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Abstract: The discovery of new gigantic molecules formed by
self-assembly and crystal growth is challenging as it combines
two contingent events; first is the formation of a new molecule,
and second its crystallization. Herein, we construct a workflow
that can be followed manually or by a robot to probe the
envelope of both events and employ it for a new polyoxo-
metalate cluster, Na6[Mo120Ce6O366H12(H2O)78]·200H2O (1)
which has a trigonal-ring type architecture (yield 4.3% based
on Mo). Its synthesis and crystallization was probed using an
active machine-learning algorithm developed by us to explore
the crystallization space, the algorithm results were compared
with those obtained by human experimenters. The algorithm-
based search is able to cover ca. 9 times more crystallization
space than a random search and ca. 6 times more than humans
and increases the crystallization prediction accuracy to 82.4:
0.7% over 77.1: 0.9% from human experimenters.

Understanding the supramolecular self-assembly of com-
plex inorganic molecules poses a difficult problem since it
relies on two contingent events.[1] To make a discovery the
conditions under which the building blocks assemble have to
be found and then the conditions under which the product
aggregates into crystals to be isolated and characterized need
to be identified. The vast number of combinations of the
experimental conditions and the coordination modes of the
transition metals taking part in the building blocks means that
a full exploration of the chemical space of any given
compound would be impossible.[2] For these reasons, the
intuition of experienced chemists is required to design the
appropriate experiments to determine the right conditions for
the isolation of any new products.[3] But intuitions can be
biased by both the current knowledge of the field and the

frame of mind of the experimenter—making important
discoveries difficult to achieve.

Herein, we design and investigate a new approach for
probing the envelope of both the synthesis and the crystal-
lization process of a new polyoxometalate compound with the
formula Na6[Mo120Ce6O366H12(H2O)78]·200 H2O (1)
{Mo120Ce6} (Figure 1). Our method is drawn from recent

advances for active data acquisition in the field of machine
learning, known as active learning.[4] Active learning consists
of methodologies able to decide what experiments to perform
next in order to optimally improve the understanding of the
system at hand. We compare our algorithmic method with
a random screening process in the exploration and modelling
of the crystallization conditions of compound (1). Impor-
tantly, we study how human experimenters approached this
specific problem and compare their strategies and perfor-
mance to our machine-learning approach.

So far, work in this area has been mainly focused on
simulations and only a few studies have involved real
experiments.[5] For example, recently, Wicker and Cooper[6]

applied machine learning methods to draw a map of
crystallinity according to the size of a molecule and its
number of rotatable bonds. Similarly, Oliynyk et al.[7] used
machine learning to predict structures of inorganic binary
compounds of the general formula AB by considering various
atomic and physical properties in their calculations. Of

Figure 1. Schematic representation of the self-assembly of the
{Mo120Ce6} wheel from basic building blocks in polyhedron mode.
Coloring code: {Mo2} red; {Mo8} blue with central atom in cyan;
{Mo1} yellow; Ce green.

[*] V. Duros,[+] Dr. J. Grizou,[+] Dr. W. Xuan, Z. Hosni, Dr. D.-L. Long,
Dr. H. N. Miras, Prof. L. Cronin
WEST Chem, School of Chemistry
University of Glasgow
University Avenue, Glasgow, G12 8QQ (UK)
E-mail: lee.cronin@glasgow.ac.uk
Homepage: http://www.croninlab.com

[++] These authors contributed equally in this work.

Supporting information and the ORCID identification number(s) for
the author(s) of this article can be found under:
https://doi.org/10.1002/anie.201705721.

T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co.
KGaA. This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly
cited.

Angewandte
ChemieCommunications

10815Angew. Chem. Int. Ed. 2017, 56, 10815 –10820 T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

http://dx.doi.org/10.1002/ange.201705721
http://dx.doi.org/10.1002/anie.201705721
http://orcid.org/0000-0003-0288-1633
http://orcid.org/0000-0003-0288-1633
http://orcid.org/0000-0003-3241-2379
http://orcid.org/0000-0002-0086-5173
http://orcid.org/0000-0002-0086-5173
http://orcid.org/0000-0001-8035-5757
https://doi.org/10.1002/anie.201705721


particular interest, Norquist et al.[8] made use of data from
unsuccessful syntheses to predict reaction outcomes of
vanadium compounds and compared the efficiency of their
algorithms with the typical strategies that human chemists
apply.

Our machine learning approach actively defines new
experiments to perform with an aim to improve its model of
the system. Such targeted data acquisition strategy allows
a reduction in the number of experiments needed to attain the
same model quality, thus saving time and financial resources.
To our knowledge, it is the first time that such an active data
acquisition strategy is applied in this context and compared
with human experimenters. Machine learning methods have
previously been used as a tool of optimization[9] and a faster
data mining technique for extensive databases.[10–14] It is
important to note that our approach should not be mistaken
for high-throughput screening as it uses machine learning
techniques capable of abstracting problems rather than
a brute force increase of processing speed. We instead suggest
this approach should be viewed as “intelligent throughput”
since not all the possible experiments are done, and only those
chosen by the algorithm are explored and the system
effectively learns as the experiment continues similar to
how an expert chemist would work.

We first introduce the compound that was discovered, the
reaction conditions from which it can be isolated and
characterized. We then compare our machine-learning
approach against random screening and human experiment-
ers in terms of performance and methodologies for the
exploration of the crystallization boundaries (see Figure 2).

The new polyoxometalate cluster belongs to the family of
lanthanide-doped molybdenum blues.[15–21] Compound 1 is
isostructural to the reported[22] Na6[Mo120Pr6O366-
(H2O)78H12]·ca. 200H2O, but notably was first discovered
automatically by our automated chemical robot, see Support-
ing Information: Experimental Section, Method A. In later
experiments we also reproduced the synthesis and crystal-
lization of the compound on the bench, see Supporting
Information: Experimental Section, Method B. Compound
1 was characterized by elemental analysis, single-crystal X-ray
structure analysis, bond valence sum (BVS) calculations, IR

and visible-NIR spectroscopy, redox titrations and thermog-
ravimetry.

The single-crystal X-ray structure analysis reveals four of
the dodecameric ring-shaped clusters 1 in the unit cell, packed
parallel to the crystallographic bc plane giving rise to 1D
channels occupied by guest water molecules (Figure S3 in the
Supporting Information). The framework of 1 consists of
12 sets of basic building blocks {Mo8}, {Mo2} and {Mo1} units,
which are well-defined in Mo Blue clusters such as the
archetypal {Mo154},

[22] {Mo176},
[23] and {Mo368},

[24] with 6 {Mo2}
units substituted by 6 CeIII ions. On the whole, the architec-
ture of 1 is constructed from 12 {Mo8} units, 6 {Mo2} units,
12 {Mo1} units and 6 {Ce(H2O)5} units (Figure 1). The coor-
dination configuration of the two distinct types of CeIII can be
described as a distorted monocapped square antiprism, built
from four m2-O atoms and five H2O molecules that is,
{Ce(H2O)5}. Bond lengths of molybdenum atoms coordinated
to terminal oxo groups have a Mo=O bond length in the range
of 1.554(12)–1.702(9) c. The symmetric arrangement of
3 CeIII ions on both the upper and lower surfaces of
{Mo120Ce6} greatly reduces the symmetry of 1 to D3 as
compared with the parent {Mo154} (D7d point group). As
a result, the wheel displays an irregular ring-shaped structure
with an outer ring diameter of about 31 c and an inner ring
diameter of about 17 c. A further characteristic of the
structure of 1 is the large number of protons resulting from
the 24 e@ reduction. The overall reduction state of 1 was
confirmed using three independent techniques: UV/Vis
spectroscopy, redox titration and bond valence sum calcu-
lations (BVS), [see Supporting Information for details]. BVS
calculations[25] are carried out on all the Mo and O centers
(Table S2). A careful analysis of the BVS result reveals
12 singly and 78 doubly protonated oxygen atoms. Taking into
consideration the obtained information from the above
calculations along with elemental analysis and redox titra-
tions, it is possible to determine the overall building-block
scheme and overall charge for compound 1: [{Mo2}6{Mo1}12-
{Mo8}12{Ce6}]/[{MoVI

2O5(H2O)2}6{MoVI/V
8O26(m3-O)2H-

(H2O)3MoVI/V}12 {CeIII(H2O)5}6]
6@.

To explore the synthetic and crystallization process it is
important to define the process of the reaction accurately as
shown in Figure 2. By describing an abstract method we could
then turn this into a concrete procedure and then output the
precise set of experiments to perform, determined by either
a human or the algorithm-driven robot using three methods;
robot-algorithm; human; and robot-random as the control
method. For the experimental conditions to be defined and
explored three distinct pieces of information must be
provided: 1) the chemicals involved in the synthesis, 2) an
experimental method for the synthesis and crystallization
process, and 3) an initial set of data consisting of successful
and failed crystallization experiments, that is, the starting
information used to decide what experiments to perform next,
see Figure 3. Next, to compare the methods using a commonly
calibrated and therefore robust experimental test, we devel-
oped an automated platform (Figure S8) able to consistently
perform the crystallization experiments given a list of
parameters such as the number of reagents and their
corresponding volumes (see Supporting Information, part 7).

Figure 2. Representation of the experimental method showing how the
automated and bench work was done. Structure: Mo blue; Ce green.
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For the reactions, aqueous stock solutions of
Na2MoO4·2 H2O 1m, Ce(NO3)3·6 H2O 0.1m, NH2NH2·2 HCl
0.25m and HClO4 1m were prepared and used as described in
the Supporting Information: Experimental Section, Meth-
od A. During the experiment both Na2MoO4·2 H2O and
Ce(NO3)3·6H2O were always added in a 1:1 volume ratio
(molar ratio 10:1 respectively). The automated platform
mixes, in a reactor, the stock solutions in configurable ratios
to a total volume of 15 mL, and allows them to react at 90 88C
for 30 min. We then collect a 9 mL sample for crystallization
and then use a cleaning protocol to reset the system before the
next experiment begins. The crystallization method consists of
waiting overnight to allow for crystals to form. Finally, the
presence or absence of crystals is checked under illumination
with a white light emitting diode (3300–3500 lux at a distance
of 5 cm) and the information is added in a database of
experiments. It is important to note that under these
particular conditions, no other product crystallizes in a time
frame longer than one month, see Supporting Information,
Table S12. Following this process the initial data set was
obtained from previous experiments performed in the plat-
form and is shown in Figure 4, also see Supporting Informa-
tion, section 7, Table S3. Single-crystal X-ray diffraction
analysis confirmed that the main product is cluster (1). The
resulting data set, consisting of 89 points, was provided to
each method and served as the initial database and training
ground for their subsequent exploration.

As described above, we studied three different methods:
a machine-learning algorithm approach, human experiment-
ers and random experiments as a baseline (Figure 3). Each
method followed the same protocol: 1) analyze the dataset of
the previous experiments, 2) specify 10 new experiments to
execute, 3) receive a crystal/no-crystal information for each of
the requested experiments. The process is repeated 10 times
for a total of 100 experiments. At each iteration, all data
collected previously are integrated in the decision process for

generating the next set of 10 experiments. All experiments for
all methods were executed on the platform under similar
conditions. Each method was then evaluated in terms of
strategies and overall exploration of the experimental space.
The change in the ratio of the chemicals not only provides us
with information of the experimental conditions that a given
compound crystallizes in, which is the thermodynamic out-
come of the most favorable conformation, but it also provides
information on which combinations of reagents are not
successful in the formation of compound (1). The latter can
lead to the observation of other known compounds [see
Supporting Information, section 8] or it can lead to the
discovery of new chemical species. Figure 5 shows the differ-
ence in the crystal quality as we move from the central cluster
of the initial data shown in Figure 4 to the outer regions of the
crystallization boundaries.

The machine-learning approach is based on established
active learning algorithm in classification problems[26]

Figure 3. Schematic diagram of the exploration methods used in our
studies comparing the algorithmic approach with that of the human
experimenter and a random approach. Both the random and algorith-
mic approaches used a purpose-built liquid handling and crystalliza-
tion robotic platform.

Figure 4. 3D graph of the initial set of data. A) Na2MoO4·2H2O 1m
and Ce(NO3)3·6H2O 0.1m (mL); B) HClO4 1m (mL);
C) NH2NH2·2HCl 0.25m (mL). Crystals red; non-crystals black.

Figure 5. Change in the crystal quality of the crystallization sphere as
we move from the initial data set (a), to the middle of the boundar-
ies (b), and the outer edges of the boundaries (c). d) shows the
precipitate which is observed when moving further away from the
initial data set.
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whereby the classification is the process of assigning labels
(e.g. crystal/no-crystal) to regions of a parameters space (e.g.
a range of experimental parameters) given only a few
examples of known label-parameters instances. The quality
of such model depends on the quality of the training data, the
complexity and non-linearity of the process studied as well as
its stochasticity. Methodologies have been developed to
decide which experiments to perform in order to improve
the model faster, called active learning procedures.[4] Our
algorithm is strongly inspired by such methods but adapted to
the particular problem under investigation, see Supporting
Information, part 6. Human experimenters were volunteers
among PhD students in our group, all familiar with inorganic
chemistry synthesis, and hence could be considered already to
be “experts”. For the needs of this study, they were aware of
the chemical formula of compound (1), the reagents, the
reaction conditions, the platform and the initial set of data.
They were not aware of the overall aim of comparing
strategies among methods. Each human experimenter was
instructed to develop their own strategy given the objective to
identify the range of experimental conditions where com-
pound (1) can be isolated. A baseline method is used as
control, it consists of selecting experiments at random in the
chemical space. This method is thus blind to both the initial
and the subsequently collected crystallization information. To
determine the differences between methods and their respec-
tive overall data acquisition performance we qualitatively
analyzed trends in exploration strategies between each
method. Then we quantified the number of experiments
leading to crystals, as well as the extent of chemical space that
was explored by each method. Using this data, it is then
possible to compute the effectiveness of respective crystal-
lization models and their predictive power.

The difference between human experimenters and the
algorithm is illustrated in Figure S28. We can observe the
stepwise exploration of human experimenters, starting from
the known core of initial data provided and expanding
outwards (S28, c). The limiting factor in their exploration is
that when they perform an experiment that yields no-crystals,
they stop after trying only a handful of experiments further
than this point. Additionally, human experimenters tend to
construct investigations that are more “Cartesian” shown in
Figure S28,c, which reflects practical constrains. On the other
hand, the algorithm follows a more “polar” approach around
the initial set of data (Figure S28,b) and is not “disturbed”
when crystals are not formed in the experiments, allowing
a wider area to be covered.

Following the results from our experiments, in Figure 6 we
plot the average explored volume of the experimental space
as a function of the number of experiments performed. For
the volume calculation, we compute the volume of the convex
envelope of the experiments leading to crystals, see Support-
ing Information, part 10.2.2. We observe a large difference
between algorithm and human experimenters. This can be
explained because the algorithm is agnostic to the chemical
environment and untied with prior chemical knowledge.
Additionally, the algorithm is more “adventurous”, perform-
ing “jumps” in the chemical space straight into the believed
boundaries between crystal and no-crystal. On the contrary,

human experimenters have drastically varied strategies
depending on personal perceptions and biases of the partic-
ular chemistry involved. Figures S35–S38 provide a visual
representation of the experiments selected by the two human
experimenters. Other exploration metrics confirm the
increased exploration of our active learning approach as
well as the high variability between human experimenters, see
Supporting Information, part 11.2.3.

Additionally, human experimenters can be baited by the
absolute number of crystallization points they discover,
disregarding how conservative or not their strategy can be.
This point is important because a conservative strategy with
many small “steps” of exploration can lead to many crystal-
lization points but limits a wider exploration of the chemical
space. For example, the second human experimenter per-
formed an impressive 47 experiments leading to crystalliza-
tion, out of 100 (Table 1, run 2). But to characterize our

system the breadth of exploration is more important that the
absolute numbers of crystal formulation found. On the other
hand, the algorithm, despite finding only 32 crystal experi-
ments, revealed more about the chemical landscape. As
shown in Figures S43 and S45, it was able to discover and
explore a third of the crystallization region and spend
a significant number of experiments exploring non-intuitive
formulations.

Finally, the main interest of using a machine learning
approach is that the data acquisition process can be informed
and coupled with the objective—in this case, building an
accurate crystallization map. We tested that hypothesis by

Figure 6. Explored crystallization space by the three methods. The
exploration is computed as the volume of the convex envelop of the
experiments leading to crystals [see Supporting Information, part
10.2.2].

Table 1: Total number of crystal points found for all runs of the three
methods applied.

Method Run 1 Run 2

Algorithm 27 32
Human experimenter 26 47
Random 4 2
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computing and testing a model of our crystallization system at
each iteration and for each method (average of both runs)
[see Supporting Information, section 10]. The quality of the
prediction, that is, the percentage of time a crystal prediction
is accurate, is expected to increase as more data are collected.
Figure 7 shows that the machine-learning algorithm was able

to collect much better quality data and improved its
classification accuracy from 68.1% (i.e. the initial prediction
quality based on the initial database provided to all methods)
to 82.4: 0.7%. Whereas the humans showed a less significant
improvement (from 68.1 % to 77.1: 0.9%) and the random
method did not improve in accuracy (from 68.1% to 68.7:
1.4%). The fact that the model computed using the human
method improves less should be considered in light of the new
data acquired, human experimenters simply did not collect as
useful information as the algorithm method. This is even more
striking with the random method that provided no additional
information. These results were computed using a different
classifier than the one used within the algorithm method, in
order to verify that the data collected were not tied to the
underlying assumptions of the algorithm. Results with other
classifiers are presented in Supporting Information, sec-
tion 10.3 and confirm the trends from Figure 7.

In previous studies the data used to characterize and
model crystallization processes were extracted from data-
bases of experiments intended for other research purposes.
Here, we coupled the data acquisition process with the
modeling of our system, with the aim of characterizing the
crystallization boundaries of a new polyoxometalate cluster
(compound 1) in real time. Our “intelligent-throughput” is
powerful since it combines both intuition from machine
learning and reliable liquid handling, allowing the system to
develop “chemical-intuition”; we hypothesize this could be
a first step to developing a new approach we term chemical
intelligence which uses machine learning to explore complex
chemical systems. Using this approach we could observe
significant differences in the strategies not only between the
algorithm and the human experimenters but also between the
two human experimenters. These differences can have a sig-

nificant impact in the ability of exploration and are heavily
dependent on the personal and chemical biases of the
individual. In the future, we aim to explore how to combine
the intuition of the chemists with chemical intelligence to use
human–machine teams to identify new phenomena and
characterize new chemical systems. We have placed the
code online[27] in the hope that this will help others who wish
to use machine learning in crystal chemistry.
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