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Executive Summary

Open rotor engines can provide fuel savings of up to twenty seven percent compared to

a modern high bypass turbofan engine. They were subject to intense research in the

1980s in response to the 1973 oil crisis. They have come back into consideration to

combat the strict environmental regulations currently imposed on the aviation industry

and to meet the ACARE 2020 requirements. Recent large scale European projects such

as DREAM and Clean Sky have included significant research on the open rotor since

their comeback.

Their major drawback is the noise levels generated when the wake and tip vortices of

the front rotor interact with the aft rotor. The noise generated from these interactions

is highly tonal which makes the open rotor prohibitively noisy.

The Unducted Fan (UDF) demonstrator engine was built in the 1980s by General Electric

in collaboration with NASA. During the design phase of this project a computer code

named CRPFAN was developed to predict the noise of open rotors. CRPFAN is used as

a representative preliminary design noise prediction tool and was the only representative

tool available to the author at the time of the project.

Included in CRPFAN is a vortex model which relies heavily on outdated empirical re-

lations. There is currently a better knowledge of tip vortex properties relative to when

the code was created. However, there has been no significant study on how the specific

parameters of a tip vortex relate to the noise of an open rotor or how to more accurately

predict the tip vortex parameters, which is what this project aims to do.

The first part of the project developed methods to quantify how the tip vortex param-

eters relate to the noise generated by its interaction with the aft blade row. The next

step was to further develop the state of the art of tip vortex models. This is done using

basic analytical models integrated into CRPFAN and the use of Computational Fluid

Dynamics (CFD) to model the tip vortices.

CFD was used to develop bespoke tip vortex correlations which relate the tip vortex

parameters to the open rotor performance parameters such as the lift, thrust and power

coefficients. Correlations for the tip vortex axial velocity, trajectory, circulation and

core size have been developed and integrated into CRPFAN with a detailed analysis of

their performance relative to the current state of the art included.

This thesis includes recommendations to improve the tip vortex models such as taking

into account the spatial orientation of the vortex, inclusion of a vortex axial velocity

component and how strip theory codes can under predict the noise.
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Chapter 1

Introduction

The open rotor is currently being re-considered as an alternative to the high by-pass

turbofan engine for medium sized aircraft in an attempt to meet the Advisory Council

for Aviation Research and innovation in Europe (ACARE) 2020 requirements. The key

requirements related to engine performance and emissions include a reduction of 15 to

20% in specific fuel consumption, reduce NO2 by 60 to 80 % and to reduce noise by 10

dB per operation1.

One of the initiatives to achieve the ACARE 2020 goals is the formation of the Clean

Sky Joint Technology Initiative (JTI) - a e1.6 billion European research programme.

A specific part of Clean Sky is the Sustainable and Green Engines (SAGE) Integrated

Technology Demonstrator (ITD) which has on objective for the open rotor to fly by

20192.

The open rotor was first considered seriously in the late 1970s and early 1980s after the

1973 Oil Crisis led the cost of fuel to rise considerably3. Open rotors achieve higher

propulsive efficiencies than a standard advanced propeller by using a second row of

blades downstream which rotates in the opposite direction.

The advantage of this second blade row is that it recovers the axial velocity lost due to

the swirl in the flow. The disadvantage of this system is the occurrence of aerodynamic

interactions between the front and rear blade rows which generates tonal noise. A major

source of these interactions is the front rotor tip vortex interacting with the rear blade

row. The presence of the front rotor tip vortex results in the aft blade operating in an

unsteady distorted flowfield which causes interaction noise. The interaction mechanism

of the front rotor tip vortex with the rear rotor is depicted in Figure 1.1.

1
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Figure 1.1: Tip vortex interaction mechanism adapted from4

An analytical method for predicting the noise due to tip vortex interaction exists5 and

is included in the open rotor noise prediction code CRPFAN. The analytical method re-

quires a description of the tip vortex size, strength and location. CRPFAN acquires this

information from empirical data derived from standard fixed wing cascade experiments6.

The validity of this cascade data to predict the tip vortex of an open rotor is questionable.

In Figure 1.2 CRPFAN is compared against anechoic wind tunnel data for the Unducted

Fan (UDF) blading at a take off condition. The sound pressure level (SPL) directivity

is presented for a two-one interaction tone. The directivity is based on the observer

angle defined in Figure 1.3 and a two-one interaction tone means the frequency is twice

the front rotor blade passing frequency (BPF) plus once times the rear rotor blade

passing frequency. The measured anechoic wind tunnel data is compared to CRPFAN

predictions, where CRPFAN is used in two modes. The first mode is CRPFAN in its

default operation with the tip vortex model included and the second mode excludes the

tip vortex model in the interaction noise calculation. The CRPFAN tip vortex model

under predicts the noise produced by the tip vortex - especially at the higher observer

angles.
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Figure 1.2: SPL directivity for 2-1 interaction of the UDF at take off5

Figure 1.3: Definition of observer angle

The reason for the discrepancy between the experimental data and the CRPFAN cal-

culation can be attributed to in-accuracies in the tip vortex model which is based on

fixed wing cascade measurements from a limited set of data. But how essential is it to

improve the current state of the art of open rotor tip vortex modelling for the application

to preliminary design noise prediction codes?

The open rotor research and development came to a halt in the 1990s. Since the open

rotor has been reconsidered the interaction noise issue has been further investigated.

Modern computer power has led to the use of computational aeroacoustics (CAA) to

calculate open rotor noise. CAA was used by7 to examine the importance of the in-

dividual noise sources and showed the importance of the tip vortex interaction noise
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relative to rotor alone and wake interaction sources. CAA is a powerful tool to predict

open rotor noise, but its current turnaround time inhibits its applicability as a basic

preliminary design tool.

This means that the development of noise prediction codes is still important, CRPFAN is

used in8 to evaluate the acoustic benefits of novel combinations of propeller re-pitch and

rotational speeds. The capability of a noise prediction method to calculate tip vortex

interaction noise is dependent on the sophistication of the vortex model used. Recent

attempts to address this issue include9 who compared the acoustic effect of using the

standard CRPFAN vortex modelled developed in10 and a helical line vortex developed

in11.

The vortex model selected will require a method to predict its parameters such as the

vortex size and strength. This thesis presents suggestions for the most suitable tip vortex

model and the development of semi-empirical correlations using validated 3-D CFD on

open source advance propeller geometries. The tip vortex model and accompanying

correlations can then be integrated into a preliminary design noise prediction code such

as CRPFAN without the need to use a crude vortex model and correlations developed

using cascade tests.
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1.1 Thesis Structure

The thesis begins by introducing the topic in Chapter 1 which is followed by Chapter 2

which defines the aims, objectives, novelty and shows the project structure via the

project road map. Chapter 3 is the literature review which presents the current state of

the art with regard to open rotor tip vortex modelling and includes some key definitions,

methodologies and concepts which are used in subsequent chapters.

Chapter 4 is a description of the CRPFAN methodology and its verification and valida-

tion in order to justify its inclusion as a suitable aeroacoustic tool within the project.

CRPFAN is then used as a tool in Chapter 5 to quantify the effect that different tip

vortex modelling approaches has on the interaction noise and highlights the tip vortex

as a key noise source.

The methodology used to create a CFD model and how it will be used to develop a set of

bespoke tip vortex correlations is then explained in Chapter 6. This methodology is then

utilised in the Analysis and Synthesis of Chapter 7 which forms the key component of

thesis and includes the development of the tip vortex correlations and their integration

into CPRFAN. Also included in Chapter 7 are recommended approaches to model an

open rotor tip vortex for predicting interaction noise, and a quantitative analysis of the

importance of the input aerodynamic methodology when predicting open rotor noise.

The key findings and conclusions are summarised in Chapter 8 followed by Chapter 9

which suggests future work which can be used to address the deficiencies present in this

research project.





Chapter 2

Project Scope and Rationale

Chapter 2 outlines the key aim, objectives and research questions to be answered in the

project. Also included is a statement of the novelty of the work and a road map to

show how the different packages of research knit together to achieve the key aim of the

project.

2.1 Aim

The aim of the research is to improve the current state of the art of open rotor tip vortex

modelling for the application to interaction noise prediction methods.

2.2 Objectives

In order to meet the key aim of the research a set of defined objectives need to be

achieved. These objectives are listed below:

• Justify requirement for improved vortex modelling

• Set of correlations which can be used to predict Γ, rc, Vθ and n for a range of

geometries and operating conditions

• Quantify difference between bespoke correlations and the original CRPFAN cor-

relations for the tip vortex parameters for a given geometry and conditions

• Provide recommended approaches to model the tip vortex most appropriately

7
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2.3 Research questions

• Does the propeller shape affect the tip vortex parameters?

• Can a Vatistas vortex model be used to describe the tip vortex of an open rotor?

• How does the geometry and loading conditions of the propeller affect the tip vortex

parameters?

• Does the spatial orientation of the tip vortex relative to the aft rotor have an effect

on the interaction noise?

• What is the nature of vortex axial velocity component is it ‘wake-like’ or ‘jet-like’?

• How important is the source aerodynamic methodology for aeroacoustic open rotor

noise prediction tools?

2.4 Novelty

The novel aspect of this project is the examination of the effects of tip vortex parameters

on open rotor interaction noise and the development of bespoke correlations to predict

the tip vortex parameters and improved modelling techniques suggestions.

2.5 Roadmap

The outline of the project is summarised in the project road map in Figure 2.1. The

research is categorised into three different modules which all combine to form a final

improved version of CRPFAN. The first module is the vortex modelling importance

which involves quantifying different tip vortex modelling factors on the interaction noise.

The second module is the use of CFD to to generate tip vortex flowfield data in order to

develop the tip vortex correlations. The third module involves coupling CRPFAN with

a strip theory aerodynamics code to make CRPFAN easier to use and more accessible.
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Figure 2.1: Project Road map

2.6 Key Milestones

Below is a list of the four key milestones in the project:

• Validation and verification of CRPFAN so it can be used as an appropriate tool

• Use of CRPFAN to be able to quantify the effect of tip vortex modelling on open

rotor interaction noise

• Development and validation of a CFD model to extract the key flowfield features

and tip vortex parameters

• The development of bespoke tip vortex correlations and their integration into CRP-

FAN to quantify their impact on interaction noise relative to the current state of

the art





Chapter 3

Literature Review

Chapter 3 is a review of the current state of the art of open rotor tip vortex interaction

noise prediction methods. Included in this chapter is why the open rotor is an important

concept for greener aviation, the contribution of tip vortex interaction to open rotor noise

and what methods and models currently exist to predict these interactions.

3.1 Why the open rotor?

The open rotor is currently being re-considered as an alternative to the high by-pass

turbofan engine for medium sized aircraft in an attempt to meet the Advisory Council

for Aviation Research and innovation in Europe (ACARE) 2020 requirements.

The propulsive efficiency can be improved through the use of propellers instead of tur-

bofans, they are more efficient because they accelerate a large volume of air by a small

amount relative to the turbofan which accelerates a smaller volume of air by a greater

amount. From Equation 3.1 where, VJ , is the velocity of the jet being accelerated and,

Vaircraft, is the flight velocity of the aircraft, the propulsive efficiency, ηpropulsive, is

inversely proportional to the jet velocity at given flight speed12.

ηpropulsive =
2

1 + VJ
Vaircraft

(3.1)

One solution would be to improve the by-pass ratio of a turbofan engine to achieve an

improved specific fuel consumption, however, as the bypass ratio increases, so does the

mass and drag of the nacelle which effectively limits the maximum fuel saving of an

increased by-pass ratio.

Therefore, for a step change in efficiency an unducted propeller is advantageous, but the

propulsive efficiency of a propeller drops rapidly after aircraft Mach numbers beyond

11
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0.6 due to compressibility effects at the tip12. This effect can be reduced by using

advanced propellers which have high blade numbers, thin airfoil sections - especially at

the tip and are swept relative to a conventional propeller13. An improved propulsive

efficiency is achieved with the use of a second row of blades downstream which rotate

in the opposite direction. The advantage of this second blade row is that it recovers the

thrust contributing axial velocity lost due to the swirl in the flow. This configuration was

termed the propfan. The evolution of propeller planform shapes designed for standard

low speed flight, to advanced propellers to the propfan is shown in Figure 3.1.

(a) Low speed propeller (b) High speed propeller

(c) Propfan

Figure 3.1: Propeller design evolution for high speed flows14

The term propfan, counter-rotating propeller, open rotor are all interchangeable, but

the term open rotor will be used throughout to avoid confusion. The open rotor was

first considered seriously in the late 1970s and early 1980s after the 1973 Oil Crisis led

the cost of fuel to rise considerably3.

Two technology demonstration engines were built and tested in the 1980s. Firstly, The

direct drive General Electric 36 Unducted Fan Engine (GE-36 UDF) a NASA funded
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project developed from 1983 to 1989 which completed a combined total of 500 hours of

test flight on a modified McDonnell Douglas MD-80 shown in Figure 3.2 and a Boeing

7275 shown in Figure 3.3.

Figure 3.2: GE-36 UDF technology demonstration mounted on a modified MD-8015

Figure 3.3: UDF engine on a Boeing 72715

The second demonstration engine was the geared Pratt & Whitney 578 DX developed

with Allison Engine Company and Hamilton Standard from 1985 to 1989 shown in

Figure 3.4. It completed 20 hours of flight on a modified MD-80 aircraft15.

Figure 3.4: Pratt & Whitney 578 DX developed with Allison Engine Company and
Hamilton Standard15
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Both the UDF and 578 DX projects were terminated by the end of the 1980’s, key

factors attributed to this include the stabilised price of oil and the noise levels of the

open rotor. The significance of the flight testing is that it proved the open rotor is a

viable and implementable alternative propulsion method. The current industry target

set by Clean Sky SAGE 1 is for an open rotor powered aircraft to fly by 2019.

3.2 Open rotor noise fundamentals

Section 3.2 gives an overview to the noise generated by a propeller in general and more

specifically an open rotor.

3.2.1 Fundamental Acoustics

Firstly an overview of fundamental acoustics so the reader is familiar with the relevant

terms and concepts when presented later in the thesis.

Monopoles, Dipoles and Quadrupoles

In acoustics a source for example a propeller creates a disturbance which is propagated

through a medium such as air which reaches a receiver e.g. the human ear. The source

term can be classified as a function of its directivity. The directivity of sound pressure

refers to the manner in which the measured or predicted sound pressure, at a fixed

distance from a source varies with angular position16. The nature of the directivity

pattern determines whether the source is a monopole, dipole or quadrupole which are

important in propeller noise and will be defined here.

Monopole

A monopole radiates equally in all directions. Any sound source whose dimensions are

much smaller than the wavelength of the sound being radiated will act as a monopole16.

An example of a simple monopole is a pulsating sphere.

Dipole

A dipole consists of two monopoles of equal source strength, but opposite phase and

separated by a small distance. There is no net introduction of fluid by a dipole. As one

source exhales, the other sources inhales and the fluid surrounding the dipole sloshes

back and forth between the sources. A physical analogy for a dipole is two balloons a

short distance apart, as one deflates exhausting its mass flux the other inhales the flux.

The net force on the fluid causes energy to be radiated in the form of sound waves. A

dipole consists of two monopoles but does not radiate pressure equally in all directions.

Instead, it has the characteristic of maxima along the 0 and 180 degree directions and

no sound radiated along the 90 and 270 degree directions. The directivity patterns are

illustrated in Figure 3.5.
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Quadrupole

A quadrupole source is two identical dipoles with opposite phase and separated by a

small distance. They are often referred to as being non-linear.

Figure 3.5: Directivity patterns for (a) monopole (b) dipole (c) lateral quadrupole
and (d) longitudinal quadrupole16

3.2.2 Propeller noise

Propeller noise is often laden into three categories harmonic, broadband and narrow-

band noise. The most important in this area of study is harmonic and hence will be

the focus of most attention. By definition the noise generation from acoustic pressure

propagation is an unsteady phenomenon, however Gutin17 recognised that a moving

body such as a propeller can be in a steady flowfield and induce noise. Propellers can

produce noise from steady sources, they appear constant in time to an observer on the

rotating blade and the noise is periodic due to the rotation of the blade. This noise is

harmonic with the fundamental tone occurring at blade passing frequency (BPF). Steady

propeller noise characteristics are shown in Figure 3.6 in both the time and frequency

domain.
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(a) Time domain

(b) Frequency domain

Figure 3.6: Propeller rotational noise characteristics in the time and frequency domain
adapted from14

The two key sources of steady propeller noise, which occurs at multiples of BPF are

thickness noise and loading noise.

Thickness Noise

Thickness noise is generated from the transverse periodic displacement of the air by

the volume of a passing blade element14. The amplitude of a thickness noise source is

proportional to the volume of the blade and the frequency characteristics a function of

the aerofoil design and rotational speed. Thickness noise is a monopole source and its

effect becomes important at high speed for example at cruise. This noise source can be

abated by using thin blade sections and a planform sweep14.

Loading Noise

Loading noise is generated by the lift and drag (and thrust and torque) force components

derived from the propeller pressure field and propeller motion. The pressure disturbance
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is then propagated as a noise source. Loading noise is a dipole source and becomes

important at low to moderate speeds14.

Figure 3.7 illustrates a typical directivity pattern for thickness noise (solid line) and

loading noise (dashed line). The observer angle, is the angle of the observer relative to

the flight axis, where 90 degrees is in the plane of the propeller.

Figure 3.7: Thickness (solid line) and loading noise (dashed) directivity18

The thickness distribution represents a monopole directivity and peaks in the plane of

the propeller, the loading noise demonstrates a dipole interference in the frontal lobe due

to thrust and torque interaction, loading noise peaks rearward of the propeller plane18.

Both sources are locked to the blade and are cut off at the low and high directivity

angles as result.

3.2.3 Open rotor noise

The addition of an aft blade row rotating in a direction opposite to the front row has pos-

itive aerodynamic benefits. However, it gives rise to additional, unsteady noise sources,

which contribute heavily to the open rotor having an undesirable acoustic signature.

Figure 3.8 shows the additional noise generated by a counter-rotating system relative to

a standard single rotation propeller.
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Figure 3.8: Noise spectrum for a single advanced propeller (a) and a counter-rotating
advanced propellers such as in the open rotor (b)14

Unsteady noise sources are time dependent in the rotating-blade reference frame and

include periodic and random variation of loading on the blades14. Periodic unsteady-

loading noise occurs at harmonics of blade passing frequency. They are particularly

important at low speeds such as at take off.

Sources of unsteady noise

These sources include interaction of the front rotor wake and tip vortex with the rear

rotor and potential field interaction between the two blade rows.

A diagram of the key noise generating mechanisms is shown in Figure 3.9:
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Figure 3.9: Open rotor noise sources adapted from19

Wake and Tip Vortex Effects

Tip vortices and wakes induced by the front rotor convect downstream and impact on the

rear blade rows. The resulting flowfield can be highly complex consisting of downwash

onto the blades and velocity defects due to the drag of the blade. This decreased

magnitude in the velocity can change the angle of incidence onto the aft blade.

Potential Field Effects

The front and aft blade rows are both lift generating airfoils. Therefore a differential

pressure distribution is present around each blade volume. The static pressure distribu-

tion is referred to as the potential field. It is often modelled that the presence of the

aft blade row has no effect on the front blade static pressure field- such as in CRPFAN.

This is not strictly true and the static pressure field from the front row will affect the

aft and vice versa.

These unsteady effects occur at integer multiples of the fundamental harmonic of the

front and aft blade passing frequency and are known as interaction tones. Figure 3.10

shows a typical acoustic spectrum of an open rotor, with the interaction tones occurring

at harmonics of the blade passing frequency.
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Figure 3.10: General acoustic spectrum of an openr rotor20

3.3 Aeroacoustic analysis of Open rotor tip vortex inter-

action noise

Section 3.3 presents the different methodologies which can be used to predict the noise

generated by an open rotor, with particular focus on tip vortex interaction noise. The

different methods include analytical tools such as CRPFAN, unsteady CFD coupled to

Computational Aeroacoustics (CAA), full Computational Aeroacoustics, anechoic wind

tunnel testing and full scale flight testing. Table 3.1 compares the relative fidelity and

cost of each method.

Method Cost Fidelity

Analytical tools low Low

Coupled CFD/CAA Medium Medium

CAA Medium Medium

Anechoic tunnel testing High High

Flight testing Very High Very High

Table 3.1: Cost and fidelity of aeroacoustic prediction methods
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Analytical methods take the least time to implement and require the lowest overhead,

however this convenience is compromised by lower fidelity in terms of acoustic accuracy.

The study by Majjigi10 combined anechoic wind tunnel testing with the analytical tool

CRPFAN to investigate tip vortex interaction noise. Low speed tests at a take off Mach

number of 0.2 were conducted in the GE Cell 41 tunnel on the F7-A7 geometry with

9 front and 8 aft blades. The effects of vortex radial and tangential location, strength

(circulation) and clipping of the aft rotor were investigated.

The purpose of clipping the aft rotor is to try minimise or avoid any interaction of the

tip vortex with aft blade - hence removing it as a noise source. The disadvantage is that

less thrust is provided by the open rotor through two mechanisms, firstly, clipping the

aft rotor will mean the aft rotor will provide less thrust providing there is no increase

in chord , setting angle or rotational velocity and secondly there is less of the aft blade

to convert the residual swirl from the front rotor wake into a thrust generating velocity

component.

With reference to Figure 3.11, with the aft rotor clipped by 25 % span the measured data

in Cell 41 shows a reduction of 10 dB in the aft lobe and roughly 5 dB in the plane of the

propeller on the interaction tone sum. For the case with no aft clipping the CRPFAN

calculation is within 2-3 dBs of the measured data at most directivity angles. However,

when the aft rotor is clipped by 25 % CRPFAN under predicts the measured data by 8-

10 dBs over most observer angles. This could be due to an inaccurate trajectory model

under predicting the streamtube radial contraction and hence less vortex interaction

with the aft blade. The effect of including the vortex model option within CRPFAN is

also shown, the exclusion of the tip vortex and purely relying on the wake results in a

difference of over 20 dBs with the nominal aft rotor and 10 dB with the 25 % cropped

aft rotor.
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Figure 3.11: Effect of clipping aft blade on interaction tone sum10

The strength of the tip vortex was investigated by increasing a scalable parameter, Ci,

defined in Equation 3.39 , values of Ci equal to one, two and three were used to control

the strength of the tip vortex. The strength of the tip vortex contributed up to 13 dB

to the interaction tone sum - the effect of the parameter is omnidirectional with regards

to the directivity pattern and not confined to a specific lobe.

The tangential location of the vortex which defines the location of the vortex centre

relative to the two adjacent blades has no appreciable effect on the interaction tone

sum. The radial location of the tip vortex had a small effect on the interaction noise

under the standard configuration, but its effect becomes more significant when clipping

the aft rotor.

The details of the tip vortex models and correlations used in CRPFAN within the study

are examined in Section 3.5.3.

Peters and Spakovsky7 investigated the relative weight of each interaction tone mech-

anism to the overall noise on a baseline open rotor and used the results to modify the

geometry for reduced interaction noise. The method involved using unsteady 3-D RANS

to determine the unsteady blade pressures which were Fourier Transformed into the fre-

quency domain and used to obtain the interaction noise based on Hansons method21.

The methodology used is summarised in Figure 3.12.
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Figure 3.12: Open rotor noise prediction methodology used by7

The baseline design was based on assuming a NACA65A008 thickness distribution and

circular arc camber lines. The interaction tones were dissected into four components,

1), the upstream influence of the aft rotor potential field on the front rotor, 2), the

front rotor tip vortex interaction with aft blade, 3), front rotor wake with aft blade and,

4), the front rotor hub wake and boundary layer with the aft rotor. The mean SPL

contributions for the six interaction tones at a take off Mach number of 0.25 with the

baseline design are shown in Figure 3.13.

Figure 3.13: Contributing sources to aerodynamic interaction noise for baseline ge-
ometry used in7
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It was observed that the tip vortex effects were most prominent at multiples of the rear

rotor e.g. at BPF1+2BPF2 and BPF1 + 3BPF2 while upstream effects due to the aft

rotor potential field are dominant at multiples of the front rotor at interaction tones of

2BPF1+BPF2 and 3BPF1+BPF2. The baseline geometry was re-designed to reduce

the interaction noise . The new design included an increased axial blade row spacing of

0.35 from 0.224 (x/D1) where x is the axial ordinate and D1 is the front rotor diameter

, rear rotor clipped by 25 %, and increased aft blade count from 8 to 11 with a reduced

rear rotor rpm to maintain thrust settings of the baseline design. The effect of a clipped

aft blade row is noticeable in Figure 3.14 which highlights two key things, firstly the

apparent decay of the tip vortex and wake with axial distance and secondly the reduced

interaction of the aft blade row with the tip vortex core.

Figure 3.14: Contours of density for modified geometry with cropped aft rotor to
minimise tip vortex interaction7

The relative contributions of each of the four key interaction mechanisms were assessed

for the modified geometry as shown in Figure 3.15. The tip vortex was almost eliminated

as a noise source. However potential field interactions were increased due to the higher

aft blade count.
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Figure 3.15: Contributing sources to aerodynamic interaction noise for modified ge-
ometry used in7

Overall the redesigned geometry resulted in an average reduction of over 7 dB in mean

SPL over the measured directivity angles. Based on a FAR 36 flyover condition the new

design achieved reductions of up to 9.2 EPNdB at the sideline location compared to

the baseline configuration. The increased rotor spacing and cropping of the aft blade

resulted in a sacrifice to the propulsive efficiency however.

Woodward and Gordon22 measured the effect of cropping the aft rotor in the NASA

Lewis 9 by 15 ft Anechoic Wind Tunnel at Takeoff/Approach representative conditions

of Mach 0.2. Two geometries were used the F7/A7 and the F7/A3 in an 11 front by 9

aft rotor configuration. The propeller planform shape for both geometries are shown in

Figure 3.16.

Figure 3.16: F7 -A7 and F7-A3 configuration profiles22

The A3 has a reduced diameter of 25% relative to the A7. The comparisons were made

at two different blade spacings a minimum spacing of x/D of 0.14 and maximum of 0.24.

At the maximum spacing of 0.24 the F7/A3 had relative to the F7/A7 a maximum
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reduction of 20 dB for the 1F + 1A tone and 10 dB for 2F + 1A tone. For the minimum

spacing of 0.14 the differences reduced to 8 dB for 1F+1A tone and 6 dB for the 2F+1A

tone.

The success of cropping aft blade is greater for larger blade spacings because the tip

vortex has more time to contract and has less interaction with the aft rotor. Woodward

and Gordon22 also investigated the effect of blade spacing for F7/A7 and F7/A3 inde-

pendently. With reference to Figure 3.17 the F7/A3 interaction noise was more sensitive

to changes in axial spacing with a 14 dB reduction for 1F+1A tone and 16 dB reduction

for 2F+1A tone with increased spacing. The reduction with axial spacing for the F7/A7

was roughly 8 dB for both interactions tones.

Figure 3.17: Effect of axial rotor spacing on F7/A7 and F7/A3 adapted from22

The F7/A3 was more sensitive to the axial spacing because the interaction noise is wake

dominant with the clipped aft rotor, and the wake is considered to decay axially quicker

than the tip vortex22.

Dittmar20 conducted a similar study but in the NASA Lewis 8 by 6 ft tunnel on the

F7-A7 geometry at Cruise representative Mach numbers of 0.72, 0.76 and 0.8 for three

spacing between pitch axis of 0.14, 0.17 and 0.24 x/D. At a Mach number of 0.8 there

was a maximum of 8 dB noise reduction between the close condition at 0.14 and far

condition at 0.24 x/D. For the lower Mach numbers of 0.76 and 0.7, increasing the axial

spacing increased the interaction noise.

The mechanism is depicted in Figure 3.18, at a constant rpm and blade setting angle, a

reduction in axial Mach number will generate more thrust which induces more stream-

tube contraction due to continuity. The A7 blade is set slightly lower than the F7, at
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a Mach number of 0.8 the tip vortex contraction is not enough to interact with the aft

blade, therefore the reduction in interaction noise is due to reduced wake strength.

Figure 3.18: Effect of Mach number on tip vortex location at Cruise speeds20

At Mach 0.76 and 0.72, the thrust was greater which generated more streamtube con-

traction, therefore increasing the blade spacing meant more of the vortex was interacting

with the aft blade row - which had the net effect of an increase in interaction noise.

Optimising propeller relative air angle

Zachariadis et al8 investigated the concept of ‘Re-Pitch’ where the incidence (relative

air angle) onto the blade is reduced by decreasing blade setting angle and increasing

rpm to maintain the same power and thrust. The study used a combination of anechoic

rig data, steady state CFD and CRPFAN. The geometry used was the straight bladed

Rolls Royce Rig-140 at Mach numbers of 0.75 and 0.25.

To asses the validity of using CRPFAN to quantify the effect of Re-Pitch on the inter-

action noise, CRPFAN results were compared against the measured rig data for Rig 140

at take off conditions. The results for this are shown in Figure 3.19.
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(a) Rotor alone tones

(b) Interaction tones

Figure 3.19: Comparison between CRPFAN and Rig measurements for the RIG 140
propeller blade8

CRPFAN under predicts the rotor alone tones in the very near field, but has good

agreement in the moderate near field, the very near field discrepancy explained by a lack

of detailed aerodynamic input to CRPFAN. The prediction for the interaction tones in

the very near field is better because the near fields effects tend to decay with increasing

frequency8.

The motivation to reduce the incidence on the blade is highlighted in Figure 3.20 which

shows contours of entropy and highlights the highly three-dimensional nature of the

flowfield at a take off conditions where the incidence is greatest. The flow separates at

around 55 % span and rolls up to form a leading edge vortex (LEV), the LEV and tip
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vortex combine to form a large vortical structure which contributes to loss in efficiency

of the rotor.

Figure 3.20: Aerodynamic interactions and 3D flowfield highlighted using contours
of entropy8

Steady state RANS CFD simulations were conducted on the front rotor to optimise the

use of ’Re-Pitch’, with the aim of getting the lowest incidence on the blade but maintain-

ing the same thrust. The aerodynamic effect of ’Re-Pitch’ is shown in Figure 3.21 which

shows a reduction in the tip leakage flow, due to a reduced LEV which is attributed to

a reduced incidence onto the blade.

Figure 3.21: Plots of entropy for RIG 140 blade highlighting effect of ‘Re-Pitch’8

The acoustic benefit of ’Re-Pitch’ is shown in Figure 3.22, which is an output of a

CRPFAN calculation where the input was the rotor radial lift and drag coefficients

combined with tip vortex trajectory information extracted from the CFD.
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Figure 3.22: Aeroacoustic benefit of ’Re-Pitch’ on 1F+1A interaction tone8

The optimum angle for reduced interaction noise is -8 ◦, this is because at higher ‘Re-

Pitch’ angles, the adjusted rpm results in the formation of shock waves and increased

rotor alone tones due to the higher relative Mach number. However, with a modest

’Re-Pitch’ angle the noise reduction was up to 18 dBA.

3.4 Tip vortex modelling

Up till now there has been a focus on the significant role tip vortices have in CROR

interaction noise but no exact description of what a vortex is and how they can be

modelled. Section 3.4 presents the fundamental definitions and concepts used to describe

a vortex, some of the key analytical tip vortex models used to describe a tip vortex

including the one used in CRPFAN and finally some methods which are used to predict

the tip vortex parameters.

3.4.1 Vorticity fundamentals

The exact definition of a tip vortex can be a contentious issue, for example Haller23

proposes an objective definition of a vortex as “a set of fluid trajectories along which

the strain acceleration tensor is indefinite over directions of zero strain”. However the

definition of a vortex by Anderson24 is a flow which is highly tangential, this can be

disputed because you can have a highly tangential flow which has no vorticity but still

described as a vortex!
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Therefore, for the sake of simplicity lets start with an objective definition of vorticity.

Vorticity is defined mathematically as the the curl of the velocity vector, ~V , as shown

in Equation 3.2. Physically vorticity is proportional to the rate of rotation of a fluid

element about its own axes and is twice the angular velocity for a vortex which acts like

a body of solid rotation25.

ω = O× ~V (3.2)

The curl of a three dimensional velocity vector, ~V , in a Cartesian coordinate system is

expressed in Equation 3.3 and by definition the vorticity is independent of its coordinate

system and is thus said to be a Galilean invariant.

ω = O× ~V = i

(
dw

dy
− dv

dz

)
+ j

(
du

dz
− dw

dx

)
+ k

(
dv

dx
− du

dy

)
(3.3)

The vorticity, ω, in the streamwise direction, z,is defined in Cartesian coordinates in

Equation 3.4 and in polar in Equation 3.5. Where u and v are the horizontal and

vertical components of velocity in Cartesian. Vθ and Vr are the tangential and radial

velocity components respectively in a polar coordinate system where r is the radial

distance from the tip vortex centre in a vortex local coordinate frame.

ωz =

(
dv

dx
− du

dy

)
(3.4)

ωz =
1

r

(
∂(rVθ)

∂r
− ∂Vr

∂θ

)
(3.5)

An important mathematical concept related to vorticity is the fluid circulation, Γ. With

reference to Figure 3.23, for a closed curve, C, the circulation is the line integral of the

velocity, ~V , around it as shown in Equation 3.626.

Figure 3.23: Closed curve ‘C’ to illustrate definition of Circulation adapted from24
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Γ =

∮
~V ~ds (3.6)

Importantly, the circulation can be calculated from the area integral of vorticity. For

example consider the streamwise vorticity, ωz, and combining Equations 3.4 and 3.6

the circulation can be easily calculated from the scalar integration of the streamwise

vorticity. This is the calculation used in post processing the CFD results and is described

in Section 6.7 of Chapter 6 the CFD Methodology.

Γ =

∮
~V ~ds =

∫ ∫
O× ~V dA =

∫ ∫
ωzdA =

∫ ∫ (
dv

dx
− du

dy

)
dxdy (3.7)

The strength of a vortex is often defined by its circulation which is one of the reasons

circulation is such an important parameter when dealing with vortices. Additional

importance arises because of Kelvins’s circulation theorem and the Helmholtz vortex

laws which are crucial in the description and behaviour of tip vortices24. First define

a vortex line as a line that is tangent to the local vorticity vector. This is the same

definition as a streamline but interchanging vorticity and velocity. A vortex tube is

then a collection of vortex lines connected in space analogous to a streamtube using

the streamline analogy. An illustration of a vortex line and vortex tube is shown in

Figure 3.24. With reference to Figure 3.24 Kelvin’s Circulation theorem states that the

circulation between S1 and S2 will be constant and independent of time for a barotropic

and inviscid flow. An important consequence of Kelvin’s theorem is that circulation is

not present for flows which originally have no vorticity.

Figure 3.24: Illustration of a vortex line and vortex tubes25

The Helmholtz’s vortex laws are defined by Shapiro26 as:

1. “Vortex lines never end in the fluid. They either form closed loops or end at a fluid

boundary, and the circulation is the same for every contour enclosing the vortex

line”

2. “A fluid which at any instant of time coincides with a vortex line will coincide with

a vortex line forever”
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3. “If the vortex line is stretched, the vorticity increases”.

The third law is akin to the conservation of angular momentum and is illustrated in

Figure 3.25 where the axial stretching of a solid body increases its angular velocity, this

is analogous to the vorticity increasing if a vortex line is axially stretched.

Figure 3.25: Vortex stretching through conservation of angular momentum27

3.4.2 Vortex models

Section 3.4.2 evaluates the different tip vortex models used to describe a tip vortex. In

this context the tip vortex model means the mathematical description of the tangential

velocity, Vθ, as a function of radial distance from the vortex centre. This does extend to

the radial velocity, Vr, and axial velocity, Vx, components too. However, the simplest tip

vortex model such as the Rankine only describes the tangential velocity component of

the vortex28. More sophisticated models such as a Vatistas type also have descriptions

for the Vr and Vz.

Rankine model

A simple tip vortex model is the Rankine type, where the vortex is separated into two

distinct regions inside and outside the vortex core. Where the vortex core size, rc, is

the radial distance from the centre of the vortex to the location of maximum tangential

velocity, Vθ. Inside the vortex core the tangential velocity is linear and acts like a

body of rotation and outside the vortex core the flow is irrotational and the tangential

velocity decreases hyperbolically with r−1. A schematic of a Rankine vortex is shown

in Figure 3.26 and the Equations set 3.8 which describe the radial tangential velocity

distribution.
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Figure 3.26: Typical tangential velocity distribution for a tip vortex adapted from29

Vθ(r̄) =

( ΓV
2πrc

)r̄ if 0 ≤ r̄ ≤ 1

( ΓV
2πrc

)r̄−1 if r̄ > 1
(3.8)

r̄ =
r

rc
(3.9)

At the interface between the two regions there exists a discontinuity which is where most

other vortex models differ from a Rankine type.

Lamb-Oseen Model

One model without this discontinuity is the Lamb-Oseen model described in its non-

dimensional form by Equation 3.10 which is an analytical solution to the laminar Navier-

Stokes equation in one dimension simplified for an axisymmetric tangential velocity and

based on the assumption that the radial and axial velocities are zero28.

Vθ(r̄) =
Γ

2πrc

(
1− e−αr̄2

r̄

)
(3.10)

The term α is the Oseen parameter and is equal to 1.25643.

Vatistas model

A Vatistas type vortex is derived from a series expansion of the Lamb-Oseen tip vortex

model. The tangential velocity, Vθ distribution is described by Equation 3.11, it is a
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function of the vortex strength Γ, the core size rc and shape factor n. Its useful property

is that these different parameters can be used to fit the distribution of a range of tip

vortices and the case where n is equal to two closely resembles the Lamb-Oseen vortex.

For the case where n is equal to one, the Scully vortex is formed and is often used in

helicopter aerodynamics28.

Vθ(r̄) =
Γ

2πrc

{
r̄

(1 + r̄2n)
1
n

}
(3.11)

Figure 3.27 presents the tangential velocity distributions for the Rankine, Lamb-Oseen

and Vatistas type vortex for three shape factors. As the shape factor increases the radial

distribution of tangential velocity tends to a more inviscid solution. A shape factor equal

to infinity represents the Rankine vortex with its noticeable discontinuity at the edge of

the vortex core.

Figure 3.27: Tangential Velocity distributions for different vortex models28

CRPFAN vortex model
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The CRPFAN vortex model uses an unwrapped annulus model as presented in30, this

theoretical model contains all the vorticity inside the vortex core region - outside of

this region the flow is irrotational. With reference to Figure 3.28 which shows the

unwrapped annulus coordinate system. The defining equations for the tip vortex velocity

components are different for inside and outside of the tip vortex core

Figure 3.28: Unwrapped annulus coordinate system adapted from10

Inside the tip vortex core:

ω =
Γvtx
2πr2

c

(3.12)

Vr = −ωr sinα (3.13)

Vθ = ωr cosα (3.14)

r =
{

(x− bt)2 + (y − br − t)2
}0.5

(3.15)

α = tan−1

[
y − br − τ
x− bt

]
(3.16)

Outside of vortex core:

Vθ = −Γvtx
2S

[
sinhM

coshM − cosP
− sinhN

coshN − cosP

]
(3.17)

Vr = −Γvtx
2S

[
sin p

coshM − cosP
− sin p

coshN − cosP

]
(3.18)

M =
2π

S
(y − br − τ) (3.19)

N =
2π

S
(y + br − τ) (3.20)
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P =
2π

S
(x− bt) (3.21)

Kingan and Self9 investigated the acoustic effect of using two different types of vortex

models using analytical methods - similar to CRPFAN. The first type of vortex model

is a two-dimensional piecewise linear model similar to that of Majjigi et al10 in that it

uses an unwrapped annulus model based on the work of Lamb30 and has a solid bold

of rotation model inside the vortex core and irrotational model outside. The coordinate

system used is illustrated in Figure 3.29.

Figure 3.29: 2D vortex model system used by Kingan and Self9

The velocity component acting normal to the aft blade row, wn, inside the vortex core

is defined in Equation 3.22, outside of the core defined in Equation 3.23. Where α1 and

α2 are the front and rear blade row stagger angles resepctivley.

wn = −cos(α1 + α2)
Γvtx
2πr2

c

(r − a) (3.22)

wn = −cos(α1 + α2)
ΓvtxB1

4πr cos(α1)

sinh(B1(r − a)/r cosα1)

cosh(B1(r − a)/r cosα1)− cos(B1φ1)
(3.23)

Where the distance to a point a in the vortex, rv, is defined in Equation 3.24 and, a, is

the vortex radius:

rv =
[
(r − a)2 + (rφ1 cosα1)2

]0.5
(3.24)
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The second model approximates the tip vortex using a left hand helical vortex tube of

infinite extent of the type11 as represented in Figure 3.30.

Figure 3.30: Rigid core helix vortex model of type11 used by Kingan and Self9

The aeroacoustic effect of using the helical vortex model instead of the simple 2D model

is a nearly 10 dB increase in the sound pressure level for 1F+1A interaction. The effect of

the tip vortex has a significance effect on the noise relative to the wake, most noticeably

at observer angles furthers away from the propeller plane of rotation.

Figure 3.31: Directivity for 1F+1A interaction tone for helical vortex model(black),
2-D model (blue) and viscous wake (red)9
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3.5 Tip vortex prediction methods

Section 3.5 presents some of the methods which can be used to predict the tip vortex

parameters.

3.5.1 Lifting line theory to predict tip vortex strength

Lifting line theory is used as a tool for calculating the basic aerodynamic characteristics

of a finite fixed wing. It is built from the basis that lift is generated by a bound

vortex. However, due to the Helmholtzs laws of vorticity the bound vortex needs to be

accompanied by two trailing vortices extending to infinity known as a horseshoe vortex

system. This principle is shown in Figure 3.32.

Figure 3.32: Horse shoe vortex system adapted from24

This idea can be developed further to include the superposition of a finite number

of horseshoe vortices Figure 3.33. In Figure 3.33 three horseshoe vortices have been

superimposed where the root circulation is equal to the sum of the three contributing

circulation values. The strength of a trailing vortex is equal to the change in bound

circulation.
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Figure 3.33: Superimposition of trailed vortices24

In order to calculate the lift distribution as a function of free stream conditions and

bound circulation the Kutta-Joukowski theorem is used where the lift per unit span is

defined as:

dl ≈ ρU∞Γ (3.25)

Figure 3.34 represents the blade lift force (per unit span) discretised into finite sections

along the blade span. Each section contributes a sectional lift force dl (acting normal to

the page).

Figure 3.34: Blade lift force discritsed into differential segments
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The total lift force is the integral of the finite lift forces. Equation 3.26 expressed as a

function of bound circulation:

dl ≈ ρU∞
∫ s

−s
Γdy (3.26)

If the free stream conditions are known the only unknown in order to calculate the lift

distribution is the circulation. The method to determine the bound circulation is to

assume an elliptic distribution and represent it as a Fourier series24:

Γ = 4U∞s

∞∑
n=1

Ansin(nθ) (3.27)

The solution to the Fourier series is known as the monoplane equation:

πc

4s
(α− α0)sinθ =

∞∑
n=1

Ansin(nθ)[
πcn

4s
+ sinθ] (3.28)

Now all the variables are known the lift distribution can be calculated and represented

in the form of a lift coefficient by:

CL =
2

U∞s

∫ s

−s
Γdy (3.29)

Where:

y = scos(θ) (3.30)

This expression can be simplified to only a function of the aspect ratio and value of the

first Fourier coefficient, A1:

CL = ARπA1 (3.31)

The validity of representing the lift via a superposition of horseshoe vortices and the

subsequent derivation of the monoplane equation means the following assumptions need

to be acknowledged and adhered to:

• 3-D steady potential flow

• Incompressible
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• High aspect ratio

• Low sweep

3.5.2 Comparison of Lifting line theory to measured data for fixed

wing tip vortex strength

The strength of a trailing tip vortex is calculated using lifting line theory and compared

to wind tunnel measurements by Mason and Marchman31.

Mason and Marchman31 investigated the use of mass injection at the wingtip to hasten

the vortex decay and used static and yaw-head pressure probes to measure the vortex

properties at various location far downstream (up to 30 chords).

The test case conditions and airfoil geometry are presented in Table 3.2 for the semi-

span, s, blade chord, c, angle of attack, α, total lift coefficient, CL, freestream velocity,

U∞, and the Reynolds number for both velocities.

Property Value

Airfoil NACA 0012

s 1.2 m

c 0.2 m

α 7.5 ◦

CL 0.674

U∞ 22 & 31 m/s

Re 2.5 & 3.5 ∗ 105

Table 3.2: Parameters for experiment by Mason and Marchman31

The strength of a trailing vortex is equal to the change in bound circulation, it is assumed

that all the bound circulation is conserved into the trailing vortex.

The strength of the tip vortex is equal the change in bound circulation along the semi-

span which is equal to the circulation at the root minus the circulation at the tip as

shown in Equation 3.32. For an elliptic lift distribution this will be analogous to the

maximum minus the minimum value for circulation.

ΓT ipV ortex = Γroot − Γtip (3.32)

Table 3.3 compares the peak circulation measured by the experiments of Mason and

Marchman31 to the strength of a trailing vortex using Equation 3.32. The percentage

difference is defined with the measured data as the reference value.
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Case Lifting line Measured Percentage difference (%)

22 (m/s) 1.32 1.1620 -13.35

31 (m/s) 1.88 1.78 -5.3

Table 3.3: Comparison between lifting line and experiment for tip vortex circulation

The lifting line results over predict the vortex circulation this can be attributed to the

assumption that all the blade bound circulation is wrapped into the tip vortex and the

theory negating effects such as turbulent diffusion. The discrepancy is also greater for

the 22 m/s case where the vortex circulation was measured further upstream than the 31

m/s case, this could suggest that the vortex sheet had less roll up at the axial location

of the 22 m/s measurement plane.

Prediction methods for vortex core size

Young32 used a kinetic energy conservation approach to model the vortex core size in

the near wake of helicopter rotors in hover and axial flow flight. Young assumed that

the total power induced by the rotor, Pi, is equal to the kinetic energy, E, in the trailed

vortex filaments. For, N , number of vortices at a rotor tip speed of, VT , the induced

power, Pi, is expressed in Equation 3.33.

Pi = NEVT (3.33)

The kinetic energy per unit length of vortex ring, E, with a given tangential velocity,

Vθ, is defined in Equation 3.3432.

E =
ρΓ2

4π

{
ln

(
8R

rc

)
− 2 +

(
2π

Γ

)∫ 2rc

0
V 2
θ rdr

}
(3.34)

A Vatistas vortex model was prescribed by Young32 and substituted into Equation 3.34

to form Equation 3.35 which is configurable for any integer value of the shape factor, n.

E =
ρΓ2

4π

{
ln

(
8R

rc

)
− 2 +

∫ rc

0

r3

(r2n
c + r2n)2/n

dr

}
(3.35)

Combining Equations 3.35 with Equation 3.33 and momentum theory defined in32, for

an, n = 2, Vatistas vortex model, the vortex core size can be expressed as a function of

the rotor thrust coefficient, CT , rotor inflow ratio, λ, and rotor axial-flow advance ratio,

µ, as defined in Equation 3.36.

ln(
rc
R

) = ln 8− 1

4

{
8− ln 2 +

CT
λ2(µz + λ)

}
(3.36)
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The model is compared to existing helicopter vortex data in Figure 3.35 for a Scully

vortex, which is a Vatistas model with a shape factor of one and a Rankine type vortex

model for induced power constants, k, of 1.1 and 1.25.

Figure 3.35: Young32 model for vortex core size as a function of thrust compared to
existing helicopter near wake studies

Figure 3.36 compares the non-dimensional vortex core size, rc/R , effect of thrust coef-

ficient, CT for different Vatistas shape factors.

Figure 3.36: Effect of vortex profile shape factor on core size as a function of thrust32
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It suggests that as a tip vortex tends towards a Rankine type vortex its core size will

increase more with increasing thrust. However, that could be a by-product of the kinetic

energy conservation method applied in the analysis neglecting effects diffusion of the

vortex. Young32 did note that the shape factor effect is small compared to other factors

such as the rotor induced power and efficiency.

3.5.3 Tip vortex parameter correlations used in CRPFAN

The tip vortex parameters in CRPFAN and also used by9,8 are calculated using the

correlations developed by Majjigi et al10. The correlations are used to calculate the tip

vortex core size, rc, maximum tangential velocity, Vθmax , and circulation, Γvtx. Measured

vortex core size and peak tangential velocity from the cascade experiments on a NACA

0012 wing by33 and31 were combined to form linear rational functions which relate the

propeller operating conditions to the tip vortex parameters.

The correlation developed to calculate the vortex core size, rc, in Equation 3.37 is

formed from the non dimensional core radius, rc

c̄
√
C̄l

, measured at planes up to the 30

normalised streamwise distances, S
c̄ downstream shown in Figure 3.37. The overbars

represent properties averaged at the outer 30 % of the blade span.

Figure 3.37: Core size source data adapted from10
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The correlation is a linear rational function to form Equation 3.37 which is used in

CRPFAN.

rc

c̄
√
C̄l

=
0.01584(S/c̄) + 0.0014

0.184(S/c̄) + 1
(3.37)

The maximum tangential velocity, Vθmax , is normalised to, Vθmax/V0

√
C̄l, and plotted

as a function of normalised streamwise distance, S/c̄, shown in Figure 3.38 to form

Equation 3.38 which is used in CRPFAN.

Figure 3.38: Correlation for maximum tangential velocity used in CRPFAN

Vθmax

V0

√
C̄l

=
0.024(S/c̄) + 0.5586

0.0504(S/c̄) + 1
(3.38)

The tip vortex model assumes all the vorticity is confined to inside the vortex core, the

additional assumption of no vortex radial velocity component means the circulation can

be calculated through the radial integration of the peak tangential velocity within the

vortex the core as shown in Equation 3.39.

Γvtx = Ci2πVθmaxrc (3.39)
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To account for the correlations being derived from measured vortex characteristics down-

stream of a stationary NACA 0012 as opposed to a rotating propeller, a circulation

parameter, Ci, is used which linearly scales the circulation, Γvtx. A decay function ζ

is also included in an attempt to model the tip vortex circulation decay as it convects

downstream. The final equation for the circulation is shown in Equation 3.40

ΓV TX =
CiΓV TX

(1 + S/c̄)ζ
(3.40)

The same study in10 also included a correlation for the tip vortex radial location as a

function of axial distance which is integrated into CRPFAN. Schlieren visualisation of

vortices of a helicopter in hover mode combined to form the measured data in Figure 3.39.

Figure 3.39: Source data for tip vortex trajectory model used in CRPFAN

Where, Rvtx, is the tip vortex centre, Rtip, is the radial location of the blade tip and

Zvtx is an axial distance downstream of the the rotor plane of rotation. A linear ration

function of the same type used for the core size and peak tangential velocity is used as

shown in Equation 3.41.

Rvtx
Zvtx

=
12(Zvtx/Rtip) + 1

16(Zvtx/Rtip) + 1
(3.41)
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With reference to Figure 3.28 the vortex radial location, br, defined in Equation 3.42:

br = Rtip −Rvtx (3.42)

This definition can be substituted into Equation3.41 to form Equation 3.43:

br
Rtip

= 1− Rvtx
Zvtx

=
4(Zvtx/Rtip)

16(Zvtx/Rtip) + 1
(3.43)

An additional, scalable parameter, TV TI, is used to scale the radial location of the tip

vortex centre, this is introduced to account for the streamtube contraction as it changes

with thrust. Equation 3.44 is the radial trajectory model used within CRPFAN.

br
Rtip

=
TV TI(Zvtx/Rtip)

16(Zvtx/Rtip) + 1
(3.44)

3.6 Open rotor tip vortex investigation

Section 3.6 provides a summary of the key findings from investigations of the wake and

tip vortices downstream of a CROR and advanced turboprops that are of relevance to

this project. Table 3.4 is a summary of the literature reviewed, the geometry the investi-

gations are conducted on, the freestream Mach number of the experiments/computations

and finally the method of their flowfield attainment.

Author Geometry Freestream Mach No Method

Hanson and Patrick34 SR3 0.32 Hot wire anemometry

Serafini et al SR3 0.8 LDV

Tillman et al35 CRP-X1 0.25 Hot wire anemometry

Podboy and Krupar36 F4/A5 0.72 LDV

Simonich et al37 F4/A5 0.72 LDV

Lavrich et al38 CR-9 0.165 Hot wire anemometry

Tsai et al39 SR3 0.3 Parabolised Navier Stokes

Table 3.4: Summary of key advanced propeller tip vortex investigations

Flow surface visualisation techniques including the use of oil and mini-tufts on a swept

advanced propeller blade revealed a flow pattern similar to a delta wing where the flow

separates at the leading edge which rolls into a leading edge vortex on the suction side

of the blade. These flow features are evident in Figure 3.40.
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Figure 3.40: Flow visualisation on swept advanced propeller blade Vaczy40

The propeller vortex sheet wake, tip vortex and leading edge vortex start as separate

structures but as the flow evolves downstream these features roll up to form one vortical

structure. The roll up of the propeller vortex sheet and tip vortex is demonstrated

in Figure 3.41. Which shows phase averaged laser velocimetry measurements at two

planes downstream of the F4 propeller blade. The first plane is 85 % of the tip chord

downstream of the F4’s trailing edge while the second plane is 241%.
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Figure 3.41: Phase averaged velocities from Laser Velocimetry measurements down-
stream of F4 propeller36

The phenomena of vortex core bursting was also detected at high loading conditions

inside the leading edge vortex which has the effect introducing large levels of turbulence

which increases the tip vortex core size and decreases the maximum tangential velocity.

The vortex core size increases for take off relative to cruise because of the higher sectional

lift coefficients. Hot wire anemometry by Lavrich et al38 discovered a wake like velocity

deficit core 70 % of the freestream velocity.

3.7 Literature Review Summary

The open rotor is a viable, greener future alternative to the turbofan engine. However,

the additional noise generated due to the interaction of the front rotor tip vortices and

viscous wakes with the rear rotor is a problem for the open rotor’s advancement.

Chapter 3 presented published approaches to reduce the interaction noise such as de-

creasing the diameter of the rear blade and increasing the spacing of the blade rows. The

methods used included anechoic wind tunnel experiments, computational aeroacoustics,

CFD and lower order analytical tools such as CRPFAN. The methodologies to be used

in this project will include CFD to generate the open rotor flowfield with focus on the

tip vortices and the use of CRPFAN to quantify the acoustic impact of the tip vortex

parameters.
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Also included in Chapter 3 was a review of tip vortex theory and the current state of

the art for predicting the tip vortex parameters such as the ones included in CRPFAN.

The bespoke tip vortex correlations developed using CFD will be compared against the

current state of the art as well as assessing the applicability of lifting line theory to

predict the strength of an open rotor tip vortex.





Chapter 4

Aeroacoustic Methodology

Section 3.3 highlighted different methods of predicting open rotor tip vortex interaction

noise. At one end of the scale there is anechoic wind tunnel testing such as 41 which is

high fidelity, high cost and high lead times. The opposite end of the scale includes ana-

lytical tools which are lower in fidelity but the cost and lead time are also relatively low,

this makes noise prediction codes such as CRPFAN efficient tools during the preliminary

design stage.

This project is concerned with the development of any preliminary design tools for CROR

interaction noise. The available example of such a tool to the author is CRPFAN and it

will be used as an example of a generic preliminary design aeroacoustic tool for CROR

interaction noise.

4.1 CRPFAN Overview

Section 4.1 gives an overview of CRPFAN as an aeroacoustic tool. It has the capability

to calculate the rotor alone tones due to thickness and loading noise and interaction noise

due to wake and tip vortex interactions, treating the propeller as an isolated system.

Additionally, it has the capability to calculate installation effects due to the aircraft angle

of attack and from the presence of aerodynamic bodies such as the pylon and fuselage.

The isolated noise is calculated first and the additional noise due to installation is added

as a ‘delta’ dB. This process is summarised in Figure 4.1.

53
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Blade geometry

+ operating

conditions

Installation input
Isolated calcu-

lation module

Installation

effects:

Angle of attack ;

Pylon ; Fuselage

Isolated noise:

Thickness;

Loading; Inter-

action source

Intstallation

delta dB’s

Installed noise

Figure 4.1: CRPFAN general use flow chart

However it must be noted that CRPFAN does not account for known open rotor noise

sources such as broadband noise, potential field interactions between the rotors and

source terms which are classified as a quadrupole. The open rotor noise capability is

summarised in Table 4.1.

Open rotor noise source Included in CRPFAN?

Propeller thickness noise Yes

Propeller loading noise Yes

Wake and tip vortex interaction noise Yes

Installation effects (wing, fuselage, pylon and aircraft attitude) Yes

Broadband noise No

Potential field interaction between rotors No

Quadrupole noise No

Table 4.1: CRPFAN open rotor noise prediction capability summary
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This project will focus on the isolated noise sources, particularly the interaction noise

due to tip vortex interactions between the front and aft rotors.

4.2 Aeroacoustic Method

Section 4.2 presents the key equations used in CRPFAN to calculate the rotor alone

tones and interaction noise.

4.2.1 Rotor alone noise

CRPFAN uses the analysis of Hanson21 and Fourier transforms the Ffowcs-Williams

and Hawkings equation to convert from the time into the frequency domain and uses an

acoustically non-compact distributed source based on a helicoidal coordinate system5.

The volume noise PVm is an acoustic monopole term and is due to the air displaced by

the finite thickness of the rotor blades.

PV m =
ρoc

2
oBsinθe

{
imB(

ΩDr

Co
−π

2
)
}

8π( γD )(1−Mxcosθ)

∫ 1

0
M2
r e
i(φo+φs)∗JmB(

mBzMT sin θ

1−Mx cos θ
)∗−k2

xtbψv(kx)dz

(4.1)

The phase shift due to sweep φs and offset φ0:

φs =
2mBMT

MT (1−Mx cos θ)

MCA

D
(4.2)

φo =
2mB

zMr

M2
r cos θ −Mr

1−Mx cos θ

FA

D
(4.3)

MCA is the mid-chord alignment, FA, the face alignment - both defined in Figure 4.2.

ΩD is the ratio of the rotational frequency, Ω, and the Doppler factor 1 −Mxcosθ as

shown:

ΩD =
Ω

(1−Mxcosθ)
(4.4)

The non-dimensional wave numbers kx and ky:

kx =
2mBBDMT

MT (1− cosθ)
(4.5)
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ky =
2mBBD
zMT

(
M2
T cosθ −Mx

1−Mxcosθ
) (4.6)

Where BD is the chord to diameter ratio. The thickness distribution, H(X), is defined

in the frequency domain as ψV (kx) by:

ψV (kx) =

∫ +1/2

−1/2
H(X)eikxXdX (4.7)

The equation for the loading noise, PLm is very similar to the thickness noise PVm but

ψV (kx) is replaced by the Fourier transformed chordwise loading term,ψL(kx), :

ψL(kx) =

∫ +1/2

−1/2
fL(X)eikxXdX (4.8)

Where:

fL(X) =
4p(x)

1/2ρoV 2
r CL

(4.9)

To form:

PLm =
ρoc

2
oBsinθe

{
imB(

ΩDr

Co
−π

2
)
}

8π( γD )(1−Mxcosθ)

∫ 1

0
M2
r e
i(φo+φs)∗JmB(

mBzMT sin θ

1−Mx cos θ
)iky(

CL
2

)ψL(kx)dz

(4.10)
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Figure 4.2: Acoustic coordinate system adapted from21

4.2.2 Interaction noise

The interaction noise occurs because the rear rotor loading becomes unsteady as a result

of operating in the non-uniform flowfield shed by front rotor wake and tip vortex. For

the interaction noise the lift and drag coefficients become harmonic coefficients in the

form of CLk and CDk respectively, where k is the order of the load harmonic.

p =
−iρ0c

2
0B2 sin θ

8π(r1/D)(1−Mxcosθ)

∑∞
m=−∞

∑∞
k=−∞ exp

{
i
[
(mB2 − kB1)(φ− φ(2) − π

2 ) + (mB2Ω2 + kB1Ω1( rc0 − t)
]}

X
∫ tip
rootM

2
r e
i(φ0+φs)JmB2−kB1

[
(mB2+kB1Ω12)z0MT sinθ

1−Mxcosθ

] [
kx

CDk
2 ΨDk(kx) + ky

CLk
2 ΨLk(kx)

]
dz0(4.11)

The wave numbers kx and ky are for the unsteady interaction noise are defined as:

kx =
2MT

Mr

[
mB2 + kB1Ω12

1−Mxcosθ
− kB1(1 + Ω12)

]
BD (4.12)

ky = − 2

Mr

[
(mB2 + kB1Ω12)M2

T z0cosθ

1−Mxcosθ
− (mB2 − kB1)Mx

z0

]
BD (4.13)



58 Chapter 4 Aeroacoustic Methodology

The phase shift:

φs =
2MT

Mr

[
mB2 + kB1Ω12

1−MXcosθ
− kB1(1 + Ω12)

]
MCA

D
(4.14)

The phase offset:

φ0 =
2

Mr

[
(mB2 + kB1Ω12)z0M

2
T cosθ

1−MXcosθ
− (mB2 − kB1)

MX

z0

]
FA

D
(4.15)

Note for the calculation of interaction noise the chord wise non-compactness factor is

not taken into account unlike the rotor alone noise. In order to calculate the unsteady

interaction noise the harmonic coefficients of lift and drag CLk and CDk need to be de-

termined. From the input operating conditions and geometry a radial lift distribution

is calculated, the geometrical parameters and radial lift distributions are used to calcu-

late the maximum tangential velocity, Vθmax , and core size of the vortex, rc, using the

empirical correlations defined in Section 3.5.3.

With Vθmax and rc defined, an azimuthal distribution of the vortices’ tangential velocity,

Vθ, can be calculated. This is vector summed with the wake flowfield and coordinate

transformed into a frame relative to the aft rotor. From here the velocity acting normal

to the aft rotor 1/4 quarter chord line, VPN , is calculated. The azimuthal distribution of

VPN is Fourier transformed which forms the upwash gust harmonics onto the aft blade,

which is input into a Sear’s type blade response function corrected for compressibility by

Amiet5. The outcome of the blade response function is the harmonic lift coefficient, CLk,

at each calculated radial location. The default number of harmonic loads, k, calculated

is 15. This basic process is summarised in the flow chart of Figure 4.3.
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Operating
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and geometry
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Vθmax
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)
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Figure 4.3: Basic summary of unsteady noise calculation

4.3 CRPFAN Verification and Validation

4.3.1 CRPFAN Verification

The purpose of the verification is to ensure the tool is being used in the intended manner

and the calculations are implemented correctly. The test case for the verification uses

the sample CRPFAN input and output file included in10. The verification test case

geometry and operating conditions are summarised in 4.2:

Parameter Value (Front, Aft )

Geometry F7-A7

Blade numbers 11 , 9

rpm 7633, 7695

Mo 0.2

Cp 0.774, 0.909

β3/4 (◦) 36.4, 36.5

Table 4.2: CRPFAN verification case operating parameters

There is no difference between the original and verification noise for front rotor funda-

mental harmonic tone which occurs at the blade passing frequency of the front rotor,

the rear rotor fundamental tone and the OASPL directivity which is a 1/3rd octave sum

of all the calculated tones. This is demonstrated in Figure 4.4.
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(a) Front rotor BPF (b) Rear rotor BPF

(c) OASPL

Figure 4.4: CRPFAN verification results

4.3.1.1 CRPFAN Verification summary

There is no difference between the data in10 and that created using the in-house version

of CRPFAN. This demonstrates that CRPFAN is being used in the correct manner. The

next question is how well does CRPFAN predict open rotor tonal and interaction noise?

4.3.2 CRPFAN Validation

The validation study is used to assess the credibility of CRPFAN with reference to

acoustic measurements. The measurements used to validate CRPFAN are for the F7-

A7 geometry in the NASA Lewis 9 x 15 ft tunnel5. The conditions are summarised in

Table 4.3.
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Parameter Value (Front, Aft)

Geometry F7-A7

Blade numbers 11 x 9

rpm 6800

Mo 0.2

CP 0.9856, 1.1639

β3/4 (◦) 36.4,36.5

Wind Tunnel NASA Lewis 9 x 15 ft

Sideline distance 4.5 ft

Table 4.3: CRPFAN validation test case operating conditions

Rotor alone tones

The front rotor fundamental tone Figure 4.5 has good agreement between measured data

and CRPFAN. However, there is a difference of 2-3 dB in the aft lobe.

Figure 4.5: CRPFAN front rotor fundamental tone validation

The rear rotor fundamental tone shown in Figure 4.6 agreement is worse than agreement

with front rotor fundamental with differences between CRPFAN and experiment in the

order of 4-5 dB.
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Figure 4.6: CRPFAN rear rotor fundamental tone validation

The authors5 attribute the discrepancy partly to the fundamental tones being buried

into the wind tunnel broadband noise.

Interaction tones

Presented here is a comparison between CRPFAN and measurement for the interaction

tones due to the viscous wake and tip vortex interactions with the aft rotor. The sectional

drag coefficient used is 0.02 at all radial stations. The nomenclature for each tone is

n1F + n2A, the F and A stand for forward and aft rotors and n is the multiple of the

BPF. For example the 1F +1A interaction tone is at a frequency equal to the front rotor

BPF plus the rear rotor BPF. The subscripts 1, 2 corresponding to front and rear rotor

respectively.

There is acoustic measured data for the conditions stated in Table 4.3 for six interaction

tones, 1F + 1A, 1F + 2A, 2F + 1A, 1F + 3A, 2F + 2A and 3F + 1A. The comparison

between CRPFAN calculations and the measured data are shown in Figures 4.7 to 4.12.

Figure 4.7: 1F + 1A rotor alone tone CRPFAN prediction against measurements
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Figure 4.8: 1F + 2A rotor alone tone CRPFAN prediction against measurements

Figure 4.9: 2F + 1A tone CRPFAN prediction against measurements

Figure 4.10: 1A+3A tone CRPFAN prediction against measurements
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Figure 4.11: 2F+2A tone CRPFAN prediction against measurements

Figure 4.12: 3F+1A tone CRPFAN prediction against measurements

The agreement is best for the 1F + 2A tone, the 1F + 1A, 1F + 3A and 2F + 2A

tones show reasonable agreement. The 3F + 1A and 2F + 1A have very poor agreement

particularly in the aft lobe of the directivity pattern. Theses differences could be due to

a lack of credibility in the vortex and wake model however. Suggested improvements to

the vortex model are presented in Chapter 7.

4.3.2.1 CRPFAN Validation summary

CRPFAN has been verified with reference to the example data supplied in10. A vali-

dation study has been conducted relative to measured data from the NASA Lewis 9 x

15 ft tunnel where the front rotor tone fundamental tone agreement is good, but the

rear rotor fundamental tone agreement is under predicted by CRPFAN in the order of

4 - 5 dBs. For most interaction tones the agreement with measured data is good, with

most tones being slightly under predicted by CRPFAN. The 2F +1A and 3F +1A tones

noticeably vastly under predicted in the aft lobe.
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4.4 CRPFAN Limitations

Section 4.4 highlights some observed limitations to the original version of CRPFAN.

The Rankine type vortex model is not physically realistic so this can be replaced with

the Vatistas vortex model used in helicopter aerodynamics 28. In CRPFAN only the

tangential velocity component of the vortex is considered - is there a case for considering

the axial component as well?

The empirical input parameters such as the circulation index and tip vortex trajectory

index needs to be calculated using bespoke correlations which consider the individual

physics of each case. The correlations for Vθmax and rc are based on a limited set of fixed

wing cascade data - is this appropriate for an open rotor configuration?

A key factor which is not considered in CRPFAN and treated in more depth in Chapter 7

is the spatial orientation of the vortex - due to the interaction of the vortex with the aft

blade.

One area of improvement to CRPFAN is in its general usability for calculations of

new geometries and configurations where no CFD or experimental data is available.

To calculate the open rotor interaction noise a radial lift distribution is required, if

interested in a novel geometry this information will not be immediately available. This

can be remedied by coupling CRPFAN to a strip theory aerodynamics code whose output

can be used as an input to CRPFAN for acoustic calculations.

A final consideration which will be addressed in the tip vortex trajectory study in Sec-

tion 5.1.2, which relates to the number of streamlines in CRPFAN. It is an acoustic strip

theory code, with a default value of 10 streamlines/strips. It was noted that the noise

of the tip vortex interaction is sensitive to how close the vortex core is to the location

of the nearest streamline. This can be corrected with the use of more streamlines in

CRPFAN to ensure the vortex core is correctly captured.

CRPFAN limitations summary

Possible improvements to tip vortex specific issues:

• Type of tip vortex model used

• Inputs to the tip vortex model e.g. more suitable correlations

• How the spatial orientation of the vortex is modelled

• Inclusion of the vortex axial velocity component

General CRPFAN usability improvements:
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• Method to automatically generate inputs for new cases

• Increase the spatial resolution from the default 10 streamlines



Chapter 5

Impact of tip vortex on Open

rotor noise

Chapter 5 includes quantitative sensitivity studies, which relate the strength, location

and the tangential velocity distribution of the tip vortex to the interaction noise - with

CRPFAN used as an aeroacoustic tool to calculate the noise.

5.1 Effect of Input Vortex Parameters on Open Rotor Noise

In the original published version of CRPFAN5 there are scalable inputs with reference

to the tip vortex parameters which need to be known prior to its use. Two of these

parameters are the circulation index (Ci) and tip vortex trajectory index (TVTI) which

are defined in Section 3.5.3. Section 5.1 quantifies the sensitivity of the interaction noise

to these parameters. The geometry and operating conditions are the same as the ones

used in the validation study defined in Table 4.3.

5.1.1 Effect of circulation index value

The sensitivity study will use four values of the circulation index, 1) Ci=0 which cor-

responds to no tip vortex model and the noise in this mode is due to wake interaction

effects, 2) Ci=1, this represents a physically realistic condition where the strength of

the tip vortex for a propeller will be equal to that of a fixed wing for the same lift

distribution, 3) Ci=2, which means the tip vortex will be twice the strength of the fixed

wing strength and 4) Ci=3 which is three times stronger.

The results of this study are shown in Figures 5.1 to 5.6, for each of the six interactions

tones there are two sub figures, a directivity with the four Ci values and the measured

data for comparison and an additional stem plot showing the difference in SPL directivity

67
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between Ci=3 and Ci=1, Ci=1 is used instead of Ci=0 to ensure differences are only

due to the strength of the tip vortex.

(a) Directivity (b) Ci = 3 - Ci = 2

Figure 5.1: Effect of Ci on 1F+1A interaction tone

(a) Directivity (b) Ci = 3 - Ci = 2

Figure 5.2: Effect of Ci on 1F+2A interaction tone
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(a) Directivity (b) Ci = 3 - Ci = 2

Figure 5.3: Effect of Ci on 2F+1A interaction tone

(a) Directivity (b) Ci = 3 - Ci = 2

Figure 5.4: Effect of Ci on 1F+3A interaction tone

(a) Directivity (b) Ci = 3 - Ci = 2

Figure 5.5: Effect of Ci on 2F+2A interaction tone
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(a) Directivity (b) Ci = 3 - Ci = 2

Figure 5.6: Effect of Ci on 3F+1A interaction tone

Excluding the 3F + 1A tone, observer angles in the range of 80 to 120 ◦ are the least

effected by the changes in tip vortex circulation. The change in tip vortex circulation

index value can contribute up to 22 dB in the extreme case, with differences in the order

of 10 - 15 dB over a range of observer angles the norm within the study. This agrees

well with the findings of10. The 2F + 1A interaction tone, the difference in agreement

with measured experimental data improves with increasing circulation index - which

suggests that a better vortex model could improve the overall CRPFAN aeroacoustic

performance relative to experimental data.

5.1.2 Effect of tip vortex trajectory index value

The next input parameter to consider is the the tip vortex trajectory index, TVTI, again

four values are used, the greater the value the greater the radial streamtube contraction

and the lower the radial location of the tip vortex centre. Table 5.1 summarises the four

values used and the non-dimensional radial location of tip vortex centre relative to the

front rotor blade radius for each case.

TVTI RV ortex/RBlade

2 0.89

1.5 0.92

1 0.95

0.5 0.97

Table 5.1: TVTI input sensitivity study parameters

The results for this study are shown in Figures 5.7 to 5.12 in the same format as for

the circulation index sensitivity study. Here the residual stem plots show the difference
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between the lowest vortex location with TVTI = 2 and the highest with TVTI = 0.5.

The values of TVTI are in the range recommended in the CRPFAN user’s manual5.

(a) Directivity (b) TV TI = 2 - TV TI = 0.5

Figure 5.7: Effect of TVTI on 1F+1A interaction tone

(a) Directivity (b) TV TI = 2 - TV TI = 0.5

Figure 5.8: Effect of TVTI on 1F+2A interaction tone
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(a) Directivity (b) TV TI = 2 - TV TI = 0.5

Figure 5.9: Effect of TVTI on 2F+1A interaction tone

(a) Directivity (b) TV TI = 2 - TV TI = 0.5

Figure 5.10: Effect of TVTI on 1F+3A interaction tone

(a) Directivity (b) TV TI = 2 - TV TI = 0.5

Figure 5.11: Effect of TVTI on 2F+2A interaction tone
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(a) Directivity (b) TV TI = 2 - TV TI = 0.5

Figure 5.12: Effect of TVTI on 3F+1A interaction tone

The tip vortex trajectory location has an effect of up to 20 dBs, but mostly within the

range of ± 0−10 dB. The effect is a lot more omni-directional than changes in circulation

index with no definitive trend present.

5.1.3 Effect of Input Vortex Parameters on Open Rotor Noise Con-

clusions

The results of the two sensitivity studies show that the interaction tones are highly

sensitive to the value of the circulation parameter and tip vortex trajectory index -

with 20 dB increases in interaction noise evident. If simulating a new case with no

prior knowledge of which values to select, this can be expected to result in a large

miscalculation of the interaction noise. The solution to this is to eliminate the need

for either parameter and to calculate the tip vortex circulation and tip vortex radial

location based on the the geometry and local physics. The development of this model

and its aeroacoustic effect is presented in Chapter 7.

5.2 Effect of tip vortex parameters on interaction noise

Section 5.2 analyses what effect the individual tip vortex parameters such as the vortex

core size, rc, the maximum tangential velocity, Vθmax , and the vortex circulation, Γvtx,

have on the interaction noise.

To individually analyse each parameter a Vatistas type tip vortex model is used instead of

the Majjigi10 tip vortex model. The form of the equation used to describe the tangential

velocity distribution for the parametric studies is shown in Equation 6.14.
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Vθ = Vθmax21/n

{
r̄

(1 + r̄2n)1/n

}
(5.1)

The tip vortex parameters are calculated using the standard CRPFAN correlations, only

the description of the tangential velocity profile is changed.

5.2.1 Core size

The first parameter to consider is the vortex core size, to analyse this four core sizes are

used 0.75, 1.55, 2.25 and 3 mm, where the datum core size calculated with the CRPFAN

standard correlation is 1.55 mm for the conditions defined in Table 4.3. The source

tangential velocity distribution in a vortex local coordinate system for these four cases

are shown in Figure 5.13.

Figure 5.13: Tangential velocity profile input for core size sensitivity study in vortex
local coordinate system

The maximum tangential velocity is the same for all cases, a shape factor, n, of 2 is

used and the axial and radial tangential velocity are not included into the interaction

noise calculation. An analytical tool used to asses how the input tangential velocity field

acts as a disturbance field for the interaction noise is used here. The description of the

method is included in the Section A.1 of the Appendix. Figure 5.14 shows the input

disturbance field for the four vortex core sizes considered. Scaled engine order is the
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number of periods the fundamental harmonic will occur in a full 360 ◦ sector divided by

the number of front rotor blades. The y-axis is the radial location of the tip vortex and

the contours are of Power Spectral Density (PSD) - which is derived from the FFT of

the tangential velocity in a global coordinate system.

(a) 0.75 mm (b) 1.5 mm

(c) 2.25 mm (d) 3 mm

Figure 5.14: Effect of core size on input disturbance field

As the vortex core size increases so does the power spectral density at the lower harmon-

ics (where lower harmonics correspond to a lower scaled engine order), but at the higher

harmonics the disturbance field is reduced. This is because the broader input signal

will have lower frequency content. Figure 5.15 is a map of the total noise spectrum for

the four cases calculated in CRPFAN, where the tone number, M , is a non dimensional

frequency referenced to the front rotor blade passing frequency. For n multiples of the

front rotor BPF, and m of the rear rotor BPF.
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M = (n+ 1)BPFfront +mBPFrear (5.2)

There are 170 tones, where 1-10 are the ten harmonics of the front rotor BPF and tones

11-20 are multiples of the rear rotor BPF. The first twenty tones should be independent

of changes in the tip vortex parameters because they are dependant on the thickness

and loading sources.

(a) 0.75 mm (b) 1.5 mm

(c) 2.25 mm (d) 3 mm

Figure 5.15: Effect of core size on interaction tones

The effect of increased core size is most notable at the lower frequency interaction tones,

where the sound pressure level increases over most observer angles. It can also be noted

that at the higher frequencies the noise actually decreases slightly, which is also indicated

in Figure 5.14 as the result of a broadened FFT input.
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The effect on the overall sound pressure level (OASPL) which is a 1/3rd octave metric

of the sound pressure level is shown in Figure 5.16.

Figure 5.16: Effect of vortex core size on overall sound pressure level

As the core size increases as does the OASPL over all observer angles. The increase is

non linear however, the biggest increase in OASPL is between the smallest core size of

0.75 mm to the datum case of 1.5 mm. The effect of the entire range of core sizes, i.e.

from 0.75 to 3 mm is shown in Figure 5.17.

Figure 5.17: Effect of vortex core size on overall sound pressure residuals

The maximum effect of increasing the tip vortex core size from 0.75 to 3 mm is roughly

16 dB, and most noticeable at the extreme observer angles. The average increase in

sound pressure level over all observer angles is 9 B.
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5.2.2 Maximum tangential velocity

Here, the core size is kept constant but four peak tangential velocity profiles are con-

sidered, with magnitudes of 65, 130, 195 and 260 m/s. The input tangential velocity

profiles are shown in Figure 5.18.

Figure 5.18: Input tangential velocity profiles for maximum tangential velocity effect

The input disturbance field for the four peak tangential velocities considered are shown

in Figure 5.19.
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(a) 65 m/s (b) 130 m/s

(c) 195 m/s (d) 260 m/s

Figure 5.19: Input disturbance field for different maximum tangential velocities

The input disturbance field is sensitive to changes in the maximum tangential velocity

across a range of frequencies. The sound pressure level map of Figure 5.20 shows the

same trend where the interaction noise increases with increased maximum tangential

velocity across the range of interaction tones.
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(a) 65 m/s (b) 130 m/s

(c) 195 m/s (d) 260 m/s

Figure 5.20: Sensitivity of interaction noise to maximum tangential velocity

The overall sound pressure level shows the same trends where the noise increases with

tangential velocity over all observer angles as per Figure 5.21.
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Figure 5.21: Effect of maximum tangential velocity magnitude on overall sound pres-
sure level

Figure 5.22 shows the changes in OASPL between the lowest and highest tangential

velocities’ considered, which is from 65 to 260 m/s.

Figure 5.22: Overall sound pressure levels residuals for increased maximum tangential
velocity

An increase in maximum tangential velocity from 65 to 260 m/s results in an increase

of up to 18 dB, where the effect is also more noticeable at the more extreme observer

angles.

5.2.3 Constant circulation different size and strength

The strength of a tip vortex is usually described by its circulation Γvtx, from Sec-

tion 5.1.1, the noise is proportional to the circulation, however what happens if there

are two vortices, with the same circulation but different velocity profiles?

The circulation for the two velocity profiles shown in Figure 5.23 are the same, case one

has quarter the maximum tangential velocity but four times the core size of case two.
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Figure 5.23: Input velocity profiles for constant circulation test case

Using the velocity profiles of Figure 5.23 as the input into the disturbance field model

yields the following PSD maps:

(a) Case 1 (b) Case 2

Figure 5.24: Input disturbance field map for two vortices with same circulation but
different tangential velocity distribution

Case two produces a greater disturbance amplitude and over a wider spectrum, because

the inlet tangential velocity profile is tending towards a Delta Dirac function which has
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an infinite convolution of sine waves to compose the source input signal. The interaction

noise also demonstrates this effect as shown in Figure 5.25 - especially at the higher

frequency interaction tones.

(a) Case 1 (b) Case 2

Figure 5.25: Interaction noise map for two vortices of same circulation but different
tangential velocity profiles

The overall sound pressure level as a function of observer angle is shown in Figure 5.26

and the difference between the two cases in Figure 5.27.

Figure 5.26: OASPL directivity for two vortices of same circulation but different
tangential velocity profiles
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Figure 5.27: OASPL directivity residuals for two vortices of same circulation but
different tangential velocity profiles

There is approximately a 3 dB difference in overall sound pressure level directivity for

two vortices with same circulation but different swirl distribution. The vortex with the

higher peak tangential velocity profile produces more interaction noise - with the effect

most prominent at the higher frequency interaction tones.

5.2.4 Effect of tip vortex parameters on interaction noise conclusions

The tangential velocity distribution of the tip vortex has a big influence on the interaction

noise, where, in general a vortex which has a greater core size or maximum tangential

velocity will result in the generation of more interaction noise. The analysis also yields

that purely defining a vortex by its circulation could be misleading - as the interaction

noise spectrum can be different for two vortices with the same circulation. Therefore

if looking to adjust the tip vortex to minimise tip vortex interaction noise a larger

vortex with lower peak tangential velocity is desirable. However, the disadvantage to

this method is that the increased radius of the tip vortex will mean more interaction of

the vortex with the aft blade row depending on the level of aft blade cropping.
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CFD Methodology

Chapter 6 presents the approach and methodology of the CFD analysis within the

project. Detailed within this Chapter include the method used to generate an appro-

priate grid, and the boundary conditions used to represent the physical model. This

is followed by sensitivity studies to determine the correct level of spatial discretisation

and domain extent. Also included is the validation of the model against measured ex-

perimental values for the thrust and power coefficients. The final part of Chapter 6

describes the methodology used to extract the relevant tip vortex properties used for

further analyses.

Before starting any calculations a review of existing CFD work on open rotors was

conducted. The work included42,7,43,44,45,46,3,47,48 and49. As evident by the number

of references reviewed, there is a lot of published CFD analysis on open rotors. However,

none of these references specifically focussed on the development of correlations that can

relate the key tip vortex parameters as a function of propeller geometry and operating

conditions for integration into a preliminary design tool.

The application of CFD analysis in this project is focused on modelling the tip vortices

generated by an open rotor over a range of flowfield conditions and the methodology

used to obtain the flowfield information is described herein.

85
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6.1 Geometry and key test cases

Section 6.1 outlines the key test cases and geometries used within the thesis to validate

the models used.This is to inform the reader of which geometries and cases are used for

the CFD analysis and why. There are four key geometries, the F7-A7, SR3, SR2 and a

two bladed open rotor analogue.

6.1.1 F7-A7

The F7-A7 shown in Figure 6.1 is used for aeroacoustic verification and validation of

CRPFAN, which was included in Chapter 4.

Figure 6.1: F7 A7 blade profiles

It is the blade combination used for the flight testing of the UDF and the acoustic

measurements in the NASA Lewis 9 x 15 ft tunnel5. The test case parameters for which

CRPFAN input data and acoustic measurements are known are summarised in Table 6.1.
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Parameter Value (Front, aft)

Geometry F7-A7

Blade numbers 11 x 9

rpm 6800

Mo 0.2

CP 0.9856, 1.1639

β3/4 (◦) 36.4,36.5

Wind Tunnel NASA Lewis 9 x 15 ft

Sideline distance 4.5 ft

Table 6.1: CRPFAN validation test case operating conditions

This test case is used at two points within the project, firstly to aid the validation of

CRPFAN as a credible aeroacoustic tool as presented in Chapter 4 and secondly as

a comparison to quantify the relative effects of the different tip vortex modelling ap-

proaches and correlations suggested in the thesis. This would have also been a preferred

choice to use within the CFD study, however, the exact geometry definition required for

a 3D model is not open to the public domain.

6.1.2 SR3

The SR3 single rotation advanced propeller blade is used as an alternative to the F7.

The SR3’s characteristics relative to the F7, are shown in Table 6.2.

Characteristic F7 SR3

Blade sweep angle (o) 33 45

Flight Mach No 0.72 0.8

Blade numbers 8 8

Advance ratio, J 2.8 3.1

Power Loading, SHP/D2 55.5 37.5

Power Loading, SHP/A 85 50

Power Coefficient, CP 2.66 1.695

Thrust Coefficient, CT 0.81 0.45

Net Efficiency, η 0.849 0.812

Table 6.2: SR3 and F7 characteristics

A key difference between the two geometries is the blade tip sweep angle, the SR3 has

12 o more. Overall, the nominal design operating conditions between the two geometries

are similar. An advantage of using the SR3 is the experimental data available50. The
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measured data includes thrust and power measurements at take off representative Mach

numbers. Take off is when the loading is greatest and the tip vortex interaction noise is

most prominent8.

The constituent 2-D airfoil sections which the SR3 is comprised are shown in Table 6.3,

where the NACA airfoil definition as a function of non-dimensional radial location is

presented. Towards the hub NACA 65 series are used and NACA 16 airfoils are used

along the middle and upper span of the blade.

r/R Airfoil Section r/R Airfoil Section

0.2375 NACA 65A–324 0.525 NACA 16-104

0.2625 NACA 65A–215 0.5625 NACA 16-103

0.2875 NACA 65A–111 0.6125 NACA 16-103

0.3125 NACA 65A–009 0.6625 NACA 16-202

0.3375 NACA 65A–007 0.7125 NACA 16-202

0.3625 NACA 65A–006 0.7625 NACA 16-202

0.3875 NACA 65A–006 0.8125 NACA 16-202

0.4125 NACA 65A–105 0.8625 NACA 16-202

0.4375 NACA 65A–105 0.9125 NACA 16-202

0.475 NACA 16-104 0.9625 NACA 16-202

0.5 NACA 16-104 1 NACA 16-202

Table 6.3: SR3 sections

The 3D model of the highly swept SR3 propeller bladed used for CFD analysis is shown

in Figure 6.2.
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Figure 6.2: SR3 Propeller blade

6.1.3 SR3 test case

The SR3 was tested in the NASA Lewis 10 by 10 foot Supersonic Wind Tunnel by50, this

tunnel also has a facility to run subsonically from Mach 0.1 to 0.34, the key measurements

taken were the thrust and torque using a rotating balance. Tip vortex interaction noise

is dominant at low speed conditions41 so the chosen test point as a validation case will

be a Take off condition from the tests of50 as summarised in Table 6.4.

Parameter Value

Flight Mach No 0.2

Advance ratio, J 0.875

Power Coefficient, CP 1

Thrust Coefficient, CT 0.6274

Net Efficiency, η 0.54

Table 6.4: Validation case operating conditions

Where the advance ratio, J , is defined in Equation 6.1 which is a non-dimensional

measure of how far the propeller advances in the direction of thrust per revolution.

J =
V0

nD
(6.1)
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The power, CP , and thrust, CT , coefficients are defined in Equations 6.2 and 6.3 re-

spectively.

CP =
P

ρn3D5
(6.2)

CT =
T

ρn2D4
(6.3)

The three parameters can all be combined to define the propeller efficiency, η, as shown

in Equation 6.4.

η = J
CT
CP

(6.4)

6.1.4 SR2 straight bladed propeller

To assess the effect of blade sweep on the open rotor aerodynamics and specifically the

tip vortex formation and development, a second blade geometry was considered. The

unswept SR2, which also uses NACA 65 and 16 airfoil sections, the constituent airfoils

of the SR2 propeller blade as a function of radial location are shown in Table 6.5.

r/R Airfoil Section r/R Airfoil Section

0.24 NACA 65A–120 1 0.64 NACA 16-103

0.28 NACA 65A–012 2 0.68 NACA 16-103

0.32 NACA 65A-009 3 0.72 NACA 16-103

0.36 NACA 65A-007 4 0.76 NACA 16-103

0.40 NACA 65A–106 5 0.80 NACA 16-102

0.44 NACA 65A–105 6 0.84 NACA 16-002

0.48 NACA-16-105 7 0.88 NACA 16-002

0.52 NACA-16-104 8 0.92 NACA 16-002

0.56 NACA-16-104 9 0.96 NACA 16-002

0.60 NACA 16-103 10 1.00 NACA 16-002

Table 6.5: SR2 sections

The 3D model of the SR2 blade also used in the CFD study is shown in Figure 6.3.
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Figure 6.3: SR2 blade profile

The experiments of50 used the SR2 alongside the SR3, which means both the SR3 and

SR2 CFD can be validated against measurements for thrust and power and compared

to each other at known operating points.

6.2 Two bladed open rotor analogue

The SR3 and SR2 CFD models can be validated for their key performance criteria using

measured experimental data, however, appropriate and detailed measurements of the

tip vortex characteristics shed from these blades are not openly available. To account

for this a fourth geometry is introduced, which is a two bladed proper designed to be

analogous to that of a modern open rotor concept. The blade profile for the two bladed

analogue rotor is shown in Figure 6.4.



92 Chapter 6 CFD Methodology

Figure 6.4: Two bladed open rotor analogue

Particle Image Velocimetry with focus on the tip vortex was conducted in-house using

this geometry. Which is used to asses the CFD solver performance at calculating highly

vortical flowfields.

6.2.1 Key test cases summary

• F7-A7: verification and validation of aeroacoustic method in CRPFAN and to

quantitatively assess the effect of the different tip vortex modelling approaches

• SR3 and SR2:To generate CFD flowfield which tip vortex correlations are de-

rived, validation date for thrust and power exists by50

• Two bladed analagoue: Tip vortex parameter comparison between CFD and

in house PIV
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6.3 Grid generation process

It is suggested that in order to capture the tip vortex with minimal dissipation that

a fully structured mesh is used51. The vorticity contained in the tip vortex originates

from the boundary layer, therefore to fully capture the vortex generation mechanism and

wake roll up it is best to model the viscous sub layer instead of the use of wall functions.

Based on these two factors a fully structured grid with a y+ of one was sought due to the

application of analysing tip vortex characteristics. This approach comes with a sacrifice

in regards to the time required to obtain a good quality structured mesh relative to an

unstructured one - especially for the twisted and typically swept geometry of an open

rotor blade.

The initial approach was to solely use ICEM CFD to generate the grids. However,

to obtain the satisfactory mesh quality a fairly complex blocking strategy was used in

ICEM. It was felt that this approach was too in-efficient, especially if looking at different

propeller geometries and setting angles.

With this in mind, a different more novel approach was considered. It involves using

Turbogrid, a semi-automated mesh generator designed for turbomachinery applications.

Turbogrid has the advantage of being able to generate good quality fully structured

meshes with a quick turn around time, but a key disadvantage is that it is designed for

ducted flows.

The maximum tip clearance allowable within Turbogrid is 50 % of the blade span,

the domain size needs to be greater than this in the blade span-wise direction for a

propeller. To account for this, ICEM is used to create an additional, non-conformal

mesh that wraps around the one built in Turbogrid and extends out to the far-field

conditions. This is illustrated in Figure 6.5 where the larger outer domain generated

using ICEM remains stationary and the smaller inner domain containing the propeller

rotates.

(a) Stationary domain (b) Rotational domain

Figure 6.5: Inner rotational and outer stationary domain which are combined
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A ’H’ type mesh topology is used around the blade as this gives good mesh quality at

the trailing edge, a critical region for the tip vortices. The mesh used around the root of

the blade at the hub region is shown in Figure 6.6 which illustrates the H type topology

of the fully structured grid. In the radial direction roughly 150 nodes are used along the

blade span (this varies for different mesh densities) with a close to uniform distribution.

The mesh used for the swept SR3 blade, spinner and nacelle is shown in Figure 6.7. The

same methodology was used for the SR2 propeller and images of its mesh are shown in

Figures B.2 and B.3 of Appendix B accompanied by a close up view of the mesh on the

SR3 as shown in Figure B.1.

Figure 6.6: H type grid topology around blade

Figure 6.7: Structured mesh for SR3 blade
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It was decided to include the spinner and nacelle as Zachariadis42 found that it has

an effect on the relative air angles on the lower portion of the blade due to its static

pressure field. The current model clips the spinner at the front by 5 % of the maximum

hub radius because Turbogrid cannot mesh a singularity. However, a sensitivity study

to asses the effect of clipping the front part of the spinner on the thrust and power

coefficients showed it had a negligible effect. The study extended the radial clipping to

up to 20 %, therefore it is firmly felt that a 5 % clipping at the front of the spinner is

an acceptable approach to use.

6.4 Boundary conditions

The mesh generated in Turbogrid which consists of the propeller, nacelle and spinner is

set as a rotating domain while the outer domain generated in ICEM is stationary. The

speed of rotation is equal to the revolutions per minute of the propeller for the operating

point considered. The interface between rotating and stationary domains use a general

grid interface (GGI) node interpolation scheme with a frozen rotor connection. The

reason for a frozen rotor approach is because the calculations will all be steady steady

state. A full data set of transient simulations was beyond the scope of the work.

The boundary conditions are shown in Figure 6.8 and described in accompanying Ta-

ble 6.6. They consist a velocity inlet and pressure outlets with entrainment to allow for

recirculating flow at the boundaries. The walls of the propeller hub and spinner have no

slip conditions but the hub which extends towards and away from the rotational domain

are set to free slip to avoid non-physical friction and boundary layer development. In

the tangential direction, periodic interfaces are used with 1:1 node matching.

Figure 6.8: Boundary conditions schematic
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Location Boundary condition

Inlet (1) Velocity inlet

Outlet (2) Pressure outlet with entrainment

Radial outlet (3) Pressure outlet with entrainment

Blade No-slip wall

Spinner and nacelle No-slip wall

Hub in and out (4) and (5) Free slip (inviscid) wall

Table 6.6: Description of boundary conditions used in model

The static pressure is defined at the outlets, for a known Mach number at sea level

conditions using the Isentropic relation of Equation 6.5. The energy equation is included

in the calculations to account for thermal energy and viscous work terms, the static

temperature defined as per Equation 6.6, the air is treated as an ideal gas.

P

P0
= (1 +

γ − 1

2
M2)

− γ
γ−1 (6.5)

T

T0
= (1 +

γ − 1

2
M2)−1 (6.6)

The model is solved using CFX version 12, using its higher order numerical advection

scheme with a convergence target of 1e−4 for the residuals of mass continuity and the

three Cartesian components of momentum. It uses a pressure based solver with an

implicit numerical scheme, the calculations are steady state with automatic timestep

setting.

6.5 Numerical implementation

6.5.1 Domain size sensitivity study

Selecting the correct domain size is important because too large of a domain will require

more computational resources than necessary and too small of a domain will cause wave

reflection problems, distorting the solution. The selected domain size used is shown in

Figure 6.9. Smaller domain sizes were also tested and the difference in reported CT and

CP were of order 1 %, therefore one of the smaller domain sizes could be used in future

studies. The one shown in Figure 6.9 has been continued with as it gives time for the

wake to dissipate and the mesh penalty is low where the flow gradients are small at the

outer boundaries of the domain.
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Figure 6.9: Domain size used for CFD models, where D is the blade diameter

6.5.2 Turbulence model sensitivity

With the domain size chosen, the next step was to chose an appropriate turbulence

model. There were five models selected for the study, namely the Eddy Viscosity Trans-

port Model (EVM), SST-k − ω, SST-k − ω with the γ − θ transition model, SST-k − ω
with a curvature correction term included and finally SST-k − ω with γ − θ and a cur-

vature correction term. These were all compared to experimental data for CT and CP

the results of which are shown in 6.7

Parameter EVM SST SST-Trans SST-CC SST-Trans-CC Exp

CT 0.6141 0.6219 0.6147 0.6280 0.6216 0.627

CP 1.0766 1.0858 1.066 1.0974 1.0791 1

Table 6.7: Turbulence model sensitivity study

The best overall turbulence model based on the comparison to measured CT and CP

is the SST model with a transition model and curvature correction term. The use of a

transition model has the additional advantage of capturing any laminar flow separation

present and the curvature correction term helps prevent excessive numerical diffusion of

the tip vortex due to the high strain components in the vortices. The SST model with

transition and curvature correction is the model chosen for the mesh sensitivity study

detailed next.
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6.5.3 Mesh size sensitivity

This study assesses the mesh dependence of the calculations using a method based on

Richardson’s Extrapolation52. This method includes the use of three grid sizes, namely

coarse, medium and fine where the medium grid has approximately half the spacing of the

coarse mesh and the fine grid half the spacing of the medium mesh. The number of nodes

used for each of three grids used are stated in Table 6.8, which gives a breakdown of the

numbers in each of the two domains. Two, four and eight million nodes (rounded to the

nearest million) were used in total for the coarse, medium and fine meshes resepctivley.

Grid Coarse Medium Fine

ICEM 1070800 2024800 3986560

Turbogrid 1165652 2274822 4025843

Combined 2236452 4299622 8012403

Table 6.8: Mesh sensitivity study node numbers

Three CFD calculations were performed for each grid using the same conditions as

defined in Table 6.4. For each grid size the thrust and power coefficients were calculated

and their dependence on the grid size evaluated. Additional information of the methods

used in the Richardson’s Extrapolation are detailed in Section B.2 of Appendix B.

The defining metric from the study is that the asymptotic range (AR) should be close to

one for the calculation to be sufficiently independent of grid size as to not compromise

the credibility of the analysis. The key details from the Richardson’s Extrapolation

evaluated using CP and CT and the SR3 propeller grids are detailed in Table 6.9.

Coarse Med Fine Zero

(f1) (f2) (f3) p (f0) ε12 ε23 GCI12 GCI23 AR

CT 0.623 0.633 0.634 3.664 0.634 -0.016 -0.001 -0.004 -0.0003 1.016

CP 1.081 1.097 1.099 3.511 1.099 -0.015 -0.001 -0.004 -0.0004 1.015

Table 6.9: Richardson Extrapolation

The reported values are within the asymptotic range, suggesting the grid size is ac-

ceptable. The reported values for CP and CT are shown plotted against the number of

nodes in Figure 6.10. The graphs show two key things, firstly the monotonic variation

of the coefficients as a function of grid size and secondly how the reported CFD values

compare against the values measured in the NASA 10 by 10 ft supersonic wind tunnel.

The difference with experimental data for CT is of the order 1 % while CP around 6 %

for the case considered.



Chapter 6 CFD Methodology 99

(a) CP (b) CT

Figure 6.10: Effect of spatial descritisation on CP and CT

Earlier in the Chapter two key requirements for the mesh were defined in order to best

model the tip vortices, one was to use a fully structured grid which has been achieved

and the second was to fully resolve the boundary layer on the blade. This is achieved

for the SST turbulence model in CFX by having a y+ of one and using the advanced

wall treatment option. The y+ distribution for the test case is shown in Figure 6.11, for

both the pressure and suction side of the blade and the majority for both sides meet

the requirement of a y+ of one. However, above roughly 80 % blade span it is exceeded

due to the higher relative velocity seen due to blade rotation, but the values are within

the range of one to five - which is deemed acceptable for the advanced wall treatment

method in CFX53.

(a) Pressure Side (b) Suction Side

Figure 6.11: y+ distribution along blade
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6.6 Sensitivity study to operating parameters

This section describes a sensitivity study performed to analyse how the propeller aero-

dynamics change for different operating conditions. One of the reasons for this study is

to verify that the CFD model makes physical sense when changing certain parameters

and it also allows further comparisons to measured experimental data over a range of

conditions. Additionally it is a good controlled way of obtaining a range of flowfield

conditions which can be used later in the project when analysing and developing tip

vortex correlations. Three key non-dimensional input parameters are used, namely, the

advance ratio, J, blade reference pitch angle, β and freestream Mach number, M. The

measured output parameters are CP and CT which are accompanied with measured

data. The sensitivity of CP to J , M and β is shown in Figure 6.12 and the sensitivity

of CT in Figure 6.13.

(a) J (b) M

(c) β

Figure 6.12: Sensitivity of CP to operating parameters
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(a) J (b) M

(c) β

Figure 6.13: Sensitivity of CT to operating parameters

The trends observed in the sensitivity study make good physical sense and can be ex-

plained simply with velocity triangles which relate how the input parameters effect the

incidence on to the propeller. Consider a blade element at an arbitrary radial location

as illustrated in Figure 6.14.
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Figure 6.14: Blade forces acting on a blade element

The relative velocity, UW i.e. the velocity the blade element will see is the vector sum

of the freestream axial velocity, V0 and the angular velocity at the radial location of

interest as demonstrated in Equation 6.7. The relative air angle, α, calculated using

Equation 6.8 and Equation 6.9.

UW = (V 2
0 + rω2)

1
2 (6.7)

α = β − φ (6.8)

φ = tan−1

(
V0

rω

)
(6.9)

The sectional lift dL and drag dD are defined by Equation 6.10 and Equation 6.11 with

reference to Figure 6.14 and simple trigonometry.

dL = dT cos(φ) + dQF sin(φ) (6.10)

dD = dQF cos(φ)− dTsin(φ) (6.11)

These sectional values are integrated over the blade span to give the total lift and drag.
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L =

∫ r=rtip

r=rhub

dL (6.12)

D =

∫ r=rtip

r=rhub

dD (6.13)

The lift and thrust is directly related to the relative air angle α, therefore an isolated

increase in β, rpm, or freestream M at a constant speed of sound will result in an increase

in α and hence lift, thrust and power. These were the trends observed from the CFD

calculations which gives confidence in the method. The agreement with measured data

is generally satisfactory too, the largest differences between CFD and experiment tend

to occur where the incidence onto the blade is high and there is lots of flow separation.

6.6.1 SR2 model validation

As stated in Section 6.1 the straight bladed SR2 propeller is also used in this project.

The SR3 was used as a test case to obtain the required CFD set-up. The same do-

main size, boundary conditions, turbulence model and grid strategy were used for the

SR2 as the SR3. However, due to the possibility of different flowfield characteristics in

the propeller near field a separate grid sensitivity study was conducted. The Richard-

son’s Extrapolation method was used again and the results are shown in Table B.1 of

Appendix B, an asymptotic range of one was achieved. To validate the SR2 model, mea-

sured data from NASA 10 by 10 ft supersonic wind tunnel were used again in the same

experiment as for the SR3. The conditions for the test case are M = 0.2, J = 1.1 and

β = 45.8 and the comparison between the CFD calculations and measured experimental

data are shown in Table 6.10.

Parameter CFD Experiment % Difference

CT 0.632 0.642 1.63

CP 1.457 1.428 -2.02

Table 6.10: Comparison between measured experimental data and CFD for integrated
blade forces on SR2 propeller blade

The comparison to measured data is good with differences of 1.63 % and -2.02 % for CT

and CP respectively - which is better than the SR3 validation case. With a model for

the SR3 and SR2 successfully validated and grid independent the next step is to analyse

the tip vortex characteristics.
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6.7 Vortex Postprocessing Methodology

Section 6.7 describes the method used to extract the relevant tip vortex parameters from

the CFD flowfield. The parameters of interest include the tip vortex circulation, Γvtx,

core size, rc, maximum tangential velocity, Vθmax and the Vatistas shape factor, n. These

are the parameters of interest because they allow a complete description of the tangential

velocity as a function of radial distance from the vortex centre if using a Vatistas type

vortex model. The ability to reconstruct the tangential velocity distribution from a set

of key parameters lends well to the development of the desired tip vortex correlations.

It should be noted that in the overall scope of the project the requirement extends to

knowledge of the radial location of the tip vortex centre and out of plane velocity in the

direction of the vortex path, the methodology of these two requirements are described

separately in Sections 7.6 and 7.5 resepctivley.

The parameters are evaluated at eight separate axial locations downstream from the

propeller pitch change axis, normalised at 1,1.25,1.5,1.75,2,2.25,2.5 and 3 chords down-

stream, where the chord is the reference chord at 75 % blade span. The first step is

creating a slice at one of the designated eight axial locations normal to the engine axis

and calculating the vorticity normal to this plane in the thrust acting direction. The

first step is shown in Figure 6.15 which shows contours of stream wise vorticity in a

plane taken normal to the engine axis.

Figure 6.15: Contours of vorticity downstream of propeller in plane normal to engine
axis

Inspection of Figure 6.15 reveals the elliptical distribution of the tip vortex, this is

because the tip vortex will travel in a helicoidal path as it leaves the propeller trailing
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edge and a slice normal to the engine axis will result in an oblique plane across the vortex

which displays an elliptical spatial distribution of vorticity. This concept is analysed in

more depth in Section 7.3. To obtain a circular and axisymmetric vortex, a slice normal

to vortex path is required, this is done using Tecplot and details of the coordinate

transformation including the coordinate system, assumptions and equations are included

in Section B.3 of Appendix B. To get coordinates of the tip vortex centre, the magnitude

of vorticity is used. The process is automated and the method of avoiding erroneous

locations for the tip vortex centre is to isolate the region of the tip vortex by neglecting

the radial locations close to the hub boundary layer for example.

Once in a plane normal to the vortex path with the tip vortex centre identified a new

fully structured circular zone is created onto which the vorticity and velocity components

are linearly interpolated onto. Figure 6.16 provides an isometric view of the structured

circular zone normal to the tip vortex path and its orientation relative to the original

planar slice normal to the engine axis. Also included in Figure 6.16 is a view of the

vortex in the cross plane normal to the tip vortex with a more circular and symmetric

vortex relative to Figure 6.15.

(a) Isometric (b) Normal

Figure 6.16: Orientation of vortex cross plane circular zone relative to engine normal
plane and close up view of vortex in 2D cross-plane normal to tip vortex path

One of the advantages of using a fully structured zone of defined radii is to simplify

the circumferential averaging of the tangential velocity. The circumferential averaging

assumes the vortex is axisymmetric, however this may not be the case for high loading

cases where the leading edge vortex (LEV) and tip vortex mix together. After the

averaging process a radial distribution of tangential velocity is obtained, where the

centre of the vortex corresponds to the centre of the structured zone at r=r(o) in a polar

coordinate system.
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To obtain a Vatistas vortex model a regression fit using Equation 6.14 is applied where

the value of the shape factor, n, is iterated through from one to four. The shape factor

which results in a regression with the lowest variance between the circumferentially

averaged tangential velocity distribution from the CFD and the analytical description

defined in Equation 6.14 is selected. Section 7.4 , evaluates the relative merit of using a

integer or real number for the shape factor, n.

Vθ = Vθmax21/n

{
r̄

(1 + r̄2n)1/n

}
(6.14)

The tangential velocity distribution and chosen shape factor can be used to obtain the

vortex core size and maximum tangential velocity, this leaves the tip vortex circulation

as the remaining tip vortex parameter to determine. The circulation is calculated using

a scalar integration of the vorticity normal to the cross plane in a Cartesian coordi-

nate system in two dimensions. This method is then repeated for different downstream

locations and flowfield operating points, for both the SR2 and SR3.

6.8 CFD Methodology summary

The CFD model consists two fully structured domains combined with a general grid

interface with a steady-state frozen rotor frame. An SST turbulence model with tran-

sition and curvature correction term was selected along with an appropriate grid and

domain size based on comparison to measured experimental data for both the SR2 and

SR3 propeller blades. A method is also defined to extract the key tip vortex parameters

to be used for further analyses.
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Analysis and Synthesis

Chapter 7 presents suggested approaches to model the tip vortex of an open rotor for

interaction noise prediction tools. Table 7.1 summarises the tip vortex model sensitivity

considered and the methodology tool required to investigate its effect. Cases one and

two compare the vortex model which describes the tangential velocity distribution, the

comparison is between the baseline model in CRPFAN and the proposed Vatistas type

model. Case three analyses the effect of the number of streamlines used in an aeroa-

coustic tool such as CRPFAN. Case four examines the spatial orientation of the vortex

as seen by the aft blade.

The first four cases do not require detailed CFD flowfield information and are presented

first. The next step is to analyse the flowfield from the CFD calculations for both the

SR2 and SR3 propellers to understand how the different loading conditions effect the tip

vortex profile. Case five uses the CFD flowfield to model the axial component of the tip

vortex and determine the aeroacoustic effect of its inclusion. Case six presents a revised

model of the tip vortex trajectory model through the use of CFD and the aeroacoustic

effect of using the revised model compared the baseline trajectory model in CRPFAN.

Case seven then develops revised correlations for the key tip vortex parameters with

an aeroacoustic comparison between the revised correlations and baseline correlations

included. The final model analyses the aeroacoustic effect of including all the suggested

vortex modelling approaches and which one aspect has the most significant aeroacoustic

effect.

The final part of the analysis investigates the aeroacoustic effect of using different aero-

dynamic methodologies to generate the source lift distribution as an input to CRPFAN.

The three methodologies include the use of a Blade Element Momentum Theory (BEMT)

strip theory code, a Theodorson Method strip theory code and the third methodology

is the use of CFD.

107
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Case Sensitivity Methodology Tool Required

One Baseline Model CRPFAN

Two Vatistas Model CRPFAN

Three Number of Streamlines CRPFAN

Four Spatial Orientation CRPFAN

Five Vortex Axial Velocity Component CRPFAN & CFD

Six Trajectory Model CRPFAN & CFD

Seven Core Size and Tangential Velocity Correlations CRPFAN & CFD

Eight State of the Art Model CRPFAN & CFD

Table 7.1: Aeroacoustic Synthesis Matrix

7.1 Effect of Tip Vortex Model

Section 7.1 examines the aeroacoustic effect of replacing the baseline vortex model in

CRPFAN developed by Majjigi et al10 with a Vatistas type vortex model. The Majjigi

model uses a linear body of solid rotation inside the vortex core and an irrotational model

outside of the core. This is similar to a Rankine type vortex model and both include

a discontinuity at the edge of the core where the model transitions from rotational to

irrotational type flow. This discontinuity is a mathematical construct and not a physical

mechanism which is expected in a tip vortex. The Vatistas type vortex model does not

contain all its vorticity inside the vortex core and there is no such discontinuity in the

radial tangential velocity distribution.

An additional version of CRPFAN was created which replaced the baseline Majjigi vortex

model with the suggested Vatistas type vortex model. The CROR operating conditions

used in the test case to determine the aeroacoustic effect of replacing the vortex model

are described in Table 7.2 and are the same used for the CRPFAN validation study of

Section 4.3 in Chapter 4.

Parameter Value

Geometry F7-A7

Blade numbers 11 x 9

rpm 6800

Mo 0.2

CP 0.9856, 1.1639

β3/4 (◦) 36.4,36.5

Sideline distance 4.5 ft

Table 7.2: CRPFAN validation test case operating conditions
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The only difference between the cases presented are the type of vortex model used, the

inputs to CRPFAN for both cases are identical. The empirical correlations to predict the

tip vortex parameters are therefore also the same. The tangential velocity distribution in

a local coordinate system as a function of radial distance for a given maximum tangential

velocity, Vθmax , and vortex core size, rc, for both a Vatistas type vortex model with a

shape factor, n, of two and the baseline CRPFAN vortex model developed by Majjigi et

al are shown in Figure 7.1. Note the lack of discontinuity and smoother distribution of

Vθ around the core of the vortex at r/rc of one.

Figure 7.1: Majjigi and Vatistas vortex model comparison

The sound pressure level contour map for both cases are shown in Figure 7.2 accompanied

with the difference in OAPL at each observer angle. The difference is calculated using

Majjigi minus Vatistas. The inclusion of a Vatistas type vortex model generates more

interaction noise overall with up to 4 dB 80 ◦ from the plane of rotation at 170 ◦.

Additional directivity responses for six interaction tones are included in Section D.1.1 of

Appendix D. The Vatistas vortex model generates more interaction noise overall because

of its greater magnitude of Vθ, particularly outside of the vortex core, where Vθ does not

decrease as rapidly as a function of radial distance compared to Majjigi model.
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(a) Majjigi (b) Vatistas
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Figure 7.2: Effect of Majjigi and Vatistas vortex model on interaction noise

7.1.1 Effect of tip vortex model conclusions

It is suggested to use a Vatistas type tip vortex model instead of the baseline model

used in CRPFAN. A Vatistas type vortex model was integrated into CRPFAN and the

interaction noise compared to the amount generated when the baseline is used under the

same operating and test conditions. It was found that the Vatistas type vortex model

increased the interaction noise relative to the baseline model by up to 4 dB. The differ-

ence in interaction noise signifies the importance of the tip vortex model but the reason

the Vatistas vortex model is recommended is because it more appropriately represents

the tip vortex physics without the inclusion of discontinuities.



Chapter 7 Analysis and Synthesis 111

7.2 Effect of streamline discretisation

Section 7.2 is only pertinent to aeroacoustic codes which utilise a strip theory approach,

such as CRPFAN. The default operation of CRPFAN uses ten streamlines from hub

to tip of the blade. If only ten streamlines are used the vortex core could be radially

located in-between two streamlines. This lack of fidelity could result in a miscalculation

of the disturbance field generated by the tip vortex.

In order to test the significance of only using ten streamlines a simple sensitivity study

was conducted. In the study the tip vortex radial location was adjusted by 0.6 % four

times for two versions of CRPFAN. Version one uses CRPFAN in its default mode with

ten streamlines. Version two uses a modified version of CRPFAN which uses a parabolic

interpolation routine to increase the number of streamlines to 51. There are four vortex

radial locations used in total which are described in Table 7.3. Location 1 was chosen

so that the edge of the vortex core is placed at the same location as a streamline in

the lower fidelity version. For the three subsequent locations the vortex is moving away

from that streamline.

Case RV /RT

Location 1 0.9090

Location 2 0.9035

Location 3 0.8981

Location 4 0.8926

Table 7.3: Vortex radial locations used to assess significance of strip theory code
streamline descritisation

Apart from the adjustment of the tip vortex centre location, the operating conditions

and inputs are the same as defined in Table 7.2, which are the same as the previous

Case where the effect of the tip vortex profile was assessed.

With reference to Figure 7.3, sub figure (a) is the OASPL directivity for each location

calculated with the datum version of CRPFAN with ten streamlines and sub figure

(c) is the difference in OASPL levels between Location 1 and Location 4 for this case.

As the tip vortex core moves away from the streamline some of the disturbance field

information of the vortex is not resolved and the interaction noise decreases as a result.

The maximum difference between Location 1 and 2 is up to 9 dB with the lower fidelity

version of CRPFAN. Sub figures (d) and (d) are the equivalent but with a version of

CRPFAN with 51 streamlines. The maximum difference between Location 1 and 2 is

then reduced to 1 dB. The effect of the vortex location is heavily reduced because the

disturbance field is less sensitive to the location of the vortex relative to a streamline

because the required disturbance field information is captured for every vortex location



112 Chapter 7 Analysis and Synthesis

unlike the previous case with a lower fidelity version of CRPFAN. It is expected for

there to be a difference in interaction noise between Location 1 and Location 4 due to

the change in the blade to blade azimuthal angle as the vortex radial location moves

inboard. However this effect should be small for the same operating conditions and tip

vortex modelling approach.

(a) Datum discrtisation (b) Increased discritisation

(c) Datum discrtisation (d) Increased discritisation

Figure 7.3: Effect of CRPFAN spatial discretisation on OASPL directivity

The results show that the interaction noise is sensitive to the location of the vortex

relative to a strip theory streamline point. The closer the vortex core to a streamline

point, the more noise produced, this is because the interaction noise will be calculated

based on a disturbance of greater magnitude. The next step is to determine the aeroa-

coustic effect of using the increased version of CRPFAN using its datum vortex location

calculated using the baseline CRPFAN trajectory model for the test case defined in Ta-

ble 7.2. The CRPFAN baseline model calculates the tip vortex centre radial local, RV

at RV /RT of 0.945. The aeroacoustic effect of this test case is shown in Figure 7.4 with

the sound pressure level contour map for both the datum and increased descritisation

version of CRPFAN. The overall sound pressure levels are the datum minus increased
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descritisation and additional directivity responses for six interaction tones for Case 3

are included in Section D.1.2 of Appendix D.

(a) Datum (b) Increased

(c) OASPL Residuals

Figure 7.4: Comparison between datum and increased streamline discretisation within
CRPFAN

The effect of aeroacoustic effect of using the version of CRPFAN with increased stream-

lines is very low with the differences mostly within 1 dB. However, this is for one test

and this discrepancy changes for different vortex radial locations. It is suggested all

aeroacoustic prediction codes pay attention to this number of streamlines if using a

strip theory approach.

7.2.1 Effect of streamline discretisation conclusions

Ten streamlines is too few to fully capture the disturbance field generated by the vortex.

An interpolation routine is used in CRPFAN to increase the number of streamlines.

The increased number of streamlines reduces the uncertainty of how much of the vortex

disturbance field is being captured.
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7.3 Effect of vortex spatial orientation

Section 7.3 examines the aeroacoustic impact of the the spatial orientation of the tip

vortex. Spatial orientation is the shape of the front rotor tip vortex as seen by the aft

blade as they interact. With reference to Figure 7.5, the aft blade cuts through the

vortex at an oblique angle, this means that it will see an elliptic shaped vortex and not

a circular shaped vortex.

Figure 7.5: Illustration of normal and oblique interaction

In order to investigate the importance of the vortex spatial orientation (i.e. circular

or elliptic) the flow field was constructed for both cases using the method described in

Appendix A. The harmonic content of the vortex disturbance field was calculated and

the two different scenarios integrated into CRPFAN to measure its aeroacoustic effect.

A key assumption used to model the elliptical vortex is that the vortex itself is columnar

in its axial direction. This means that only the spatial distribution of the velocity field

will be changed and not the magnitude of the velocity vectors. Therefore the maximum

tangential velocity will be the same but the distribution will be different for a circular

and elliptical vortex.

The vortex flowfield was constructed to be representative of the one that will be seen

by an aft rotor for the conditions in the aeroacoustic test case defined in Table 7.2.

A sector with an angle of 40 ◦ was created to represent one of the sectors of the nine

aft blades in the azimuthal direction. Figure 7.6 shows the flowfield for the two cases,

with a circular vortex on the left and elliptical on the right. Where, Γ = 1.2m2/s,

rc = 1.5 mm, Vθmax =130 m/s and n = 2 these parameters are the ones calculated using

the correlations in CRPFAN with the same input as used for the validation test case.

The shape factor is assumed to be 2. The spatial distribution for the oblique case is
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representative of a front blade setting angle of 30 ◦ at the upper portion of the blade.

This is fairly typical for take-off and high loading conditions. The relative width of the

oblique vortex will be the inverse cosine of this angle, and therefore twice as wide as the

circular vortex for this case.

(a) Normal (b) Oblique

Figure 7.6: Incident flowfield for normal and oblique interaction of tip vortex with
rear rotor

Figure 7.7 is a plot of Vθglobal as a function of azimuthal distance taken at the edge of the

vortex core for both the circular and elliptical shaped vortices. The global coordinate

system is used as this is consistent with what the aft rotor will see as it cuts through

the vortex. With the columnar vortex assumption the maximum tangential velocity is

the same for both vortices. The velocity profile for the oblique case is broader due to its

elliptic spatial distribution as expected.

Figure 7.7: Azimuthal sections of Vθglobal for the normal and oblique interactions



116 Chapter 7 Analysis and Synthesis

The next step in the analysis of the effect vortex orientation is to determine the harmonic

content for the two cases. The harmonic content is calculated from the FFT of the

Vθglobal and shown in Figure 7.8. The case with an oblique interaction has a higher

power spectrum at lower frequencies, while the normal interaction has a higher power

spectrum at higher frequencies. This is because an FFT of a broader input signal will

produce lower frequency sine wave relative to a a less broad signal which is closer to a

Delta Dirac function which contains infinite high frequency sine waves.

(a) Normal (b) Oblique

Figure 7.8: Power Spectral Density contour map on input disturbance field for normal
and oblique interactions

The final step in the analysis of the spatial orientation of the vortex is to determine its

aeroacoustic impact. This is done using CRPFAN at the validation test case defined in

Table 7.2. The default mode of CRPFAN does not factor in the oblique interaction and

therefore models a circular shaped vortex. The effect of the the oblique interaction was

added into CRPFAN and compared to the datum case where it is modelled as circular.

The only variable changed between the two cases is the spatial distribution of the vortex

tangential velocity distribution with the maximum value the same for both because of

the columnar vortex assumption.

The results of this are shown in Figure 7.9 with the sound pressure level contour map for

both the normal and oblique interaction cases. Also shown are the overall sound pressure

residuals over all directivity angles where the difference is oblique minus normal. The

case with an oblique interaction generates more noise, with a peak difference of around

3.5 dB and the increase being present over most observer angles. Thus demonstrating

that it is essential to take into account the vortex spatial orientation when calculating

CROR interaction noise. The results are also in agreement with the power spectrum

previously calculated, where there is more noise at lower frequencies for the oblique case,

but at higher frequencies the normal case is greater.
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(a) Normal Orientation (b) Oblique Orientation

(c) OASPL residuals

Figure 7.9: Interaction noise effect of Vortex Spatial Orientation

7.3.1 Effect of vortex spatial orientation conclusions

The aft rotor will typically cut through the front rotor tip vortex at an oblique angle,

this results in a tip vortex with a spatial orientation which is elliptical as seen by the

aft rotor. It has shown using the input disturbance field methodology developed in this

project and through modifications within CRPFAN that the oblique interaction is an

important aspect to consider. For the CRPFAN validation test case the elliptical shaped

vortex as a result of an oblique interaction generates more noise with up to 3.5 dB in

the OASPL scale relative to the circular shaped vortex. Its effect is most dominant at

the lower frequencies relative to the circular shaped vortex.
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7.4 CFD Flowfield Analysis

Prior to developing correlations for the vortex axial velocity component, tip vortex

trajectory and parameters for the vortex size and strength the flowfield for both the

SR2 and SR3 will be analysed. Firstly to determine if there are any key flowfield

differences between the SR2 and SR3 propeller and secondarily to determine the effect

of the loading on the applicability of using a Vatistas vortex model.

With reference to Table 7.4 which lists the key non-dimensional parameters used for the

test cases where the flowfield and tip vortex parameters are compared between the SR2

and SR3 propellers.

Parameter SR2 SR3

β (◦) 38 37.3

J 1.2 1.2

M 0.2 0.2

CT 0.4 0.44

CP 0.71 0.62

Table 7.4: Flowfield case comparison

The operating conditions are nearly identical apart from a 0.7 ◦ difference in setting

angle but the SR3 has greater thrust and less power. This is attributed to its greater

average chord length, which will result in more lift produced which has a dominant effect

on the thrust but will also produce more drag which has a dominant effect on the power.

The radial bound circulation, Γbound, distribution was calculated for both cases using

Equation 7.1 and shown in Figure 7.10.

Γbound =
dL

ρUWdr
(7.1)
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Figure 7.10: Radial distribution of bound circulation for both the SR2 and SR3
propeller geometries

The peak bound circulation is greater for the SR3 case than the SR2 and this should

result in a tip vortex with greater strength as will be discussed in Section 7.7.1. To

compare the flowfield and vorticity distributions for both case five slices normal to

the engine axis at 1, 1.5, 2, 2.5 and references chords downstream of the propeller

pitch change axis were created and the streamwise vorticity calculated in each of them.

Figure 7.11 shows the slices for the SR2 and Figure 7.12 for the SR3. Also included in

each figure are streamlines of wall shear stress on the blade suction side to inspect for

levels of flow separation. Note that x/c is referred to as the axial location normalised by

the chord, c, at 75 % radius. In some figures the CFD coordinate system is not always

consistent with this nomenclature. But x/c will always mean the non dimensional axial

distance unless stated otherwise despite any inconsistencies with the CFD coordinate

system.

The general flow characteristics are similar for both the SR3 and SR2 with a primary

tip vortex and the propeller wakes showing similar magnitudes and distribution. The

propeller wake has a vorticity which is of opposite sign to the tip vortex this is because

with reference to Figure 7.10 the gradient of dΓbound
d r
R

is positive up to an r/R of ap-

proximately 0.7. The vorticity is proportional to this gradient and the tip vortex has

a negative gradient and hence negative vorticity. Inboard of the tip vortex is a region

of ’residual’ positive vorticity. This is present for both the SR2 and SR3 cases. The

greater the level of flow separation emanating from a radial location where the dΓbound
d r
R

is greater than zero the more residual positive vorticity that will be entrained into the

primary tip vortex.
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(a) Blade flow pattern (b) x/c=1 (c) x/c=1.5

(d) x/c=2 (e) x/c=2.5 (f) x/c=3

Figure 7.11: SR2 streamwise vorticity at different axial locations

(a) Blade flow pattern (b) x/c=1 (c) x/c=1.5

(d) x/c=2 (e) x/c=2.5 (f) x/c=3

Figure 7.12: SR3 streamwise vorticity at different axial locations

Of particular interest is the tip vortex tangential velocity profile for both cases. To

obtain the tangential velocity profiles a coordinate transformation into the vortex cross

plane was used and the vorticity in the plane was also calculated. The cross plane
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vorticity for both cases are shown in Figure 7.13. As stated the greater peak bound

circulation value of the SR3 should result in a stronger vortex with a greater circulation.

This is demonstrated by Figure 7.14 and Table 7.5 where the vortex for the SR3 is

indeed stronger. The tip vortex core size and maximum tangential velocity are both

larger for the SR3 case. Also included in Table 7.5 is a comparison between the peak

bound circulation, Γbp and the circulation calculated from the scalar integration of the

cross plane vorticity, ΓCFD.

Note the circular distribution of the cross plane vorticity relative to the vorticity distri-

butions of Figure 7.11 and Figure 7.12 this is because of the angle of the plane relative to

the tip vortex path confirming again the need to take into account the spatial orientation

of the tip vortex as previously demonstrated,

(a) SR3 (b) SR2

Figure 7.13: In plane vorticity in vortex normal plane for SR2 and SR3 under similar
loading conditions

Figure 7.14: Tangential velocity profile for both SR2 and SR3 under similar loading
conditions



122 Chapter 7 Analysis and Synthesis

Parameter SR2 SR3

Γbp (m2/s) 3.32 3.48

ΓCFD (m2/s) 2.98 3.35

rc (m) 0.011 0.012

Maximum Vθ (m2/s) 26.5 31.5

Shape factor 1.88 2.47

Table 7.5: SR2 and SR3 flowfield case comparison tip vortex parameters

The comparison was made at a roughly constant loading condition and both the SR2 and

SR3 had similar flowfield characteristics. However, as the loading changes the flowfield

will have different characteristics such as more separated flow for high loading conditions

for example. To investigate the effect of loading on the flowfield of both the SR3 and

SR2 iso-surfaces of static entropy are created for both propellers over a range of loading

conditions. Defining the power loading , PL, as
C3
P
J , where J is the advance ratio and

CP the power coefficient. Iso-surfaces were calculated for six different cases covering a

range of power loading values for both the SR2 and SR3.

At lower loading conditions, typically with a PL less than one, there is one distinct tip

vortex and low levels of flow separation. As the power loading increases the incidence

onto the blade is increased and the flow starts to separate similar to the mechanism of

a delta wing and a leading edge vortex (LEV) is formed. As the loading increases two

separate flow structures are formed and the LEV and tip vortex are separable. For the

very high loading conditions most of the blade flow is separated and one large distorted

flow structure is present.

The SR2 is more susceptible to high levels of flow separation than the more swept SR3

at a given loading condition. The flow follows the contour of the swept SR3 blade profile

but for the straight bladed SR2 the flow starts to separate at mid span of the blade.

Therefore, for a given medium to high loading condition for example a power loading

greater than two there will be more flow separation for the SR2 compared to the SR3.

The iso-surfaces of static entropy are shown for the SR2 and SR3 in Figure 7.15 and

Figure 7.16 resepctivley.

Note that as the calculations were all steady state, these flowfield observations are at a

snap shot in time. In reality the flowfield will be unsteady.
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(a) PL=0.1 (b) PL=0.4 (c) PL=0.6

(d) PL=2.8 (e) PL=5 (f) PL=5.9

Figure 7.15: Iso-surfaces of static entropy for SR2 blade under range of power loading
conditions

(a) PL=0.01 (b) PL=0.4 (c) PL=0.6

(d) PL=3.7 (e) PL=5.7 (f) PL=9.7

Figure 7.16: Iso-surfaces of static entropy for SR3 blade under range of power loading
conditions
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7.4.1 Vatistas vortex model regression analysis

Some of the key research questions in this project are related to how accurately a Vatistas

vortex model describes the tip vortex of a CROR vortex, under different conditions, axial

locations and for different propeller planform profiles. These questions will be considered

here where the quality of the Vatistas analytical description is compared to the CFD

description of the tangential velocity profile. With reference to Equation 8.2 which is

used to calculate the variance of the least squares fit of the Vatistas analytical model

used to describe the tangential velocity profile calculated by CFD.

S2 =
1

n− 1

n∑
i=1

(
VθCFD − VθV at

Vθmax

)2

(7.2)

To allow for comparisons between different cases the tangential velocity is normalised

by its maximum value. Figure 7.17 is the normalised tangential velocity as a function

of normalised radius and the variance is the sum of the square of the difference between

the CFD data and Vatistas model. The lower the standard deviation (square root of the

variance) the better the fit and the more appropriate it is to use a Vatistas type vortex

model.

Figure 7.17: Regression between CFD data and Vatistas model

As evident from the flowfield investigation, that at one chord downstream the flow has

multiple vortical structures from the wake, leading edge vortex and tip vortex therefore

a Vatistas model is not appropriate due to the distortion of the vorticity field and the

standard deviation is the highest for this plane. Plane two has the best quality of fit

overall, providing the loading is not too great, at the time of reaching plane two the

vortical structures have coalesced into one structure which is predominantly a tip vortex

which can be modelled appropriately with a Vatistas vortex model. The quality of the
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fit decreases relative to plane two at plane three this is possibly a result of the vortex

dissipating as it evolves downstream.

The ‘cut-off’ point for the use of a Vatistas type vortex model is lower for the SR2

relative to the SR3 because of the increased levels of flow separation relative to the

SR2. The ‘cut-off’ point for the SR2 at plane two is at a CT of approximatively 0.65.

This value increases to around 0.8 for the SR3 but it is not as distinct as it is for the

SR2. The Vatistas vortex model quality of fit is better for the SR3 relative to the SR2

for cases at similar thrust coefficients. These findings are shown in Figure 7.18 which

included the standard deviation for both the SR2 and SR3 at three different different

planes downstream of the propeller pitch change axis.

(a) SR2 (b) SR3

Figure 7.18: Standard deviation of Vatistas vortex description of CFD data for both
the SR2 and SR3

The Vatistas shape factor, n, should mathematically be an integer number to satisfy

the power series solution to the simplified Navier stokes equations. However, in practice

it can be an integer or real number as its purpose is to model the tangential velocity

distribution. The shape factor is iterated from one to four and the value which yields

the best least square fit is selected. Two methods are used one where the iteration is

only for integer numbers and a second method where any real number between one and

four can be used. The standard deviation for each method is shown for plane two for

both the SR2 and SR3 in Figure 7.19.

There is no considerable advantage to using either an integer or real shape factor in

terms of the quality of the regression. Therefore, either can be used but an integer

number will be used in the project for correctness.



126 Chapter 7 Analysis and Synthesis

(a) SR2 (b) SR3

Figure 7.19: Sensitivity of standard deviation to using an integer or real number for
Vatistas shape factor

7.5 Effect of vortex axial velocity component

The CRPFAN inbuilt vortex model does not explicitly model the axial velocity com-

ponent of the tip vortex. Section 7.5 determines how significant this term is to open

rotor noise tip vortex interaction noise. The model proposed to describe the vortex axial

velocity term, Vx, is the Vatistas model shown in Equation 7.3 as presented in28.

Vx = VXmin

[
1− r2

(r2
c + r2n)

1
n

]
(7.3)

The vortex axial velocity component , Vx, is the velocity acting along the X −Plane in

Figure B.6 of Section B.3 in Appendix B. The ratio of Vxmin to Vx defines whether or

not the vortex is wake like or jet like. If the axial velocity component is greater than the

freestream velocity it is considered jet like and conversely if it less than the freestream

it is considered wake like. The axial velocity induced by the trust of the propeller is

area averaged and subtracted from the velocity in the axial direction in order order to

obtain Vx in the relative reference frame.

The first question is whether or not Equation 7.3 is an appropriate choice to model

the tip vortex axial component. This question is answered with reference to Figure 7.20

which shows the comparison between CFD data and the analytical fit using Equation 7.3

as a function of normalised radial distance from the tip vortex centre for different loading

conditions for both the SR2 and SR3.
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Figure 7.20: Comparison between Vatistas vortex model and CFD data as a function
of radial distance for both the SR2 and SR3 under different loading conditions

The nature of the tip vortex axial component is wake like because Vxmin is less than V0.

The Vx term is negative as a result of the coordinate system used and not representative

of reversed flow. In order to to use Equation 7.3 to model Vx a value for Vxmin is

required. For this reason correlations are derived from the CFD values of the minimum
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Vx as a function of propeller operating conditions. The term used will be the power

loading,
C3
P
J , this is because it characterises the tip vortex path, loading and amount

of drag for a given condition. Correlations which relate the power loading to the ratio

of Vxmin
V o to the power loading are derived for both the SR2 and SR3. They are taken

from the vortex cross plane which was transformed about a plane normal to the engine

axis at two chords downstream of the propeller pitch change axis. The correlations are

defined in Equation 7.4 for the SR2 and Equation 7.5 with the source distribution shown

in Figure 7.21.

Up to values of one, as the power loading increases the vortex axial velocity component

becomes less and wake like with Vxmin approaching the value of Vo. But as the power

loading increases more flow separation occurs which contains flow separated from the

boundary layer which causes the flow to be more wake like and the value of Vxmin tends

away from the freestream velocity Vo. Because the flow separation is dependent on the

level of blade sweep correlations are derived for swept and unswept blades for the SR3

and SR2 resepctivley. The correlations are also split according to the power loading with

a value of two being the transition point for the value of Vxmin increasing or decreasing

with an increase in power loading.
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Figure 7.21: CFD data for Vxmin correlations broken down into loading level and
source geometry with their matching correlation

VXmin
V0

=

0.9
C3
P
J if

C3
P
J < 2

−0.04
C3
P
J + 0.5 if

C3
P
J ≥ 2

(7.4)
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VXmin
V0

=

0.6
C3
P
J + 0.2 if

C3
P
J < 2

−0.02
C3
P
J + 0.8 if

C3
P
J ≥ 2

(7.5)

The Vatistas type description for the axial velocity component with the derived CFD

correlations where integrated into CRPFAN. To determine the aeroacoustic significance

of the inclusion of the axial velocity term the interaction noise was compared to a baseline

version of CRPFAN which does not include the vortex axial velocity term. The case

to be compared to is Case 2, which uses a Vatistas type vortex model for tangential

velocity and this case is identical to Case 5 which is the version with the integrated

correlations and model for Vx. Therefore the only difference between Case 2 and Case 5

is the inclusion of the vortex axial velocity term. The operating conditions are defined

in Table 7.2 and are the same as the CRPFAN validation case.

The effect of including the vortex axial velocity term is noticeable over a range of directive

angles and frequencies. In general the inclusion of the terms acts as a source of noise

addition with a peak difference in overall sound pressure level of up to 3 dB relative

to the case without its inclusion. This confirms the importance of including the vortex

axial velocity component when investigating tip vortex interaction noise. The sound

presser level contour maps for Case2 and Case 5 are shown in Figure 7.22 alongside

the overall sound pressure level residuals which is Case 5 minus Case 2. Additional

directivity responses for six interaction tones for Case 5 are included in Section D.1.4 of

Appendix D.
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(a) Without Vx (b) With Vx

(c) Case 5 - Case 2

Figure 7.22: SPL Contour map effect of vortex axial velocity component

7.5.1 Vortex axial velocity component modelling conclusions

The vortex axial velocity component was modelled using CFD flowfield data and it

was found it can be described by a Vatistas model. The nature of the axial velocity

component is wake like and the level of how wake like Vxmin is relative to Vo is dependent

on the power loading. As a result four correlations have been derived which relate Vxmin
V o

for different power loading and propeller blade sweep. The inclusion of this term in

CRPFAN acts as a noise source with up to 3 dB change in overall sound pressure level

with its inclusion. It is highly recommend that this term is included in tip vortex

interaction noise calculations.
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7.6 Tip Vortex Trajectory Modelling

Section 7.6 presents a revised model to calculate the radial location of the tip vortex

centre as a function of downstream axial distance from the front rotor. The revised

model is derived from the CFD models for both the SR2 and SR3 propellers. The

CRPFAN tip vortex trajectory model is based on a user defined and scalable parameter

the tip vortex trajectory index (TVTI). It was demonstrated in Section 5.1.2 that the

sensitivity of the interaction noise to the scalable input parameter, TVTI, is up to 20 dBs

when using values in the range of 0.5 and 2. This presents large uncertainty with regards

to the interaction noise if the correct value of TVTI is not known prior to a calculation.

The revised model removes this particular uncertainty with the use of known integrated

propeller parameters such as lift and thrust coefficients which govern the extent of tip

vortex radial contraction.

The TVTI parameter simulates the effect of the streamtube contraction present due

to the thrust on the fluid volume. Figure 7.23 presents a simplified model of a single

streamtube up and downstream of the propeller plane of rotation.

Figure 7.23: Streamtube contraction schematic

The continuity equation applied to Figure 7.23 can be used to define Equation 7.6.

ṁ1 = ṁ2 = ρ1V1A1 = ρ2V2A2 (7.6)

With the assumption that the flow is incompressible along the streamtube, Equation 7.7

shows that for an increase in velocity which is required for thrust generation, the area of

the streamtube must reduce. The level of reduction is proportional to the acceleration

along the streamtube which is driven by the thrust of the propeller.
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V2

V1
=
A1

A2
(7.7)

The revised model will express the radial contraction of the tip vortex in the axial

direction as a function of the non-dimensional thrust coefficient. This is instead of using

the scalable input parameter, TVTI.

7.6.1 Trajectory Modelling Method

The coordinate system used to define the revised tip vortex trajectory model is illustrated

in Figure 7.24, where the radial location of the tip vortex centre is defined as, RV , and

the front rotor tip blade radius as, RT , which is half the blade diameter, D. The radial

location of the vortex decreases in the axial positive X − direction.

Figure 7.24: Tip vortex trajectory diagram

Three equidistant reference planes ‘1’, ‘2’, and ‘3’ normal to the engine axis (Z − Y −
Plane) are defined which correspond to one, two and three reference chords (at r/R

of 75%) downstream of the propeller pitch change axis. At each of these planes the

tip vortex centre is identified using a Tecplot subroutine, where the tip vortex centre

is defined as the point of the maximum vorticity magnitude. This subroutine was run

for all cases of the SR2 and SR3 CFD calculation so a database of the tip vortex centre

radial location over a range of loading conditions was obtained to build a correlation.
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Dimensional analysis using the method of Buckingham Pi was used to select the correct

parameters to form the tip vortex radial location correlation from the CFD flowfield data.

With reference to Figure 7.24 and knowledge of the streamtube contraction physics it is

proposed that the tip vortex centre radial location, RV , depends on the tip radius of the

propeller blade, RT , the freestream density of the fluid, ρ, the propeller thrust, T , the

propeller rotations per second, n, and the axial distance downstream, X. This proposed

function is shown in Equation 7.8.

RV = f(RT , ρ, T, n,X) (7.8)

This function includes three dimensions and six variables which means there should be

three Pi groups. The three Pi groups are shown in Equations 7.9, 7.10 and 7.11. The

Buckingham Pi analysis results in three groups which are the non dimensional tip vortex

radial location, RV
RT

, non dimensional axial distance, RT
X , and the thrust coefficient, CT .

π1 =
RV
RT

(7.9)

π3 =
RT
X

(7.10)

π2 =
T

ρn2R4
T

=
T

ρn2(DT2 )
4 = CT (7.11)

The three groups can be expressed as a function of each other as shown in Equation 7.12,

with the form of the correlation to be developed shown in Equation 7.13. For the

correlation a least squares fit linear regression is used with, RV /RT plotted against

some product of the functions of RT /X and CT . The best regression is achieved with

CT raised to the power of two and the non-dimensional axial location to the negative

square root. This model assumes an ax-symmetric wake contraction in the azimuthal

direction. The source data for the linear regression is shown in Figure 7.25 and the

resulting correlation in Equation 7.14.

π1 = f(π2, π3) (7.12)

RV
RT

= f(CT ,
RT
X

) (7.13)

RV
RT

= −0.16

√
X

RT
C2
T + 0.9925 (7.14)
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Figure 7.25: Correlation for tip vortex radial location

The radial contraction of the tip vortex centre is up to 10 % of the blade tip radius

for the high loading conditions. The significance of Equation 7.14 relative to tip vortex

interaction is that for an increase in CT of 0.6 to 0.7 at an axial location of X/RT of

0.48 the tip vortex radial location, RV
RT

, will move from 0.953 inboard to 0.938. This

coupled with the increase in tip vortex core size with thrust can be used to calculate

the required clipping of the aft rotor in attempt to minimise the tip vortex interaction

noise.

7.6.2 Aeroacoustic effect of tip vortex trajectory

The revised tip vortex trajectory model was integrated into CRPFAN to form Case 6,

which is the same as Case 2 except for the inclusion of the revised tip vortex model

instead of the baseline CRPFAN model. Case 6 is compared to Case 2 and the non-

dimensional radial location of the tip vortex at the quarter chord of the aft blade for

test case conditions of Table 7.2 are summarised in Table 7.6. Because the CRPFAN

model is dependent on the user parameter, TVTI, two values are quoted of one and two

which are within the recommended range of values in CPRFAN documentation. The

revised model from CFD compares closest to the CRPFAN model when a TVTI of two

is selected.
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Model RV /RT

CRPFAN 1 (TVTI=1) 0.945

CRPFAN 2 (TVTI =2) 0.89

Revised 0.885

Table 7.6: Vortex Radial location for CRPFAN datum model and revised trajectory
model

The comparison between the CRPFAN and revised trajectory model is made for four

versions of CRPFAN. Case 2a uses CRPFAN with a TVTI of 1 and has ten streamlines.

Case 2b is the exact same except 51 streamlines are used in CRPFAN. Case 6a uses

CRPFAN with the revised trajectory model with ten streamlines and Case 6b uses the

revised trajectory model in CRPFAN with 51 streamlines.

The use of the revised trajectory model reduces the noise by up to 3 dB for the datum

descritisation and 4 dB for the increased descritisation. This difference will reduce if

a TVTI of 2 is used. Also of significance is the importance of using more streamlines

for an aeroacoustic strip theory code because the acoustic response to the revised tra-

jectory model is under predicted when using only ten streamlines. The sound pressure

level contour map for all for Cases 2a, 2b, 6a, 6b and the overall sound pressure level

residuals for Case 6a minus case 2a and Case 6b minus Case 2b are shown in Figure 7.26.

Additional directivity responses for six interaction tones are shown in Section D.1.5 of

Appendix D
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(a) Case 2a (b) Case 2b

(c) Case 6a (d) Case 6b

(e) Case 6a minus Case 2a (f) Case 6b minus Case 2b

Figure 7.26: Interaction sound pressure level map and OASPL residuals for CRPFAN
and revised trajectory model with datum and increased resolution versions of CRPFAN

7.6.3 Trajectory modelling conclusions

A revised model for the tip vortex trajectory has been derived using CFD flowfield

data combined with dimensional analysis. This model reduces the required knowledge

required to accurately predict the tip vortex trajectory because it eliminates the use of

TVTI. The inclusion of this model in CRPFAN reduces up to 4 dB OASPL interaction

noise when using CRPFAN with an increased number of streamlines.
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7.7 Tip vortex correlations derived from CFD flowfield

Section 7.7 presents the development of correlations for the tip vortex size and strength

using the flowfield from the CFD on the SR2 and SR3 advanced propeller blades. As pre-

viously stated the intended application of the correlations is for the use in a preliminary

design tool such as CRPFAN. The proposed model to describe the tip vortex tangential

velocity distribution is a Vatistas type. To fully describe the tangential velocity distri-

bution of a Vatistas type tip vortex four out of the circulation, Γ, core size, rc, maximum

tangential velocity, Vθmax, and shape factor, n, is required. The first parameter to be

considered will be the tip vortex circulation , Γ.

7.7.1 Correlations for tip vortex circulation

It was demonstrated in Section 5.1.1 of Chapter 5 that variations of the tip vortex

circulation can contribute up to 20 dB to the interaction noise when iterating values

of the circulation index, Ci, between values of 1 and 3. This effectively presents an

uncertainty to an aeroacoustic calculation as the exact value of the Ci to the user may not

be known at the time of the calculation. The use of a correlation based on known or easily

calculated propeller aerodynamic coefficients to determine the tip vortex circulation

reduces this uncertainty. To asses the credibility of the derived correlation a comparison

to PIV is used. The CFD model uses a RANS turbulence model which assumes isotropic

turbulence54. A concern could be that the isotropic turbulence assumption leads to a

highly dissipative calculation for the vortex, which will result in an incorrect magnitude

vorticity distribution and therefore incorrect tip vortex circulation.

The comparison to a limited set of in-house high resolution PIV measurements will

help determine how dissipative the CFD model is. The comparison is made for the two

blade analogue rotor between CFD and PIV for the integrated vorticity at different axial

locations downstream of the propeller pitch change axis. Further details of the two blade

analogue PIV methodology is described in Appendix C.

The rotor operating conditions for case one are a 75 % reference blade setting angle of

26.5◦ , rotational speed of 6875.5 revolutions per minute and a freestream Mach number

of 0.1. The measurements planes for case one are at one and two chords downstream of

the propeller pitch change axis, where the chord is referenced at the 75 % radius.

The measurements planes are normal to the engine axis, and with reference to Figure 7.27

which demonstrates the different sized circular zones used for the integration. Figure 7.27

is a contour plot of the stream wise vorticity in a plane normal to the engine axis at

one reference chords downstream of the front rotor pitch change axis calculated with

the CFD model. The three zones around the tip vortex region are 30, 40 and 50 mm

in radius and are regions in which a scalar integration of the streamwise vorticity is
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performed to yield the tip vortex circulation. This was done for both the CFD and

PIV measurements and the comparison between the circulation values are summarised

in Table 7.7.

Figure 7.27: Tip vortex for PIV Case One at x/c=1 normal to engine axis

Zone radius (mm) CFX PIV % difference

Plane 1 30 1.35 1.394 3.2

40 1.595 1.5382 -3.7

50 1.7742 1.7659 -0.5

Plane 2 30 1.1 1.15 4.3

40 0.86 1.265 32.0

50 1.34 1.375 2.5

70 1.6192 1.6162 -0.2

Table 7.7: Comparison of tip vortex circulation between CFD and PIV for β =22.8 ,
rpm=6875.5, M=0.1

The circulation values between CFD and PIV are in good agreement, with most of the

comparisons within 5 % of each other. The comparison at x/c of 2 with a 40 mm radius

is attributed to a large ratio of vorticity with an opposing sign originating from the wake

to the bulk vorticity from the tip vortex. This process was repeated for a different case

where the variable change is the freestream Mach number which increases from 0.1 to

0.144. The comparison between PIV and CFD for this case is shown in Table 7.8. The
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comparison overall is not as good as for the previous case but the plane most appropriate

for the end application is at x/c of two. This is because plane two is closest to the axial

distance between pitch change axis used for the UDF for example. At plane two and

with the nominal integration zone radius the agreement between PIV and CFD is good

with the CFD calculating a value 2.7 % greater.

Zone radius (mm) CFX PIV % difference

Plane 1 30 1.68 1.48 -13.7

50 1.82

Plane 2 30 1.39 1.15 -20.4

50 1.7 1.66 -2.7

70 1.62

Plane 3 30 0.98 1.33 26.09

50 1.41

Table 7.8: Comparison of tip vortex circulation between CFD and PIV for β =22.8 ,
rpm=6875.5, M=0.144

In summary the agreement between CFD and PIV for the tip vortex circulation is very

good, especially when considering the end application of the correlation. This gives

confidence in the CFD calculations to derive a bespoke tip vortex correlation for the tip

vortex circulation.

Dimensional analysis for circulation parameter

The first step is to determine an appropriate non-dimensional parameter for the tip

vortex circulation. The same approach will be taken as for the tip vortex trajectory

model using the method of Buckingham Pi.

With the laws of Circulation by Kelvin and Helhmholtz under consideration it is pro-

posed that the circulation will be a function of the density, ρ, the relative velocity onto

the blade, UW , the lift, L , and propeller tip diameter, D. This means there are five vari-

ables and three dimensions which results in two Buckingham Pi groups. Two resulting

Buckingham Pi groups are shown in Equations 7.16 and 7.17.

Γ = f(ρ, UW , L,D) (7.15)

π1 = Γ, Uw, L,D (7.16)

π2 = ρ, Uw, L,D (7.17)

The first group, π1, will be named the circulation parameter, Γ∗. The second group, π2,

is dimensionally equivalent to the propeller total lift coefficient defined in Equation 7.23.
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Therefore the circulation parameter will be some function of the lift coefficient. From

finite wing theory the relationship between induced drag, CDi, and CL is shown in

Equation 7.22. Where for a given aspect ratio, AR, and efficiency factor, ε, the induced

drag is a function of the lift coefficient to the power of two.

π1 =
Γ

UwD
= Γ∗ (7.18)

π2 =
ρU2

wD
2

L
(7.19)

Γ

UwD
= f(

ρU2
wD

2

L
) (7.20)

Γ∗ = f(CL) (7.21)

CDi =
C2
L

πεAR
(7.22)

CL =
L

1
2ρU

2
wref

SW
(7.23)

A linear regression of the circulation parameter as a function of the lift coefficient to the

power of two was determined and the resulting correlation is shown in Equation 7.24.

The circulation parameter is determined from the integrated vorticity in the vortex cross

plane with the incident velocity at the 75 % section on the blade. The cross plane is

normal to an axial location of x/c equal to two, however the circulation by definition

should be constant for each plane. The same process was applied to the thrust coefficient

because of its significance in propeller aerodynamics and design. The correlation for the

thrust coefficient is shown in Equation 7.25 and the source data for both the lift and

thrust coefficient correlations is shown in Figure 7.28.

The agreement between correlation and CFD source data is not as good at the higher

loading conditions such as a
C2
T
B of 0.07 and greater because there is more flow separation

at these conditions with multiple vortical structures merged into one.

Γ∗ = 0.26C2
L + 0.018 (7.24)

Γ∗ = 1.5
C2
T

B
+ 0.007 (7.25)
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Figure 7.28: Source data for correlations for tip vortex circulation parameter as a
function of list and thrust coefficient

In Section 3.5.1 of Chapter 3 lifting line theory was used to predict the strength of the tip

vortex. Where the peak bound circulation is approximated as equal to the strength of the

tip vortex. The bound circulation can be calculated from the sectional lift distribution

through Kutta-Joukowski theory24 shown in Equation 7.26. In Chapter 3 the peak

bound circulation was calculated analytically using lifting line theory and compared to

measured experimental data.

Γbound =
dL

ρUWdr
(7.26)

Here the source data for the comparison is both from the CFD. The bound circulation is

calculated from the radial lift distribution and the tip vortex circulation from the inte-

grated cross plane vorticity. Figure 7.29 shows how good of an approximation the peak

bound circulation is to the tip vortex circulation. There are two vorticity integration

methods included, one where all the vorticity in the zone is integrated regardless if it is

a positive or negative in sign. The other integration method only includes vorticity that

is negative. At low thrust conditions there is little difference between the peak bound

circulation and both versions of the integrated vorticity. As the thrust increases the

final integrated tip vortex will have more content from the separated flow of the leading

edge vortex and the wake which will have a different sign of vorticity to the original tip

vortex. This is why at the larger thrust coefficients the difference between the combined

and only negative vorticity derived circulation increases. Note that the integration for

the PIV comparisons included vorticity which is both positive and negative. The corre-

lations of Equations 7.24 and 7.25 were derived using circulation calculated from only

negative vorticity because this is the vorticity attributed to the tip vortex.
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Figure 7.29: Comparison between peak bound and integrated vorticity

The correlations for Γ∗ use the combined flowfield data from both the SR2 and SR3.

The sensitivity of Γ∗ to rotor operating conditions is very similar for both the SR2 and

SR3 and separate correlations are not required. This is demonstrated in the multi-

dimensional maps for both the SR2 and SR3 CFD in Figure 7.30 which shows the

sensitivity of Γ∗ to the power coefficient over a range of operating conditions.

(a) SR2 (b) SR3

Figure 7.30: Multidimensional maps of Γ∗ versus CP for SR2 and SR3 where J is the
advance ratio and β reference pitch angle
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7.7.2 Tip vortex strength correlation conclusions

The method used to calculate the tip vortex strength using CFD has been validated

against PIV with reasonable agreement. The peak bound circulation is a good approx-

imation of the tip vortex strength over a range of thrust coefficients. It does however

tend to break down at the higher thrust conditions. Correlations have been developed to

predict the non-dimensional circulation parameter, Γ∗, as a function of both the lift and

thrust coefficient with trends that represent the induced drag law of finite wing theory.

7.7.3 Vortex core size correlations

With correlations derived for the tip vortex strength, the next tip vortex parameter to

consider is the vortex core size, rc. Prior to the development of bespoke correlations

using the CFD within this project the correlations used in CRPFAN will be analysed

for their suitability.

7.7.3.1 Analysis of CRPFAN Cascade correlations

The correlations used in CRPFAN were developed by Majjigi10 and are based on two

cascade experiments by Mason and Marchman31 and Grow33. With most of the data

points in the final correlation for the tip vortex core size derived from the Mason and

Marchman experiment. There are three key questions in the analysis of the correlations.

Firstly, how do the measurements of the source experiments used compare to other

similar experiments? Secondarily how well does the correlation model the core size from

other cascade experiments? Thirdly, which is key to this project, how appropriate is it

to use the fixed wing measurements for a CROR tip vortex generated from a rotating

wing?

To address the first question measurements of the tip vortex core size from additional

fixed wing cascade experiments were compiled. The measurements are from four sources

and are summarised in Table 7.9. The four data sources include different wing sections

such as NACA 0015 and NACA 0012, aspect ratios, incidence onto the blade and tip

shape geometry at a variety of normalised measurements planes downstream of the wing

trailing edge, x/c.
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Author Wing definition AoA, α Aspect Ratio x/c Tip geometry shape

Birch55 NACA 0015 0-18 1.49 1.5 Square

Lee56 NACA 0012 4-15 3.6 5 Square and circular

Zhou57 NACA 0012 8,16 1.6 0-5 Square

McAlister58 NACA 0015 12 9.6,8.1,6.6 0-6 Square

Table 7.9: Additional Cascade measurements summary

Figure 7.31 shows the relationship between the non-dimensional vortex core size, rc/c,

where c is the wing chord and the angle of attack (AoA) onto the blade, α. The core size

is a strong function of the angle of attack, for example for the Birch55 measurements for

an increase in incidence from 2 to 18 degrees the non-dimensional tip vortex core size

increases by 188 %.
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Figure 7.31: Comparison of cascade data as a function of angle of attack

The measurements used for the CRPFAN correlations fall in the range of other mea-

surements with a tip vortex size ranging from approximately 5 to 6 % of the chord.

This means the measurements which are used for the CRPFAN correlations are repre-

sentative of similar studies. The next key question is how well does the correlation used

in CRPFAN for the tip vortex core size predict the tip vortex core size over a range

of measurements parameters. To answer this question the parameter r∗ = rc√
CLc

was

calculated for the available data and plotted against x/c with the CRPFAN empirical

correlation defined in Equation 7.27 mapped on.
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rc

c
√
CL

=
0.01584(x/c) + 0.0014

0.184(x/c) + 1
(7.27)
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Figure 7.32: Comparison of CRPFAN correlation to additional cascade measurements

Although the correlation agrees well with one of the measurements of McAlister58 and

the circle tip measurements of Lee56 in general there is a large range of scatter and the

correlation simply does not capture the effect of aspect ratio, tip shape and incidence

well enough. In general, over the range of values in Figure 7.32 the CRPFAN correlation

under predicts the core size relative to the other measurements. Figure 7.33 shows an

attempt by the author to reduce the scatter and to capture the effects of aspect ratio,

incidence and tip shape better where x̄ is x/c and r̄c is rc
c . The corresponding correlations

from the regression of Figure 7.33 are shown in Equation 7.28 and Equation 7.29 for

square and circular shaped wing tip geometries resepctivley.
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Figure 7.33: Correlation for combined cascade data

r̄c
2 =

1

x̄2

[
0.0078

CLx̄
2

√
AR

+ 0.0008

]
(7.28)

r̄c
2 =

1

x̄2

[
0.0026

CLx̄
2

√
AR

+ 0.004

]
(7.29)

To answer the third question and to determine how appropriate the CRPFAN tip vortex

core size correlation is for a rotating wing such as a propeller the correlation was com-

pared to the tip vortex core size calculated from the CFD flowfield for the SR2 and SR3.

This comparison is shown in Figure 7.34. The first observation is the greater magnitude

of the vortex core size calculated from the CFD relative to the CRPFAN correlations.

This will be discussed in more depth in subsequent sections. The other noticeable ob-

servation is the large range of scatter in the data. This suggests that the correlation is

not applicable to rotating wings. The conversion from fixed wing to rotating wing was

very simplistic.

The regression constants in the linear rational function were kept constant when the

lift coefficient, CL, was changed to C̄l. Where C̄l is the averaged outer 30 % of the

propeller radial lift distribution. The same conversion was done for the wing chord, c,

into c̄. The reason for this outboard 30 % averaging was attributed to that being the

pertinent region of the lift distribution for tip vortex generation. The axial distance

downstream of the wing trialling edge, x/c, was also changed to s/c̄ which is the total

distance travelled by the vortex in its helical path.



148 Chapter 7 Analysis and Synthesis

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r
c

c̄

√

C̄
l

s

c̄

 

 

CRPFAN
CFD Data

Figure 7.34: Comparison between CFD data and CRPFAN correlation for tip vortex
core size

Analysis of the cascade tip vortex measurements confirms the need to develop a new

correlation for the tip vortex core size for a propeller. The revised correlations are

derived from CFD calculations for the SR2 and SR3 propeller. Figure 7.35 shows three

correlations for the tip vortex core size of an advanced propeller sourced from CFD data.

The cascade measurement analysis revealed a large dependency of the vortex core size

on the incidence. For this reason the thrust coefficient , CT , and peak sectional lift,

Clpeak , is raised to the power of two. Two versions of the CT are used one which is based

on the helical distance travelled by a vortex on its path, s/c, and the second is that axial

distance from the pitch change axis x/c. The x/c version is more for reference than for

use in an aeroacoustic calculation. Note that c is the reference chord at 75 %. The final

correlations are shown in Equations 7.30, 7.31 and 7.32.

Only cases where the Vatistas model linear regression had a standard deviation (nor-

malised by the maximum tangential velocity) of 5 % or less where used. This was used

as a quality criteria to avoid the inclusion of erroneous data in the correlations. It

should be noted that the applicability of the correlation is only for up to and below CT
B

of 0.0875. Where B is the number of blades. Beyond this range there is lots of flow

separation, a large leading edge vortex and possible vortex bursting. The correlation

includes values from reference planes between x/c of 1.5 to 3 and within this region the

vortex is fully rolled up and the effect of the distance travelled by the tip vortex will

have a small effect on its core size.
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Figure 7.35: Vortex core size correlations for helical and axial evolution

rc
D

= 0.036
C2
T√
s̄

+ 0.017 (7.30)

rc
D

= 0.02
C2
T√
x̄

+ 0.017 (7.31)

rc
c

= 0.1318
C2
lpeak√
s̄

+ 0.1189 (7.32)

Figure 7.36 shows how at a location s/c̄ of five downstream of the propeller pitch change

axis and for a variation of the C̄l from 0.1 to 1 comparison between the core size cal-

culated using the CRPFAN correlations and revised CFD correlations. For a fair com-

parison a modified CFD correlation based on C̄l was derived from the CFD data and

is shown in Equation 7.33. The comparison highlights the greater magnitude of the tip

vortex core size for the CFD and the greater influence of the source lift distribution

which is not captured as much in the CRPFAN correlation.
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Figure 7.36: Comparison of revised correlation to CRPFAN for tip vortex core size

7.7.4 Aeroacoustic impact of bespoke tip vortex correlations

With revised correlations for the tip vortex core size, rc, and circulation, Γ, and the

assumption of a shape factor, n of 2 there is enough information to fully construct a

Vatistas type vortex model. With the application of Equation 7.34 the maximum tan-

gential velocity, Vθmax, can be determined and used to calculate the tangential velocity

distribution as a function of the vortex local radius.

Vθ = Vθmax21/n

{
r̄

(1 + r̄2n)1/n

}
(7.34)

Where:

Vθmax =
Γ

2πrc
(7.35)

The validation test case defined in Table 7.2 was used for the operating conditions to

determine the aeroacoustic effect of using the revised tip vortex correlations derived

using the CFD data. The correlations to calculate rc and Γ and Equation 7.34 were

integrated into CRPFAN and compared to a version of CRPFAN with the original

correlations included. A Vatistas type vortex model is used for both to limit the degrees

of freedom within the comparison. Therefore Case 2 is compared to Case 7, where Case

2 uses the CRPFAN correlations to calculate the tangential velocity distribution with a

Vatistas type vortex model and Case 7 uses the revised tip vortex correlation from CFD
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to calculate the distribution also a Vatistas type. Additional effects such as streamline

descritisation, spatial orientation, trajectory and the vortex axial velocity component

are not considered for this current comparison.

The results of this comparison are shown in Figure 7.37 with a sound pressure level

contour map for Case 2 and Case 7 for comparison and OASPL residuals where it is

Case 7 minus Case 2. The increase in tip vortex core size with the CFD correlations

results in a significant increase in the interaction noise with a nearly uniform increase

of approximately 16 dB over all observer angles. Additional directivity plots for six

interaction tones are shown in Section D.1.6 of Appendix D where the noise increases

beyond the experimental values.
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Figure 7.37: Aeroacoustic effect of revised tip vortex correlations compared to CRP-
FAN

Analysis of Tip Vortex Core Size



152 Chapter 7 Analysis and Synthesis

The tangential velocity profile calculated by CFD was compared to PIV for the open

rotor analogue at β = 26.4, M = 0.144 with an RPM of 6875.5 at two chords downstream

of the propeller pitch change axis. This comparison is shown in Figure 7.38, the tip

vortex core size calculated with CFD is approximately three times that of the PIV.

Figure 7.38: Comparison between CFD and PIV for radial Vθ distribution for two
blade open rotor analogue

One of the reasons the tip vortex is larger is because the CFD model is very dissipative.

The CFD model uses an eddy viscosity model approach which is based on the Boussinesq

hypothesis and assumes isotropic turbulence54. Where flow is not isotropic such as in

the vortex additional turbulent kinetic energy will be produced which effectively damps

out the vortex which results in the larger core size and smaller tangential velocity which

can result in obtaining the correct level of circulation, but for the wrong reason. This is

one of the reasons for the curvature correction term used in conjunction with the SST

turbulence model.

Attempts at a Reynold’s Stress Model (RSM) were made using the quadratic pressure

strain formulation. The advantage of an RSM model is that it does not have the isotropic

turbulence assumption because the Reynold stresses are calculated individually. The

disadvantage of an RSM model is the difficulty in achieving iterative convergence when

using them. This was the case for models used in this study and convergence could

not be achieved. The author made attempts at a tactical convergence strategy such

as starting from an upwind solution and initialisation from a converged SST model for

example. However, the attempts proved unsuccessful and iterative convergence was not

achieved.



Chapter 7 Analysis and Synthesis 153

Another reason for the larger core size relative to the PIV is related to the spatial

descritisation of the tip vortex. Grid sensitivity studies were completed for the SR2,

SR3 and two blade analogue rotor meshes and the asymptotic range was achieved for

each. However, the parameters used where the thrust and power coefficients which are

integrated parameters which will be less sensitive to spatial descritisation than a tip

vortex.

This is especially significant for the two bladed rotor when compared to the SR2 and

SR3.The finest grids used for the two bladed rotor included 11.5 million nodes in the

inner rotational domains. The two blade rotor domain has an azimuthal angle of 180

degrees. The SR2 and SR3 have eight blades and therefore an azimuthal angle of 45

degrees. With reference to Figure 7.39 the effect this large azimuthal angle on the spatial

descritisation is evident. A vortex with a phase angle which locates the vortex closer to

the centre of the domain will have more points per vortex core than a vortex which is

located closer to the periodic boundaries with better quality lower aspect ratio cells. This

is the disadvantage of using a fully structured grid and attempts were made to increase

the mesh density but the 11.5 million nodes was at the limit of the memory of the

meshing application at the time of use. The effect of increased spatial descritisation on

the tip vortex tangential velocity profile at one plane downstream is shown in Figure 7.40.

Where the coarse, medium and fine grids include 5.5, 7.5 and 11.5 million nodes in the

inner rotational domain resepctivley.
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(a) Coarse Section (b) Fine Section

(c) Overview

Figure 7.39: Two blade analogue mesh density at different azimuthal locations

Figure 7.40: Effect of mesh density on Vθ distribution for two bladed rotor at β=22.8,
M=0.144, rpm=6875.5 and x/c of 1
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It is thought that the ’true’ value of the tip vortex core size lies between the CFD and

CRPFAN correlations. For example for the PIV and CFD comparison of two blade

analogue rotor in Figure 7.38, using the lift distribution and helical path calculated by

CFD the CRPFAN predicted tip vortex core size is 1.3 mm. This agrees well with the

cascade measurement analysis where the CRPFAN correlations under predicted the tip

vortex core size compared to other similar measurements. The correlations were derived

from the SR2 and SR3 CFD models which will have a better spatial descritisation per

vortex core for two reasons. Firstly, the two bladed analogue is operated at a lower

loading conditions than the SR2 and SR3 for example the thrust coefficient per blade,

CT /B, range for the two bladed rotor was 0.01 to 0.05 but for the SR2 and SR3 it is

0.02 0.1 and the vortex core size will increase with CT /B to the power of two. The

second reason is highlighted in Figure 7.39 which is the difficulty in creating a grid with

a uniform azimuthal spatial descritisation for the 180 degree domain.

However, as a conservative approach a correction factor will be applied to the tip vortex

core size. The ratio of the rcPIV
rcCFD

is used to adjust the tip vortex core size to the levels of

the PIV measurement and increase the maximum tangential velocity accordingly to keep

the circulation constant, which compared favourably to the PIV in previous comparisons.

7.7.5 Vortex core size correlation conclusions

Revised correlations for the tip vortex core size have been developed using the CFD

flowfield data for the SR2 and SR3. When these correlations where integrated into

CRPFAN the interaction noise increased by 16 dB relative to the CRPFAN correla-

tions. A single test case comparison between the two blade analogue CFD and PIV

showed the CFD model to produce a larger core size and smaller maximum tangential

velocity. Possible reasons for this include the spatial descritisation of the 180 ◦ domain

at certain azimuthal angles combined with the assumptions implicit to an eddy viscosity

model based CFD approach. It is recommended that the correlations are tested against

high fidelity non-intrusive aerodynamics measurements over a wide range of flowfield

conditions to fully assess their suitability.
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7.8 Synthesis

The individual aspects of tip vortex modelling have been assessed independently. Here

their combined aeroacoustic effect is assessed. It is done in three stages as outlined in

Table 7.10. There are three versions of Case 8 to be considered. Case 8a which includes

all the recommended vortex model approaches such as using a Vatistas type vortex

model, increased spatial descritisation of CRPFAN, correct modelling of the vortex spa-

tial orientation, the tip vortex axial velocity component, the revised tip vortex trajectory

model and the correlations for the tip vortex parameters derived from CFD. Case 8b

includes all the effects except the original CRPFAN tip vortex correlations are included

instead of the revised ones derived for CFD. Case 8c used the correlations derived from

CFD but with the correction factor of one third core size applied.

Vortex feature considered Case 8a Case 8b Case 8c

Vatistas model X X X

Increased streamlines X X X

Elliptical vortex spatial orientation X X X

Vortex axial velocity component X X X

Revised tip vortex trajectory model X X X

Revised tip vortex parameter correlations X x x

Revised tip vortex parameter correlations adjusted for rc x x X

Table 7.10: Synthesis Matrix

The most dominant contributing source are the revised tip vortex correlations for rc, Γ

and the calculated maximum Vθ. The inclusion of the correlations add an extra 10 dB in

some cases on top of the other vortex modelling effects. The use of a correction for the

core size reduces the interaction noise. But the levels are still very high, this is because

as the core size is reduced, to maintain the circulation the maximum tangential velocity

also increases. Therefore the net reduction in noise is mostly negligible. Relative to

experimental data for interaction tones Cases 8a and 8b over predict the noise as shown

in Section D.1.7 of Appendix D.

However, this is just for one test case due to the limited amount of acoustic data avail-

able in the open literature which have known propeller and geometry conditions. It

is therefore suggested for further research that acoustic calculations using the revised

correlations are compared to experiment such as flight testing or anechoic wind tunnel

testing to really assess the suitability of the correlations. Alternatively, comparisons

to high fidelity PIV or other non intrusive measurement techniques such laser Doppler

velocimetry (LDV) or hot wire anemometry be used to obtain suitable correction fac-

tors for tip vortex core size and maximum tangential velocity over a range of operating

conditions.
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The sound pressure level contour maps Case 8a, 8b and 8c including their respective

overall sound pressure level residuals relative to Case 2 are shown in Figure 7.41.
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Figure 7.41: Interaction noise for Cases 8a, 8b and 8c

The agreement between CRPFAN version 8b and experimental data is better than for

Cases 8a and 8c and is shown in Figure 7.42. This is because they interaction noise is

not offset by the large tip vortex parameters. To determine which vortex model aspect

is the most significant Case 2, 3, 4, 5 and 6 overall sound pressure levels as a function
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of observer angle are compared to each other as shown in Figure 7.43. The operating

conditions are again the same as defined in Table 7.10. The degrees of freedom for each

case are summarised in Table 7.11.

(a) 1F+1A (b) 1F+2A

(c) 2F+1A (d) 2F+2A

(e) 3F+1A (f) 1F+3a

Figure 7.42: Difference between experiment and CRPFAN version 8b
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Vortex feature considered Case 2 Case 3 Case 4 Case 5 Case 6

Vatistas model X x x x x

Increased streamlines x X x x x

Elliptical vortex spatial orientation x x X x x

Vortex axial velocity component x x x X x

Revised tip vortex trajectory model x x x x X

Table 7.11: Synthesis Matrix

The most dominant source of noise addition is the vortex axial velocity component

contributing up to 3 dB near the propeller plane of rotation. Conversely, the revised

trajectory model tends to reduce the noise relative to the baseline model of Case 2

with overall sound pressure level reductions of up to 3 dB. The general impact of the

vortex spatial orientation and increased streamline descritisation is to increase the noise

in the range of 1 to 2 dB. Even though the different aspects of tip vortex modelling

have different levels of effect on the interaction noise as demonstrated in Figure 7.44

it does not mean that the aspect which has the lowest effect should be ignored. Every

aspect considered is suggested because they are perceived as an increase in the state of

the art of tip vortex modelling and analysing each term individually eliminates possible

synergistic effects between them.

Figure 7.43: Breakdown of vortex modelling aspects for overall sound pressure level
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(a) Case 3 - Case 2 (b) Case 4 - Case 2

(c) Case 5 - Case 2 (d) Case 6 - Case 2

Figure 7.44: Overall sound pressure level breakdown for each case
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7.9 Aeroacoustic sensitivity to source aerodynamics

7.9.1 Source aerodynamics

Section 7.9 investigates the significance of the source aerodynamics on the fidelity of

the aeroacoustic calculation. The input files used for Cases 2 to 8 were obtained from5

where an Euler code was used to obtain the radial lift distribution.

In the absence of detailed flowfield information either from CFD or experiment, in order

to use CRPFAN a lift distribution is required to perform an aeroacoustic calculation.

A method of obtaining this could be a strip theory code. Here two different strip

theory codes are used to generate a radial lift distribution and compared to CFD. The

three lift distributions are then input into CRPFAN to determine what the aeroacoustic

significance of the source of the input aerodynamics is. The two strip theory codes are

a Blade Element Momentum Theory (BEMT) code developed in conjunction with an

MSc student59 and a Theodorson Method described in Appendix E. The SR2 propeller

blade will be used for the comparison under three different loading conditions defined

in Table 7.12.

Parameter Low Medium High

β (◦) 38 45.8 49.8

J 1.2 1.2 1.2

M 0.2 0.2 0.2

Table 7.12: Non dimensional parameters for input aerodynamics sensitivity study

The order of fidelity for the aerodynamic methods used are BEMT, Theodorson Method

and CFD with CFD considered the highest. The BEMT is the simplest and ignores

compressibility effects, the radial component of flow velocity and is generally considered

to over predict thrust and under predict power. With a typical over prediction of theo-

retical efficiency of 5 - 10%60. The Theodorson Method code is a vortex theory similar

to a Goldstein Method code except wake contraction effects are considered unlike the

Goldstein method which uses a Betz style rigid wake model61. The radial lift distri-

bution for the low, medium and high loading conditions are shown in Figure 7.47. As

the loading increases with increasing setting angle the flow becomes more separated and

the BEMT code tends to over predict the lift distribution as expected. The Theodorson

method is higher fidelity than the BEMT code and predicts the lift distribution relative

to the CFD better than the BEMT code. However, both the BEMT and Theodorson

method poorly resolve the list distribution in the outer span of the blade where there is

the most separated flow.
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To verify the flowfield features observed in the lift distributions, for each case wall shear

streamlines with contours of static pressure are shown from the CFD in Figure 7.46.
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Figure 7.45: Source lift distributions

(a) Low Loading (b) Medium Loading (c) High Loading

Figure 7.46: Flowfield for each case

7.9.2 Aeroacoustic effect

For the low, medium and high loading cases the three source lift distributions were

input into CRPFAN for both Case 2 and Case 8b. The configuration in CRPFAN uses

two rows of eight counter rotating SR2 propeller blades separated by a distance of 0.24

tip diameters. The shaft power is kept constant and only the source lift distribution

and blade setting is angle is changed for each case. The first aspect to consider is the

steady noise due to thickness and loading of the propeller. The front rotor fundamental

harmonic directivity for each case is shown in Figure 7.47. The effect of the source

aerodynamics on the steady loading noise negligible. The thickness noise should be

unaffected for a constant propeller geometry and loading noise is more dependent on

the shaft power which is kept constant here to isolate the effect of the input radial lift

distribution. Note the steady noise will be the same for Case 2 and Case 8b because the

modifications are only pertinent to the unsteady interaction noise.
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Figure 7.47: Front rotor fundamental harmonic for different loading cases and source
lift distributions

The effect of the source lift distribution is more significant for interaction noise sources.

The CFD source lift distribution calculates the lowest level of interaction noise because

the lift distribution on the outer span of the blade is lower, which will result in tip

vortex with smaller core size and lower tangential velocity. For CRPFAN version Case

2a a difference of approximatively 2 dB is present between the CFD and BEMT source

inputs for the high loading cases. This difference increases to approximately 3db for

CRPFAN version 8b because of the additional vortex modelling aspects included in this

version. The overall sound pressure level between the BEMT and Theodorsen Method

are very similar because of the similarity of the source lift distributions. The values for

tip vortex core size and maximum tangential velocity are shown in Figure 7.50 which

demonstrates the larger properties for the BEMT and Theodorson Method relative to

CFD.
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(b) Medium Loading
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Figure 7.48: Overall sound pressure level for different loading conditions and source
lift distribution for CRPFAN version 2
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(b) Medium Loading
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Figure 7.49: Overall sound pressure level for different loading conditions and source
lift distribution for CRPFAN version 8b

(a) Tip vortex core size (b) Maximum tangential velocity

Figure 7.50: Sensitivity of tip vortex parameters to source aerodynamic method with
increased blade loading
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7.9.3 Effect of source aerodynamics conclusions

The method of obtaining the input aerodynamics has a negligible effect on the steady

loading noise but does have an effect on the unsteady interaction noise. The most notice-

able difference between the strip theory codes and CFD are at the tip region of the blade

where there is flow migration and separation which increases with increasing loading.

The use of a strip theory code can lead to predictions of the tip vortex parameters such

as the core size and maximum tangential velocities higher than what would be calculated

using a CFD source distribution. However, it has been demonstrated that for first order

approximations using a preliminary design tool such as CRPFAN the acoustic code can

be coupled with an aerodynamic strip theory code in the absence of detailed flowfield

measurements.
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Conclusions

During the course of the project the following conclusions were found:

• The maximum value of the tip vortex tangential velocity has a bigger influence on

interaction noise than the tip vortex core size.

• The datum number of streamlines used CRPFAN is too few and it is recommended

to increase the spatial resolution of strip theory based noise prediction tools in

order to fully capture the disturbance field of the vortex.

• The vortex spatial orientation as seen by the aft rotor influences the interaction

noise. A vortex with an elliptical spatial orientation will generate more noise than

a circular vortex with the effect most significant at lower frequencies.

• The vortex axial velocity component can be modelled using a Vatistas type distri-

bution and it is ‘wake-like’ relative to the freestream velocity.

• The level of sweep and loading of the propeller effects how ‘wake-like’ the axial

velocity is.

• A Vatistas type vortex model can be used to model the tip vortex of an advanced

propeller blade. A tip vortex generated by the swept SR3 can be modelled by a

Vatistas type vortex model over a wider range of operating conditions than the

straight bladed SR2.

• The peak bound circulation is a good method of approximating the strength of

the tip vortex.

• The CFD model using CFX has good agreement with PIV for the tip vortex

strength. However, it tends to over predict the tip vortex core size and under

predict the maximum tangential velocity.
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• The aerodynamic method used to obtain the source lift distribution as an input to

CRPFAN has a negligible effect on the steady noise but it influences the unsteady

interaction noise.

Some of the key outcomes of the project include:

• Quantified analysis of the effect of tip vortex parameters on the interaction noise

• A disturbance field tool which can be used to determine the harmonic content of

a vortex

• A detailed analysis of the suitability of CRPFAN vortex model and correlations

• Empirical correlations to predict the size of a tip vortex for a fixed wing

• Validated CFD model for both the SR2 and SR3 propeller blades using a method

of generating structured grids with a quick turnaround time

• Correlations to model the tip vortex trajectory as a function of propeller non-

dimensional operating parameters

• Correlations to model tip vortex axial velocity component as a function of propeller

non-dimensional operating parameters

• Correlations to predict the tip vortex strength and core size as a function of pro-

peller non-dimensional operating parameters

• A method to assess the effect of source aerodynamic methodology on noise predic-

tion tools

Novelty

The novel aspect of this project is the examination of the effects of tip vortex parameters

on open rotor interaction noise and the development of bespoke correlations to predict

the tip vortex parameters and improved modelling techniques suggestions.
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Future Work

Chapter 9 offers a description of recommended work which can be used in conjunction

with the findings from this thesis and also address some of its deficiencies.

Evaluation of tip vortex correlations

One of they key aspects of the project was the development of tip vortex correlations

from CFD flowfield data. Partly due to the time and computational resources available

a steady-state RANS model was used to generate the flowfield. It is recommended that

unsteady CFD is performed on a similar configuration to identify how significant the

transient effects are to the tip vortex parameters. Similarly, the eddy viscosity based

RANS method should be compared to a Reynolds Stress Model (RSM) where possible, to

determine how much dissipation occurs as a result of the isotropic turbulence assumption

inherent to all eddy viscosity based turbulence models. Additionally, non RANS based

turbulence models such as Large Eddy Simulation (LES) and Detached Eddy Simulation

(DES) would also be useful studies.

Additional comparisons should be made to a detailed set of PIV (or any other high

fidelity non-intrusive method) measurements over a range of operating conditions. The

correlations were derived from the SR2 and SR3 propeller blades due to the availability

of their geometries. Since the 1980s when these propellers were developed the open rotor

blade designs have evolved and a comparison between the vortical flowfield generated

by a modern design and the ones presented in the thesis for the SR2 and SR3 would be

beneficial for future progress in open rotor design.

Additional aerodynamic input methodologies

Section 7.9 evaluated the significance of the aerodynamic methodology used to gener-

ate inputs lift distributions for a noise prediction code such as CRPFAN. The three

methodologies were BEMT, Theodorson Method and CFD, it would be interesting to

see how other aerodynamic methodologies compare for example a lifting line theory and

169
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Goldstein method code. It is not expected that the aerodynamic input will influence the

steady noise but it will have an impact on the the interaction noise.

Acoustic comparison

Only a limited set of acoustic measurements were available for comparison with CRP-

FAN. A good evaluation of CRPFAN and the bespoke correlations would be to compare

its results to a comprehensive set of interaction noise measurements derived from ane-

choic wind tunnel tests on an open rotor with a modern design.
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Disturbance Field Model

Appendix A includes details of the coordinate systems and methodology of the distur-

bance field model used in the thesis. The disturbance field model is used for two key

reasons, firstly, to visualise the tip vortex and its velocity distributions in a sector rep-

resentative of the blade to blade spacing of a CROR stage and secondarily to determine

the harmonic content of a tip vortex which helps determine the radial extent of the

disturbance field from the tip vortex centre for example.

A.1 Disturbance Field Model - Process

The flowfield domain is shown as a schematic in Figure A.1 where a tip vortex is imposed

onto the centre of the domain in the azimuthal direction and located at a radial location

representative of the tip radius of a propeller blade. The tip vortex is originally defined

in a coordinate system local to the tip vortex where the radius is defined as the distance

from the tip vortex centre. However, the tip vortex interaction mechanism is between

the front rotor tip vortex and the aft blade row and needs to be defined in a coordinate

system relative to a global coordinate system.

The process begins with creating the domain shown in Figure A.1 and imposing a tip

vortex described by a Vatistas model in a vortex local coordinate system. The tangential

velocity distribution is then converted into a global coordinate system. The flow field

for a vortex in both the local and global coordinate system are shown in Figure A.2.

Section A.2 includes more details of the coordinate systems and defining equations. With

reference to Figure A.3 which highlights the process of obtaining the PSD disturbance

field from the source velocity field in a global coordinate system. The tangential velocity

in a global coordinate system, Vθg , as a function of the azimuthal angle, θg, is Fast Fourier

Transformed and the power spectral density (PSD) is calculated. Shown is the velocity

at two section one and two tip vortex core radii away from the tip vortex centre. The

contour map of PSD is generated from every radial section.
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Figure A.1: Disturbance field schematic

(a) Local (b) Global

Figure A.2: Contours of Vθ in a local and global coordinate system
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(a) Vθ Sections (b) PSD Sections

(c) PSD Contour Map

Figure A.3: Sequence of events to obtain PSD contours of vortex disturbance field

A.2 Disturbance Field Model - Coordinate systems

Figure A.4 is a simplified diagram of the coordinate system used to calculate Vθglobal

from Vθlocal. Figure A.5 is then a more detailed definition of the coordinate system from

which the defining equations are derived.
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Figure A.4: Simplified coordinate system for disturbance field velocity field

Figure A.5: Detailed coordinate system for disturbance field velocity field
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From the coordinate system in Figure A.5

a = rv cos θV (A.1)

b = rg cos θg (A.2)

c = rv sin θV (A.3)

d = rg sin θg (A.4)

e = b− a = rg cos θg − rv cos θV (A.5)

f = d− c = rg sin θg − rv sin θV (A.6)

θl = tan−1(
f

e
) (A.7)

Vθ,g = Vθ,lcos(θg − θl) (A.8)

Vr,g = Vθ,lsin(θg − θl) (A.9)

Use of the cosine rule to calculate the radius in the vortex local coordinate system, rl:

r2
l = r2

v + r2
g − 2rgrvcos(θg − θl) (A.10)

The tangential and radial velocity components in a local and global coordinates are then

related by:

Vθ,g = Vθ,lcos(θg − θl) (A.11)

Vr,g = Vθ,lsin(θg − θl) (A.12)

The Cartesian velocity components in both local and global coordinate systems then

defined as:

Vx,g = −Vθ,gsinθg + Vr,gcosθg (A.13)

Vy,g = Vθ,gcosθg + Vr,gsinθg (A.14)

Vx,l = −Vθ,lsinθl + Vr,lcosθl (A.15)

Vy,l = Vθ,lcosθl + Vr,lsinθl (A.16)

Where:

Vθ(r̄) =
Γ

2πrc

{
r̄

(1 + r̄2n)
1
n

}
(A.17)

Vr,l =
υ2(n+ 1)r̄2n

rc(1 + r̄2n)
(A.18)
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Additional CFD Content

Appendix B includes additional CFD content such as close up views of the mesh, grid

refinement studies and the coordinate transformation in the vortex cross plane.

B.1 Additional mesh views

Figure B.1: Close up view of mesh on SR3 propeller blade
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Figure B.2: Full circumference view of mesh on SR2 propeller blade

Figure B.3: Zoomed in view of mesh on SR2 propeller blade
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B.2 Richardson Extrapolation

The method used to assess the level of spatial resolution of the CFD grids used in the

project is a Richardson Extrapolation as described in Roache52. The order of conver-

gence of the solution, p, is defined in Equation B.1 for three variables, f1, f2, f2 which

corresponds to the parameter of interest such as the thrust coefficient for a coarse,

medium and fine grid resepctivley. The refinement ratio, r, is the level of refinement

between grids where a refinement ratio of 2 means the grid spacing is halved.

p =
ln(f3−f2

f2−f1
)

ln r
(B.1)

The relative errors for the coarse mesh, ε12, and fine mesh, ε23 are defined in Equation B.2

and Equation B.3 resepctivley.

ε12 =
f2 − f1

f1
(B.2)

ε23 =
f3 − f2

f3
(B.3)

The value of the parameter of interest for a grid with zero spacing, f0 ,is extrapolated

using Equation B.4.

f0 = f2 +
(f1 − f2)rp

rp − 1
(B.4)

The grid convergence index, GCI, defined in Equation B.5is dependent on the choice of

factor of safety, Fs, in this project a conservative value of 3 has been used. For adequate

grid convergence for the asymptotic range, AR, should be a close to possible as one.

The asymptotic range is defined in Equation B.6.

GCI = Fs
|ε|

rp − 1
(B.5)

AR ∼=
GCI2−3

rpGCI1−2

∼= 1 (B.6)

Note in order to use this method the parameter of interest should change monotonically

with grid mesh refinement.

A grid sensitivity study for the SR2 CFD model was calculated for three grids which

have 1.6, 3.5 and 5.4 million nodes in the inner rotatonal domain for the coarse, medium

and fine grids resepctivley. The rotor operating conditions where a setting angle, β of
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45.8◦, freestream Mach number, Mo of 0.2 and advance ratio, J , of 1.1. The results of

the Richardson extrapolation for this case is shown in Table B.1 where an asymptotic

range of one was achieved for the thrust coefficient, CT .

Coarse Med Fine Zero

(f1) (f2) (f3) p (f0) ε12 ε23 GCI12 GCI23 AR

CT 0.6075 0.6080 0.6082 1.74 0.6082 -0.0009 -0.0003 -0.0011 -0.0003 1.0009

Table B.1: Richardson Extrapolation results for SR2 grid sensitivity study

A grid sensitivity study was also performed the two blade analogue CFD model. The

rotor operating conditions where a setting angle, β of 22.8 ◦, freestream Mach number,

Mo of 0.144 and rpm of 6875.5. The results of the Richardson extrapolation are shown

in Table B.2 for the torque moment where grids with inner rotational domains with 1.7,

3.5 and 7.5 million nodes where used. An asymptotic range of one was also achieved.

Coarse Med Fine Zero

(f1) (f2) (f3) p (f0) ε12 ε23 GCI12 GCI23 AR

Torque (Nm) 1.4343 1.4472 1.4549 0.66611 1.46797 -0.0085 -0.0053 -0.0435 -0.0272 1.0085

Table B.2: Richardson Extrapolation results for open rotor analogueue grid sensitivity
study

B.3 Coordinate transformation into vortex cross plane

Section B.3 includes details of the coordinate systems and defining equations used to

view the vortex in a plane normal to its path - known as the vortex cross plane in this

thesis The method is also explained in62. The first step is to take a slice in a plane

downstream of the propeller pitch change axis normal to the engine change axis which

is also in the same plane as the PIV laser sheets. The location of a plane normal to the

engine axis at an axial distance, Ycore, downstream of the propeller pitch change axis is

shown in Figure B.4.
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Figure B.4: Axial slice downstream of propeller pitch change axis

The vortex cross plane is taken normal about the coordinates (Xcore, Ycore, Zcore) in

Tecplot using its ’arbitrary slice’ option. Where:

Xt = X −Xcore (B.7)

Yt = Y + Ycore (B.8)

Zt = Z − Zcore (B.9)

The phase angle, θ, is shown in Figure B.5 and is defined as the arc tangent of Xcore

and Zcore. The velocity component nomenclature corresponds to their respective axis in

Figure B.5.
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Figure B.5: X-Z Plane and definition of phase angle θ

θ = tan−1

(
Xcore

Zcore

)
(B.10)

rcore = |Xcore + Zcore| (B.11)

Xθ = Xt cos θ − Zt sin θ (B.12)

Zθ = Zplane = Zt cos θ +Xt sin θ (B.13)

Another important angle in the transformation is the helix angle, ϕ, and it is the angle

between the tip vortex path and engine axis plane as shown in Figure B.6. All velocity

components are in the relative frame of reference.
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Figure B.6: Orientation of vortex cross plane relative to tip vortex path and PIV
plane

ϕ = tan−1

(
Ycore
rcoreθ

)
(B.14)

Xplane = Xθ cosϕ− Yt sinϕ (B.15)

Yplane = Yt cosϕ+Xθ sinϕ (B.16)

Uyt = Uy − Vi (B.17)

Uxθ = Ux cos θ − Uz sin θ (B.18)

Uxplane = Uxθ cosϕ− Uyt sinϕ (B.19)

Uyplane = Uyt cosϕ+ Uxθ sinϕ (B.20)

The Cartesian components UY plane and Uzplane are transformed into the polar coordi-

nates Vθplane and Vrplane according to the coordinate system shown in Figure B.7 and

defined by Equation B.21 and Equation B.22.
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Figure B.7: Cartesian to polar coordinate transformation for Vθ and Vr

Vrplane = Uzplane cosϕ+ Uyplane sinϕ (B.21)

Vθplane = Uyplane cosϕ− Uzplane sinϕ (B.22)



Appendix C

Open Rotor Analogue PIV

Appendix C provides a brief overview of the Particle Image Velocimetry (PIV) that was

used to analyse the tip vortex of the two blade analogue propeller blade.

With reference to Figure C.1 three planes normal to the engine axis were used at one,

two and three chords downstream of the propeller pitch axis. Two cameras were used as

illustrated in Figure C.2, the use of two cameras allows for stereoscopic measurement of

three Cartesian velocity components. The measurements in the PIV plane were projected

onto the vortex cross plane using the method detailed in Section B.3 of Appendix B and

a columnar vortex assumption. The propeller rotation was generated using an electrical

motor with a limited power output, which is one of the reasons for using a two bladed

system. The measurements were conducted in the Cranfield University 8x6 low-speed

wind tunnel with Laskin seeder and rakes.

Figure C.1: PIV configuration for open rotor analogue [Ref:Dr MacManus]

185
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Figure C.2: Location of cameras relative to PIV planes and propeller blade [Ref:Dr
MacManus]



Appendix D

Additional Aeroacoustic Results

Appendix includes additional directivity responses for six interaction tones for each of

the cases in the synthesis matrix.

D.1 Additional Directivity Responses

D.1.1 Case One and Two: Type of Vortex model uses

Case One: Baseline CRPFAN vortex model

187
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Figure D.1: Case 1 : Baseline CRPFAN model

Case Two: Vatistas Vortex model
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Figure D.2: Case 2: Use of Vatistas vortex model



190 Appendix D Additional Aeroacoustic Results

D.1.2 Case Three: Streamline descritisation effects
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Figure D.3: Case 3: Effect of streamline descritisation
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D.1.3 Case Four: Vortex Spatial Orientation

(a) 1F+1A (b) 1F+2A

(c) 2F+1A (d) 2F+2A

(e) 3F+1A (f) 1F+3a

Figure D.4: Case 4: Effect of vortex spatial orientation
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D.1.4 Case Five: Vortex axial velocity modelling

(a) 1F+1A (b) 1F+2A

(c) 2F+1A (d) 2F+2A

(e) 3F+1A (f) 1F+3a

Figure D.5: Case 5: Effect of including vortex axial velocity component
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D.1.5 Case Six: Trajectory Modelling

(a) 1F+1A (b) 1F+2A

(c) 2F+1A (d) 2F+2A

(e) 3F+1A (f) 1F+3a

Figure D.6: Case 6: Effect of revised trajectory model
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D.1.6 Case: 7 Revised tip vortex correlations
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Figure D.7: Case 7: Effect of using revised tip vortex correlations
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D.1.7 Case 8 additional directivity diagram

Case 8a
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Figure D.8: Case 8a additional directivity responses
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Case 8c
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Figure D.9: Case 8c additional directivity responses
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Theodorsen Method strip theory

code

Within the installation module of CRPFAN is a Theodorsen code which is not used in

the default isolated operation of CRPFAN. It uses the general CRPFAN input files for

the propeller geometry and operating conditions. The general process is summarised

in Figure E.2. With reference to the velocity triangles in Figure E.1 the first stage of

the calculation process is to make an estimate for the angles of flow relative to blade

from tangential direction for the front and aft rotor, φF and φR. Then for each radial

section the local angle of attack onto the blades are calculated followed by the slipstream

contraction factors. The sectional angle of attack values are used to interpolate from a

lift and drag curve sectional values for CL and CD. The lift and drag coefficients are used

to calculate CX and CY and after adjustment using a Prandtl tip loss factor the axial

and tangential interference factors are calculated for each blade row which are fed back

to calculate the relative flow angles and the whole process is repeated until convergence

of the relative flow angles is achieved.

Figure E.1: Velocity triangles for Theodorson method code5
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Guess φf and φr

α = f(r/R)

Slipstream Con-

traction Factors

Interpolate
CL
CD

curve

Calculate

CX and CY

Calculate Prandtl

Tip loss factor

aR,aF ,a′R,aF ’

φf and φr

Figure E.2: Theodorsen code flow chart

c = 1± x√
x2 + r2

(E.1)

Cy = CLcosφ− CDsinφ (E.2)

Cx = CLsinφ+ CDcosφ (E.3)

a′F

(1− a′F )
=

CxFσF
4cosφF sinφFkF

(E.4)
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a′R

1− a′R+ 2kFa′FΩF
=

CxRσR
4cosφRsinφRkR

(E.5)

aF =
(1− a′F )

kF
(
r

R
)(
CyF
4λF

)(
σF

sinφF cosφF
) (E.6)

aR =
(1 + 2kF (ΩF /ΩR)− a′R)

kR
(
r

R
)(
CyR
4λR

)(
σR

sinφRcosφR
) (E.7)

λF = tan(φF )(
r

R
)

(1− a′F )

(1 + aF + kRaRCR)
(E.8)

λR = tan(φR)(
r

R
)
(1− a′R + 2kFa

′
FΩF /ΩR)

(1 + aR + kFaFCF )
(E.9)

Where:

a - Axial interference factor

a’ - Tangential interference factor

c - Slipstream contraction factor

k - Prandtl tip loss factor

r - Propeller sectiona, radius

U ’ - Forward flight velocity

Ω - Angular velocity of propeller

φ - Angle of flow relative to blade from tangential
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