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Abstract

Background: Focused ultrasound (FUS) is entering clinical routine as a treatment option. Currently, no clinically
available FUS treatment system features automated respiratory motion compensation. The required quality standards
make developing such a system challenging.

Methods: A novel FUS treatment system with motion compensation is described, developed with the goal of clinical
use. The system comprises a clinically available MR device and FUS transducer system. The controller is very generic
and could use any suitable MR or FUS device. MR image sequences (echo planar imaging) are acquired for both
motion observation and thermometry. Based on anatomical feature tracking, motion predictions are estimated to
compensate for processing delays. FUS control parameters are computed repeatedly and sent to the hardware to
steer the focus to the (estimated) target position. All involved calculations produce individually known errors, yet their
impact on therapy outcome is unclear. This is solved by defining an intuitive quality measure that compares the
achieved temperature to the static scenario, resulting in an overall efficiency with respect to temperature rise. To
allow for extensive testing of the system over wide ranges of parameters and algorithmic choices, we replace the
actual MR and FUS devices by a virtual system. It emulates the hardware and, using numerical simulations of FUS
during motion, predicts the local temperature rise in the tissue resulting from the controls it receives.

Results: With a clinically available monitoring image rate of 6.67 Hz and 20 FUS control updates per second, normal
respiratory motion is estimated to be compensable with an estimated efficiency of 80%. This reduces to about 70% for
motion scaled by 1.5. Extensive testing (6347 simulated sonications) over wide ranges of parameters shows that the
main source of error is the temporal motion prediction. A history-based motion prediction method performs better
than a simple linear extrapolator.

Conclusions: The estimated efficiency of the new treatment system is already suited for clinical applications. The
simulation-based in-silico testing as a first-stage validation reduces the efforts of real-world testing. Due to the
extensible modular design, the described approach might lead to faster translations from research to clinical practice.
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Background
Focused ultrasound (FUS) is increasingly entering clini-
cal routine as an alternative treatment method in different
indications [1]. Current clinical FUS applications mostly
target static organs. FUS treatment of abdominal targets
that move with the respiration of the patient (e.g. the liver)
is not yet an available option in clinical routine due to the
lack of treatment systems supporting this functionality.
The current clinical use cases of FUS for moving abdomi-
nal organs include both palliative treatments and patients
for whom resection is impossible due to the position of
the malignant tissue or co-morbidities [2, 3].
Treating targets in abdominal organs like the liver with

FUS is challenging [2]: The target moves with the respira-
tion and may be partially blocked by the ribcage for parts
of the respiratory cycle. Real-time temperature monitor-
ing of the treatment needs to be performed using MR
thermometry [4]. For moving organs this is even more
complicated than for static organs. Thermometry using
ultrasound imaging is possible [5], but not yet available for
clinical use.
To tackle these challenges, in today’s FUS treatment of

moving abdominal targets, the motion of the target needs
to be controlled under anesthesia [6–8]: One option is
to stop the respiration (apnea) for the duration of active
ultrasound application and afterwards let the respiration
normalize before starting the next sonication. This pro-
cedure, however, results in long treatment duration and
the need for general anesthesia. Another approach that
is close to clinical application is respiratory-gated sonica-
tion [9]. Thereby, the therapeutic ultrasound is active dur-
ing the respiratory cycle only when the target is detected
to be in a certain position. This approach allows for a treat-
ment without general anesthesia, but suffers also from
overly long treatment duration due to the reduction of the
FUS duty cycle.
In the long run, FUS can become competitive to other

thermal ablation techniques as radio-frequency ablation
(RFA), microwave ablation (MWA), laser-induced ther-
motherapy (LITT), and cryoablation. It may even become
an alternative to resection and radiosurgery.Whether FUS
can be competitive to these well-established techniques
strongly depends on results of current and future clinical
application of the treatment. In our research we hypoth-
esize that the full potential of FUS in moving organs can
be unleashed only with dedicated computer support in
planning and control of the treatment.
In this paper we present our efforts from the past years

in developing model-based software support for FUS in
the moving liver. An integrated system has been devel-
oped that shall allow to treat the liver during motion.
Here we focus in particular on the system design and
on our framework for in-silico testing of the system. We
also describe our efforts to simplify the translation of

research results to prototypes that may be used in clinical
studies.
A major effort in developing a software system for treat-

ment planning and control is quality assurance (QA):
Making sure that the system does what it is supposed to
do (efficacy), and, most importantly, that it does no harm
(safety). For safety-critical systems estimates for the pro-
portion of life cycle costs spent on QA and testing go up
to 80% [10]. Thus, for industry, the hurdle to develop a
FUS treatment system with motion compensation is high
because of the risk that FUS may in the end turn out to
not be competitive to the above-mentioned established
ablation methods.
From the viewpoint of research and development,

changing currently available clinical FUS treatment sys-
tems to make them capable of motion-compensated FUS
is difficult as the clinically approved systems are not open
for extensions and are subject to closed specifications.
Also, introducing changes to the certified systems means
that any validation needs to be re-performed.
For systems of such complexity the effort required for a

change in the system grows drastically the later a defect is
detected or a new feature should be incorporated (expo-
nential cost-of-change curve [11]).
In our work, we define the requirements and design

specification in an open way to simplify extension and col-
laboration. We aim at reducing the necessary QA efforts
by code generation and extensive continuous testing. A
virtual system using numerical FUS simulations has been
developed and used for first-stage numerical experimental
validation. Using this virtual system, automatic execution
of system tests is possible and system design parameter
studies can be performed to analyze the efficiency of the
system. This way, the effort for actual real-world exper-
imentation and validation can be reduced allowing for a
more changeable system.

Contribution
In this article we report on our development of a FUS
treatment system including motion compensation with
the long-term goal of meeting the requirements for a
“Class III Medical Product”. The system allows to perform
a single-target motion-compensated sonication during
respiratory motion. It is specified and defined in a generic
way abstracting from actual hardware components. A
first implementation of the system has been performed
with clinically available hardware, i.e. an MR device (GE
Healthcare Systems, Chicago, USA) and FUS device (Con-
formal Bone System 2100, InSightec Ltd., Tirat Camel,
Israel). To facilitate the translation of FUS research results
to the clinic, the treatment system is defined open for
extensions and the use with hardware devices of other
vendors and may be used as a research platform for FUS
experimentation.
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A virtual system using numerical FUS simulations is
presented and used for first-stage numerical experimental
validation. The treatment system interacts with the emu-
lation in the same way it does with real hardware and
is provided with realistic data that is influenced by its
control commands. A comprehensive numerical FUS sim-
ulation during respiratory motion (previously described
in detail [12]) is used to predict the treatment effects
that would happen in a real FUS experiment. Using this
virtual system, automatic execution of system tests is pos-
sible and system design parameter studies are performed
to analyze the efficiency of the system. One advantage
of this approach is that the numerical experiments can
easily be observed in the simulation whereas physical
measurements in real-world experiments are challenging,
time-consuming, and require a lot of resources.

Related work
Motion-compensation for FUS. The challenges for FUS
treatment systems imposed by respiratory motion have
been addressed by several studies in the literature.
Table 1 lists and categorizes the reported approaches.

Experimental treatment control systems have been devel-
oped by several research groups and validated in ex-
vivo and first animal studies. The motion observation
approaches include systems that analyze motion surro-
gates like respiratory belts or use image-based motion
tracking of ultrasound or MR images. The FUS control
approaches range from gating approaches to real-time
beam steering. The systems target both ablation and
hyperthermia applications. The validations have been per-
formed case-based as proof-of-concept validations either
ex-vivo or additionally on animals (sheep and pigs). While
all these approaches show considerable advancement of
the methodologies for FUS of moving organs, none pro-
vides a prospect to approach any clinical trials with their
systems. This is most probably due to system certification
impediments.

System emulation as a driver for development. Indus-
try uses emulation of hardware systems that can be
employed in the software development process, for exam-
ple in aerospace software development [13]. Clearly high
priority is assigned to safety and reliability in these

Table 1 Approaches to FUS control systems with motion compensation

Reference
(year)

Group/principal
investigators

Tracking source Prediction FUS control Validation

Pernot et al.
[20] (2004)

Fink, Tanter 3D US-based tracking (using
elements of the therapeutic
probe), 10-50 Hz

No Steered
(10-50 Hz)

Ex-vivo

Marquet etal.
[19] (2011)

Fink, Tanter 3D US-based tracking (using
elements of the therapeutic
probe), 10 Hz

No Steered, spiral
(10 Hz)

Ex-vivo, in-vivo
pig

de Senneville
etal. [21] (2007)

Moonen MR image-based registration
(correlation with motion atlas)

2 s delay compensation using
pre-treatment analysis of
periodic motions (average
period Fourier decomposition)

Steered Ex-vivo (phantom
moved by motor)

Ries et al. [22]
(2010)

Moonen 2D MR with prospective slice
tracking using pencil-beam
navigator; 2D optical flow on
GPU

3D Kalman-predictor for
trajectory anticipation
(< 114ms latency
compensation)

Steered
(> 10Hz)

Ex-vivo, in-vivo
pigs

de Senneville
et al. [23] (2011)

Moonen MR (10 Hz), optical flow Learning motion pattern
during preparation

Steered Hyperthermia,
ex-vivo, in-vivo
pigs

Quesson et al.
[24] (2011)

Moonen 5-slice MR (2.5 Hz) Not reported Not reported In-vivo pig

Holbrook et al.
[25] (2014)

Pauly Respiratory bellow Look-up table generated in
preparation step

32 target
presets

Ex-vivo, in-vivo
pig

Auboiroux et
al. [26] (2012)

Salomir MR compatible US imaging
(≥ 20 Hz), optical flow
tracking, 2D

No Steered (8 Hz),
single- and
multi-focus

Ex-vivo
(ventilator-driven
balloon)

Celicanin et al.
[27] (2014)

Salomir MR, 1D pencil-beam navigator
(80ms update)

No Steered (max
20 Hz)

Ex-vivo, in-vivo
sheep

The work of Marquet et al. [19] is the only one addressing both motion compensation and transcostal sonication (using binarized apodization)



Schwenke et al. Journal of Therapeutic Ultrasound  (2017) 5:20 Page 4 of 14

applications. To allow for a parallel development of
hardware and software, in [13], the authors propose
simulation-based hardware emulation. Therewith, the
hardware and software can be developed iteratively and
dependencies are minimized. This also facilitates the
application of agile development approaches, in which
requirements are not only specified at the beginning of
the development but rather evolve during the develop-
ment and adapt in short cycles. Contrary to the use of
numerical simulations for periodic performance assess-
ment (as being done in several industrial applications), in
the emulation-based development, simulation is used to
provide continuous feedback for collaborative design and
development [13].

Methods
In the following, we first define the generic treatment
system that abstracts from actual vendor-specific hard-
ware details. While the system allows the use of dif-
ferent methodological approaches to solve FUS-related
tasks (thermometry, focusing), it abstracts also from any
implementation details of these. After the definition of
the generic treatment system, we provide details for our
implementation of the system with a clinically available
MR device (GE Healthcare Systems, Chicago, USA) and a
FUS device (Conformal Bone System 2100, InSightec Ltd.,
Tirat Camel, Israel). Closing the section, the numerical-
simulation-based approach for a first-stage validation of
the system is presented.

Specification and quality assurance approach
A thorough requirements analysis involving a multi-
disciplinary team of radiologists and engineers was
performed. According to these stated requirements, a
detailed design specification of a generic system was
defined. The details of these specifications go beyond this
paper. We only briefly describe the main components and
concepts of the system. The main hardware devices of the
system are the MR imaging device and the therapeutic
ultrasound transducer. Both devices have a software rep-
resentation within the system controlling the devices by
using their programming interfaces. The most important
software components of the system include the motion
compensation system and the temperature calculation
component.

MR imaging device
The generic specification states that an MR device shall
be able to acquire a breath-hold planning image. It does
not specify a certain MR sequence. Furthermore, it shall
allow the acquisition of a transducer calibration image
that can be used by the system to identify the spatial ori-
entation of the FUS transducer with respect to the patient.
Most importantly, the MR device shall allow to acquire

monitoring images with a high update rate and as little
delay as possible. The treatment controller system derives
motion observation and temperature information from
these images. To simplify the system, we have restricted
our developments to MR imaging although, generally,
the system could use multiple sources of tracking data
(respiratory belt, US tracking, MR tracking) simultane-
ously. The main intention for our restriction is to avoid
the introduction of another hardware system like an
MR-compatible diagnostic imaging device in the current
development stage. For future versions, we expect a bene-
fit from combining US tracking with MR tracking. We do
not plan to use external tracking (like respiratory belts) as
external motion is not necessarily correlated with the liver
motion [14].

Ultrasound transducer system
One of the key requirements of the transducer system is
its capability to change the focus very fast. Two kinds of
ultrasound transducer control approaches can be handled
by the generic treatment system:

1) Transducer systems with a real-time interface (fast
enough to be controlled with a full parameter set of
phases and amplitudes for all individual elements in
real time);

2) Hardware that works with preset configurations,
which need to be uploaded before the actual
sonication and that can be activated sufficiently fast
during sonication.

Transducers that provide a real-time interface are eas-
ier to handle, since a preset-based interface requires
pre-computing a suitable set of presets based on an
observed motion trajectory. In our system, in case of a
multi-baseline thermometry approach, the presets can be
determined from the motion information in the base-
line image collection. This assumes that the motion
states in the baseline collection are representative for the
duration of the sonication. Focusing of the ultrasound
beam is computed within the system using a ray-based
method [12]. For complex focusing approaches that are
not real-time capable, a preset-based approach can be
used also with transducer systems with a full real-time
API. The treatment system provides the focusing compo-
nent with deformed anatomical structure maps to allow
for trans-costal focusing approaches.

Motion compensation system
For motion compensation, the following steps are repeat-
edly performed during monitoring of the therapy. The
computational pipeline starts with the image acquisition:
image reconstruction, image send over network, receive
and image assemble on the treatment controller. Based
on each newly received image, the controller performs a
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motion analysis: Feature tracking is used to identify local
motion of anatomical structures. The features are then
related to the reference respiratory state of the planning
image to allow for a mapping of planning data to the cur-
rent motion state. To steer the ultrasound focus to the
current target position, a temporal prediction needs to be
performed compensating any delays (the delay from image
acquisition to the analyzed motion state, the delays intro-
duced by focusing, sending the FUS control parameters to
the hardware, and the hardware delay of the FUS device).
Instead of implementing all this in a feed-forward loop,

we propose to decouple the observation part of the loop
from the control part. Figure 1a illustrates the problems
of a feed-forward approach: The FUS system is controlled
with the same update rate as the imaging rate. As a rem-
edy, a motion model is introduced (see Fig. 1b) to break
the forward loop into two concurrently executing loops: i)
The motion observation loop starts with each new mon-
itoring image and performs the tracking, relates the data
to the reference motion state and feeds the new motion
information into the motion model to update its state. ii)
The FUS control loop simultaneously uses the temporal
prediction functionality available in the motion model to
compute FUS control parameters for a predicted motion
state and upload the parameter set to the FUS hardware.
Thereby, the observation and control loops can be exe-

cuted with different update rates and can be adapted to
the actual constraints of the hardware devices with great
flexibility. This comes at the cost of slightly higher over-
all system latency that needs to be compensated by the
motion model.

Temperature calculation component (Thermometry)
The specified interface of the temperature calcula-
tion component would allow both multi-baseline and
reference-less proton-resonance frequency shift MR ther-
mometry approaches. Currently only the multi-baseline

approach is implemented. The temperature calculation
component is queried by the treatment system core
whether it requires baseline images. Accordingly, the sys-
tem acquires as many baseline images during respiratory
motion as the component requested. Then, in case of a
multi-baseline thermometry approach, for each newmon-
itoring image the most similar baseline image is deter-
mined based on the magnitude images. Consequently, the
temperature is computed using the phase information of
the current and baseline image. The resulting tempera-
ture image is mapped to the reference respiratory state
and can be easily overlaid on the planning image to allow
for a static-like monitoring of the therapy. This is intended
to facilitate the visual inspection by the physician. For the
reference-less thermometry, the only difference is that no
baseline collection is acquired and for each new mon-
itoring image, the baseline phase image would need to
be estimated from the current image itself. A combi-
nation of both approaches would also be possible and
would be an implementation detail of the temperature
calculation component.

FUS system implementation
We have implemented a fully functional system accord-
ing to the above-mentioned specification. Figure 2 shows
the graphical user interface during execution of a sonica-
tion in emulationmode. The system is integrated withMR
devices from GE (GE Healthcare Systems, Chicago, USA)
and the Conformal Bone System 2100 (CBS) (InSightec
Ltd., Tirat Camel, Israel) FUS device. Echo planar imging
(EPI) is used for fast monitoring and the proprietary GE
API is used to receive the image data after reconstruc-
tion on the scanner side. The monitoring images are
used for both motion observation and temperature mon-
itoring. The current system consists of a multi-baseline
thermometry component and a preset-based transducer
controller. Details on the actual system implementation

a b
Fig. 1 Motion compensation: Decoupling the FUS control from the image update rate. The forward loop a) restricts the FUS control loop to run
with the same rate as the monitoring imaging. To decouple both loops, in b), a motion model is introduced allowing for a flexible choice of control
update rate
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Fig. 2 Treatment system user interface with test data

and hardware integration will be reported in a following
publication.

Emulating the hardware system andmodeling the patient
and therapy
For a first-stage validation of the system, we have replaced
the actual hardware by a virtual system. The hardware
and the effects of the treatment to the patient are emu-
lated and numerically simulated. To simulate the resulting
temperature in the patient’s body, we incorporated a pre-
viously described numerical simulation method for FUS
during respiratory motion [12]. The key advantages of
using simulation in the process of system development
are flexibility, responsive feedback, automatic execution of
tests, and the possibility of checking the system efficiency
for a wide range of hardware system characteristics like
update rates and motion patterns. A detailed view into
the inner state of the numerical experiment allows for a
better assessment of the effectiveness of the system. Auto-
mated testing and evaluation of new components and its
influences are possible through this. Elaborate and time-
consuming real-world experiments still need to follow,
but only after the emulation-based numerical experiments
have shown the effectiveness of the system.
The hardware emulation replaces the two main hard-

ware devices involved: The MR imaging device and the
FUS device. The treatment system interacts with the emu-
lated system as with the real hardware unaware of which
execution system is actually connected. The emulation

needs to produce realistic and meaningful data for the
treatment system, e.g. monitoring images showing organ
motion in real time. To this end, GPU-based image
deformation is used to generate the required monitoring
image data. The underlying respiratory motion pattern is
replayed from actual recorded patient data. We then use
our numerical FUS simulation during respiratory motion
to simulate the patient status and to generate the image
data for the application. This involves simulating ultra-
sound propagation and heat diffusion during the deforma-
tion and motion of the organs. For details on the numer-
ical method and our verification and validation tests
thereof the reader is referred to [12]. For the present stud-
ies, the FUS simulation does not need to be performed in
real time as the treatment system does not analyze tem-
perature feedback yet. Thus it is done following the execu-
tion of a sonication to minimize performance side effects
on the real-time treatment system. To test the application
we let the following emulation parameters vary:

a) monitoring image duration (the rate at which
monitoring images are produced);

b) imaging delay (delay between acquisition and
availability of a monitoring image);

c) ultrasound shot duration for which the focus is kept
static (the motion trajectory is broken down into
multiple discrete short static foci called shots);

d) the transducer type (preset-based or real-time
control).
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Temporal motion predictors
A motion predictor uses the latest tracking information
to predict the target position for a requested time in the
future. We here compare two prediction approaches:

a) a linear-extrapolation-based predictor uses the last
two tracking samples and extrapolates by a linear fit
into the future;

b) a history-based predictor that (assuming periodic
motion) uses the latest tracking samples to find the
most similar motion state in the history of motion
states. The prediction of the target position thereby is
performed by an interpolation in the historical data
(the history continuously grows with new motion
samples).

Figure 3 illustrates the history-based prediction approach.
Another motion model that we have investigated which is
not yet part of the evaluation is described in [15].

Validation
As mentioned above, quality assurance (QA) is the main
effort in translation from research demonstrators to clin-
ical prototypes that may be used in studies. From the two
major aspects of efficacy and safety that have to be shown
by QA and validation we focus on the efficacy in the fol-
lowing. Further results on experimental validation have
been reported in [16].
We have designed a suite of test scenarios that is

based on the emulated system in order to analyze the
performance of the treatment system. To quantify the
performance of the system, i.e. its efficacy, we aim at
comparing it with static sonications. Thus, we determine
an efficiency factor for a certain choice of component
implementations and system parameter values. This effi-
ciency factor quantifies how much energy is delivered to a
moving target in contrast to a static target, see below.

Fig. 3 Example of the temporal motion prediction approaches: The
linear-extrapolation-based predictor (+) overshoots at the turning
point of motion. The history-based predictor (x) better handles this
case by finding the best match in the history of samples and uses the
historical state for the prediction

Numerical study
In our in-silico study the system parameters are varied
over the following ranges:

• monitoring image duration (100 ms, 200 ms, 300 ms);
• ultrasound shot duration (50 ms, 100 ms, 200 ms, 300

ms);
• monitoring image delay is fixed to 150 ms;

Furthermore, we test different choices for motion track-
ing, motion prediction, and emulated transducer types:

• a Bayesian tracking [17];
• the linear-extrapolation-based and the history-based

motion predictors described above;
• emulated real-time and preset-based transducers with

varying number of available preset configurations.

To identify the efficiency limit of a system constrained
to the above system parameter values, we need to use
ground-truth tracking and prediction components. The
ground-truth components fulfill the software interface
definitions of the tracking and the prediction components
and they internally know the underlying test motion at all
times. Using these test components the system is provided
with exact motion information.

Ground-truth respiratorymotion and generation of test data
To generate suitable and controllable test data for respira-
tory motion we acquired EPI image sequences of volun-
teers [15]. Respiratory motion patterns are derived from
the EPI images for a feature point in the liver. Figure 4a
shows 40 s of the acquired respiratory motion patterns
for some feature points in the liver. The motion patterns
p(t) ∈[ pmin, pmax] are then used as a basis for generating
image displacements. Additionally, a scale parameter s is
introduced, to scale the motion pattern. The displacement
function d(t) ∈ IR3 at time t is

d(t) = s p(t) v, (1)

where v ∈ IR3 is the motion direction unit vector
(superior-inferior direction). Using the scale parameter
s ≥ 0, the motion can be reduced to the static case (s = 0)
or increased to simulate exaggerated motion (s > 1).
To generate an EPI magnitude image at some time t, we

first find the EPI magnitude image that is most similar to
the planning image respiratory state. Figure 4b shows this
image in the leftmost column.
We then add noise to this image as described below.

Using Eq. (1) we translate the noisy image to the mov-
ing state. Note that in fact we use just a single translation
vector d(t) here. Thus no deformation of the liver is mod-
eled. A manual marking of the abdominal wall is used to
keep the ribcage static by applying the displacements only
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a

b

Fig. 4 Generation of test-data: The plot in a) shows the motion patterns of tracked liver features derived from EPI image sequences of three
different volunteers. For our studies, we use the black-solid motion pattern to generate monitoring images. The images in b) show data for different
motion states comparing the real EPI images and the generated data for the same respiratory state. The dashed yellow lines are given to facilitate
comparison. The green solid contours show the manually delineated sliding boundary between inner organs and ribcage. The last column shows
images highlighting the differences between the EPI and the generated image, normalized with respect to the range of the EPI image

to the inner organs that slide along the abdominal wall.
Figure 4b visualizes the generated test data for different
respiratory states.
To be able to introduce noise we build a noise model

based on the EPI images. To this end, we register 50
images of the EPI sequence to the reference EPI magni-
tude image. Registration was only applied to the inner
organs and was based on a translation model. The dif-
ferences between the registered images and the reference
image were visually inspected to ensure that they con-
tained negligible motion artifacts in the liver. During data
generation, these difference images were then sequentially
added to the reference EPI image to simulate appear-
ance changes. Compared to directly using the original
sequence with the registration results, this approach has
the advantage of full control over the motion (especially
image rate and furthermore magnitude to simulate exag-
geratedmotion). Changing the image rate in a replay of the

original sequence would also change the speed of motion,
which is undesired.

System efficiency factor
The peak temperature rise dTstatic at the target resulting
from a 10 s single-focus application of 200W ultrasound
energy in a non-moving domain will be used as the ref-
erence for establishing an efficiency factor for the FUS
system validation in the moving case. Clearly, the tem-
perature rise dTmoving during motion will be less or equal
to dTstatic. Based on this, we define the efficiency of the
moving system for a specific motion case to be

η = dTmoving

dTstatic
, 0% ≤ η ≤ 100%. (2)

For example, if the system has an efficiency of 80% for
a certain motion pattern, the resulting temperature rise at
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the target during motion is equivalent to 80% of the tem-
perature rise introduced in the static case. The value of
η can also be interpreted as an energy efficiency: A 100
W sonication in the moving case results in the same peak
temperature rise as an 80 W sonication in the static case.
We use the peak temperature rise at the planned tar-

get position as the metric for our studies as it gives good
results only if the focus in the moving case is both as
sharp as in the static case and also at the correct loca-
tion. Assessing an average over a region around the tar-
get might underestimate an unintended focus dislocation.
The main effects influencing the peak temperature rise at
the planned target are firstly the quality of motion com-
pensation (how accurately was the actual target motion
followed by the moving focus) and secondly the heat dif-
fusion process (how much heat is conducted from the
heated target to the surrounding tissue). The second effect
is largely influenced by the choice of tissue parameters.
By using a relative metric that compares static and mov-
ing case for the exact same tissue parameters, however, we
eliminate this dependency to a large extent.

Results
Maximum efficiency during motion
For a certain choice of ultrasound shot duration and spe-
cific type of motion, the maximum efficiency that can be
reached is identified using the test-ground-truth track-
ing and prediction components together with an emulated
real-time ultrasound transducer. Figure 5 shows the effi-
ciency plots over ultrasound shot duration for different
motion scaling. These results give the efficiency limits of
the treatment system if provided with perfect motion pre-
dictions. For subtle motion (s = 0.5), even with a long
ultrasound shot duration of 300ms, the system efficiency

Fig. 5Maximum efficiency for motion compensated FUS for different
choices of ultrasound shot duration and different motion scale factors

can reach η = 99% and can increase to almost 100% for
decreasing the ultrasound shot duration to 50ms. In case
of normal respiratory motion (s = 1.0), the efficiency
can be better than 95% for 300ms shot duration and can
increase to above 99% for 50ms shot duration. Exagger-
ated motion (s = 1.5) might be compensated with an
efficiency of 90% in case of 300ms shot duration and can
increase to about 99% for 50ms shot duration. By design,
the ground-truth motion prediction is invariant to the
imaging update rate which can be seen in Fig. 6 below
(similar efficiency limits across columns).

Efficiency of temporal motion predictors
We here evaluate the system efficiency when equipped
with different motion predictors. The reference again
is the achieved temperature rise in the sonication with
no motion. Tested motion predictors are the linear-
extrapolation-based and the history-based predictor. As
stated before, the ultrasound focus is kept static for the
shot duration. During this shot, the target moves continu-
ously along a trajectory.
Since we have de-coupled the observation loop from the

control loop (cf. Fig. 1) we may purely concentrate on the
small time window of the shot duration. For the focus-
ing we can choose any point on the predicted trajectory
within this time window to achive the short-time static
sonication. However, we also need to take into account
that the error of the prediction increases with prediction
time.
Theoretically, shooting at the trajectory point in the

middle of the shot duration should best approximate the
trajectory. But this shooting at the center of the trajec-
tory also increases the prediction time by half of the shot
duration. To assess this effect, we evaluate both predic-
tion methods for targeting at the predicted trajectory at i)
the beginning and ii) the center of the shot duration time
window.
To separate from tracking errors, the test-ground-truth

tracking is used providing accurate tracking data to the
motion predictors. All experiments are performed using
an emulated real-time transducer. We thus can evaluate
the error introduced by the different predictors. Figure 6
shows the efficiency plots over ultrasound shot duration
for different motion amplitude factors (0.0, 0.5, 1.0, 1.5)
for different monitoring image durations (100ms, 200ms,
300ms; columns).
The first row shows the efficiency for all motion predic-

tors for the static case (s = 0.0) to verify that all of them
can handle the static case. The other rows show the effi-
ciency over shot duration for scaling factors of s = 0.5,
s = 1.0, and s = 1.5. We see that all motion predictors
can handle the static case and have near-perfect efficiency.
In all cases, the efficiency limit for targeting the trajec-
tory center (dashed limit line) is higher than for targeting
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Fig. 6 Efficiency evaluation of the system using temporal motion predictors in combination with the ground-truth tracking data. The rows
represent different motion scaling factors while the columns represent different monitoring image duration (inverse of image rate)

the beginning of the trajectory. This, however, represents
the limit that is computed using the ground-truth pre-
dictor that provides the system with error-free motion
predictions. When analyzing the imperfect predictors,

firstly it is evident that in almost all numerical exper-
iments, the history-based motion prediction performs
better than or equally well as the linear-extrapolation-
based predictor. Only in the case of 100ms image duration
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and reduced motion (s = 0.5), the linear prediction
is slightly better. The plots furthermore show decreas-
ing efficiency for increasing monitoring imaging duration
(meaning decreasing image update rate). Sources of this
error are the greater temporal prediction horizon and
the associated greater prediction error, and also the infe-
rior temporal sampling of the motion. The history-based
predictor shows better efficiency and less dependency
on image update rate than the linear-extrapolation-based
predictor. This meets the expectations as the history-
based predictor can better handle the inversion of motion
directions at the turning points (see also Fig. 3). The
linear-extrapolation-based predictor cannot handle the
turning points and thus shows greater dependency on
image update rate. We conclude that the history-based
predictor is better suited for the available image update
rates. Regarding the choice of targeting the beginning or
the center of the motion trajectory during a shot with
fixed focus, we do not see a clear improvement of shooting
at the center. The better approximation of the trajectory
on the one hand and the increasing prediction error on the
other hand cancel each other out. As targeting the center
should be theoretically better and in our tests it does not
show worse efficiency than targeting the beginning of the
shot, we favor shooting at the center of the trajectory.

Efficiency of motion tracker
The efficiency of the Bayesian motion tracking is evalu-
ated in the combination with the temporal motion predic-
tors. All tests are performed using the emulated real-time
transducer. We compute the efficiency loss η� associated
with the Bayesian motion tracking by subtracting the effi-
ciency when using the Bayesian tracking (ηBayesian-tracking)
from the efficiency when using the test-ground-truth
tracking (ηground-truth), with both employing the same
temporal prediction:

η� = ηground-truth − ηBayesian-tracking. (3)

Table 2 lists the results of this investigation. The mean
efficiency loss η� over 120 simulated experiments with
varying image durations and ultrasound shot durations
is 4.9% with a 95%ile loss of 10.8%. In combination with
the history-based motion predictor, the efficiency loss is

Table 2 Efficiency loss associated with the Bayesian tracking in
combination with the motion predictors

Motion predictor Mean η� 95%ile η�

Linear-extrapolation 6.4% 12.9%

History-based 3.3% 7.9%

Overall 4.9% 10.8%

far less than in combination with the linear-extrapolation-
based motion predictor.

Efficiency of preset-based ultrasound transducers
To assess the error that is introduced by using a preset-
based transducer instead of a real-time transducer, we
vary the number of presets and compute the resulting
system efficiency. To discriminate the error introduced
by using transducer configuration presets from the errors
introduced by tracking and motion prediction, we use
again the ground-truth tracking and prediction compo-
nents that know the underlying respiratory test motion.
As the ultrasound shot duration is a critical parameter for
this assessment, we also vary over this parameter. Figure 7
shows the resulting system efficiency. The reference is
the temperature rise achieved with a real-time transducer
(dashed plot). For subtle motion (scale factor s = 0.5 a))
even 8 presets result in an efficiency of over 99%. For
larger motions in b) and c) the efficiency with 8 preset
quickly degrades. Using 32 or 64 presets is efficiency-wise
close to using a real-time interface without presets. Tem-
poral inaccuracies of the control loop execution threads
can lead to cases where the preset-based approach is
slightly more efficient than the real-time reference. To
minimize this effect, the numerical experiment simula-
tions were repeated 5 times and the results represent the
mean efficiency.

Estimated efficiency of the actual hardware FUS system
Using the GE MR device, EPI (reduced field-of-view)
images can be acquired with about 150ms imaging dura-
tion and a delay of about 150ms. The delay includes coil
averaging and image reconstruction on the scanner, send-
ing the data over the network and receiving it in our
application. The InSightec CBS transducer is used in a
preset-based approach that can handle 64 preset config-
urations. Switching between the presets is a matter of a
few milliseconds. The system is equipped with Bayesian
tracking, history-based motion prediction and a 50 ms
shot duration. The presets are computed at the beginning
of the monitoring session for a sonication based on the
observed motion. Figure 8 gives the results as a plot of
efficiency over motion scaling factor s. The overall effi-
ciency of the virtual system with respect to temperature
for normal motion is about 80%. For exaggerated motion
(s = 1.5) the efficiency goes down to about 70%. Less
motion can be compensated with an efficiency greater
than 80%.

Discussion
In this paper, we describe the development of a novel
FUS treatment system capable of performing motion-
compensated application of FUS. Motion-compensation
is achieved by deriving motion information from MR
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a b c

Fig. 7 Efficiency evaluation of preset-based transducers against real-time transducers for respiratory test motion with scale factor a s = 0.5,
b s = 1.0, c s = 1.5

monitoring images and computing motion predictions to
compensate delays in the processing loop. The system is
developed with the goal of clinical use. Amajor problem is
that developing a whole treatment system under such high
quality regulations is a huge effort for research groups
which normally is not compatible with short research
projects of a few years. Usually, research groups are fur-
thermore not trained and certified for the high quality
standards necessary for the application of the system to
humans. This challenge requires a change of the devel-
opment process in the research context as we propose
later.
To reduce the efforts necessary for testing and particu-

larly real-world experimental validation, we here propose
a simulation-based hardware emulation to test and ana-
lyze the efficiency of the system. The emulation internally
uses a full numerical simulation of FUS during respira-
tory motion. Using this virtual system, choices of system
parameters and algorithms can be determined with less
effort. The actual real-world testing is thereby minimized
to performing tests on the system resulting from the
in-silico design stage.

Fig. 8 Estimated efficiency of the actual hardware FUS system based
on the virtual system

In this work, we focus our attention to the motion com-
pensation of the system. Firstly, we compute the limits
of motion compensation for different choices of system
parameter values for image duration and ultrasound shot
duration. Even exaggerated motion (s = 1.5) can theoret-
ically be compensated in the case of an ultrasound shot
duration of 300mswith an efficiency above 90%. However,
it would require a perfect temporal prediction which in
practice is clearly not possible. To see how good the actual
predictors can forecast the motion, we first individually
analyze their influence on the system efficiency. This test-
ing is done in combination with perfectly accurate track-
ing information. Afterwards, also the influence of motion
tracking and also the transducer types is quantified. The
motion tracking reduces the efficiency on average by only
4.9%. The effect of using a preset-based transducer instead
of a real-time transducer is also analyzed. For the sole task
of motion compensation, 32 presets should be enough to
compensate even exaggerated motion. However, for the
additional task of trans-costal delivery we assume that
a larger number of presets is required. The temporal
motion prediction is the most influential component. The
history-based motion prediction is found to perform bet-
ter than a linear-extrapolation-based predictor. We, how-
ever, see potential for improving the temporal predictions.
A spatio-temporal motion model for liver motion [15],
which currently is being integrated, is expected to improve
the predictions. Themodel includes a temporal prediction
method extending [18].
Finally, a virtual model of the actual hardware system

with the same specifications (150ms monitoring imag-
ing delay, 150ms image duration, 64-preset transducer) is
tested and found to be capable of motion compensation of
normal respiratory motion with an efficiency above 80%.
Exaggerated motion (s = 1.5) can be compensated with
an efficiency of about 70%.
Potential for improving the system efficiency lies also

in decreasing the overall computational delays in the sys-
tem including computational delays introduced by the
motion tracking, the motion predictors, and also imaging
delays and update rates. Furthermore, we see potential in
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improving the temporal motion predictions by the com-
bination of different tracking sources like external motion
surrogates and ultrasound tracking.

Conclusion
The reported efficiency values for the virtual model of our
target hardware system are expected to be already suited
for the clinical use of the motion compensation. We cur-
rently work on confirming the estimated efficiency of our
system in real-world FUS experiments. Animal studies for
further validation are in preparation. The long-term goal
is to bring the technology to clinical use. Furthermore, we
want to ease the translation of future research and build
upon our current work in the future. The system might
be a candidate for a platform for research developments
in the FUS context. Research partners could contribute
individual component implementations that are used in
the system in a plugin fashion. A further long-term goal
is to implement a challenge-style evaluation framework
to automatically evaluate and compare the plugins using
the simulation-based emulation. This approach could lead
to more research results being transferred to clinical
practice.
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