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Abstract 15 

Owing to the paucity of information on the reproductive biology of guinea fowls, a 16 

study involving a total of 66 males was conducted, and documented the 17 

developmental changes in histological structure of the testes of guinea cocks from 18 

hatching until adulthood. Changes in testosterone synthesis during sexual 19 

development were also determined. Age-related changes were analysed using 20 

univariate analysis for completely randomised design and means separated using 21 
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Tukey's test/Kruskal-Wallis test and medians separated by Mann-Whitney U-test. 22 

Total germ cell population per testis and testicular histological morphometric 23 

parameters increased significantly (p<0.0001) from 12 weeks of age (WOA), and 24 

stabilised between 20 and 24 WOA. Peripheral testosterone concentrations increased 25 

gradually from 4 WOA, and peaked at 20 WOA. Correlations among all the testicular 26 

morphometric parameters were positive and highly significant (p<0.01). Similarly, 27 

significant (p<0.05) positive correlations existed between testicular weight and 28 

testicular sperm production, tubular diameter, Sertoli cell population, tubular length 29 

and peripheral testosterone concentration. Testicular sperm production was positively 30 

correlated with meiotic index (p<0.01) and round spermatids population (p<0.05). 31 

The correlations between peripheral testosterone concentrations, tubular diameter and 32 

Sertoli efficiency were also significant (p<0.05) and positive. Testicular 33 

morphometric parameters stabilized between 20 and 24 WOA, while peripheral 34 

testosterone concentrations showed two patterns of secretion, initial and final phases 35 

of increasing and decreasing testosterone secretions, respectively, and may be 36 

implicated in the development of histological structures of the testes and 37 

spermatogenesis. 38 

 39 

Keywords: Guinea cock; histology; sexual development; testosterone; testis 40 

 41 

1. Introduction 42 

Avian testes are surrounded by a fibrous capsule that includes connective tissue and 43 

contractile fibers [1]. They contain interstitial tissue and seminiferous tubules, which 44 

are the site of spermatogenesis and, in developed testes, make up most of the 45 

testicular mass. Interstitial tissue includes Leydig or interstitial cells, the main source 46 
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of testicular androgens [2, 3, 4, 5, 6]. The testes in some bird species are of identical 47 

sizes (e.g., tree swallow, Tachycineta bicolor, [7]; chicken, Gallus domesticus, [8]), 48 

but many species show testicular size asymmetry, with one testis normally being 49 

larger in adulthood than the other [9, 10].  50 

The testis of the mature bird is organized into discrete, easily discernible 51 

cellular associations and functional compartments. However, during embryonic and 52 

early post-hatch development this organization is less apparent [11]. The post-hatch 53 

development of the fowl’s testis can be divided into three distinct phases: (1) 54 

proliferation of spermatogonia and the somatic cells that support spermatogenesis 55 

(Sertoli, peritubular myoid, and interstitial cells); (2) differentiation and the 56 

acquisition of functional competence by somatic support cells; and (3) spermatogonial 57 

differentiation resulting in the initiation of meiosis. While the boundaries of these 58 

phases are not clearly defined, this three-step process results in functional 59 

seminiferous tubules that can maintain spermatogenesis when the appropriate 60 

hormonal cues are present [11].   61 

The growth and histological development of the testes of White Plymouth 62 

Rocks has been described by Kumaran and Turner [12, 13]. Their account serves as a 63 

general description of the sequence of changes that occur in the seminiferous tubule 64 

during the sexual maturation of the male bird. However, they reviewed observations 65 

made on other breeds and emphasized that interbreed differences are to be found in 66 

the relation between age of a male and a particular histological structure displayed in 67 

the seminiferous tubule. For instance, spermatids appeared at about 12 WOA in the 68 

exotic breed of guinea cock [14], compared to 20 WOA [15] in the local breeds. 69 

Kumaran and Turner [12, 13], however, noted that in general, light breeds mature 70 

earlier than heavy breeds. 71 
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Several androgens and other steroids have been found in the fowl’s testis [16]. 72 

Testosterone is considered the most important mammalian testicular androgen and has 73 

been identified in the extracts of testis of fowls and other birds [17]. Driot and 74 

associates [18] described changes occurring in plasma testosterone concentrations in 75 

the domestic fowl during sexual development. The authors noted three stages 76 

including i. a stationary phase, observed in cockerels less than 12 weeks old, ii. an 77 

augmentation phase lasting approximately 12 to 22 WOA, and ii.  an adult phase, 78 

consisting of marked fluctuations in testosterone concentrations. Testosterone in the 79 

male is essential for spermatogenesis, maintenance of the excurrent duct and 80 

secondary sexual attributes, the expression of specific behaviours, and, altering the 81 

pattern of GnRH secretion [11]. 82 

 Even though a preliminary study documented some histological descriptions of 83 

the age-related changes in the reproductive organs of male guinea fowls, these were 84 

not detailed, and only involved qualitative descriptions, and small sample size [15]. 85 

Also, the endocrine profiles associated with these changes are unknown. For example, 86 

testosterone concentrations have only been documented in breeding and non-breeding 87 

males [19]. Besides, there is a general paucity of information on the reproductive 88 

system of guinea fowls. The objective of the present study, therefore, was to 89 

determine the developmental changes in histology of the reproductive organs of 90 

guinea cocks from hatching until adulthood (32 weeks), and associated testosterone 91 

profiles. 92 

 93 

2. Materials and methods 94 

2.1 Experimental Site 95 

The study was conducted at the Poultry Unit of the Department of Animal Science, 96 
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University for Development Studies, Nyanpkala, Tamale (Ghana). Nyanpkala lies on 97 

latitude 9° 69'N and longitude 0° 83'W. Temperatures are generally high with 98 

minimum and maximum values of 22 °C and 35 °C recorded in March and December, 99 

respectively (Savannah Agricultural Research Institute (SARI, 2008) cited by Abdul-100 

Rahman et al. [19]). Rainfall is monomial with mean annual rainfall varying from 101 

1,000-1,500 mm and peaks from August to September, with a relatively long dry 102 

season extending from November to April. The area lies in the Guinea Savannah 103 

zone, and has nearly equal amounts of light and darkness (12L: 12D) throughout the 104 

year. The guinea fowls used in the present study are indigenous to this area, hence the 105 

name guinea fowl [20]. 106 

 107 

2.2 Animals and Management 108 

A total of 66 local guinea cocks (Numida meleagris), of the pearl variety, were used 109 

for the study. Birds were brooded for 6 weeks [21], and then transferred to a deep 110 

litter house (floor spacing: 1.8 sq ft/bird; Lohmann LSL, Germany) until the end of 111 

the experiment. They were individually identified using tags placed through their 112 

inner wings to prevent detection by other birds and thus avoid pecking. Keets were 113 

brooded at 35°C from hatching until three WOA, and then at 32°C until six WOA 114 

[21]. Birds were then maintained at ambient temperatures of between 22°C and 35°C 115 

until the end of the experiment. Feed and water were supplied ad libitum. Day old 116 

keets were fed ground maize in flat feeders followed by a starter ration from day 2 117 

until 6 WOA. This was followed by a grower ration from 6 WOA until 21 WOA and 118 

then a layer feed until the end of the experiment. The starter (22% crude protein and 119 

3,000 Kcal ME/kg diet), grower (14% crude protein and 2,800 Kcal ME/kg diet), and 120 
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breeder (17.5% crude protein and 2,800 Kcal ME/kg diet) rations were obtained from 121 

a commercial feed supplier (Agricare Ghana Limited, Kumasi, Ghana). 122 

Information on lighting requirements of the local guinea fowls from hatching are 123 

unavailable, and those used for chicken, are usually employed. In this case, however, 124 

the “golden rule” to follow in designing lighting programmes for pullets [22] was 125 

followed. All birds received 24 h light from day old until one-WOA, and this was 126 

reduced to 16 h until birds were 3 weeks old. These longer light periods during the 127 

first 3 weeks of life were to ensure maximum feed consumption, enough to ensure 128 

maximum growth, initially. This was gradually reduced to a minimum of 12 h by the 129 

7th WOA, marking the phase of constant light [22]. Thereafter, birds were maintained 130 

under natural photoperiods (12L: 12D) until the end of the study. 131 

 132 

2.3 Experimental procedure 133 

All procedures used followed approved guidelines for ethical treatment of 134 

experimental animals.  135 

  A total of 56 male guinea fowls (7 per age group) were bled at 4, 8, 12, 16, 20, 24, 136 

28, and 32 WOA. Two ml of blood was collected into EDTA vacutainer tubes from 137 

the wing vein, and spun at 7100 x g for 3 min at room temperature (18-25 oC). Plasma 138 

was then pipetted into a 1.5 ml microcentrifuge tube and stored at –20 °C until 139 

subsequently analysed for testosterone. 140 

  Prior to bleeding, however, 5 birds at each age were weighed, and then following 141 

bleeding, were sacrificed by cervical dislocation. Their testes and reproductive tracts 142 

were completely freed from the adjoining ligaments and fascia, weighed and fixed in 143 

Bouin’s solution overnight for histology.  144 
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 145 

2.3.1 Histological preparation, cell identification, stereological analyses and cell 146 

counts 147 

The histological techniques used in the present study have been described previously 148 

[23-24], therefore, only a brief description is given here. The testes (with capsule 149 

intact) were each divided into 2 halves. One half of each testis was fixed in Bouin’s 150 

solution, dehydrated in absolute ethanol and embedded in paraffin wax. They were 151 

sectioned (5 µm) using microtome (Leica RM2125RT), floated onto Poly-1-lysine 152 

subbed slides (Polysine; VWR International Leuven, Germany), and stained in eosin 153 

and Mayer’s haematoxylin. Germinal cell counts were restricted to preleptotene 154 

primary spermatocyte, type I spermatocyte in prophase I and step I spermatids [25- 155 

26]. Sertoli and Leydig cell nuclei were also counted. The Sertoli cells were identified 156 

on the basis of their nuclei following the descriptions given by Zlotnik [27] and de 157 

Reviers [24], while Leydig cells were identified by their characteristic location as 158 

clusters in the interstitial region and by nuclear diameter. In all cases, the location, 159 

relative size, shape and nuclear morphology of germ and somatic cells helped in cell 160 

identification. Nuclear diameters of testicular germ and somatic cells were obtained 161 

with previously calibrated calipers (this was calibrated using graticule under 162 

immersion oil) under immersion oil, using sections from 5 males and counting 20 163 

nuclei/cell type/male. Cell counts/transverse section were determined from 10 164 

sections of individual seminiferous tubules/slide and 10 interstitial areas (surface area 165 

determined)/slide for Leydig cells. Germ cell counts were determined for all testes 166 

involved. The numbers of fragmented nuclei were relatively high, and partially 167 

sectioned nuclei were counted as seen, if their cell type were clearly recognizable. To 168 

compensate for possible overestimation of cell numbers under such conditions, initial 169 
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cell counts were corrected using Abercrombie’s [28] correction factor as follows: Nc 170 

= N × e/(e + d), where: 171 

Nc = The corrected number of cells in the preparation 172 

N = The number of nuclei counted/tubular section 173 

e = The thickness of the histological preparation 174 

d = the diameter of the nucleus of a given cell type. 175 

This correction determines the number of cells with nuclei effectively present in the 176 

preparation. 177 

 Total number of cell (Nt): Total cell numbers for germ and Sertoli cells per 178 

testis were determined using the formula Nt = Lt × Nc / e 179 

Where Lt = Length of seminiferous tubules (estimated below), and e and Nc defined 180 

as in the above. Total Leydig cell numbers were determined in relation to the 181 

interstitial area occupied by the cells, and expressed as number of cells per 1000 µm² 182 

of interstitial area.  183 

 184 

2.3.2 Dimensions of Seminiferous tubule (ST) 185 

Total length of seminiferous tubule (Lt) was estimated based on the formula Lt = Vr × 186 

(100-C) •10-1/S [23, 29], where: Vr = percentage of testicular tissue occupied by the 187 

ST as measured by a modification of the Chalkley’s [30] technique. This was 188 

determined by taking a picture of an entire cross section of each testis under the light 189 

microscope at ×4 magnification. Each cross section therefore yielded several pictures 190 

depending on the size of the cross section. Each picture was subsequently opened 191 

with previously calibrated ImageJ software (National Institutes of Health, USA), and 192 

grids 50 µm apart were superimposed on the entire image. With a pencil tool plug-in, 193 

the grids on each image were grouped into 25 points grids (as obtained with 25-point 194 
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grid graticule) and each field labeled, in ascending order, until the entire cross section 195 

was covered. Forty fields were then randomly chosen per cross section and counted as 196 

in the Chalkley’s [30] technique. Points that fell on the tubes (including the basement 197 

membrane) were considered as tubular while those that fell outside the tube were 198 

considered as non-tubular. This also represents the ratio of tubular to non-tubular 199 

tissue [14]. Vr is expressed as a percentage of testicular tissue occupied by 200 

seminiferous tubules. From this therefore, Vr could be determined according to the 201 

formula: Vr =TW × %tubes/p where TW =testis weight (g), p = specific gravity of the 202 

testis (in guinea fowls p = 1.05g/cm3, as in the male chicken, [23]). % tubes = 203 

(number of ST points within the eye piece/total number of points of the eye piece) 204 

100. C = the histological contraction of the testes, is given by (Volume of fresh tissue-205 

Volume of embedded tissue/Volume of fresh tissue) x100 [29]. For guinea fowls, C in 206 

both immature and mature birds was estimated as 33.4±13.1 [14]. S = mean area of a 207 

transverse section of ST. The ImageJ software (National Institutes of Health, USA) 208 

was used to measure the surface area of the tubules directly instead of deriving it from 209 

the diameter. Tubules tended to elongate with age, and diameters may therefore not be 210 

accurate when measured directly. Nonetheless, in tubules with minimum and 211 

maximum diameter differences not exceeding 20% [14], diameters and surface areas 212 

were measured in order to compare apparent diameters (diameters measured directly) 213 

to actual diameters (diameters derived from the surface area using the formula D = 214 

√surface area ×4/ π). LT was expressed in meters (m).  215 

 216 

2.3.3 Sertoli efficiency and quantitation of spermatogenesis 217 

 Other parameters estimated were ratio of round spermatids to Sertoli cells, Sertoli 218 

efficiency (total number of germ cells beyond the spermatogonia stage, supported by 219 
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each Sertoli cell) and meiotic index. Meiotic index, which measures the rate of 220 

spermatogenesis, was expressed as a theoretical ratio based on the mean ratio for 5 221 

males, and was calculated as follows: given that each type I spermatocyte should 222 

provide 4 round spermatids during meiosis (MI = 4), and that ultimately, the actual 223 

ratio of type I spermatocytes to round spermatids is dependent on the life span of each 224 

cell type, %MI is therefore given as 100 (Number of round spermatids/life span of 225 

round spermatids)/4(number of type I spermatocyte/life span of type I spermatocyte) 226 

[31]. The life spans of primary spermatocyte and round spermatid in the guinea fowl 227 

(Numida meleagris) are 4.5 and 2.5 days, respectively, as obtained from BrdU 228 

observations and reported by Hein et al. [32]. 229 

 Total reading for a parameter per testis was presented as average for the 2 testes 230 

(i. e left testis reading + right testis reading/2). 231 

 232 

2.3.4 Testicular sperm production 233 

A total of ten 32-week old guinea cocks were involved. A fragment of testis (of 234 

volumes ranging between 28.3 mm3-265 mm3) from each testis was weighed (fwt), 235 

homogenised in 0.25M sucrose (1:200; testes: sucrose), and elongated spermatids (el) 236 

and testicular spermatozoa (tspz) were counted using haemocytometer (10 replicates 237 

per testes). Results for each male were estimated as follows: 238 

TSP/male = right TSP + left TSP = (el + tspz)/fwt × testicular weight [31]  239 

 240 

2.3.5 Testosterone assay 241 

The testosterone assay had been previously validated for guinea fowl [19]. The assay 242 

was a RIA using tritiated tracer (Amersham Int., Amersham, Bucks, UK) and a 243 

procedure as originally described by Sheffield and O’Shaughnessy [33]. The 244 
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testosterone antibody was obtained from Guildhay Antisera, Surrey, UK. The 245 

detection limit was 0.06 ng/ml, and intra-assay coefficient of variation was 9.5%. 246 

Cross reactivity with androstenedione and androstanediol were 0.3% and 3.9%, 247 

respectively. The assays were performed after sample extraction using diethyl ether in 248 

duplicate of 50 μl aliquots. Peripheral testosterone concentrations in all the samples 249 

assayed were determined using the standard curve generated by the Assayzap 250 

software (Biosoft®, USA). All samples were evaluated for testosterone in one assay. 251 

 252 

2.4 Statistical analysis 253 

Data were analysed using the SPSS software, version 20.0 [34]. Age-related changes 254 

in histology of the reproductive organs and testosterone profiles in male guinea fowls 255 

were analysed using univariate analysis for completely randomised design, and means 256 

separated using tukey’s test. Where variances were not homogenous, Kruskal-Wallis 257 

test was used instead and medians separated using Mann-Whitney U test. Data were 258 

presented either as mean±standard error of mean or median (Interquartile range). All 259 

comparisons were done at 5% level of significance. 260 

 261 

3. Results 262 

3.1 Testicular histology 263 

The testes of the guinea fowl were contained in a covering, the tunica albuginea. The 264 

capsule did not give off septa, and therefore no separation of testes into lobules was 265 

seen in any of the birds. The seminiferous tubules were not separated by true septa, 266 

but rather only fine strands of connective tissues passed inwards from the tunica to 267 

separate the tubules. Occasionally, larger amounts of connective tissue were found 268 

surrounding a blood vessel passing towards the tunica. In the testes of a mature 269 
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breeding male guinea fowl, there were 4 germ and 2 somatic cell types. The germ cell 270 

types were spermatogonia, primary spermatocytes, secondary spermatocytes and 271 

round spermatids, which lined the basement membrane in a stratified manner. Three 272 

different types of spermatogonia were seen in mature testes which could be 273 

distinguished based on heterochromatin appearance and distribution, and nuclei 274 

diameter. The somatic cells were Leydig and Sertoli cells. 275 

 At 8 WOA, only spermatogonia and Sertoli cells were present in the 276 

seminiferous tubule of the birds, and the tubular lumen was absent or poorly 277 

developed. These cells lined the basement membrane. There were no changes in the 278 

tubular epithelium until at 12 WOA when both round and elongated spermatids (in 279 

some samples) were visible. At this age, the lumen was generally well formed, but 280 

tubules were widely separated by abundant interstitial tissue. By 16 WOA fully 281 

formed spermatozoa could be found in both the tubular lumen and ductuli efferentes 282 

of the epididymis, marking the onset of sexual activity. At this age, the interstitium 283 

had decreased considerably in size and Leydig cells had become organized into 284 

compact groups lying in the angular areas between adjacent seminiferous tubules 285 

(Figure 1).  286 

 Age-related changes in testicular histological morphometric traits are shown in 287 

Table 1. Round spermatid population size in the seminiferous tubules increased 288 

significantly (Kruskal-Wallis X2 = 183.003, df = 5, p < 0.0001) between 12 and 20 289 

WOA. Cumulatively, the increase in round spermatid population size between week 290 

20 and 28, and 24 and 32 were significant (p<0.05). Type I spermatocyte population 291 

size on the other hand remained constant between 12 and 16 WOA, and saw 292 

significant (Kruskal-Wallis test X2 = 169.975, df = 5, p<0.0001) increases thereafter 293 

until 20 WOA, dipped at 24 weeks, and increased (p<0.05) until 32 WOA. Total germ 294 
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cell numbers in the seminiferous tubule increased significantly (Kruskal-Wallis test 295 

X2 = 186.147, df = 5, p<0.0001) between 12 and 20 WOA. It remained constant 296 

thereafter until 24 weeks of age and then increased significantly (p<0.05) between 24 297 

and 32 WOA. Sertoli cell population size in the tubule also increased significantly 298 

(Kruskal-Wallis test X2 = 214.116, df = 6, p <0.0001) between 8 and 20 WOA. This 299 

was followed by a significant decrease (p<0.05) at 24 weeks and thereafter, a 300 

significant rise at 28 and 32 WOA. 301 

 Number of round spermatids per Sertoli cell increased significantly (Kruskal-302 

Wallis test X2 = 142.834, df = 5, p <0.0001) between 12 and 24 WOA. The value then 303 

dropped (p<0.05) between this age and 28 WOA, and rose (p<0.05) again to the level 304 

similar to that observed at 24 weeks, between 28 and 32 WOA. Similarly, total 305 

number of germ cells supported by each Sertoli cell differed (p< 0.0001) among age 306 

groups. It decreased significantly (p<0.05) between 12 and 16 WOA, then increased 307 

(p<0.05) cumulatively between 16 and 24 WOA. This was followed by a dip (p<0.05) 308 

at 28 weeks and finally, a significant rise (p<0.05) at 32 WOA.  309 

 Meiotic index, which is an indication of the rate of cellular death during the first 310 

and second meiotic divisions increased significantly (Kruskal-Wallis test X2 = 311 

141.059, df = 5, p <0.0001) between 12 and 24 WOA. This was followed by a highly 312 

significant drop at 28 WOA, and finally, a significant rise (p<0.05) between 28 and 32 313 

WOA. The highest value was at 24 WOA{83.5 (71.3-95.8)%} and the lowest {6 (0-314 

17.5)%} at 12 WOA.  315 

 Both apparent and actual seminiferous tubular diameters exhibited the same 316 

pattern of growth between 8 and 32 WOA. Significant increases were recorded in 317 

apparent (Kruskal wallis test X2  = 189.885, df = 6, p <0.0001) and actual (Kruskal-318 

Wallis test X2  = 206.497, df = 6, p <0.0001) seminiferous tubular diameters between 8 319 
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and 24 WOA. From this point onward, there were no significant increases in both 320 

cases, however, there were cumulative increases (p<0.05) in both parameters between 321 

24 and 32 WOA. Actual tubular diameter was significantly bigger (p<0.05) than 322 

apparent tubular diameter {526.6 (481.0-576.0) µm vs 383 (348.6-419.9) µm}. 323 

 Relative volume of seminiferous tubule in the testes increased significantly 324 

(Kruskal-Wallis test X2  = 348.574, df = 6, p <0.0001) between 8 and 20 WOA. It then 325 

stabilised for the next 8 weeks before increasing at 32 WOA. Seminiferous tubular 326 

length, on the other hand, significantly (Kruskal-Wallis test X2 = 623.228, df = 6, 327 

p<0.0001) increased between 8 {2.5 (1.8-5.0) m} and 20 {9.8 (9.1-10.5) m} WOA, 328 

followed by a dip (p<0.05) at 24 WOA. It then increased (p<0.05) between 24 and 32 329 

WOA. Testicular sperm production in the adult breeding guinea cock averaged 9.9 330 

x10
7

(8.5 x10
7

-18.0 x10
7

)  331 

The Sertoli cells were located on the basement membrane. The Leydig cells had 332 

spherical nuclei and occurred as clusters in the interstitial region. They possessed 333 

prominent nucleoli. In the guinea fowls, the Sertoli cells were quasi-circular in most 334 

cases, and were significantly bigger (p<0.05) than the Leydig cell nuclei (4.3±.07 µm 335 

vs 3.0±.07 µm). 336 

 Correlations among all the testicular morphometric parameters were positive 337 

and highly significant (p<0.01). Similarly, significant correlations existed between 338 

testicular weight and testicular sperm production, actual tubular diameter, Sertoli cell 339 

population, tubular length (p<0.01) and Sertoli efficiency (number of round 340 

spermatids per Sertoli cell and total number of germ cells per Sertoli cell) (p<0.05). 341 

The correlations between testicular weight and all the parameters except Sertoli 342 

efficiency were positive. Testicular sperm production was not correlated with any of 343 
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the testicular morphometric parameters except meiotic index (p<0.01) and round 344 

spermatids population (p<0.05). These were positively related to testicular sperm 345 

production (Table 2). 346 

  347 

3.2 Changes in peripheral testosterone concentration  348 

Generally, no significant increases were recorded in peripheral testosterone 349 

concentrations measured monthly. Testosterone concentrations, however, tended to 350 

increase from 4 to 20 WOA when it peaked. Testosterone levels at sexual maturity 351 

(16 WOA) were significantly higher (p<0.05) than the levels in 4-week old birds. 352 

Similarly, the peak testosterone concentrations at 20 weeks were higher (p<0.05) than 353 

the concentrations at 4 and 8 WOA. Testosterone concentration decreased after 20 354 

WOA to a level similar to that seen at 12 WOA and remained at that level until the 355 

end of the study (Figure 2). 356 

Correlation between testicular weight and peripheral testosterone 357 

concentration was positive and highly significant (p< 0.0001). Similarly, there were 358 

significant (p<0.05) positive correlations between testosterone concentrations and 359 

actual tubular diameter, total number of germ cells per Sertoli cell and number of 360 

round spermatids per Sertoli cell (Sertoli efficiency) and tubular length (Table 2).  361 

 362 

4. Discussions 363 

4.1 Changes in the histology of the testes  364 

In agreement with the observations made by Awotwi [15] and Brillard [14] in the 365 

local and exotic breeds of guinea fowls, respectively, the testes of a growing male 366 

guinea keet could only be detached for decent histological sections from 8 WOA. At 367 

this age, the seminiferous tubules had poorly-formed lumen or none at all; only 368 
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Sertoli cells and spermatogonia lined the basement membrane, and abundant 369 

interstitial tissue separated the tubules. Puberty, characterized by the presence of 370 

primary and secondary spermatocytes and round spermatids in the tubular lumen, was 371 

attained at 12 WOA in the birds studied by Brillard [14]. The author noted that 372 

elongated spermatids were seen in the tubular lumen of a few birds. The results of the 373 

present study confirm this earlier report by Brillard [14]. Awotwi [15], however, 374 

found only primary spermatocytes at 12 weeks and secondary spermatocyte at 16 375 

WOA, an indication of late attainment of puberty in those birds. Guinea fowls used in 376 

this study attained sexual maturity at 16 WOA when fully formed spermatozoa were 377 

present both in the tubular lumen and the lumen of excurrent duct system. This was 378 

earlier than the 20 weeks reported by Awotwi [15] in the same breed. This result is 379 

not surprising considering the fact that the processes of spermatogenesis started 380 

earlier in the birds used in this study than those in the study by Awotwi [15]. The 381 

differences in the time of sexual maturity between the 2 flocks of birds may be 382 

attributed to possible differences in management, as management factors including 383 

feeding [35] and photoperiod [36] have been cited to alter dramatically the onset of 384 

meiosis and sustained spermatogenesis.  385 

Seminiferous tubular diameter was measured in two ways during the present 386 

study. The actual seminiferous tubular diameter (estimation method developed during 387 

this investigation) was much larger than the apparent diameter (conventional method 388 

of tubular diameter estimation). This indicates that tubular diameters are usually 389 

underestimated using the conventional method of measurement. Another disadvantage 390 

of the conventional method is that not all tubules are given equal chances of being 391 

selected for measurement since the tubule has to be quasi-circular in order to be 392 

considered. Where a software package is employed for area measurement from which 393 
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the diameter is determined, all these problems are avoided. Even though the use of the 394 

apparent tubular diameter underestimates the diameter of the tubule, it is still 395 

reflective of the true situation when comparing across groups or conducting trend 396 

analysis, as evidenced by the relationship between the trends of age-related variations 397 

in the two tubular diameters in the present study. The use of the actual tubular 398 

diameter approach is particularly useful when estimating tubular diameters in a 399 

situation where transverse sections of seminiferous tubules tend to elongate in 400 

growing animals, making it difficult to obtain the number of tubules required for the 401 

estimation of tubular diameters and other tubular parameters. 402 

Several quantitative histological changes occurred in the testes of male guinea 403 

fowl during the period before sexual maturity. Both the apparent and actual 404 

seminiferous tubular diameters increased from 74.4 μm and 87.2 μm, respectively, at 405 

8 weeks to 326.8 μm and 387.7 μm, respectively, at 20 WOA. Tubular length also 406 

increased from 2.5 m at 8 weeks to 9.8 m at 20 weeks. These reflected in massive 407 

increase in the relative volume of the seminiferous tubules. These figures tended to 408 

plateau after 20 WOA. Brillard [14], therefore, defined 20 weeks as the beginning of 409 

adulthood in the guinea fowl. The fluctuations seen after 20 weeks was attributable to 410 

the fact that these birds attained sexual maturity during the minor breeding season, 411 

and this may have influenced subsequent readings. The modifications seen in the 412 

seminiferous tubules led to early onset of spermatogenesis and rapid development of 413 

the spermatocytes population between 8 to 12 WOA (0 to 0.503 x 108). Round 414 

spermatids were also present in all samples analysed at 12 WOA. It increased from 415 

this age and tended to stabilise from 20 WOA. Puberty in these birds therefore 416 

commenced from 12 WOA. A similar observation was made by Brillard [14]. This 417 

study, found some type I spermatocyte at 8 WOA, however, this was not noticed in 418 
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the present study. 419 

The Sertoli cells were quasi-circular in the guinea fowl. This is in agreement 420 

with the earlier observation by Brillard [14]. Sertoli cell population increased even 421 

during adulthood and was linearly correlated with total germ cell numbers. This is 422 

consistent with the report of Brillard [14] in the exotic breeds of guinea fowls. The 423 

author evoked 2 hypotheses to explain the increase in Sertoli cell population during 424 

adulthood in the guinea fowl. First, even at sexual maturity, a low level of mitotic 425 

activity may persist among the Sertoli population. Secondly, some undifferentiated 426 

Sertoli cells might remain in the testes after sexual maturity. These cells could play 427 

the role of reserves proliferating and differentiating slowly during adulthood.  428 

The fluctuations in the total number of germ cells per Sertoli cell may be 429 

attributed to the attainment of sexual maturity in the non-breeding season and cellular 430 

deaths. The reduced meiotic rate occurring during this period may account for the 431 

fluctuating numbers of germ cells supported by each Sertoli cell. It is currently 432 

accepted that the number of Sertoli cells established during testicular development 433 

determines the rate of spermatogenesis in sexually mature animals [37-38]. This 434 

assumption is based on the fact that each Sertoli cell supports a limited number of 435 

germ cells in a species-specific manner [39-40]. Studies have shown that 436 

spermatogenic efficiency, expressed as the number of sperm produced daily per gram 437 

of testis, is usually positively correlated with the number of germ cells supported by 438 

each Sertoli cell [39-41]. This was evidenced by the positive correlation between 439 

testicular sperm production and Sertoli efficiency in the present study. Other 440 

important factors that were reported to have correlated with spermatogenic efficiency 441 

were the volume density of the seminiferous tubule, the length of spermatogenic 442 

cycle, the number of spermatogonial generations, the rate of germ cell loss during 443 
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spermatogenesis (supported by the strong positive correlation between testicular 444 

sperm production and meiotic index in this study), the number of Sertoli cells per 445 

gram of testis and the size of Sertoli cells [40, 42]. Contrary to the reports of Franca 446 

and Godinho [43], Sertoli cell population positively correlated with actual and 447 

apparent tubular diameter, and total germ cells per testis. The average number of 448 

round spermatids per Sertoli cell and total germ cell per Sertoli cell (Sertoli 449 

efficiency) in the adult guinea fowl were 12.5 and 7.2, respectively. 450 

Germ cell apoptosis constitutes a normal process during spermatogenesis [44] 451 

and can occur in different developmental phases. It is considered mainly to function 452 

in density regulation of spermatogonia and to eliminate cells with chromosomal 453 

damage (meiotic phase), whereas cell loss during spermiogenesis is less prominent 454 

[40]. The quantitative significance of germ cell loss becomes clear when considering 455 

that only two to three spermatozoa of 10 theoretically possible cells are produced 456 

from type A1 spermatogonia [40, 45]. In the present study, the highest percentage of 457 

cell deaths was 94% at 12 WOA, while the least was 16.5% at 24 WOA. The high 458 

initial cell deaths at 12 WOA was not surprising considering the fact that these birds 459 

attained puberty at this age, and maximal efficiency of spermatogenesis, as indicated 460 

by quality of spermatozoa produced, is not achieved until several weeks after puberty 461 

has been attained [46]. The lower percentage of cell deaths (16.5%) observed in the 462 

present study at 24 WOA indicates a more efficient spermatogenesis in these birds at 463 

this age. The significant and positive correlations between testicular sperm production 464 

and number of round spermatids per testis, meiotic index and testicular weight, was 465 

an indication that these parameters could be good predictors of spermatogenic 466 

efficiency in guinea fowls. The lack of a significant correlation between Sertoli 467 

efficiency and Sertoli cell populations with testicular sperm production was possibly 468 
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because of the relatively small sample size of 10 birds (for testicular sperm 469 

production). 470 

  471 

4.2 Changes in peripheral testosterone concentration  472 

The rise in peripheral testosterone concentrations between 12 and 20 WOA in the 473 

present study may be related to the early onset of puberty in these birds. Spermatozoa 474 

were first seen at 16 WOA. It is probable therefore that the phase of rising plasma 475 

testosterone levels occurred several weeks before the onset of sexual activity in the 476 

local guinea cocks.  477 

In the present study, the peak testosterone concentrations in sexually mature 478 

guinea cocks were low (0.284 ng/ml). Abdul-Rahman et al. [19] also reported a low 479 

peak testosterone concentration (0.471 ng/ml) in breeding males. These results were 480 

not surprising considering earlier reports that male tropical birds have low plasma 481 

testosterone concentrations, involving low amplitude cycles with possible slight 482 

variations during times of breeding [47-49]. It is thought that these low concentrations 483 

are a way of avoiding the potential detrimental effects of elevated concentrations of 484 

testosterone, since there is a trade-off between testosterone concentration and 485 

immunity [50]. Consequently, selection in the tropics may have favoured birds with 486 

low concentrations of testosterone, in line with a slow pace of life, with more 487 

resources being allocated to immune function [51]. The guinea fowl is a tropical bird 488 

[20]. 489 

The peak testosterone concentrations recorded in the present study is several 490 

fold lower than those reported in exotic breeding guinea cocks [52-53]. A possible 491 

reason for this massive difference is that the guinea fowls used in the present study 492 

are indigenous breeds, small in stature, and have not undergone any intensive 493 
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selection and breeding compared to their exotic counterparts. The exotic breeds are 494 

much higher in weight at all ages than the local breeds [54]. Several workers [55-57] 495 

have reported positive relationship between body and testicular weight. Positive 496 

relationship has also been reported between testes size and testosterone titer [58-60], 497 

with some authors inferring that the link is a consequence of the phenotypic 498 

integration of spermatogenic and endocrine functions of the testes [58-59]. The 499 

testicular weight reported for the exotic guinea fowl is two fold higher [14, 52-53] 500 

than that found in the indigenous guinea fowls in the present study. The lower 501 

testicular weight and corresponding lower testosterone concentrations in the 502 

indigenous guinea fowls are, therefore, not surprising.  503 

Rising plasma testosterone levels in the guinea fowls corresponded to 504 

increasing seminiferous tubular diameters and volume. Sertoli and germ cell 505 

populations also increased from 12 WOA. All these parameters did not see any 506 

significant rise after the peak testosterone concentration was attained at 20 WOA, 507 

implicating this hormone in spermatogenesis and the development of the seminiferous 508 

tubules. A role for testosterone in adult testicular function is suggested by the finding 509 

in mature hypophysectomized quail that administration of large doses of testosterone, 510 

while insufficient to maintain spermatogenesis, retards testicular regression resulting 511 

from the surgery [61]. Germ cell development started between 8 and 12 WOA when 512 

the concentrations of testosterone were low, while spermatids and spermatozoa were 513 

observed between 12 and 16 WOA when testosterone had nearly peaked. Low doses 514 

of testosterone have also been implicated in the maturation of the germinal epithelium 515 

in intact immature cockerels [62-63].  516 

 The significant positive correlations between plasma testosterone 517 

concentrations and Sertoli efficiency, actual seminiferous tubular diameter and 518 
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seminiferous tubular length is an indication that plasma testosterone concentrations in 519 

the local guinea fowls could be highly related to these histological morphometric 520 

parameters. 521 

In conclusion, puberty and sexual maturity were attained at 12 and 16 weeks 522 

of age, respectively, in male guinea cocks. The pattern of testosterone secretion in the 523 

guinea cock may be divided into two, initial phase of increasing testosterone 524 

concentrations prior to 20 WOA, and a final one of decreasing peripheral testosterone 525 

concentrations after 20 WOA, and may be implicated in the development of 526 

histological structures of the testes and spermatogenesis in the guinea cock. 527 
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 721 
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 723 

 724 

  725 
 726 

Figure 1: Cross section of guinea fowl testes at various developmental stages: 8 (A), 12 (B), and 20 (C) weeks old. Note Interstitial tissue (INT), 727 
Seminiferous tubule (ST), Spermatogonia (SG), Sertoli cells (arrow), primary and secondary spermatocytes (SpI and II), round (RS) and 728 
elongated (EL) spermatids, Seminiferous tubular lumen (ST. Lumen), HE x20 (Scale bar = 100 μm). Plate D shows the distal ductule efferentes 729 
of guinea cock at 16 weeks indicating the first appearance of spermatozoa (arrow head) in the lumen, HE x20 (Scale bar = 100 μm). 730 

B 
El 

RS 

SpI & SpII 

A B 

C D 



Age-related changes in testicular histology                                            
 

 
 
 
 

31 

 731 

 732 
 733 

 734 

Figure 2: Peripheral testosterone concentrations in guinea cocks during sexual 735 

development. 736 
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 737 Testicular 

morphometric trait 

{Median(Interquartile 

range)} 

   Age (weeks)    

 

(x108 ) 

8 12 16 20 24 28 32 
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(257.6-364.0)c 

312.5 

(288.4-418.1)b 

384.0 

(340.0-423.6)ab 

397.8 

(362.1-426.7)a 

actØ (μm) 87.2 

(59.2-102.7)f 

199.2 

(165.8-331.3)e 

335.2 

(318.0-372.8)d 

387.7 

(341.4-413.5)c 

451.5 

(392.6-493.0)b 

492.7 

(403.6-556.1)ab 

501.1 

(465.3-534.2)a 

nSert (x107) 0.7 

(0.4-1.6)f 

1.5 

(0.6 - 2.0) 

2.3 

(1.9 - 2.8)d 

4.7 

(3.7 - 6.4)b 

3.3 

(1.9 - 4.1)c 

4.9 

(4.2 - 5.8)b 

5.7 

(4.3 - 7.1)a 

Vr (%) 60.0 

(55.5-68.5)e 

86.0 

(72.0-94.0)d 

90.0 

(86.0-94.0)c 

96.0 

(94.0-98.0)b 

96.0 

(92.0-99.0)b 

96.0 

(92.0-99.0)b 

98.0 

(92.0-99.0)a 

Lt (m) 2.5(1.8-5.0)g 4.9 (3.9-6.8)f 6.1 (5.4-6.8)e 9.8 (9.1-10.5)c 8.5 (4.8-10.2)d 10.7 (8.3-11.7)b 11.3 (8.7-13.2)a 

TW (mg) 5.0 

(2.8-7.8)e 

38.5 

(23.0-91.5)d 

94.5 

(82.5-133.5)c 

192.5 

(131.5-241.3)b 

170.5 

(86.5-304.5)bc 

365.5 

(226.1-428.6) a 

351.0 

(246.0-408.5)a 

Table 1: Developmental changes in testicular histological morphometric traits in local guinea cocks  

*Mean±SEM. Abbreviations: nSpdR: Round spermatids population, nSpcI : TypeI spermatocyte population, spdR/ Sert: Round spermatids/Sertoli cell, tGM/Sert: Total number of germ cells per 

Sertoli cell, Mind: Meiotic index, tGcPlpn: Total germ cell population, nSert: Sertoli cells population, act: actual tubular diameter, app: Apparent tubular diameter, Vr: Relative volume of 

seminiferous tubules, Lt: Seminiferous tubular length, TW: Testicular weight 
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nSpcI 

nSpdR nSpcI spdR/Sert tGM/Sert Mind tGcPlp appØ actØ nSert Vr Lt TSP Testo Conc 

.678***             

spdR/Sert .610*** .535***            

tGm/Sert .541*** .586*** .926***           

Mind .455*** .204** .697*** .448***          

tGcPlp .750*** .937*** .712*** .675*** .438***         

appØ .582*** .548*** .607*** .560*** .488*** .587***        

actØ .610*** .509*** .602*** .560*** .481*** .543*** .853***       

nSert .583*** .792*** .289*** .198** .310*** .771*** .473*** .433***      

Vr .272*** .249*** .319*** .236*** .398*** .281*** .453*** .529*** .341**     

Lt .426*** .360*** .324*** .182** .395*** .435*** .361*** .386*** .537*** .429***    

TSP .297* -.195 .291* .258* .472** .171 -.129 -.105 .184 -.006 .195   

Testo Conc .156 -.010 .260* .238* .160 .107 .039 0298* .004 -.020 .239* -.157  

TW .035 -.033 -.247* -.403** .061 .012 .212 .354** .327** .098 .500*** .459** .563** 

Table 2: Correlations among testicular morphometric characteristics, testicular sperm production and peripheral testosterone concentrations in guinea cocks 

Abbreviations: nSpdR: Round spermatids population, nSpcI : TypeI spermatocyte population, spdR/ Sert: Round spermatids/Sertoli cell, tGM/Sert: Total number of germ cells per Sertoli cell, 

Mind: Meiotic index, tGcPlpn: Total germ cell population, nSert: Sertoli cells population, act: actual tubular diameter, app: Apparent tubular diameter, Vr: Relative volume of seminiferous 

tubules, Lt: Seminiferous tubular length, Testo Conc: Peripheral testosterone concentration, TW: Testicular weight 


