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Abstract  17 

Objective: Although visual processing recruitment of the auditory cortices has been 18 

reported previously in prelingually deaf children who have a rapidly developing brain 19 

and no auditory processing, the visual processing recruitment of auditory cortices 20 

might be different in processing different visual stimuli and may affect cochlear 21 

implant (CI) outcomes. 22 

Methods: Ten prelingually deaf children, 4–6 years old, were recruited for the study. 23 

Twenty prelingually deaf subjects, 4–6 years old with CIs for 1 year, were also 24 

recruited; 10 with well-performing CIs, 10 with poorly performing CIs. Ten age and 25 

sex-matched normal-hearing children were recruited as controls. Visual (‘sound’ 26 

photo (photograph with imaginative sound) and ‘non-sound’ photo (photograph 27 

without imaginative sound)) evoked potentials were measured in all subjects. P1 at Oz 28 

and N1 at the bilateral temporal-frontal areas (FC3 and FC4) were compared.  29 

Results: N1 amplitudes were strongest in the deaf children, followed by those with 30 

poorly performing CIs, controls and those with well-performing CIs. There was no 31 

significant difference between controls and those with well-performing CIs. ‘Sound’ 32 

photo  stimuli evoked a stronger N1 than ‘non-sound’ photo stimuli. Further analysis 33 

showed that only at FC4 in deaf subjects and those with poorly performing CIs were 34 

the N1 responses to ‘sound’ photo  stimuli stronger than those to ‘non-sound’ photo 35 

stimuli. No significant difference was found for the FC3 and FC4 areas. No 36 

significant difference was found in N1 latencies and P1 amplitudes or latencies.  37 

Conclusions: The results indicate enhanced visual recruitment of the auditory 38 

cortices in prelingually deaf children. Additionally, the decrement in visual 39 

recruitment of auditory cortices was related to good CI outcomes. 40 

【Keywords】prelingual deafness, cochlear implant, cross-modal plasticity 41 

42 
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Introduction 43 

It is generally accepted that one sense can benefit from the deprivation of another 44 

(1). This is observed in both blind and deaf individuals (2,3). In the prelingually deaf 45 

the auditory cortex can respond to visual stimuli, indicating cross-modal recruitment 46 

of auditory cortex by visual stimuli, known as cross-modal reorganization (4,5). 47 

Neuroimaging studies using functional Magnetic Resonance Imaging (fMRI) and 48 

magnetoencephalography (MEG) reveal that visual stimuli such as a moving dot 49 

pattern, can activate certain regions of the auditory cortex (Brodmann's areas 42 and 50 

22) in prelingually deaf participants (4,6,7). In addition, some event-related potential 51 

(ERP) studies found larger ERP amplitudes and a greater anterior distribution of N1 52 

components in deaf individuals when they processed the visual stimulus of an 53 

isoluminant color change (8). 54 

The proposed mechanism behind this cross-modal reorganization is that long-55 

term visual stimuli can lead to specialization of auditory cortex with engagement of 56 

specialized neural networks for hearing and language tasks. The evidence obtained 57 

from animal research and related literature review has also indicated the presence of 58 

visual cross-modal reorganization of auditory cortex in animal models (9-11). The 59 

presence of a visual-auditory modality in early life offers opportunities for change in 60 

individual behavior and audiological rehabilitation (12). A recent systematic review 61 

(12) of deaf induced cortical change showed that behavioral changes were 62 

accompanied by a reorganization of multisensory areas, ranging from higher order 63 

cortex to early cortical areas, highlighting cross-modal interactions as a fundamental 64 

feature of brain organization and cognitive processing. It was considered that the 65 

auditory cortex might reorganize to mediate other functions, for example vision, in 66 

areas of the superior temporal sulcus, just caudal to the primary auditory cortex with 67 
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the result that deaf people show greater recruitment when processing visual, tactile or 68 

signed stimuli than normal hearing individuals (12). 69 

Cochlear implants (CIs) have been widely used as an effective intervention tool 70 

for profound hearing impairment in children (13). Recent studies have indicated that 71 

CI effect on neuroplasticity of the central auditory system occurs only when adequate 72 

stimulation is delivered during a sensitive period in early childhood (14-17). Sharma 73 

and Dorman (2006) examined P1 latency in 245 congenitally deaf children fitted with 74 

CIs using evoked cortical potentials. They found that children had normal P1 latencies 75 

if they received their CIs before the age of 3.5 years, whereas after this time children 76 

showed abnormal or highly variable and delayed cortical response latencies (12,18). 77 

In Sharma et al. (19), significantly delayed cortical P1 responses generated from 78 

auditory thalamic and cortical areas were also found in children with CIs. 79 

Cortical activity and visual cross-modal effects on the auditory cortex have been 80 

reported to play a role in CI outcomes.  Lee et al. (2007) found hypometabolism in the  81 

temporal lobes of prelingually deaf children, speech scores post CI positively 82 

associated with enhanced metabolic activity in the prefontal cortex which contributes 83 

to auditory processing, and decreased metabolic activity in Heschle’s gyrus which 84 

contributes to visual processing (20). Sandmann et al. (21) used parametrically 85 

modulated reversing checkerboard images to examine the initial stages of visual 86 

processing and confirmed visual take-over in the auditory cortex of CI users. In 87 

addition, the extent of visual processing in auditory cortices in postlingually deaf 88 

subjects was negatively related to CI outcomes (21). 89 

Further evidence has suggested that many factors are associated with plasticity 90 

and CI outcomes in prelingually deaf individuals, such as the age at which the CI was 91 

received, cognitive abilities, family environment, etiology, and speech-language 92 
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therapy. Of these factors, age at implantation contributes for most in terms of CI 93 

outcome in prelingually deaf children (16), i.e. younger age children with CI would 94 

achieve better speech outcomes. However, in Schramm et al. (22), although their 95 

results showed CI patients with prelinguistic deafness achieved significantly better 96 

speech understanding using phonetically balanced monosyllabic words, there was a 97 

wide range of performance across patients. They found that some older prelingually 98 

deaf children with CI also performed well in speech communication (22). They 99 

suggested this may be due to the various extent of visual cross-modal impact on the 100 

auditory cortex. Because of uncertainty in the status of auditory cortex plasticity 101 

without auditory stimuli before cochlear implantation, the effectiveness of CI 102 

outcomes is unlikely to be predicted for CI candidates, particularly for prelingually 103 

deaf children. 104 

Recently, visual evoked potentials (VEPs) have been used to investigate visual-105 

auditory cross-modality in patients with CIs. Visually evoked fronto-temporal N1 106 

responses were reported to be related to visual processing in the auditory cortex (23-107 

25). Kristi et al. (2011) reported that in postlingually deaf subjects, the higher N1 108 

VEP responses in the right temporal lobe in children with a CI was related to poor 109 

speech perception (25). Moreover, different visual stimuli, ‘sound’ photo vs. ‘non-110 

sound’ photo, have been reported to produce different N1 responses in the fronto-111 

temporal area; i.e., ‘sound’ photo stimuli evoked stronger N1 responses than ‘non-112 

sound’ photo stimuli in normal (26). 113 

To our best knowledge, N1 VEP response to ‘sound’ or ‘non-sound’ photo 114 

stimuli in prelingually deaf children still remains unclear. Moreover, the relationship 115 

of visual processing recruitment of auditory cortices and auditory outcomes in 116 

prelingually deaf children with CIs is unknown. Therefore, in the present study, we 117 
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examined the extent to which visual processing recruitment of auditory cortices 118 

occurred in prelingually deaf children with CIs. In addition, the relationship between 119 

the visual processing recruitment and auditory performance in these children was 120 

explored. 121 

 122 

Materials and Methods 123 

 Participants 124 

Ten prelingually deaf children bilaterally profound hearing loss were recruited 125 

from special education schools for the deaf as the deaf group. There were five boys 126 

and five girls, aged between 4 and 6 years (mean age and SD: 4.4±0.7 years). Twenty 127 

prelingually deaf children fitted with a CI to the right side for at least one year were 128 

also recruited. The CIs fitted in this group of patients included: 10 MEDEL 129 

SONATAti100, 3 Cochlear Freedom (CI24RE), 7 Advanced Bionics (AB) HiRes 120. 130 

On the basis of their Category of Auditory Performance (CAP) score (22), they were 131 

divided into two groups. Ten subjects (4 boys and 6 girls, mean age 4.6±0.90 years 132 

old, range 3–6 years old) with CAP scores better than 5 were assigned to the CI good 133 

performer group, the remaining 10 (4 boys and 6 girls, mean age 4.4±1.0 years old, 134 

range 3–6 years old) with CAP scores less or equal to 5 were in the CI poor performer 135 

group (14). Ten age and sex matched normal-hearing children were recruited as the 136 

control group. Table 1 provides detailed demographic information, together with 137 

communication mode (i.e., using sign language or oral communication) and socio-138 

economic status. 139 

Table 1 near here 140 
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Ethical approval was obtained from the Institutional Review Board at Sun Yat-141 

sen Memorial Hospital at Sun Yat-sen University. Detailed information was provided 142 

to the parents and, written consent obtained before proceeding with the study. 143 

 Visual stimuli  144 

One ‘sound’ photo (i.e., a photograph with imaginative sound) and one ‘non-145 

sound’ photo (i.e., a photograph without imaginative sound) were presented as visual 146 

stimuli in a similar way to the study of Proverbio (26). The photographs were chosen 147 

to ensure that most of the children were familiar with the images and understood their 148 

meaning. Figure 1 shows the experimental block design, which consisted of an 149 

intermittent stimulus mode using ‘sound’ photo and ‘non-sound’ photo stimuli. For 150 

the ‘sound’ photo stimulus experiment, it consisted of 85 trials of ‘sound’ photo 151 

stimuli, and 15 trials of ‘non-sound’ photo stimuli as deviant stimuli. In contrast, for 152 

the ‘non-sound’ photo stimulus experiment, it consisted of 85 trials of ‘non-sound’ 153 

photo stimuli, and 15 trials of ‘sound’ photo stimuli as deviant stimuli. As shown in 154 

Figure 1, each stimulus was presented for 1 second, followed by one blank screen 155 

(1.7–1.9 seconds in duration) as the inter-stimulus. To make sure that the participants 156 

concentrated on the stimuli, one novel that consisted of 15 photographs was presented 157 

after 5–10 trials and the children were asked to press a button while the deviant 158 

photograph present.  159 

Figure 1 near here 160 

 VEPs measurement 161 

ERPs were recorded from 128 scalp electrodes (Dense Array EEG System with 162 

HydroCel Geodesic Sensor Nets (EGI, OR, USA)). After installation of the 128-163 

channel electrophysiological cap, the test took place in a soundproof and electrically 164 

shielded room. Each participant was asked to sit on a comfortable chair approximately 165 



8 

 

100 cm away from the 19-inch high-resolution VGA computer screen on which the 166 

visual stimuli were presented. The participants were instructed to watch the screen 167 

throughout the entire experiment, avoiding/minimizing body and eye movements. The 168 

impedance for each electrode was kept below 40 kΩ during the experiment (17). 169 

The ERP responses were recorded continuously using Net Station 4.3 (EGI, 170 

USA) and analyzed off-line. The ERP signals were digitally filtered with a band-pass 171 

of 0.1–30 Hz and signals with a segment of 700 ms, including 100 ms of pre-stimulus 172 

baseline were collected. Any signal with an electro-oculography amplitude exceeding 173 

75 µV was excluded as an artifact likely caused by eye movements or eye blinks. An 174 

amplitude exceeding 75 µV at any electrode site was defined as a poor channel. If 175 

there were six or more poor channels in a segment, then this segment was excluded as 176 

a bad segment. If fewer than six poor channels were present, the segment was 177 

considered valid and each poor channel was replaced with the average value obtained 178 

from its surrounding channels. The response waveforms evoked by the visual stimuli 179 

were obtained by averaging all valid segments. All responses at individual electrodes 180 

were referred to the average reference (27). The baseline was corrected according to 181 

the mean amplitude over the 100-ms pre-stimulus level. 182 

All responses evoked by using either the ‘sound’ photo or ‘non-sound’ photo 183 

stimuli were recorded and averaged, respectively. Figure 2 shows an example of ERP 184 

recordings obtained from an individual. The small-group average regions of interest 185 

were also analyzed (Figure 3). The N1 (the first negative response) at both FC3 (the 186 

left frontal-temporal area) and FC4 (the right frontal-temporal area) as well as the P1 187 

(positive response occurring at approximately 170 ms) at Oz (the occipital area) were 188 

analyzed. 189 

Figure 2 near here 190 
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Figure 3 near here 191 

 Statistical Analysis 192 

Multifactorial repeated-measures ANOVAs were performed for the ERP data 193 

analysis. The within factors were the stimulus categories (‘sound’ photo and ‘non-194 

sound’ photo) and electrode sites (FC3 for the left side and FC4 for the right side), 195 

and the between factors were groups (deaf, poor CI performers, good CI performers, 196 

poor CI performers, and Controls). The alpha inflation caused by multiple 197 

comparisons was corrected using Greenhouse-Geisser corrections. The post-hoc 198 

Tukey’s test was also used for multiple comparisons.  199 

 200 

Results 201 

Clear N1 responses at both FC3 and FC4 were found in all groups. In addition, a 202 

P1 response was found at Oz. Figure 3 shows an example of the N1 and P1 responses 203 

obtained from children in four groups when using ‘sound’ photo and ‘non-sound’ 204 

photo stimuli. 205 

A 3-way RM-ANOVA was used with one between-subject factor (groups: Deaf, 206 

Poor CI performers, good CI performers, and Control) and two within-subject factors 207 

(stimuli: ‘sound’ and ‘non-sound’; electrode sites: FC3 and FC4) for N1 amplitudes 208 

and latencies. Additionally, a 2-way RM-ANOVA was used with one between-subject 209 

factor (group: Deaf, poor CI performers, Good CI performers, and control) and one 210 

within-subject factor (stimulus: ‘sound’ and ‘non-sound’) for P1 amplitudes and 211 

latencies. 212 

Significant effects were obtained for group (F=44.747, p<0.001) and stimulus 213 

(‘sound’ photo > ‘non-sound’ photo, F=17.282, p<0.001) referring to N1 amplitudes 214 

(Figure 4). Group *stimulus* site interaction effects were also found to be significant 215 
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(F=5.483, p=0.003). No significant main effect was found for electrode sites of FC3 216 

and FC4 (F=0.013, p=0.909). 217 

A pairwise comparison found that N1 amplitudes in the deaf group were 218 

significantly larger than in the poor CI performers, good CI performers and control 219 

groups (P=0.008, p <0.001, and p<0.001, respectively). N1 amplitudes in the poor CI 220 

performers group were significantly larger than those in the good CI performers and 221 

normal groups (p<0.001 and p<0.001, respectively). No significant difference was 222 

found between the control and good CI performers groups (p=0.893).  223 

Figure 4 near here 224 

When comparing the effect of different stimuli, ‘sound’ photo evoked stronger 225 

responses than ‘non-sound’ photo at FC4 in the deaf and poor CI performers groups 226 

(F=8.82, p=0.005 and F=23.17, p<0.001, respectively) (Figure 5), but not in the good 227 

CI performers and control groups.  228 

Figure 5 near here 229 

With respect to N1 latencies, the main effects were obtained for electrode sites 230 

(FC4 149.3 vs. 142.8 FC3, F=7.538, p=0.009) and stimuli  (‘sound’ photo 148.9 vs. 231 

143.2 ‘non-sound photo, F=10.787, p=0.002). No significant main effect was found 232 

for the variable group (F=0.781, p=0.512). In addition, group*stimulus, group*site 233 

and stimulus*site interactions were not significant (F=2.409, p=0.083; F=0.879, 234 

p=0.461; and F=1.454, p=0.236, respectively). 235 

With respect to P1 latencies and amplitudes, no significant main effect was found 236 

for the variable group (F=0.781, p=0.512 for latency; F=2.409, p=0.083 for 237 

amplitude). In addition, the group*stimulus interaction was not significant (F=2.409, 238 

p=0.083; F=0.879, p=0.461, and F=1.454, p=0.236, respectively). 239 

 240 
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Discussion 241 

The present study examined visual processing recruitment of auditory cortex in 242 

prelingually deaf children with and without CIs in comparison to hearing controls.  243 

‘Sound’ and ‘non-sound’ photos were used as the visual stimuli for VEP 244 

measurements. The advantage of using images associated with sounds is enhancement 245 

of visual activation of auditory cortex. Previous studies have shown a significantly 246 

larger P1 amplitude at the occipital midline in adults with mild-moderate hearing loss 247 

than controls when using a kind of visual stimulus called ‘high contrast sinusoidal 248 

concentric grating’ (28). Consequently, they suggested that visual enhancement in the 249 

occipital area is likely to be associated with better visual sensitivity in people with 250 

hearing impairment. Moreover, by using ‘sound’ photo and ‘non-sound’ photo stimuli, 251 

Proverbio et al. (26) found different ERP responses, i.e., strong N1 response in the 252 

frontal area and weak response in the occipital area, when compared with using visual 253 

motion stimuli, i.e., a strong N1 response in the occipital area and a weak response in 254 

the frontal area (2,25). Further comparison showed that the N1 response evoked by 255 

using the ‘sound’ photo was even greater than using ‘non-sound’ photo in the frontal 256 

area, which can be used as an indicator of auditory cortical recruitment by ‘sound’ 257 

photo visual stimuli.   258 

In the present study, the prelingually deaf children without CIs had significantly 259 

greater N1 VEP amplitudes in response to the visual stimuli (both ‘sound’ and ‘non-260 

sound’ photo stimuli) than the children with CIs and controls. Further analysis showed 261 

that N1 amplitudes were largest in the deaf children, followed by those with poorly 262 

performing CIs, controls and those with well-performing CIs, whilst there was no 263 

significant difference between controls and those with well-performing CIs. However, 264 

Buckley et al. (25), reported that only N1 VEP amplitudes from the right temporal 265 



12 

 

lobe were negatively related to speech perception in prelingually deaf children with 266 

CIs when they used the stimuli of moving visual gradients located in a square pattern 267 

on a gray background with still pictures of cartoon characters. Differences in the 268 

stimulus category of the two studies may be responsible for the discrepancy between 269 

the two outcomes (25,26,29). Buckley et al. (25) used a vision motion stimulus in the 270 

peripheral visual field, while in the present study, we presented the stimuli centrally, 271 

which produced bilateral N1 response enhancement. 272 

Furthermore, as shown in Figure 4, children who used a CI had lower N1 VEP 273 

amplitudes than deaf children, while those with well-performing CIs had lower N1 274 

amplitudes than poor CI performers and similar N1 amplitudes as children with 275 

normal hearing. Although recruitment of auditory cortices evoked by the visual 276 

system to process the visual photos were found in deaf children with CI, the present 277 

result implies that there is a negative relationship between the process and CI 278 

outcomes. As indicated previously, visual cross-modal take-over has been 279 

demonstrated in postlingually deaf adults, which is related to the auditory 280 

performance of the patients after receiving a CI (30,31). The adaption process after a 281 

CI procedure may indicate a reversal of auditory functional take-over, while 282 

insufficient adaptation to the new input may be reflected by residual signs of visual 283 

take-over (31,32). In the present study, the positive relationship between the 284 

decrement of the N1 amplitudes and CI outcomes may demonstrate the reversal of 285 

auditory functional take-over. Further studies are needed to determine the relationship 286 

between decrement of N1 amplitude and the auditory performances in deaf children.  287 

The other interesting finding obtained from the present study is that ‘sound’ 288 

photo evoked greater N1 amplitude compared to ‘non-sound’ photo, which is 289 

consistent with the findings of Proverbio et al. (26). However responses evoked by 290 
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using ‘sound’ photo were greater than using ‘non-sound’ photo only at FC4 in the deaf 291 

and poor CI performers, but not in the good CI performers and controls. Buckley et al. 292 

(25) found that the amplitudes of N1 VEP responses in the right temporal area were 293 

negatively related to the speech performances of the CI patients. It is considered that 294 

the left and right temporal lobes play different roles in processing auditory 295 

information. The right lobe mainly participates in speech perception tasks in subjects 296 

with normal hearing and varies according to the degree of residual hearing. Right 297 

temporal lobe structures can be recruited for speech perception processing if the 298 

speech signal is degraded (33) and seems to be important for underlying meaning in 299 

message extraction (34). However, the left temporal lobe mainly processes fine 300 

structures of speech signals (35). In addition, several studies with deaf individuals and 301 

CI users have shown that the effect of deprivation-induced cross-modal plasticity has 302 

primarily been localized to the right hemisphere (4,31,35-37), either because the right 303 

hemisphere is more susceptible to reorganizational changes compared with the left 304 

hemisphere (37) or because the right hemisphere is more involved in the processing of 305 

sounds with low complexity (38).  306 

It is noteworthy that the present results were only obtained from the participants 307 

with a CI on the right side. Although bilateral CIs are generally recommended for 308 

children with bilateral sever to profound hearing impairment, due to their 309 

affordability, a majority of the suitable candidates were only fitted with a CI 310 

unilaterally. It is interesting to investigate the similarity or significant difference in 311 

terms of the effects on visual processing recruits the auditory cortices in comparison 312 

of children with a unilateral CI (on either right ear or left ear) and those with bilateral 313 

CIs in the future study.  314 

 315 
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Conclusions  316 

The influence of visual processing recruitment of the auditory cortices is evident as 317 

there were stronger N1 VEP responses in prelingually deaf children and there were 318 

decrements in this recruitment in children with a CI. The recruitment decrement was 319 

related to good CI outcomes. Consideration of the bilateral N1 response to the visual 320 

stimuli, and also the difference in the frontal response to the ‘sound’ photo and ‘non-321 

sound’ photo in prelingually deaf children without and with CI, the ’sound and non-322 

sound’ indicates that photos are feasible for the studying of visual recruitment of 323 

auditory cortex. Further exploration and follow-up studies to determine visual impacts 324 

on auditory cortices and their influence on auditory outcomes with a CI are needed. 325 
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