, pursuing intrathoracic pressure oscillations within an optimal range may 

be a more physiological aspiration.  

Ergonomically visualised information of the analysis of these pressures may steer the 

ventilation and compression efforts performed by the human rescuer to optimize the CPR. In 

a further development, the automatic diagnostics algorithms can be used for direct advice on 

compression depth, compression frequency, ventilation pressure and ventilation frequency.  

Another promising application is the integration 

of the diagnostic tool with automatic CPR 

devices and the automatic ventilator. Two 

separate mechanical interventions are 

performed to support the cardiopulmonary 

physiology : sternum compression and 

pulmonary ventilation. Sternum compressions 

are thus far predominantly performed manually, 
   

Figure 1: Autopulse® and Lucas® automatic CPR 
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but automatic devices (fig 1) are increasingly implemented. Pulmonary ventilations are often 

also performed manually, but automatic ventilation is universally available for many years 

now. Currently, these two types of cardiopulmonary support are performed largely 

independent of each other. As a result, the individual differences in cardiopulmonary 

interaction are almost completely neglected.  Particularly since automated chest-compression 

devices (such as the Autopulse® and Lucas® device; fig. 1) are increasingly used, and will 

probably be integrated within an “intelligent” monitoring system and ventilator for CPR, a 

diagnostic system based on an analysis of intrathoracic pressure measurements may be the 

source of information for a direct feedback-loop to individualise and optimise chest 

compression- and ventilator variables.  

 

V1.3 Medical grade secure lane 

The constructed devices for upgrading a single-lumen to a multilumen central venous catheter 

were demonstrated to comply with the most important physical requirements : use of 

biocompatible materials, adequate flow capacity, adequate pressure waveform transduction, 

ease of introduction, and ease of removal. Before the device can be tested in routine clinical 

conditions however, dedicated catheters must be produced where the primary catheter and the 

upgrade system are perfectly adapted for each other. Importantly, the length of the primary 

catheter and of the capillary tubes of the upgrade system must be perfectly aligned with error 

margins below 2 mm. This requires very precise production of the devices dedicated for each 

other. While this is technically perfectly feasible, guaranteeing this requirement in mass 

production at competitive prices is not obvious.  

A second technical prerequisite that still needs to be addressed is the requirement that the 

connection between the primary catheter and the capillary upgrade must be dedicated for 

selective coupling : there must be a perfect fit between those two devices, while it must be 

impossible to connect the capillary upgrade with other types of central venous catheters. As 

such, the primary catheter must have a universal luer-lock connection which can be readily 

connected with other luer-lock systems. In contrast, the capillary upgrade must be exclusively 

connectable with the dedicated primary catheter, but not with other conventional central 

venous catheters. This is imperative to prevent mistakes that may harm the patients as a result 

of incompatible dimensions of the capillary system and the primary catheter. Conventionally, 

in order to maximise convenience, essentially all appliances for intravenous access use the 

universal luer-lock connection. This guarantees the possibility to securely join any type of 

appliance with any other. While this is advantageous for most appliances, this must be 

avoided for the capillary upgrade. Our prototypes were made with conventional universal 

luer-lock connectors, and therefore lack any selectivity. While designing a selective luer-lock 

to solve this requirement is readily conceivable, a most optimal design for such a selective 

connector still needs to be addressed. 
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Because of the particular market environment of central venous catheters, commercialisation 

of such a device should most probably be done by a large player in the catheter industry. Both 

the required exclusive compatibility with the primary central venous catheter, and the legal 

requirements that must be respected for production of devices that are deployed in the central 

venous system, imply that production of these device is probably best managed by a company 

with an existing assortment of central venous catheters.  

In a first step towards clinical testing in patients, medical grade devices should be designed 

and produced. Because the most challenging parts (mainly the multilumen capillaries) are 

already on the market for use in other applications, this should be very feasible. Once medical 

grade prototypes are developed, clinical studies should be performed to prove the clinical 

value, safety, practical advantages and market potential.  

A first enquiry revealed that cardiac anesthesiologists, as well as intensive care specialists,  

are particularly interested to evaluate its value in routine cardiac surgery. In these procedures, 

a 3-lumen catheter is required during the 3-6-hour surgery, but in most cases, a subsequent 

reduction to a single lumen catheter would be beneficial for the next few more days. The 

availability of a convenient upgrade/downgrade system would significantly ease decision 

making and improve patient safety. An initial assessment in cardiac or abdominal surgery is 

therefore probably worthwhile to explore for initial clinical evaluation.  

 

V1.4 Transendoscopic pressure measurement assembly 

While this application is fundamentally different from the secure lane, the device itself, as 

well as the production requirements are in many domains very similar. Compared to the 

secure lane, the introduction of the pressure tube in the neuro-endoscope is much less critical, 

since it is performed by the surgeon in sterile circumstances, and the capillary is introduced in 

the rigid tube  of the neuro-endoscope – which is much more predictable than an in-situ 

central venous catheter. A dedicated applicator, such as the one designed for the secure lane, 

is therefore deemed unnecessary. The capillary tube for the transendoscopic application may 

be a single lumen capillary (in contrast with the secure lane, where a multilumen capillary is 

preferred), which also makes the construction of the connection device less demanding. 

Finally, conventional luer-lock connections may be used since exclusive compatibility with 

the neuro-endoscope is of no concern. As such, the production and marketing of this 

application is significantly easier than the secure lane. Conversely however, the global 

number of neuro-endoscopic procedures with high rinsing rates is very low, compared to the 

number of used central-venous catheters, and therefore from a commercial perspective less 

attractive.  

Devices for intra-cerebral use must comply with very strict legal production requirements; the 

production of the first commercial clinical-grade prototypes will therefore have to be made by 

a dedicated company which complies with all these requirements. In anticipation, studies for 



150 
 

trans-endoscopic intracranial pressure measurement during neuro-endoscopy must be 

designed to confirm the clinical value, which is essential to progress to commercial 

production. Prototype studies can be performed using medical grade luer-lock adapter pieces 

and commercially available PIC-catheters. These could be assembled by the surgeon 

immediately before the start of the surgical procedure on the sterile field in the operating 

theatre. While such an assemblage by the surgeon is impractical for routine practice, in a 

research setting, it can be done to perform the necessary feasibility studies. Because the aim 

of such is a study is to compare the non-invasive pressure measurements with conventional 

invasive gold standards, and to quantify rinsing restrictions, a low number of patients should 

suffice to deliver the required information in clinical circumstances. Secondly, a commercial 

partner in the field of neuro-endoscopy can be approached to evaluate the market potential for 

a dedicated device. 

Likewise, a neurosurgeon performing a dual needle lumbar infusion test could perform a 

proof-of-concept evaluation in some patients to evaluate the pressure values described in 

chapter IV.2.2.2, making use of self-assembled ultrathin PIC catheters and dedicated luer-lock 

adaptor pieces. Again, this study should demonstrate the potential of a dedicated device, after 

which it can be considered for commercialisation. 

 

V1.5 Challenges for the near future 

As for any invention that ultimately reaches its end-users through commercialisation, proof-

of-concept devices may offer promising results in a controlled, academic environment, but 

this is only the first step before wide distribution and application can be  considered.  

Any company that would consider marketing a device must first analyse its market potential 

and financial risks and opportunities to determine the global business viability. A first 

prerequisite to have any chance for market potential is that the device must ultimately prove a 

significant end-user value, and preferably should offer a solution for a perceived problem. 

Secondly, industrial production should be feasible with respect to real market conditions and 

legal requirements. The device will also have to be produced in such a way that it is reliable 

in the different circumstances where it will ultimately be applied.  

Particularly for medical devices, liability in case of improper use, device failure, or 

application in unfit circumstances must be anticipated and is an important consideration in the 

evaluation of the business case. 

As such, for each of the developed devices, the step from academic prototyping to pre-

commercial devices will demand thorough evaluation and management of those risks. 

Ultimately, after a positive evaluation of the business potential, a small batch of commercial 

devices will have to be manufactured, complying with all the technical and legal 

requirements, and small scale clinical studies will have to be performed to confirm the value 

and reliability of the devices, before large-scale application may be conceived. 
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As such, the organisation of those steps, and the coordination of the clinical studies are an 

challenge and opportunity to prove the real-world benefits of the devices and to ultimately 

improve future patient care. 

  



152 
 

  



153 
 

 
 

 

 

 

VI 
 

Appendices – patent applications 

 

  



154 
 



155 
 

 
 

1 
VI1 Methods and systems for analysing resuscitation 

 
 

Adapted from: “methods and systems for analysing resuscitation” 

Date of PCT filing: Dec.10. 2009 

Inventors: K Monsieurs, AF Kalmar 

 

Abstract 

This invention relates to a system generating control signals for compressing or ventilating, 

respectively. The system comprises a computing device dedicated to process, for a 

resuscitation, information regarding a compression parameter and/or ventilation parameter, as 

function of a parameter indicative of blood circulation, a process component for evaluating 

the different values of the chest compression parameter and/or ventilation parameter as 

function of the parameter indicative of the blood circulation. The obtained function will 

generate a value for chest compression parameter and/or the ventilation parameter 

respectively, and a control signal generator for generating control signals according to the 

derived ventilation parameter or chest compression parameter.  
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VI1.1 Field of the invention 

This invention belongs to the field of medical devices. More particularly, the present 

invention relates to methods and systems for analysing resuscitation, for example in case of 

intubation of a patient, or for optimising chest compression depth and ventilation pressure. 

 

 

VI1.2 Background of the invention 

When a patient needs positive pressure ventilation or chest compression (resuscitation), a 

number of clinical problems may arise. One known clinical problem is the occurrence of 

increased intrathoracic pressure during resuscitation. There are numerous case reports of 

restoration of a spontaneous circulation after cessation of resuscitation efforts.1 This 

phenomenon, also referred to as the “Lazarus phenomenon” is explained by trapping of air 

during ventilation and the presence of “positive end expiratory pressure” (PEEP) resulting in 

inefficacy or failure of the resuscitation. As trapped air escapes and the positive end 

expiratory pressure disappears after cessation of the resuscitation, this may allow blood to 

start flowing to the heart again and therefore result in a restoration of circulation even after 

CPR efforts have been stopped. 

VI1.2.1 Hyperventilation and air trapping during CPR 

Animal studies have also shown that hyperventilation during resuscitation results in decreased 

coronary perfusion pressure and in excess mortality.2 In a small clinical observational study of 

13 patients with cardiac arrest, high ventilation rates and increased intrathoracic pressures 

were recorded.3 Hyperventilation is common during resuscitation. Such findings have resulted 

in the international recommendation to avoid hyperventilation during resuscitation for cardiac 

arrest. 

Early detection and avoidance of hyperventilation and subsequent increased intrathoracic 

pressures during resuscitation may be an accurate means for preventing failure of 

resuscitation and for increasing survival chances and therefore is an important clinical issue. 

VI1.2.2 Oesophageal intubation 

Another known problem with resuscitation is wrong intubation. Wrong intubation into the 

oesophagus, if detected too late, may result in the death of the patient because of a lack of 

oxygen and ventilation. Wrong oesophageal intubation is a common problem in emergency 

situations, both during cardiac arrest and in patients with spontaneous circulation (the latter 

needing protection of the airway such as in neurotrauma or in cases of respiratory failure). 

A variety of methods to detect correct, i.e. tracheal, intubation are known such as for example 

clinical assessment by looking at chest movements, by auscultation of the chest and of the 

epigastrium, by assessment of the suction of air through the tube by means of a self-inflating 
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bulb or syringe, by capnography and capnometry, by chest impedance measurements through 

surface electrodes, etc. None of these techniques are both highly sensitive and specific. 

VI1.2.3 Assessment of the quality of CPR 

Current state of the art methods to assess quality of resuscitation mainly use impedance 

measurement of the chest wall and accelerometers placed on the breastbone. The quality of 

ventilation is often currently addressed by impedance measurements between two electrodes 

attached to the chest of the victim. This provides reasonable accurate measurements of 

ventilation frequency and very rough measurements of volume. The quality of chest 

compression is determined by accelerometers placed on the breastbone of the victim. These 

provide reasonable accurate measurements of compression frequency and dept. 

All these technical solutions to improve the quality and safety of intubation, ventilation and 

chest compression are in their early stages of clinical application and there is room for 

improvement. 

 

VI1.3 Summary of the invention 

4. An accurate analysis of resuscitation 

5. An accurate detection of the proper position of an endotracheal tube, substantially 

independent of the person who needs to perform the detection 

6. An accurate and quick detection of spontaneous cardiac activity 

It is an advantage of embodiments according to the present invention that : 

 the system and method can be developed into a standalone device or that it can be 

incorporated into existing resuscitation monitors and ventilators. 

 for some existing monitors, defibrillators or ventilators, the method can be 

implemented by introducing software without requiring complex additional hardware 

components and without the need for additional adjuncts such as bulbs, syringes or 

capnometry equipment. It is for example sufficient that a spare pressure channel is 

available or can be provided on the monitor, defibrillator or ventilator for allowing 

receipt of a pressure signal in combination with the use of a pressure sensor. 

 a system is obtained allowing quick and automated detection of appropriate 

resuscitation using an endotracheal tube.  

 using such algorithms for evaluating sequential pressure values, the improved 

accuracy may also permit more accurate resuscitation. 

 spontaneous cardiac activity can be detected rapidly. 

A pressure waveform analysis may be performed to determine the location of the endotracheal 

tube using the following steps: 
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 a tracheal dP/dt  value higher than a first predetermined value, 

 followed by a tracheal dP/dt value with an absolute value lower than a second 

predetermined value, 

 followed by a high negative tracheal dP/dt value having an absolute value higher than 

a third predetermined value. 

Using these principles, an accurate detection of the location of an endotracheal tube can be 

obtained. The obtained pressure waveforms furthermore may be used for determining a true 

compression. 

The system may be adapted for receiving pressure values sensed within an endotracheal 

intubation tube. The endotracheal intubation tube may comprise a pressure sensor catheter 

having a catheter tube filled with air. It thereby is an advantage that small pressure differences 

induced by compression or spontaneous heart activity can be detected. The endotracheal 

pressure thereby may be used as surrogate for intrathoracic pressure. 

 

VI1.4 Brief description of the diagnostic algorithm 

   

 

Figure 1: a schematic representation of a flow chart 

of the algorithm that may be used for deriving 

information for the analysis of resuscitation 

according to an embodiment of the present 

invention. 

 

 

 

 

Figure 2a, 2b, 2c and 2d: pressure curves for a 

distal measurement point and a proximal 

measurement point in case of tracheal intubation (2a 

and 2b) and in case of oesophageal intubation (2c 

and 2d) as can be obtained according to 

embodiments of the present invention. 

 

 

Distal           Proximal 2a 

   

2b 

   
2c 

   
  

2d 
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Measurement of P1, P2 Waveform 
(Streaming data enters at 50Hz) 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Schematic flow chart illustrating an algorithm.  

Is there compression detection in 

relevant period ? 

Yes : use S-derived values 

No : use P-derived Values 

 

Sequence for alarming : 

 Oesophageal intubation : f(dS1/dt, dS2/dt, S1, S2, dP/dx) 

 Ventilation rate   

 Spontaneous respiration / gasping :  f(minimal S1, minimal dS/dt, nAUCV1, dP) 

 Positive End Expiratory Pressure (PEEP) 

 Insufflation duration & Area Under Curve/time 

 Compression rate 

 Pressure gradient during compression 

Calculate S1, S2, C1, C2 
S = smoothed P over … msec   

C=S-P 

Calculate  dP1/dt, dP2/dt,  

dS1/dt, dS2/dt, dC1/dt, dC2/dt, dP/dx 
(dP/dt = temporal pressure gradient of the ventilatory pressure curve) 

 

 

 

 

diagnose insufflation diagnose expiration 
diagnose compression 

dC/dt surpasses Threshold_3  

and P1 > P2 

dS/dt below 

Threshold_2  

 

dS/dt surpasses 

Threshold_1  

 Determine ventilation 

parameters of actual 

ventilation : 

- Peak pressure S1, Peak 

pressure S2 

- Maximal dS/dt, minimal 

dS/dt 

- Insufflation duration 

 

 

 

-  

 

 Determine ventilation 

parameters of last 

ventilation : 

- AUCV1, AUCV2, nAUCV1 

- PEEPV1, PEEPV2 

- Minimal P1, Minimal P2 

- Maximal dP/dx (dP = P1 – 

P2)   

- Minimal dP 

- Determine moment of 

insufflation, ventilation 

duration, ventilation rate 

 

 

 Determine compression 

parameters of last 

compression : 

- AUCC1, AUCC2 

- Maximal compression 

pressure C1 

- maximal dC1/dt 

- determine moment of 

compression 

- Compression duration 

- Compression rate 

 

 

 

 

 

 

 

 

 

 

-  

 

   
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Raw pressure-waveform (P): 

  

      

         Ventilation curve (S)      Compression curve (C) 

 

 

 

 

                                dS/dt        dC/dt  

 

   

 

             dS/dt below diagnosis expiration        dC/dt surpasses diagnosis compression 

    dS/dt surpasses  diagnosis insufflation  

 

Figure 4: Example of an automatic analysis of the raw pressure recording Px to extract information on ventilation and 

compression. This illustrative figure was not part of the patent application. The curve P is a recording at 150Hz of a patient 

being mechanically ventilated while performing chest compressions. The curve results from a superposition of the effects of  

ventilation and chest compressions. An averaging algorithm calculates Sx from the pressure curve Px. The Sx-curve reflects the 

intrathoracic pressure curve resulting from ventilation as if no chest compressions were performed. Subsequently, the Sx-curve 

is subtracted from the Px-curve to calculate the Cx-curve. The Cx-curve reflects the intrathoracic pressure curve resulting from 

chest compressions as if no ventilation was performed. The Cx-curve looks very similar to the Px-curve, but the Y-axis 

demonstrates that the values oscillate around 0 mmHg. The apparent continued presence of ventilatory oscillations are a result 

of the cyclic negative pressures in the Px-curve resulting from stronger recoil with subsequent more pronounced negative 

pressures. In order to operationalize specific events, the first derivative of both the S1-curve and the C1-curve is calculated. 

When the first derivative crosses a certain threshold, a specific event is diagnosed: 

- A sharp increase in the S1-curve (resulting in a high dS/dt value) is a result of insufflation of air.  

  when dS/dt increases above a threshold value , insufflation is diagnosed.  

 

- A sharp decrease in the S1-curve (resulting in a deep negative dS/dt value) is a result of expiration of air. 

 when dS/dt drops below threshold value , expiration is diagnosed.  

 

- A sharp increase in the C1-curve (resulting in a high dC/dt value) is a result of chest compression. 

 when dC/dt increases above threshold value , chest compression is diagnosed.   

mmHg 

mmHg mmHg 

mmHg/s mmHg/s 

 
 

 



161 
 

 
 

VI1.4.1 Smoothing of the tracheal pressure signal 

Smoothing may be performed to compensate for high frequency artefacts, by determining the 

mean pressure over a moving time-window (of up to 3000 milliseconds) of the measured 

pressure values. In one example, the time-window over which such averaging may be 

performed may be 3000 milliseconds (=150 samples). The latter may for example be obtained 

according to following algorithm, i.e. 

            From a number of n samples preceding Px 

nPPP ,..., 21  

the corresponding smoothed tracheal pressure value Sx can be determined as: 

n

P

S ni

ix

x








0

1

)(

 

wherein n is the number of samples in the moving time-window.  

VI1.4.2 Calculation of a tracheal pressure gradient 

The tracheal pressure value processing component may be used to calculate the tracheal 

pressure gradient. The gradient thereby may be a temporal or spatial gradient.  

 The temporal gradient, which may be expressed as dP/dt, expresses a variation of the 

pressure over time 

 The spatial gradient, which may be expressed as ΔP, expresses a variation of the pressure 

between two different locations.  

 

In one example, the time window over which determination of the gradient may be performed 

may be 150 milliseconds. For samples Px or the smoothed sample Sx the gradient value Gx 

may be determined as  

 
n

R
PPG nxxx *)(   

respectively 

 
n

R
SSG nxxx *)(   

where :  

 R is the sampling rate. (expressed in #samples/s) 

 n is the number of samples in the time window. 

 Px is the pressure value (expressed in mmHg) at sample point x. 

 Sx is the pressure value (expressed in mmHg) of the smoothed curve at sample point x. 

 Gx is the gradient in pressure (expressed in mmHg/s) between sample point (x-n) and 

sample point x. It can be conceived as approximating the tangent to the pressure curve 

at time point x. 
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VI1.5 Oesophageal intubation detection  

In a first example, the system, more particularly the clinical parameter determination 

component, may be adapted for determining detection of the location of an intubating tube, 

i.e. oesophageal or intratracheal intubation, based on at least one pressure gradient value. 

When oesophageal intubation is performed, it has been found that the pressure profile 

typically consists of a fast increase of the sampled pressure or smoothed sampled pressure, 

thereafter switching to a plateau pressure, followed by a fast decrease of the sampled pressure 

or smoothed sampled pressure. It furthermore has been found that in oesophageal ventilation, 

the maximal ventilatory pressure is never above a relatively low cut-off value even if forceful 

ventilation is applied by the rescuer. Since the volume of air that can be insufflated into the 

 

Figure 5a, 5b and 5c: Output windows displaying the received pressure curves and derived clinical parameters 

according to an embodiment of the present invention (5a) as well as output windows for insufflation analysis for a 

mechanical ventilation without CPR (5b) and with CPR (5c) as can be obtained according to embodiments of the 

present invention. 

 

A 

C 

B 
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oesophagus is much lower, the flow through the tube is relatively low at any pressure during 

expiration. Consequently, the pressure gradient between the proximal and distal measuring 

point is lower than for tracheal ventilation. 

On the other hand when tracheal intubation, as typically is required, is performed, insufflation 

of air through the endotracheal tube induces a flow of air into the lungs. Because of the 

capacity of the lungs to accept a significant volume of air, the flow of air through the tube 

(e.g. expressed in ml/s) results in a clear pressure gradient between the proximal and the distal 

measurement point, if two points are used for measuring tracheal pressure or receiving info 

thereof. Furthermore at expiration, since an important volume of air can be exhaled when the 

insufflation pressure is released and the patient is allowed to exhale, the pressure at the 

proximal measuring point drops immediately, while the pressure at the distal measuring point 

only drops slowly due to the important volume of air that needs to flow through the tube. 

Again a pressure gradient develops between the two measuring points. Because of the lower 

compliance of the oesophagus compared to the lungs, during insufflation, the increase in 

pressure at the distal measuring point is significantly less steep in tracheal than in oesophageal 

ventilation. The gradient Gt of the pressure signal at time t during insufflation thus may be 

significantly lower (=the pressure increases less steeply) during tracheal insufflation than 

during oesophageal intubation. In contrast, during the plateau phase in in the oesophageal 

intubation, the pressure remains mainly flat ( during the plateau phase, Gt is lower in 

oesophageal than in tracheal intubation). Also at expiration, the pressure drops less steeply in 

tracheal intubation than in oesophageal intubation :  the absolute amplitude of the gradient Gt 

of the pressure signal is much lower in tracheal than in oesophageal intubation. It also has 

been found that the maximal ventilatory pressure in tracheal ventilation is much higher than in 

oesophageal ventilation, even though the gradient Gt of the pressure is significantly lower. 

The difference in compliance between the lungs and the oesophagus thus results in very 

significant differences in the characteristics of :  

1. the pressure gradient over time of the endotracheal pressures  (dP/dt) 

2. the pressure gradient between two different measuring points at a given time (ΔP). 

It has been found that using the pressure curves obtained during the initial ventilation cycles, 

e.g. during the first four ventilation cycles, correctness of the intubation can be determined, 

i.e. distinction can be made between tracheal intubation or oesophageal intubation. It is an 

advantage of embodiments of the present invention that sampling the pressure signal 

generated by the ventilations can be performed as soon as intubation has been performed. 

This allows to quickly distinguish between oesophageal and tracheal intubation. The latter can 

be indicated, e.g. using an alarm or warning signal in any suitable way, e.g. using a green 

light when tracheal intubation is obtained and using a red light when oesophageal intubation 

is obtained. According to embodiments of the present invention, the system thus may provide 

confirmation of the localization of the tube being intratracheal or oesophageal upon 

intubation. This information will allow the health care provider to establish correct intubation 

or to remove and replace the tube. 
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VI1.6 Assessment of chest compression and compression rate 

In another application, the gradient dP/dt may be used for determining the onset and release of 

chest compressions. When the dP/dt is above a predetermined cut-off value, a true 

compression may be suspected. If dP/dt with a negative value of at least a predetermined 

value is subsequently detected within 500 ms and the highest pressure value between both 

dP/dt values is above a predetermined value, a true compression may be confirmed. The 

highest pressure value may be referred to as peak pressure. The system may be adapted to use 

the time between the two or some of the last maximal pressure values for determining a rate 

of chest compression. The system may be adapted for providing a notification when the 

determined chest compression rate is too high or too low. The lowest pressure value Px in the 

250 ms after the lowest dP/dt value is the minimal pressure. Ideally, to achieve optimal 

venous return and blood flow to the heart, this value should be zero or negative. The system 

may be adapted for providing a warning or alarm notification if the minimal pressure does not 

return to baseline. Evaluation may be performed during several subsequent compressions. The 

latter may for example occur when there is incomplete release of compression, or in case of 

inappropriate ventilation mode. The system also may be adapted for determining a mean 

pressure generated by a chest compression. The latter may be determined by 

112

)(

2

1






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P

P

T
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i

m  

with point T1 and T2 being the time point of maximal dP/dt values of the two last 

compressions. The system furthermore may be adapted for determining a difference between 

the Peak Pressure and the Minimal Pressure, referred to as P. If the amplitude of P is too 

low, a warning or alarm notification may be provided. 

 

 

VI1.7 Assessment of return of spontaneous circulation 

In another application, the system is adapted for detecting spontaneous circulation. 

Spontaneous circulation may be evaluated based on a pulse pressure PP determined as follows 

: With M1 being the minimal pressure value in a time span of 200ms before the positive dP/dt 

value is obtained and M2 being the minimal value in a time span of 200ms after the negative 

dP/dt value, the minimum pressure can be determined as 

2

21

min

MM
P


  

The peak pressure Ppeak can be determined as the highest pressure value between the positive 

dP/dt and the negative dP/dt. The pulse pressure PP then is defined as  

minPPPP peak   

If the pulse pressure is higher than a minimal predetermined value, spontaneous circulation 
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may be confirmed. Advantageously, also a dP/dt higher than a minimum value and a positive 

dP/dt value followed by a negative dP/dt value of minimal absolute value within 200ms are 

factors pointing to the presence of spontaneous circulation. The combination of the above 

three aspects (pulse pressure, dP/dt value and subsequent positive and negative dP/dt) may 

allow confirmation of spontaneous circulation with higher sensitivity/specificity. 

 

 

VI1.8 Assessment of the origin of pressure changes 

The tracheal pressure gradient may be a spatial tracheal pressure gradient based on tracheal 

pressure values determined at different positions in the endotracheal tube. The behaviour of 

the tracheal pressure values at the different positions may allow to derive the origin of 

pressure built up. If for example an abrupt pressure pulse is measured at the distal end of the 

endotracheal tube and a smaller pressure pulse is measured at the proximal end of the 

endotracheal tube, the tracheal pressure signal is more likely representative of a chest 

compression. If for example a weaker pressure pulse is measured at the distal end than the 

pressure pulse measured at the proximal end of the endotracheal tube, the tracheal pressure 

signal is more likely representative of a ventilation. 

 

 

VI1.9 Assessment of ventilation variables 

The method and/or system may be adapted also for determining further clinical 

parameters. The system therefore may comprise an additional parameter determination 

component. The system and/or method may for example be adapted for determining the mean 

pressure Mx at sample point x by averaging the sampled pressure values or the smoothed 

values thereof over a large time window, e.g. over a time window of 5000ms. In further 

embodiments, this value may be used for determining whether the sampled pressure value 

(Px) or the smoothed sampled pressure value (Sx) is below or above the mean pressure (Mx) 

and the inversion point, for determining the highest value H of the sampled pressure values or 

the smoothed sample pressure values and/or for determining the lowest value L of the 

sampled pressure values or the smoothed sampled pressure values. Both timing and value of 

the maximal and minimal ventilatory pressure can be derived. Evaluation of the sign of ((Px or 

Sx) -  Mx) may allow to determine whether the sampled or smoothed sampled pressure is 

below or above mean pressure. Determination when ((Px or Sx) -  Mx) equals zero may allow 

to determine inversion points. Calculation of the mean pressure may be performed 

continuously, using a moving window.  

The system optionally may be adapted for diagnosing a ventilation cycle, with a true 

sign inversion, if the highest sampled, optionally smoothed, pressure value minus the lowest 

sampled, optionally smoothed, pressure value is larger than a predetermined value, e.g. larger 

than 5cmH2O.  

The system optionally may be adapted for determining the ventilation frequency 
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based on the time between two sub-sequent peak ventilatory pressures. In another 

embodiment, the system may be adapted for determining within every ventilation cycle, the 

fraction of the time during which the ventilatory pressure is higher than a certain value. The 

obtained fraction may be used as signalling function, e.g. when the fraction is higher than a 

reference value an alarm signal may be provided. In yet another embodiment, the system may 

be adapted for determining whether a minimal ventilatory pressure is higher than a reference 

value. The latter may be used as signalling function, e.g. when the minimal ventilatory 

pressure is higher than a certain value, an alarm signal may be provided. This would signify 

the presence of PEEP (Positive End-Expiratory Pressure) and a risk of decreased venous 

return and lower efficacy of the chest compressions. The system may be adapted for 

providing an alarm signal if the ventilation frequency is or is repeatedly higher or lower than a 

certain value. The system may be adapted to provide an alarm signal if the maximal 

ventilatory pressure is higher than a certain value. In one embodiment, the system may be 

adapted for providing a notification of spontaneous respiration if a negative ventilatory 

pressure below a certain value is detected. 

 

In a further step, the method and/or system may be adapted for assessing the quality of 

the resuscitation based on the measured clinical parameters. Such an assessment may be 

performed in an automated and/or automatic way and results may be outputted or it may be 

performed by the user based on outputted determined clinical parameter results.  

The method and/or system therefore advantageously also may be adapted for  

optionally generating an output representative of the assessment of at least one clinical 

parameter or a related, e.g. physical, condition or an assessment of the resuscitation 

 

 

VI1.10 Integration of pressure values with other parameters 

In order to further improve the information obtained with the system, information 

from endotracheal pressure analysis can be integrated with other parameters to improve the 

sensitivity/specificity of automatic diagnostic algorithms. For example, appearance of a peak 

in the intrathoracic pressure systematically following the R-wave on an ECG indicates a 

higher probability of the presence of a true spontaneous cardiac compression than conclusions 

drawn when the ECG-information is absent.  
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VI2 Endoscopic pressure detection assembly 

 

 

 

Adapted from : “Endoscopic Pressure Assembly” 
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Bulletin 2014/36 

Application number: 11748318.0 
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International publication number: WO 2012/013660 (02.02.2012 Gazette 2012/05) 

 

VI2.1 Field of the invention 

The present invention relates to a pressure detection assembly for determining pressure in a 

tissue cavity inspected by an endoscope, and an endoscope adapted with the assembly, and a 

method for adapting an endoscope. 
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VI2.2 Background of the invention 

Endoscopy is employed in many surgical procedures such as transurethral resection of the 

prostate/bladder, hysteroscopic procedures such as endometrial resection, fibroid resection, 

polyp resection, septoplasty, adhesiolysis and arthroscopic procedures. Increasingly, it is 

being deployed for neurosurgical procedures, to the extent that endoscopic intraventricular 

procedures are common in most neurosurgical departments. In such procedures, a continuous 

flow endoscope is frequently used.  

 

 

VI2.2.1 Continuous flow endoscope 

Briefly, a continuous flow endoscope is adapted to allow rinse fluid simultaneously to enter 

and escape from a tissue cavity via separate entry and exit points, as a result of which positive 

fluid pressure is created inside the tissue cavity which distends the cavity. 

A typical continuous flow irrigation endoscope comprises one or more fluidicly isolated 

lumina present inside an outer shaft. The outer shaft is typically a hollow cylindrical tube 

which has a distal end which enters a tissue cavity and a proximal end connected to a hub on 

which an inflow or outflow port is attached for the purpose of instilling or evacuating fluid 

from the cavity. The irrigation fluid is instilled via an inlet port. The instilled fluid travels 

through a rinse inlet lumen and enters the tissue cavity via the distal opening of the rinse inlet 

lumen. The waste fluid present inside the tissue cavity enters the distal opening of the rinse 

outlet lumen, and exits the endoscope via the outflow port attached at the proximal end of the 

rinse outlet lumen. 

An optic element (fibre, rigid or chip on tip) is placed inside an inspection lumen of the shaft 

in order to view the interior of the tissue cavity. An endoscopic instrument may be also placed 

within another lumen present in the shaft. 

 

VI2.2.1.1 Intracranial pressure during neuro-endoscopy 

It was initially assumed that an open outlet channel would prevent a rapid build-up of 

pressure within the tissue cavity. However, in practice, detached tissue pieces, larger than a 

critical size, present in the tissue cavity are unable to pass through the rinse outlet port leading 

to obstruction of the outflow channel which can provide an erroneous pressure reading, and 

pressure-build up. Additionally, the kinking of outflow tube occurs which can also distort the 

pressure reading. Raised intracranial pressure (ICP) during neurosurgical procedures is 

common according to the scientific literature, which can induce intracranial hypertension 

leading to cardiovascular complications, herniation syndrome, retinal bleeding, Terson’s 

syndrome and excessive fluid resorption. 

Direct measurement of pressure in the cavity is the gold standard, however, insertion of a 

separate catheter through a second burr hole for this purpose is clinically impractical and 

difficult to justify, particularly for the neurosurgeon. 
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Consequently, pressure is presently measured at 

the proximal end of the endoscope at rinsing 

inlet and outlet as shown in fig 1. which 

exemplifies measurement of ICP. However, 

measurements at the proximal ends of the rinse 

inlet and outlet have been found to correlate 

poorly with the actual pressure in the tissue 

cavity. Adding an extra measuring channel 

would increase the overall diameter of the 

endoscope reducing its minimally invasive 

character.  

 

Fig 1 shows an endoscope inserted into the 

ventricle within the brain  parenchyma, provided 

with a rinse inlet lumen and a rinse outlet lumen. 

The proximal end of the rinse inlet lumen is 

connected to a 3-way valve, one branch 

connected to a pressure gauge, the other branch 

connected to a pressurized source of irrigation medium. The proximal end of the rinse outlet 

lumen is connected to a 3-way valve, one branch connected to a pressure gauge, the other 

branch connected to a waste container. A separate pressure measurement probe is inserted 

into the ventricle. The true ICP in the ventricle measured by the independent probe is 89 

mmHg. A pressure gauge attached to the proximal end of the rinse inlet would indicate a 

considerably higher pressure (136 mmHg), while a pressure gauge attached to the proximal 

end of the rinse outlet would indicate a much lower pressure (42 mmHg). From the disparate 

readings of these proximal gauges, the practitioner must estimate actual ICP, and moreover, 

be able to determine rapidly blockages to the irrigation circuit. 

Pressure measurements at the proximal ends of the inlet and outlet can only provide valid 

estimations of static ventricular pressures i.e. if the rinsing inlet and outlet are closed 

simultaneously, and pressures are measured after a suitable interval to allow for equilibration 

of pressures. This is seldom clinically practicable, and it is especially impractical during 

occasions when high rinsing flows are required such as during brisk bleeding. 

 

VI2.2.1.2 Conventional methods intracranial pressure measurement 

Various systems are described in the prior art for the measurement of pressure cavity 

pressure. For instance US 2009/182201 describes an outer sheath disposed with one or more 

channels through which a reusable pressure sensor can be inserted, which sheath is fitted over 

the outer body of an endoscope. The sheath increases the outer diameter of the endoscope, 

limiting its application in many techniques, including neurosurgery. Moreover, a sterilized 

sheath is difficult to apply over a sterilized endoscope aseptically. There is thus a need for 

dynamic pressure assessment that is clinically feasible to implement, which provides a more 

     

Figure 1: The prior art configuration for 

measurement of cavity pressure, showing a cross-

section through a continuous flow endoscope and 

measurement of pressure at the proximal inlet and 

outlet ports. 
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Figure 2: A longitudinal cross-sectional 

view of a pressure detection assembly 

of the invention in situ in a continuous 

flow endoscope. 

accurate measurement of actual pressure in the ventricle, can be applied easily aseptically and 

avoids the problems associated with blockages. 

 

 

VI2.3 Summary of the invention 

One embodiment of the invention is a pressure detection assembly adapted for use with a 

continuous flow endoscope provided with a rinse inlet lumen connected to a rinse inlet port  

said assembly comprising: 
4 an elongated member having a proximal and distal end 
5 a pressure detecting body at the distal end of the elongated member, configured to 

provide an indication of ambient pressure 
6 a coupling disposed over the elongated member, configured for dismountable 

attachment to the proximal rinse inlet port of the endoscope, 
7 said elongated member configured to conduct the indication of ambient pressure to its 

proximal end 
8 said elongated member further configured for advancement through the rinse inlet 

lumen, and  
9 said fluidic coupling further configured to isolate fluidicly the proximal tip of the 

elongated member from the rinse inlet port of the endoscope. 

 

VI2.3.1 Detailed description of the invention 

The present invention, concerns a pressure detection assembly for use with an endoscope, in 

particular a continuous flow endoscope, comprising elongated member having a proximal and 

distal end, disposed at the distal end with a pressure detecting body. The  elongated member is 

provided with a coupling proximal to the pressure detecting body configured for dismountable 

coupling with a proximal rinse port of an endoscope. 

Throughout the description, a rinse port is mentioned for 

coupling with a coupling of the elongated member; this 

may be the rinse inlet port or the rinse outlet port, but is 

preferably the rinse inlet port. The coupling provides a 

water impermeable seal. The elongated tubular member is 

further configured for advancement into the rinse lumen of 

an endoscope towards the distal tip. 

Throughout the description, a rinse lumen is mentioned 

through which the elongated member is advanced; this 

may be the rinse inlet lumen or the rinse outlet lumen, but 

is preferably the rinse inlet lumen. The outer diameter of 

the elongated tubular member is adapted to permit passage 

of rinse medium through the rinse lumen when the 

assembly mounted in situ i.e. without substantial 

hindrance to the flow. 
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According to one embodiment of the invention, the elongated member comprises a narrow 

flexible catheter provided with a catheter lumen for conductance of fluid. The pressure 

detecting body of the catheter comprises an open port at the distal end of the lumen. In normal 

use, the lumen is filled with a non-compressible fluid for example, a liquid such as aqueous 

saline solution. Hydrostatic pressure in the vicinity of the pressure detecting body is 

conducted along the lumen by the non-compressible fluid to the open proximal end of the 

catheter where a pressure gauge in fluidic connection with the lumen measures the pressure 

transmitted from the distal end of the catheter. Absolute (or gauge) pressure in the vicinity of 

the pressure detecting body can thus be recorded.  

 

Advantageously, the assembly provides a measurement of ambient pressure at the distal end 

of the endoscope that accurately reflects the static pressure in the cavity of the intervention. 

By contrast, measurement at the rinsing inlet gives a severe overestimation of the true cavity 

pressure, and if clinicians were to respond to these pressures, this would unnecessarily impede 

the rinsing efforts of the surgeon. Measurement at the rinsing outlet gives a systematic severe 

underestimation of the true cavity pressure, which would delay crucial intervention. Pressure 

could be measured in a static mode, however, this would require pausing the flow of rinsing 

fluid. Since rinsing is essential to give the surgeon an unobscured view of the cavity, regular 

pausing impedes progress and increases operating times, so increasing the costs of 

interventions and the risk of infections. By employing a pressure detection assembly of the 

invention, which can be applied to an existing endoscope, the pressure measurement, which 

accurately reflects pressure in the cavity, can be measured accurately and reliably while the 

endoscope is rinsing. 

 

VI2.3.1.1 Controlling intracranial pressure at a predefined level 

Moreover, pressure in the cavity can be exquisitely controlled i.e. set to a pre-defined level 

and maintained at that level. This can be achieved using a closed-loop (feedback loop) system 

comprising one or more pumps and/or valves and a controller, which controller regulates said 

pumps and/or valves responsive to pressure measured using the pressure detection assembly 

of the invention, to maintain pressure at the predefined level. The closed loop system may be 

advantageously employed to deliberately increase pressure at the intervention site, which 

pressure increase expedites clot formation in the case of a haemorrhage. Controllably 

increasing pressure at the intervention site, particularly in the brain, is presently considered a 

risk to the extent that many surgeons will avoid it. Since the pressure detection assembly of 

the invention provides such an accurate reading, procedures otherwise excluded as entailing 

too much risk, now become available through the present invention.  

 

VI2.3.1.1 Sterilisation of the system 

The catheter can be made a disposable item, while the endoscope is sterilized between uses. 

Since the catheter is provided as a removable and disposable item, problems with steam 

sterilization are avoided which arise from the lack of steam penetration within the catheter 
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lumen. While steam sterilisation does not affect the endoscope as it is disposed with wider 

bore lumina, it would not be possible to sterilize the lumen of a catheter inserted into the 

endoscope channel owing to its narrow diameter. Thus the disposable pressure detection 

assembly of the invention overcomes this problem. 

 

Advantageously, when the rinse inlet channel is used, fresh rinse medium continually washes 

over the pressure detecting body, removing or preventing blockages or contamination with 

particles. The assembly provides an economical solution to the problem, that can be deployed 

on existing endoscopes without significant adaptation. 

 
10 An example of a suitable catheter is the thin walled polyimide catheter (Microlumen®, 

Tampa, Florida) provided with or without a stainless steel braid . The body or outer 

wall of the proximal end or portion of the catheter is sealably connected to a coupling 

for the relevant endoscope rinse port which coupling is configured to fluidicly isolate 

the open proximal end of the catheter from the rinse port of the endoscope. The rinse 

port may be the rinse inlet port or the rinse outlet port, preferably the rinse inlet port. 
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VI3 Capillary Tube Assembly 
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VI3.1 Field of the invention 

The present invention relates to the field of invasive medical tubing, more specifically to 

catheters and lumbar puncture needles. 
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VI3.2 Background of the invention 

VI3.2.1 Central venous catheters 

During hospitalisation or a surgical procedure, there may be a need to 

swap a single lumen catheter to a multi-lumen or vice versa, for 

example, to provide an additional channel for pressure measurement 

or drug administration. Using present techniques, the existing catheter 

is typically removed over a guidewire, and the replacement catheter is 

fed over the same guidewire to the location of the previous catheter. 

Alternatively, a new puncture is performed to place a new catheter. 

Both procedures entails important risk. Notably, it is traumatic and can 

give rise to complications such as pneumothorax, hematothorax, nerve 

damage, accidental puncture of arteries, and stroke. Moreover, the 

handling of a second catheter leads to an increased risk of infection.  

VI3.2.2 Diagnostic procedure for hydrocephalus 

Normal pressure hydrocephalus (NPH) is characterized by a triad of cognitive impairment, 

gait disturbance and nocturesis. The diagnosis is often difficult due to the symptoms being 

similar to other disorders such as dementia or Parkinson's disease. Many patients go 

completely unrecognized and are never treated. The condition is due to the fact the 

intracranial pressure (ICP) pressure is elevated. It has been confirmed that pressure is 

increased due to reduced absorption capacity. Therefore, a shunting device which drains the 

cerebro-spinal fluid (CSF) from the brain towards the abdomen or bloodstream is the 

principal therapy. 

Several diagnostic procedures are currently used to make the diagnosis of NPH, which 

include magnetic resonance imaging (MRI), a lumbar puncture tap test (figure 4), or 

measurement of absorption capacity. For the latter, saline is infused into the CSF space while 

the pressure is measured. A steep rise in pressure indicates reduced absorption. Infusion is 

normally performed through a lumbar puncture needle while the pressure is monitored 

through a second lumbar puncture needle. Some neurosurgeons use one large diameter needle 

for both infusion and monitoring. Infusion and monitoring through one fine needle is 

impossible since the dynamic resistance causes a false increased pressure reading. The issue 

with multiple or large lumbar puncture needles is the discomfort for the patient and the higher 

risk of post puncture hypotension headache. In the case of a large diameter needle, the hole in 

the lumbar spinal dura caused by the puncture does not close spontaneously after 

measurement. In upright position the high hydrostatic pressure will cause an escape of CSF. 

The reduced pressure in the brain causes severe headaches. 

There is thus a need for a device which can overcome the problems of the art. 

  

 

Figure 1: Central venous 
catheter placed in the 
jugular vein, with distal 
end in the right atrium. 
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VI3.3 Summary of some aspects of the invention 

The invention relates to a detachable device for adding one or more channels to a bodily 

invasive tube, comprising a capillary tube assembly described herein. The invention relates to 

a capillary tube assembly having a proximal end and a distal end, comprising: a capillary tube 

shaft disposed with a capillary lumen extending from an open proximal end to an open distal 

end, and a fluidic adapter at the proximal end in fluid connection the capillary tube lumen, 

wherein the capillary tube shaft is adapted for dismountable insertion into a fluid-carrying 

lumen of a bodily invasive tube - such as a central venous catheter, a neuro-endoscope or a 

lumbar puncture needle -, and the adapter provides fluidic access to the capillary tube lumen 

that is fluidically isolated from access to the invasive tube lumen. The capillary tube shaft is 

preferably thin walled. The adapter may be configured for dismountable connection to a 

coupling on the invasive tube. The capillary tube shaft may be formed from polyimide. The 

device or capillary tube assembly may be packaged in an applicator comprising: a 

longitudinal protective cover having a proximal end and a distal end, an opening at the distal 

end, wherein the protective cover forms a void in which the capillary tube shaft and at least a 

distal part of the adapter are disposed, the cover is configured such that the capillary tube 

shaft is slidable relative to the opening at the distal end. 

The protective cover may be comprised in a rigid, hollow protective tube having a breachable 

seal disposed along the longitudinal length of the wall of the tube, and the breachable seal 

may be configured to breach as the adapter is slidably advanced towards the intermediate 

coupling. 

The capillary tube assembly may be employed as a hydrostatic pressure detector, for 

measuring the pressure at the distal tip of the invasive tube. The capillary tube lumen may be 

filled with a non-compressible fluid for example, a liquid such as aqueous saline solution. 

Hydrostatic pressure in the vicinity of the distal open end of the capillary tube is conducted 

along the lumen by the non-compressible fluid to the open proximal end of the capillary tube 

where a pressure gauge in dismountable fluidic connection with the lumen measures the 

pressure transmitted from the distal end of the capillary tube. 

Advantageously, the capillary tube assembly provides a measurement of ambient pressure at 

the distal end of the invasive tube that accurately reflects the static pressure in the cavity (e.g. 

blood vessel, lumbar cavity, bladder etc.) into which the distal end of the invasive tube shaft 

is inserted. 

VI3.3.1 Designated for lumbar infusion test 

A clinician, wanting to diagnose normal pressure hydrocephalus using conventional 

techniques, will employ two lumbar puncture needles each inserted into the spinal lumbar 

cavity. One needle is used to inject a liquid medium (e.g. water) into the cavity while the 

second needle, attached to a pressure gauge, is employed to measure hydrostatic pressure in 

the cavity which corresponds to the intracranial pressure (ICP). Alternatively, measurement of 
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the ICP may be performed using a single large diameter needle for both infusion and 

measurement. The use of two needles or a larger needle leads to patient discomfort and an 

increased risk of side-effects. The use of a single fine needle and a gauge attached to a three 

way valve at the proximal end of the fine needle would severely overestimate the ICP. It is 

important that the ICP is measured reliably to allow the correct determination of the ICP as a 

function of the infusion rate, since this ratio has an important diagnostic value. 

By employing the capillary tube assembly inserted into the needle used to inject liquid 

medium, a more accurate estimate of ICP is obtained, while the procedure requires the use 

only of a single lumbar puncture needle. The capillary tube assembly provides an economical 

solution to these problems, that can be deployed on existing invasive tube assemblies (e.g. 

multilumen catheter, lumbar puncture needle) without significant adaptation. 

 

VI3.3.2 Designated for neuro-endoscopic procedures 

The pressure measurement capability of the capillary tube assembly has application, for 

example, when the invasive tube is a multilumen catheter. In particular said catheter has a 

rinse inlet channel, for the introduction of rinse medium into the cavity and having a separate 

drainage outlet channel for the drainage of medium from the cavity. The catheter thus 

operates in a continuous flow irrigation mode.  
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VI3.3.3 Designated for central venous catheter system 

The pressure measurement capability of the capillary tube 

assembly has application, for example, when the invasive tube 

is a central venous catheter (single channel or multi lumen). In 

many medical or surgical circumstances, close hemodynamic 

monitoring of the central venous pressure is essential. The 

central venous pressure (CVP) is the pressure of the blood in 

the caval veins, close to the heart. It is imperative to have a 

precise measurement of this pressure as it is essential for 

hemodynamic management of the most vulnerable patients. In 

clinical practice, the CVP is measured through a central venous 

catheter, where a channel is reserved only for measurement of 

this pressure. Sometimes, it is necessary to use this same channel for drug administration, 

however, this would inevitably cause an erroneous CVP-measurement because of the 

dynamical resistance (described by de Hagen-Poiseuille equation) of the lower part of the 

catheter system. The capillary tube assembly allows one channel of the catheter to have 

separate pressure measurement and drug delivery functions, without sacrificing accuracy of 

the CVP measurement. 

 

 

 

 

  

 

Figure 3: Capillary tube 
assembly to reversibly upgrade 
a central venous catheter 
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