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ABSTRACT 

 

We review the history of Bayesian chronological modeling in archaeology and demonstrate that 

there has been a surge over the past several years in American archaeological applications. Most 

of these applications have been performed by archaeologists that are self-taught in this method 

because formal training opportunities in Bayesian chronological modeling are infrequently 

provided. We define and address misconceptions about Bayesian chronological modeling that we 

have encountered in conversations with colleagues and in anonymous reviews, some of which 

has been expressed in the published literature. Objectivity and scientific rigor is inherent in the 

Bayesian chronological modeling process. Each stage of this process is described in detail and 

we present examples of this process in practice. Our concluding discussion focuses on the 

potential Bayesian chronological modeling has for enhancing understandings of important topics. 
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SPANISH ABSTRACT 

 

En este artículo se revisará la historia de la modelización cronológica Bayesiana en arqueología y 

se mostrará cómo la arqueología americana ha experimentado en los últimos años un auge en su 

aplicación. La mayor parte de los análisis han sido desarrollados por arqueólogos que han sido 

autodidactas en el aprendizaje del método, ya que las oportunidades de formación en el análisis 

Bayesiano son muy limitadas. Se explicarán cuáles son los errores más comunes en la aplicación 

de la modelización cronológica Bayesiana con los que nos hemos encontrado al conversar con 

compañeros, así como en revisiones anónimas, algunas de los cuales ya han sido señaladas en 

otros trabajos. La objetividad y el rigor científico resultan inherentes al proceso de modelización 

cronológica Bayesiana. Se describirá en detalle cada etapa de este proceso, presentando ejemplos 

de su puesta en práctica. Nuestra conclusión se centrará en torno al potencial de este método para 

mejorar nuestra comprensión sobre temas de gran relevancia. 
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The past five years have witnessed an explosion in archaeological publications employing 

Bayesian chronological modeling from all corners of the world (Bayliss 2015), a practice that 

has been in place in the U.K. (especially in England through the work of Alex Bayliss and others 

at English Heritage/Historic England) for over 20 years. The body of well-sampled and well-

dated sites subjected to Bayesian modeling in the U.K. is quite large, allowing for the first time 

generational narratives for many periods of British prehistory (Bayliss 2015; Hamilton et al. 

2015). Much of this work has been undertaken in collaboration with a small group of 

archaeological specialists experienced in constructing robust chronologies (Bayliss 2015). In 

many cases, they have produced chronologies of a higher accuracy, transparency, and 

reproducibility than those created through informal interpretation. The adaptation of Bayesian 

frameworks has also allowed for the estimation of detailed settlement histories and precise 

evaluations of the timing and tempo of social change. 

 

The adoption of Bayesian chronological modeling outside Britain has occurred more slowly, but 

the method is now used regularly in many areas throughout Europe, Asia, and other parts of the 

world (Bayliss 2015; Buck and Meson 2015). The impact this work is beginning to have on 

European prehistory has been profound, and has been referred to by some as a radiocarbon 

revolution (Bayliss 2009). Bayliss (2015) presents a survey of this literature and demonstrates 

that the clear majority of these applications are for site chronologies, but the method is also used 

to create environmental (Blaauw and Christen 2011; Bronk Ramsey 2008; Dye 2011), historical 

(Levy et al. 2010; Tipping et al. 2014), seriation (Denaire et al. 2017; Whittle et al. 2016), and 

typological sequences (Conneller et al. 2016; Garrow et al. 2009; Krus 2016). 
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The shift to chronological interpretation via Bayesian modeling has happened in large part 

because of the development of freely-available computer programs, which provide user-friendly 

statistical modeling tools (Buck and Meson 2015). The most widely used Bayesian chronological 

modeling software programs are BCal (Buck et al. 1999) and OxCal (Bronk Ramsey 1998, 2001, 

2008, 2009a), and while the clear majority of applications are being done in OxCal (Bayliss 

2015) new computer programs do appear (Jones and Nicholls 2002; Lanos et al. 2016). 

Additionally, more specialized Bayesian chronological modeling software exists, primarily for 

age-depth modeling of paleoenvironmental sequences (Blaauw and Christen 2011; Haslett and 

Parnell 2008). The popularity of OxCal is due in large part to its capability for use in a wide 

range of applications. 

 

The rapid growth in the implementation of Bayesian models within archaeology outside of the 

U.K., combined with the dearth of practical learning materials, has led to confusion about the 

Bayesian process, the propagation of common myths, and in some cases outright skepticism. 

This story is not altogether unfamiliar from a European perspective, even more so when 

examined from the perspective of bringing Bayesian modeling from England into standard 

archaeological practice in Scotland (which we have witnessed first hand).  

 

We believe that it is both necessary and timely to provide a commentary on the state of Bayesian 

modeling in American archaeology to steer the discipline towards best-practice approaches. 

Especially because we have come across skepticisms and misconceptions in conversations with 

colleagues and in anonymous reviews, and some of this has been expressed in the published 

literature. Many of these beliefs deal with what is required to properly create a meaningful 
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Bayesian chronological model, while others with how to evaluate Bayesian chronological 

models. Here we take to task six of these misconceptions. 

 

We further provide a brief overview of the history of the use of the methodology in American 

archaeology. We describe in detail the Bayesian process, which is critical for understanding this 

methodology. We provide examples of the use of Bayesian chronological modeling in practice 

and a commentary on how Bayesian chronological modeling could be used in the future of 

American archaeology. Our goal in doing this is to bring a greater awareness of the key issues so 

that the practice can reach levels of quality comparable to that found in the UK and Europe. 

 

THE STATE OF AFFAIRS IN THE AMERICAS 

 

The first studies using Bayesian chronological modeling in the Americas were published in the 

1990s, only several years after the first published applications in Europe (Bayliss 2015). The 

exposition of the Bayesian method by Christen (1994) might be considered to contain the earliest 

published Bayesian chronological model for a site in the Americas – the Chancay culture of 

Peru, but it is the chronological modelling of Zeidler et al. (1998), with its discussion of 

contextual and taphonomic security and sensitivity analyses, that is more akin to the practice of 

chronological modeling that we outline in this essay. While, American applications of Bayesian 

chronological modeling continued to be published only intermittently throughout the 2000s, 

during this time Bayesian chronological modeling in the Americas appears to have been only 

used by a handful of American archaeologists. From 2010–2015 there was an enormous increase 

in the number of studies in American archaeology presenting applications, demonstrating that 
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Bayesian chronological modeling in the Americas is on the verge of reaching critical mass 

(Figure 1). 

 

The rapid growth of Bayesian chronological modeling in American archaeology over the past 

several years and lack for formal training opportunities has led to plug-and-play applications, 

seemingly by archaeologists lacking clear understanding of the Bayesian process (this problem is 

described further in Buck and Meson [2015] and Cowgill [2015a:10]). Likewise, there are 

problems with quality control of published studies due to a scarcity of qualified reviewers. 

 

While there might not necessarily be a vocal demand for formal training opportunities, the need 

is clearly there. Whether they use Bayesian modeling or not, it is possible that over the next 

decade almost all archaeologists will see regional and site chronologies transformed from 

Bayesian modeling, and it is probably better they be critically informed sooner rather than later. 

Some formal training opportunities we are familiar within the Americas include a free online 

booklet about the basics of using OxCal (McNutt 2013), training courses that we have offered at 

various conferences, and a training course run at the University of Arizona in 2015. Other 

resources often used for training are the OxCal Google Group 

(https://groups.google.com/forum/#!forum/oxcal) and the OxCal online manual 

(http://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html). 

 

These training opportunities provide good introductions, but in many ways, they barely scratch 

the surface. Becoming fully proficient in Bayesian chronological modeling takes a combination 

of training and experience, requiring both a critical understanding of archaeology, methods used 

https://groups.google.com/forum/#!forum/oxcal
http://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html
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in scientific dating, and statistics. For many American archaeologists training in how to use 

OxCal has come from self-learning, mainly from studying the published literature or through 

discussions with other American archaeologists that have some modeling experience. This has 

resulted in myths and misconceptions in the American literature about Bayesian chronological 

modeling which are fully described in the following section. 

 

MYTHS & MISCONCENPTIONS 

Misconception 1: Bayesian statistics is overly complicated hocus-pocus that is not scientifically 

objective 

 

This belief is articulated by Stephen Lekson (2015:166, 190–191) in several tongue-in-cheek 

comments in the second edition of his book The Chaco Meridian. For example, Lekson 

(2015:191) states: 

 

Of course, there's a reason statisticians banned Bayes for a couple of centuries- and why 

Bayes' heresies have been revived almost exclusively by the looser, weaker sciences (i.e., 

the social sciences). Bayes cheats: picking and choosing dates, modes, and so forth that 

fit one's preconceptions (or the statistical preconceptions built into OxCal). 

 

Contrary to Lekson’s (2015) claim, Bayesian statistics are widely used in the physical/natural 

sciences (see Supplemental file 2 for an extensive but non-exhaustive list of relevant references). 

There is a degree of subjectivity in the Bayesian process. This is contained within our prior 

beliefs that combine to form the structure of the model. These beliefs are our interpretation of the 
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archaeology and the inferences we make to relate the date of the death of a sample to the date of 

the formation of the deposit from which it was recovered. A ‘good Bayesian’ does not pick and 

choose dates to fit one’s preconception, but rather rigorously defends their interpretation of the 

archaeology in a transparent manner in order to provide weight to the resulting date estimates. 

The central issue in this myth is the scientific objectivity of the process, which allows us to delve 

into the underlying mathematics, in brief. 

 

While OxCal is a program with complex underlying algorithms, the fundamental mathematics of 

all Bayesian applications follow Bayes’ rule (following Bayliss 2009; Buck et al. 1991; 1996). 

Bayes’ rule (also called Bayes’ Law or Bayes’ Theorem, Equation 1) was proposed by the 

English mathematician and Presbyterian minister Thomas Bayes in the 1700s (Bayes 1763; 

Kruschke 2014). 

 

Eq. 1 Bayes’ rule 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
likelihood × prior

evidence
= 𝑝(𝜃|𝐷) =

𝑝(𝐷|𝜃) × 𝑝(𝜃)

𝑝(𝐷)
 

 

𝑝(𝐷) = ∑ 𝑝(𝐷|𝜃)

𝜃

 

 

The equation provides a model for estimating the probability of a belief after the collection of 

data that can test the belief. The key factors of a model that follows Bayes’ rule are the belief (𝜃) 

being tested, the prior, the likelihood, the evidence (𝐷), and the posterior. In Equation 1, 𝑝(𝜃) 

and 𝑝(𝐷) are probabilities for observing these two events, independently of one another, whereas 
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𝑝(𝐷|𝜃) and 𝑝(𝜃|𝐷) are conditional probabilities of observing the first event given the second 

event is true. 

 

It is too early in the paper to lose readers, so a simplified depiction of Bayes’ rule is shown in 

Equation 2, where the relationship of the likelihood and evidence is simply referred to as the 

“standardized likelihood” (Buck et al. 1991:811).  

 

Eq. 2 Simplified expression of Bayes’ rule 

Posterior beliefs = Standardized Likelihood ×  Prior beliefs 

 

This is further refined into terms recognizable to archaeologists with the “standardized 

likelihood” equivalent to our “dates” and our “prior” which equates to date probabilities in a 

chronological model (Equation 3). 

 

Eq. 3 Simplified expression of how Bayes’ rule is used in Bayesian chronological models  

Posterior beliefs = The dates (Standardized Likelihood) ×  Archaeological data (Prior beliefs) 

 

Lindley (1985) provides a good overview of Bayesian inference for the non-statistician, while 

Kruschke (2014) is accessible to the mathematically-minded reader. The Bayesian process is 

very much like the way that we intuitively learn as humans and change our beliefs to improve 

our individual understandings. We start with our prior beliefs about how and why things and 

events happen. Then through our life experience we modify our beliefs to suit what we have 
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experienced. If our experience confirms our beliefs, then they are supported. If our experience is 

contrary to our beliefs, then our beliefs may change. 

 

Radiocarbon and other scientific chronological information are used in Bayesian chronological 

modeling to calculate the standardized likelihood, and are modeled in different ways to reflect 

the prior strength of our beliefs about the functional relationship of the data (Bayliss 2009). The 

posterior probabilities estimated by OxCal serve as posterior probabilities for functions specified 

in the model such as individual radiocarbon calibrations and model boundaries. To do this OxCal 

(v4 and above) uses a Markov chain Monte Carlo (MCMC) and Metropolis-Hastings algorithm 

to generate random draws from a target distribution, and produce a range of posterior 

probabilities (Bronk Ramsey 2009a; Gelfand and Smith 1990; Gilks et al. 1996). Finer details 

about the algorithms used for this process are described in Bronk Ramsey (1998; 2001; 2009a). 

 

It is critical that users of Bayesian modeling software understand the Bayesian modeling process, 

the mathematics of the software packages used, and how to avoid ‘black boxing’ the presentation 

and interpretation of their models. If careless modeling is published due to a lack of a critical 

evaluation then the results should probably be treated very skeptically. Analytical transparency is 

key for evaluation but also for expanding upon the modeling in the future. Bayliss (2015) and 

Buck and Meson (2015) describe in detail what ‘good’ Bayesian modeling studies should 

include. 

 

Misconception 2: Old radiocarbon measurements with large errors should be ignored 
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Occasionally we come across the belief that legacy radiocarbon dates with large standard errors 

are of little interpretative value because of their greater imprecision. For example, Connolly 

(2000) rejects radiocarbon measurements with errors greater than 100 years in an analysis of 

dates from Poverty Point. Additionally, it may be questionable if a legacy radiocarbon date is 

even an accurate measurement, for example, calibrations of dates from Alaska, made by the 

Dicarb laboratory, have been noted in some cases to be too young (Reuther et al. 2005). 

 

It is easy to understand why someone might want to exclude these measurements, if the aim with 

the Bayesian model is to improve chronological precision. The ‘traditional’ methods of 

evaluating radiocarbon dates (e.g. summed probabilities or ‘eye-balling’ calibrations) will be 

significantly affected by the addition of these results, whereas a Bayesian model can handle these 

data much more effectively. Despite their issues, legacy dates with large standard errors can be 

informative data for a Bayesian model (see Bayliss et al. 2011; Jay et al. 2012; Krus et al. 2015). 

Modeling this data can be difficult, it is sometimes unclear exactly what was dated and what 

dating methods were followed (a problem often associated with legacy dates with smaller errors 

as well!). Finding this information can involve much research, including contacting the original 

submitters and laboratories, but this is necessary to fully evaluate the accuracy of the data and to 

decide how to include them in a Bayesian model. In cases where legacy dates are questionable, 

they could be crosschecked by re-dating the original samples or contemporaneous material.  

 

Additionally, alternative models, or ‘sensitivity analyses’, should be considered, which is a key 

element in Bayesian chronological modeling (Bayliss et al. 2011; also see Kruschke 2014), but 

can often be found lacking in most Bayesian models in archaeology. With a sensitivity analysis 
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we amend the prior information to determine which of the model components are most critical in 

estimating the posteriors. Bayliss et al. (2011) praise the strength of this technique and 

emphasize that it is useful for demonstrating the robusticity of a preferred model.  

 

Misconception 3: Stratigraphic relationships between samples are needed to make a Bayesian 

chronological model 

 

Following this belief, Bayesian chronological modeling is not possible in circumstances where 

there is little-to-no stratigraphy between radiocarbon samples. To the contrary, there are 

numerous published models from radiocarbon data that are not constrained by stratigraphic 

relationships (see for example Bayliss et al. 2007; Hamilton and Kenney 2015). This is possible 

because these models use a uniform prior distribution (UPD) that assumes that any event in the 

model is equally likely to have occurred in any individual year covered by the data (Bronk 

Ramsey 1998:470). Whereas stratigraphic relationships are an informative type of prior 

information, uniform prior distributions are an uninformative belief that structure data as a 

continuous period of activity (Bayliss and Bronk Ramsey 2004:33; Bronk Ramsey 2009a:354). It 

is only justifiable to use a UPD if the dated activity is believed to be continuous, whether it be 

for a short or long time or at a slow or fast tempo. 

 

A couple of recent American studies have approached modeling without stratigraphy by placing 

dates in a sequence from oldest to youngest (for example see R. Cook et al. 2015; Lekson 

2015:190). Unfortunately, this informative prior information is unsubstantiated. Priors that are 

not reflective of the archaeology should not be used. Even if they help provide more precise 
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posterior probabilities, the underpinning assumptions are unfounded (Buck and Meson 

2015:571). 

 

Misconception 4: The date for a diagnostic prehistoric artifact or expected time range of activity 

should be included in the model to provide a chronological constraint 

 

Calendar dates can be used in a Bayesian model to constrain the model results by specific years. 

For example, a site containing an abundance of artifacts of a presumed date, could be modeled to 

constrain independent dates from the site to this specific period. However, results will then 

conform to this expectation, such that you build a model to ensure you never learn something 

new! 

 

Including calendar years within a model can only be justified if they reflect the known time of an 

historic or geological event strongly related to the archaeology. Otherwise this practice becomes 

fuzzy, especially where the evidence is diagnostic artifacts not obviously linked to specific 

calendar years (e.g. pottery vs coins). If applied loosely, this practice will result in a tautological 

loop, where the scientific dates are provided to produce independent estimates but are modeled 

to fit the preconceived beliefs about the timing of the associated artifacts. Further, there are 

taphonomic considerations and the final (re-)deposition of diagnostic artifacts may be greatly 

removed from the timing of their creation, such that their incorporation into a model often only 

provides a terminus post quem (TPQ) – or ‘limit after which’ – for the formation of the deposit 

from which they were recovered. If calendar years are used to constrain the model, then a 
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sensitivity analyses should be used to show how the results change when calendar year 

constraints are removed. 

 

Misconception 5: The agreement indices in OxCal are a useful tool for determining which 

competing model is more probable 

 

We occasionally see papers and presentations where Agreement indices are misinterpreted as 

values indicating a most probable model (for example see Riede and Edinborough 2012). 

OxCal’s Agreement indices are like Bayes factors, which is a type of calculation used to directly 

compare the probability of Bayesian models (Gilks et al. 1996; Kruschke 2014). Importantly, 

OxCal’s Agreement indices are not actual Bayes factors, but rather pseudo Bayes factors, and 

should only be used to determine if a model is consistent or inconsistent (Bronk Ramsey 

1995:427–428, 2001:355). They are numerical values for the agreement between the OxCal 

model and data. Values less than 60 indicate the chronological data and model are inconsistent 

while those greater than 60 indicate consistency (Bronk Ramsey 1995:427-428), with the value 

of 60 similar to the 95% probability in a chi-square test. Amodel provides a value for the 

agreement of the entire model and Aoverall is a function of agreement indices of the individual 

dates.  

 

Misconception 6: Bayesian modeling is not necessary if you have a widely accepted site/regional 

chronology 
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The final misconception is that Bayesian modeling is not necessary for a site or region where a 

chronology is already established through diagnostic artifacts or perhaps other forms of scientific 

or historic dating. The reality is that it is impossible to know the results from Bayesian modeling 

if not attempted. If the modeling produces the same interpretation as pre-existing chronological 

beliefs, then that is noteworthy finding as it makes those beliefs stronger. If the modeling has a 

different interpretation, that too is important. If it is between reaffirming older interpretations and 

forging new ones, then the application of Bayesian modeling should result in a discussion worth 

having. 

 

THE BAYESIAN PROCESS 

 

In the previous section, we tied the major misconceptions regarding Bayesian modeling directly 

to a lack of fundamental understanding regarding how the process works both in theory and in 

practice. Here we wish to lay bare the process to make clear that there is both objectivity and 

scientific rigor inherent in the choices made throughout the chain. The modeling approach can be 

distilled into the schematic shown in Figure 2, which is derived from and described in much 

more practical detail by Bayliss and Bronk Ramsey (2004). 

 

Assess Existing Data and Knowledge 

 

‘Existing data and knowledge’ refers primarily to legacy dating, but other forms of chronological 

information should be noted (e.g. probable date based on artifacts), as these can also be useful to 

help inform some of the decisions made further along. Any legacy radiocarbon dates – old dates 
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that a project has inherited from other archaeologists – will need to be thoroughly critiqued. 

Many archaeologists that have developed, or acquired, large radiocarbon databases have recently 

been undertaking some form of ‘data cleansing’ prior to analysis and interpretation, but this can 

be an exercise (i.e. if error > 100 then reject 14C age) that misses the importance of holistically 

understanding the sample, context, and date. At the very least, it is necessary to have a 

description of the dated sample, the specific laboratory methods, and where the sample came 

from in relation to the archaeological features. As mentioned above, this process can be very 

laborious. Recently we were faced with a series of radiocarbon dates from the SunWatch site 

near Dayton, Ohio that were not chosen by us, but which we wanted to model (Krus et al. 2015). 

One of the dates (M-1965) had contradictory information, where the Michigan date list indicated 

the sample was made up of “small pieces of charcoal from 6 or 8 of 20 refuse pits excavated” 

(Crane and Griffin 1970:166), yet this sample is most likely from a single refuse pit, Feature 6/8. 

The unidentified nature of the charcoal was still problematic, since there could conceivably be 

fragments that would otherwise incorporate an ‘old-wood’ offset, at least we were confident that 

the material came from a single feature and was not a composite from many different features! 

 

In critiquing the legacy dates, the aim is to produce a commentary of reasons why each date 

accurately reflects the date of the deposit within which its sample was found. Furthermore, to 

provide clear explanations for the scientific and/or taphonomic issues associated with any dates 

that are deemed to provide unreliable dating evidence for the formation of its context. The 

connection between a sample, its context, and the ‘event’ under consideration is the most critical 

and tenuous link in the Bayesian modeling process (also see Dean 1978). Not only does it apply 
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to how we critique our legacy dates, but it also informs which samples are suitable for dating, 

and ultimately the types of chronological questions we can approach. 

 

Define Problems 

 

The most basic and common problem or question pertaining to site-based models concerns the 

timing and span of activity, and for many sites, in many periods, these can be answered 

satisfactorily with as few as a dozen well-chosen dates and no stratigraphy. As the archaeology 

and models become more complex, more nuanced chronological questions might arise, such as 

the date when a specific transformation to the site (e.g. building of a palisade or digging of a 

ditch) or internal event (e.g. construction of a house) occurred. Where there are multiple re-built 

houses or re-dug ditches, we might be able to delve into the realm of the tempo of change and 

search for temporal regularities to activity that might be interpretable within the scale of a single 

human lifetime. 

 

Site-based questions can be scaled up to consider the timing of events and temporality of 

processes at regional, or even continental, scales. Regional chronologies are constructed in many 

ways, but the Bayesian approach almost invariably starts with an evaluation of the dates on a 

site-by-site, and context-by-context, basis. The types of models that are not wedded to site-based 

models are usually concerned with the currency of an artifact type, whereby dating the artifact 

directly (e.g. bone comb) or organic material in direct association with the artifact (e.g. organic 

residue on a pot) provides the required connection between sample, date, and question.  
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Identify Samples 

 

Armed with the questions you want to answer, it is time to identify the contexts that contain 

samples suitable for dating, thereby giving you the best chance at success. Bear in mind that just 

because problems have been defined, samples suitable to achieve a satisfactory solution may not 

be available, so that the availability of suitable samples can dictate the range of possible 

questions. 

 

This is usually the point where we would consider a sort of hierarchy of sample types, but to 

rank the samples on a ladder is potentially misleading as a high-ranking sample might have low 

utility for some questions (cf. Bayliss 2015). The general point about ranking your samples is to 

have samples that you can demonstrate, or argue, provide an accurate date for the deposit from 

which they were recovered. This does not mean that simply because a deer femur was recovered 

from a ditch fill, it dates when the ditch open or infilling. In many instances a disarticulated 

animal bone provides a low level of confidence, especially the smaller ones that easily can be 

bioturbated or anthropogenically redeposited. However, if part of a deer was recovered in 

articulation (e.g. foot bones) from this ditch, then we could argue that it went into the ground 

soon after the death of the animal and should accurately date when that deposit formed. Our 

disarticulated femur provides, at best, a TPQ for the infilling of the ditch. 

 

In addition to articulated remains, samples functionally related to their deposit usually make a 

sound choice. Here we might select charcoal or charred grain from a hearth or oven, where we 

can make a sound inference that the material in the feature had recently died and been burnt in 
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situ. We might also extend this to a discrete dump of burnt material in a pit or ditch that has been 

interpreted as perhaps hearth waste. While there is likely an unknown lag between when the 

wood was collected and used, and when the hearth was cleaned out, this offset is almost certainly 

negligible, and in this example likely not to be even a year. 

 

Build Simulation Models, Submit Samples, and Assess Results 

 

With a solid understanding of the questions to be tackled and a list of the suitable samples 

available, it is time to construct simulation models and assess the possible results given these 

inputs and our current archaeological knowledge (see Bayliss et al. 2007; Steier and Rom 2000). 

This stage of the process is very much about trying to understand how the number of dates 

available (constrained either by physical suitable samples or finances), the relevant area of the 

calibration curve, and such information as the relationship between samples or shape of the prior 

probabilities applied to the dates all combine to produce an answer. This stage of ‘getting a feel 

for the data’ is critical in the Bayesian process, it is the point where the modeler becomes so 

familiar with how the priors and data work together that they can intuit how a change to one part 

of the model might affect the outcomes (Buck and Meson 2015). 

 

Guided by the simulation results, samples are submitted. The role of the simulation is to optimize 

the sample selection process, but only a portion should be submitted in the initial round. Most 

dating programs following a Bayesian approach will have several rounds of dating. After 

receiving the results, we go back to our pool of potential samples and begin to simulate the 

results for adding radiocarbon results from another round of dating, and loop the process. By 
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going through a series of simulations before submitting each round of samples we can see what 

effect results from additional samples in specific areas of the model will have, thereby enabling 

us to problem-solve at each stage and manage expectations. 

 

Finalizing Models 

 

Developed simulations should lead to the construction of the primary model. If there are multiple 

readings of the archaeology or other prior information that can be added to the analysis, then 

additional models will be constructed for a sensitivity analysis. Further, as part of the modeling 

process it is always important to undertake quality assurance in the form of replication of some 

of the dates. Replication might include submission of two samples of the same type (e.g. 

charcoal of different species) or different types (e.g. grain and animal bone) from the same 

context as a means of checking the security of the deposit or to look for offsets. In some cases, it 

may even be desirable to split a sample and send it to two different laboratories as a means of 

independently verifying the results. While there is no hard rule on the level of replication one 

should undertake, we would suggest replicating somewhere on the order of 10 percent of the 

dates, with more replication occurring where there is greater uncertainty in the taphonomic 

security or general overall quality of the samples. 

 

Publish Results and Interpretations 

 

After all the work in dating samples and developing models, the results and interpretations are 

written up for publication. It is at this stage all the assumptions and choices that went into 
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constructing the models should be put forth in an accessible manner, allowing the reader to 

properly critique the work. Oftentimes, it is here that the level of transparency can be found 

lacking. While this paper is neither a ‘how-to’ manual for Bayesian modeling or a set of ‘best 

practice’ guidelines, the following are a few tips that will be helpful for a reviewer/reader: 

 

1) Clearly define the model structure in the publication and link the ‘death’ of the dated 

sample to the formation of the deposit or archaeological event of interest. If a radiocarbon 

date does not fit expectations, explain why and determine the reason for the misfit (e.g. 

contamination, insecure context, lab error, statistical outlier). 

2) Include the full model figure that shows the structure that has been described (e.g. the 

OxCal brackets and keywords). This should allow other researchers to recreate the model 

precisely, for all but the most sophisticated solutions. Consider including the raw code 

used to create the model as supplemental data. Similarly, consider including any prior 

probabilities that are not clearly defined. 

3) Where durations are given in the text (e.g. span of an occupation, time between two 

events), include a figure of that probability. This is especially useful to demonstrate that a 

span might be skewed to a younger or older range. 

 

In addition, there are a few conventions to reporting the modeled probabilities to bear in mind 

that may reduce any confusion in a reader. 

 

1) Round modeled probabilities outward to 5 years. This is not a ‘rule’ by any means, but 

the IntCal13 calibration curve is constructed using a 5-year random walk algorithm and 
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much of the data underpinning the curve is from decadal tree-ring samples. In addition, 

the rounding often accounts for slight differences in results from the different runs of a 

model, and is easier for most people to retain in their heads. 

2) Make certain to refer to any modeled or calibrated dates as ‘cal BC/BCE’ or ‘cal AD/CE’ 

(or ‘cal BP’). 

Italicize modeled dates to set them apart from simple calibrated dates and inform the 

reader that you have done so because they are the result of an interpretative model. 

 

A final note – uncalibrated radiocarbon ages are given as means and standard errors, thus 

approximating a normal distribution, making reference to one- and two-sigma ranges perfectly 

acceptable. However, calibrated radiocarbon dates and modeled probabilities are in no way 

normally distributed, and so their ranges should be referred to by the percent of the area of the 

probability represented below the curve (i.e. 68.2 percent or 95.4 percent). Oftentimes, when 

rounding the date ranges, the precision of the percent beneath the curve can be found to be 

truncated simply to 68 percent or 95 percent. 

 

THE BAYESIAN PRACTICE 

 

While a discussion of the Bayesian Process, as abstracted above, will sit well with many readers, 

we present here briefly an example of the process in practice. We consider a site consisting of 

negative (i.e. cut) features, with a rectangular post-built structure with central hearth, a few pits, 

and an enclosure ditch. The aim with this hypothetical example is to elucidate the thought 

process of the Bayesian modeler, while highlighting those areas of the modeling process that can 
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be especially challenging. In this example, we use the terminology implemented in the OxCal 

program, but the ideas remain the same whether using OxCal, BCal or other programs. For ease, 

we have use Courier font to denote the specific OxCal commands. 

 

Defining the Problem 

 

The first thing is to define the archaeological questions. In this case, we might want to know: 1) 

When did activity begin; 2) When did activity end; and 3) For how long did this activity take 

place? These are the most basic questions asked of any site-based model, because they refer to 

the broadest level of chronological enquiry. We cannot stress enough that these questions are 

almost never answerable by a single radiocarbon date, but are estimates derived from a 

chronological model that is composed of dates related to the activity that occurred between the 

actual start and end date at the site. While there may be instances that the modeled probability for 

a specific radiocarbon date is important or interesting (e.g. a burial, material associated with a 

specific artifact), more often than not, it is the ‘events’ that occur before, after and between the 

archaeological residues, which form the sampled material, that have particular meaning. 

 

The two main building blocks of models are the ordered (Sequence) and unordered (Phase) 

groups. Thinking of the site described above, we might feel safe in assuming it is all a single 

period of occupation (there may even be artifactual evidence from across the site to suggest that 

it is all broadly contemporary). We have no defined relative ordering (e.g. stratigraphy) between 

any of the features, and so we can begin thinking about our radiocarbon dates ‘existing’ as an 

unordered group – a Phase. Given our assumption that the features are all related to a single 
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period of activity, we can progress and add two elements in the form of a ‘start’ and ‘end’ 

Boundary, and situate these three elements within a Sequence. By doing this, we have 

explicitly instructed the computer program that at some point in time in the past, for which we do 

not have a date, activity began on the site. The activity went on for some unknown duration, and 

then it ended. Furthermore, we have also defined that activity began before it ended. 

 

At the most basic level, a Boundary defines the time that the dated activity begins and ends 

(Steier and Rom 2000; Bronk Ramsey 2001). They are placed within a Sequence as this sets up 

the necessary ordered relationship that activity begins, material that can be dated is deposited, 

and activity ends. Often boundaries are used to represent that start or end of activity at a 

settlement or of a phase of discrete activity within a settlement. Crucially, the time of a 

Boundary is estimated in a Bayesian chronological model, which provides archaeologists 

probabilistic estimates for events (such as the start of activity at a settlement) that cannot be 

directly dated. Figure 3 visually demonstrates how Boundary, Phase, and Sequence are 

incorporated into a simple Bayesian chronological model for an archaeological settlement with 

no dates from intercutting features. Algebraically, this model can be expressed as 

αsettlement>Θsettlement>βsettlement, where Θsettlement is the set of dated events θ1. . .θn from the 

continuous phase of settlement activity, represented by the radiocarbon-dated samples. 

 

When using the standard Boundary parameters in OxCal, the program will apply a Uniform 

Prior Distribution (UPD) to the radiocarbon dates contained within the Phase. The UPD 

essentially indicates that activity goes from nil to maximum intensity, stays at maximum 

intensity for some time, and then switches back to nil. This is the simplest form of chronological 
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model, with the UPD being an uninformative prior, helping to constrain the dates based on the 

statistical scatter within the group. There are different ‘boundaries’ that can be used, enabling the 

start and end to be modeled as a steady or steep ramp, thereby altering the prior distribution 

being applied to the dates (Lee and Bronk Ramsey 2012). Despite the ability to alter the prior 

that is applied to the group of dates, the UPD has been shown to extremely flexible and robust 

(Bayliss and Bronk Ramsey 2004), and we would suggest that in most cases, if alternative priors 

are used, that the UPD be run as a sensitivity analysis so that it is possible to see just how much 

an affect the different boundaries have on the final results. 

 

The simple model described above is often referred to as a ‘Phase model’ or ‘Bounded Phase 

model’, and takes its name from the OxCal command that is similarly named – Phase. It is 

important to stress here that this is in no way similar to a traditional archaeological phase based 

on such things as ceramic or projectile point typologies. This type of model is extremely versatile 

and finds use in any situation where there is no relative ordering between samples (e.g. series of 

pits or the posts from a house). 

 

The Sequence is especially powerful, with the temporal relationship it sets up between dates 

acting as an informative prior. Like the Phase, the Sequence can form the basis of the model 

structure, such as with a series of dates from an environmental core. But, its versatility lies in the 

ability to function as a building block within a more complex model structure. Thinking to our 

hypothetical site, if we dated sequential charcoal lenses in the ditch, then we could place those 

dates into a Sequence within the overall unordered group of dates within the Phase. The 
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informative prior only affects those stratigraphically-related dates, but allowing them to 

contribute to the mathematics applied to the overall group. 

 

Not only can Sequences exist within a Phase, but a Phase can exist within a Sequence. 

This nesting of ordered and unordered groups of dates allows the construction of complex 

models from complex archaeological sites. This level of model complexity is beyond the 

immediate scope of this paper, but we direct the reader to the work of Harris (1989) for a 

discussion of single-context recording and the production of ‘Harris matrices’, as well as Dye 

and Buck (2015) for further discussion of the use of matrices and diagrams for developing 

models and displaying their structure. 

 

Creating models using the building blocks (Phase and Sequence) is a straight-forward 

exercise, often what is being modeled are the relationships observed or inferred between samples 

or dated contexts. However, the easiness of this element of the process can have the deleterious 

effect of leading people to simply take a plug-and-play approach to chronological modeling, and 

not focus on the most tenuous element of the entire chain: the relationship between the date of 

the sample and the date of the context. 

 

Selecting the Samples 

 

As the prior information becomes more informative (e.g. stratigraphic relationships are 

included), it becomes increasingly important to minimize the time-lag between the date of the 

death of the sample and the date of the formation of the deposit. This is where the notion of the 
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hierarchy of samples, alluded to above, becomes a useful device. While there is no strict ‘best’ to 

‘worst’ sample, our goal in almost every case is to select a sample whose radiocarbon date is the 

same as the date it was buried in the context from which it was recovered. Taphonomic 

understanding is critical for understanding how the dates of the two events (sample death and 

context formation) are related, and for this reason, bone that is recorded as articulated during 

excavation, or noted as likely having been articulated when undergoing post-excavation analysis, 

is often considered to be the ‘gold standard’ for site-based models. These samples are highly 

unlikely to have remained intact for any long duration before burial. Unfortunately, these 

samples are a rarity on most archaeological sites, and so many of the modeled samples will either 

have a functional or inferred relationship made between the sample and formation of its context.  

 

Defining a functional relationship between a sample and context is not a difficult task, and one 

which archaeologists regularly do as part of the excavation process. Arguably, the most 

ubiquitous sample from a site is charcoal, and if that charcoal comes from a hearth, it is possible 

to define this functional relationship to explain both how and why that sample was recovered 

from that feature. Another sample that has a clear functional relationship is a charred food 

residue on a sherd of pottery, the date from which should reflect the date of the foodstuff that 

was burnt (this is barring any potential reservoir offset in the date). 

 

The next tier sample is where the relationship to the context can be inferred, and here we are 

referring to things such as: discrete dumps of charred material that may be interpreted as the 

debris cleaned out from a hearth, or charred debris from the use of a structure that has filtered 

down into the post-pipe that forms as an internal post decays. In all cases, it is important that the 
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relationship be defined, and the more tenuous it is, the more rigorously it be defended. Turning 

back to our hypothetical site, we would be looking first and foremost for samples, such as 

articulated/ing animal bone in the pits or ditch, or short-lived samples of charcoal or charred 

cereals in the hearths, and finally for similar charred debris in the post-pipes of the houses or as 

discrete fills in the ditch.  

 

Dealing with Age Offsets, Outliers, and Misfits 

 

Even after defining realistic problems and selecting and submitting secure samples for dating, it 

is likely that some of the dates will not conform to prior expectations. The results can be either 

older or younger than expected, and as a rule of thumb, all samples should be considered residual 

until otherwise demonstrated. Beyond re-evaluating the probable taphonomic history of a 

sample, consideration should be made of other potential sources for error, including the 

possibility for an in-built age offset or sample contamination. 

 

In-built age offsets describe instances where the radiocarbon age is older than would be 

expected, given the date the organism died. Generally, when dealing with samples that have not 

been mishandled or undergone any form of conservation, there are two primary age offsets that 

we must consider: (1) old wood offset; and (2) reservoir offset, commonly in the form of a 

dietary offset. 

 

Demonstrated old wood offsets in charcoal (Schiffer 1986) are often used as a reason to discount 

‘archaeologically unacceptable’ radiocarbon results. The reality is that all wood samples that are 
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not bark or the final ring will have a radiocarbon age that is a weighted mean (by mass) of the 

radiocarbon content of all the rings in the sample. By selecting short-lived species, or twiggy 

pieces of wood from a sample, the offset is minimized, and when the models also include animal 

bone and seeds, the minor offset in the charcoal samples will be negligible to the model results. 

Where there is some confusion, or lack of documentation, about what charcoal was dated, rather 

than exclude a date from a model it is completely acceptable to include the result as a TPQ for 

the formation of the deposit. Furthermore, formalized statistical tools are available in OxCal that 

allow for an old wood offset in charcoal to be modeled, in the form of a Charcoal Outlier Model 

(Bronk Ramsey 2009b). This form of model can be especially useful when attempting to achieve 

very high precision and nearly all the samples are on charcoal (see Hamilton and Kenney [2015] 

for a worked example), as the dates in the model most likely to be outliers have their effect on 

the results downweighted. 

 

The second offset we consider is a result of the carbon in the sample not being in equilibrium 

with the terrestrial biosphere, a reservoir offset. This commonly occurs through a marine 

reservoir effect (MRE), with the global average marine offset equivalent to approximately 400 

years, but can also take the form of a freshwater reservoir effect (FRE), usually the result of 

dissolved geologic carbon (e.g. radioactively ‘dead’ in terms of 14C) in a freshwater lake or 

stream. When plants photosynthesize in these environments by taking in CO2 from the water, 

they incorporate this age offset, which propagates along the food chain. While MRE and FRE 

add a layer of complexity to analyzing and interpreting radiocarbon dates, it is possible to 

accurately model the dates of species from the marine environment (e.g. fish, seals, whales) and 

even model the dates from omnivores that received all or part of their dietary protein from 
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marine species (G. Cook et al. 2015). Correcting for FRE is slightly more difficult as it requires 

calculating the FRE for a specific place and time, with the correction made to the uncalibrated 

radiocarbon age. Using new Bayesian tools to ‘unmix’ the contribution of terrestrial, marine, and 

freshwater protein to an individual’s diet, it is possible to robustly model the dates of individuals 

who consumed animals with both an MRE and FRE (Sayle et al. 2016). 

 

After considering these forms of offset and error, it is important to remember that even 

radiocarbon laboratories can make mistakes. While labs have stringent internal quality assurance 

protocols, there are instances where a date is simply incorrect with no indication what went 

wrong. This is one reason why replication is important, and if possible the replication should be 

made using a second laboratory as the additional check. Finally, it is important to remember that 

the radiocarbon dating process is a statistical one, where the ‘result’ received from the laboratory 

is a probabilistic statement – a measurement mean and standard error – that at 2σ (95.4 percent 

probability) should contain the real radiocarbon age. Therefore, we should expect 1 in 20 

radiocarbon ages to fall outside of the 95.4 percent probability range, and can only hope that it is 

not so far outside that range to make our interpretations importantly wrong. 

 

CONCLUSIONS 

 

Many American Archaeologists are becoming increasingly aware of studies employing Bayesian 

chronological modeling and are either experimenting with applications for the first time or 

working with collaborators. Bayesian modeling amongst professionals and students in the 

Americas is rapidly increasing (Figure 1). Recently, George Cowgill (2015b) in a Latin 
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American Antiquity forum essay strongly encouraged American archaeologists to adopt Bayesian 

chronological methods. In addition to the published literature, this interest is evident from the 

increasing number of presentations we see each year at the Society for American Archaeology 

meeting and regional conferences in the Americas using Bayesian chronological models. 

 

We hope this essay brings a wider awareness to the noted issues and that journal editors and 

grant proposal reviewers familiarize themselves with these issues and the best practice methods 

provided in Bayliss (2015) and Buck and Meson (2015). We further recommend that 

anthropology departments and regional archaeological organizations offer more courses and 

other training activities that cover the fundamentals of Bayesian chronological modeling 

methods, because these methods will soon be considered part of the standard American 

archaeological toolkit. 

 

It is especially important that archaeologists using these methods always consider that results 

with low precision are likely accurate and that pre-existing beliefs, while sometimes very 

precise, might be inaccurate. Like Michczyñski’s (2007) conclusions regarding best practice for 

interpretations of probabilistic radiocarbon calibration, it is also important that 95 percent and 68 

percent posterior probability ranges receive the most interpretative weight, even when the model 

results are largely imprecise. It is also important that archaeologists understand how calibration 

curve wiggles, such as the ‘Hallstatt plateau’ and others, affect the precision of their modeled 

results. Poor awareness of calibration curve wiggles can lead to misinterpretations (as described 

in Baillie [1991], Guilderson et al. [2005], and Krus et al. [2015]). While imprecise modeling 

results are unfortunate, conclusions can still be drawn from those situations and can include 
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discussions of the future scientific work to produce finer chronologies. Importantly, experiments 

with simulated radiocarbon data should be run in Bayesian chronological modeling software to 

precisely estimate the number of radiocarbon dates needed to produce precise and accurate 

models, which is a highly effective practice for determining the number of dates are needed to 

overcome calibration curve wiggles. 

 

Finally, it is important that American archaeologists understand that Bayesian chronological 

modeling is both a scientific and a theoretical revolution for our discipline (Bayliss 2009). Future 

work in the Americas has potential to greatly improve our understandings of lived experiences, 

temporality and cultural change derived probabilistically from posterior probabilities. When 

discussing the future of Bayesian chronological modeling, Buck and Meson (2015:577–579) 

emphasize that radiocarbon simulations have thus far been underused as a tool for improving the 

research designs of chronology building programs and that these simulations are enormously 

useful for informing the selection of radiocarbon research designs. Similarly, at the 2017 Society 

for American Archaeology meeting, we noticed that most of the presented chronological 

modeling dealt with the analysis of legacy dates, with almost no discussion about how the 

Bayesian process will be used to inform the selection of new data.  

 

We hope this essay brings a greater awareness of how the Bayesian process can be used to shape 

all aspects of an archaeological research design, from the initial formation of a data collection 

strategy to the publication of results. While this essay can be read as an introduction, we 

encourage readers to review the literature in the works cited section to learn more, and to contact 

established individuals who are publishing Bayesian models for practical advice. 
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Figure Captions 

 

Figure 1: Histogram for the number of published Bayesian chronological modeling applications 

in American archaeology from 1990–1999, 2000–2009, and 2010–2015  

 

Figure 2: The Bayesian method in practice (after Bayliss and Bronk Ramsey 2004:28, fig. 2.2; 

Bayliss 2009:132, fig. 9) 

 

Figure 3: Bayesian chronological model structure demonstrating the use of radiocarbon 

measurements within Boundaries, Sequence, and a Phase. The large square ‘brackets’ along 

with the OxCal keywords define the overall model exactly. OxCal script for the model is shown 

below the model structure. 

  



 47 

Figure 1 

 

Figure 2 

 



 48 

Figure 3 

 



Supplemental file 1: The references for the papers in Figure 1 not cited in text 

 

 

Anderson, David G., Jr. John E. Cornelison and Thaddeus G. Bissett 

2013 Shiloh Mound A: Conclusions and Recommendations. In Archeological 

Investigations at Shiloh Indian Mounds National Historic Landmark, 40HR7, 1999-2004, 

edited by D. G. Anderson, J. John E. Cornelison and S. C. Sherwood, pp. 689-714. Southeast 

Archeological Center, National Park Service, Tallahassee, Florida. 

 

Athens, J. Stephen, Timothy Rieth and Thomas Dye 

 2014 A Paleoenvironmental and Archaeological Model-based Age Estimate for the 

Colonization of Hawai’i. American Antiquity 79(1):144–155. 

 

Athens, J. Stephen, H. David Toggle, Jerome V. Ward and David J. Welch 

2002 Avifaunal extinctions, vegetation change, and Polynesian impacts in prehistoric 

Hawai'i. Archaeology in Oceania 37(2):57-78. 

 

Bachand, Bruce R. 

 2008 Bayesian Refinement of a Stratified Sequence of Radiometric Dates from Punta de 

Chimino, Guatemala. Radiocarbon 50(1):19–51. 

 

Beramendi-Orosco, Laura E., Galia Gonzalez-Hernandez, Jaime Urrutia-Fucugauchi, Linda R. 

Manzanilla, Ana M. Soler-Arechalde, Avto Goguitchaishvili and Nick Jarboe 

 2009 High-resolution chronology for the Mesoamerican urban center of Teotihuacan 

derived from Bayesian statistics of radiocarbon and archaeological data. Quaternary Research 

71(2):99–107. 

 

Braje, Todd J. and Torben C. Rick 

 2015 Identifying Specialized 19th Century Fishing Camps on California’s Northern 

Channel Islands: Applying AMS Radiocarbon Dating to Historical Sites. Radiocarbon 

57(5):909–916. 

 

Brock, Fiona, Joanna Ostapkowicz, Christopher Bronk Ramsey, Alex Wiedenhoeft and Caroline 

Cartwright 

 2012 Paired Dating of Pith and Outer Edge (Terminus) Samples from Pre-Hispanic 

Caribbean Wooden Sculptures. Radiocarbon 54(3–4):677–688. 

 

Buck, Caitlin E. and J. Andrés Christen 

 1998 A Novel Approach to Selecting Samples for Radiocarbon Dating. Journal of 

Archaeological Science 25(4):303-310. 

 

Cadwallader, Lauren, Susana Arce Torres, Tamsin C. O'Connell, Alexander G. Pullen and David G. 

Beresford-Jones 

 2015 Dating the Dead: New Radiocarbon Dates from the Lower Ica Valley, South Coast 

Peru. Radiocarbon 57(5):765–773. 

 

Christen, J. A., R. S. Clymo and C. D. Litton 

 1995 A Bayesian approach to the use of 14C dates in the estimation of the age of peat. 

Radiocarbon 37(2):431–441. 

 

Christen, J. A. and C. E. Buck 

 1998 Sample selection in radiocarbon dating. Journal of the Royal Statistical Society: 

Series C (Applied Statistics) 47(4):543-557. 

 

Cobb, Charles R., Anthony Michal Krus and Dawnie W. Steadman 



Hamilton and Krus – Supplemental file 1 

 2 

 2015 Bayesian modeling of the occupation span of the Averbuch site in the Middle 

Cumberland Drainage, Tennessee. Southeastern Archaeology, 34(1):46–56. 

 

Cook, Robert A., Aaron R. Comstock, Kristie R. Martin, Jarrod Burks, Wendy Church and Melissa 

French 

 2015b Early village life in southeastern Indiana: recent field investigations at the Guard site 

(12D29). Southeastern Archaeology 34(2):95–115. 

 

Cowgill, George L. 

2015 Some Things I Hope You Will Find Useful Even if Statistics Isn’t Your Thing. 

Annual Review of Anthropology 44:1–14. 

 

Culleton, Brendan J., Keith M. Prufer and Douglas J. Kennett 

 2012 A Bayesian AMS 14C chronology of the Classic Maya Center of Uxbenká, Belize. 

Journal of Archaeological Science 39(5):1572–1586. 

 

Dye, Thomas S. 

 2010 Social Transformation in Old Hawai'i: A Bottom-up Approach. American Antiquity 

75(4):727-741. 

 

 2010 Traditional Hawaiian Surface Architecture: Absolute and Relative Dating. In 

Research Designs for Hawaiian Archaeology: Agriculture, Architecture, Methodology, edited 

by T. S. Dye, pp. 93-148. Society for Hawaiian Archaeology, Honolulu. 

 

 2011 A model-based age estimate for Polynesian colonization of Hawai’i. Archaeology in 

Oceania 46(3):130–138. 

 

 2012 Hawaiian temples and Bayesian chronology. Antiquity 86(334):1202–1206. 

 

 2015 Dating human dispersal in Remote Oceania: a Bayesian view from Hawai’i. World 

Archaeology 47(4):661–676. 

 

Dye, Thomas S. and Jeffrey Pantaleo 

 2010 Age of the O18 site, Hawai’i. Archaeology in Oceania 45(3):113–119. 

 

Dye, Thomas S. and H. D. Tuggle 

 1998 Land Snail Extinctions at Kalaeloa, O'ahu. Pacific Science 52(2):111-140. 

 

Field, Julie S., Thegn N. Ladefoged and Patrick V. Kirch 

 2011 Household expansion linked to agricultural intensification during emergence of 

Hawaiian archaic states. Proceedings of the National Academy of Sciences 108(18):7327–

7332. 

 

Finucane, Brian Clifton, J. Ernesto Valdez, Ismael Perez Calderon, Cirilo Vivanco Pomacanchari, 

Lidio M. Valdez and Tamsin O'Connell 

 2007 The End of Empire: New Radiocarbon Dates from the Ayacucho Valley, Peru, and 

Their Implications for the Collapse of the Wari State. Radiocarbon 49(2):579–592. 

 

Graf, Kelly E., Lyndsay M. DiPietro, Kathryn E. Krasinski, Angela K. Gore, Heather L. Smith, 

Brendan J. Culleton, Douglas J. Kennett and David Rhode 

 2015 Dry Creek Revisited: New Excavations, Radiocarbon Dates, and Site Formation 

Inform on the Peopling of Eastern Beringia. American Antiquity 80(4):671–694. 

 

Greco, Catriel and Valeria Palamarczuk 



Hamilton and Krus – Supplemental file 1 

 3 

 2014 Strategy for Radiocarbon Chronological Assessment of Ceramic Styles: An Example 

from Prehispanic Northwestern Argentina. Radiocarbon 56(3):1093–1106. 

 

Grimm, Eric C. 

 2011 High-Resolution Age Model Based on AMS Radiocarbon Ages for Kettle Lake, 

North Dakota, USA. Radiocarbon 53(1):39–53. 

 

Hall, M. E. 

 2010 Putting it on the calendar: some methodological notes on Hockett’s “Middle and Late 

Holocene hunting in the Great Basin”. American Antiquity 75(4):954–961. 

 

Herrmann, Edward W., G. William Monaghan, William F. Romain, Timothy M. Schilling, Jarrod 

Burks, Karen L. Leone, Matthew P. Purtill and Alan C. Tonetti 

 2014 A new multistage construction chronology for the Great Serpent Mound, USA. 

Journal of Archaeological Science 50(0):117–125. 

 

Hoggarth, Julie A., Brendan J. Culleton, Jaime J. Awe and Douglas J. Kennett 

 2014 Questioning Postclassic Continuity at Baking Pot, Belize, Using Direct AMS 14C 

Dating of Human Burials. Radiocarbon 56(3):1057–1075. 

 

Huster, Angela C. and Michael E. Smith 

 2015 A new archaeological chronology for Aztec-period Calixtlahuaca, Mexico. Latin 

American Antiquity 26(1):3–25. 

 

Hutchinson, Ian 

 2015 Geoarchaeological Perspectives on the “Millennial Series” of Earthquakes in the 

Southern Puget Lowland, Washington, USA. Radiocarbon 57(5):917–941. 

 

Inomata, Takeshi, Daniela Triadan, Kazuo Aoyama, Victor Castillo and Hitoshi Yonenobu 

 2013 Early Ceremonial Constructions at Ceibal, Guatemala, and the Origins of Lowland 

Maya Civilization. Science 340(6131):467–471. 

 

Inomata, Takeshi, Raúl Ortiz, Bárbara Arroyo and Eugenia J. Robinson 

 2014 Chronological Revision of Preclassic Kaminaljuyú, Guatemala: Implications for 

Social Processes in the Southern Maya Area. Latin American Antiquity 25(4):377–408. 

 

Ives, John W., Duane G. Froese, Joel C. Janetski, Fiona Brock and Christopher Bronk Ramsey 

 2014 A High Resolution Chronology for Steward's Promontory Culture Collections, 

Promontory Point, Utah American Antiquity 79(4):616–637. 

 

Jazwa, Christopher S., Lynn H. Gamble and Douglas J. Kennett 

 2013a A High-Precision Chronology for Two House Features at an Early Village Site on 

Western Santa Cruz Island, California, USA. Radiocarbon 55(1):185–199. 

 

Jazwa, Christopher S., Douglas J. Kennett and Bruce Winterhalder 

 2013b The Ideal Free Distribution and Settlement History at Old Ranch Canyon, Santa Rosa 

Island, California. In California's Channel Islands: the archaeology of human-environment 

interactions, edited by C. S. Jazwa and J. E. Perry, pp. 75–96. University of Utah Press, Salt 

Lake City. 

 

 2015 A Test of Ideal Free Distribution Predictions Using Targeted Survey and Excavation 

on California’s Northern Channel Islands. Journal of Archaeological Method and Theory:1–

43. 

 

Kennett, Douglas J. and Brendan J. Culleton 



Hamilton and Krus – Supplemental file 1 

 4 

 2012 A Bayesian Chronological Framework for Determining Site Seasonality and 

Contemporaneity. In Seasonality and Human Mobility along the Georgia Bight: Proceedings 

of the Fifth Caldwell Conference, St. Catherines Island, Georgia, edited by E. J. Reitz, I. R. 

Quitmyer and D. H. Thomas, pp. 37-49. Anthropological Papers of The American Museum of 

Natural History No. 97. 

 

Kennett, Douglas J., Brendan J. Culleton, Jaime Dexter, Scott A. Mensing and David Hurst Thomas 

 2014 High-precision AMS 14C chronology for Gatecliff Shelter, Nevada. Journal of 

Archaeological Science 52:621–632. 

 

Kennett, Douglas J., Brendan J. Culleton, Barbara Voorhies and John R. Southon 

 2011 Bayesian Analysis of High-Precision AMS 14C Dates from a Prehistoric Mexican 

Shellmound. Radiocarbon 53(2):245–259. 

 

Kennett, Douglas J., Irka Hajdas, Brendan J. Culleton, Soumaya Belmecheri, Simon Martin, Hector 

Neff, Jaime Awe, Heather V. Graham, Katherine H. Freeman, Lee Newsom, David L. Lentz, 

Flavio S. Anselmetti, Mark Robinson, Norbert Marwan, John Southon, David A. Hodell and 

Gerald H. Haug 

 2013 Correlating the Ancient Maya and Modern European Calendars with High-Precision 

AMS 14C Dating. Scientific Reports 3:1597. 

 

Kennett, James P., Douglas J. Kennett, Brendan J. Culleton, J. Emili Aura Tortosa, James L. Bischoff, 

Ted E. Bunch, I. Randolph Daniel, Jon M. Erlandson, David Ferraro, Richard B. Firestone, 

Albert C. Goodyear, Isabel Israde-Alcántara, John R. Johnson, Jesús F. Jordá Pardo, David R. 

Kimbel, Malcolm A. LeCompte, Neal H. Lopinot, William C. Mahaney, Andrew M. T. 

Moore, Christopher R. Moore, Jack H. Ray, Thomas W. Stafford, Kenneth Barnett 

Tankersley, James H. Wittke, Wendy S. Wolbach and Allen West 

 2015 Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 

cal B.P. for Younger Dryas boundary on four continents. Proceedings of the National 

Academy of Sciences 112(32):E4344–E4353. 

 

Kidder, Tristram R. 

 2006 Climate Change and the Archaic to Woodland Transition (3000–2500 cal B.P.) in the 

Mississippi River Basin. American Antiquity 71(2):195–231. 

 

Kidder, Tristram R., Lee J. Arco, Anthony L. Ortmann, Timothy Schilling, Caroline Boeke, Rachel 

Bielitz and Katherine A. Adelsberger 

 2009 Poverty Point Mound A: Final Report of the 2005 and 2006 Field Seasons. Louisiana 

Division of Archaeology and the Louisiana Archaeological Survey and Antiquities 

Comission, Baton Rouge. 

 

Kidder, Tristram R., Lori Roe and Timothy M. Schilling 

 2010 Early Woodland settlement and mound building in the Upper Tensas Basin, northeast 

Louisiana. Southeastern Archaeology 29(1):121–145. 

 

Kinzie, Charles R., Shane S. Que Hee, Adrienne Stich, Kevin A. Tague, Chris Mercer, Joshua J. 

Razink, Douglas J. Kennett, Paul S. DeCarli, Ted E. Bunch, James H. Wittke, Isabel Israde-

Alcántara, James L. Bischoff, Albert C. Goodyear, Kenneth B. Tankersley, David R. Kimbel, 

Brendan J. Culleton, M. Erlandson Jon, Thomas W. Stafford, Johan B. Kloosterman, Andrew 

M. T. Moore, Richard B. Firestone, J. E. Aura Tortosa, J. F. Jordá Pardo, Allen West, James 

P. Kennett and Wendy S. Wolbach 

 2014 Nanodiamond-Rich Layer across Three Continents Consistent with Major Cosmic 

Impact at 12,800 cal BP. The Journal of Geology 122(5):475–506. 

 

Koons, Michele L. and Bridget A. Alex 



Hamilton and Krus – Supplemental file 1 

 5 

 2014 Revised Moche Chronology Based on Bayesian Models of Reliable Radiocarbon 

Dates. Radiocarbon 56(3):1039–1055. 

 

Korpisaari, Antti, Markku Oinonen and Juan Chacama 

 2014 A Reevaluation of the Absolute Chronology of Cabuza and Related Ceramic Styles of 

the Azapa Valley, Northern Chile. Latin American Antiquity 25(4):409–426. 

 

Krus, Anthony M., Robert Cook and Derek Hamilton 

 2015 Bayesian Chronological Modeling of SunWatch, a Fort Ancient Village in Dayton, 

Ohio. Radiocarbon 57(5):965–977. 

 

Krus, Anthony Michal, Timothy Schilling and G. William Monaghan 

 2013 The Timing of Angel Mounds Palisade Construction: A Search for the Best 

Chronological Model. Midcontinental Journal of Archaeology 38(2):171–182. 

 

Kuehn, Stephen C., Duane G. Froese, Paul E. Carrara, Franklin F. Foit Jr, Nicholas J. G. Pearce and 

Peter Rotheisler 

 2009 Major- and trace-element characterization, expanded distribution, and a new 

chronology for the latest Pleistocene Glacier Peak tephras in western North America. 

Quaternary Research 71(2):201–216. 

 

Lekson, Stephen H. 

 2015 The Chaco Meridian. Second ed. Rowman & Littlefield, Lanham, Maryland. 

 

Macario, K. D., R. C. C. L. Souza, D. C. Trindade, J. Decco, T. A. Lima, O. A. Aguilera, A. N. 

Marques, E. Q. Alves, F. M. Oliveira, I. S. Chanca, C. Carvalho, R. M. Anjos, F. C. Pamplona 

and E. P. Silva 

 2014 Chronological Model of a Brazilian Holocene Shellmound (Sambaqui da Tarioba, 

Rio de Janeiro, Brazil). Radiocarbon 56(2):489–499. 

 

Marsh, Erik J. 

 2012 A Bayesian Re-Assessment of the Earliest Radiocarbon Dates from Tiwanaku, 

Bolivia. Radiocarbon 54(2):203–218. 

 

 2015 The emergence of agropastoralism: Accelerated ecocultural change on the Andean 

altiplano, ∼3540–3120 cal BP. Environmental Archaeology 20(1):13–29. 

 

Marsh, Erik J. and Valeria Cortegoso 

 2014 Refinando la cronología del valle de Potrerillos mediante modelos de Bayes. In 

Arqueología y ambiente de altura de Mendoza y San Juan (Argentina), edited by V. 

Cortegoso, V. Durán and A. Gasco, pp. 57–79. EDIUNC, Mendoza, Argentina. 

 

McClure, Sarah B., Emil Podrug, Andrew M. T. Moore, Brendan J. Culleton and Douglas J. Kennett 

 2014 AMS 14C Chronology and Ceramic Sequences of Early Farmers in the Eastern 

Adriatic. Radiocarbon 56(3):1019–1038. 

 

McCoy, Mark D., Thegn N. Ladefoged, Simon H. Bickler, Jesse W. Stephen and Michael W. Graves 

 2012 The value of an “eclectic and pragmatic” approach to chronology building. Antiquity 

86(334):1206–1209. 

 

McNutt, Charles H., Jay D. Franklin and Edward R. Henry 

 2012 New perspectives on Mississippian occupations in western Tennessee and 

northwestern Mississippi: recent chronological and geophysical investigations at Chucalissa 

(40SY1), Shelby County, Tennessee. Southeastern Archaeology 31(2):231–250. 

 



Hamilton and Krus – Supplemental file 1 

 6 

Michczyñski, Adam, Peter Eeckhout, Anna Pazdur and Jacek Pawlyta 

 2007 Radiocarbon Dating of the Temple of the Monkey: The Next Step Towards a 

Comprehensive Absolute Chronology of Pachacamac, Peru. Radiocarbon 49(2):565–578. 

 

Michczyñski, Adam and Anna Pazdur 

 2003 The Method of Combining Radiocarbon Dates and Other Information in Application 

to Study the Chronologies of Archaeological Sites. Geochronometria 22:41–46. 

 

Monaghan, G. William, Timothy Schilling, Anthony Michal Krus and Christopher S. Peebles 

 2013 Mound Construction Chronology at Angel Mounds: Episodic Mound Construction 

and Ceremonial Events. Midcontinental Journal of Archaeology 38(2):155–170. 

 

Mueller, Andreas D., Gerald A. Islebe, Flavio S. Anselmetti, Daniel Ariztegui, Mark Brenner, David 

A. Hodell, Irka Hajdas, Yvonne Hamann, Gerald H. Haug and Douglas J. Kennett 

 2010 Recovery of the forest ecosystem in the tropical lowlands of northern Guatemala after 

disintegration of Classic Maya polities. Geology 38(6):523–526. 

 

Munoz, Samuel E., Kristine E. Gruley, Ashtin Massie, David A. Fike, Sissel Schroeder, and John W. 

Williams 

2015 Cahokia’s Emergence and Decline Coincided with Shifts of Flood Frequency on the 

Mississippi River. Proceedings of the National Academy of Sciences 112:6319-6324. 

 

Ogburn, Dennis Edward 

 2012 Reconceiving the Chronology of Inca Imperial Expansion. Radiocarbon 54(2):219–

237. 

 

Ortmann, Anthony L. and Tristram R. Kidder 

 2013 Building Mound A at Poverty Point, Louisiana: Monumental Public Architecture, 

Ritual Practice, and Implications form Hunter-Gatherer Complexity. Geoarchaeology 

28(1):66–86. 

 

Ostapkowicz, Joanna, Alex Wiedenhoeft, Christopher Bronk Ramsey, Erika Ribechini, Samuel 

Wilson, Fiona Brock and Tom Higham 

 2011 ‘Treasures… of black wood, brilliantly polished’: five examples of Taíno sculpture 

from the tenth–sixteenth century Caribbean. Antiquity 85(329):942–959. 

 

Overholtzer, Lisa 

 2014 A New Bayesian Chronology form Postclassic and Colonial Occupation at Xaltocan, 

Mexico. Radiocarbon 56(3):1077–1092. 

 

 2015 Agency, practice, and chronological context: A Bayesian approach to household 

chronologies. Journal of Anthropological Archaeology 37:37–47. 

 

Pluckhahn, Thomas J., Victor D. Thompson and Alexander Cherkinsky 

 2015 The temporality of shell-bearing landscapes at Crystal River, Florida. Journal of 

Anthropological Archaeology 37:19–36. 

 

Randall, Asa R. 

 2013 The chronology and history of Mount Taylor Period (ca. 7400–4600 cal B.P.) shell 

sites on the Middle St. Johns River, Florida. Southeastern Archaeology 32(2):193–217. 

 

Rieth, T. M., P. R. Mills, S. P. Lundblad, A. E. Morrison and A. Johnson 

 2013 Variation in lithic sources utilized by late pre-Contact elites in Kona, Hawai’i Island. 

Hawaiian Archaeology 13:103–130. 

 



Hamilton and Krus – Supplemental file 1 

 7 

Schilling, Timothy Michael 

 2013 The chronology of Monks Mound. Southeastern Archaeology 32(1):14–28. 

 

Smith, Carley B., Claire E. Ebert and Douglas J. Kennett 

 2014 Human Ecology of Shellfish Exploitation at a Prehistoric Fishing-Farming Village on 

the Pacific Coast of Mexico. The Journal of Island and Coastal Archaeology 9(2):183–202. 

 

Stewart, Joe D., Jane H. Kelley, A. C. MacWilliams and Paula J. Reimer 

 2005 The Viejo Period of Chihuahua Culture in Northwestern Mexico. Latin American 

Antiquity 16(2):169-192. 

 

Thakar, H. B. 

 2011 Intensification of shellfish exploitation: evidence of species-specific deviation from 

traditional expectations. Journal of Archaeological Science 38(10):2596–2605. 

 

 2014 Sites forlorn: dating intervals of abandonment at three shell middens on Santa Cruz 

Island, California using Bayesian chronological models. Journal of Archaeological Science 

52:633–644. 

 

Unkel, Ingmar, Bernd Kromer, Markus Reindel, Lukas Wacker and Gunther Wagner 

 2007 A Chronology of the Pre-Columbian Paracas and Nasca Cultures in South Peru Based 

on AMS 14C Dating. Radiocarbon 49(2):551–564. 

 

Unkel, Ingmar, Markus Reindel, Hermann Gorbahn, Johny Isla Cuadrado, Bernd Kromer and Volker 

Sossna 

 2012 A comprehensive numerical chronology form the pre-Columbian cultures of the 

Palpa valleys, south coast of Peru. Journal of Archaeological Science 39(7):2294–2303. 

 

Volta, Beniamino and Geoffrey E. Braswell 

 2014 Alternative narratives and missing data: refining the chronology of Chichen Itza. In 

The Maya and Their Central American Neighbors, edited by G. E. Braswell, pp. 356–402. 

Routledge, New York, New York. 

 

Wallis, Neill J., Paulette S. McFadden and Hayley M. Singleton 

 2015 Radiocarbon dating the pace of monument construction and village aggregation at 

Garden Patch: a ceremonial center on the Florida Gulf Coast. Journal of Archaeological 

Science: Reports 2:507–516. 

 

Wright, Alice 

 2014 History, Monumentality, and Interaction in the Appalachian Summit Middle 

Woodland. American Antiquity 79(2):277–294. 

 

Zeidler, James A., Caitlin E. Buck and Clifford D. Litton 

 1998 Integration of Archaeological Phase Information and Radiocarbon Results from the 

Jama River Valley, Ecuador: A Bayesian Approach. Latin American Antiquity 9(2):160–179. 

  



Supplemental file 2: Some references for the use of Bayesian statistics in the physical/natural 

sciences not cited in text 

 

 

Adamina, M., G. Tomlinson and U. Guller 

 2009 Bayesian Statistics in Oncology: A Guide for the Clinical Investigator. Cancer 

115(23):5371–5381. 

 

Beaumont, M. A. and B. Rannala 

 2004 The Bayesian Revolution in Genetics. Nature Reviews Genetics 5:251–261. 

 

Berliner, L. M., J. A. Royle, C. K. Wikle and R. F. Milliff 

 1999 Bayesian Methods in the Atmospheric Sciences. In Bayesian Statistics 6: 

Proceedings of the sixth Valencia international meeting, June 6–10, 1998, edited by J. M. 

Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, pp. 83–100. Oxford University Press, 

Oxford. 

 

Bouckaert, R., J. Heled, D. Kühnert, T. Vaughan, Chieh-Hsi Wu, D. Xie, M. Suchard, A. Rambaut 

and A. J. Drummond 

 2014 BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS 

Computational Biology 10(4):e1003537. 

 

Brooks, S. P. 

 2003 Bayesian Computation: A Statistical Revolution. Philosophical Transactions of the 

Royal Society A: Mathematical, Physical and Engineering Sciences 361(1813):2681–2697. 

 

Drummond, A. J., M. A. Suchard, D. Xie and A. Rambaut 

 2012 Bayesian Phylogenetics with Beauti and the BEAST 1.7. Molecular Biology and 

Evolution 29(8):1969–1973. 

 

Dunson, David B. 

 2001 Commentary: Practical Advantages of Bayesian Analysis of Epidemiologic Data. 

American Journal of Epidemiology 153(12):1222–1226. 

 

Ellison, Aaron M. 

 2004 Bayesian inference in ecology. Ecology Letters 7:50–520. 

 

Gregory, P. C. 

 2001 A Bayesian revolution in spectral analysis. In IP conference proceedings, edited by 

A. Mohammad-Djafari, pp. 557–568. Springer, Berlin, Germany. 

 

 2007 Bayesian Logical Data Analysis for the Physical Sciences. Cambridge University 

Press, Cambridge. 

 

Hibbert, D. B. and N. Armstrong 

 2009 An introduction to Bayesian methods for analyzing chemistry data: Part II: A review 

of applications of Bayesian methods in chemistry. Chemometrics and Intelligent Laboratory 

Systems 97(2):211–220. 

 

Huelsenbeck, John P., Fredrik Ronquist, Rasmus Nielsen and Jonathan P. Bollback 

 2001 Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology. Science 

294(5550):2310–2314. 

 

  



Hamilton and Krus – Supplemental file 2 

 2 

Kruschke, J. K. 

 2010 What to believe: Bayesian methods for data analysis. Trends in Cognitive Sciences 

14(7):293–300. 

 

Loredo, T. J. 

 1992 The promise of Bayesian inference for astrophysics. In Statistical Challenges in 

Modern Astronomy, edited by E. D. Feigelson and G. J. Babu, pp. 275–297. Springer-Verlag, 

New York. 

 

Mila, A. L. and A. L. Carriquiry 

 2004 Bayesian Analysis in Plant Pathology. Phytopathology 94(9):1027–1030. 

 

Musio, Monica, Nicole H. Augustin and Klaus von Wilpert 

 2008 Geoadditive Bayesian models form forestry defoliation data: a case study. 

Environmetrics 19(6):630–642. 

 

Nazir, Nageena, Athar Ali Khan, Sameera Shafi and Anjum Rashid 

 2009 Bayesian Analysis of Hierarchical Models and its Application in Agriculture. 

InterStat (April). 

 

Shoemaker, Jennifer S., Ian S. Painter and Bruce S. Weir 

 1999 Bayesian statistics in genetics: a guide form the uninitiated. Trends in Genetics 

15(9):354–358. 

 

Wade, P. R.  

 2000 Bayesian Methods in Conservation Biology. Conservation Biology 14(5):1308–1316. 

 

Wilkinson, D. J. 

 2007 Bayesian Methods in Bioinformatics and Computational Systems Biology. Briefings 

in Bioinformatics 8(2):109–116. 

 


