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2 Hamami & .al

1 Introduction

Epidemiological systems are defined by behaviour which may depend on a mul-
titude of events occurring in space and over time. From the initial population
models of Malthus [1] and the classic epidemiological models of Anderson and
May [2] much e↵ort has been expended in developing more accurate mathe-
matical, and latterly computational, models of epidemics. These mechanistic
models have been used successfully in a variety of ways to explore disease
spread and control and thus to inform decision-making, see for example [2–6],
but their e↵ective use depends critically on getting the right model in the first
place and correctly parameterising that model. For instance, a small change
to either the structure of the model, or to a parameter value, can make the
di↵erence between the model predicting a large infectious disease outbreak
or disease elimination [7]. Although analysis of models is supported by tools,
until recently creation of models has been done entirely by hand, relying on
the ingenuity of the modellers and good communication with epidemiologists
to understand system behaviours. In contrast, techniques from data mining,
machine learning, and evolutionary algorithms [8–10] can be used to process
observed data and produce predictive models. Such models are implicit, ‘black
box’ models: while they can be used to predict future behaviour, they have
no power to explain the underlying processes. We propose harnessing machine
learning and data mining techniques to assist the craft of mechanistic model
construction.

In this paper, we explore two particular data mining techniques: associa-
tion rules and clustering, and how these can be used both to identify perti-
nent structure in the development of the model, and to resolve the problem
of parameter value identification. Both techniques are designed to draw out
relationships, either between attributes of the data set (association rules and
clustering), or between instances of data (clustering). This information can
be used by an expert modeller to help them manually formulate a suitable
model. We illustrate the use of data mining for modelling by developing an
epidemiological model for the mumps virus using the process algebra formalism
Bio-PEPA (Bio-Performance Evaluation Process Algebra) [11]. The primary
advantage of Bio-PEPA is that an explicit model is obtained, which has a clear
modular specification style and which gives access to di↵erent analyses for a
whole population: stochastic simulation, model checking and ODE-based anal-
yses [11–13]. Bio-PEPA simulations can easily produce time series data; how-
ever, constructing the model, choosing the right components, and identifying
the optimal range of parameters to match observed data can require consid-
erable expertise and time. In contrast, data mining provides individual-level
information through analysis of observed data to extract key model features,
and analysis of complex and varied time series outputs for a range of param-
eter settings. The combination of process algebra and data mining is only
beginning to be explored [14,15] and plays to the complementary strengths of
each.
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Improving process algebra model structure 3

The rest of the paper is organized as follows: in the next section, we pro-
vide a brief overview of related work in the area of model inference for process
algebra and parameter estimation using data mining for infectious disease epi-
demiology. Section 3 describes our novel combination of clustering techniques
and association rules with Bio-PEPA. The approach is illustrated through an
application to mumps, assisting in both model structure and parameter iden-
tification, showing how a model which fits well to observed data is obtained.
Mumps was chosen because current data shows interesting dynamics and data
mining can help to explain those dynamics. Finally, we conclude by summariz-
ing the achieved goals, discussing the outcomes and providing some directions
for future work.

2 Related work and Background

Application of machine learning and data mining techniques to biological sys-
tems has grown considerably in recent years [16,17] but the launch editorial of
BioData Mining [18] highlights the need to apply these techniques specifically
in the area of epidemiology to create better predictive models. We consider
works in building model structure in process algebra, and in parameter analysis
using data mining, including clustering for time series analysis.

Existing work in model structure inference for process algebra lies mainly
in the genetic programming area: process algebra models have been recon-
structed given a partial initial model and target data by Ross and Imada [19]
(structure only) and Oaken et al [20] (both structure and parameters). Neither
method has so far been tested with a complex system and observed data. The
approach of Bartocci et al [21] deals with noisy observed data in moderately
complex systems, deriving high-level temporal logic specifications of systems
(structure). Hamami and Atmani [15] combined association rules with process
algebra to extract new pertinent rules with which to manually refine the tuber-
culosis model structure. Here, we augment this process with clustering, which
is a novel combination. There are no works specifically relating clustering to
Bio-PEPA or process algebra.

Much more work has been done in the area of parameter identification.
Sumner [22] argues that model parameters are often estimated in a large range
of values or associated with a high level of uncertainty. Consequently, this
leads to a low confidence in simulation results of models and potential bias in
parameter choice [23,24]. Several works have pinpointed sensitivity analysis as
a solution to this problem [25,26]. However, sensitivity analysis quantifies the
response of model output variables to parameter variation within a selected
parameter space. It does not generate parameter values and can only be used
to confirm optimal parameters.

Georgoulas et al [27] apply quantitative generalisation of Constraint Markov
Chains to determine parameters primarily for Markov Jump processes (a close
semantic relative of process algebra). Their focus is on obtaining statistical
distributions concerning optimal parameters for the model when matching
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4 Hamami & .al

to observed data. The Bayesian approach to parameter optimisation is also
adopted by Bortolussi et al [28] and Bartocci et al [21,29]. In these works the
model specification is given by temporal logic. This is not su�ciently explana-
tory or mechanistic for our purposes. The Oaken study [20] mentioned above
generates optimal parameter sets and statistical distributions using genetic
algorithms. This can be done simultaneously with structure inference. An ad-
vantage of all of these approaches is that statistical distributions of parameter
values are generated.

Clustering is also used here on time series data output from the model. This
is a fairly well-understood application area: the survey of Liao [30] presents
a variety of approaches, some of which can be applied to group time series
together in this way, and some of which are designed to identify sub-sequences
within a time series. Our approach identifies model structure and optimal
parameter settings for a process algebra model, based on a novel combination
of clustering with association rules applied observed data, and of clustering
applied to a large sample of model outputs.

2.1 Bio-PEPA formalism

Bio-PEPA (Bio-Performance Evaluation Process Algebra) is a formal language
developed by Ciocchetta and Hillston [11] to describe biological systems. Bio-
PEPA is a formalism allowing the description of a compartmental model of
a system composed of interacting individuals. Models are based on a set of
species (entities) and their dynamics, described by a set of actions and kinetic
rules. This is similar to the style of compartmental models in Ordinary Dif-
ferential Equations (ODE), e.g. Anderson and May [2] for epidemiology. The
advantage of Bio-PEPA over ODE is the ability to analyse the model in di↵er-
ent ways (deterministic or stochastic simulation, model checking, simulation
traces), implemented through the Bio-PEPA plugin [11]. Models in Bio-PEPA
are described by the following formal syntax, taken from [31]:

S ::= (↵,) op S | S + S | C
where op = << | >> | (+) | (�) | (.)

P ::= P ./ P | S(x)

where S: species corresponding to the main agents of the model. ↵: actions, as
chosen by the modeller, : stoichiometric coe�cients of those actions, and op:
operations describing the dynamics of S (change up, change down, or influence
on other actions). In the Species definition, + allows S to undertake a choice
of di↵erent behaviours driven by the competing rates of the actions available.
The operator << (resp. >>) indicates that the level of species increases by
their stoichiometry coe�cient (resp. decreases). The operators (+), (�) and (.)
indicate an activator, an inhibitor and generic modifier respectively. The latter
is neither an activator nor an inhibitor and indicates the species is involved in
the reaction where its level remains unchanged. In the Model definition (P ),
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Improving process algebra model structure 5

models can be combined in parallel, with or without communication, where x

defines the initial population size.
Bio-PEPA has been used widely for epidemiological modelling [31–35].

Ciocchetta and Hillston [31] developed the first epidemiological Bio-PEPA
model that was applied to avian influenza virus. The model was able to deal
with population-level dynamics of a well-mixed group of individuals with spec-
ified attributes, stochasticity and spatial structure. Benkirane et al [32] devel-
oped a measles virus model, in which seasonality and immigration a↵ected
spread of disease. Bio-PEPA was shown to provide easy-to-construct, simple
models by Hamami and Atmani [33,34] for existing models of both herpes
zoster [36] and tuberculosis [37]. Another advantage of Bio-PEPA over some
other modelling techniques and computer programming is its compact formal
syntax: this has been shown useful when combining process algebra models
with other techniques to investigate parameter values and model structure.
For example, Ramanathan et al [35] used metamorphic testing and visualiza-
tion with Bio-PEPA to study how the main parameters of epidemics (trans-
mission, infection, demographics) a↵ect model dynamics. Evolutionary tech-
niques combined with Bio-PEPA were used by Oaken [20] to propose refined
epidemiological models.

2.2 Data mining

It is beyond the scope of this work to present a complete review of data mining:
see, for example Pardalos et al [16] and Sullivan [38] for reviews of data mining
specifically applied to biomedical and life sciences. Instead, we summarise the
pertinent features of the two chosen techniques: association rule learning and
clustering.

Witten [39] defines association rule learning as the process which provides
a set of rules able to express the relationship between a group of attributes
appearing frequently together in large datasets. Formally, the rule is defined by
a combination of a set of items in the form: X ) Y , where X is the antecedant
and Y the consequent. To evaluate the quality of mined rules, two main metrics
are used: support and confidence. Assume a dataset consisting of transactions
(rows). Support is the frequency of items appearing in the dataset. Support of
X ) Y : P (X,Y ) = (set of transactions containing both X and Y ) / (total
set of transactions). Confidence evaluates reliability: it is the number of times
that the rule has been found true. Confidence of X ) Y : P (Y |X) = (set of
transactions containing both X and Y ) / (set of transactions containing X).

For example, outbreaks of childhood diseases are often correlated with
school terms. Deriving association rules for such a dataset should produce rules
which link week of the year to occurrence of the disease, with high confidence
and support.

Association rules algorithms have been widely used in the healthcare field,
as highlighted in the survey by Tomar and Agarwal [40]. The most commonly
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6 Hamami & .al

Table 1 Association rules and Clustering algorithms (taken from [39])

Association rules

Algorithm Function

Apriori Derives association rules identifying general trends in the data.
Predictive Apriori An extension of Apriori which balances support with confidence.
Tertius Derives association rules by confirmation of first-order logical clauses.

Clustering

Algorithm Function

Cobweb Implements the Cobweb and Classit clustering algorithms
DBScan Nearest-neighbor-based clustering that automatically determines the

number of clusters
EM Cluster using expectation maximization
FarthestFirst Cluster using the farthest first traversal algorithm
HierarchicalClusterer Agglomerative hierarchical clustering
sIB Cluster Cluster using the sequential information bottleneck algorithm
SimpleKMeans Cluster using the k-means method
XMeans Extension of k-means

reported association rules algorithms in the literature [39,40] are: Apriori,
Predictive Apriori and Tertius.

Clustering is a widely-used data mining technique in many fields, including
machine learning, pattern recognition, image analysis, information retrieval,
bioinformatics, data compression, and computer graphics. Witten [39] de-
scribes clustering as the task of partitioning a set of objects so that objects
in the same group (or cluster) are more similar to each other by some chosen
measure than they are to those in other groups. The results can be used to
generate hypotheses about important data features, to aid in visualization,
or to reduce the data to a few representative points. Witten classifies these
unsupervised learning techniques into four groups:

– Exclusive: each instance belongs to one and only one cluster.
– Overlapped: an instance could belong to several clusters.
– Probabilistic: an instance belongs to each cluster with a specific probability.
– Hierarchical: an instance is assigned to a cluster according to a hierarchical

structure.

Clustering can be used on its own, as above, or as a prior step to association
rule mining. In the latter case, use of clustering enhances association rule
performance evaluation such as support and confidence.

3 Approach and Data Mining Applied to Mumps

The aim of this study is to improve computational modelling through combi-
nation with data mining techniques. The particular goal is to assist modellers
in creating a suitable computational model with optimal parameter settings
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Improving process algebra model structure 7

to match observed data. This will allow improved outbreak prediction. There
are many formalisms for computational modelling and several di↵erent ap-
proaches to data mining. Here, we pair Bio-PEPA with association rules and
clustering, for reasons outlined above. We apply the approach to mumps data
from Scotland.

3.1 Mumps prevalence in Scotland

Mumps is caused by a virus in the Paramyxoviridae family. Mumps, which
a↵ects only humans, is often a self-limited infection but may in some cases
cause complications requiring hospitalization or even leave long-term side-
e↵ects. Mumps is prevalent throughout the world, despite widespread measles-
mumps-rubella (MMR) vaccination programmes. The first dose of the trivalent
MMR was introduced in Scotland in 1988 [41,42]. Scotland experienced a
large national outbreak in 2015 with over 800 laboratory-confirmed cases [43]
despite high MMR vaccine uptake of 95%. Health Protection Scotland (HPS)
have provided us with data from 2004-2015 indicating that mumps occurs
each year with a mix of major and minor epidemic waves (see Fig. 1). It
is therefore not clear how the disease will spread in future. Are the large
outbreaks outliers in a steady decline of mumps or do they signal a resurgence
of mumps? Why was there only temporary elimination of the disease following
widespread vaccination? What is causing mumps to persist? Producing a well-
parameterised model which fits this data will inform healthcare strategies by
helping epidemiologists to understand the underlying dynamics of the disease,
predict the likely pattern of future outbreaks, and propose additional control
measures such as supplementary vaccine e↵orts for student populations.

Fig. 1 Mumps confirmed cases, Scotland 1988-2016 and MMR vaccine uptake
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8 Hamami & .al

3.2 Observed data

Daily-reported data concerning mumps cases in Scotland from 2004 to 2015
is defined by the attributes Age, Sex, NHSBoard, Year, Week, Report Date,
Disease. Data is pre-processed to replace unknown values with the median
value of the range, and discretised to group age and weeks. The attribute
Disease is removed as all cases have mumps and this adds no information.
Aggregate vaccine status from an outbreak in a particular health board re-
gion in one year revealed that vaccination status might be an important
feature in outbreaks. This is counter-intuitive as, for example, vaccination
of measles confers life-long immunity. While we were unable to obtain ob-
served data at this level of detail, we are able to construct a suitable simu-
lated data set (OneYearOneBoardVaccStatus) manually combining observed
cases with projected vaccination status, based on that outbreak, where 50.4%
were fully vaccinated, 18.5% partially vaccinated, 12.6% were unvaccinated
and 18.5% with unknown vaccine status [42]. Thus, the constructed data set
(OneYearOneBoardVaccStatus) describes daily-reported individuals infected
by mumps where each line (instance) corresponds to a reported individual
and columns define the attributes describing the individual by Age, Sex, NHS-
Board, Year, Week, Report Date and vaccine status.

A number of additional data mining experiments were carried out, com-
bining additional data sources with this data (weather, transport, population
density, immigration and emigration); however, none of these was found to
provide significant correlation with epidemic outbreaks.

3.3 Outline Method

Clustering is used firstly as a prior step to association rules processing to maxi-
mize the identified features and then enhance the model structure. Secondly, it
is used here as an analysis tool to identify optimal parameters for that model,
combining clustering with time series. Our general approach is structured as
follows:

1. Cluster on reported cases (observed data).
2. Extract pertinent features from clustered data using association rules al-

gorithms.
3. Construct an enhanced Bio-PEPA model (manually) using the pertinent

features.
4. Cluster on simulated data (model outputs) to select the best fit simulation

to observed data.
5. Tune model parameters according to best fit simulation.

Thus, a range of association rule learners and clustering algorithms are used.
These are summarised in Table 1 and are provided by the WEKA (Waikato
Environment for Knowledge Analysis) [44]. It is not our goal to select one of
these as better than the others for the task but to illustrate the use of readily
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Improving process algebra model structure 9

available algorithms in our setting and to analyse the outputs for additional
insight to our epidemic system. In our experiments the default settings of
WEKA are used for each algorithm.

In the following, the steps above are described in more detail, followed
by application to the mumps example. Section 3.4 describes steps 1 and 2.
Section 3.5 describes step 3. Section 3.6 covers steps 4 and 5.

3.4 Data Mining for model structure

Modelling is done by hand, based on the SEIR model template. For mumps the
SEIR compartmental model is a commonly used starting point [2], where S: an
individual who is susceptible to acquiring the virus, E: an exposed individual
who has acquired the virus but is not yet infectious, I: an infectious individual
and R: a recovered individual who has acquired immunity for life. Normally,
adjustment of this basic template would be based on interaction between the
domain expert and the modelling expert to reach a shared understanding of
the system. To shortcut the modelling process and assist the modeller, we pro-
pose the use of data mining. Data mining might suggest additional pertinent
features which will be used to enhance the model by restructuring with new
compartments, adding new functional rates and recalculating parameters. Of
course, this must still be validated through simulation and consultation with
the domain expert, but the aim is to make this process more e�cient. Cluster-
ing is used to group observed data related to infected cases, drawing out sim-
ilarities between individuals, providing a way of identifying important system
features. To understand and identify the common features of those clustered
individuals, association rules are applied.

The rationale behind combining these two methods is to refine the set of
rules produced by association rule learning. That is, each cluster has di↵er-
ent patterns of relationships to other clusters. Since the generated rules are
ordered by relevance (confidence) this gives explicit support to the pertinence
of the attributes identified in the related rules. The extracted pertinent fea-
tures will be considered in the Bio-PEPA model refinement by both expert
and developer. For instance, if the attribute Sex is identified as pertinent then
the initial Bio-PEPA model is enhanced by including Sex in the model, where
compartments are restructured, parameters recalculated and functional rates
redefined.

3.4.1 Application to Mumps: clustering for observed data features

Fig. 2 shows the clusters formed by the K-means algorithm on the data
OneYearOneBoardVaccStatus using a minimum cluster size of two and with-
out any predefined class attribute, as our data is only suitable for unsupervised
learning. Fig. 2 shows a plot of the attribute Week versus the attribute MMR
status (see Appendix A for additional plots of attributes). It clearly illustrates
that the set of instances are assigned to two disjoint spaces related to the
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10 Hamami & .al

Fig. 2 K-means clustering applied to mumps confirmed cases OneYearOneBoardVaccSta-
tus. There are two clusters identified (blue and black crosses)

attribute week. Most of the instances are clustered from week 1 to week 26
and from week 41 to the last week of the year. The majority of instances
are deemed to be in the line of the attribute value MMR status = MMR2.
MMR2 denotes fully vaccinated status, i.e., two doses of MMR vaccine most
likely given at 13 months and 3 years of age. Note that the weeks have been
automatically discretized into 10 groups. No instances have been detected as
outliers. Increasing the cluster number to three produces no new insight (same
results as Fig. 2).

3.4.2 Application to Mumps: association rules for observed data features

Once clusters have been identified, association rules are generated per cluster.
Applying clustering as a prior step to association rule learning leads to in-
creased confidence in the resulting rules. Association rules learning is applied
to OneYearOneBoardVaccStatus (clusters as above) using Apriori (resulting
in five rules), Predictive Apriori (18 rules) and Tertius (11 rules) algorithms.
MMR status and its relation with Week and Age is important in 29 of the
34 rules produced: this gives confidence in the results. Selected results are
shown in Table 2. Where Predictive Apriori and Tertius give the same results
as Apriori these rules are omitted. Similarly, we omit rules concerning Sex as
it is distributed across cases and is not implicated in mumps acquisition. For
example, in Table 2, rules 5 and 7 are redundant in the presence of rule 6. Note
the high confidence levels of these results. Indeed, repeating the experiment in
WEKA without prior clustering will produce lower confidence (80%) for the
same resulting rules. These generated rules show clearly the relationship be-
tween contracting mumps, having had the MMR vaccine (MMR1 or MMR2),
and being in the age group 16-25. Combined with Rule 4 this suggests a link
between college and university terms in Scotland, and disease outbreak.
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Improving process algebra model structure 11

Table 2 Association Rule results on clustered data OneYearOneBoardVaccStatus

Algorithm: Apriori

Rules Measure

1. Week=‘(41.8-46.9]’ and MMR STATUS=MMR2 ) Age=‘(16.8-25.2]’ conf:(1)
2. Week=‘(46.9-inf)’ and MMR STATUS=MMR2 ) Age=‘(16.8-25.2]’ conf:(0.97)
3. Week=‘(6.1-11.2]’ and MMR STATUS=MMR2 ) Age=‘(16.8-25.2]’ conf:(0.96)
4. Week=‘(41.8-46.9]’ ) Age=‘(16.8-25.2]’ conf:(0.96)
5. Sex=F and MMR STATUS=MMR2 ) Age=‘(16.8-25.2]’ conf:(0.95)
6. MMR STATUS=MMR2 ) Age=‘(16.8-25.2]’ conf:(0.95)
7. SEX=M and MMR STATUS=MMR2 ) Age=‘(16.8-25.2]’ conf:(0.95)

Algorithm: Predictive Apriori

Rules Measure

1. Week=‘(46.9-inf)’ and MMR STATUS=MMR1 ) Age=‘(16.8-25.2]’ acc:(0.98136)
2. Sex=F and Week=‘(16.3-21.4]’ and
MMR STATUS=MMR1 ) Age=‘(16.8-25.2]’ acc:(0.90842)
3. Week=‘(-inf-6.1]’ and MMR STATUS=MMR1 ) Age=‘(16.8-25.2]’ acc:(0.90771)

The rules and clusters identified strongly suggest that seasonal variation of
transmission should be included in the SEIR Bio-PEPA model, and that two
new classes of individuals should be included who have been vaccinated either
once or twice but who still get mumps (therefore their immunity must wane).
This is illustrated in Bio-PEPA in the next section. Age structure could be
added as this is also relevant; however, for our data there is a strong corre-
lation between age and MMR status (due to the time at which vaccination
began) therefore we choose to include only vaccination status at this point.

3.5 Mumps Bio-PEPA model optimisation

Taking the initial SEIR compartmental model [2], the Bio-PEPA model is
refined manually to include seasonality and vaccination as suggested by clus-
tering and association rule mining. Fig. 3 shows the model extended with new
compartments. In total, seven compartments describe the model: vaccinated
individual (V1 related to the 1st dose of MMR and V2 related to the 2nd dose
of MMR), susceptible (susceptible 1 related to native susceptible and suscepti-
ble 2 related to modified susceptible due to waning vaccine immunity), exposed
(individual who acquired the virus from either susceptible 1 or 2 but is not
yet infectious), infected (infectious individual) and recovered individual. We
consider a homogeneous well-mixed population. Infection can arise locally or
through immigration. The parameters depicted in Fig. 3 as transition labels
and described in Table 3 define the rate of transition between each compart-
ment. According to the Bio-PEPA formalism, the mumps model as shown in
Fig. 3 is expressed by 12 parameters (an additional transmission rate �3 re-
placing �2 and �1 according to season). The proposed parameter values are
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12 Hamami & .al

Table 3 Mumps model parameters

Parameter Description Value (day) Formula

B Birth rate 3 10�5 Number of birth / Total popu-
lation

µ Death rate 3.7 10�5 Number of death / Total pop-
ulation

µ1 Non-vaccination rate 2.1 10�6 Birth rate Birth rate �(µ2 +
µ3)

µ2 Vaccination rate (MMR1) 2.8 10�6 Birth rate * MMR1 vaccina-
tion coverage

µ3 Vaccination rate (MMR2) 2.5 10�5 Birth rate * MMR2 vaccina-
tion coverage

⌧ Waning immunity rate
(MMR1)

3.4 10�4 1/immunity duration of
MMR1

� Waning immunity rate
(MMR2)

⌧/2 1/immunity duration of
MMR2

Transmission rates : transmission rate = R0 ⇤ 1/�
�1 - High season and native sus-

ceptible
C1 ⇤ �2 where R0 is the basic reproduc-

tive rate, R0 2 [4, 11]
�2 - High season and modified sus-

ceptible
R0 ⇤ 1/� C1 and C2 are constant scaling

factors (C1=0.78, C2=0.44)
obtained experimentally

�3 - Low season C2 ⇤ �2

↵ Incubation period [12� 25] 1/infection rate
� Infection period [7� 9] 1/recovery rate

� Immigration rate 0.07 Immigration*
p

population[46]

summarized from the literature [2,45,46] or deduced from serological study by
epidemiologists [47]. For modelling convenience, we assume the same period
of infection and incubation [47] for both natively susceptible and modified
susceptible. The Bio-PEPA description is given in Appendix B.

Fig. 3 Mumps compartmental model
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Improving process algebra model structure 13

3.6 Data mining for optimal parameters

Our aim here is to identify Bio-PEPA model outputs (simulations results re-
lated to the daily predicted cases) giving a close match to observed data (daily
reported cases). Depending on the similarity measure, the best cluster would
include two objects: one model output relating to the optimal parameter set,
and the observed data. Thus, overlapped and probabilistic techniques are of
no interest here as objects can be assigned to several clusters.

Algorithm 1 describes how the Bio-PEPA model and experimental simula-
tion output is combined with clustering. Essentially, a broad parameter sweep
is carried out, generating a collection of experimental results as time series of
daily predicted cases. Then, clustering is used to group these and the observed
data. The goal of the exercise is to determine patterns in parameter settings
related to matching time series outputs. Bio-PEPA provides two simulation
techniques providing time series output: deterministic simulation and stochas-
tic simulation (where an average of multiple runs is considered). Either could
be used in our approach.

As shown in algorithm 1, we define the output of Bio-PEPA as the input
of clustering, where each simulation experiment Expi corresponds to a set
of parameters Gi and an instance/line (individual) in the clustering table.
In clustering each instance is defined by a set of attributes (columns). As
time series data are a function of simulation times (from 0 to T - the end
of simulation), the attributes reflect each data point. Therefore, the input
of the clustering algorithm will be a table B[j, t], where j is the number of
simulation experiments plus the observed data and t is the simulation time.
A pre-condition for this algorithm is that the simulation experiments should
be structured in the same way as the observed data (where the number of
infected are daily reported cases).

Clustering is applied by aiming for the smallest number of groups first,
and refining until the cluster Cm (including the observed data) has at most
one other member. If the algorithm terminates with Cm containing only the
observed data then the previous value of Cm should be returned. All members
of Cm are in some way optimal parameter settings. As each experiment is
related to a set of model parameters then the other clusters generated in this
process may be useful to give contextual information about patterns relating
to input parameters of the model. For example, a cluster may identify a range
of parameter settings which all give similar outputs, therefore the model is not
sensitive to that parameter.

3.6.1 Application to mumps: clustering for parameter optimisation

Before suggesting any future trends to the experts, we should first convince
them of the validity of our model. Thus, we focus first on reproducing the
dynamics of mumps from 2004 to 2015 in Scotland.

We carried out a series of simulations in the Bio-PEPA plug-in. Determin-
istic simulation is used to e�ciently provide a simple, consistent, comparable
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14 Hamami & .al

Inputs

1. Select Bio-PEPA model parameters to be investigated and range of values. N =
number of parameters * number of values;

2. Set the group Gi to the ith series of parameter values used to run the ith Bio-PEPA
experiment, where i 2 [1, N ];

3. Set the experiment Expi to the simulation results relating to the group Gi, and let T

be the time of simulation end, where each Expi[t]|t 2 [0, T ] corresponds to a time
point;

4. Let ExpN+1 be the time series of the observed data;
5. Let B be the constructed database, where each row B[j] = Expj is the j : jth

experiment for j 2 [1, N + 1];

Outputs
The cluster Cm containing observed data and fitting experiment.

Algorithm

6. Define target number of clusters K 2 [2, N � 1];
7. Initialise K = 2;
8. Apply the clustering algorithms using B as an input. The output is a set

{Ck|k 2 [1,K]} of clusters. Identify Cm as the cluster containing ExpN+1;
9. If |Cm| > 2 then increment K and repeat from step 8 until |Cm|  2, or no more

clustering occurs.

Algorithm 1: Optimisation of parameters of a Bio-PEPA model

time series output. Stochastic simulation (unless averaged over multiple runs)
will provide varying results for a single parameter set. The time required for
multiple runs makes stochastic simulation unsuitable for the current example.

The simulation is of 12 years, starting at t=0 (related to the start of the
year 2004) and ending at t=4320 (related to the end of the year 2015, assum-
ing months have 30 days for simplicity and therefore years have 360 days).
The time unit is days. To select the optimal simulation result, we first identify
relevant parameters and their range of values. The parameters of interest are:
incubation period ↵, infectious period �, and basic reproductive rateR0. As the
transmission rates � are defined by (R0⇤1/�), their values vary as a function of
infectious period and R0. See Table 4 for parameter ranges. Both ↵ and � are
measured in days therefore increments of one are logical. R0 might reasonably
be measured with more granularity; however, a variation of one step for each
parameter results in 14 points for incubation period, 4 points for infectious pe-
riod and 8 points for R0. This would give 448 (14*4*8) simulation experiments.
Each run is short, but the translation to WEKA is time-consuming. Assuming
model behaviour is continuous, we identify a sample across the largest range
to reduce the number of experiments required initially, allowing promising
parameter regions to be identified for further investigation. Table 4 specifies
the ranges used. This results in 160 (5*4*8) experiments. A total of 699040
(160*4321) time points are to be considered in clustering the model simulation
output with the observed data.

Table 5 summarises the results of the clustering algorithms. All algorithms
except sIB eventually returned the target of a cluster of two where one object
is the observed data. Moreover, the same experiment was returned in this
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Table 4 Experimental range of values for parameters

Parameter Initial range Experimental sample Optimal value

↵ 12-25 12, 15, 18, 21, 25 21
� 6-9 6-9 7
R0 4-11 4-11 6

Table 5 Clustering analysis results

Clustering Algorithm Number of clusters (K) Time processing (seconds)

K-means 36 4.06
Hierarchical clustering 5 2.03
FarthestFirst 7 0.22
EM clustering 15 45.91
X-means 15 11.28

cluster for every successful algorithm (with the optimal values as in column 4
of Table 4). The Hierarchical and FarthestFirst algorithms returned our target
within a small number of clusters (7 or fewer). K-means, the most popular
clustering algorithm, took longer: the desired cluster only appeared when the
target was 36 clusters. All algorithms run in under one minute for the largest
number of clusters for this data. In contrast, sIB takes significantly longer
(around nine minutes) and the smallest cluster containing the observed data
has two other experiments. However, one of the included experiments found
by the sIB algorithm has similar parameter values to those noted by other
algorithms. All algorithms use Euclidean distance as a similarity measure,
except sIB, which uses Kullback-Leibler divergence.

Table 6 K-means clustering: parameter values associated with 10 year cycles

K-MEANS CLUSTERING

No Cluster No object in cluster Cycle
Parameter values
R0 ↵ �

1 2 9,10 7 21,25 9
5 8 8-10 6,7 12-21 7-9
6 3 9-10 7-8 25 7-9
10 7 9-10 5-7 12-25 6-7
17 2 10 6 21 7
23 3 9-11 5 12-15 8-9
26 3 10-11 6 21-25 8-9

Considering clusters not containing the observed data, we see significant
di↵erences in the length of the major cycle depending on the value of R0. (Re-
call that the observed data of Fig. 1 shows epidemic outbreaks every year and
a major cycle of 10 years.) For example the hierarchical clustering algorithm
defined four other clusters which show cycles of 6, 7, 9 and 12 years. In fact,
the period between major outbreaks varies inversely with R0. Table 6 presents
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a selected sample of clusters from the K-means algorithm showing how the
parameters vary even for cycles of period 9-11. Higher values of ↵ contribute,
with R0, to longer inter-epidemic periods (see e.g. lines 17 and 26). There
appears to be no e↵ect from varying �.

Recall that the values of ↵ were sampled across the parameter range. We
repeat the clustering exercise with more granularity. Fig. 4 plots time series
simulation results for ↵ 2 [19, 24]. Clustering confirms that 21 is the optimal
value for ↵ by grouping that experiment with the observed data. The optimal
parameter set is shown in column 4 of Table 4. Intuitively, a long incubation
period seems reasonable, as the number of individuals in the exposed com-
partment accumulates individuals and leads to a large reservoir for new cases.

Fig. 4 Simulation traces for ↵ 2 [19, 24]

Finally, we also examined clusters obtained in the penultimate step of
clustering containing the observed and more than one object (experiment)
given by both K-means and sIB algorithms. Figs. 5 and 6 illustrate that these
time series cannot be easily discriminated by eye: the basic pattern of 10 year
cycles is maintained, but there are small di↵erences in amplitude. For example,
Fig. 6 depicts three graphs related to the three objects belonging to the same
cluster in the step prior to providing the targeted results.

Fig. 7 plots observed data and time series simulation results for the opti-
mal set, where the simulation results are scaled to account for under-reporting
of disease [48]. Scaling makes no di↵erence to the clustering analysis: it was
performed with and without scaling data, and similar results were obtained.
The aim is to match the general shape of outbreaks, which this does well apart
from the years 2009 and 2010. A larger R0 would result in shorter cycles (as
illustrated above), but while this might match 2009, it wouldn’t match both
2009 and 2010. Clustering, with its underlying statistical comparison measures,
has automatically highlighted the major periodic cycle of ten years. Running
the model for a longer period (not shown here) confirms ten year cycles. This
suggests a resolution to our initial question about mumps concerning the fu-
ture trend of outbreaks. Paired with the use of association rules and clustering
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Improving process algebra model structure 17

Fig. 5 Comparison of experiments assigned to the same cluster by sIB algorithm (step prior
to the one providing the targeted results)

Fig. 6 Comparison of experiments assigned to the same cluster by K-means algorithm (step
prior to the one providing the targeted results)

to identify and explain model structure this leads to a model which epidemi-
ologists and experts can be comfortable in using for future predictions and
decision-making.

4 Discussion and Conclusion

In this paper we have presented results demonstrating the utility of combin-
ing Bio-PEPA modelling with data mining applied to mumps in both model
structure identification and model parameter optimization. By innovatively
preceding association rule learning by clustering we were able to identify strong
features in the data suggesting areas in which a standard model could be re-
fined. Specifically, this process suggested that seasonality, vaccination and age
are correlated features which should be included in the model. We carried out
a series of simulations from the manually crafted model to predict outbreaks
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18 Hamami & .al

Fig. 7 Predicted incidence of Mumps in Scotland from 2004 to 2015 (Bio-PEPA simulation
results related to the selected experiment – ↵ = 21,� = 7, R0 = 6) and observed data. The
simulated data are scaled to fit the observed data.

from 2004 to 2015 in Scotland. From 164 time series, where each one is re-
lated to specific parameter values, our proposed algorithm could identify the
one best fitting to observed data. Conversely, although many of the remain-
ing experiments seem to match well by eye with observed data, they have
not been selected by the algorithms as well-fitted patterns to observed data.
Thus, analysing Bio-PEPA outputs using clustering reduces the uncertainty
in model parameter estimation. Several clustering algorithms were used. The
fact that the majority return the same result gives more confidence that this
is the optimal parameter set within the proposed series of experiments. More-
over, the clusters produced can be examined to detect trends in parameter
values. By using Bio-PEPA modelling and its simulation tool combined with
clustering techniques, we were able, not only to add confidence to our model
construction and prediction, but also to shed light on the selected values which
can help epidemiologists to understand the dynamic of mumps epidemics and
then make better decisions.

This work can be extended in several directions. The basic data mining
algorithms built in WEKA, with default parameters, were used. The mumps
example could be re-analysed with some of the specialised time series cluster-
ing algorithms, although, on the whole, these are about speeding-up clustering
and dealing with warp between time series. Within epidemiology, a more fine-
grained approach to parameter selection is desirable: further work can establish
how far clustering can help when the di↵erence between parameter values is
very small (e.g. increments of 0.1, or smaller). For this particular example, we
might also consider allowing the constants C1 and C2 to vary, increasing or
decreasing seasonal e↵ects. Further developments would require epidemiolo-
gists to collect more detailed data. For example, the model could be enhanced
with population movements and wider immigration and emigration, but this
would require additional spatial population information. Lastly, application to
other data sets would be informative. We propose here epidemiological models
of mumps but there is no reason that this approach could not be extended to
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models of other types of infectious disease, or systems producing time series
outputs more generally.

5 Acknowledgments

We thank the anonymous reviewers for critical support and review of the
manuscript.

References

1. T. R. Malthus, An essay on the principle of population: or, A view of its past and
present e↵ects on human happiness. Reeves & Turner, 1888.

2. R. M. Anderson and R. M. May, Infectious diseases of humans: dynamics and control,
vol. 28. Wiley Online Library, 1992.

3. S. Abrams, P. Beutels, and N. Hens, “Assessing mumps outbreak risk in highly vacci-
nated populations using spatial seroprevalence data,”American journal of epidemiology,
pp. 1006–17, 2014.

4. H. W. Hethcote, “The mathematics of infectious diseases,” SIAM review, vol. 42, no. 4,
pp. 599–653, 2000.

5. C. Castillo-Chavez, S. Blower, P. Driessche, D. Kirschner, and A.-A. Yakubu, Mathe-
matical approaches for emerging and reemerging infectious diseases: models, methods,
and theory. Springer, 2002.

6. A. Vespignani, “Modelling dynamical processes in complex socio-technical systems,”
Nature Physics, vol. 8, no. 1, pp. 32–39, 2012.

7. A. C. Babtie, P. Kirk, and M. P. Stumpf, “Topological sensitivity analysis for systems
biology,” Proceedings of the National Academy of Sciences, vol. 111, no. 52, pp. 18507–
18512, 2014.

8. T. Asha, S. Natarajan, and K. Murthy, “Data mining techniques in the diagnosis of
tuberculosis,” in Understanding Tuberculosis-Global Experiences and Innovative Ap-
proaches to the Diagnosis, InTech, 2012.

9. H. H. Inbarani, A. T. Azar, and G. Jothi, “Supervised hybrid feature selection based
on pso and rough sets for medical diagnosis,” Computer methods and programs in
biomedicine, vol. 113, no. 1, pp. 175–185, 2014.

10. H. Kim, M. I. M. Ishag, M. Piao, T. Kwon, and K. H. Ryu, “A data mining approach
for cardiovascular disease diagnosis using heart rate variability and images of carotid
arteries,” Symmetry, vol. 8, no. 6, p. 47, 2016.

11. F. Ciocchetta and J. Hillston, “Bio-PEPA: A framework for the modelling and analysis
of biological systems,” Theoretical Computer Science, vol. 410, no. 33-34, pp. 3065–3084,
2009.

12. E. Bartocci and P. Lió, “Computational modeling, formal analysis, and tools for systems
biology,” PLoS Comput Biol, vol. 12, no. 1, p. e1004591, 2016.

13. M. L. Guerriero, “Qualitative and quantitative analysis of a Bio-PEPA model of the
gp130/jak/stat signalling pathway,” in Transactions on Computational Systems Biology
XI, pp. 90–115, Springer, 2009.

14. D. Hamami, A. Baghdad, and C. Shankland, “Decision support based on Bio-PEPA
modeling and decision tree induction: a new approach, applied to a tuberculosis case
study,” International Journal of Information Systems in the Service Sector (IJISSS),
vol. 9, no. 2, pp. 71–101, 2017.

15. D. Hamami and B. Atmani, “Obtaining optimal Bio-PEPA model using association
rules: Approach applied to tuberculosis case study,” in International Conference on In-
formation Systems for Crisis Response and Management in Mediterranean Countries,
pp. 62–75, Springer, 2016.

16. P. M. Pardalos, V. L. Boginski, and V. Alkis, Data mining in biomedicine, vol. 7.
Springer Science & Business Media, 2008.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 Hamami & .al

17. M. Sebban, I. Mokrousov, N. Rastogi, and C. Sola, “A data-mining approach to spacer
oligonucleotide typing of mycobacterium tuberculosis,” Bioinformatics, vol. 18, no. 2,
pp. 235–243, 2002.

18. S. M. Lynch and J. H. Moore, “A call for biological data mining approaches in epidemi-
ology,” BioData mining, vol. 9, no. 1, p. 1, 2016.

19. B. J. Ross and J. Imada, “Evolving stochastic processes using feature tests and genetic
programming,” in Proceedings of the 11th Annual conference on Genetic and evolution-
ary computation, pp. 1059–1066, ACM, 2009.

20. D. R. Oaken, Optimisation of Definition Structures Parameter Values in Process Alge-
bra Models Using Evolutionary Computation. PhD thesis, University of Stirling, 2014.

21. E. Bartocci, L. Bortolussi, and G. Sanguinetti, “Data-driven statistical learning of tem-
poral logic properties,” in International Conference on Formal Modeling and Analysis
of Timed Systems, pp. 23–37, Springer, 2014.

22. T. Sumner, Sensitivity analysis in systems biology modelling and its application to a
multi-scale model of blood glucose homeostasis. PhD thesis, UCL (University College
London), 2010.
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A Additional figures

Fig. 8 (resp. Fig. 9 and Fig. 10) shows that K-means clustering applied to mumps confirmed
cases and plotted by Age (resp. MMR status and Sex) is not meaningful for the model
where both clusters depicted similar age groups (resp. similar distribution of MMR status
and Sex).

B Model

1. mu = 0.000037;
2. beta1 =0.7;
3. beta2 =0.9;
4. beta3 = 0.4;
5. mu1 = 0.0000021;
6. mu2= 0.0000028;
7. mu3= 0.000025;
8. alpha = 0.05;
9. gamma = 0.143;

10. lambda =0.07;
11. tau= 0.00034;
12. delta=tau/2;
13. sizeOutside = 110000;
14. sizeLocal = 5300000;
15. location world : size =5200000 , type = compartment;
16. location Local in world: size = sizeLocal, type = compartment;
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17. location Local in world: size = sizeLocal, type = compartment;
18. location Outside in world : size = sizeOutside, type = compartment;
19. thigh = 4;
20. tlow = 9;
21. month = floor(time/30);
22. season time = 1-H( ((month - 12*floor(month/12)) - tlow)* (thigh-(month - 12*floor(month/12)))

);
23. N = (S1@Local +E@Local + I@Local + R@Local +S2@Local + MMR1@Local +

MMR2@Local);

Kinetic Laws
24. kineticLawOf BIRTH1: mu1 * N;
25. kineticLawOf BIRTH2: mu2 * N;
26. kineticLawOf BIRTH3: mu3 * N;
27. kineticLawOf MMR1 S2: MMR1@Local *tau;
28. kineticLawOf MMR2 S2: MMR2@Local *delta;
29. kineticLawOf Death MMR1 : mu * MMR1@Local;
30. kineticLawOf Death MMR2 : mu * MMR2@Local;
31. kineticLawOf immigration : lambda/10000;
32. kineticLawOf S1 E: (beta1 * S1@Local * I@Local)/N * (season time) + (1-season time)*(beta3

* S1@Local * I@Local)/N ;
33. kineticLawOf S2 E: (beta2 * S2@Local * I@Local)/N * (season time) + (1-season time)*

(beta3 * S2@Local * I@Local)/N;
34. kineticLawOf E I: alpha * E@Local;
35. kineticLawOf I R: gamma * I@Local;
36. kineticLawOf Death S1: mu * S1@Local;
37. kineticLawOf Death I: mu * I@Local ;
38. kineticLawOf Death E: mu * E@Local;
39. kineticLawOf Death S2: mu * S2@Local;
40. kineticLawOf Death R: mu * R@Local;

Species
41. S1 = (BIRTH1,1) >> S1@Local + (S1 E,1) << S1@Local + Death S1 << S1@Local;
42. S2 = (S2 E,1) << S2@Local + Death S2 << S2@Local + (MMR2 S2,1) >> S2@Local

+(MMR1 S2,1) >> S2@Local;
43. E = (S1 E,1) >> E@Local +(S2 E,1) >> E@Local +(E I,1) << E@Local

+ Death E << E@Local;
44. I = (E I,1) >> I@Local +(I R,1) << I@Local + Death I << I@Local

+ immigration[Outside ! Local](.)I + (S1 E,1) (.) I+ (S2 E,1) (.) I;
45. R = (I R,1) >> R@Local+ Death R << R@Local ;
46. MMR1 = (BIRTH2,1) >> MMR1@Local + (MMR1 S2,1) << MMR1@Local

+ Death MMR1 << ;
47. MMR2 = (BIRTH3,1)>> MMR2@Local + (MMR2 S2,1) << MMR2@Local

+ Death MMR2 << ;

Model component
48. S1@Local[1100000]< ⇤ > S2@Local[0]< ⇤ > E@Local[0] < ⇤ > I@Local[20]

< ⇤ > R@Local[3218600] < ⇤ > MMR1@Local[273541] < ⇤ > MMR2@Local[250000]
< ⇤ > I@Outside[10000]
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Fig. 8 K-means clustering applied to mumps confirmed cases OneYearOneBoardVaccSta-
tus: Clusters vs Age.

Fig. 9 K-means clustering applied to mumps confirmed cases OneYearOneBoardVaccSta-
tus: Clusters vs MMR Status.
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Fig. 10 K-means clustering applied to mumps confirmed cases OneYearOneBoardVaccSta-
tus: Clusters vs Sex.
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