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Abstract 

Data analytics have become increasingly complicated as the amount of data has increased. 

One technique that is used to enable data analytics in large datasets is data sampling, in 

which a portion of the data is selected to preserve the data characteristics for use in data 

analytics. In this paper, we introduce a novel data sampling technique that is rooted in 

formal concept analysis theory. This technique is used to create samples reliant on the data 

distribution across a set of binary patterns. The proposed sampling technique is applied in 

classifying the regions of breast cancer histology images as malignant or benign. The 

performance of our method is compared to other classical sampling methods. The results 

indicate that our method is efficient and generates an illustrative sample of small size. It is 

also competing with other sampling methods in terms of sample size and sample quality 

represented in classification accuracy and F1 measure. 

Keywords: Data sampling; Formal concept analysis; Image segmentation; Breast cancer 

classification; histopathology. 

1. Introduction 

Breast cancer is one of the most common cancers in women in the world, and it represents 

25% of the overall cancers. Statistics indicate that every 60 seconds, somewhere in the 

world, someone dies from breast cancer. With this rate, it is expected that 13 million breast 

cancer deaths will occur in the world in the coming 25 years. Breast cancer can be treated if 

it is diagnosed in its early stages [1]. The breast cancer histology images are processed 

through certain image filters to produce a set of features describing each pixel. This process 

generates a massive amount of data that needs to be analyzed in order to classify the pixels 
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as malignant or benign. It is here that the importance of sampling arises to take a 

discriminative set of the data to be used in the classification process. 

The objective of any data sampling technique is to extract a portion of the data that 

preserves data behavior while reducing sampling cost and error [2]. In this paper, a new 

data sampling method is proposed and employed in classifying breast cancer images. This 

method is rooted in formal concept analysis (FCA) theory, which is a mathematical 

framework used for conceptual data analysis, in which data are represented as a binary 

relation that links tuples and features [3]. This binary relation is transformed into a set of 

binary patterns, which is then used to select a sample from the data while preserving 

patterns proportions across the data. 

The novelty of the sampling method is due to several factors: 1) it considers all data 

features while generating patterns, unlike other existing sampling methods that consider 

only one feature; 2) it considers data distribution among different patterns to generate 

proportional samples that represent the real distribution of data; 3) it does not require any 

prior knowledge about the data. 

The proposed method is validated and evaluated against two of the most widely used 

sampling algorithms: simple random sampling and stratified sampling. All sampling 

methods are validated using a machine-learning case study of breast cancer image 

classification. The samples are fed into different algorithms which build several classifiers 

to detect whether the pixels are malignant or benign, and evaluated using classification 

accuracy and F1 measure. 
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The paper is organized as follows; section 2 introduces some background information. 

Section 3 explains the methodology including image processing, sampling and learning 

steps. In section 4, the data set, experimental setup, and experimental results are discussed. 

Finally, we conclude our work. 

2. Background 

In this section, the backgrounds of the topics examined in the subsequent sections are 

described in detail.  

2.1 Formal Concept Analysis 

FCA is a mathematical framework built on lattice theory that provides data analysis and 

knowledge discovery [3]. It works by analyzing the binary relations between tuples and 

features [4]. FCA is a beneficial data analysis technique that has been widely applied in 

different fields such as feature reduction [5], image mining [6], and decision-making [7]. 

In FCA, the main entity is a binary relation that is called a formal context, which is defined 

as follows: A formal context (FC) is a triplet k = <O,A,I>, where O and A represent objects 

and attributes respectively. The binary relation defined between O and A is noted as I and 

the term I(o, a) means the value of object o in attribute a [8], [9], [10]. 

Table 1 provides an example of a formal context with O = {Lion, Finch, Eagle, Hare, 

Ostrich}, A = {Preying, Flying, Bird, Mammal} and I (Finch, Bird) = 1. 

Table 1. Example of a formal context 

            Preying      Flying     Bird     Mammal 

Lion          1               0           0            1 
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Finch        0                1           1           0 

Eagle        1                1           1           0 

Hare         0                0           0           1 

Ostrich     0                0           1           0 

2.2 Sampling Methods 

One way to overcome the data size problem is data sampling, which is the process of 

drawing a sample from a population that helps in making inferences. The process of 

drawing a sample is shown in Fig. 1. The accuracy of the analytics performed using only 

samples of the data is extensively based on the quality of the selected samples. Therefore, 

the sampling design plays a crucial role in both the sampling process and the inference 

process. As the sampling design provides the method used to collect the sample, it should 

be accurate, efficient, and feasible [11]. In this paper, we use simple random sampling and 

stratified sampling for their simplicity and efficiency. 

 

Fig. 1. Data sampling process 
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2.2.1 Simple Random Sampling (SRS) 

All elements in the population have equal probability of being selected for the sample. SRS 

is easy to implement and it can be used to estimate the population total and mean. The 

mean is unbiased and sample variance can be estimated using a single sample. However, it 

is not efficient enough [12], [13]. 

2.2.2 Stratified Sampling 

In stratified sampling, the population is divided into non-overlapping groups based on 

certain known criteria such as age, gender, or country. This set of groups is called strata, 

and each subgroup is called a stratum. A sample is drawn randomly from each stratum [14]. 

The process of stratified sampling is shown in Fig. 2. 

Stratified sampling helps in understanding the problem domain and in producing 

representative samples that enhance sample estimates and reduce sampling error. Moreover, 

it enables the analysis of each subgroup by providing separate estimates. Stratified 

sampling is more efficient than SRS particularly when the points of each stratum are 

homogenous and the points between strata are heterogeneous [14], [15]. 



7	
	

 

Fig. 2. Stratified sampling 

2.3 Image Segmentation 

Image segmentation is the process of partitioning an image into a set of pixels based on 

color, intensity, and texture [16]. Image segmentation plays a crucial role in cancer 

detection and severity evaluation, Fig. 3 shows an example of a breast cancer image that is 

segmented to	identify the tumor regions. It helps in restricting the analysis process to areas 

containing tumor cells only and avoids any confusion with other regions. Image 

segmentation is definitely a challenging problem due to the enormous amount of 

inconsistencies in the images. Image inconsistency may arise from the differences in 

images collection such as noise, cut consistency, dye concentration, and slide scanners [17]. 
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Fig. 3. Breast cancer image segmentation [16] 

Numerous methods are developed to segment the images. In [16], breast cancer images 

segmentation is represented as a machine learning problem that is solved using supervised 

and unsupervised learning methods. Gurcan et al. in [18] target segmenting the hematoxylin 

and eosin (H&E) stained images to classify a pediatric nervous system cancer. They 

integrated the top hat and thresholding algorithms to segment the cell nuclei. Cosatto et al. 

provide a high accuracy classifier for breast cancer nuclear segmentation and grading [19]. 

Yang et al. segment the blood cancer histopathology specimens by constructing a concave 

vertex graph. This graph is based on employing a contouring model to define the concave 

boundary points and inner edges [20]. For breast cancer images of tissue microarrays, Qi et 

al. succeeded in accurately segmenting overlapped cells. Their model started by finding the 

object centers, then clustering, and finally contouring the cells [21]. 

In [22], the authors work on breast and cervix image segmentation. The watershed 

algorithm is used to extract nuclei, while the oversegmentation problem is tackled using a 

novel marker extraction schema. Ali and Madabhushi [23] investigate the limitations of the 
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classical active contouring algorithm to segment the highly overlapped objects of breast and 

prostate tissues. Their proposed technique is able to generate better boundary separations 

and handle object occlusion. In [24], a framework for classifying breast cancer image pixels 

as tumor or stromal regions is proposed. The image is split into four regions: tumor, 

Hypocellular stroma, Hypercellular stroma, and fat that is removed during the 

preprocessing step. The texture features of the hypo and hyper stroma are extracted using 

different orientations of a Gabor filter. 

The emergence of deep learning helped the improvement of image segmentation and 

analysis. Sirinukunwattana et al. [25] propose an integrated framework for nuclei detection 

and classification that is based on deep learning techniques. A convolutional neural 

network is mainly employed for both detection and classification. In [26], the authors 

employ a convolutional neural network to solve the problem of classifying unbalanced data 

of breast cancer images. The proposed framework segments the images, and then 

recognizes the non-mitotic parts of the image that are later under sampled, while 

oversampling the mitotic parts to achieve the balance between the classes.  

3. Methodology 

The work proposed is mainly divided into three main parts; the image processing, the 

sampling, and the learning. In image processing, the image quality is improved and features 

are extracted as indicated in section 3.1. The sampling is the main contribution of this paper 

that is explained in detail in section 3.2. The learning process aims to build several 

classifiers using different classification algorithms that are trained from the samples. The 

learning process is explained in detail in section 3.3. 
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 In Fig. 4, image (A) shows the original breast cancer image, while image (B) is the 

predicted one resulting after the learning process; the white regions represent the tumors 

and the black regions are the normal cells. 

	

Fig. 4. Example of the original breast cancer image (A) and the predicted one (B) 

3.1 Image Processing 

In image processing, the image quality is improved through: 1) stain normalization, 2) 

conversion to gray scale, and 3) noise removal. 

Stain normalization targets the color consistency, so it corrects the color inconsistency of 

breast cancer images resulting from light, scanner type, and stain variations from one 

laboratory to another. Fig. 5 shows the effect of stain normalization on breast cancer 

images, figures A and B are the images before stain normalization, while figures C and D 

are after stain normalization. A plethora of stain normalization algorithms are available. In 

[27–29] the histogram specification technique is used because it discriminates between the 

tumor and the non-tumor parts clearly. 
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The stained images are converted to grey scale using MATLAB2. Then, the noise in the 

images is removed by smoothing the image brightness using a smoothing Gaussian filter 

that fits the image distribution, Fig. 6 illustrates a source colored breast cancer image (A) 

and a preprocessed image after stain normalization, grey scale conversion, and noise 

removal (B). 

	

Fig. 5. Illustration of stain normalization on breast cancer	images [16] 

 

          (A)                     (B) 

																																																													
2http://www.mathworks.com/help/images/ref/rgb2lab.html  
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Fig. 6. The difference between the source and preprocessed image [16] 

After preprocessing images, a feature extraction step is performed. Features represent the 

characteristics of the images. In this work only the textural features are extracted to 

minimize	color and intensity dependencies. Textural features depend on the structure and 

the pattern of the tumor regions and hence, they are dominant in determining the tumor and 

non-tumor regions of an image. 

Several techniques can be used to extract textural features such as Maximum Response 8 

(MR8) filter bank [30], Root Filter Set (RFS) bank [31], and Haralick filter [32]. In this 

work, we focus on the MR8Fast filter that is derived from the MR8 filter bank. It extracts 8 

responses only, so each image has 8 features. 

3.2 The Proportional Sampling 

The proposed pattern-based proportional sampling method (PPS) is centered on the 

representation of conceptual data. First, the input dataset is transformed into a binary 

relation called a formal context. This relation is mapped into binary patterns and then, a 

proportion of each pattern is calculated and converted back to the original data. Fig. 7 

shows the steps in the method, which are explained in detail in the following sections. 
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Fig. 7. Proposed sampling method 

A. Convert Data to Formal Context 

Data are converted to the formal context by performing pairwise comparisons between data 

tuples as in [33]. Fig. 8 shows the example of a database instance (DBI) that is transformed 

into a formal context. Tuples T1 and T2 are compared for attributes A, B, C, and D. This 

comparison is translated into a new object in the FC with the same attributes containing “0” 

if the values are not equal and “1” otherwise. Tuple T1(A) is not equal to T2(A); hence, 

(T1,T2) (A) in the FC is “0”. However, T1(B) = T2(B), so (T1,T2) (B) in the FC is “1”. 

 

Fig. 8. Converting database instance into a formal context 

One drawback of this transformation method is the exact matching between numbers, 

which allows for information loss. To overcome this problem, a similarity measure is 

introduced to perform the pairwise comparison process as discussed in [33]. It is calculated 

as follows: 
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𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  1− !!!!!
!"# !!,!!

             (1) 

where n1, n2 are the two numbers. 

In this step, the percentage of similarity is calculated during the pairwise comparison. If the 

similarity between the data values is greater than a certain threshold, then the FC object 

value is “1”; otherwise the value of the FC object is “0”. 

B. Map to Binary Patterns 

A set of binary patterns is generated based on the number of features in the FC which is the 

same as the number of features of the dataset. A formal context with M features has a 

binary pattern table of size 2M patterns. Each FC object is mapped to one of these patterns 

and a counter attached to each pattern is incremented. Only a fixed number of FC objects is 

stored for each pattern to minimize memory usage. Examples of a binary pattern table (PT) 

and the counter table (CT) generated for a FC with four attributes are illustrated in Fig. 9. 

For example, since objects (T2, T3) and (T3, T6) are mapped to pattern “0010”, its 

corresponding counter value in the CT is 2. 
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Fig. 9. Mapping FC objects to patterns 

C. Calculate Pattern Proportions 

After mapping all FC objects to their corresponding patterns, the CT indicates the 

frequencies of each pattern across all the data. Each value in the CT is divided by the total 

number of objects in the formal context to obtain the proportion of each pattern. This 

proportion is multiplied by a multiplier K where K > 0. It controls the number of objects to 

be sampled from each pattern. The higher the multiplier value, the bigger the sample size. It 

is calculated as follows: 

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 = !" (!"##$%&)
!"#$%& !" !" !"#$%&'

                   (2) 

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑆𝑎𝑚𝑝𝑙𝑒 𝐶𝑜𝑢𝑛𝑡 =  𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛×𝐾     (3) 
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A number of objects is selected from each pattern based on its calculated sample size. For 

example, a pattern sample count of 10 means that the first 10 objects belonging to this 

pattern are selected as the sample. 

D. Map Objects to Original Data 

The pattern sample size provides statistical information about the tuples in the original 

database. Patterns with higher proportions have higher numbers of FC objects and thus, 

more objects are sampled from them while patterns with low proportions and zero sample 

size are not included in the sample. This mapping process significantly empowers our 

sampling method because it recognizes the outliers and data distribution in different 

patterns without prior knowledge about the data. 

The sampled FC objects are mapped to the tuples in the original database to generate the 

sample. For example, in Fig. 10, the pattern {0110} has four objects {(T1, T2), (T1, T6), (T2, 

T5) and (T5, T6)}. In this example, the multiplier is 7 to get a very small sample because the 

dataset is already fairly small. The pattern sample size for {0110} is 1.87, which can be 

rounded to 2 for the sample count, so two FC objects are randomly selected from this 

pattern. Assume that FC objects {(T1, T2) and (T1, T6)} are sampled from the FC. 

Therefore, the tuples T1, T2, and T6 are selected from the original dataset in the sample. 

This process is repeated for all patterns that have sample counts greater than zero. 
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Fig. 10. Sampling from DBI based on pattern proportion 

3.3 The Learning Process 

The generated samples are used to classify the image pixels as malignant or benign. This is 

achieved by a machine learning process based on 5 classification algorithms: naïve Bayes 

(NB), support vector machine (SVM), pattern net (PN), cascade forward net (CFN), and 

feed forward net (FFN) using the statistics and machine learning toolbox of MATLAB3.

																																																													
3 https://www.mathworks.com/products/statistics.html 
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The training set is the sample and the test set is not previously known to the classifier. The 

classification accuracy and F1 measure [34] are reported to evaluate the samples and the 

learning process. In addition, our sampling method is compared to the classical sampling 

methods; simple random sampling (SRS) and stratified sampling (SS). All the generated 

samples are used through the learning process for validation and evaluation. 

4. Results and Discussion 

In this section, we discuss the experiments performed on the breast cancer images of the 

MITOS 2012 dataset4. It contains 50 images from 5 patients and each image has 512 × 512 

pixels and 8 features that are labelled (malignant or benign) manually by domain experts. 

The experimental setup section explains the configurations of each group of experiments; 

the data split and cross validation results sections show the results achieved using the 

clarified configurations. 

4.1 Experimental Setup 

Two main groups of experiments are performed, the data split group and the cross-

validation group. In the data split experiments, the 50 images are divided into 2 equal sized 

partitions. A random sample of size 10,000 pixels is selected from the first partition that 

includes 25 images (400 pixels from each image) and given as input for all sampling 

methods. The second partition with the other 25 images is used for testing with a total size 

of 6,553,600 (512 x 512 x 25) pixels. The proposed sampling method, PPS is configured 

with 70%, 80%, and 90% similarity thresholds to study their effects on the sample quality. 

Also the multiplier is tuned to 100 and 1000 to produce different sample sizes. On the other 

																																																													
4 http://ipal.cnrs.fr/ICPR2012 
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hand, SRS and SS methods are tested for sample sizes of 200 and 1500. The results of the 

data split experiments are discussed in section 4.2. 

In the cross-validation group, the images are subdivided into 10 sets of 5 images. From 

each image, a smaller sample of 750 rows is randomly selected, thus, each subset has a total 

sample size of 3750(750*5) rows. Since we are doing 10-fold cross-validation, 9 subsets 

are used for training while one is used for testing and the input to PPS is the 9 subsets 

combined into a single dataset totaling 33,750 rows. The PPS similarity threshold is tuned 

to 70%, 80%, and 90% just like in the previous experiment while the multiplier is set to 

1000 to have sufficient sample size. On the other hand, SRS and SS are configured with a 

sample size of 1200 rows. The results of the cross-validation experiments are discussed in 

section 4.3. 

4.2 Data Split Results 

In PPS, the similarity threshold affects the sample size. Fig. 11 shows that the sample size 

increases with the increase in similarity threshold for both the 100 and 1000 multipliers. 

This is because the higher the similarity threshold, the lower the number of ones in the FC 

and hence more tuples are needed to preserve data characteristics. 
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Fig. 11. Sample size with all similarity thresholds and multipliers 

The comparison of the algorithms using different similarity thresholds and multiplier-100 

are shown in Fig. 12 and Fig. 13. SVM outperforms other algorithms especially for the 

70% similarity threshold sample that leads in terms of accuracy and F1 measure. 

  

Fig. 12. Accuracy of all algorithms and similarity 
thresholds 

Fig. 13. F1 of all algorithms and similarity thresholds 

193	 199	 208	

1149	
1345	

1564	

100	
300	
500	
700	
900	

1100	
1300	
1500	

70%	 80%	 90%	
Sa
m
pl
e	
Si
ze
	

Mul=plier-100	 Mul=plier-1000	

66	
68	
70	
72	
74	
76	
78	
80	

NB	 SVM	 PN	 CFN	 FFN	

Ac
cu
ra
cy
	%
	

Mul=plier-100	

70%	 80%	 90%	

.72	

.74	
.76	
.78	
.80	
.82	
.84	
.86	

NB	 SVM	 PN	 CFN	 FFN	

F1
	M

ea
su
re
	

Mul=plier-100	

70%	 80%	 90%	



21	
	

In addition, we also compared the accuracy and F1 measure using multiplier-1000 that are 

represented in Fig. 14 and Fig. 15. Here also, SVM outperforms all other algorithms but the 

differences in accuracy and F1 measure are not significant across the three similarity 

thresholds. 

  

Fig. 14. Accuracy of different algorithms and 
similarity thresholds 

Fig. 15. F1 Measure of different algorithms and 
similarity thresholds 

Fig. 16 and Fig. 17 compare PPS with other sampling methods in terms of classification 

accuracy using the smaller and bigger sample sizes respectively. Fig. 18 and Fig. 19 

represent the F1 measure using the smaller and bigger sample sizes. It is clear that PPS-100 

is outperforming SRS-200 and SS-200. Also, the accuracy of PPS-1000 is better than SRS-

1500 and SS-1500. In addition, we also noticed the trend that the accuracy of all sampling 

methods improves with the increase in sample size. PPS-1000 gives the best accuracy and 

F1 measure when compared to SRS and SS using samples of size 200 and 1500. For 

example, PPS-100 using SVM achieved 78.9% accuracy with sample size 193 compared to 

77% for SRS-1500 and 77.1% for SS-1500. Moreover, the F1 measure graph also shows 

that PPS is better than other methods. For example, using SVM, PPS-100 achieves 0.85 F1 

measure with 193 sample size, while SRS-1500 and SS-1500 have an F1 measure of 0.83. 
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Fig. 16. Accuracy of all sampling methods using the 
smaller sample size	

Fig. 17. Accuracy of all sampling methods using the 
bigger sample size 

  

Fig. 18. F1 measure of all sampling methods using 
the smaller sample size 

Fig. 19. F1 measure of all sampling methods using 
the bigger sample size 

4.3 Cross Validation Results 

The comparison of the classification accuracy using different similarities and algorithms 

are shown in Fig. 20. The 90% similarity threshold results in the best classification 

accuracy for all algorithms while SVM outperforms all other algorithms with 78% 

accuracy. The F1 measure graph is shown in Fig. 21. It also confirms that the 90% 

similarity threshold is the best for this set of experiments. Also, SVM is achieving the best 

F1 measure with 0.84. 
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Fig. 20. Accuracy of the cross validation process Fig. 21. F1 measure of the cross validation process 

In Fig. 22, we compare PPS with SRS and SS. We see that our proposed method is 

competing with the other sampling methods. SVM results in the highest accuracy compared 

to other classification algorithms with a value of 78%. In the F1 measure graph shown in 

Fig. 23, using NB algorithm, the PPS method is outperforming other methods. While using 

SVM, there is a slight difference in F1 measure between all the methods; SRS has value of 

0.845, SS has 0.843, and PPS has 0.839. 

  

Fig. 22. Accuracy of PPS against SRS and SS with 
the cross validation process 

Fig. 23. F1 measure of PPS against SRS and SS with 
the cross validation process 
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4.4 Comparison with Other Methods 

The proposed sampling method is compared to the SRS and SS. The results show that the 

PPS method is competing with the other techniques using different machine learning 

algorithms. In some cases, PPS is not outperforming SRS or SS especially when using CFN 

and FFN. For example, in Fig. 23 the F1 measure for PPS using FFN is 0.83 while SRS and 

SS have F1 measure of 0.84. This situation happens because of the lack of randomization 

when selecting the samples from the patterns. On the other hand, both SRS and SS employ 

randomization that can significantly improve the accuracy of methods that suffer from local 

minima and poor generalization, such as neural networks [35]. Moreover, SS can only be 

applied after analyzing the whole dataset and deciding the stratification parameters and 

stratum sizes whereas, both PPS and SRS don’t need any prior knowledge about the 

dataset. 

In terms of complexity, considering an input dataset of N tuples and M features, the space 

complexity of our PPS method is Min(O(N2), O(2M)) since we either store the !(!!!)
!

 

pairwise comparisons or we only store a fixed number of comparisons for each pattern. For 

datasets with a large number of features, we can use a hash-table to reduce the required 

storage of the pattern table. In terms of time, the pairwise comparisons is done for all 

features and objects and thus the time complexity becomes O(MN2). For Simple Random 

Sampling, Gupta et al. [36] defined its time and space complexity to be O(N). We used 

stratified sampling techniques that use simple random sampling to sample from each 

individual stratum. The stratification parameters are provided and hence, the time and space 

complexity is also O(N). 
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In our work, we used the MITOS 2012 dataset that has been widely used in literature. Most 

of the work applied on this dataset focus on enhancing the accuracy of the classifiers by 

improving the input features or using advanced machine learning algorithms. In our 

framework, the main focus is enhancing the quality of the training data. This is achieved by 

applying the PPS sampler that considers data distribution among the patterns, therefore it 

can handle data skewness. The samples used in the learning process results in an average 

F1 measure of 0.84 for both data split and cross validation experiments. 

In comparison Noorul et al. [26] proposed a two-phase model that handles class biasness 

using a balanced convolutional neural network. It is applied on the MITOS 2012 dataset 

and achieved an average F1 measure of 0.72. Irshad et al. [37] achieved F1 measure of 0.72 

while detecting mitosis in breast cancer images. They focused on enhancing data features 

using selective color channels and employed SVM and decision tree algorithms for the 

learning. Ciresan et al. [38] achieved F1 measure of 0.66 using the same dataset while 

applying random undersampling technique with a deep neural network algorithm. Wang et 

al. [39] improved the features by combining handcrafted and convolutional neural network 

features. The F1 measure achieved is 0.73. Malon et al. [40] achieved F1 measure of 0.53 

while integrating color, texture, and shape features with convolutional neural network 

extracted features.  

5 Conclusion 

The proposed sampling method (PPS) is rooted in formal concept analysis. It generates 

samples using the proportions of data across different binary patterns. The method was 

evaluated against two well-known sampling methods. The evaluation was performed using 
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a machine-learning case study of breast cancer images. Our method proved to be 

competitive with the other methods using different learning configurations. Moreover, it 

perfectly fits the unbalanced data used for classification because it generated a well-

balanced sample of these data using the binary distribution. Additionally, it doesn’t require 

any prior knowledge about data or class distribution and it generates the patterns based on 

all attributes. Furthermore, PPS can be easily improved by employing randomization while 

selecting the objects from the patterns. This will allow our technique to fit more with 

machine learning algorithms that suffer from poor generalization such as neural networks. 

Feature selection algorithms can also be used to reduce the number of features incorporated 

in the pattern table to reduce the space complexity. 
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