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Abstract

The respiratory tract and lungs are subject to diverse pathologies with wide-ranging implica-

tions for both human and animal welfare. The development and detailed characterization

of cell culture models for studying such forms of disease is of critical importance. In recent

years the use of air-liquid interface (ALI)-cultured airway epithelial cells has increased

markedly, as this method of culture results in the formation of a highly representative, orga-

notypic in vitro model system. In this study we have expanded on previous knowledge of

differentiated ovine tracheal epithelial cells by analysing the progression of differentiation

over an extensive time course at an ALI. We observed a pseudo-stratified epithelium with

ciliation and a concurrent increase in cell layer thickness from 9 days post-ALI with ciliation

approaching a maximum level at day 24. A similar pattern was observed with respect to

mucus production with intensely stained PAS-positive cells appearing at day 12. Ultrastruc-

tural analysis by SEM confirmed the presence of both ciliated cells and mucus globules on

the epithelial surface within this time-frame. Trans-epithelial electrical resistance (TEER)

peaked at 1049 Ω × cm2 as the cell layer became confluent, followed by a subsequent

reduction as differentiation proceeded and stabilization at ~200 Ω × cm2. Importantly, little

deterioration or de-differentiation was observed over the 45 day time-course indicating that

the model is suitable for long-term experiments.

Introduction

The primary role of the respiratory system is to conduct air through the nasopharynx, via the

trachea, bronchi and bronchioles, into the alveoli for gaseous exchange. During the process

of inhalation the respiratory system is exposed to a variety of particulates including bacteria,

viruses, and pollutants [1–3]. The airway epithelium lines the luminal surface of the nasophar-

ynx, trachea, bronchi and bronchioles. It represents the primary point of interaction between

inhaled foreign organisms and the host and as such the epithelium has evolved diverse defense

mechanisms in order to maintain a virtually sterile environment in the small conducting air-

ways [2, 3]. Successful clearance of particulates depends on an intact, fully functioning epithe-

lial barrier with a complex cellular organization, whereby diverse cell types co-operate in order
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to maintain airway homeostasis [4]. Airway epithelia consist of a self-regenerating, pseudo-

stratified layer with basal progenitor cells, mucus producing goblet cells, actively beating cili-

ated cells, sensory brush cells and secretory club cells (also known as Clara cells) [5–9]. In the

large airways, a principle activity of the epithelium is to carry out mucociliary clearance by

entrapping organisms and other inhaled particles in goblet cell-derived mucus before propel-

ling the mucus anteriorly towards the esophagus via the co-ordinated beating action of ciliated

cells [10].

When studying the interaction between microorganisms and host tissues it is important

that the tissue complexity is considered. A number of primary and immortalized cell lines

have been used in conventional submerged monolayer culture for the study of respiratory

pathogens [11–17]. However, submerged monolayer cultures poorly reflect the complex archi-

tecture of the airway epithelium and in many cases fail to develop the critical mucociliary dif-

ferentiation phenotype of the in vivo respiratory tract [18, 19]. An early study identified that by

using a mechanically supported cell culture substrate, epithelial cells could be cultured at an

air-liquid interface (ALI), more akin to the in vivo environment, yielding vastly improved lev-

els of differentiation [20]. It was later found that finely tuned levels of epidermal growth factor

and retinoic acid could further improve the level of differentiation observed [19]. Since then,

there has been a marked increase in the number of studies using differentiated ALI cultures,

due to the fact that differentiated ALI cultures form an organotypic cell layer containing all of

the major cell types, which closely matches the morphological phenotype and expression pro-

file of the native epithelium [19, 21–23]. Airway ALI cultures have been employed for diverse

applications in fields including toxicology, pharmacokinetics, pathology, virology and bacteri-

ology [24–28].

While a great deal of effort has been expended in developing and characterizing the culture

of human airway epithelial cells, detailed knowledge of other mammalian airway culture sys-

tems is somewhat lacking. Respiratory disease is one of the principle causes of economic loss

in the livestock industry [29]. Detailed insight into the pathogenic mechanisms of the organ-

isms responsible for such infections has been hampered by the lack of appropriate infection

models. In 2015, sheep production provided the third largest contribution to the UK meat

industry, behind cattle and poultry, with £1.1 billion being generated [30]. A number of

important sheep respiratory pathogens have been identified including Pasteurella multocida,

Mannheimia haemolytica, Bibersteinia trehalosi, Histophilus somni, Mycoplasma ovipneumo-
niae and respiratory syncytial virus [31–36]. Many of these organisms cause infection out-

breaks and are readily spread not only between sheep but also to other livestock such as cattle

and goats [37, 38]. Developing an understanding of how these organisms colonize the airway

epithelium will form a crucial part of our understanding of disease progression and transmis-

sion dynamics. To this end, we sought to develop a sheep-derived airway epithelial ALI culture

model.

Sheep airway epithelia have been successfully differentiated at ALI by a number of groups

in recent years [39–43]. Two of these studies described the use of ALI cultures as infection

models to study the sheep pathogen M. ovipneumoniae [40, 42]. However, detailed characteri-

zation of the model has not yet been achieved both in a temporal context (differentiation over

time) and a spatial context (cellular organization within the tissue). The differentiation of ALI

cultures is a complex and dynamic process involving a step-wise progression consisting of cel-

lular attachment, followed by squamous proliferation, cell layer thickening and polarization,

mucociliary differentiation and finally in many cases de-differentiation characterized by

reductions in ciliation, mucus production and cell death [19, 21, 44]. A number of studies have

detailed important temporal aspects of both differentiation and indeed de-differentiation/dete-

rioration of human ALI cultures [21, 22, 45]. One of these studies highlighted the requirement
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for detailed characterization and determination of an optimum window for use of the ALI cul-

ture [21]. As such we aimed to enhance current knowledge of ovine airway epithelial ALI cul-

ture by conducting a detailed time-course over 42 days of growth and analyzing a variety of

important markers of differentiation. This served to identify a window within which the cell

layer was optimally differentiated, thereby improving the utility and applicability of the model

for future infection studies.

Materials and methods

Ovine tracheal cell isolation, expansion and culture at ALI

Tracheae from freshly slaughtered sheep were obtained from a local abattoir (Sandyford Abat-

toir Co, Paisley, United Kingdom) and transported to the laboratory in chilled PBS containing

1% (v/v) penicillin-streptomycin and 1% (v/v) Fungizone. All subsequent media were also sup-

plemented with penicilillin-streptomycin and Fungizone. Samples of native tracheal tissue

were fixed in 2% (w/v) formaldehyde overnight to allow for histological comparison of ALI

cultures with ex vivo tissue. Epithelial tissue was dissected from the underlying cartilage and

digested overnight at 4˚C in Dulbecco’s modified minimal Eagle’s medium (DMEM)/Ham’s

F12 (1:1) containing 10 μg ml-1 DNase, 1 mg ml-1 dithiothreitol and 1 mg ml-1 protease XIV

from Streptomyces griseus (Sigma-Aldrich). Digestion was halted by the addition of 10% (v/v)

fetal calf serum (FCS). Tissue pieces were rinsed thoroughly to remove loosely attached cells

and to homogenize the cell suspension. The cells were strained through a 70 μm cell strainer,

collected by centrifugation and washed with DMEM/Ham’s F12 (1:1) with 10% (v/v) FCS. The

cells were again centrifuged and resuspended in airway epithelial growth medium (AEGM)

(Promocell). Viability of the extracted cells was assessed by Trypan Blue exclusion and was

typically found to be approximately 90%. Tissue culture flasks (75 cm2) were seeded with

1.0 × 107 cells per flask and cultures were expanded to approximately 70% confluency (~7

days). Epithelial cells were routinely cultured in a Heraeus 150i incubator at 37˚C, 5% CO2,

14% O2. At this point the cells were trypsinized and seeded onto high pore density, translucent

Thincerts (Greiner #665640, pore diameter 0.4 μm, 1 x 108 pores cm-2) at a density of 2.5 × 105

cells per insert in 0.5 ml AEGM. For bright field microscopy and movie capture of beating cilia

low pore density, transparent Thincerts were employed (Greiner #665641, pore diameter

0.4 μm, 2 x 106 pores cm-2). One milliliter volumes of AEGM were added to the basal compart-

ment. Trans-epithelial electrical resistance (TEER) was monitored on a daily basis using an

EVOM2 epithelial voltmeter with STX2 electrode (World Precision Instruments) and cells

were washed and fed every two to three days. Once the TEER reached 200 O × cm2 in sub-

merged culture, the ALI was established by removing all apical medium, thereby exposing the

luminal surface to the atmosphere (day 0 post-ALI). Following the formation of the ALI the

cells were fed exclusively from the basal compartment with complete ALI medium consisting

of DMEM/AEGM base medium [1:1] supplemented with the following growth factors: 100

nM retinoic acid, 10 ng ml-1 epidermal growth factor, 5 μg ml-1 insulin, 500 ng ml-1 hydrocor-

tisone, 500 ng ml-1 epinephrine, 6.7 ng ml-1 triiodo-thyronine and 10 μg ml-1 transferrin. A

50:50 mix of complete ALI medium and AEGM was employed for apical and basal feeding

approximately half way through the submerged growth phase to allow for a gradual transition

to ALI conditions. Apical surface washing, basal feeding and TEER measurements were car-

ried out every 2 to 3 days until day 42 post-ALI.

Immunofluorescence microscopy

Samples were taken at 3 day intervals starting from 3 days prior to establishment of the ALI

(i.e., day -3). At each time-point cultures were fixed by adding 4% (w/v) paraformaldehyde to
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the apical surface and incubating at room temperature for 15 min. Samples were washed with

1 ml PBS and stored in PBS until completion of the time course. Samples were then incubated

in 0.5 ml permeabilization buffer (PBS with 0.5% [v/v] Triton X-100, 100 mg ml-1 sucrose, 4.8

mg ml-1 HEPES, 2.9 mg ml-1 NaCl and 600 μg ml-1 MgCl2, pH 7.2) for 10 min. The apical sur-

faces were washed three times for 3 min with PBS and blocked with PBST (PBS with 0.1%

Tween-20) containing 10% (v/v) normal goat serum and 1% (w/v) BSA for 1 h. The ALI cul-

tures were incubated for 1 h with primary antibodies diluted in blocking buffer to the follow-

ing concentrations: rabbit anti-β-tubulin antibody (Abcam #ab6046) 1:200, mouse anti-ZO1

antibody (Thermofisher #33–9100) 1:50 and Jacalin-FITC lectin (Vector #FL-1151) 1:25. ALI

cultures were washed (three times for 3 min) with PBST to remove unbound antibody and

incubated in goat anti-rabbit-Alexa488 (Thermofisher #A-11034) or goat anti-mouse-

Alexa488 (Thermofisher #A-11001) at a 1:400 dilution in blocking buffer for 1 h. The ALI cul-

tures were washed three times for 3 min with PBST and stained with phalloidin-rhodamine

(1U per sample) and 300 nM DAPI (diluted in PBS) for 20 min. Samples were washed three

times with PBS and the membranes were cut from the inserts and placed on glass slides. A

drop of Vectashield mountant was placed on the surface of the tissue and a coverslip was

sealed on top of the tissue layer using clear nail polish. Images were acquired using a Leica

Dmi8 for standard fluorescence microscopy, while confocal images were acquired using a

Zeiss LSM510.

Quantitation of ciliation using immunofluorescence microscopy

To quantify ciliation, five independent locations on each β-tubulin-stained insert were

acquired via a 20× objective. A fluorescence intensity threshold was applied in ImageJ such

that only the ciliated regions were above the threshold. The area above the threshold was mea-

sured for each image and expressed as a percentage of the total area. A mean of three inserts

was obtained for tissues derived from each of three independent animals.

Sample preparation for histological and immunohistochemical analysis

ALI cultures were fixed in 4% (w/v) paraformaldehyde and stored in PBS. Cultures were pro-

cessed by dehydrating through a series of increasing ethanol concentrations, cleared with

xylene, infiltrated with paraffin wax and embedded in wax blocks. Sections (2.5μm in thick-

ness) were cut using a Thermoshandon Finesse ME+ microtome and were stained with hema-

toxylin and eosin (H&E) or Periodic Acid Schiff (PAS) stain according to standard histological

techniques. For immunohistochemistry (IHC), sections were subjected to antigen retrieval

using a Menarini Access Retrieval Unit. Endogenous peroxidase was blocked using H2O2 in

PBS. Sections were subsequently incubated with mouse anti-p63 antibody (Abcam #ab735) at

a 1:30 dilution for 30 min followed by the application of an anti-mouse HRP-labelled polymer,

before visualization with a REAL EnVision Peroxidase/DAB+ Detection System (Dako

#K3468) according to manufacturer’s instructions. Samples were counterstained with Gill’s

hematoxylin before dehydration, clearing and mounting in synthetic resin. Slides were visual-

ized using a Leica DM2000 microscope.

Sample preparation for scanning electron microscopy (SEM)

ALI cultures were fixed in 1.5% (v/v) glutaraldehyde in 0.1M sodium cacodylate for 1 h at 4˚C.

The apical and basal chambers were washed three times with 0.1M sodium cacodylate, five

hundred microliters of 2% (w/v) osmium tertraoxide were added to the apical surface and the

cells were incubated for 1 h at room temperature. Three 10 min washes were carried out with

distilled water before staining with 0.5% (w/v) uranyl acetate for 1 h in the dark. The ALI
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cultures were washed twice with distilled water and dehydrated through increasing concentra-

tions of ethanol. Samples were further dehydrated by incubation in hexamethyldisilizane

before placing in a desiccator overnight. The membranes were cut from the inserts and

mounted on aluminium SEM stubs and gold sputter-coated before analysing on a Jeol 6400

scanning electron microscope.

Results

General epithelial cell morphology and polarization

Histological analysis allowed for overall assessment of the polarization and differentiation of

the ovine ALI cultures in a temporal manner (Fig 1). Samples were analysed over a 45 day time

period encompassing a single sample prior to establishment of the ALI (i.e. day -3) to 42 days

post-ALI at 3 day intervals (Fig 1; S1–S4 Figs). This allowed for high resolution assessment of

growth, proliferation and differentiation of the cell layer. General morphological observations

and characterization of a variety of cell types including ciliated and goblet cells could be

attained by standard H&E staining (Fig 1A), while PAS staining (Fig 1B) and p63 immunohis-

tochemistry (Fig 1C) allowed for specific labelling of the mucus-producing and basal cell sub-

populations, respectively. Transition from a squamous, sub-confluent, unpolarized epithelium

to a well-differentiated ALI culture occurred between day -3 and day 21 (Fig 1D and 1E; S1

Fig). The epithelium was found to thicken following confluency, such that a mean thickness of

12 μm was reached by day 12 post-ALI (Fig 1D). The thickness of the epithelium was relatively

stable for the remainder of the time-course with no significant increase/decrease in thickness

being observed. While the ALI cultures were considerably thinner than the ex vivo tracheal epi-

thelium, the pseudo-stratified morphology associated with these tissues was maintained–the

tissue layer was two cells thick from day 12 post-ALI (S4A Fig) and the vast majority of cells

maintained contact with the underlying membrane (Fig 1A, 1B and 1C). Ciliation and mucus

production will be discussed in greater detail below. The basal progenitor cell marker p63 was

detected at all time-points post-differentiation by IHC and was localized almost exclusively to

basally-located cells with basal cell-like morphology (Fig 1C; S3 Fig). The squamous tissue lay-

ers observed prior to day 6 were lost during the antigen retrieval process and as such could not

be analysed by IHC (S3 Fig). To assess de-differentiation and cell death, pyknotic and vacuo-

lated cells were enumerated. Pyknosis or nuclear condensation is a feature of apoptosis, while

vacuolation is often a feature of autophagy [46]. While a mean of 1.0 pyknotic and 0.37 vacuo-

lated cells per field were identified between 21 and 42 days post-ALI (S4C and S4D Fig), the

tissue layer appeared remarkably stable and a trend towards increased pyknosis and vacuola-

tion at later time-points was not observed.

Ciliation

Qualitative assessment of the temporal dynamics of ciliogenesis was revealed by histological

analysis (Fig 1A) and immunofluorescent labelling of the cilia-associated protein β-tubulin

(Fig 2; S5 Fig). As the epithelial cells proliferated and confluency was approached, the cell layer

contained predominantly large, squamous epithelial cells with numerous cytoskeletal microtu-

bules and microtubular mitotic spindles being visible (Fig 2A; S5 Fig). Apically-localized cilia

were first observed at day 6 post-ALI. Cilial staining could be easily distinguished from cyto-

skeletal β-tubulin staining due to the relatively high intensity of labelling and its apical localiza-

tion (Fig 2; S5 Fig). Quantitative measurement of ciliation was achieved both by counting

ciliated cells in H&E-stained histological sections (Fig 1E) and by immunofluorescent staining

(Fig 2D). Measurements using both methods showed good levels of correlation. Ciliation

increased steadily from day 6 to day 24 (Figs 1A, 1E, 2A and 2D; S1 and S5 Figs), approaching

Dynamics of ovine airway epithelial cell differentiation at ALI
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Fig 1. Histological assessment of ovine tracheal epithelial cell culture differentiation over time. Ovine tracheal epithelial cell

cultures were grown at an ALI for the indicated number of days (relative to establishment of the ALI), fixed and paraffin embedded using

standard histological techniques. Samples of ex vivo tissue were dissected from the center of each trachea prior to cell extraction, fixed,

embedded and processed. Sections were taken, deparaffinized and stained as follows. (A) H&E staining of tissue layers at the indicated

time points; selected ciliated cells are indicated by arrowheads. (B) PAS staining to detect mucus-containing/secreting cells (indicated

by arrows and arrowheads). (C) Labelling of the transcription factor p63 to detect basal stem cells (positively labelled cells possess

brown labelled nuclei). (D) Cell layer thickness was measured using ImageJ. Five images (400×magnification) were taken per insert

with three points being measured per image. (E) The numbers of ciliated cells per field were counted from five images per insert. Three

inserts were analysed per time point and the data represented is the mean +/- standard deviation from tissues derived from three

independent animals (D and E). One-way ANOVA with post-test for linear trend was performed on data with significant (P<0.001)

increasing trends being observed for both thickness (D) and ciliation (E).

https://doi.org/10.1371/journal.pone.0181583.g001
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mean ciliation levels of 7.47 ciliated cells per field (Fig 1E) and 15.2% of total area above fluo-

rescence intensity threshold (Fig 2D) between days 21 and 42 post-ALI. Once maximum levels

of ciliation were reached, no progressive decrease in ciliation was observed towards the later

time-points of analysis. SEM analysis of the apical surface showed the emergence of short cilial

outgrowths by day 6 (Fig 3; S6 and S7 Figs). The cilia increased in both length and abundance

as the time-course proceeded with maximal levels being approached by day 24 (Fig 3; S6 and

S7 Figs) in agreement with histological enumeration and immunofluorescent quantitation

(Figs 1E and 2D). Importantly, no shortening or decreased abundance of cilia occurred by day

42 (Figs 1A, 1E, 2 and 3; S5, S6 and S7 Figs). Further detail on ultrastructural analysis will be

provided below. Bright-field microscopy of low pore-density transparent inserts showed that

the cilia were functional and capable of propelling mucus globules across the epithelial surface

(S1 Movie).

Fig 2. Ovine tracheal epithelial cell cultures display a time-dependent increase in apical surface ciliation. (A) Ovine tracheal epithelial cell

cultures were grown at an ALI for the indicated number of days (relative to establishment of the ALI), fixed and immunostained using an anti-β
tubulin antibody to detect cilia and rhodamine-phalloidin to stain the actin cytoskeleton. (B) Z-stack orthogonal representation of 21-day post-ALI

tissue layer. (C) 3-dimensional representation of the Z-stack in panel B. (D) Ciliation was quantified by measuring the area above a manual

fluorescence intensity threshold in ImageJ. For each time point, five regions on three independent cell cultures were measured. Results displayed

are the mean +/- standard deviation from tissue layers derived from three animals.

https://doi.org/10.1371/journal.pone.0181583.g002
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Mucus production. In the respiratory tract mucus is produced by secretory goblet cells.

We first attempted to quantitate goblet cells within the ALI cultures from H&E stained histo-

logical sections (S4B Fig). However, in many cases it was difficult to distinguish these cells as

they failed to fully recapitulate the goblet cell morphology associated with the ex vivo tissue

(Fig 1A and 1B). As such, we attempted to specifically label the polysaccharide-containing

population of cells within the ALI cultures by PAS staining of histological sections (Fig 1B; S2

Fig). This analysis showed differential labelling of a subset of cells within the tissue layer from

day 9 onwards (S2 Fig). Areas of faint positive staining were seen at earlier time-points, but

since the cell layer was squamous prior to day 9, it was difficult to discern if these were true

goblet-like cells. Some cells were PAS positive with relatively faint staining (arrowheads) while

others showed very intense staining (arrows), similar to that observed in the ex vivo tissue (Fig

1B). Mucus production was also observed in isolated regions of the tissue layer by SEM (Fig

4A; S6 and S7 Figs) and by staining with jacalin-FITC lectin (Fig 4B) which has been shown to

serve as a goblet cell marker in both native human airway tissue and well-differentiated human

ALI cultures [47]. Mucus could be observed as web-like secretions, carpets of amorphous

Fig 3. Ultrastructural analysis of the apical surface of ovine tracheal epithelial cell cultures by SEM. Ovine tracheal epithelial cell

cultures were grown at an ALI for the indicated number of days (relative to establishment of the ALI), fixed and processed for SEM. (A)

Images were taken at 1500×magnification. (B) Images were taken at 5000×magnification. Ciliated epithelial cells were observed from day

12 onwards.

https://doi.org/10.1371/journal.pone.0181583.g003
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material or globules coating the cilia (Fig 4). In some cases, mucus was observed as globules

being actively extruded from goblet cells (Fig 4A; S6 Fig [day 27]). Jacalin-staining allowed for

detection of mucin-containing cells as early as day 0 (S8 Fig) indicating that the mucus-pro-

ducing phenotype may develop independently of polarization, ciliation and epithelial thicken-

ing. The propulsion of clear globules of mucus by beating cilia on the surface of the cell layer is

demonstrated in S1 Movie.

Barrier function and junctional integrity

Tight junctions remained intact throughout the 45 days of analysis (three days prior to and 42

days post-ALI) as characterized by positive staining of the tight junctional protein ZO1 (Fig

5A; S9 Fig). However, the pattern of ZO1 varied temporally, as after confluency was reached,

the cells became smaller and more numerous, and as such the number of junctions visible per

field increased markedly. At later time-points it became difficult to focus on all of the tight

junctions in a given field due to increased undulation of the apical surface. This undulation

can be observed in the confocal Z-stacks (Figs 2B, 2C, 5B and 5C). Approximately 10 days of

submerged growth was required for confluency to be achieved and a subsequent increase in

TEER to be detected. The TEER reached its highest point during the early squamous phase of

growth, with a mean peak value of 1049 O × cm2 being observed between day 1 and day 3

post-ALI (Fig 5D). A decrease in TEER occurred after this peak value was reached at day 1 or

day 3 post-ALI (depending on the animal being analysed). However, this decrease was also

found to occur in continuously submerged cells (data not shown) and, as such, this process

cannot be attributed directly to establishment of the ALI. Interestingly, although TEER

decreased as differentiation proceeded, junctional staining was not affected. TEER stabilized at

~200 O × cm2 and, importantly, the epithelial barrier remained intact, with no leakage of basal

media being detected at later time-points.

Fig 4. Mucus production by differentiated ovine tracheal epithelial cell cultures. (A) Ovine tracheal

epithelial cell cultures were grown at ALI for the indicated number of days (relative to establishment of the ALI),

fixed and processed for SEM. (B) Ovine tracheal epithelial cell cultures were grown for the indicated number of

days, fixed and stained with jacalin-FITC (green), rhodamine-phalloidin (red) and DAPI (blue). Mucus globules are

indicated by white arrows, carpets of amorphous mucus are indicated by white arrowheads and jacalin-labelled

mucin-positive cells are indicated by yellow arrows.

https://doi.org/10.1371/journal.pone.0181583.g004
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Ultrastructural features

High resolution assessment of differentiation of the epithelial surface was achieved by SEM. At

days -3, 0 and 3 post-ALI, the cell layer was found to be squamous, completely devoid of cilia

and quite uniform with microvilli protruding from the majority of cells within the culture (Fig

3; S6 and S7 Figs). As the cell layer thickened, cracking was observed in many areas. This was

not observed in early squamous-like tissue and was likely an effect of tissue shrinkage during

SEM sample preparation. At day 6, the cell surface features became more pronounced and

short cilial outgrowths were observed in isolated regions. As differentiation proceeded (day 6

to day 24 post-ALI) these became more numerous and the cilia increased in length and a maxi-

mum apparent level of ciliation was observed at day 24. Between days 24 and 42 post-ALI, little

difference was seen in the topography of the epithelial surface. Differentiated ALI cultures

possessed ciliated cells with typical morphology, microvillous epithelial cells (possibly brush

cells) and some raised epithelial cells with relatively short microvilli which may represent the

Fig 5. Ovine tracheal epithelial cell cultures display stable barrier function and junctional integrity. (A) Ovine tracheal epithelial cell cultures

were grown at ALI for the indicated number of days (relative to establishment of the ALI) and tissue layers were fixed and immunostained using an

anti-ZO1 antibody at the indicated time points (relative to establishment of the ALI). (B) Orthogonal representation of ALI culture at 24 days post-

ALI. (C) 3-dimensional model of the Z-stack shown in panel B. (D) TEER measurements from four independent cell culture inserts at each time-

point. Results for ALI cultures derived from three independent animals are shown (mean +/- standard deviation).

https://doi.org/10.1371/journal.pone.0181583.g005
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mucus-producing goblet cell sub-population. Globules of mucus were occasionally observed

as being actively secreted from such cells (Fig 4A) supporting the assumption that this cellular

morphology is consistent with mucus production.

Discussion

Respiratory tract infections represent one of the primary causes of mortality in ruminant live-

stock [29, 48, 49]. Detailed characterization of the bacteria and viruses responsible for such

infections has been hampered by the lack of suitable infection models. In this study, we

describe a well-differentiated organotypic model of the ovine tracheal epithelium which was

obtained by culturing tracheal epithelial cells on semi-permeable membranes at an ALI. Air-

way epithelial cells grown under submerged conditions fail to develop the expression profile or

the full complement of cell types present in vivo [23, 50]. Respiratory pathogens often target a

subset of differentiated cells in the airway epithelium and as such, a fully differentiated model

is required in order for all aspects of pathogenesis to be considered [27, 44, 51, 52]. Airway epi-

thelial cells have also been shown to display altered inflammatory responses when differenti-

ated for 3, 10 and 21 days at ALI [53]. Two similar studies described in excellent detail the

proliferation, polarization, and cellular differentiation of human airway ALI cultures [21, 22],

with a window between day 24 and 33 post-ALI where the model was fully differentiated and

suitable for experimentation [21]. In both cases, some features of de-differentiation were

observed after 21 days post-ALI. For these reasons, we carried out a detailed temporal analysis

of differentiation over an extended time-period, so that comprehensive assessments could be

made regarding the optimum time-points (with respect to differentiation) for conducting

infection experiments.

Vertebrates have evolved a so-called “mucociliary escalator” phenotype within airway epi-

thelial tissues in order to maintain a healthy environment in the deeper regions of the respira-

tory tract where gaseous exchange occurs [54]. This feature involves entrapment of particles

within mucus globules and subsequent propulsion out of the airway, where they can be swal-

lowed and passed into the gastro-intestinal tract. In order to be considered truly organotypic,

it was essential that our model possessed both actively beating cilia and mucus production. We

were able to detect ciliation via histology, immunofluorescence and SEM as early as day 6,

with an increase in abundance of ciliated cells being observed up to day 24. In particular,

immunofluorescent labelling of β-tubulin allowed for a high level of sensitivity and allowed for

quantitative assessment of ciliation. A temporal analysis of primary human bronchial epithelial

cells demonstrated ciliation by day 15 with full differentiation being reached by day 24 [21].

Functionally beating cilia have previously been observed within ovine tracheal ALI cultures,

although production/propulsion of mucus droplets was not described [39]. We have demon-

strated that the cilia produced in our model are capable of driving the movement of mucus

globules across the epithelial surface in a similar manner to that seen in the mucociliary escala-

tor in vivo (S1 Movie). While mucociliary functionality is typically thought of as being a central

innate defense mechanism which inhibits colonization by pathogens, ciliated cells have also

been shown to act as a target for adhesion with some species of viruses and bacteria [44, 51, 52,

55]. Studies on the modulation of ciliary beat frequency and co-ordination of cilial beating in

response to drugs, pollutants and infectious agents have also yielded important insights into

diverse pathologies [56, 57]. This model provides an excellent platform for further studies in

such areas.

The junctional complexes of the airway epithelium contribute greatly to overall barrier

function and resistance to infection in the respiratory tract [58–60]. Once confluency was

reached in the submerged growth phase, TEER rapidly increased to 1049 O × cm2 and

Dynamics of ovine airway epithelial cell differentiation at ALI

PLOS ONE | https://doi.org/10.1371/journal.pone.0181583 July 26, 2017 11 / 20

https://doi.org/10.1371/journal.pone.0181583


subsequently decreased to a stable 200 O × cm2 after establishment of ALI. Our model formed

an electrically tight barrier and stable TEER readings of ~200 O × cm2 were observed through-

out the differentiated phase of growth (days 21 to 42). Similar trends in TEER have been

observed in porcine and equine airway ALI cultures [61, 62]. TEER values for Calu-3 airway

cells have been shown to be higher when cultured under submerged conditions [63]. Impor-

tantly, staining of the tight junctional protein ZO1 was also maintained at a stable and consis-

tent level throughout the time-course, with the exception of day -3 (3 days prior to ALI

establishment) when the cell layer was sub-confluent. A number of bacterial and viral patho-

gens have been shown to be capable of disrupting the epithelial barrier in vitro [64–66]. The

application of our model for investigating airway barrier disruption by ruminant pathogens

will reveal new insights into tissue damage and pathogen dissemination during pneumonic

infections.

PAS or alcian blue staining is routinely used to detect mucus-producing cells in histological

sections. It has previously been shown that PAS-positive mucus-producing cells begin to

appear in human airway ALI cell layers from approximately 6 days post-ALI and that these

increase in abundance and intensity of staining up to day 21 [22]. An association between

detection of PAS-positive cells and increasing transcription of MUC5AC and MUC5B (the

two major secretory mucins) by RT-PCR within this time-frame was also observed [22]. We

observed a similar trend with respect to the development of PAS-positive cells and demon-

strated that this feature is stable during the 45 days of analysis. There was also a correlation

between the detection of mucus-producing cells by PAS staining and the appearance of goblet-

like cells on the apical surface as observed by SEM. When visualized by SEM, goblet cells have

been described as having a swollen appearance with microvilli being more numerous around

the periphery of the cell [67]. We were able to visualize mucus globules being actively extruded

form such cells (Fig 4A; S6 Fig [day 27]) and globules of similar appearance were frequently

found entangled in or underneath the apical cilia (Fig 4A [day 33]). We attempted to label

goblet cells using two distinct anti-human MUC5AC antibodies by IHC and immunofluores-

cence. However, the antibodies failed to detect goblet cells in the sheep airway model (data not

shown). The fact that sheep MUC5AC possesses 74% identity across 84% of the amino acid

sequence of human MUC5AC and the fact that these proteins are heavily post-translationally

modified (glycosylated) may explain the lack of cross-reactivity with these antibodies. Jacalin

recognizes a mature O-glycosylated α-GalNac-linked form of Muc5AC [68] and has been suc-

cessfully used to label goblet cells [47]. We identified a subset of jacalin-positive cells by immu-

nofluorescence and also observed some sheet-like deposits of mucus (Fig 4B). This confirmed

our findings from PAS staining of histological sections and SEM. Many bacterial species

are capable of degrading the mucus layer via specific mucinases and this plays a key role in epi-

thelial colonization [69, 70]. Respiratory conditions in humans such as asthma and cystic

fibrosis are thought to be exacerbated by the fact that bacterial species such as Mycoplasma
pneumoniae induce increased mucin expression [71]. Pseudomonas aeruginosa binds to airway

mucins and this is thought to play a major role in airway colonization in cystic fibrosis [72].

These relationships are not fully understood in the case of ruminant respiratory disease. There-

fore, the mucus-producing phenotype of our model represents an attractive avenue for such

investigations.

Basal cells constitute the main progenitor cell type in the airway epithelium and develop

into differentiated epithelial cells during post-natal growth [5]. Basal cells continue to act as

progenitor cells in the adult airway epithelium facilitating repair of damaged tissues [5, 73].

We have demonstrated that our model possesses p63-positive basal cells throughout the

time-period analysed. A number of important respiratory viruses target the basal cell sub-

population during bovine and human infections [51, 74, 75]. Such tropisms have not been

Dynamics of ovine airway epithelial cell differentiation at ALI

PLOS ONE | https://doi.org/10.1371/journal.pone.0181583 July 26, 2017 12 / 20

https://doi.org/10.1371/journal.pone.0181583


investigated for the major bacterial or viral pathogens of the sheep respiratory tract. Our

model will allow for interesting insights into potential pathogen-basal cell interactions.

An abundant, non-ciliated epithelial cell type was identified by SEM analysis, the apical sur-

faces of which displayed numerous microvilli. Pulmonary microvillous epithelial cells, also

termed brush cells, are characterized as having a pear-shaped morphology in cross-section and

longer microvilli than those of goblet cells [67, 76]. Until recently, the function of these cells

remained elusive, although they were thought to have a secretory function due to their posses-

sion of large numbers of cytoplasmic vesicles [76]. Recent work identified that brush cells pos-

sess a sensory network, similar to that involved in bitter taste sensation, which can regulate the

frequency of breathing [8]. These cells are also capable of detecting bacterial quorum-sensing

N-acyl homo-serine lactones [77]. The presence of these cells in the differentiated ALI cultures

further enhances the representative nature of the model and may indicate sensory capabilities

which would be important in the in vitro characterization of epithelial infection.

While we have shown that good levels of differentiation can be achieved in the ovine ALI

culture system, we have not provided mechanistic insight into the regulation of these processes

at the transcriptional level. This could be facilitated by extracting and purifying mRNA at a

variety of time-points in order to determine the levels of expression of differentiation-related

targets using RNAseq or qPCR. Although the transcriptional profile of differentiated primary

ALI cultures can closely mimic that of the airway epithelium in vivo [23, 78] a poor correlation

between mRNA levels and observable levels of mature protein by immunolabelling has also

been described [79]. Furthermore, miRNA levels have been shown to vary considerably

between freshly isolated airway epithelial cells and differentiated ALI cultures [80]. As such,

we chose to assess levels of differentiation using antibody labelling, thereby avoiding any

inherent analytical complications due to post-transcriptional regulation/modification, while

also allowing confirmation of correct sub-cellular localization.

One of the most promising features of the model described in this study is the long-term

stability of the differentiated cell layer. Pyknosis or nuclear condensation is a feature of apopto-

sis, while vacuolation is often a feature of autophagy [46]. While both features were observed

at various time-points post-differentiation, a trend towards increased features of cell death

was not observed at later time-points (S4C and S4D Fig). A number of previous time-course

analyses have detailed a limited lifespan for ALI cultures with deterioration as evidenced by

decreased ciliation and the formation of pores/vacuoles in the cell layer [21, 81]. Indeed, a

number of primary research articles and reviews have stated that the limited lifespan of pri-

mary airway epithelial cells represents the most prominent drawback to their use [21, 79, 82,

83]. Although we have not addressed the issue of repeated subculture and expansion in the

present study, from a single expansion of cells derived from a single trachea, we routinely

acquired sufficient numbers of cells for seeding 200 inserts. Once differentiated, these cultures

were stable for the entire 42 days of analysis. We believe that this would allow sufficient time

for long-term experimentation. One particularly attractive avenue of research, given the multi-

factorial nature of ruminant respiratory disease, would be to investigate the involvement of

viruses in pre-disposition of epithelia to infection by bacterial members of the respiratory dis-

ease complex (RDC). Recently, a study involving viral infection of bovine ALI cultures [51]

and another involving in vivo cattle infection with bacterial and viral agents of the RDC [84]

described the variable and exacerbatory roles played by each agent in causing progression of

the disease. Similar exacerbation of pneumonic pathology has been seen with in vivo pre-expo-

sure of sheep to Mycoplasma ovipneumoniae, followed by infection with the most common

bacterial cause of respiratory disease in sheep–M. haemolytica [32]. Bibersteinia trehalosi,
respiratory syncytial virus, and parainfluenza-3 virus have also been shown to play synergistic

roles with M. haemolytica in inducing pneumonia in sheep by in vivo infection [33]. Our
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model would allow for analysis of this complex process without a need for expensive and ethi-

cally questionable in vivo infection.

The limitations of primary cell culture systems have been well documented and include

cost, finite lifespan, limited cell numbers and inter-donor variability [21, 79, 82, 83, 85]. Our

model addresses the issues of cost and limited resource/cell numbers as the tissues are easily

obtainable at a low cost from meat production facilities. Little variation was observed in terms

of overall differentiation of tracheal epithelial cells derived from three animals, demonstrating

that good levels of differentiation can be obtained consistently. We identified a wide window

between days 21 and 42 post-ALI in which the model is well-differentiated and suitable for

experimentation. The model is highly representative of the airway epithelium in vivo; it pos-

sesses all of the major cell types found within airway epithelia including basal progenitor cells,

ciliated cells and mucus-producing goblet cells. Importantly, the model is highly stable with

good levels of differentiation being observed over a three-week period. As such, it is suitable

for long term experiments in numerous diverse applications.

Supporting information

S1 Fig. Temporal progression of growth and differentiation of ovine tracheal epithelial cell

cultures. Ovine tracheal epithelial cells were cultured to confluency and an ALI was estab-

lished on day 0. Samples were taken 3 days prior to establishing the ALI and at 3 day intervals

until day 42 post-ALI. At each time point samples were fixed, processed for histological analy-

sis and stained with H&E.

(TIF)

S2 Fig. Temporal analysis of mucin production in ovine tracheal epithelial cell cultures

by PAS staining. Ovine tracheal epithelial cells were cultured to confluency and an ALI was

established on day 0. Samples were taken 3 days prior to establishing the ALI and at 3 day

intervals until day 42 post-ALI. At each time point samples were fixed, processed for histologi-

cal analysis and stained with PAS stain.

(TIF)

S3 Fig. Immunohistochemistry reveals the presence of basal stem cells throughout the

growth and differentiation of ovine tracheal epithelial cell cultures. Ovine tracheal epithe-

lial cells were cultured to confluency and an ALI was established on day 0. Samples were taken

3 days prior to establishing the ALI and at 3 day intervals until day 42 post-ALI. At each time

point samples were fixed, processed for histological analysis, subjected to antigen retrieval and

labelled with an anti-p63 antibody followed by counterstaining with haematoxylin. P63-posi-

tive basal stem cells are indicated by possession of brown nuclei. For days -3, 0 and 3 the tissue

layers were too thin to be recovered following antigen retrieval.

(TIF)

S4 Fig. Assessment of differentiation- and deterioration-related traits from histological

sections. Five images (400× magnification) were taken per insert and three inserts were ana-

lysed per time-point. The data represents the mean plus/minus standard deviation from tissues

derived from three independent animals. (A) Cell layer thickness as determined by counting

the number of cells thick from three locations in each image. (B) Number of goblet cells per

field. Inset is an example of a typical goblet cell. (C) Number of cells with pyknotic nuclei per

field. Inset is an example of a pyknotic cell. (C) Number of vacuoles per field. Inset is an exam-

ple of a vacuolated cell.

(TIF)
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S5 Fig. Ovine tracheal epithelial cell cultures produce ciliated epithelial cells which are sta-

ble up to day 42 post-ALI. Ovine tracheal epithelial cell cultures were grown at an ALI for the

indicated number of days, fixed and immunostained using an anti-β tubulin antibody to detect

cilia (green) and rhodamine-phalloidin to stain the actin cytoskeleton (red). DAPI was used to

stain nuclear DNA (blue). Mitotic spindles are indicated by arrowheads, selected cells exhibit-

ing pronounced labelling of cytoskeletal microtubules are indicated by arrows.

(TIF)

S6 Fig. Ultrastructural analysis of ovine tracheal epithelial cell culture differentiation over

time. Ovine tracheal epithelial cell cultures were grown on cell culture inserts at an ALI and

tissue layers at the indicated time points were fixed, processed and analysed by SEM. Ex vivo
tissues were dissected prior to cell extraction and were also fixed, processed and analysed by

SEM.

(TIF)

S7 Fig. Ultrastructural analysis of ovine tracheal epithelial cell culture differentiation over

time. Ovine tracheal epithelial cell cultures were grown on cell culture inserts at an ALI and

tissue layers at the indicated time points were fixed, processed and analysed by SEM. Ex vivo
tissues were dissected prior to cell extraction and were also fixed, processed and analysed by

SEM.

(TIF)

S8 Fig. Ovine tracheal epithelial cell cultures develop mucus-producing cells which can be

detected by jacalin-FITC lectin. Ovine tracheal epithelial cell cultures were grown at an ALI

for the indicated number of days (relative to establishment of the ALI), fixed and stained using

jacalin-FITC to detect mucins (green) and rhodamine-phalloidin to stain the actin cytoskele-

ton (red). DAPI was used to stain nuclear DNA (blue).

(TIF)

S9 Fig. Ovine tracheal epithelial cell cultures produce an epithelial barrier with stable tight

junctions. Ovine tracheal epithelial cell cultures were grown at an ALI for the indicated num-

ber of days (relative to establishment of the ALI), fixed and immunostained using an anti-ZO1

antibody (green). DAPI was used to stain nuclear DNA (blue).

(TIF)

S1 Movie. Differentiated ovine tracheal epithelial cell cultures possess actively beating cilia

which are capable of propelling mucus globules. Movie was captured from day 14 post-ALI

ovine tracheal epithelial cell culture using a Leica Dmi1 inverted microscope.

(MP4)

S1 File. Underlying data.

(XLSX)
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