

Abdul-Rahman, I. I., Obese, F. Y. and Jeffcoate, I. A. (2017) Developmental changes in the histological structure of the testes, and testosterone profiles in male guinea fowls (Numida meleagris). *Theriogenology*, 101, pp. 114-122. (doi:<u>10.1016/j.theriogenology.2017.06.024</u>)

This is the author's final accepted version.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/144640/

Deposited on: 23 August 2017

Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk33640

1	Developmental changes in the histological structure of the testes, and		
2	testosterone profiles in male guinea fowls (Numida meleagris)		
3			
4	Iddriss I. Abdul-Rahman ^{a*} , Frederick Y. Obese ^b , Ian A. Jeffcoate ^c		
5 6 7	^a Department of Veterinary Science, Faculty of Agriculture, University for		
8	Development Studies, P. O. Box TL 1882, Nyankpala Campus, Tamale, Ghana.		
9	^b Department of Animal Science, School of Agriculture, University of Ghana, P. O.		
10	Box LG 226, Legon, Ghana.		
11	^C Institute of Biodiversity, Animal Health and Comparative Medicine, College of		
12	Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road,		
13	Glasgow G61 1QH, Scotland, UK.		
14			
15	Abstract		
16	Owing to the paucity of information on the reproductive biology of guinea fowls, a		
17	study involving a total of 66 males was conducted, and documented the		
18	developmental changes in histological structure of the testes of guinea cocks from		
19	hatching until adulthood. Changes in testosterone synthesis during sexual		
20	development were also determined. Age-related changes were analysed using		
21	univariate analysis for completely randomised design and means separated using		

*Corresponding author. Tel: +233 244985023/204536769

Email: ai.iddriss@yahoo.co.uk/ibniddriss@uds.edu.gh

22	Tukey's test/Kruskal-Wallis test and medians separated by Mann-Whitney U-test.
23	Total germ cell population per testis and testicular histological morphometric
24	parameters increased significantly (p<0.0001) from 12 weeks of age (WOA), and
25	stabilised between 20 and 24 WOA. Peripheral testosterone concentrations increased
26	gradually from 4 WOA, and peaked at 20 WOA. Correlations among all the testicular
27	morphometric parameters were positive and highly significant (p<0.01). Similarly,
28	significant (p<0.05) positive correlations existed between testicular weight and
29	testicular sperm production, tubular diameter, Sertoli cell population, tubular length
30	and peripheral testosterone concentration. Testicular sperm production was positively
31	correlated with meiotic index (p< 0.01) and round spermatids population (p< 0.05).
32	The correlations between peripheral testosterone concentrations, tubular diameter and
33	Sertoli efficiency were also significant (p<0.05) and positive. Testicular
34	morphometric parameters stabilized between 20 and 24 WOA, while peripheral
35	testosterone concentrations showed two patterns of secretion, initial and final phases
36	of increasing and decreasing testosterone secretions, respectively, and may be
37	implicated in the development of histological structures of the testes and
38	spermatogenesis.
39	
40	Keywords: Guinea cock; histology; sexual development; testosterone; testis
41	
42	1. Introduction
43	Avian testes are surrounded by a fibrous capsule that includes connective tissue and
44	contractile fibers [1]. They contain interstitial tissue and seminiferous tubules, which

- 45 are the site of spermatogenesis and, in developed testes, make up most of the
- 46 testicular mass. Interstitial tissue includes Leydig or interstitial cells, the main source

47	of testicular androgens [2, 3, 4, 5, 6]. The testes in some bird species are of identical
48	sizes (e.g., tree swallow, Tachycineta bicolor, [7]; chicken, Gallus domesticus, [8]),
49	but many species show testicular size asymmetry, with one testis normally being
50	larger in adulthood than the other [9, 10].
51	The testis of the mature bird is organized into discrete, easily discernible
52	cellular associations and functional compartments. However, during embryonic and
53	early post-hatch development this organization is less apparent [11]. The post-hatch
54	development of the fowl's testis can be divided into three distinct phases: (1)
55	proliferation of spermatogonia and the somatic cells that support spermatogenesis
56	(Sertoli, peritubular myoid, and interstitial cells); (2) differentiation and the
57	acquisition of functional competence by somatic support cells; and (3) spermatogonial
58	differentiation resulting in the initiation of meiosis. While the boundaries of these
59	phases are not clearly defined, this three-step process results in functional
60	seminiferous tubules that can maintain spermatogenesis when the appropriate
61	hormonal cues are present [11].
62	The growth and histological development of the testes of White Plymouth
63	Rocks has been described by Kumaran and Turner [12, 13]. Their account serves as a
64	general description of the sequence of changes that occur in the seminiferous tubule
65	during the sexual maturation of the male bird. However, they reviewed observations
66	made on other breeds and emphasized that interbreed differences are to be found in
67	the relation between age of a male and a particular histological structure displayed in
68	the seminiferous tubule. For instance, spermatids appeared at about 12 WOA in the
69	exotic breed of guinea cock [14], compared to 20 WOA [15] in the local breeds.
70	Kumaran and Turner [12, 13], however, noted that in general, light breeds mature
71	earlier than heavy breeds.

72	Several androgens and other steroids have been found in the fowl's testis [16].
73	Testosterone is considered the most important mammalian testicular androgen and has
74	been identified in the extracts of testis of fowls and other birds [17]. Driot and
75	associates [18] described changes occurring in plasma testosterone concentrations in
76	the domestic fowl during sexual development. The authors noted three stages
77	including i. a stationary phase, observed in cockerels less than 12 weeks old, ii. an
78	augmentation phase lasting approximately 12 to 22 WOA, and ii. an adult phase,
79	consisting of marked fluctuations in testosterone concentrations. Testosterone in the
80	male is essential for spermatogenesis, maintenance of the excurrent duct and
81	secondary sexual attributes, the expression of specific behaviours, and, altering the
82	pattern of GnRH secretion [11].
83	Even though a preliminary study documented some histological descriptions of
84	the age-related changes in the reproductive organs of male guinea fowls, these were
85	not detailed, and only involved qualitative descriptions, and small sample size [15].
86	Also, the endocrine profiles associated with these changes are unknown. For example,
87	testosterone concentrations have only been documented in breeding and non-breeding
88	males [19]. Besides, there is a general paucity of information on the reproductive
89	system of guinea fowls. The objective of the present study, therefore, was to
90	determine the developmental changes in histology of the reproductive organs of
91	guinea cocks from hatching until adulthood (32 weeks), and associated testosterone
92	profiles.

94 **2. Materials and methods**

95 2.1 Experimental Site

96 The study was conducted at the Poultry Unit of the Department of Animal Science,

97	University for Development Studies, Nyanpkala, Tamale (Ghana). Nyanpkala lies on
98	latitude 9° 69'N and longitude 0° 83'W. Temperatures are generally high with
99	minimum and maximum values of 22 °C and 35 °C recorded in March and December,
100	respectively (Savannah Agricultural Research Institute (SARI, 2008) cited by Abdul-
101	Rahman et al. [19]). Rainfall is monomial with mean annual rainfall varying from
102	1,000-1,500 mm and peaks from August to September, with a relatively long dry
103	season extending from November to April. The area lies in the Guinea Savannah
104	zone, and has nearly equal amounts of light and darkness (12L: 12D) throughout the
105	year. The guinea fowls used in the present study are indigenous to this area, hence the
106	name guinea fowl [20].

107

108 2.2 Animals and Management

109 A total of 66 local guinea cocks (Numida meleagris), of the pearl variety, were used 110 for the study. Birds were brooded for 6 weeks [21], and then transferred to a deep 111 litter house (floor spacing: 1.8 sq ft/bird; Lohmann LSL, Germany) until the end of 112 the experiment. They were individually identified using tags placed through their 113 inner wings to prevent detection by other birds and thus avoid pecking. Keets were 114 brooded at 35°C from hatching until three WOA, and then at 32°C until six WOA 115 [21]. Birds were then maintained at ambient temperatures of between 22°C and 35°C 116 until the end of the experiment. Feed and water were supplied *ad libitum*. Day old 117 keets were fed ground maize in flat feeders followed by a starter ration from day 2 118 until 6 WOA. This was followed by a grower ration from 6 WOA until 21 WOA and 119 then a layer feed until the end of the experiment. The starter (22% crude protein and 120 3,000 Kcal ME/kg diet), grower (14% crude protein and 2,800 Kcal ME/kg diet), and

121	breeder (17.5% crude protein and 2,800 Kcal ME/kg diet) rations were obtained from
122	a commercial feed supplier (Agricare Ghana Limited, Kumasi, Ghana).
123	Information on lighting requirements of the local guinea fowls from hatching are
124	unavailable, and those used for chicken, are usually employed. In this case, however,
125	the "golden rule" to follow in designing lighting programmes for pullets [22] was
126	followed. All birds received 24 h light from day old until one-WOA, and this was
127	reduced to 16 h until birds were 3 weeks old. These longer light periods during the
128	first 3 weeks of life were to ensure maximum feed consumption, enough to ensure
129	maximum growth, initially. This was gradually reduced to a minimum of 12 h by the
130	7 th WOA, marking the phase of constant light [22]. Thereafter, birds were maintained
131	under natural photoperiods (12L: 12D) until the end of the study.
132	
133	2.3 Experimental procedure
134	All procedures used followed approved guidelines for ethical treatment of

135 experimental animals.

A total of 56 male guinea fowls (7 per age group) were bled at 4, 8, 12, 16, 20, 24,

137 28, and 32 WOA. Two ml of blood was collected into EDTA vacutainer tubes from

the wing vein, and spun at 7100 x g for 3 min at room temperature (18-25 °C). Plasma

139 was then pipetted into a 1.5 ml microcentrifuge tube and stored at -20 °C until

140 subsequently analysed for testosterone.

Prior to bleeding, however, 5 birds at each age were weighed, and then following
bleeding, were sacrificed by cervical dislocation. Their testes and reproductive tracts
were completely freed from the adjoining ligaments and fascia, weighed and fixed in

144 Bouin's solution overnight for histology.

145

146 2.3.1 Histological preparation, cell identification, stereological analyses and cell 147 counts

148 The histological techniques used in the present study have been described previously 149 [23-24], therefore, only a brief description is given here. The testes (with capsule 150 intact) were each divided into 2 halves. One half of each testis was fixed in Bouin's 151 solution, dehydrated in absolute ethanol and embedded in paraffin wax. They were 152 sectioned (5 µm) using microtome (Leica RM2125RT), floated onto Poly-1-lysine subbed slides (Polysine; VWR International Leuven, Germany), and stained in eosin 153 154 and Mayer's haematoxylin. Germinal cell counts were restricted to preleptotene 155 primary spermatocyte, type I spermatocyte in prophase I and step I spermatids [25-156 26]. Sertoli and Leydig cell nuclei were also counted. The Sertoli cells were identified 157 on the basis of their nuclei following the descriptions given by Zlotnik [27] and de 158 Reviers [24], while Leydig cells were identified by their characteristic location as 159 clusters in the interstitial region and by nuclear diameter. In all cases, the location, 160 relative size, shape and nuclear morphology of germ and somatic cells helped in cell 161 identification. Nuclear diameters of testicular germ and somatic cells were obtained 162 with previously calibrated calipers (this was calibrated using graticule under 163 immersion oil) under immersion oil, using sections from 5 males and counting 20 164 nuclei/cell type/male. Cell counts/transverse section were determined from 10 165 sections of individual seminiferous tubules/slide and 10 interstitial areas (surface area 166 determined)/slide for Leydig cells. Germ cell counts were determined for all testes 167 involved. The numbers of fragmented nuclei were relatively high, and partially 168 sectioned nuclei were counted as seen, if their cell type were clearly recognizable. To 169 compensate for possible overestimation of cell numbers under such conditions, initial

170	cell counts were corrected using Abercrombie's [28] correction factor as follows: Nc
171	= N × e/(e + d), where:
172	Nc = The corrected number of cells in the preparation
173	N = The number of nuclei counted/tubular section
174	e = The thickness of the histological preparation
175	d = the diameter of the nucleus of a given cell type.
176	This correction determines the number of cells with nuclei effectively present in the
177	preparation.
178	Total number of cell (Nt): Total cell numbers for germ and Sertoli cells per
179	testis were determined using the formula $Nt = Lt \times Nc / e$
180	Where Lt = Length of seminiferous tubules (estimated below), and e and Nc defined
181	as in the above. Total Leydig cell numbers were determined in relation to the
182	interstitial area occupied by the cells, and expressed as number of cells per 1000 μm^2
183	of interstitial area.
184	
185	2.3.2 Dimensions of Seminiferous tubule (ST)
186	Total length of seminiferous tubule (Lt) was estimated based on the formula $Lt = Vr \times I$
187	(100-C) $\cdot 10^{-1}$ /S [23, 29], where: Vr = percentage of testicular tissue occupied by the
188	ST as measured by a modification of the Chalkley's [30] technique. This was
189	determined by taking a picture of an entire cross section of each testis under the light
190	microscope at $\times 4$ magnification. Each cross section therefore yielded several pictures
191	depending on the size of the cross section. Each picture was subsequently opened
192	with previously calibrated ImageJ software (National Institutes of Health, USA), and
193	grids 50 μ m apart were superimposed on the entire image. With a pencil tool plug-in,
194	the grids on each image were grouped into 25 points grids (as obtained with 25-point

195	grid graticule) and each field labeled, in ascending order, until the entire cross section
196	was covered. Forty fields were then randomly chosen per cross section and counted as
197	in the Chalkley's [30] technique. Points that fell on the tubes (including the basement
198	membrane) were considered as tubular while those that fell outside the tube were
199	considered as non-tubular. This also represents the ratio of tubular to non-tubular
200	tissue [14]. Vr is expressed as a percentage of testicular tissue occupied by
201	seminiferous tubules. From this therefore, Vr could be determined according to the
202	formula: Vr =TW \times %tubes/p where TW =testis weight (g), p = specific gravity of the
203	testis (in guinea fowls $p = 1.05g/cm^3$, as in the male chicken, [23]). % tubes =
204	(number of ST points within the eye piece/total number of points of the eye piece)
205	100. $C =$ the histological contraction of the testes, is given by (Volume of fresh tissue-
206	Volume of embedded tissue/Volume of fresh tissue) x100 [29]. For guinea fowls, C in
207	both immature and mature birds was estimated as 33.4 ± 13.1 [14]. S = mean area of a
208	transverse section of ST. The ImageJ software (National Institutes of Health, USA)
209	was used to measure the surface area of the tubules directly instead of deriving it from
210	the diameter. Tubules tended to elongate with age, and diameters may therefore not be
211	accurate when measured directly. Nonetheless, in tubules with minimum and
212	maximum diameter differences not exceeding 20% [14], diameters and surface areas
213	were measured in order to compare apparent diameters (diameters measured directly)
214	to actual diameters (diameters derived from the surface area using the formula D =
215	$\sqrt{\text{surface area} \times 4/\pi}$). LT was expressed in meters (m).
216	
217	2.3.3 Sertoli efficiency and quantitation of spermatogenesis

218 Other parameters estimated were ratio of round spermatids to Sertoli cells, Sertoli

219 efficiency (total number of germ cells beyond the spermatogonia stage, supported by

220	each Sertoli cell) and meiotic index. Meiotic index, which measures the rate of
221	spermatogenesis, was expressed as a theoretical ratio based on the mean ratio for 5
222	males, and was calculated as follows: given that each type I spermatocyte should
223	provide 4 round spermatids during meiosis ($MI = 4$), and that ultimately, the actual
224	ratio of type I spermatocytes to round spermatids is dependent on the life span of each
225	cell type, %MI is therefore given as 100 (Number of round spermatids/life span of
226	round spermatids)/4(number of type I spermatocyte/life span of type I spermatocyte)
227	[31]. The life spans of primary spermatocyte and round spermatid in the guinea fowl
228	(Numida meleagris) are 4.5 and 2.5 days, respectively, as obtained from BrdU
229	observations and reported by Hein et al. [32].
230	Total reading for a parameter per testis was presented as average for the 2 testes
231	(i. e left testis reading + right testis reading/2).
232	
233	2.3.4 Testicular sperm production
234	A total of ten 32-week old guinea cocks were involved. A fragment of testis (of
235	volumes ranging between 28.3 mm ³ -265 mm ³) from each testis was weighed (fwt),
236	homogenised in 0.25M sucrose (1:200; testes: sucrose), and elongated spermatids (el)
237	and testicular spermatozoa (tspz) were counted using haemocytometer (10 replicates
238	per testes). Results for each male were estimated as follows:
239	$TSP/male = right TSP + left TSP = (el + tspz)/fwt \times testicular weight [31]$
240	

241 *2.3.5 Testosterone assay*

242 The testosterone assay had been previously validated for guinea fowl [19]. The assay

243 was a RIA using tritiated tracer (Amersham Int., Amersham, Bucks, UK) and a

244 procedure as originally described by Sheffield and O'Shaughnessy [33]. The

245	testosterone antibody was obtained from Guildhay Antisera, Surrey, UK. The
246	detection limit was 0.06 ng/ml, and intra-assay coefficient of variation was 9.5%.
247	Cross reactivity with and rostenedione and and rostanediol were 0.3% and $3.9\%,$
248	respectively. The assays were performed after sample extraction using diethyl ether in
249	duplicate of 50 μ l aliquots. Peripheral testosterone concentrations in all the samples
250	assayed were determined using the standard curve generated by the Assayzap
251	software (Biosoft®, USA). All samples were evaluated for testosterone in one assay.
252	
253	2.4 Statistical analysis
254	Data were analyzed using the SPSS software, version $20.0[34]$. Age related changes
	Data were analysed using the 51 55 software, version 20.0 [54]. Age-related changes
255	in histology of the reproductive organs and testosterone profiles in male guinea fowls
255 256	in histology of the reproductive organs and testosterone profiles in male guinea fowls were analysed using univariate analysis for completely randomised design, and means
255 256 257	in histology of the reproductive organs and testosterone profiles in male guinea fowls were analysed using univariate analysis for completely randomised design, and means separated using tukey's test. Where variances were not homogenous, Kruskal-Wallis
255 256 257 258	in histology of the reproductive organs and testosterone profiles in male guinea fowls were analysed using univariate analysis for completely randomised design, and means separated using tukey's test. Where variances were not homogenous, Kruskal-Wallis test was used instead and medians separated using Mann-Whitney U test. Data were
255 256 257 258 259	in histology of the reproductive organs and testosterone profiles in male guinea fowls were analysed using univariate analysis for completely randomised design, and means separated using tukey's test. Where variances were not homogenous, Kruskal-Wallis test was used instead and medians separated using Mann-Whitney U test. Data were presented either as mean±standard error of mean or median (Interquartile range). All

261

262	3.	Results

263 3.1 Testicular histology

The testes of the guinea fowl were contained in a covering, the tunica albuginea. The capsule did not give off septa, and therefore no separation of testes into lobules was seen in any of the birds. The seminiferous tubules were not separated by true septa, but rather only fine strands of connective tissues passed inwards from the tunica to separate the tubules. Occasionally, larger amounts of connective tissue were found surrounding a blood vessel passing towards the tunica. In the testes of a mature

270 breeding male guinea fowl, there were 4 germ and 2 somatic cell types. The germ cell 271 types were spermatogonia, primary spermatocytes, secondary spermatocytes and 272 round spermatids, which lined the basement membrane in a stratified manner. Three 273 different types of spermatogonia were seen in mature testes which could be 274 distinguished based on heterochromatin appearance and distribution, and nuclei 275 diameter. The somatic cells were Leydig and Sertoli cells. 276 At 8 WOA, only spermatogonia and Sertoli cells were present in the 277 seminiferous tubule of the birds, and the tubular lumen was absent or poorly 278 developed. These cells lined the basement membrane. There were no changes in the 279 tubular epithelium until at 12 WOA when both round and elongated spermatids (in 280 some samples) were visible. At this age, the lumen was generally well formed, but 281 tubules were widely separated by abundant interstitial tissue. By 16 WOA fully 282 formed spermatozoa could be found in both the tubular lumen and ductuli efferentes

283 of the epididymis, marking the onset of sexual activity. At this age, the interstitium

had decreased considerably in size and Leydig cells had become organized into

compact groups lying in the angular areas between adjacent seminiferous tubules

286 (Figure 1).

287 Age-related changes in testicular histological morphometric traits are shown in 288 Table 1. Round spermatid population size in the seminiferous tubules increased 289 significantly (Kruskal-Wallis $X^2 = 183.003$, df = 5, p < 0.0001) between 12 and 20 290 WOA. Cumulatively, the increase in round spermatid population size between week 291 20 and 28, and 24 and 32 were significant (p<0.05). Type I spermatocyte population 292 size on the other hand remained constant between 12 and 16 WOA, and saw 293 significant (Kruskal-Wallis test $X^2 = 169.975$, df = 5, p<0.0001) increases thereafter 294 until 20 WOA, dipped at 24 weeks, and increased (p<0.05) until 32 WOA. Total germ

295	cell numbers in the seminiferous tubule increased significantly (Kruskal-Wallis test
296	X^2 = 186.147, df = 5, p<0.0001) between 12 and 20 WOA. It remained constant
297	thereafter until 24 weeks of age and then increased significantly ($p<0.05$) between 24
298	and 32 WOA. Sertoli cell population size in the tubule also increased significantly
299	(Kruskal-Wallis test X^2 = 214.116, df = 6, p < 0.0001) between 8 and 20 WOA. This
300	was followed by a significant decrease (p<0.05) at 24 weeks and thereafter, a
301	significant rise at 28 and 32 WOA.
302	Number of round spermatids per Sertoli cell increased significantly (Kruskal-
303	Wallis test X^2 = 142.834, df = 5, p < 0.0001) between 12 and 24 WOA. The value then
304	dropped (p< 0.05) between this age and 28 WOA, and rose (p< 0.05) again to the level
305	similar to that observed at 24 weeks, between 28 and 32 WOA. Similarly, total
306	number of germ cells supported by each Sertoli cell differed (p< 0.0001) among age
307	groups. It decreased significantly (p<0.05) between 12 and 16 WOA, then increased
308	(p<0.05) cumulatively between 16 and 24 WOA. This was followed by a dip (p<0.05)
309	at 28 weeks and finally, a significant rise (p<0.05) at 32 WOA.
310	Meiotic index, which is an indication of the rate of cellular death during the first
311	and second meiotic divisions increased significantly (Kruskal-Wallis test X^2 =
312	141.059, df = 5, p <0.0001) between 12 and 24 WOA. This was followed by a highly
313	significant drop at 28 WOA, and finally, a significant rise (p<0.05) between 28 and 32
314	WOA. The highest value was at 24 WOA{ $83.5(71.3-95.8)\%$ } and the lowest {6(0-
315	17.5)%} at 12 WOA.
316	Both apparent and actual seminiferous tubular diameters exhibited the same
317	pattern of growth between 8 and 32 WOA. Significant increases were recorded in
318	apparent (Kruskal wallis test $X^2 = 189.885$, df = 6, p < 0.0001) and actual (Kruskal-
319	Wallis test $X^2 = 206.497$, df = 6, p < 0.0001) seminiferous tubular diameters between 8

320	and 24 WOA. From this point onward, there were no significant increases in both
321	cases, however, there were cumulative increases ($p<0.05$) in both parameters between
322	24 and 32 WOA. Actual tubular diameter was significantly bigger (p<0.05) than
323	apparent tubular diameter {526.6 (481.0-576.0) μ m vs 383 (348.6-419.9) μ m}.
324	Relative volume of seminiferous tubule in the testes increased significantly
325	(Kruskal-Wallis test $X^2 = 348.574$, df = 6, p <0.0001) between 8 and 20 WOA. It then
326	stabilised for the next 8 weeks before increasing at 32 WOA. Seminiferous tubular
327	length, on the other hand, significantly (Kruskal-Wallis test $X^2 = 623.228$, df = 6,
328	p<0.0001) increased between 8 {2.5 (1.8-5.0) m} and 20 {9.8 (9.1-10.5) m} WOA,
329	followed by a dip (p<0.05) at 24 WOA. It then increased (p<0.05) between 24 and 32
330	WOA. Testicular sperm production in the adult breeding guinea cock averaged 9.9
331	$x10^{7}(8.5 x10^{7}-18.0 x10^{7})$
332	The Sertoli cells were located on the basement membrane. The Leydig cells had

333 spherical nuclei and occurred as clusters in the interstitial region. They possessed 334 prominent nucleoli. In the guinea fowls, the Sertoli cells were quasi-circular in most 335 cases, and were significantly bigger (p<0.05) than the Leydig cell nuclei ($4.3\pm.07 \mu m$ 336 vs $3.0\pm.07 \mu m$).

Correlations among all the testicular morphometric parameters were positive and highly significant (p<0.01). Similarly, significant correlations existed between testicular weight and testicular sperm production, actual tubular diameter, Sertoli cell population, tubular length (p<0.01) and Sertoli efficiency (number of round spermatids per Sertoli cell and total number of germ cells per Sertoli cell) (p<0.05). The correlations between testicular weight and all the parameters except Sertoli efficiency were positive. Testicular sperm production was not correlated with any of

344 the testicular morphometric parameters except meiotic index (p<0.01) and round

spermatids population (p<0.05). These were positively related to testicular sperm
production (Table 2).

347

348 *3.2 Changes in peripheral testosterone concentration*

349 Generally, no significant increases were recorded in peripheral testosterone

350 concentrations measured monthly. Testosterone concentrations, however, tended to

351 increase from 4 to 20 WOA when it peaked. Testosterone levels at sexual maturity

352 (16 WOA) were significantly higher (p<0.05) than the levels in 4-week old birds.

353 Similarly, the peak testosterone concentrations at 20 weeks were higher (p<0.05) than

the concentrations at 4 and 8 WOA. Testosterone concentration decreased after 20

WOA to a level similar to that seen at 12 WOA and remained at that level until the

and of the study (Figure 2).

357 Correlation between testicular weight and peripheral testosterone

358 concentration was positive and highly significant (p< 0.0001). Similarly, there were

359 significant (p<0.05) positive correlations between testosterone concentrations and

actual tubular diameter, total number of germ cells per Sertoli cell and number of

361 round spermatids per Sertoli cell (Sertoli efficiency) and tubular length (Table 2).

362

363 4. Discussions

364 *4.1 Changes in the histology of the testes*

In agreement with the observations made by Awotwi [15] and Brillard [14] in the

366 local and exotic breeds of guinea fowls, respectively, the testes of a growing male

367 guinea keet could only be detached for decent histological sections from 8 WOA. At

this age, the seminiferous tubules had poorly-formed lumen or none at all; only

369 Sertoli cells and spermatogonia lined the basement membrane, and abundant 370 interstitial tissue separated the tubules. Puberty, characterized by the presence of 371 primary and secondary spermatocytes and round spermatids in the tubular lumen, was 372 attained at 12 WOA in the birds studied by Brillard [14]. The author noted that elongated spermatids were seen in the tubular lumen of a few birds. The results of the 373 374 present study confirm this earlier report by Brillard [14]. Awotwi [15], however, 375 found only primary spermatocytes at 12 weeks and secondary spermatocyte at 16 376 WOA, an indication of late attainment of puberty in those birds. Guinea fowls used in 377 this study attained sexual maturity at 16 WOA when fully formed spermatozoa were 378 present both in the tubular lumen and the lumen of excurrent duct system. This was 379 earlier than the 20 weeks reported by Awotwi [15] in the same breed. This result is 380 not surprising considering the fact that the processes of spermatogenesis started 381 earlier in the birds used in this study than those in the study by Awotwi [15]. The 382 differences in the time of sexual maturity between the 2 flocks of birds may be 383 attributed to possible differences in management, as management factors including 384 feeding [35] and photoperiod [36] have been cited to alter dramatically the onset of 385 meiosis and sustained spermatogenesis.

386 Seminiferous tubular diameter was measured in two ways during the present 387 study. The actual seminiferous tubular diameter (estimation method developed during 388 this investigation) was much larger than the apparent diameter (conventional method 389 of tubular diameter estimation). This indicates that tubular diameters are usually 390 underestimated using the conventional method of measurement. Another disadvantage 391 of the conventional method is that not all tubules are given equal chances of being 392 selected for measurement since the tubule has to be quasi-circular in order to be 393 considered. Where a software package is employed for area measurement from which

394	the diameter is determined, all these problems are avoided. Even though the use of the
395	apparent tubular diameter underestimates the diameter of the tubule, it is still
396	reflective of the true situation when comparing across groups or conducting trend
397	analysis, as evidenced by the relationship between the trends of age-related variations
398	in the two tubular diameters in the present study. The use of the actual tubular
399	diameter approach is particularly useful when estimating tubular diameters in a
400	situation where transverse sections of seminiferous tubules tend to elongate in
401	growing animals, making it difficult to obtain the number of tubules required for the
402	estimation of tubular diameters and other tubular parameters.
403	Several quantitative histological changes occurred in the testes of male guinea
404	fowl during the period before sexual maturity. Both the apparent and actual
405	seminiferous tubular diameters increased from 74.4 μm and 87.2 $\mu m,$ respectively, at
406	8 weeks to 326.8 μm and 387.7 μm , respectively, at 20 WOA. Tubular length also
407	increased from 2.5 m at 8 weeks to 9.8 m at 20 weeks. These reflected in massive
408	increase in the relative volume of the seminiferous tubules. These figures tended to
409	plateau after 20 WOA. Brillard [14], therefore, defined 20 weeks as the beginning of
410	adulthood in the guinea fowl. The fluctuations seen after 20 weeks was attributable to
411	the fact that these birds attained sexual maturity during the minor breeding season,
412	and this may have influenced subsequent readings. The modifications seen in the
413	seminiferous tubules led to early onset of spermatogenesis and rapid development of
414	the spermatocytes population between 8 to 12 WOA (0 to 0.503×10^8). Round
415	spermatids were also present in all samples analysed at 12 WOA. It increased from
416	this age and tended to stabilise from 20 WOA. Puberty in these birds therefore
417	commenced from 12 WOA. A similar observation was made by Brillard [14]. This
418	study, found some type I spermatocyte at 8 WOA, however, this was not noticed in

the present study.

420 The Sertoli cells were quasi-circular in the guinea fowl. This is in agreement 421 with the earlier observation by Brillard [14]. Sertoli cell population increased even 422 during adulthood and was linearly correlated with total germ cell numbers. This is 423 consistent with the report of Brillard [14] in the exotic breeds of guinea fowls. The 424 author evoked 2 hypotheses to explain the increase in Sertoli cell population during 425 adulthood in the guinea fowl. First, even at sexual maturity, a low level of mitotic 426 activity may persist among the Sertoli population. Secondly, some undifferentiated 427 Sertoli cells might remain in the testes after sexual maturity. These cells could play 428 the role of reserves proliferating and differentiating slowly during adulthood. 429 The fluctuations in the total number of germ cells per Sertoli cell may be 430 attributed to the attainment of sexual maturity in the non-breeding season and cellular 431 deaths. The reduced meiotic rate occurring during this period may account for the 432 fluctuating numbers of germ cells supported by each Sertoli cell. It is currently 433 accepted that the number of Sertoli cells established during testicular development 434 determines the rate of spermatogenesis in sexually mature animals [37-38]. This 435 assumption is based on the fact that each Sertoli cell supports a limited number of 436 germ cells in a species-specific manner [39-40]. Studies have shown that 437 spermatogenic efficiency, expressed as the number of sperm produced daily per gram 438 of testis, is usually positively correlated with the number of germ cells supported by 439 each Sertoli cell [39-41]. This was evidenced by the positive correlation between 440 testicular sperm production and Sertoli efficiency in the present study. Other 441 important factors that were reported to have correlated with spermatogenic efficiency 442 were the volume density of the seminiferous tubule, the length of spermatogenic 443 cycle, the number of spermatogonial generations, the rate of germ cell loss during

454

444	spermatogenesis (supported by the strong positive correlation between testicular
445	sperm production and meiotic index in this study), the number of Sertoli cells per
446	gram of testis and the size of Sertoli cells [40, 42]. Contrary to the reports of Franca
447	and Godinho [43], Sertoli cell population positively correlated with actual and
448	apparent tubular diameter, and total germ cells per testis. The average number of
449	round spermatids per Sertoli cell and total germ cell per Sertoli cell (Sertoli
450	efficiency) in the adult guinea fowl were 12.5 and 7.2, respectively.
451	Germ cell apoptosis constitutes a normal process during spermatogenesis [44]
452	and can occur in different developmental phases. It is considered mainly to function
453	in density regulation of spermatogonia and to eliminate cells with chromosomal

[40]. The quantitative significance of germ cell loss becomes clear when considering 455

damage (meiotic phase), whereas cell loss during spermiogenesis is less prominent

456 that only two to three spermatozoa of 10 theoretically possible cells are produced

from type A1 spermatogonia [40, 45]. In the present study, the highest percentage of 457

458 cell deaths was 94% at 12 WOA, while the least was 16.5% at 24 WOA. The high

459 initial cell deaths at 12 WOA was not surprising considering the fact that these birds

460 attained puberty at this age, and maximal efficiency of spermatogenesis, as indicated

461 by quality of spermatozoa produced, is not achieved until several weeks after puberty

462 has been attained [46]. The lower percentage of cell deaths (16.5%) observed in the

463 present study at 24 WOA indicates a more efficient spermatogenesis in these birds at

464 this age. The significant and positive correlations between testicular sperm production

465 and number of round spermatids per testis, meiotic index and testicular weight, was

- 466 an indication that these parameters could be good predictors of spermatogenic
- 467 efficiency in guinea fowls. The lack of a significant correlation between Sertoli
- 468 efficiency and Sertoli cell populations with testicular sperm production was possibly

469 because of the relatively small sample size of 10 birds (for testicular sperm

470 production).

471

472 *4.2 Changes in peripheral testosterone concentration*

The rise in peripheral testosterone concentrations between 12 and 20 WOA in the present study may be related to the early onset of puberty in these birds. Spermatozoa were first seen at 16 WOA. It is probable therefore that the phase of rising plasma testosterone levels occurred several weeks before the onset of sexual activity in the local guinea cocks.

478 In the present study, the peak testosterone concentrations in sexually mature 479 guinea cocks were low (0.284 ng/ml). Abdul-Rahman et al. [19] also reported a low 480 peak testosterone concentration (0.471 ng/ml) in breeding males. These results were 481 not surprising considering earlier reports that male tropical birds have low plasma 482 testosterone concentrations, involving low amplitude cycles with possible slight 483 variations during times of breeding [47-49]. It is thought that these low concentrations 484 are a way of avoiding the potential detrimental effects of elevated concentrations of 485 testosterone, since there is a trade-off between testosterone concentration and 486 immunity [50]. Consequently, selection in the tropics may have favoured birds with 487 low concentrations of testosterone, in line with a slow pace of life, with more resources being allocated to immune function [51]. The guinea fowl is a tropical bird 488 489 [20]. 490 The peak testosterone concentrations recorded in the present study is several

fold lower than those reported in exotic breeding guinea cocks [52-53]. A possible reason for this massive difference is that the guinea fowls used in the present study are indigenous breeds, small in stature, and have not undergone any intensive

)

494	selection and breeding compared to their exotic counterparts. The exotic breeds are
495	much higher in weight at all ages than the local breeds [54]. Several workers [55-57]
496	have reported positive relationship between body and testicular weight. Positive
497	relationship has also been reported between testes size and testosterone titer [58-60],
498	with some authors inferring that the link is a consequence of the phenotypic
499	integration of spermatogenic and endocrine functions of the testes [58-59]. The
500	testicular weight reported for the exotic guinea fowl is two fold higher [14, 52-53]
501	than that found in the indigenous guinea fowls in the present study. The lower
502	testicular weight and corresponding lower testosterone concentrations in the
503	indigenous guinea fowls are, therefore, not surprising.
504	Rising plasma testosterone levels in the guinea fowls corresponded to
505	increasing seminiferous tubular diameters and volume. Sertoli and germ cell
506	populations also increased from 12 WOA. All these parameters did not see any
507	significant rise after the peak testosterone concentration was attained at 20 WOA,
508	implicating this hormone in spermatogenesis and the development of the seminiferous
509	tubules. A role for testosterone in adult testicular function is suggested by the finding
510	in mature hypophysectomized quail that administration of large doses of testosterone,
511	while insufficient to maintain spermatogenesis, retards testicular regression resulting
512	from the surgery [61]. Germ cell development started between 8 and 12 WOA when
513	the concentrations of testosterone were low, while spermatids and spermatozoa were
514	observed between 12 and 16 WOA when testosterone had nearly peaked. Low doses
515	of testosterone have also been implicated in the maturation of the germinal epithelium
516	in intact immature cockerels [62-63].
517	The significant positive correlations between plasma testosterone

518 concentrations and Sertoli efficiency, actual seminiferous tubular diameter and

519

520	the local guinea fowls could be highly related to these histological morphometric
521	parameters.
522	In conclusion, puberty and sexual maturity were attained at 12 and 16 weeks
523	of age, respectively, in male guinea cocks. The pattern of testosterone secretion in the
524	guinea cock may be divided into two, initial phase of increasing testosterone
525	concentrations prior to 20 WOA, and a final one of decreasing peripheral testosterone
526	concentrations after 20 WOA, and may be implicated in the development of
527	histological structures of the testes and spermatogenesis in the guinea cock.
528	
529	Declaration of interest
530	The authors declare that there is no conflict of interest that could be perceived as
531	prejudicing the impartiality of the article.
532	
533	Acknowledgements
534	The authors wish to thank Iain Macmillan, Peter O'Shaughnessy and Neil Evans, all
535	of Veterinary Biosciences, University of Glasgow, for help on histological techniques
536	and radioimmunoassay. Funding for the project was partly provided by the
537	commonwealth Scholarship Commission in the UK, and Association of
538	Commonwealth Universities (CSC Ref No: 2009-378).
539	
540	References
541	[1] Aire TA, Ozegbe, PC. The testicular capsule and peritubular tissue of birds:
542	morphometry, histology, ultrastructure and immunohistochemistry. J Anat. 2007;
543	210: 731-40.

seminiferous tubular length is an indication that plasma testosterone concentrations in

- 544 [2] Halse SA. Gonadal cycles and levels of luteinizing hormone in wild spur-winged
- 545 geese, *Plectropterus gambensis*. J. Zool. 1985; 205: 335-55.
- 546 [3] Dufty AM, Wingfield JC. Temporal patterns of circulating LH and steroid
- hormones in a brood parasite, the brown-headed cowbird, Molothrus ater. 1.
- 548 Males. J. Zool. 1986; 208: 191-203.
- [4] Mauget R, Jouventin P, Lacroix A, Ishii S. Plasma LH and steroid hormones in
- king penguin (Aptenodytes patagonicus) during the onset of the breeding cycle.
- 551 Gen. Comp. Endocrinol. 1994; 93: 36-43.
- [5] Rosenstrauch A, Weil S, Degen AA, Friedlander M. Leydig cell functional
- structure and plasma androgen level during the decline in fertility in aging roosters.
- 554 Gen. Comp. Endocrinol. 1998; 109: 251-58.
- [6] Madekurozwa MC, Chabvepi TS, Matema S, Teerds KJ. Relationship between
- seasonal changes in spermatogenesis in the juvenile ostrich (Stuthio camelus) and
- the presence of the LH receptor and 3β -hydroxysteroid dehydrogenase.
- 558 Reproduction 2002; 123: 735-42.
- [7] Kempenaers B, Peer K, Vermeirssen ELM, Robertson RJ. Testis size and
- asymmetry in the tree swallow Tachycineta bicolor: a test of the compensation
- 561 hypothesis. Avian Sci. 2002; 2: 115-22.
- 562 [8] Hocking PM. Bilateral testicular asymmetry and supernumerary testes in the
- domestic fowl (Gallus domesticus). Br. Poult. Sci. 1992; 33: 455-60.
- 564 [9] Yu ZH. Asymmetrical testicular weights in mammals, birds, reptiles and
- 565 amphibian. Int. J. Androl 1998; 21: 53-5.
- 566 [10] Gunn MR, Champion Z, Casey ME, Teal P, Casey PJ. Testicular and
- 567 spermatozoan parameters in the pukeko (Porphyrio porphyrio melanotus). Anim.
- 568 Reprod. Sci. 2008; 109: 330-42.

- 569 [11] Kirby JD, Froman DP. Reproduction in male birds. In: Whittow CG, editor.
- 570 Sturkie's Avian physiology, 5th ed. New York: Academic Press; 2000.

571 p. 597-615.

- 572 [12] Kumaran JDS, Turner CW. The normal development of testes in the White
- 573 Plymouth Rock. Poult Sci 1949a; 28: 511-20.
- 574 [13] Kumaran JDS, Turner CW. Endocrine activity of the testis of the

575 White Plymouth Rock. Poult Sci 1949b; 28: 636-40.

- 576 [14] Brillard JP. Age-related variations in seminiferous tubule dimensions and
- 577 germinal and Sertoli cell numbers in guinea fowl raised under a 14L:10D
- 578 photoperiod. Poult Sci 1986; 65: 369-74.
- 579 [15] Awotwi EK. Some aspects of the reproductive physiology of male and
- female guinea fowls. MSc. Thesis, University of Ghana, Legon, Ghana. 1975.
- [16] Lake PE, Furr, JA. The endocrine testis in reproduction. In: Bell DJ, Freeman
- 582 BM, editors. Physiology and biochemistry of the domestic fowl, vol. 3. London
 583 and New York: Academic Press; 1971. p. 1469-88.
- 584 [17] Cardinali DP, Tramezzani JH, Cuello AE, Rosner, JM. In: James VHT, Martini
- 585 L, editors. Proceedings of the 3rd International Congress on Hormonal Steroids,
- 586 Hamburg. Amsterdam: Excerpta Medica Foundation; 1970. p. 231
- 587 [18] Driot FJM, de Reviers M, Williams J. Plasma testosterone levels in intact and
 588 hemicastrated growing cockerels. J. Endocr. 1979; 81: 169-174.
- [19] Abdul-Rahman II, Robinson JE, Obese FY, Jeffcoate IA, Awumbila B. Effects of
 season on reproductive organ and plasma testosterone concentrations in guinea
 cocks. Poult Sci 2016; 95(3): 636-644.
- 592 [20] Awotwi EK. A review of studies on guinea fowls in Ghana. Leg. Agric. Res.
- 593 Bull. 1987; 2: 1-4.

- 594 [21] Teye GA, Gyawu P. A guide to guinea fowl production in Ghana. Tamale:
 595 Muetpress; 2002.
- 595 Muetpress, 2002.
- 596 [22] Thiele HH. Light stimulation of commercial layers, Vol 44 (2). In: Thiele HH,
- 597 editor. Lohmann information. pp. 39–48. (Lohmann-
- 598 information.com/content/l i 44artikel13.pdf.; 2009 [accessed 15.06.14]
- [23] de Reviers M. Le développement testiculaire chez le coq. l, Criissance
- 600 Ponderale des testicules et développement des tubes seminiferes. Ann. Biol.
- 601 Anim. Biochim. Biophys. 1971a; 11: 519-30.
- 602 [24] de Reviers, M. Le développement testiculaire chez le coq. ll. Morphologie de
- 603 l'epithelium séminifere et établissement de la spermatogenese. Ann. Biol.
- 604 Anim. Biochim. Biophys. 1971b; 11: 531-46.
- 605 [25] Aire TA, Olowo-okorun MO, Ayeni JS. The seminiferous epithelium in the
 606 guinea fowl (Numida meleagris). Cell Tissue Res. 1980; 205: 319-25.
- 607 [26] Abdul-Rahman II, Obese FY, Robinson JE. Spermatogenesis and cellular
- 608 associations in the seminiferous epithelium of Guinea cock (Numida meleagris)
- 609 Can J Anim Sci 2017; 97: 241–249.
- 610 [27] Zlotnik I. The cytoplasmic components of germ cells during spermatogenesis in
- 611 the domestic fowl. Quat. J. Morphol. Sci. 1947; 88: 353-65.
- 612 [28] Abercrombie M. Estimation of nuclear population from microtome sections.
- 613 Anat Rec. 1946; 94: 238-48.
- 614 [29] Attal J, Courot, M. Developpement testiculaire et etablissement de la
- 615 spermatogenese chez le taureaux. Ann. Biol. Anim. Biochim. Biophys.
- 616 1963; 3: 219-41.
- [30] Chalkley HW. Method for the quantitative morphologic analysis of tissues. J.
- 618 Natl. Cancer Inst. (1943; 4: 47-73.

- [31] Noirault J, Brillard J-P, Bakst MR. Spermatogenesis in the turkey (Meleagris
- 620 gallopavo): Quantitative approach in immature and adult males subjected to
- 621 various photoperiods. Theriogenology 2006; 65: 845–859.
- 622 [32] Hein OC, Diarra B, Brillard J-P, Boly H, Sawadogo L. Effects of improving
- health status on testicular development of guinea fowl (Numida meleagris) reared
- 624 under natural photoperiod in the Sudanian zone of Burkina Faso. Intl. J. Poult
- 625 Sci. 2011; 10 (2): 113-119.
- 626 [33] Sheffield JW, O'Shaughnessy PJ. Effect of injection of gonadotrophin releasing
- hormone on testicular steroidogenesis in the hypogonadal (hpg) mouse. J.
- 628 Reprod. Fertil. 1989; 86: 609-617.
- [34] IBM Corp. IBM SPSS Statistics for Macintosh, Version 20.0. 2011; Armonk,
 NY.
- [35] Cheah YS, Nxi W, Ng Y. Functions of essential nutrition for high quality
 spermatogenesis. Adv Biosci Biotechnol 2011; 2: 182-97.
- [36] Ingkasuwan P, Ogasawara FX. The effect of light and temperature and their
- 634 interaction on the semen production of White Leghorn males. Poult Sci 1966;635 45: 1199-204.
- 636 [37] Orth JM, Gunsalus GL, Lampert AA. Evidence from Sertoli cell-depleted rats
 637 indicates that spermatid number in adults depends on numbers of Sertoli cells
 638 produced during perinatal development. J. Endocrinol. 1988; 122: 787-794.
- [38] Hess RA, Cooke PS, Bunick D, Kirby JD. Adult testicular enlargement induced
- by neonatal hypothyroidism is accompanied by increased Sertoli cell and germcell number. J. Endocrinol. 1993; 132: 2607-2613.
- [39] Russell LD, Peterson RN. Determination of the elongate spermatid-Sertoli cell
 ratio in various mammals. J Reprod Fertil. 1984; 70: 635-64.

- [40] França LR, Russell LD. The testis of domestic animals. In: Martínez F, Regadera
- 545 J, editors. Male reproduction: a multidisciplinary overview. Madrid, Spain:
- 646 Churchill Livingstone; 1998. p.197-219.
- [41] Sharpe RM. Regulation of spermatogenesis. In: Knobil E, Neill JD, editors. The
- 648 Physiology of Reproduction, 2nd ed, vol. 1. New York: Raven Press; 1994.
- 649 p. 1363-434.
- [42] Johnson L. Spermatogenesis. In: Cupps PT, editor. Reproduction in domestic
 animals, 3rd ed. New York: Academic Press; 1991. p.173-219.
- [43] França LR, Godinho CL. Testis morphometry, seminiferous epithelium cycle
- length, and daily sperm production in domestic cats (Felis catus). Biol Reprod.
 2003; 68: 1554-561.
- [44] Baum JS, St George JP, McCall K. Programmed cell death in the germ line.
 Semin Cell Dev. Biol. 2005; 16: 245–59.
- [45] De Rooij DG, Russell LD. All you wanted to know about spermatogonia but
 were afraid to ask. J Androl. 2000; 21: 776–98.
- [46] Dyrmundsson OR. Puberty and early reproductive performance in sheep. I. Ewelambs. Anim. Breed. Abstr. 1973; 416: 273-89.
- 661 [47] Hau M, Wikelski M, Soma KK, Wingfield JC. Testosterone and year-round
- territoriality in a tropical bird. Gen. Comp. Endocrinol. 2000; 117: 20–33.
- 663 [48] Moore IT, Perfito N, Wada H, Sperry TS, Wingfield, JC. Latitudinal variation in
- 664 plasma testosterone levels in birds of the genus Zonotrichia. Gen. Comp.
- 665 Endocrinol. 2002; 129: 13–19.
- 666 [49] Moore IT, Wada H, Perfito N, Busch DS, Hahn TP, Wingfield JC. Territoriality
- and testosterone in an equatorial population of rufous-collared sparrows,
- 668 Zonotrichia capensis. Anim. Behav. 2004; 67: 411–20.

- 669 [50] Wingfield JC, Lynn SE, Soma KK. Avoiding the "costs" of testosterone:
- ecological bases of hormone-behavior interactions. Brain Behav and Evol.
 2001; 57: 239–51.
- 672 [51] Wikelski M, Ricklefs RE. The physiology of life histories. Trends Ecol. Evol.
- 673 2001; 16: 479–81.
- [52] Ali MZ, Qureshi AS, Rehan S, Akbar SZ, Manzoor A. Seasonal variations in
- histomorphology of testes and bursa, immune parameters and serum testosterone
- 676 concentration in male guinea fowl (Numida meleagris). Pak Vet J 2015; 35(1):
- 677
 88-92.
- [53] Qureshi AS, Saif-Ur-Rahman HM, Ali MZ, Kausar R. Changes in testicular
- histomorphology and serum testosterone concentration of helmeted guinea fowl
- 680 (Numida meleagris) during different reproductive phases in Pakistan. J. Anim
- 681 Plant Sci 2016; 26(2): 564-568.
- [54] Teye GA, Gyawu P, Agbolosu AA. Growth potential and carcass yields of
- 683 exotic and indigenous guinea fowls in Ghana. Dev Spectrum 2001; 1 (1): 34-40.
- 684 [55] Aviagen (Ross). Testis weight, fertility and bodyweight,

685 <u>http://www.thepoultrysite.com;</u> 2004 [accessed 11.06.17].

686 [56] Osama MA, Abd-El-Hamid EA, Wagdey ZA. Effect of crossing on the

687 performance of local strains. 4. Blood hematology and biochemical traits

- and some organs relative weights of chicken cocks. J. Agric. & Env. Sci. Alex.
- 689 Univ. 2006; 5 (1): 57-71.
- 690 [57] Sarabia FJ, Pizarro DM, Abad MJ, Casanovas IP, Rodriguez-Bertos A, Barger
- 691 K. Relationships between fertility and some parameters in male broiler
- breeders (body and testicular weight, histology and immunohistochemistry of

- testes, spermatogenesis and hormonal levels). Reprod Domest Anim. 2013; 48
 (2): 345–352.
- 695 [58] Garamszegi LZ, Eens M, Hurtrez-Bousses S, Moller AP. Testosterone, testes
 696 size, and mating success in birds: a comparative study. Horm Behav 2005; 47:
 697 389-409.
- [59] Malo AF, Roldan ERS, Garde JJ, Soler AJ, Vicente J, Gortazar C, Gomendio
- M. What does testosterone do for red deer males? Proc R Soc Biol Sci Ser B
 2009; 276: 971-980.
- [60] Preston BT, Stevenson IR, Lincoln GA, Monfort SL, Pilkington JG, Wilson K.
- Testes size, testosterone production and reproductive behaviour in a natural
 mammalian mating system. J Anim Ecol 2012; 81: 296-305.
- [61] Brown NL, Follett BK. Effects of androgens on the testes of intact and
- hypophysectomized Japanese quail. Gen. Comp. Endocrinol. 1977; **33**: 267-277.
- [62] Kumaran JDS, Turner CW. The endocrinology of spermatogenesis in birds II.
- Effect of androgens. Poult Sci 1949c; 28: 739-746.
- [63] Siegel HS. Nitrogen metabolism in cockerels treated with $17-\alpha$ -methyl- $17-\beta$ -
- hydroxyandrosta- $\Delta 1$, 4-3-one (methandrostenolone). Gen Comp Endocrinol.
- 710 1964; 4: 132-143.
- 711
- 712
- 713
- 714

Figure 1: Cross section of guinea fowl testes at various developmental stages: 8 (A), 12 (B), and 20 (C) weeks old. Note Interstitial tissue (INT),

728 Seminiferous tubule (ST), Spermatogonia (SG), Sertoli cells (arrow), primary and secondary spermatocytes (SpI and II), round (RS) and

elongated (EL) spermatids, Seminiferous tubular lumen (ST. Lumen), HE x20 (Scale bar = $100 \mu m$). Plate D shows the distal ductule efferentes

of guinea cock at 16 weeks indicating the first appearance of spermatozoa (arrow head) in the lumen, HE x20 (Scale bar = $100 \mu m$).

Means \pm SEM having no letter in common are significantly (p<0.05) different

Figure 2: Peripheral testosterone concentrations in guinea cocks during sexual

⁷³⁶ development.

Table 1: Developmental changes in testicular histological morphometric traits in local guinea cocks

Testicula	ır				Age (weeks)			737	
morphor	netric trait								
{Median	(Interquartile								
range)}									
		8	12	16	20	24	28	32	
nSpdR	$(x10^8)$		0.1 (0.1 - 0.6) ^e	0.5 (0.3 - 0.8) ^d	1.6 (0.9 - 2.3) ^c	1.9 (1.1 - 3.0) ^{bc}	2.2 (1.7 - 2.8) ^b	3.8 (2.4 - 4.8) ^a	
nSpcI	(x10 ⁸)		0.5 (0.2 - 1.3) ^e	0.8 (0.5 - 0.9) ^e	1.3 (1.1 - 1.7) ^c	1.1 (0.6 - 1.6) ^d	2.0 (1.6 - 2.6) ^b	3.1 (2.1 - 3.9) ^a	
spdR/S			0.4 (0-3.2) ^d	2.0 (1.6-2.7) ^c	4.0 (1.8-4.6) ^b	6.0 (4.8-7.4) ^a	3.9 (3.1-5.4) ^b	7.2 (5.3-8.6) ^a	
ert									
*tGm/S			7.3±0.5 ^{cd}	5.4±0.5e	6.5±0.5 ^{ed}	9.9±0.6b	8.4±0.6°	12.7±0.5 ^a	
ert									
Mind	(%)		6.0	35.5	58.5	83.5	46.9	59.2	
			(0-17.5) ^e	(20.8-57.5) ^d	(35.7-72.2) ^{bc}	(71.3-95.8) ^a	(46.3-47.5) ^c	(48.2-75.6) ^b	
tGcPlp	$(x10^8)$		0.6	1.3	2.8	3.2	4.1	7.2	
			$(0.2 - 1.9)^{e}$	$(1.0 - 1.6)^d$	(2.2 - 3.8) ^c	(1.9 - 4.7) ^c	(3.2 - 5.3) ^b	$(5.3 - 9.3)^{a}$	
appØ	(µm)	74.4	134.1	266.0	326.8	312.5	384.0	397.8	
		(65.0-77.2) ^f	(108.2-247.6) ^e	(247.5-300.3) ^d	(257.6-364.0) ^c	(288.4-418.1) ^b	(340.0-423.6) ^{ab}	(362.1-426.7) ^a	
actØ	(µm)	87.2	199.2	335.2	387.7	451.5	492.7	501.1	
		(59.2-102.7) ^f	(165.8-331.3) ^e	(318.0-372.8) ^d	(341.4-413.5) ^c	(392.6-493.0) ^b	(403.6-556.1) ^{ab}	(465.3-534.2) ^a	
nSert	(x10 ⁷)	0.7	1.5	2.3	4.7	3.3	4.9	5.7	
		(0.4-1.6) ^f	(0.6 - 2.0)	$(1.9 - 2.8)^d$	(3.7 - 6.4) ^b	(1.9 - 4.1) ^c	(4.2 - 5.8) ^b	$(4.3 - 7.1)^{a}$	
Vr	(%)	60.0	86.0	90.0	96.0	96.0	96.0	98.0	
		(55.5-68.5) ^e	(72.0-94.0) ^d	(86.0-94.0) ^c	(94.0-98.0) ^b	(92.0-99.0) ^b	(92.0-99.0) ^b	(92.0-99.0) ^a	
Lt	(m)	2.5(1.8-5.0) ^g	4.9 (3.9-6.8) ^f	6.1 (5.4-6.8) ^e	9.8 (9.1-10.5) ^c	8.5 (4.8-10.2) ^d	10.7 (8.3-11.7)b	11.3 (8.7-13.2) ^a	
TW	(mg)	5.0	38.5	94.5	192.5	170.5	365.5	351.0	
		(2.8-7.8) ^e	(23.0-91.5) ^d	(82.5-133.5) ^c	(131.5-241.3) ^b	(86.5-304.5) ^{bc}	(226.1-428.6) ^a	(246.0-408.5) ^a	

*Mean±SEM. Abbreviations: nSpdR: Round spermatids population, nSpcI : TypeI spermatocyte population, spdR/ Sert: Round spermatids/Sertoli cell, tGM/Sert: Total number of germ cells per Sertoli cell, Mind: Meiotic index, tGcPlpn: Total germ cell population, nSert: Sertoli cells population, act: actual tubular diameter, app: Apparent tubular diameter, Vr: Relative volume of seminiferous tubules, Lt: Seminiferous tubular length, TW: Testicular weight

Table 2: Correlations among testicular morphometric characteristics, testicular sperm production and peripheral testosterone concentrations in guinea cocks

7	3	8
	J	U

	nSpdR	nSpcI	spdR/Sert	tGM/Sert	Mind	tGcPlp	appØ	actØ	nSert	Vr	Lt	TSP	Testo Conc
nSpcI	.678***												
spdR/Sert	.610***	.535***											
tGm/Sert	.541***	.586***	.926***										
Mind	.455***	.204**	.697***	.448***									
tGcPlp	.750***	.937***	.712***	.675***	.438***								
appØ	.582***	.548***	.607***	.560***	.488***	.587***							
actØ	.610***	.509***	.602***	.560***	.481***	.543***	.853***						
nSert	.583***	.792***	.289***	.198**	.310***	.771***	.473***	.433***					
Vr	.272***	.249***	.319***	.236***	.398***	.281***	.453***	.529***	.341**				
Lt	.426***	.360***	.324***	.182**	.395***	.435***	.361***	.386***	.537***	.429***			
TSP	.297*	195	.291*	.258*	.472**	.171	129	105	.184	006	.195		
Testo Conc	.156	010	.260*	.238*	.160	.107	.039	0298*	.004	020	.239*	157	
TW	.035	033	247*	403**	.061	.012	.212	.354**	.327**	.098	.500***	.459**	.563**

Abbreviations: nSpdR: Round spermatids population, nSpcI : TypeI spermatocyte population, spdR/ Sert: Round spermatids/Sertoli cell, tGM/Sert: Total number of germ cells per Sertoli cell, and the spermatice of the spermatice of