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Abstract

The main purpose of image segmentation using active contours is to extract

the object of interest in images based on textural or boundary information. Active

contour methods have been widely used in image segmentation applications due to

their good boundary detection accuracy. In the context of medical image segmen-

tation, weak edges and inhomogeneities remain important issues that may limit the

accuracy of any segmentation method formulated using active contour models. This

thesis develops new methods for segmentation of medical images based on the active

contour models. Three different approaches are pursued:

The first chapter proposes a novel external force that integrates gradient vec-

tor flow (GVF) field forces and balloon forces based on a weighting factor computed

according to local image features. The proposed external force reduces noise sensi-

tivity, improves performance over weak edges and allows initialization with a single

manually selected point.

The next chapter proposes a level set method that is based on the minimiza-

tion of an objective energy functional whose energy terms are weighted according

to their relative importance in detecting boundaries. This relative importance is

computed based on local edge features collected from the adjacent region inside and

outside of the evolving contour. The local edge features employed are the edge in-

tensity and the degree of alignment between the images gradient vector flow field

and the evolving contours normal.

Finally, chapter 5 presents a framework that is capable of segmenting the cy-
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ABSTRACT

toplasm of each individual cell and can address the problem of segmenting overlap-

ping cervical cells using edge-based active contours. The main goal of our methodol-

ogy is to provide significantly fully segmented cells with high accuracy segmentation

results.

All of the proposed methods are then evaluated for segmentation of various

regions in real MRI and CT slices, X-ray images and cervical cell images. Evaluation

results show that the proposed method leads to more accurate boundary detection

results than other edge-based active contour methods (snake and level-set), partic-

ularly around weak edges.
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Chapter 1

Introduction

The aim of computer vision is to enable computers to see and sense like a human.

Research related to computer vision started in 1970s, and it is still being investigated

today as a relatively new discipline. Computer vision is considered a branch of arti-

ficial intelligence which intends to simulate human behaviour. This gives computer

systems the ability to perform functions which normally require human intelligence,

such as learning and problem solving. Researchers in the field of artificial intelligence

have attempted to integrate computer science and cognitive psychology. Due to the

difficulty of integrating human intelligence and cognitive psychology, a computation

stream offers an alternative path to more intelligent machine behaviour.

Computer vision overlaps with other fields such as pattern recognition, im-

age processing, image analysis and computer graphics. Although there is no clear

distinction between image processing, image analysis, and computer vision, they

are usually viewed as being on a processing continuum in hierarchical form. The

processing on the lower level of this hierarchy involves simple operations such as

contrast enhancement, noise filtering, and image sharpening, and the inputs and

outputs of this level are images. The mid-level processing includes image analysis

or image understanding, which involves segmentation and pattern classification [1].

On this level, the input is an image, and the outputs are characteristics extracted

from the input image. These characteristics can be edges, contours or identities of
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individual objects. Algorithms such as object recognition, segmentation, image cod-

ing and robot vision are found on the highest level of the processing hierarchy. The

algorithms used in training a system to recognise or classify an object are considered

to be computer vision [1].

The number of publications about computer vision is regularly increasing. In

industry, computer vision is frequently used for supporting a manufacturing process,

especially in quality control. Other applications of computer vision are, for example,

surveillance, image databases, virtual reality, robotics, and security. Perhaps one

of the most important uses of computer vision is in medical image analysis. Here

the image could be in the form of magnetic resonance imaging (MRI), computed

tomography (CT), x-ray, ultrasound images, and so on. This thesis will offer a

detailed discussion about the technologies used in image segmentation and with

propose novel segmentation methods based on active contours.

1.1 Image Segmentation

Image segmentation is a long standing problem in computer vision. In most image

segmentation tasks, individual objects need to be separated from the image. The de-

scription of those objects then can be transformed into a form suitable for computer

processing. The method of image segmentation is to organise the image content

into semantically related groups, which are connected and homogenous according to

some properties such as texture, colour and intensity.

Two main approaches exist in image segmentation, the edge-based segmen-

tation and region-based segmentation. Edge-based segmentation is able to partition

an image on the basis of discontinuities among various sub-regions, while region-

based segmentation does a similar function based on the uniformity of a desired

property within a sub-region. Figure 1.1 shown an example of region-based and

edge-based segmentation.
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(a) (b)

Figure 1.1: An MRI slice of an abdominal axial cross sectional view of human body.
(a) Example of Region-based segmentation obtained by Kimmel [67]. (b) Example
of Edge-based segmentation obtained by the proposed method in Chapter 3 . The
white curves denote the initial contours, the red curves represent the final contour
and the green curves represent the ground truth.

1.1.1 Edge-based Segmentation

Edge-based segmentation looks for discontinuities with regard to the intensity of

the image. The precise meaning of this process is more edge detection or boundary

detection rather than the literal meaning of image segmentation. The boundary

between two regions with relatively distinct properties can be defined as an edge.

The presumption behind edge-based segmentation is that all sub-regions within

a certain image are uniform so that the change between two sub-regions can be

determined on the basis of discontinuities alone. Despite this presumption being

invalid, region-based segmentation, discussed in the following section, presents more

reasonable segmentation results.

Essentially, the concept behind a majority of edge-detection techniques is the

computation of a local derivative operator. The gradient vector of an image I(x, y),

given by:

∇I =

∂I/∂x
∂I/∂y

 , (1.1)
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where this is obtained by the partial derivatives ∂I/∂x and ∂I/∂x for all pixel

locations. The local derivative operation can be performed by convolving an image

with kernels, as shown in Figure 1.2.

-1
0
1

(a)

-1 0 1

(b)

Figure 1.2: Examples of gradient kernels along: (a) vertical direction, (b) horizontal
direction.

The first derivative magnitude is provided by:

|∇I| =
√

(∂I/∂x)2 + (∂I/∂y)2. (1.2)

The Laplacian operator of an image function I(x, y) is the sum of the second-

order derivatives, defined as:

∇2I =
∂2I

∂2x
+
∂2I

∂2y
. (1.3)

The overall utilisation of the Laplacian operator is in determining the location of

edges with the use of zero-crossings [2]. One of the disadvantages of the gradient

operation is the noise sensitivity, and as a second-order derivative, the Laplacian

operator is even more sensitive to noise. A different option here is to convolve

the image with a Laplacian operator of a Gaussian (LoG) function [3]. Thus the

two-dimensional Gaussian function can be given by:

G(x, y) =
1

2πσ2
exp(−x

2 + y2

2σ2
), (1.4)

where σ is the standard deviation. The LoG function produces smooth edges as the

Gaussian filtering provides a smoothing effect [3].

Only those images that have a sharp intensity transition and a comparatively

low level of noise are able to facilitate edge detection using gradient operations.
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As a result of its sensitivity to noise, a smoothing operation is usually required

as a pre-processing technique to eliminate the noise; consequently, the smoothing

effect blurs the edge information. However, the computational cost of the edge

detector techniques for edge-based segmentation is relatively low compared to other

segmentation methods. This is because the computation can be done by a local

filtering operation.

1.1.2 Region-based Segmentation

Region-based segmentation looks for equality inside a sub-region based on a desired

property (e.g., colour, texture, and intensity). Clustering techniques, which is based

on pattern classification, have similar objectives and can be applied for region-based

segmentation. [4].

A technique that is used to merge pixels or small sub-regions into more

substantial sub-regions is referred to as region growing [5]. Pixel aggregation, for

example, is the simplest implementation of this approach [2]. This approach begins

with a series of seed points, and these seed points grow by appending neighbouring

pixels if they satisfy the given criteria. An example of pixel aggregation is shown in

Figure 1.3.

8 7 2

9 6 1

2 3 4

(a)

8 8 2

8 8 2

2 2 2

(b)

Figure 1.3: Pixel aggregation: (a) Image with seeds underlined, (b) segmentation
result with τ = 3.

Segmentation begins with two initial seeds and then the regions grow if they

satisfy the criterion:

|I(x, y)− I(seed)| < τ. (1.5)

Regardless of the simple nature of the algorithm, a number of essential and funda-

5



1.1 Image Segmentation

mental issues exist within region growing. These include selecting the initial seed

and relevant properties to grow the regions. The selection of the initial seeds can

often be based on the nature of applications or images. For instance, the region of

interest is usually brighter than the background. In such a situation, the selection

of the brighter pixels as the initial seeds presents the most sensible choice. How-

ever, region-based segmentation may produce over-segmented or poor segmentation

results.. This mainly due to over-merging the sub-regions with blurry boundaries.

The problem to be solved determines the level of segmentation needed. Usu-

ally, the segmentation stops when the region of interest in the application has been

detached. As a result of the property of this problem dependence, autonomous

segmentation becomes one of the most difficult tasks in image analysis. The seg-

mentation problem is even more complicated when the image is subject to noise or

poor resolution. Image segmentation can proceed in three different ways:

1. Manual segmentation: This can be done manually by grouping a number

of pixels which shared the same intensity. However, if the image is large, then

this task become a very time-consuming method. Alternatively, marking the

contours of the objects which can be done from the keyboard or the mouse with

higher speed but less accuracy. All manual techniques are time-consuming, and

human resources are expensive. Geometrical shapes, like squares or ellipses,

are useful to approximate the boundaries of the objects. This has been applied

for medical purposes; however, the approximations may not be very good.

2. Automatic segmentation: This refers to the processes whereby segment

boundaries which are allocated automatically by a segmentation algorithm

(program). Most algorithms in this category require prior information to carry

out the segmentation, and this prior information must be available to the

computer program. The resulting boundaries from the program may not be

exactly accurate, especially if the training data was sparse.
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3. Semiautomatic segmentation: This combines the advantages of both man-

ual and automatic segmentation. By giving some initial information about the

structures. This includes, for example, thresholding, clustering and active con-

tour methods.

1.2 Medical Image Segmentation

Recent improvements in a wide range of medical imaging technologies have defined

anatomical structures and changed how we view the pathological events in the body.

Ultrasound X-ray, MRI, nuclear medicine, among other medical imaging technolo-

gies captures the structural inside the body in 2D or tomographic 3D images and

provide functional information for diagnosis, treatment planning and other purposes.

To improve workflow efficiency and to achieve compatibility between imaging sys-

tems and other information systems in healthcare environments a standard called

Digital Imaging and Communications in Medicine (DICOM) standard is created as

the international standard for communication of biomedical diagnostic and thera-

peutic information in disciplines that use digital images and associated data.

The raw form of medical images is represented by arrays of numbers in the

computer, where each layer of this array shows different types of body tissue. Pro-

cessing and analysis of raw images facilitate the process of extracting meaningful

quantitative information to aid diagnosis. Identifies the boundary of objects such

as organs or abnormal regions in images is a fundamental problem in medical image

analysis. Having segmented organs helps for detecting volume change and shape

analysis which it necessary for making a precise therapy treatment plan.

Various segmentation methods have been proposed for image segmentation

such as: Thresholding, region growing, edge detection, Markov Random Fields

(MRF), graph cut, active contour (or deformable), level sets. Also, significant ex-

tensions of these frameworks proposed to improve the efficiency, applicability and

accuracy. Among these methods, active contour models have been widely used in
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(a) (b)

Figure 1.4: Segmentation results on a MRI slice of a spinal cord. (a) Segmentation
result of image with weak edges. (b) Segmentation result of image with high level
of noise. The white curves denote the initial contours, the red curves represent the
final contour and the green curves represent the ground truth.

medical image segmentation. The active contour model is connectivity-preserving

which makes it applicable to the image segmentation problems [6]. Active contours

originally proposed by Kass et al. [7] in 1988. Essentially, active contours start with

an initial boundary represented in the form of a closed curve. This curve is modified

iteratively by inflation or deflation operations according to the application desired.

The motion that occurs on the curve by the inflation or the deflation operations is

called contour evolution. Those operations are performed by the minimization of

an energy function.

Despite intensive research in medical image segmentation using active con-

tours, however, there are still many situations where active contour fail to converge

to the desired boundary, especially when the amount of image clutter and noise is

high. In such cases, segmentation accuracy may be improved by manually initializing

the curve very close to the objects boundary. Depending on the region to be seg-

mented, this initialization process may require the selection of several initial points

or snake elements, which may become a tedious and error-prone process in medical

images. Also, weak edges, inhomogeneities, limited capture range, and contour leak-

age have a negative impact on active contour performance and remain important
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issues that may hinder the accuracy of any segmentation method formulated using

active contour [see Figure 1.4].

1.3 Contributions of Thesis

This thesis proposes novel edge-based active contour methods for medical images

that can detect objects’ boundaries even when the background has noise or the object

is delimited by a mostly weak boundary. The proposed active contour methods are

aimed at providing robust segmentation results for complicated cases with non-

uniform backgrounds.
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particles or objects present in an image. This research paper presents the work to be done on images 

having distorted or uneven background and filtering the images to compute statistics of the objects 

present in the image. This problem is severe in case of microscopic images captured for the purpose of 

bio-medical research where it is difficult to find out the exact shape, size and number of microscopic 

particles due to non-uniform illumination and sensitivity to even small fluctuations in light. 

 

 

 

 

 

 

Figure 1: Grey-Scale Image showing a cluster of bacteria present in a fluid having non- uniform 

texture, brighter on the top and center portions and darker at the bottom. 

So, a particular defined area of a photographic plate is taken and exposed by the particles the 

characteristics of which are to be computed. The technique used would be to make an algorithm to finally 

examine every particle of the image, to see clearly every object in the image, and remove any of the 

problems such as non-uniform illumination, less brightness etc. that make it difficult to differentiate 

between the particles on the microscopic image shown in figure 1. Various techniques and common 

approaches to solve the problem of particle identification are Histogram Equalization, Image Filtering, 

Boundary detection, Edge Detection, Linear Filtering, Segmentation, Morphological operations: Dilation 

and Erosion etc. But most of these techniques alone fail to accurately determine the objects real 

boundaries due to the problem of non-uniform illumination in the background of the image due to which 

most of the particles appear to be either dark or light in an image and using techniques such as 

histogram equalization, segmentation, edge detection and general image processing algorithms based 

on ‘region of interest’ could not differentiate between some of the particles and their background or 

neighbouring pixels and boundaries and shapes of the resulting object changes. Even when the particles 
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gradient G(t) is added to the baseline pulse sequence, which would otherwise lead to the measured image M0, a
diffusion­weighted image M is measured satisfying:

     (11)

Here, g is the gyromagnetic ratio of hydrogen, the element in water upon which MRI keys. Also, the gradient pulse G(t)
occurs during the pulse sequence interval [0,TE] where TE is the echo time measured in milliseconds. See [Hornak,
1996] for details. Now, because of the symmetry in D, there are seven independent pointwise unknowns among M0 and
D. Therefore, using seven linearly independent gradient fields in successive pulse sequences provides sufficient
diffusion­weighted images to permit the diffusion tensor to be determined pointwise.

In particular, imaging the rotational invariants of D has been used to advantage for diagnostic purposes. For instance,
the trace of D provides an orientationally averaged apparent diffusivity:

     (12)

and is used to increase lesion conspicuity by suppressing nearby anisotropic effects. On the other hand, when
anisotropic effects are of primary concern, as in the evaluation of nerve fiber tracts, the fractional anisotropy (FA) can
be imaged:

     (13)

It is this fractional anisotropy which is mapped in the three images appearing above.

The left­most image shown above is a noisy FA map of the brain, obtained using unfiltered diffusion­weighted images,
from which the diffusion tensor images were derived and used in Eqn. (13). The next two images are the results of
using the filters discussed in detail earlier for the abdominal MRI. Specifically, the center image shown is the result of
applying the Gauss filter to the diffusion tensor images before computing the FA map. As before, note the evident blur
in the Gauss filtered image. The right­most image shown is the result of applying the Gauss­TV diffusion filter to the
diffusion tensor images before computing the FA map. Again, there is a high contrast level along with a marked
reduction in the noise level. See [Keeling, Bammer, Fazekas & Stollberger, 2000].

Restoration of images corrupted by noise and background variations.

nonuniform backgroundnonuni uniform background

The purpose of this project is to investigate the enhancement of magnetic resonance images in which broad­band
clinical information coexists not only with high gradient noise but also with a slowly varying background variation
often seen in MR images. Specifically, this background variation occurs because of the difficulty in generating an ideal,
uniform magnetic field for the production of an MR image; see [Hornak, 1996]. For instance, the left image shown
above is an MRI of the pelvis. Here, the wide field of view frustrates the task of creating a uniform magnetic field over
the entire image region. As a result, the nonuniform background is manifested with the image intensity much higher
near the center than toward the periphery. On the other hand, the right image shown is an MRI obtained from an in vitro
arthrosclerotic vessel. Here, the field of view is much narrower and there is less difficulty with generating a uniform
magnetic field over the sample.

(a) (b)

Figure 1.5: (a) Grey-Scale Image showing a cluster of bacteria present in a fluid
having non- uniform texture, darker at the bottom and brighter on the top and
center portions. (b) MRI of the pelvis with a slowly varying background variation.

The main contributions are summarised in details as follows:

1. We propose a novel external force, which integrates a gradient vector flow

(GVF) field force and a balloon force. This external force is insensitive to

snake initialization and may prevent snake leakage. We also propose a mecha-

nism to automatically terminate the contour’s deformation. Evaluation results

on real MRI and CT slices show that the proposed approach attains higher

segmentation accuracy than snakes using traditional external forces, while al-

lowing initialization using a limited number of selected points.
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2. Motivated by the previous contribution which deforms the contour using a

weighting function based on local image features. We propose a level set

method for segmentation of medical images with noise and weak edges. The

proposed level set evolution is based on the minimization of an objective en-

ergy functional whose energy terms are weighted according to their relative

importance in detecting boundaries. This relative importance is computed

based on local edge features collected from the adjacent region located inside

and outside of the evolving contour. The local edge features employed are

the edge intensity and the degree of alignment between the image’s gradient

vector flow field and the evolving contour’s normal. Novelties about how local

edge information is used in our method are as follows:

(a) Our method measures the alignment between the evolving contour’s nor-

mal direction of movement and the image’s gradient in the adjacent region

located inside and outside of the evolving contour. This measurement is

often used as an additional energy term in the energy functional.

(b) Our method also considers the average edge intensity in the adjacent

region located inside and outside of the evolving contour. This allows

us to minimize the negative effect of weak edges on the segmentation

accuracy.

(c) Our method uses all of the collected local edge information to compute

a single value that serves as a weight to control the influence of forces.

This minimizes leakage in areas where weak edges exist.

We evaluate the proposed method for segmentation of various regions in real

MRI and CT slices, as well as Xray images. Evaluation results show that

the proposed method leads to more accurate boundary detection results than

other edge-based level set methods, particularly around weak edges.

3. We propose a framework capable of segmenting the cytoplasm of each indi-
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vidual cell and dealing with the problem of segmenting overlapping cervical

cells using edge-based active contours. The main goal of our methodology is to

provide significantly fully segmented cells with high accuracy. Due to the chal-

lenges involved in delineating cells with severe overlap and poor contrast, most

current methods fail to offer a complete segmentation. Although the previous

contributions provided promising results in segmenting medical images, how-

ever, we can not apply them directly to overlapping cells. Instead, we explore

another way of applying edge-based active contour. The proposed framework

initially performs a segmentation to cell clumps. Then cell segmentation is

performed using a patch-based active contour.

The proposed framework uses a patch-based approach where an active contour

detects, on a patch-by-path basis, the cytoplasm boundary of each overlap-

ping cell. It also uses a supervised classifier to separate cell clumps from the

background and to detect the nuclei of each cell in each clumps. The centriod

of each detected nuclei is used to define the major possible region of each

cell in the clump. Then, the framework proceeds to allocate the cytoplasm

region of each cell. The active contour within the patch is deformed under

the influence of GVF forces computed based on local edge features collected

from the patch region. Experimental results showed that the proposed frame-

work outperforms other state-of-the-art approaches, in terms of segmentation

accuracy

1.4 Thesis Outline

The thesis is organized into 6 Chapters. In each chapter, a review of related tech-

niques is presented. The individual chapters of this thesis are structured as follows:

• Chapter 2 provides an overview of popular methods and techniques given the

problem of object segmentation.
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• Chapter 3 presents active contours based on weighted gradient vector flow

and balloon forces for medical image segmentation. Experimental results are

presented and the performance of this method is compared to related states-

of-art segmentation algorithms.

• Chapter 4 presents weighted level set evolution based on local edge features

for medical image segmentation. Experimental results of this method are

presented and the performance of this method is compared to related stats-of-

art segmentation algorithms.

• Chapter 5 presents a patch-based segmentation framework for cervical cell

images using local information for overlapping cervical cells. Experimental re-

sults are presented and the performance of this method is compared to related

states-of-art segmentation algorithms.

• Chapter 6 concludes the thesis.

1.5 List of Publications

The list of publication arising from my PhD research on medical image segmentation

using edge-based active contours is as follows:

1. A. Khadidos, V. Sanchez and C.-T. Li, “Contours Based on Weighted Gradient

Vector Flow and Balloon Forces for Medical Image Segmentation,” in Proc.

IEEE International Conference on Image Processing, Paris, France, 27 - 30

Oct 2014.

2. A. Khadidos, V. Sanchez and C.-T. Li, “Active Contours with Weighted Exter-

nal Forces for Medical Image Segmentation,” in Proc. 18th Annual Conference

in Medical Image Understanding and Analysis (MIUA), London, UK, 9 - 11

Jul 2014.
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3. A Khadidos, V. Sanchez, and C-T Li, Weighted Level Set Evolution Based on

Local Edge Features for Medical Image Segmentation, IEEE Transactions on

Image Processing (accepted and to appear in 2017).

4. A. Khadidos, V. Sanchez and C.-T. Li, “Patch-based Segmentation of Over-

lapping Cervical Cells Using Active Contour with Local Edge Information,”

in Proc. IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, New Orleans, USA, 5 - 9 March 2017.

The chapters of this thesis are related to the aforementioned papers, as listed

in Table 1.1.

Table 1.1: Thesis chapters and the corresponding publications.

Thesis
Chapters

Cameras Content

Chapter 3 Paper 1
Contours Based on Weighted Gradient Vector
Flow and Balloon Forces for Medical Image
Segmentation

Chapter 3 Paper 2
Active Contours with Weighted External Forces
for Medical Image Segmentation

Chapter 4 Paper 3
Weighted Level Set Evolution Based on Local
Edge Features for Medical Image Segmentation

Chapter 5 Paper 4
Patch-based Segmentation of Overlapping
Cervical Cells Using Active Contour with Local
Edge Information
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Chapter 2

Literature Review

2.1 Image Understanding

An image can be represented with a three dimensional matrix w×h×n, where w and

h denote the width and height of an image, and n is the number of channels in an

image (i.e., red, green, and blue). In this thesis, the images are represented in grey

levels. The total pixel count of an image is defined as w × h. Image understanding

problems are primarily focused on the areas of object detection, segmentation, and

class segmentation. A brief summary of these areas is provided in the following

subsections.

2.1.1 Object Detection

The location of a target object within the data of an image is part of the object de-

tection process. Indeed, the process of object detection compares the image or part

of an image to a model that contains prior knowledge concerning the target object.

The mapping and counting of such targeted objects within the dataset can be ob-

tained using detection points. Of all the various approaches, the simplest is template

matching [8]. Herein templates that represent a target object in a number of different

configurations, scales, and orientations are convolved over the original data so that

a similarity measure can be carried out. Furthermore, a threshold is then applied to

the subsequent similarity measure in order to provide detection points. Though the
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(a) (b)

Figure 2.1: (a) Templates of a target object in different scales and orientations. (b)
Electronic board image where the red box locates the targeted object.

application of the temple matching approach is elementary and straightforward, it

proves efficacious for certain applications, it may also be inefficient because of the

large size of the search space. Example of template matching algorithm is show in

Figure 2.1. Another approach is to select a set of features that are able to differen-

tiate the target object and then extract these features from the image and utilise a

classifier for the detection stage. Compared to the template matching approach, this

process is more robust, although the classifier training process and feature selection

are generally required for each new application or dataset [9].

2.1.2 Object Segmentation

The aim of object segmentation is to separate those objects of interest from any

background scenes. In this manner, segmentation takes place with the grouping

of those pixels that share similar characteristics. Segmentation methods vary from

completely basic, such as the utilisation of the thresholding [10], clustering [11], and

region growing [12], to methods that consider spatial characteristics through the

explicit modelling of object boundaries [13,14]. An example of image segmented by
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a thresholding method is shown in Figure 2.2.

(a) (b)

Figure 2.2: (a) MRI image of the brain. (b) The binary segmentation image obtained
by a thresholding method.

The performance of a segmentation algorithm is highly dependent on the

feature that is mainly utilised to identify the target object; this is considered ap-

plication and data dependent [1]. Object segmentation can be performed in a

semi-automated fashion by requesting the user provide the initial labels or fully-

automated using pre-trained algorithms that are able to autonomously perform the

segmentation [15, 16]. More information is contained in object segmentation than

in object detection points, which allow further assessment of object segments. For

instance, rather than detecting individuals, human segments permit the recognition

of human identity and tracking [17]. Vehicle matching [18] can be implemented

rather than estimating the traffic volume and rather than counting the tree crowns,

tree crown delineation allows further analysis for species classification [19,20].

Figure 2.3 shows an image segmented using a Bayes algorithm.

2.1.3 Object Class Segmentation

The aim of object class segmentation is to assign semantic labels to each pixel in the

image. The task of object class segmentation is achieved with the use of pre-trained
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Figure 2.3: (a) A mammogram image of a dense breast. (b) The cluster of fibrog-
landular tissue region obtained by Bayes algorithm. (c) Segmented fibroglandular
tissue.

algorithms, and, as part of the algorithm design stage, the features must be carefully

selected to best discriminate the various classes. The most common and general

features used are colour, shape, and texture [21]. To improve the performance in

specific applications, more features, such as object detector responses, super-pixel

properties, and object correlations, can also be used [16, 22, 23]. However, deciding

which feature descriptors should be used and how important the features are among

each other is a difficult task. This task can be done with experiments and the

application of cross validations [23–25], although this process needs to be repeated
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for different datasets.

2.2 Image Segmentation: Methods

Image segmentation has been a well-researched field in the past. Indeed, thousands

of segmentation techniques have been proposed so far there, yet there is no a single

technique which can be used for any type of images. Therefore, based on the charac-

teristics of the image a particular segmentation technique is used [26]. This section

briefly reviews the general concepts of existing image segmentation methods.

2.2.1 Clustering

Clustering is the most common form of unsupervised learning, in which classification

is done between pixels, and those pixels are grouped to form clusters. Each cluster

is a collection of similar pixels, and those that are dissimilar belong to different

clusters. The clusters are formed under certain criteria, such as texture, colour, and

size. The similarity measure and its implementation play a major role in the quality

of the results of the clustering methods.

2.2.2 Region Growing

In region growing algorithms, the growth of a region takes place whenever its interior

is homogeneous based on certain features, such as colour, texture, or intensity. In

implementation, the strategy follows typical region growing in which the region

grows by adding similar neighbours. Region growing [27] is one of the simplest

algorithms for region-based segmentation. The traditional implementation begins

by selecting an initial point. This is usually called a seed pixel. Based on a certain

homogeneity criterion, the region grows by adding similar neighbouring pixels. The

size of the region is then increased step by step. Deciding whether a pixel belongs

to the growing region or not is heavily based on pixel homogeneity. Edge map of the

region can also provide additional criteria such as the condition of the contour pixel

18



2.2 Image Segmentation: Methods

when deciding to aggregate it. The process of growing reaches the boundary of the

region when there is no pixel aggregated, and the growth of the region is going to

stop.

2.2.3 Split-and-Merge Algorithms

Unlike the previous method, region merging methods address the problem of image

segmentation from the bottom up, where each pixel in the image is considered to be

a seed point. In the case of two neighbouring pixels being similar enough according

to some criterion, they will merge into a single region. Similarly, if two adjacent

regions share the same properties, they will be merged into one region. This process

is repeated until merging becomes impossible.

2.2.4 Watershed

The watershed algorithm [28, 29] is a morphology-based segmentation method [30–

32]. The watershed transform is one of popular segmentation methods and was

initially proposed by Digabel and Lantuejoul [33]. Watershed transformation meth-

ods concede the image as a topographical map with mountains or valleys, where

the intensity of a pixel is treated as its altitude. The high-value regions appear as

mountains, and the low value regions appears as valleys. The map is then flooded

with its local minima. Each water basin fills up from its minima and the dam is

formed where two basins converge. Once the water reaches the level of the highest

peak, the flooding process is then stopped. The set of all dams defines the so-called

watershed.

2.2.5 Graph Partitioning Methods

Graph-based approaches have been widely used in the last decade. This approach

considers the image segmentation as a graph partition problem, where an image is

represented as a weighted undirected graph. Each node of the graph represents the

image pixel and each edge represents a pair of nodes. The similarity measurement
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between pairs of nodes is called weight. To group the pixels, a graph partition is

sought to separate the nodes into a disjoint set, so that the similarity among the

nodes in the set is high, while the similarity across different sets is low.

2.2.6 Active Contours (Deformable Models)

Deformable models are one of the most used methods in medical image segmentation.

A deformable model can be described as a technique for defining region boundaries

by using curves or surfaces close to the edges that deform under the effect of forces.

Deformable models, including active contours (2-D) and active surfaces (3-D) are

closed contours or surfaces which are able to expand or contract over time, within an

image, and conform to specific image features [34].There are two main techniques of

deformable models in the literature, parametric active contours and geometric active

contours. The parametric model represents curves and surfaces explicitly in their

parametric forms during deformation. The geometric model is based on the theory

of curve evolution in time, according to intrinsic geometric measures of the image,

and is numerically implemented via level set algorithms. As image segmentation

methods, there are two types of active contour models based on the force that evolves

the contours: edge- and region-based. Edge-based active contours, are based on the

image gradient, using edge detector output to deform the contour toward the object

boundary. This model is closely related to the edge-based segmentation which have

been discussed in section 1.1.1. Region-based active contours, instead of searching

geometrical boundaries, using statistical information of image intensity within a

region.This model is closely related to the region-based segmentation methods which

have been discussed in section 1.1.2.

2.2.6.1 Snakes

The first model of active contour was proposed by Kass et al. [7]. The algorithm is

called “snakes” because the contour motion during the evolution toward the object
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resembles snake movement. Let us define a contour parameterized by arc length s

as

C(s) = {(x(s), y(s)) : 0 ≤ s ≤ L}, R→ ΩI (2.1)

where L denotes the length of the contour, ΩI denotes the entire domain of an

image I(x, y) and C(s) is a curve sampled and represented by a set of discrete

points, these sample points are referred to as snake elements. x(s) and y(s) are

a continuous function representing the value of x and y coordinates. Note that

the scalar parameter s is between 0 and 1, i.e. the first point in a planar curve is

represented as x(0), y(0) , while the last point is represented as x(1), y(1). For closed

curves the case is different, the first and last points are the same i.e. x(0) = x(1)

and y(0) = y(1).

The main principle behind snakes is to model the movement of a dynamic

curve towards an object’s boundary under the influence of internal and external

forces. The internal forces depend on the shape of the contour, where the external

forces depends on image properties i.e. gradient. An energy function Esnake(C) can

be defined on the contour such as:

Esnake(C) = Eint + Eext (2.2)

where Eint and Eext respectively denote the internal energy and external energy.

Internal forces control the smoothness of the curve, while external forces lead the

curve to the boundary until convergence is achieved.

The internal energy function determines the regularity of the curve. A com-

mon choice for the internal energy is a quadratic functional given by:

Eint =

1∫
0

(α
∣∣C ′(s)∣∣2 + β

∣∣C ′′(s)∣∣2)ds (2.3)

where α and β are weighting parameters that control the snake’s tension and rigidity,

respectively. C ′ and C ′′ are the first and second derivative of C. The external energy
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term which controls the contour evolution depending on the image I(x, y), be defined

as:

Eext =

1∫
0

Eimg(C(s))ds (2.4)

where Eimg(x, y), denotes a scalar function defined on the image plane. Therefore

the image information, such as edges, attracts the snake toward object boundaries.

A common example of the edge attraction function is a function of image gradient,

given by

f(x, y) = |∇ [Gσ(x, y) ∗ I(x, y)]|2 (2.5)

where Gσ denotes a 2D Gaussian filter [see Equation 1.4] with standard deviation σ,

∗ denotes a linear convolution, ∇ denotes the gradient operator and I(x, y) denotes

the image.

In numerical experiments, a set of snake elements are defined in the initial

stage on the image plane and then the next position of those elements is determined

by the external energy. The connected elements of a snake are considered as the

contour. Basic form of snake is shown in Figure 2.4.

There are number snakes elements in the image, those elements form a con-

tour around the object. The snakes elements are initialized at further distance from

the boundary of the object. Then, each point moves towards the optimum coor-

dinates, where the energy function converges to the minimum. The snake points

eventually stop on the boundary of the object.

Due to the wide variety of object shapes, there are still many situations

where snakes fail to converge to the desired boundary, especially when the amount

of image clutter and noise is high [35]. In such cases, segmentation accuracy may

be improved by manually initializing the curve very close to the object’s boundary.

Depending on the region to be segmented, this initialization process may require
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y 

Figure 2.4: Basic form of Snakes. The green dotes represent the snake elements
while the green line represents the contour.

the selection of several initial points or snake elements, which may become a tedious

and error-prone process, particularly in medical images.

The classical snake limitations, such as noise sensitivity and initialization

sensitivity, motivated other snake variations to be introduced. [36–38], including

segmentation of medical images [39–41]. The work of Cohen [37] represents one

of the initial solutions, which consists of employing an external force to guide the

snake to the object’s boundary in a similar way a balloon inflates or deflates. These

balloon forces have been proved to improve convergence when the snake is initialized

far from the desired boundary. However, if the strength of the balloon forces is too

high, the snake may not detect weak edges resulting in snake leakages. Another

important solution is the one proposed by Xu et al., which introduces the gradient

vector flow (GVF) field as an external force. The GVF force increases the capture

range of the snake, allowing it to conform to concave boundaries. This external

force, however, may still fail to accurately converge to the desired boundary if the

levels of noise in the image are high [42].
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After the introduction of the GVF force, important work has been done to

further improve the convergence of snakes. In [35], Zhu et al. propose the gradient

and direction vector flow (G&DVF) external force, which integrates the GVF field

and prior directional information manually provided by the user. In [43], Qin et

al. propose a new external force called the component-normalized generalized-GVF

(CN-GGVF), which improves the detection of concave regions and long and thin

indentations.

Yao et al. [44] propose the sigmoid gradient vector flow (SGVF) external

force, which is obtained by convolving the original image with a sigmoid function

before computing the GVF field. This external force, which features a reduced noise

sensitivity, is capable of minimizing snake leakages.

Other important solutions that improve convergence of snakes for medical

image segmentation include the work in [40, 41]. In [40], Wu et al. propose the

gradient vector convolution (GVC) field as an external force, which is calculated by

convolving the gradient map of an image with a defined kernel. This method is,

however, limited to segmenting specific anatomical regions such as the left ventricle

in cardiac MRI. Zhang et al. [41] propose improvements to the GVF snake by using

a combination of balloon and tangential forces. This method is, however, very

sensitive to a set of parameters.

The majority of external forces proposed in [35,40,41,43,44] still require that

the initial snake be placed close to the desired boundary to improve segmentation

accuracy, especially in cases where the amount of image clutter and noise is high,

such as in medical images. This inevitably involves manually selecting several initial

snake elements. Moreover, they may still fail to accurately drive the snake to the

desired boundary around weak edges [45]. However, the most important limitation of

snakes is the difficulty in dealing with topological changes during the deformation,

such as splitting or merging. This is a useful property for segmenting multiple

objects with one curve or segmenting an object with unknown topology. In this
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Figure 2.5: : Level set method: (top row) the evolution of the level set function;
(bottom row) the evolution of the zero level curve of the corresponding level set
function in top row [51].

context some researchers proposed a deformable surfaces for volume segmentation

using an efficient reparameterization mechanism to adopts the topology changes

during the curve evolution [46,47].

2.2.6.2 Level-Set

Despite the excellent performance of snakes, however, it has some intrinsic draw-

backs, for example, their limitation to adapt to topological changes, especially if the

evolution involves splitting or merging the contour; their inability to detect convex

contours; their sensitivity to the initialization position [48]; and their high depen-

dency on parametrization. Level set theory has given a solution for this problem [49].

Moreover, it is easy for implementation and lack of parameterization [50].

Geometric, or level set methods, represents the contour of an object as the

zero-level set of a higher dimensional function. The 2D contour of an object on

image plane is updated when its 3D surface is evolved. The main advantage of

level set methods is the flexibility dealing with complex curve behavior, namely the

merging and splitting of the contour.
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Osher et al. [49] propose a level set method which implicitly represents

the curve as the zero level of the level set φ of a high dimensional function. In

parametric active contour models, the contour is represented by a closed planar

parametric curve C(s). The curve’s normal is defined by ~N = {−ys(s), xs(s)},

where the subscripts denote derivatives, such that the curve’s tangent is given by

Cs = {xs, ys} = {dx(s)/ds, dy(s)/ds}. The deformable curve may then be repre-

sented implicitly via a two-dimensional φ(x, y) defined on the image plane. The

function φ(x, y) is called level set function or the zero level, of φ(x, y) is defined as

the contour, such as

C = {(x, y) : φ(x, y) = 0},∀(x, y) ∈ ΩI (2.6)

where ΩI denotes the entire image plane. Figure 2.5 shows the evolution of a level

set function. While the level set function φ(x, y) deforms from its initial position,

the corresponding set of contours propagates outwards. With this definition, the

evolution of the contour is equivalent to the evolution of the level set function i.e.

C(s, t) : [0, 1]×R2, where t ∈ [0,∞) is an artificial time generated by the evolution

of the initial curve C0(s) in its inward normal direction ~N . For t > 0, the curve’s

evolution equation is given by:

Ct = F ~N (2.7)

where F is a force function [52]. A formulation of contour evolution using the

gradient magnitude of φ(x, y) was initially proposed by Osher and Sethian [49,53,54],

given by

∂φ(x, y)

∂t
= |∇φ(x, y)| (F + εκ(φ(x, y))) (2.8)

where ε controls the balance between the regularity and robustness of the

contour evolution and F represents a constant speed term that pushes or pulls the

contour and is often computed based on the curvature:
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κ = div(∇φ/ |∇φ|) (2.9)

where div(·) is the divergence operator [50,52]. The main purpose of the curvature

term is to control the regularity of the contours as the internal energy Eint term

does in the classic snakes model.

Another form of contour evolution was proposed by Chan and Vese [55]. The

length of the contour |C| can be approximated by a function of φ(x, y) [56,57], such

as

Length{φ = 0} =

∫
ΩI

H(φ(x, y)) |∇φ| dxdy (2.10)

where H is the Heaviside function.

H(x, y) =


1, ifφ > 0

0, ifφ ≥ 0

(2.11)

Since the unit step function produces either 0 or 1 based on on the sign of the

input, the derivative of the unit step function produces nonzero only where φ = 0.

As a result, the integration shown in Equation (2.10) is equivalent to the length of

contours on the image plane. Parameterizing the descent directions by an artificial

time t is given by

∂φ(x, y)

∂t
= δ(φ(x, y))k(φ(x, y)) (2.12)

where δ(·) denotes the derivative of H(·). The contour deforms by the equa-

tion above which can be interpreted as the motion by mean curvature minimizing

the length of the contour. Therefore, Equation (2.8) is considered as the motion

motivated by PDE, while Equation (2.12) is considered as the motion motivated by

energy minimization.
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Edge-based Active Contours

Most edge-based active contour models consist of two main terms: the regularity

term and edge detection term. The regularity term defines the shape of contours,

while the edge detection term attracts the contour towards the edges.

Edge-based active contour model was proposed by Caselles et al. [48] adding

an additional term to the speed function shown in Equation (2.8). This term,

which added by Caselles et al. , speeds the deformation process of the contour and

vanishes when the contour reaches to the object boundary. Similar model proposed

by Malladi et al. [50, 58] and is given by

∂φ(x, y)

∂t
= g(I(x, y))(κ(φ(x, y) + F ) |∇φ(x, y)| (2.13)

where g ∈ [0, 1] and it is given by

g ,
1

1 + |∇Gσ ∗ I|2
(2.14)

where ΩI , Gσ is a Gaussian kernel with a standard deviation σ, and ∗ denotes a

convolution operation. Function g usually takes smaller values at object boundaries

than at smooth regions.

The speed of g(I(x, y))(κ(φ(x, y)) + F ) moves the contours in the normal

direction, and therefore stops on the object boundary, where g vanishes. The curva-

ture term κ maintains the regularity of the contours, while the constant force term

F speed the deformation process and evolve the contour toward the object boundary

by minimizing the enclosed area [59].

Region-based Active Contours

The majority of edge-based segmentation method have stopping terms that depend

on the edge of the object. In the case of noisy images, smoothing is performed on

the image with a Gaussian distribution. This process might smooth weak edges
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and make the models depending on gradients fail to find the contours. The active

contours without edges do not depend on the edge of the object. Basically, this

model separates the image into regions based on homogeneity of intensities. The

  

(a) F1(C) > 0 (b) F1(C) > 0
.....F2(C) ≈ 0 .....F2(C) > 0

  

(c) F1(C) ≈ 0 (d) F1(C) ≈ 0
.....F2(C) > 0 ..... F2(C) ≈ 0

Figure 2.6: All possible cases in fitting a curve onto an object. : (a) the curve is
outside of the object; (b) the curve is inside the object; (c) the curve contains both
object and background; (d) the curve is on the object boundary [55].

region-based active contour models consist of two main terms regularity term and

the energy minimization term, which searches for uniformity of a desired feature.

The initial contours of region-based active contour can be located anywhere in the

image.

Let C be the evolving curve and c1 and c2 two constants, representing the

averages of u0 inside and outside the curve C. Assume that u0 is an image formed by

two regions of approximatively piecewise-constant intensities, with distinct values

ui0 and uo0. The object to be segmented is represented by the region with the value

ui0 whose boundary is denoted by C0. Therefore u0 ≈ c1 inside C and u0 ≈ c2

outside C. Considering the following fitting energy, formed by two terms:
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F1(C) + F2(C) =

∫
inside(C)

|u0 − c1|
2

dxdy +

∫
outside(C)

|u0 − c2|
2

dxdy (2.15)

If the curve C is outside the object, then F1(C) > 0 and F2(C) ≈ 0. If the

curve is inside the object, then F1(C) ≈ 0 but F2(C) > 0. Finally, the fitting energy

will be minimized if the C = C0 if the curve is on the boundary of the object. This

is illustrated in Figure 2.6.

The energy function with regularizing terms is introduced as follows:

F (C, c1, c2) = µ · length(C) + υ · area(insudeC)

+λ1

∫
inside(C)

|u0 − c1|
2

dxdy + λ2

∫
outside(C)

|u0 − c2|
2

dxdy (2.16)

where c1 and c2 are constants, and µ > 0, υ ≥ 0, λ1, λ2 > 0 are fixed parameters.

The length and area terms are regularization terms.

The results obtained by this method partitioned the image which is repre-

sented as a set of piecewise-constants, where each subset is represented as a con-

stant. This approach has shown the fastest convergence speed in comparison to

region-based active contours due to the simple representation.

Level set methods can be categorized into techniques based on partial dif-

ferential equations (PDE) [60] or variational level sets [61]. The level set evolution

(LSE) of PDE-based methods is mostly based on the geometric considerations of the

motion equations [62]. On the other hand, the LSE of variational level set methods

is mostly based on optimizing an objective energy functional defined on the level

set [61]. Variational level set methods are therefore amenable to incorporating addi-

tional information in the LSE, such as region-based information [55,61], shape-prior

information [63] and phase-based information [64], which usually gives rise to very

accurate boundary detection results.

Recently, several authors have proposed variational level set methods that in-
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corporate different image features into the energy functional. These methods, which

have also been tested on medical images, aim at solving common issues that hinder

segmentation accuracy, such as leakage around weak edges and high sensitivity to

intensity inhomogeneities [60–62, 64–70]. For example, Kimmel [67] propose an ac-

tive contour model with an energy functional that combines an alignment term that

leads the curve to the boundary of the desired region. Specifically, the alignment

term attempts to align the normal vector of the zero level set with the image’s gra-

dient. Although this alignment term leads to more accurate segmentation results,

the method may fail to accurately drive the zero level set to the desired boundary

around weak edges due to the fact that the gradient of the image around weak edges

is relatively small [69].

Belaid et al. [64] propose a phase-based level set (PBLS) method for segmen-

tation of medical images with high levels of noise and weak edges. In their approach,

the authors construct a speed term based on two phase features: local phase, which

is derived from the monogenic signal; and local orientation, which measures the

alignment between the local image orientations and the contour’s normal direction

of movement. Although PBLS has shown to perform very well in the presence of

weak edges, it requires careful tuning of the parameters. [71].

Estellers et al. [69] propose a segmentation method based on the geometric

representation of images as 2D manifolds embedded in a higher dimensional space.

Their method, termed harmonic active contours (HAC), aligns the image’s gradient

with the gradient of the level set function for all the level sets. This results in an

objective functional that is able to exploit the alignment of the neighboring level

sets to pull the contour to the right position. Although HAC has been shown to

provide excellent segmentation results on medical images, it may perform poorly on

images with several intensity inhomogeneities [72].

Zhou et al. [73] propose to combine an edge-based active contour model and

region-based active contour model for segmentation of the left ventricle in cardiac
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CT images. Based on the image gradient, their method adjusts the effect of the two

models. Although this method shows good performance around weak edges, the

results are highly dependant on the placement of the initial contour. Ji et al. [74]

propose a local region-based active contour model for medical image segmentation

that uses the spatially varying mean and variance of local intensities to construct

a local likelihood image fitting (LLIF) energy functional. Their method performs

well in images with low contrast and intensity inhomogeneities. However, as with

other region-based active contour models, it assumes the existence of two well-

differentiated regions, which may not always be true in medical images.

2.2.7 Deep Learning Active Contour

Deep learning is a growing trend in data analysis and has been termed recently as

one of the breakthrough technologies [75]. Deep learning is a development of artifi-

cial neural networks, consisting of more layers that improved predictions from data

and allow higher levels of abstraction [76]. Convolutional neural networks (CNNs)

shown to be important tools for a broad range of computer vision tasks. Deep

CNNs automatically learn high-level and mid-level abstractions obtained from im-

ages. Recent studies indicate that the generic descriptors extracted from CNNs are

extremely effective in object recognition and localization in medical image analysis

especially when applying other deep learning methodologies.

Ghesu et al. [77] proposed a combination of deep learning and marginal space

learning for segmentation and object detection. This combination increased com-

putational efficiency and led to reduction the mean segmentation error. Brosch et

al. [78] addressed the problem of multiple sclerosis brain lesion segmentation on

MRI by developing a 3D deep convolutional encoder network that combined decon-

volutional pathways and interconnected convolutional. The deconvolutional path-

way predicted the voxel-level segmentation, and the convolutional pathway learned

higher level features. Pereira et al. [79] proposed a method use a deeper architec-
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ture, intensity normalization and data augmentation for brain tumour segmentation

on MRI. They used a different CNN architectures for low and high-grade tumours.

Kallenberg et al. [80] proposed unsupervised feature learning for breast density seg-

mentation and automatic texture scoring. The model learns features across mul-

tiple scales. Once the features are learned, they are fed to a simple classifier that

is specific to two different tasks i) breast density segmentation, and ii) scoring of

mammographic texture.

Deep learning have also been successfully applied to active contour models.

For instance, Hoogi et al. [81] proposed an adaptive method to estimate the param-

eters for the level set energy functional separately over iterations. This method is a

multi-stage process: First, CNN is used to identify the location of the zero level set

contour in relation to the lesion. Second, the minimization of the cost function is

done by an iterative process that considers the scale of the lesion, local and global

texture statistics to re-estimated window size. Rupprecht et al. [82] proposed a novel

method which combines a deep, patch-based representation with an active contour

framework for interactive boundary extraction. A trained a class-specific CNN is

used to predicts a vector pointing from the respective point on the evolving contour

towards the closest point on the boundary of the object of interest. These predic-

tions form a vector field which is then used for evolving the contour. Nago et al. [83]

proposed automated segmentation approach for the endocardial and epicardial bor-

ders of the left ventricle (LV) from all slices of the end diastole (ED) and end systole

(ES) cardiac phases of an MR cine study, where the ED and ES volumes are man-

ually selected by the user. This approach combines an active contour model with

a machine learning approach (deep belief network). This combination producing a

methodology that needs small training sets and produces accurate segmentation re-

sults. Kainz et al. [84] proposed a method to segment glands in Hematoxylin-Eosin

(H&E) stained histopathological images of colorectal cancer using deep CNN and to-

tal variation segmentation. Two deep CNN are trained as pixel classifiers to predict
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glands (Object-Net) and gland-separating structures (Separator-Net) from the im-

age. The CNN predictions are then regularized using a figure-ground segmentation

based on weighted total variation to produce the final segmentation result.
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Chapter 3

Active Contour Based on

Weighted Gradient Vector Flow

and Balloon

3.1 Introduction

Although image segmentation algorithms have been developed over decades it re-

mains a complex and challenging task. A given segmentation method may perform

well on one problem but it may not work in a different domain. It is very hard to

achieve a general segmentation method that is universally applicable for range of

different domains.

Deformable models is one of the most used methods in medical image seg-

mentation. Deformable model can be described as a technique for defining region

boundaries by using curves or surfaces close to the edges that deform under the

effect of forces. Deformable models, including active contours (2-D) and active sur-

faces (3-D) are closed contours or surfaces which are able to expand or contract over

time, within an image, and confirms to specific image features [34].

Active contours, or snakes, is a deformable model have been widely used for

image segmentation purposes. However, high noise sensitivity and poor performance

over weak edges are the most acute issues that hinder the segmentation accuracy
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3.1 Introduction

(a) (b)

Figure 3.1: Example of medical image segmentation with weak edges and using
GVF active contour. (a) CT slice of skull. (b) 4 Chamber Heart Ultrasound.

of these curves, particularly in medical images as shown in Figure 3.1. In order

to overcome these issues, this chapter propose a new external force that combines

the advantages of balloon and GVF forces. Specifically, balloon force is employed

to guide the snake to the object’s boundary even in the presence of image clutter

and noise; while a GVF force is employed to improve convergence to the object’s

boundary even around weak edges. The influence of these two types of forces on the

snake’s movement is controlled by using a weighting function based on local image

features. The proposed external force minimizes snake leakages and considerably

reduces the number of initial snake elements, making it suitable for segmentation of

medical images with little manual intervention.

The rest of the chapter is organized as follows. Section 3.2 reviews the basic

concepts of snakes. Our proposed external force is detailed in Section 3.3. Experi-

mental results for segmentation of real medical images are presented in Section 3.4.

Finally, a summary presented in Section 3.5.
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3.2 Background

3.2 Background

Parametric deformable models represent curves or surfaces in parametric form. The

parametric models can be described with two main formulations; formulation of

minimizing energy and formulation of dynamic force. The formulation of minimizing

energy search for a parametric curve that minimizes a weighted sum of internal

energy and external energy. Internal energy controls the smoothness of the curve,

while external energy is defined in the image domain and it takes smaller values at

smooth regions than object boundaries where the gradient at the edge is high. When

internal and external energies are equal, the total energy minimization occurs.

A snake is a curve, first proposed by Kass et al. [7], this curve is sampled

and represented by a set of discrete points, these sample points are referred to as

snake elements [see Equation (2.1)] . After the curve has been defined, the curve

has to be placed near to the boundary of area of interest. Now, a process has to be

performed on the curve which makes the curve deform or evolve and this process is

called curve evolution [42]. Curve evolution is an iterative computation that makes

the curve slide in the selected area on the image. The initialized curve will be pushed

by special forces to the object boundary. The curve will stop moving once it reaches

the boundary. Based on (2.3) and (2.4) a curve evolves to an object’s boundary by

minimizing the following energy function:

ES(C) =
1

2

1∫
0

(α
∣∣C ′(s)∣∣2 + β

∣∣C ′′(s)∣∣2)ds+

1∫
0

Eext(C(s))ds (3.1)

The first integrand in Equation (3.1) is referred to as the internal energy,

which controls the smoothness of C, while the second integrand is referred to as

the external energy, which attracts C towards the object’s boundary. The internal

energy of the snake consist of C ′ and C ′′ which are the first and second derivative.

The first derivative provides the amount of changes of coordinate locations or length

of the curve, which means the longitudinal contraction of the curve. The parameter
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3.2 Background

α controls the contraction of the curve and makes the snake act like an elastic

string. Large values of α means large contraction of the snake in the direction of the

force [85]. Therefore, α represents the elasticity coefficient. The second derivative

provides the amount of the curvature. The coefficient β regulates the rate of change

of the curve in the normal direction of its borders. This term makes the snake act

like a rigid string. This means that the curve maintains the smoothness but does

not contract. A high value of β makes the curve hard and resists bending, while

small values allow the curve to develop a corner.

The external energy is usually defined as the negative intensity of the image

edge map f , i.e., Eext(x, y) = −f(x, y), which is usually given by ( 2.5). The

minimization of ES can be achieved by evolving the snake dynamically as a function

of parameter s and artificial time t as follows:

C(s, t) =
[
αC

′′
(s, t)− βC ′′′′

(s, t)
]
−∇Eext (3.2)

where the first term and the second term are called the internal force, Finternal, and

the external force, Fexternal, respectively.

3.2.1 External Forces

External forces can be divided into dynamic forces and static forces [36]. Dynamic

forces, e.g., balloon forces, depend on the snake itself and change as the snake

deforms. Static forces, e.g., GVF forces, are computed from the image and do not

change as the snake deforms.

Balloon Force

Balloon forces are computed iteratively and may have an inflation or deflation effect

on the snake depending on the snake’s initial position with respect to the desired

boundary. These forces are represented as:

Fballoon = kn(s) (3.3)
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3.2 Background

where n(s) is a unit vector normal to the snake at snake element Cn, and k is

the force strength. The sign of k is responsible for inflation (+) or deflation (-).

Although active contours based on balloon force deforms in areas with small or

zero gradient magnitude, however, balloon force still has some limitation such as a

leakage around weak edges. Another limitation of snakes using balloon force is that

the snake initialization must be either inside or outside the desired object, which

requires prior knowledge of object location [86].

Gradient Vector Flow

The model that was proposed by Cohen [37] has solved some problems of the original

model, but segmenting the area that has a concavity remains a problem. Therefore,

Xu et al. [36] propose a gradient vector flow (GVF) that expands the capture range

and forces the snake into the concave regions.

GVF forces are derived from the diffusion of the gradient vectors of the

image edge map. Let v(x, y) = [u(x, y), ν(x, y)] denote the GVF field, which is set

to minimize the following energy function:

EGV F (v) =

∫∫
µ|∇v|2 + |∇f |2|v −∇f |2dxdy (3.4)

where ∇f is the edge map defined in (2.5). The first term in (3.4) is used to smooth

the vector field v, which has the main effect of increasing the capture range of the

force field, where µ is a smoothness regularization parameter. The second term is

the data fidelity term that makes v equal to the gradient vector of the edge map

(∇f) where (|∇f |) is relatively large, and thus preserves edge information. The

parameter µ is a regularization parameter governing the trade-off between the first

term and the second term [87]. This parameter is set according to the amount of

noise in the image. It cannot restrain noise effectively, if there is a lot of noise in

the image [88]. Energy minimization of (3.4) is achieved by satisfying the following

Euler equations:
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3.2 Background

µ∇2u− (u− fx)(fx
2 + fy

2) = 0

µ∇2ν − (ν − fy)(fx2 + fy
2) = 0

(3.5)

where ∇2 is the Laplacian operator. Note that the second term of equation 3.5 is

zero in homogeneous regions because the gradient of f(x, y)is zero. Therefore, u and

ν are each determined by Laplacian equation resulting in a sort of filling information

in that area directed to the boundaries of the region.

Replacing the external force in the dynamic snake equation of (3.2) by v(x, y)

yields:

Ct(s, t) = αCss(s, t)− βCssss(s, t) + v(x, y) (3.6)

Note that although the capture range of GVF is in general large, methods

using this external force exclusively may fail if the snake is initialized far from the

desired boundary using a relatively small initial curve (see Figure 3.2). The GVF

field around such small initial snakes may not point towards the desired boundary

due to the high levels of noise and clutter. An initial snake closer to the boundary

may increase segmentation accuracy in this case.

Vector Field Convolution

Vector field convolution (VFC) [86] is a static external force field computed by

convolving the edge map with a prefixed vector kernel. VFC provides a large capture

range as GVF and the ability to capture concavities, but the difference here is that

the VFC has superior noise robustness and less computational cost. The prefixed

vector kernel defined as k(x, y) = [uk(x, y), νk(x, y)] where all vectors point to the

origin of the kernel as shown in Figure 3.3.

k(x, y) = m(x, y)× n(x, y) (3.7)
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3.2 Background

(a) 5 iterations (b) 20 iterations

(c) 60 iterations (d) Final result

Figure 3.2: A GVF snake that fails if initialized by a small curve far from the
desired boundary. The green represents deformation process, white dot represents
the manually selected initial position, the red curve represents the initial snake

where m(x, y) is the magnitude of the vector at (x, y) , and n(x, y) is the unit vector

pointing to the origin. The origin is located in the center of kernel matrix.

The VFC external force field V vfc(x, y) = [uvfc(x, y), νvfc(x, y)] is given

by calculating the convolution of the vector field kernel k(x, y) and the edge map

f(x, y).

V vfc(x, y) = f(x, y)× k(x, y) (3.8)

Since the edge map f(x, y) has large values near to the edges, those edges

contribute more to the VFC force field than do the homogeneous regions.

The VFC depends on the choice of the vector field kernel magnitude m(x, y).
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2098 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 8, AUGUST 2007

snake performance, this paper focuses on how to obtain a desir-
able external force field given an edge map, which is likely to be
corrupted by noise. We propose a new class of edge-based static
forces called vector field convolution (VFC) in this paper. This
new external force is calculated by convolving a vector field
kernel with the edge map [19]. The novel static external force
has not only a large capture range and ability to capture concav-
ities, but also reduced computational cost, superior robustness
to noise and initialization, flexibility of changing the force field.
We demonstrate these desirable properties by comparing VFC
with GVF in Section IV. (Note that we can always combine VFC
with a region-based static or dynamic force model.) The funda-
mental difference between the distance forces, the GVF forces
and the VFC forces lies in the method with which the homoge-
neous regions are filled.

III. VECTOR FIELD CONVOLUTION SNAKES

Vector field convolution snakes are active contours using the
VFC field as the external force. By replacing the standard ex-
ternal force in (8) by the VFC field

, the iterative snakes solution is

(11)

This equation can be solved numerically using identical finite
difference approach of standard snakes given in Section II-A.

A. Vector Field Convolution

A new class of static external forces called vector field con-
volution (VFC) is introduced in this section. We first define a
vector field kernel in which all
the vectors point to the kernel origin

(12)

where is the magnitude of the vector at and
is the unit vector pointing to the kernel origin

(13)

except that at the origin, where
is the distance from the origin. If the origin is considered as the
FOI, this vector field kernel has the desirable property that a free
particle placed in the field is able to move to the FOI, such as
edges. Note that the kernel origin is not the origin of the image
or the edge map.

The VFC external force
is given by calculating the convolution of the vector field kernel

and the edge map generated from the image

(14)

Since the edge map is non-negative and larger near the image
edges, edges contribute more to the VFC than homogeneous re-
gions. Therefore, the VFC external force will attract free parti-
cles to the edges. If we represent the vector field kernel using a

Fig. 1. Example discrete vector field kernel with R = 4.

complex-valued range, the VFC is just the filtering result of the
edge map, which does not depend on the origin of the kernel.

The VFC field highly depends on the magnitude of the vector
field kernel . By considering the fact that the influence
from the FOI should decrease as the particles are further away,
the magnitude should be a decreasing positive function of dis-
tance from the origin. We propose two types of magnitude func-
tions, given as

(15)

(16)

where and are positive parameters to control the decrease,
is a small positive constant to prevent division by zero at the

origin. is inspired by Newton’s law of universal grav-
itation in physics, which can be viewed as a special case with

and . Then, edge pixels in the edge map may be
considered objects with mass proportional to the edge strength,
and the VFC field is the gravity field generated by all objects.
The influence of the FOI increases as decreases. In practice,

usually ranges from 1.5 to 3 for most images. is a
Gaussian shape function, where can be viewed as the standard
deviation. The influence of the FOI increases as increases.
Note that the external force proposed in [27] is a special case of

with . In general, the influence of the FOI should
be increased (decrease or increase ) as the signal-to-noise
ratio (SNR) is decreased.

B. Numerical Implementation

The continuous vector field kernel is approximated
by a discrete and finite matrix given as

(17)

where denotes the preferred kernel radius. An example dis-
crete vector field kernel is demonstrated in Fig. 1. To calculate
the VFC field, each component of the discrete vector field kernel
is convolved with the edge map. The discrete linear convolution
has been well studied and can be accelerated by the fast Fourier
transform (FFT) and the inverse fast Fourier transform (IFFT)
[28]. Furthermore, if we treat the vectors as complex numbers
instead of two separated real numbers, we could save the compu-
tational expense roughly by a factor of two without using a spe-
cialized FFT for real numbers [29]. In our implementation, the
external forces are normalized as unit vectors to encourage
the contour evolves at a constant speed for an uniform time step

Figure 3.3: Example discrete vector field kernel [86]
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Figure 3.4: (a) The streamlines of VFC field, (b) snake deformation using VFC [86].
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3.2 Background

As areas far away from the edges should have less influence, thus the magnitude

should be a decreasing function of distance from the origin [42]:

m(x, y) = (r + ε)−γ (3.9)

where γ is a non-negative parameter and is used to control the rate of decrease in

the magnitude, and r =
√
x2 + y2 is the distance from the origin. Parameter ε, is

a positive constant used to prevent division by zero at the origin. Given an initial

contour as shown in Figure 3.4, the VFC external force field will guide the contour

to the object boundary.

3.2.2 Active Contour Initialization

In most of active contours, the curve deformation is stopped by edges or noise.

So if the initialization method can avoid noise, then the curve can deform easily

without getting interrupted by noise. The options for active contour initialization

can be categorized into manually initialized or automatically initialized. In manual

initialization, usually, the user has to manually specify the initial contour, and

this location has to be carefully chosen to achieve appropriate segmentation. This

interaction is prone to error, takes a long time and is not feasible in applications

with thousands of target objects [14]. This section will focus on two automatic

initialization methods, Centers of Divergence (CoD) and Poisson inverse gradient

(PIG).

Centers of Divergence (CoD)

The center of divergence (CoD) [89] method is used to initialize the contour in

the best location automatically without user intervention. This approach places

a contour as a small circle at the point of zero vector divergence within a given

external force, such as GVF or VFC. However, CoD suffers from over-segmentation

(initial number of contour). Over-segmentation requires a post-process to merge the
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3.3 The Proposed Method

LI AND ACTON: AUTOMATIC ACTIVE MODEL INITIALIZATION VIA POISSON INVERSE GRADIENT 1415

Fig. 9. (a) Ultrasound image of a human prostate. (b) Streamlines
generated from the VFC external force field. The initial (green dashed line)
and final (yellow solid line) active contours using (c) the CoD method,
(d) the FFS method, and (e) the PIG single model initialization method.
(f) The estimated external energy field of the VFC field overlapped
with isolines.

the optimal closed isoline using the 1-model initialization
method and accurately captures the prostate boundary in 205
iterations, whereas the CoD method needs 1125 iterations to
achieve a similar result with 148 models initialized, and the
FFS method fails to segment the correct boundary. Because
there are a large number of edges surrounding features of
interest, the CoD method initializes redundant models, and
the active contours initialized outside the object using the
FFS method are blocked by those edges. Fig. 9 is another
example to show that the proposed method accommodates
broken edges.

A lung MR image [55] is chosen to exemplify the effec-
tiveness of -model initialization shown in Fig. 10. After cal-
culation of the estimated external energy field from the VFC
field, two active contours are initialized by the 2-model ini-
tialization method, as shown in Fig. 10(b), (e), and (f). The
active contours segment both the left lung and the right lung
precisely in merely 48 iterations, compared to the over 300 it-
erations required for the other two methods. As with the pre-
vious example, the CoD method reaches a similar result with the
cost of additional models (130 versus 2 for PIG) initialized and
larger number of iterations needed. The FFS method fails again
due to the broken edges caused by noise. This is the only ex-
ample where the PIG method does not yield the lowest RMSE.

Fig. 10. (a) MR image slice of a human lung. (b) Streamlines generated from
the VFC external force field. The initial (green dashed lines) and final (yellow
solid lines) active contours using (c) the CoD method, (d) the FFS method, and
(e) the PIG 2-model initialization method. (f) The estimated external energy
field of the VFC field superposed with isolines.

As shown in Table II, the CoD method yields a slightly lower
RMSE (0.29 pixels) than the PIG method (0.39 pixels).

A microscopic image of leukocytes in vivo shown in Fig. 11
is used to evaluate the constrained initialization method. Since
the leukocytes are circular in shape, and the leukocyte radii are
known for a given resolution, we employ energy terms for cir-
cular shape and size constraints in this example [10]. The model
energy is calculated by

(27)

where and are energy terms for shape and size con-
straints, respectively, and and are corresponding
weighting parameters. The calculation of these energy terms is
discussed in the Appendix. As demonstrated in Fig. 11(e), all
six bright leukocytes are accurately initialized and segmented
by the VFC active contours in only 18 iterations using the con-
strained initialization method. Both the CoD method and the
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(f) The estimated external energy field of the VFC field overlapped
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the optimal closed isoline using the 1-model initialization
method and accurately captures the prostate boundary in 205
iterations, whereas the CoD method needs 1125 iterations to
achieve a similar result with 148 models initialized, and the
FFS method fails to segment the correct boundary. Because
there are a large number of edges surrounding features of
interest, the CoD method initializes redundant models, and
the active contours initialized outside the object using the
FFS method are blocked by those edges. Fig. 9 is another
example to show that the proposed method accommodates
broken edges.

A lung MR image [55] is chosen to exemplify the effec-
tiveness of -model initialization shown in Fig. 10. After cal-
culation of the estimated external energy field from the VFC
field, two active contours are initialized by the 2-model ini-
tialization method, as shown in Fig. 10(b), (e), and (f). The
active contours segment both the left lung and the right lung
precisely in merely 48 iterations, compared to the over 300 it-
erations required for the other two methods. As with the pre-
vious example, the CoD method reaches a similar result with the
cost of additional models (130 versus 2 for PIG) initialized and
larger number of iterations needed. The FFS method fails again
due to the broken edges caused by noise. This is the only ex-
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solid lines) active contours using (c) the CoD method, (d) the FFS method, and
(e) the PIG 2-model initialization method. (f) The estimated external energy
field of the VFC field superposed with isolines.

As shown in Table II, the CoD method yields a slightly lower
RMSE (0.29 pixels) than the PIG method (0.39 pixels).

A microscopic image of leukocytes in vivo shown in Fig. 11
is used to evaluate the constrained initialization method. Since
the leukocytes are circular in shape, and the leukocyte radii are
known for a given resolution, we employ energy terms for cir-
cular shape and size constraints in this example [10]. The model
energy is calculated by

(27)

where and are energy terms for shape and size con-
straints, respectively, and and are corresponding
weighting parameters. The calculation of these energy terms is
discussed in the Appendix. As demonstrated in Fig. 11(e), all
six bright leukocytes are accurately initialized and segmented
by the VFC active contours in only 18 iterations using the con-
strained initialization method. Both the CoD method and the
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(a) (b)

Figure 3.5: (a) MR image slice of a human lung, (b) contours or isolines generated
from the edge map by PIG [90]

regions and remove the pseudo boundaries.

Poisson Inverse Gradient (PIG)

The Poisson inverse gradient (PIG) [90] is another method of automatic initializa-

tion. This method estimates the energy field from a given external force field that

is computed from the image. This energy provides isolines represented as closed

contours as shown in Figure 3.5. The isoline with minimum energy level is the best

position for active contour initialization, usually it is the one that is closest to the

edges [91]. However, PIG may fail if the image suffers from weak edges.

3.3 The Proposed Method

The proposed external force is a weighted combination of balloon and GVF forces

and aims at exploiting the advantages of each of these two types of forces. As de-

scribed in section 3.2.1, the computation of the GVF force requires the computation

of the gradient vector of the edge map, ∇f .
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3.3 The Proposed Method

3.3.1 Edge Map

One of the important requirements for segmentation is that the edge must be ac-

curately detected and the noise removed as much as possible from the scene. Edge

map is very important for computing image forces like GVF and VFC.

In this work, the edge map f(x, y) is computed by first calculating the eigen-

values and eigenvectors of the 2 × 2 Hessian matrix HMx,y,L, for each pixel at

position (x, y). The elements of HMx,y,L are the coefficients of the three detail sub-

bands of the stationary wavelet transform (SWT) [92] decomposition of the image

at level L, as follows:

HMx,y,L =

 |Vx,y,L| |Dx,y,L|

|Dx,y,L| |Hx,y,L|

 (3.10)

where Vx,y,L, Hx,y,L and Dx,y,L are the coefficients of the vertical, horizontal and

diagonal detail sub-bands, respectively, at pixel position (x, y) and decomposition

level L. The largest absolute eigenvalue of HMx,y,L, whose eigenvector represents

the direction of highest curvature, is used as the intensity value of the edge infor-

mation at position (x, y), so that f(x, y) = max(|e1x,y|, |e2x,y|), where e1x,y and

e2x,y denote the two eigenvalues associated with HMx,y,L. The edge map f(x, y) is

normalized to the range [0, 1]. Figure 3.6 shown an example of edge map obtained

by SWT.

3.3.2 Proposed external Force

The proposed external force is then defined as follows:

Fexternal = (FBalloon ∗ (1− Ω)) + (FGV F ∗ Ω) (3.11)
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3.3 The Proposed Method

(a) (b) (c) (d)

Figure 3.6: (a),(b) and (c) are the horizontal, vertical and diagonal coefficients,
respectively. (d) the edge map.

where FGV F and FBalloon denote the GVF force and balloon force, respectively, and

Ω ∈ [0, 1], is a weighting factor given by:

Ω = h̄(1−(ĀD−ε)) (3.12)

where h̄ ∈ [0, 1] denotes the average value of f(x, y) over a semi-circular region S

centered at each snake element, and ĀD ∈ [0, 1] is the angular difference between

the direction of the balloon force and the average direction of the GVF force field

over a cone-shaped region T centered at each snake element. ĀD = 0 represents

0 radians, while ĀD = 1 represents π radians. The constant ε = 0.001 is used to

prevent power by zero when ĀD = 1. For each snake element at position (x, y), h̄

is calculated as follows:

h̄(x, y) =
1

N

∑
(i,j)∈S

h(i, j) (3.13)

where N is the number of edge map pixels located in region S and h is the edge

intensity at position (i, j), as illustrated in Figure 3.7.

For each snake element at position (x, y), ĀD is calculated as follows:
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3.3 The Proposed Method

Figure 3.7: Region S for snake element Cn. The snake is represented in green. The
red arrow represents the direction of the balloon force which is normal to the snake
at element Cn. The blue dotted line represents region S of radius r.

ĀD(x, y) =
1

M ∗ π
∑

(i,j)∈T
θ(i, j) (3.14)

where M is the number of GVF field vectors in region T , θ is the angle between the

GVF field vector at point (i, j) and the balloon force vector for snake element Cn

at position (x, y). Region T (x, y, sl, ϕ) is defined by a cone shape with its vertex in

(x, y), where sl is the slant height of the cone and ϕ indicates the half of the cone

angle. This is illustrated in Figure 3.8. Note that a cone-shaped region was chosen

as opposed to a semi-circular region, such as region S, for two reasons. First, it

allows analyzing the region located far from the snake element, which provides a

better insight of the direction of the GVF field than the region close to the snake

element. Second, it reduces the number of calculations since there are fewer points

in total than a semi-circular region of equivalent size.

Note that the weighting function in Eq. (3.12) assigns different priorities

to balloon and GVF forces according to local image features. These features are

the average amount of edge information (h̄) and average direction of the GVF field

(ĀD). It is important to mention that the simplest possible method to control the
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3.3 The Proposed Method

Figure 3.8: Region T for snake element Cn. The snake is represented in green. The
red arrow represents the direction of the balloon force, which is normal to the snake
at element Cn. Blue arrows represent the GVF field vectors within region T .

influence of balloon and GVF forces on the snake’s movement is to use a thresholding

approach based on h̄ and ĀD values. However, the use of continuous functions, such

as the one in Equation (3.12), where no hard decision is required, usually leads to

better results [93]. Figure 3.9 shows the plot of Equation (3.12) for various values

of ĀD. It can be seen that Ω approaches 0 for small h̄ values regardless of the ĀD

value, i.e., when the snake is located in a smooth region. In this case, balloon forces

are the main acting external forces driving the snake close to the object’s boundary.

It can also be seen that Ω approaches 1 in a linear fashion as h̄ and ĀD increase, i.e.,

when the snake is located in a non-smooth region and its normal direction of growth

does not coincide with the local average direction of the GVF field. In this case,

GVF forces tend to be the main acting external forces, helping the snake conform

to the object’s boundary.

Therefore, Ω allows the snake to deform in smooth areas even if its normal

direction of growth is opposite to the GVF force. This is particularly useful to

initialize the snake with a very limited number of snake elements located far from

the desired boundary. Figure 3.10(a) and 3.10(b) illustrate this case, where Ω ap-

proaches 0. Weight Ω also minimizes snake leakages around weak edges by averaging

the amount of edge information and the direction of the GVF field over regions S

and T , respectively. This is illustrated in Figure 3.10(c), where the value of Ω slowly
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ĀD =0.9
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Figure 3.9: Value of Ω for different values of h̄ and ĀD.

approaches 1. Finally, Ω allows the snake to conform to the desired boundary by

assigning a higher weight to the GVF force when edges are encountered. This is

illustrated in Figure 3.10(d), where the value of Ω approaches 1.

3.3.3 Deformation Stopping Criteria

In classical snakes, the deformation process is usually performed over a fixed number

of iterations, over which it is expected to achieve convergence, i.e., external forces are

close to zero. For images with strong edges, this number of iterations may be easily

determined empirically. However, for images with weak edges, this number should

be carefully selected to prevent leakages [94]. This section proposes a mechanism to

terminate the deformation process based on the percentage of snake elements labeled

as off. A snake element is said to be off if no external force is acting on it. This

usually occurs when the element encounters a strong edge, i.e., FGV F is the main

acting external force (Ω > 0.5) and the overall strength of the GVF field around the

element is close to zero. To this end, if Ω > 0.5, Ωb is computed in the same manner

as Ω in Equation (3.12), but using regions Sb and Tb, as illustrated in Figure. 3.11.

Then label a snake element as off and set its forces to zero if (Ωb)
2 > Ω > 0.5.
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3.3 The Proposed Method

(a) h̄→ 0, ĀD → 0, Ω→ 0 (b) h̄→ 0, ĀD → 1, Ω→ 0

(c) h̄→ 0 , ĀD � 1, Ω < 1 (d) h̄→ 1, ĀD → 1, Ω→ 1

Figure 3.10: Direction of the GVF field within region T for different cases where
the average amount of edge information (h̄) varies within region S (the snake is
represented in green and non-white pixels represent strong edge information). (a)
The direction of the GVF field is similar to the normal direction of growth of the
snake (red). (b) The direction of the GVF field is opposite to the normal direction
of growth of the snake. (c) The direction of the GVF force field around weak edges.
(d) The direction of the GVF force field around strong edges.

This condition allows determining if the overall strength of the GVF field around

the element is close to zero, i.e., the GVF field has opposite directions in regions T

and Tb. The squared value of Ωb is used to prevent the element from moving past

the edge. If the percentage of off snake elements is equal or greater than Q, the

whole deformation process is terminated.
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(a)

(b) (c)

Figure 3.11: (a) Regions T and S (in red) used to compute Ω, and regions Tb and
Sb (in black) used to compute Ωb. (b) Dimension of regions S and Sb and of (c)
regions T and Tb.
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3.4 Experimental Results

This section presents several experiments on real slices of MRI and CT sequences to

evaluate the performance of the proposed external force compared to snakes using

three different external forces: a) GVF force exclusively [36], b) balloon and image

gradient (BGrad) forces [43], and c) balloon or GVF forces based on thresholding

(BGVFT). In method (c), the external force is either balloon or GVF based on the

value of h̄, which is computed as described in section 3.3.2.

In our experiments, images are preprocessed using histogram equalization

to enhance edges. The edge map is computed as described in section 3.3.2 using

the Haar filter with L = 3, which is the third level of decomposition. The value of

α = 0 and β = 10 is used to control the smoothness of the snake, and a value of

µ = 0.2 for the regularization parameter to compute the GVF field, as suggested

in [36]. For our proposed external force, a radius r = 1 pixel is used for region

S, an angle ϕ = 45o and sl = 5 pixels for region T . These values provide the

best trade-off between capturing enough information about local image features

and computational complexity. In all experiments, the snake is placed inside the

desired region by manually selecting a single position. This single position is used

as the center of an initial circular snake with a radius of 10 pixels.

Note that when computing the edge map f(x, y) as described in section 3.3.2,

the position of edges shifts by a number of pixels from their actual position in the

original image. This shifting effect is a consequence of the redundant properties of

the SWT and depends on the size of the filter [95, 96]. The amount of shifting ΛL,

in pixels locations, for L levels of decomposition using the Haar filter is given as

follows:

ΛL =
L∑
`=1

∆`−1:` (3.15)

∆L−1:L = 2(L−3) × (dLo0 + 3dHi0 − 4) (3.16)
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where dLo0 and dHi0 denote the size of the low pass and high pass filters, respectively.

For the Haar filter, dLo0 = dHi0 = 2. Therefore, the position of the final snake is

shifted back according to Equation (3.15) in order to correctly position the snake

on the desired boundary in the original image.

The detection accuracy of the evaluated external forces is measured by the Dice

similarity coefficient (DSC) [97] and Jaccard coefficient (JC) [98] using manually

annotated ground truth. The values of DSC and JC are within the range [0, 1],

where 1 indicates identical overlap and 0 indicates no overlap between regions inside

the boundaries.

The DSC represents the ratio between the intersectional area of A and B and their

summation area, i.e.,

DSC =
2 |A ∩B|
|A|+ |B| (3.17)

where A and B represent the segmented region and the ground truth, respectively,

and | · | denotes the cardinal of a set. The value of DSC is within the range [0, 1],

where 1 indicates perfect overlap and 0 indicates no overlap, between A and B.

The JC measures similarity between finite sample sets, and is defined as the size of

the intersection divided by the size of the union of the sample sets given by:

JC =
|A ∩B|
|A ∪B| (3.18)

The value of JC is within the range [0, 1], where 1 indicates perfect overlap and 0

indicates no overlap between the sample sets.

Table 3.1 and Table 3.2 tabulate the DSC and JC values for different regions of

MRI and CT slices. Images 1-3 represent three different regions on an MRI slice

of a spinal cord, images 4 and 5 represent two regions on an MRI slice of a pelvis,

images 6 and 7 represent two regions on an MRI slice of a knee, experiment 8

represents one region on a CT slice of a skull, and images 9 and 10 represent two

regions on a CT slice of a spinal cord.
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3.4.1 Experimental Results with Fixed Number of Iterations

In this experiment the number of iterations is equal for all evaluated external forces

and is set to the number of iterations required by our proposed external force to

achieve convergence. Results in Table 3.1 show that our approach achieves the high-

est accuracy for the most of the images. It is important to note that in some cases,

the BGVFT snake achieves higher DSC and JC values than our approach for the

same number of iterations (see images 6,7,10). In these cases, the selected threshold

for the BGVFT snake effectively switches between GVF and balloon forces. How-

ever, note that the BGVFT does not converge in the tabulated number of iterations.

In some cases, more iterations cause snake leakage in the BGVFT snake, unlike our

approach which achieves convergence in less iterations and detects the boundary

with high accuracy by automatically weighting the GVF and balloon forces accord-

ing to local image features.

Visual results are shown in Figure 3.12. The GVF snake, which is represented in

yellow, conforms to the desired boundary in most of the depicted cases. However,

for the region in Figure 3.12 (a), this snake completely fails mainly due to the fact

that the snake is initialized far from the boundary using a relatively small initial

curve. Although the capture range of the GVF force is in general large, the direction

of the GVF field around such small initial snakes may not point towards the desired

boundary due to the high level of image noise and clutter. An initial snake closer to

the desired boundary is necessary in this case to increase detection accuracy. The

BGrad snake, which is represented in red, fails around weak edges causing snake

leakages. This is mainly due to the fact that the balloon force is greater than the

gradient force. As previously stated in [37], the strength of the balloon force should

be manually selected to correctly detect weak edges. Note that our approach, which

is represented in green, successfully conforms to the desired boundary with high

accuracy for all depicted cases.
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(a) (b)

(c) (d)

Figure 3.12: Final detected boundaries by the GVF snake (yellow), BGrad snake
(red), BGVFT snake (blue) and our approach (green). The white dot inside each
region represents the manually selected initial position for all evaluated snakes. (a)
Image 6 - MRI slice of a knee. (b) Image 1 (upper region) and image 3 (lower region)
- an MRI slice of a spinal cord. (c) Image 8 - a CT slice of a skull (left eye). (d)
Image 4 (left region) and image 5 (right region)- an MRI slice of a pelvis.
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3.4 Experimental Results

3.4.2 Experimental Results with Proposed Stopping Criteria

Table 3.2 show the results where the number of iterations is equal for all evaluated

methods and is set to the number of iterations required by our termination mech-

anism. The whole deformation process is terminated if more than Q =90% of the

snake elements are labeled as off. The tabulated results show that our approach

achieves the highest accuracy for the most of the images. Note that for images 8-9,

the BGVFT snake achieves higher DCS and JC values than our approach for the

same number of iterations. In these cases, the BGVFT snake effectively switches

between GVF and balloon forces based on the selected threshold. However, the

BGVFT snake, similarly to the GVF and BGrad snakes, requires manual selection

of the number of iterations. More iterations may cause snake leakage, unlike our

approach which terminates the deformation process when the majority of snake

elements encounter strong edges.

Visual results for image 2 in Table 3.2 are shown in Figure 3.13. The BGrad snake

conforms to the desired boundary with high accuracy (DSC=0.8969; JC=8130).

However, for the same number of iterations required by our proposed approach,

this snake does not reach the actual edge. More iterations may cause snake leakage

around weak edges if the balloon force is greater than the gradient force. The GVF

and BGVFT snakes result in leakages around weak edges. Our approach successfully

conforms to the desired boundary with high accuracy.
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(a) The original image
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Figure 3.13: Snake deformation process (green curves) for image 2. The white dot
represents the manually selected initial position, the red curve represents the initial
snake.
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3.5 Summary

This chapter proposed a novel external force for parametric snakes that combines

balloon and GVF forces. The external force uses a weighting factor to leverage

the advantages of these two forces according to local image features. In smooth

areas with little edge information, balloon forces guide the snake to the object’s

boundary, while in the presence of strong edge information GVF forces make the

snake conform to the boundary. Our proposed approach is compared to snakes using

GVF forces, balloon forces and a combination of GVF and balloon forces based on

manual thresholding. Experimental results on real medical images show that the

proposed approach outperforms methods based on traditional external forces, while

offering the advantage of initializing the snake with a single manually selected point

inside the desired region and terminating the deformation process automatically.

However, this method has some limitations, such as, sensitivity to very high level of

noise, to large broken edges or even no presence of edges.
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Chapter 4

Weighted Level Set Evolution

Based on Local Edge Features

4.1 Introduction

This chapter proposes a variational level set method that weights the level set evo-

lution according to local image features in order to accurately drive the motion of

the zero level set towards the desired boundary. This method is motivated by the

proposed method in the previous chapter which deforms the contour using a weight-

ing function based on local image features. More precisely, the proposed method

in this chapter controls the influence of energy terms in the objective functional

with a weighting function that takes into account two local image features: edge

intensities and edge orientations. We employ the gradient vector flow (GVF) field

of the image [35] as a measurement of local edge orientations.

Although other previously proposed methods also employ local features to

control the contour’s evolution [73, 99–101], the novelties about how local edge in-

formation is used in the proposed method are as follows:

1. The proposed method measures the average alignment between the normal

direction of the evolving contour and the image’s gradient in the adjacent

region located inside and outside of the evolving contour. Other methods that

also measure this alignment usually do this only in the region adjacent to the
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evolving contour in the direction of movement. Moreover, this measurement is

often used as an additional energy term in the energy functional. An example

of such a method is the one proposed by Kimmel [67].

2. The proposed method also considers the average edge intensity in the adjacent

region located inside and outside of the evolving contour. This allows to

minimize the negative effect of weak edges on the segmentation accuracy.

3. The proposed method uses the collected local information to compute a single

value that serves as a weight to control the influence of two main forces.

This minimizes leakage in areas where weak edges exist. If the desired object

is delimited by both weak and strong edges, this weight helps minimize the

influence on weak edges if sufficient strong edges exist. As a consequence,

the evolving contour tends to converge to the desired boundary even in areas

where weak edges exit.

As mentioned in point (a), the method proposed by Kimmel [67] shares many

similarities with the proposed method. This method also involves the alignment

between the contour’s normal and the image’s gradient in the deformation process.

This alignment is used to compute an additional force. One main disadvantage

of using this extra force is that it can be sensitive to weak edges and non-smooth

regions, in which the image’s gradient may not follow a common direction. Another

important difference of Kimmel’s method with respect to ours is that it is based on

a region-based model, where two regions are assumed to exist in the image.

Another method that also uses local information is the one proposed by

Lankton et al. [99]. This method, which is region-based, models the foreground

and background as constant intensities represented by their means. Local intensity

information in this method is collected from various points along the evolving con-

tour. Differently from our method, this method only employs intensity information

as the local information. Another important difference is that it requires the user
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to manually define a background region in order to help the contour to correctly

segment the region of interest.

Jung et al. [100] propose a region-based active contour that employs local

intensity information. This local information is collected from patches. Specifically,

Jung’s method uses a non-local energy that enforces non-local similarity of patches

inside each region to be segmented. This patch comparison principle helps the active

contour to optimize the homogeneity of each region. Employing patches, however,

may lead to local energy measurements. Small patches give local intensity approxi-

mation but prevent the contour from moving when it entirely lies on a homogeneous

area where local statistics on either side of the contour are the same. Choosing

large patches, on the other hand, may lead to global intensity approximation, which

usually produces results similar to the global intensity fitting energy [102].

Zhou et al. [73] propose a method that uses local information collected by

a characteristic function that marks local regions in terms of a radius parameter.

Differently from our method, which computes a single value, or weight, that repre-

sents the collected local information, Zhou’s method does not take into account the

overall effect of these locally collected information to drive the overall deformation

of the contour. Differently from Zhou’s method, our method averaging the inside

and out side of the contour.

Xie’s [101] method, which is edge-based, takes into account the magnetic

interaction between the image’s gradient and the contour. This is done by computing

the dot product between the magnetic flux of the image and and bi-normal unit

vector. The magnetic flux of the image is generated by using the gradient vectors

at each pixel position, while the bi-normal unit vector is computed from the cross

product of the level set normal and its tangent vector. The proposed method is

similar to Xie’s method in the sense that also takes into account the alignment

between the contour’s normal vector and the image’s gradient. However, our method

also considers the edge intensity information. Moreover, our method collects this

63



4.2 Background

local information from the adjacent region located inside and outside of the evolving

contour. This collected information, differently from Xie’s method, is averaged into

a single value that is used to weigh the importance of two main forces.

The performance of the proposed method has been tested on a great variety

of challenging medical images from MRI and CT sequences featuring weak edges and

intensity inhomogeneities. We also compare our method’s performance to that of

state-of-the-art level-set methods, specifically, reinitialization-free level set evolution

via reaction diffusion (RD) [70], active contours based on gradient vector interaction

and constrained level set diffusion (LSD) [101], distance regularized level set evo-

lution (DRLSE) [103] and Kimmel’s method [67]. Results show that our proposed

method attains a high boundary detection accuracy, particularly in areas prone to

leakage.

The rest of the chapter is organized as follows. Section 3.2 briefly reviews

background information related to segmentation based on level set methods. Section

3.3 details our proposed method. Experimental results for segmentation of real

medical images are presented Section 3.4. Finally we draw a summary in Section

3.5.

4.2 Background

The contour of zero level, defined in (2.6) is the border between a positive area and

a negative area of φ(x, y). The level set function (LSF) φ of the contour C is given

by the signed distance from the initial contour as:

φ(x, y) = ±d((x, y), C) (4.1)

where d((x, y), C) is the distance from point (x, y) to the contour C, and the sign

indicates if the point (x, y) is inside (+) or outside (−) of C.

Let us consider a moving front represented implicitly by the zero level set of
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an LSF φ(x, t), such that C(t) = x ∈ R2 , and it represented at any time t by

C(t) = {x |φ (C(t), t) = 0} (4.2)

After taking the derivative of this moving front w.r.t t on both sides, the

curve’s evolution equation is expressed as φt+∇φ ·Ct = φt+∇φ ·F ~N = 0 for t > 0,

where ∇(·) is a gradient operator. Since the normal of an LSF can be represented

as ~N = ∇φ/ |∇φ|, this curve evolution equation can be simplified to:

φt = F |∇φ| (4.3)

where F represents a constant speed term that pushes or pulls the contour and is

often computed based on the curvature.

Equation (4.3) represents the LSE equation of PDE-based level set methods.

The LSE equation of variational level set methods is given by:

φt = −Eφ(φ) = Fδ(φ) (4.4)

where Eφ(φ) denotes the first variation of an energy functional, δ(φ) is the Dirac

delta function, and F is defined as before.

It is important to mention that during evolution, the LSF usually becomes

too flat or too steep near the zero level set, resulting in numerical errors which

may eventually destroy the stability of the evolution. A reinitialization procedure

is therefore periodically employed to reshape the LSF to be a signed distance func-

tion (SDF) [52,56,60,104]. This reinitialization procedure, however, may affect the

numerical accuracy of the solution and increase computational complexity. To this

end, a number of reinitialization-free variational level set formulations, which intrin-

sically maintain the regularity of the level set function during the level set evolution,

have been proposed [70,103]. For example, DRLSE proposed in [103] eliminates the

need for re-initialization by defining an energy functional with a distance regulariza-
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tion term that is able to maintain a desired shape of the LSF; particularly a signed

distance profile near the zero level set. Other re-initialization free methods based

on the principles introduced by DRLSE include the work of Yu et al. [105] and that

of Prakash et al. [106].

In this work, a variational level set formulation is employed in which the LSE

minimizes an objective energy functional that employs a distance regularization term

based on that proposed in [103] . The next section details our proposed method.

4.3 Weighted Level Set Evolution

For medical image segmentation applications using variational level set methods,

a variety of image information, such as intensity, edge or texture, can be used to

define an objective functional. Here, edge information is employed as the main image

feature that drives the evolving contour to the desired boundary. The edge indicator

function (2.14) is used to acquire information about the intensities of edges. Based

on g, the following basic energy functional for an LSF φ defined as:

E(φ) = R(φ) + Length(φ) +Area(φ) (4.5)

where R(φ) is the distance regularization term introduced in [103], and Length(φ)

and Area(φ) are length and area energy terms, respectively. Length(φ) is related

to the energy along the length of the evolving contour C, i.e., for the case where

φ =0; while Area(φ) is related to the energy of the area inside of C, i.e., for the

case where φ >=0 [see Equation (4.1)]. These two energy terms can be defined so

that the overall energy is minimized at the desired boundaries according to the edge

indicator in Equation (2.14):

Length{φ = 0} =

∫
Ω

gδ(φ) |∇φ| dx (4.6)
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and

Area{φ ≥ 0} =

∫
Ω

gH(φ)dx (4.7)

where H is the Heaviside function. Note that according to Equation (4.6)-(4.7),

the minimization of the these two energy terms depends heavily on the amount of

edge information in the image. The Dirac delta function δ in Equation (4.6) is

used to compute a line integral of the edge indicator function g along the zero level

set of φ. The Heaviside function in Equation (4.7), on the other hand, is used to

compute the energy of the area inside the evolving contour C. Length(φ) is then

minimized when the zero level set of φ is located at the object’s boundary, while

Area(φ) serves as a way to control the evolution speed of the zero level set. In

smooth regions, Area(φ) speeds up the evolution. In regions with a high number

of edges, Area(φ) slows down the evolution, which helps the contour to conform

to the desired boundary. For cases in which the image comprises smooth regions

delimited by strong edges, the minimization of the energy functional in Equation

(4.5) provides excellent boundary detection results. However, for cases where the

image comprises regions with intensity inhomogeneities or delimited by weak edges,

such as in medical images, the evolution process may result in inaccurate bound-

ary detection or leakages. In this work we interested in improving the accuracy of

the evolution process in conforming to the desired boundaries in cases where edges

are weak, and regions contain intensity inhomogeneities. To this end, a weighting

function is proposed to assign different priorities to the area and length terms ac-

cording to the image features of the adjacent region located inside and outside of C.

These features are the average edge intensity, denoted by I, and average difference

between the direction of the image’s GVF and the normal direction of movement of

C, denoted by γ. Note that analyzing the adjacent region located both inside and

outside of C provides an accurate insight of edges location, which helps the zero

level set to accurately conform to the desired boundary [107].
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The proposed length and area terms then include a weighting factor, ω, that

determines their importance in locating the desired boundary according to local

image features. These terms are defined as:

Length2{φ = 0} =

∫
Ω

g(1− ω(φ, k))δ(φ) |∇φ| dx (4.8)

and

Area2{φ ≥ 0} =

∫
Ω

gω(φ, k)H(φ)dx (4.9)

where k is a constant that determines the size of the region adjacent to C from

where local features are obtained. Weight ω(φ, k) is given by:

ω(φ, k) = I(φ, k)(1−γ(φ,k)) (4.10)

where I ∈ [0, 1] is the average intensity of the edge indicator along 2k contours

adjacent to C; γ ∈ [−1, 1] is the inner product between the normal of C, ~N =

∇φ/ |∇φ|, and the GVF field along 2k contours adjacent to C. A contour adjacent

to C is calculated as follows:

ψ(φ,m) = δ(φ) |∇φ|+m ~N (4.11)

where m ∈ Z and its sign denotes if the adjacent contour is located outside (+) or

inside (−) of C. Note that with the Dirac delta function, the term m ~N in Equation

(4.11) results in a contour displaced from the zero level set of φ by m units in its

normal direction. This is illustrated in Figure 4.1.

The average intensity of the edge indicator along the 2k adjacent contours is

68



4.3 Weighted Level Set Evolution
1 intro

 

m ~N ;m = 1

m ~N ;m = 2

ψ(φ,−2)

ψ(φ,−1)

ψ(φ, 0)

ψ(φ, 1)

ψ(φ, 2)

~N

~N

~N

~N

Figure 1: The red arrow represents the direction of the normal vector of con-
tour C. Black arrows represent the GVF field vectors along those points in 2k
surrounding contours, with k = 2, intersected by the normal vector.

1

Figure 4.1: The green line represents the evolving contour C, i.e., the zero level set
ψ(φ, 0). The blue lines represent the adjacent contours for m = 1, m = −1, m = 2
and m = −2, as specified in Equation (4.11)

calculated as follows:

I(φ, k) =
1

2k

k∑
m=1

[∫
Ω

(1− g)ψ(φ,m)dx

+

∫
Ω

(1− g)ψ(φ,−m)dx

]
(4.12)

Similarly to the length term in Equation (4.6), the integral in Equation (4.12)

computes the line integral of the function (1− g) along two contours adjacent to C;

the first one located k units from C in its outside region, and the second one located

k units from C in its inside region. Note that in Equation (4.12), the inverse value

of the edge indicator g, i.e., (1− g), is used to determine if the 2k adjacent contours

are located in areas with strong edge information.

It is observed that the direction of the image’s GVF field is a good estimator of

the orientation and direction of edges [67]. Based on this observation, the alignment

is calculated between the normal vector of C and the GVF field along the 2k adjacent

contours , as illustrated in Figure 4.2. The average inner product γ is then calculated
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Figure 1: The red arrow represents the direction of the normal vector of con-
tour C. Black arrows represent the GVF field vectors along those points in 2k
surrounding contours, with k = 2, intersected by the normal vector.

1 intro

1

Figure 4.2: The red arrow represents the normal direction of movement of the
evolving contour C. Gray arrows represent the GVF field vectors, ~V . The figure
shows the case of k = 2.

as follows:

γ(φ, k) =
1

2k

k∑
m=1

[∫
Ω

〈
~N, ~V

〉
ψ(φ,m)dx

+

∫
Ω

〈
~N, ~V

〉
ψ(φ,−m)dx

]
(4.13)

where ~V denotes the image’s GVF field. In this case, the integral in Equation (4.13)

computes the line integral of the inner product between ~N and ~V along the contours

adjacent to C. Note that γ results in values close to 1 when the normal vector of C

aligns with ~V .

By replacing Length(φ) and Area(φ) in Equation (4.5) with Length2(φ) and

Area2(φ) as formulated in Eq (4.8) and (4.9), respectively, our proposed energy
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functional is then defined as:

E(φ) = µ

∫
Ω

p(|∇φ|)dx + (1− ω(φ, k))

∫
Ω

gδ(φ) |∇φ| dx

+(ω(φ, k))

∫
Ω

gH(φ)dx (4.14)

where µ > 0 is a constant, and p(s) , 1
2(s− 1)2 is a potential (or energy density)

function with a minimum point s = 1 that minimizes the distance regularization

term R when |∇φ| = 1 [103]. The energy functional in Equation (4.14) can then be

minimized by solving a gradient flow as follows:

∂φ

∂t
= µdiv(dp(|∇φ|)∇φ)

+(1− ω(φ, k))δ(φ)div(g
∇φ
|∇φ|) + ω(φ, k)gδ(φ) (4.15)

where dp is a function defined using the first derivative of p(s) as dp(s) ,
p′(s)
s [103].

It is important to mention that in Equation (4.15), the weighting term ω(φ, k),

although expressed as a function of φ and k, results in a constant value in the

range [0, 1]. Consequently, it is regarded as a constant when computing the partial

derivative with respect to time t. The weighting function ω(φ, k) assigns different

priorities to the length and area terms according to local image features. These

features are the edge intensity, I, and the degree of alignment, γ, between ~V and

C’s normal direction of movement. Figure 4.3 shows the plot of ω(φ, k) for various

values of I and γ. It can be seen that ω approaches 0 for large I values regardless

of the value of γ, i.e., when the zero level set is located in a non-smooth region. In

this case, the Length2 term acts as the main energy driving the zero level set to

the object’s boundary. It can also be seen that ω approaches 1 for small I values

regardless of the value of γ. In this case, the Area2 term acts as the main energy

driving the zero level set towards the object’s boundary within a smooth region.

For values of γ close to 1, the value of ω slowly decreases as I increases. In this
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Figure 4.3: Value of ω for different values of I and γ.

case, the normal direction of movement of C aligns with the direction of the image’s

GVF field, therefore the Area2 term acts as the main energy term. For values of γ

close to -1, the value of ω slowly decreases as I increases. In this case, the normal

direction of movement of C is opposite to the direction of the image’s GVF field,

therefore the Length2 term acts as the main energy term helping C to conform to

the object’s boundary.

Weight ω allows C to deform in relatively smooth areas even if its normal

direction of movement is opposite to the GVF field surrounding C. This is partic-

ularly useful when initializing the contour far from the desired boundary, even in

regions with intensity inhomogeneities. Figure. 4.4(a)-(b) illustrate this case, where

ω approaches 1. Weight ω also minimizes leakages around weak edges by deter-

mining the influence of the energy terms in the evolution process according to the

average intensities of edge information and the average direction of the GVF field

in the inside and outside regions adjacent to C. This is illustrated in Figure. 4.4(c),

where the value of ω slowly approaches 0. Finally, weight ω allows C to conform

to the desired boundary by assigning a larger weight to the Length2 term where

strong edges are encountered in the inside and outside regions adjacent to C. This

is illustrated in Figure. 4.4(d), where the value of ω approaches 1.

72



4.3 Weighted Level Set Evolution

 
↑

 
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

 
 

 
↑

 
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

 
 

 
↑

 
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

 
 

 
↑

 
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

 
 

 
↑

 
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

 
 

 
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

 
 

 
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
↗

 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

↗
 
↗

 
↗

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
 

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
 

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
 

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
 

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
 

 
 

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
 

 
 

 
↑

↙
 
↙

 
↙

 
↙

 
↙

 
↙

 
↙

 
↙

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↘

 
↘

 
↘

 
↘

 
↘

 
↘

 
↘

 
↘

 
 

 
 

 
↙

 
↙

 
↙

 
↙

 
↙

 
↙

 
↙

 
↙

 
↙

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↘

 
↘

 
↘

 
↘

 
↘

 
↘

 
 

 
 

 

(a)

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
↓

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

(b)

 
 

↓
 

↓
 

←
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↘
 

↗
 

↑
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

→
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↑
 

↑
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
↖

 
 

↓
 

↓
 

↓
 

↖
 

↖
 

↖
 

↖
 

↖
 

↑
 

↑
 

↑
 

↑
 

↑
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↓
 

↓
 

↓
 

↓
 

↖
 

↖
 

↖
 

↖
 

↖
 

↑
 

↑
 

↑
 

↑
 

↑
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↓
 

↓
 

↓
 

↓
 

↖
 

↖
 

↖
 

↖
 

↖
 

↑
 

↑
 

↑
 

↑
 

↑
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↓
 

↓
 

↓
 

↓
 

↖
 

↖
 

↖
 

↖
 

↖
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↖

 
↖

 
↖

 
↖

 
↖

 
↑

 
↑

 
↑

 
↑

 
↑

 
↗

 
↗

 
↗

 
↗

 
↗

 
↗

 
↘

 
↘

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↖
 

↖
 

↖
 

↖
 

↖
 

↑
 

↑
 

↑
 

↑
 

↑
 

↘
 

↘
 

↗
 

↗
 

↗
 

↗
 

↘
 

↘
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↖

 
↖

 
↖

 
↖

 
↖

 
←

 
←

 
←

 
←

 
↘

 
↘

 
→

 
→

 
→

 
↘

 
↘

 
↘

 
↘

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↑
 

↑
 

↑
 

↓
 

←
 

←
 

←
 

←
 

←
 

→
 

↘
 

↘
 

↘
 

↗
 

↗
 

↗
 

↗
 

↗
 

↗
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↑

 
↑

 
↑

 
↑

 
↖

 
↖

 
↖

 
↖

 
↓

 
↗

 
↗

 
↗

 
↗

 
↗

 
↑

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↑
 

↑
 

↑
 

↑
 

↖
 

↖
 

↖
 

↖
 

↓
 

↗
 

↗
 

↗
 

↗
 

↗
 

↑
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↓

 
↑

 
↗

 
↗

 
↑

 
↑

 
↑

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↓
 

↗
 

↗
 

↗
 

↑
 

↑
 

↑
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↓

 
↗

 
↗

 
↗

 
↗

 
↗

 
↗

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↓
 

↗
 

↓
 

↓
 

↗
 

↗
 

↗
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↓

 
↗

 
↓

 
↓

 
↗

 
↗

 
↗

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↓
 

↗
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↗

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

(c)

 
 

↓
 

↓
 

←
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↘
 

↗
 

↙
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

→
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
↖

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↙

 
↙

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↘
 

↓
 

↓
 

↘
 

↘
 

↘
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↙
 

↙
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↘

 
↘

 
↘

 
↘

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↙

 
↙

 
↙

 
↙

 
↙

 
↙

 
↙

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

→
 

→
 

→
 

→
 

→
 

→
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

←
 

←
 

←
 

←
 

←
 

←
 

←
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↗

 
↗

 
↗

 
↗

 
↗

 
↗

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↖

 
↖

 
↖

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↗
 

↗
 

↗
 

↗
 

↗
 

↗
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↖
 

↖
 

↖
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↖

 
↖

 
↖

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↓

 
↗

 
↗

 
↗

 
↗

 
↗

 
↗

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↓
 

↗
 

↓
 

↓
 

↗
 

↗
 

↗
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↑

 
↓

 
↗

 
↓

 
↓

 
↗

 
↗

 
↗

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↑
 

↓
 

↗
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↗

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

↗
 

 
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
 

↓
↗

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
↓

 
 

(d)

Figure 4.4: The normal direction of movement of C for different cases, represented
by the red vector. Gray vectors represent the direction of the image’s GVF field.
Contour C is represented in green, weak edge information is represented by gray
pixels and strong edge information is represented by black pixels. (a) The direction
of the GVF field is similar to the normal direction of movement of C in a smooth
region. (b) The direction of the GVF field is opposite to the normal direction of
movement of C in a smooth region. (c) The direction of the GVF field around weak
edges. (d) The direction of the GVF field around strong edges.
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4.4 Experimental Results

Implementation considerations

The proposed method is implemented using the narrowband approach in order to

reduce the computational cost associated with the LSE [61]. This narrowband im-

plementation only requires the LSF to be updates for each iteration by using a finite

difference equation that discretizes the LSE [103]. This is done by defining the LSF

φ on a grid and updating the LSF, for each iteration. This update is done on the

narrowband, which is also defined on the grid. Let us denote the discretized form

of a time-dependent LSF φ(x, y, t) by φτi,j , where (i, j) denotes the spatial position

within a grid and τ denotes a discrete time instant. The finite difference equation

that implements the LSE is then:

φτ+1
i,j = φτi,j + ∆tL(φτi,j), τ=0,1,2, . . . (4.16)

where ∆t denotes a time step, and L is an approximation of the gradient flow in

Equation (4.15) [108]. As previously stated in Sec. 4.3, term ω(φ, k) is regarded as a

constant value with respect to time. The computation of I(ψ(φ, k)) and γ(ψ(φ, k))

is also done in a discretized manner within a grid. Let us denote the discretized zero

level set of φ(x, y, t) at time instant τ by Cτ . The location of Cτ within a grid is used

to compute the location of the 2k adjacent contours. The line integrals in Equation

(4.12) and Equation(4.13) are then computed in discretized form as a summation

over all grid points along the 2k adjacent to Cτ , as exemplified in Figure. 4.5. The

resulting value of ω(φ, k) at time instant τ is then used to update the LSF for the

next iteration, i.e., time instant τ + 1, according to Equation (4.16).

4.4 Experimental Results

In this section, we apply our proposed method to segment different regions on various

types of real medical images, including a number of synthetic images. The proposed

method is compared to state-of-the-art edge-based level-set methods, specifically
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4.4 Experimental Results
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ψ(φ,−1)

ψ(φ, 0)

ψ(φ, 1)

Figure 1: The red arrow represents the direction of the normal vector of con-
tour C. Black arrows represent the GVF field vectors along those points in 2k
surrounding contours, with k = 2, intersected by the normal vector.

1 intro

1

Figure 4.5: Example of an LSF defined on a grid. The green line represents the
evolving contour C, i.e., the zero level set ψ(φ, 0). The blue lines represent the
contours adjacent to C according to the k value in Equation (4.11); in this figure
k = 1. Edge intensity and GVF field values at the the black points along the
adjacent contours are used to compute weighting factor ω in Equation (4.10).

(RD) [70], (LSD) [101] and (DRLSE) [103]. Also, the proposed method is compared

to Kimmel’s method [67], since this method, despite being region-based, shares many

similarities with our method.

Four sets of experiments are conducted to evaluate the performance of our

proposed method. In all experiments, we set the initial LSF to be a binary function

whose values have positive and negative signs inside and outside the initial contour,

respectively. Table 4.1 shows the parameters used for the edge-based methods eval-

uated in this work, including our method. Parameters µ, α and λ are constants

that determine the influence of the regularization term, area and length terms, re-

spectively. Let us recall that in our proposed method, the influence of the area and

length terms is determined by weight w(φ, k). Note that the sign of α is responsible

for inflation (+) or deflation (-) of the contour.

For images with weak object boundaries and low contrast, a large value of α

may cause boundary leakage. In this case the value of α should be chosen relatively

small to avoid boundary leakage. DRLSE is not sensitive to the choice of α and λ,
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4.4 Experimental Results

Table 4.1: Parameters used in evaluated edge-based methods

µ α λ ∆t ∆t2
LSD 0.2 -1 1 0.5 -
RD - -1 1 0.8 0.1
DRLSE 0.2 -3 5 1 -
Proposed
Method

0.2 - - 1 -

which can be fixed for most applications. It is important to note that the values

of α and λ in LSD and DR are smaller in comparison to DRLSE. This is because

LSD and RD use the Dirac function in Equation (4.17), which is different from the

Dirac function used in DRLSE [see Equation (4.18)]. The Dirac function affects the

energy terms in the energy functional. In order to compensate for the differences in

these two Dirac functions, we use smaller values for α and λ in LSD and RD. These

values are equivalent to the values selected for DRLSE.

The reason for employing smaller ∆t values in LSD than in the other methods

is due to its fast deformation speed. Therefore, a large ∆t value for the other

methods used, so all comparisons are fair in terms of deformation speed.

δ2(x) =
ε

π (ε2 + x2)
(4.17)

δ1(x) =


1
2ε

[
1 + cos

(
πx
ε

)]
, |x| ≤ ε

0, |x| > ε

(4.18)

In all experiments, the detection accuracy of the evaluated methods is mea-

sured by the DSC [see Equation 3.17 in chapter 3].

4.4.1 Analysis of parameter k

The first set of experiments is designed to characterize the effect of parameter k

in the boundary detection results and to provide an intuitive interpretation to the

tuning of this parameter. Figure 4.6 shows the boundary detection results on a

76



4.4 Experimental Results

(a) (b) (c)

Figure 4.6: Boundary detection results of the proposed method on a synthetic image
with 120 iterations and different values for parameter k. (a) k = 2 (DSC=0.9802).
(b) k = 3 (DSC=0.9798). (c) k = 6 (DSC=0.8057). White curves denote the initial
contour; red curves denote the final contour, and green curves denotes the ground
truth.

synthetic image for different values of k, which results in different values for the

weighting term ω(φ, k), as the number of contours adjacent to C increases as k

increases. It is clear that there is a trade-off between the value of k and the strength

of the energy terms, i.e., the area and length terms in Equation (4.14). A large

value of k implies collecting local features in a larger region adjacent to C, which

may result in an inaccurate description of this region and thus, leakage (see Figure

4.6(c)). Smaller values of k may lead to more accurate segmentation results, as

this implies collecting local features in a region very close to contour C (see Figure

4.6(a)) .

We have evaluated the effect of parameter k on a synthetic image with both,

different number of iterations and different initial contours. Tables 4.2 and 4.3

tabulate the DSC values for these results. Fig. 4.7 shows the initialization positions

on the synthetic image. It is clear that DSC values slowly decrease when the value

of k increases. As expected, as the number of iterations increases, DSC values

increase. This is due to the fact that with more iterations, the contour gets closer

to convergence. Results for k = 1 and k = 2 are quite similar. However, k = 2

provides a better insight of the edge information surrounding the evolving contour.

Therefore, we use k = 2 in all of our experiments.
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1

3

2

4

Figure 4.7: Different positions for the initial contour on the test synthetic image.

Table 4.2: DSC values for the synthetic image for k = 1

Initial Position
Number of iterations

80 100 120 140 160 180 200

1 0.9650 0.9784 0.9808 0.9814 0.9814 0.9810 0.9806
2 0.8320 0.9660 0.9806 0.9809 0.9805 0.9806 0.9804
3 0.8889 0.9566 0.9773 0.9807 0.9816 0.9818 0.9815
4 0.8802 0.9557 0.9770 0.9801 0.9811 0.9814 0.9810

Table 4.3: DSC values for the synthetic image for k = 2

Initial Position
Number of iterations

80 100 120 140 160 180 200

1 0.9641 0.9778 0.9802 0.9809 0.9811 0.9805 0.9803
2 0.8693 0.9742 0.9806 0.9806 0.9801 0.9802 0.9800
3 0.8932 0.9579 0.9802 0.9804 0.9810 0.9812 0.9811
4 0.8649 0.9498 0.9746 0.9794 0.9806 0.9809 0.9806
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4.4 Experimental Results

In images with regions delimited mostly by well-defined edges, k = 1 indeed

provides very similar results to the ones obtained by using k = 2. However, for

images with regions delimited by mostly weak edges, a value of k = 1 may result

in an less accurate segmentation than that obtained with a value of k = 2. This is

due to that fact that a value of k = 2 increases the analysis region around the zero

level-set, allowing to collect more edge features. In order to cover both cases, i.e,

those cases where most of the edges are well defined and those where most of the

edges are weak, we increase the analysis region around the zero level-set by setting

k = 2.

In order to show that a value of k = 2 indeed results in more accurate

segmentation results than those obtained with a value of k = 1 for regions delimited

by mostly weak edges, we have evaluated our method on two additional MRI slices

of lumbar discs, with k = 1 and k = 2 as shown in Figure. 4.8 and Figure 4.9. Note

that the regions to be segmented in these experiments are not well-defined and have

mostly weak edges. Results show that our method successfully detects the objects’

boundary with k = 2. Specifically, the proposed method with k = 2 achieves higher

DSC values than the case of using k = 1. Therefore, we use k = 2 in the remaining

experiments to define the number of adjacent contours used to collect local features.
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4.4 Experimental Results

(a)
k = 1 k = 2

(b) DSC=0.8851,Itr=80 (c) DSC=0.9678,Itr=80

(d) DSC=0.8952,Itr=100 (e) DSC=0.9686,Itr=100

(f) DSC=0.8949,Itr=120 (g) DSC=0.9684,Itr=120

Figure 4.8: MRI slice of an abdominal axial cross sectional view of human body. The
white curves denote the initial contours, the red curves represent the final contour
and the green curves represent the ground truth.
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(a)
k = 1 k = 2

(b) DSC=0.9382,Itr=100 (c) DSC=0.9613,Itr=100

(d) DSC=0.9417,Itr=120 (e) DSC=0.9641,Itr=120

(f) DSC=0.9438,Itr=140 (g) DSC=0.9660,Itr=140

Figure 4.9: MRI slice of an abdominal axial cross sectional view of human body. The
white curves denote the initial contours, the red curves represent the final contour
and the green curves represent the ground truth.
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4.4.2 Results on real medical images

The second set of experiments evaluates the proposed method on real medical images

and compares it with LSD, RD and DRLSE. This experiment is divided in two parts.

In Part 1, the number of iterations for all evaluated methods is set to the number

required to achieve convergence in our method. In Part 2, we increase the number of

iterations used in Part 1 in order to evaluate the accuracy of LSD, RD and DRLSE

as the number of iterations in Part 1 increases. Table 4.4 tabulates the DSC values

for different regions of MRI and CT slices. Images 1-15 represent different regions

on different MRI slices of a spinal cord, images 16 represents a region on an MRI

slice of a brain (the caudate nucleus is the object to be segmented), images 17 and

18 represent two regions on an MRI slice of a pelvis; images 19 and 20 represent

two regions on a CT slice of a skull, and images 21-28 represent different regions

on different MRI slices of lumbar discs. These last set of experiments represent

challenging cases where the target regions have intensities very similar to those

of the surrounding regions, thus making it difficult to clearly delineate the objects’

boundaries. It is important to mention that the images used in Chapter 2 are subset

of the data-set used in this chapter.

Results in Table 4.4 show that our approach achieves the highest accuracy

for the majority of experiments. The methods whose results are underlined in Table

4.4 achieve convergence before the proposed method and thus remain stable as the

algorithms iterate further. In images 2, 14-17, Part 1, and images 11,13,15,17, Part

2, the other evaluated methods achieve higher DSC values than our method. In

the case of Experiment 2, Part 1, RD does not converge in the tabulated number

of iterations, and more iterations cause significant leakage in Part 2. In the case

of images 14-17, Part 1, DRLSE achieves convergence before our proposed method

(underlined results), thus resulting in higher DSC values. For the case of images

14 and 16, after increasing the number of iterations in Part 2, our method achieves

higher DSC values. Our method, in these two cases, requires a larger number of
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iterations than DRLSE to accurately detect the desired boundary. In the case of

images 15 and 17, Part 2, DRLSE outperforms our method by only 0.670%. For

images 11,13, Part 2, RD also outperforms our method by only 0.004%. It is also

important to note that RD and LSD tend to result in leakage as the number of

iteration increases; see for example images 2, 3 and 4, Part 2. For the challenging

cases (Images 21-28), our method achieves convergence before the other evaluated

methods and results in higher DSC values.

It is important to mention that leakage in DRLSE may be the result of the

distance regularization term and area term forcing the zero level set to continue

to evolve when the zero level set is already at the desired boundary. Even though

our proposed method also employs the distance regularization employed by DRLSE,

it prevents leakage and achieves convergence by weighting the Length2 and Area2

terms according to local image features.

Visual results for Part 1 images are shown in Figure 4.10. Note that the

images in the depicted experiments contain several intensity inhomogeneities. The

last two columns represent challenging cases where the target objects have intensities

very similar to the surrounding regions. It can be seen that our method is capable

of detecting regions delineated by weak edges. The other evaluated methods (see

Rows 1-3 of Figure 4.10), fail to correctly segment the regions for the same number

of iterations required by our method. Although RD and DRLSE attain an accuracy

similar to that obtained by our method for Experiment 1 (first column of Figure

4.10), these methods fail when they are allowed to iterate further, as shown in Figure

4.11. Among the most challenging regions are those in Experiment 27 and 28 (last

column of Figure 4.10). In this case, our method successfully detects the cecum

region (Experiment 27). This region is characterized by very weak edges. Note

that all of the methods fail to correctly detect the upper edge of the sacrum region

(Experiment 28). However, our method is the one that results in the least amount

of leakage and thus, the highest DCS value.
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Experiment 1 Experiment 19 Experiment 21 Experiment 27 & 28
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(a)DSC=0.9262 (b)DSC=0.6376 (c) DSC=0.6792 (d)DSC=0.8605
.....DSC=0.7588

R
D

(e)DSC=0.9468 (f)DSC=0.7355 (g) DSC=0.7703 (h)DSC=0.9119
.....DSC=0.7512

D
R

L
S

E

(i)DSC=0.9432 (j)DSC=0.7355 (k) DSC=0.9032 (l)DSC=0.8475
.....DSC=0.8280

P
ro

p
os

ed

(m)DSC=0.9549 (n)DSC=0.9565 (o) DSC=0.9216 (p)DSC=0.9555
.....DSC=0.8864

Figure 4.10: Visual results for Part 1 experiments. The white curves denote the
initial contours, the red curves represent the final contour, and the green curves
represent the ground truth. For images 27 & 28, the first line of DSC values is for
the cecum region (upper region - Experiment 27), while the second line is for the
sacrum region (bottom region - Experiment 28).
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Visual results for Part 2 experiments are shown in Figure 4.11. Note that

the other evaluated methods results in significant leakage when they iterate further.

These visual results confirm that taking into account the amount of edge information

and the direction of the image’s GVF field in the adjacent region located inside and

outside of the evolving contour to control the influence of various energy terms, can

improve segmentation accuracy and minimize leakage.

4.4.3 Comparisons with region-based active contours

The third set of experiments compares our method to Kimmel’s method on synthetic

images and real medical images. Visual results and DSC values are shown in Figure

4.12. These results show that Kimmel’s method outperforms ours for the synthetic

image in Figure 4.12 (a). This is mainly due to the fact that Kimmel’s method

incorporates a region-based force into the model, which increases accuracy when

two regions can be easily detected in the image. Our method, however, attains a

very similar DSC value to that attained by Kimmel’s in this image. For cases where

no two regions can easily be detected, Kimmel’s method is outperformed by ours.

This is evidenced in the synthetic image in Figure 4.12 (b), where it is difficult

to delineate two regions due to the weak edges and the intensity inhomogeneities.

Similar results are obtained for the real medical images in Figure 4.12 (c) and (d).

Our method achieves higher DCS values for these images. It is interesting to note

the performance of Kimmel’s method on the image in Figure 4.12 (d). As mentioned

before, this method attempts to detect two homogeneous regions. Therefore, the

detected two regions in this case correspond to those that appear to be the most

similar regions in terms of intensities.

87



4.4 Experimental Results

Experiment 1 Experiment 19 Experiment 21 Experiment 27 & 28
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(a)DSC=0.7246 (b)DSC=0.6844 (c) DSC=0.8420 (d)DSC=0.9009
.....DSC=0.7714
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(e)DSC=0.9203 (f)DSC=0.7267 (g) DSC=0.8968 (h)DSC=0.8400
.....DSC=0.6939

D
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(i)DSC=0.08439 (j)DSC=0.9480 (k) DSC=0.8314 (l)DSC=0.7280
.....DSC=0.8345
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ed

(m)DSC=09551. (n)DSC=0.9648 (o) DSC=0.9183 (p)DSC=0.9545
.....DSC=0.8844

Figure 4.11: Visual results for Part 2 experiments. Rows from top correspond to
LSD, RD, DRLSE and our proposed method, respectively. The white curves denote
the initial contours, the red curves represent the final contour, and the green curves
represent the ground truth. For images 27 & 28, the first line of DSC values is for
the cecum region (upper region - Experiment 27), while the second line is for the
sacrum region (bottom region - Experiment 28).
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Kimmel’s method Proposed Method

(a)DSC=0.9629 DSC=0.9530(b)

(c)DSC=0.5780 (d) DSC=0.9746

(e)DSC=0.6392 (f) DSC=0.8954

(g)DSC=0.0001 (h) DSC=0.9305

Figure 4.12: Visual results and DSC values for synthetic images (rows 1 and 2)
and real medical images (rows 3 and 4). The first column corresponds to Kimmel’s
method, while the second column corresponds to our method. Column 3 depicts a
X-ray vessel image, and column 4 depicts an MRI slice of an abdominal axial cross
sectional view of the human body. The white curves denote the initial contours,
the red curves represent the final contour and the green curves represent the ground
truth.
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4.4.4 Sensitivity to position of initial contour

The last set of experiments evaluates the sensitivity to the initial contour’s position

of all edge-based methods. To this end, different positions for the initial contour

are employed on synthetic images and real medical images. Visual results and DSC

values are shown in Figure 4.13 and 4.14. All methods have been evaluated with

the same number of iterations. In Figure 4.13, we show results for a noisy synthetic

image. In this case, we tested the case of initializing the contour inside and outside

the target regions. These results show that our method successfully detects the

objects’ boundary even when the position of the initial contour is located outside

the target regions. Our method also achieves the highest DSC values. Figure 4.14

demonstrates the robustness of the proposed method with different initial contours

on a real medical image. In this case, RD performs better than LSD and DRLSE, as

it is capable to conform to most of the desired boundary regardless of the position

of the initial contour. LSD particularly fails when the initial contour is located close

to a weak boundary. The proposed method successfully conforms to the desired

boundary with high accuracy for all initialization positions. It is interesting to

see that the proposed method results in very similar DSC values for this medical

image regardless the position of the initial contour. Finally, in order to evaluate the

performance on challenging cases, speckle noise with a variance of 0.04 is applied

to the same medical image in Figure 4.14. We then tested the same initialization

positions as those in Figure 4.14. Results are shown in Figure 4.15. This confirms the

effectiveness of weight ω in our method to control the influence of forces according

to local features.
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SLD

(a) DSC=0.8621 (b) DSC=0.9183

RD

(c) DSC=0.9364 (d) DSC=0.9472

DRLSE

(e) DSC=0.9518 (f) DSC=0.9781

Proposed
Method

(g)DSC=0.9518 (h) DSC=0.9800

Figure 4.13: Segmentation results on a synthetic image after 100 iterations using
different positions for the initial contour. The white curves denote the initial con-
tours, the red curves represent the final contour and the green curves represent the
ground truth. Each row shows results for a different initial position.
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LSD RD DRLSE Proposed method

(a) DSC=0.7780 (b) DSC=0.9284 (c) DSC=0.8938 (d) DSC=0.9562

(e) DSC=0.7677 (f) DSC=0.8842 (g) DSC=0.7303 (h) DSC=0.9577

(i) DSC=0.7199 (j) DSC=0.7670 (k) DSC=0.8791 (l) DSC=0.9565

Figure 4.14: Segmentation results on a MRI slice of a spinal cord after 50 iterations
using different positions for the initial contour. The white curves denote the initial
contours, the red curves represent the final contour and the green curves represent
the ground truth. Each row shows results for a different initial position.
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LSD RD DRLSE Proposed

(a) DSC=0.3679 (b) DSC=0.9012 (c) DSC=0.8395 (d) DSC=0.9517

(e) DSC=0.7123 (f) DSC=0.6243 (g) DSC=0.7687 (h) DSC=0.9448

(i) DSC=0.7404 (j) DSC=0.8530 (k) DSC=0.7789 (l) DSC=0.9453

Figure 4.15: Segmentation results on a MRI slice of a spinal cord (with added noise)
after 50 iterations using different positions for the initial contour. The white curves
denote the initial contours, the red curves represent the final contour and the green
curves represent the ground truth. Each row shows results for a different initial
position.
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Table 4.5: The average CPU time of the four segmentation algorithms.

Method LSD RD DRLSE Proposed

Time(s) 10.16 9.31 18.49 26.63

4.4.5 Computational complexity

Despite the advantages of the narrowband implementation, the computational cost

of our method increases with respect to that of the other evaluated methods. This

is mainly due to the fact that the proposed method collects local features from a

number of contours adjacent to the evolving contour C, at each iteration.

The CPU time during the experiments is recorded. All methods are imple-

mented in Matlab 8.4 and run on a computer with Intel (R) Core (TM) i5 CPU,

3.20 GHz, 16 GB RAM, with Windows 7. Table 4.5 shows the average CPU time

of the 28 images tabulated in Part 1 of Table 4.4. Although LSD and RD attain

lower average CPU times than those attained by DRLSE, the accuracy of these

methods is, overall, lower than that of DRLSE. As expected, the proposed method

takes longer CPU times to detect boundaries. However, these times may be easily

reduced by introducing optimizations to the implementation code.

4.5 Summary

This chapter proposed a novel medical image segmentation method based on a

level set active contour model that provides improved boundary detection accuracy

around weak edges. The method uses a weighting factor to leverage the advantages of

incorporating local image features into the objective energy functional. Specifically,

the method combines edge intensity information with edge directional information

collected from the adjacent region located inside and outside of the evolving con-

tour. This information is then used to determine the importance of various energy

terms in an energy functional. As a consequence, the proposed method is able to

accurately drive the contour to the desired boundary even around weak edges, thus
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minimizing leakages in medical images. The performance of the proposed method

was demonstrated on various real medical images and was compared with the per-

formance of various edge-based and region-based methods. Experimental results

showed that the proposed method outperforms other state-of-the-art methods, in

terms of segmentation accuracy, and is capable to converge to the desired boundary

in less iterations.

We have shown that active contour has the potential of segmenting medical

images delimited by weak edges, in next chapter, we will explore another way of

applying active contour for overlapping cells. We can not apply the proposed the

method in this chapter directly because overlapping cells characterised by weaker

edges. Instead, we used a patch-based approach where we let an open counter

evolves independently within small patches and then we connect them together to

assemble the contour of an overlapping cell.
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Chapter 5

Patch-Based Segmentation

Using Local Information for

Overlapping Cervical Cells

5.1 Introduction

Cervical cancer is one of the most common types of cancer among women [109].

Since the discovery of a screening test, namely the Pap test, a significant decrease has

been observed in the incidence of cervical cancer and related deaths. The Pap test

has been the most effective cancer screening test and remains the most important

technique in detecting the precursor lesions for cervical cancer. The test is based

on obtaining cells from the uterine cervix and then smearing them onto glass slides

for microscopic examination to detect human papillomavirus (HPVs) effects. The

Papanicolaou (Pap) method is then used to stain the slides, which makes analysis

easier as different components of the cells show different colours.

There are generally three components (types) of cells can be seen on Pap

smear images [see Figure 5.1]: 1) the superficial squamous cells, which are the

largest of the three types with small nuclei and cytoplasm that usually appear in

red; 2) the intermediate squamous cells, which are slightly smaller in size and have

larger round nuclei with cytoplasm that usually appear in blue; and 3) the immature

96



5.1 Introduction

(a) (b)

Figure 5.1: Examples of overlapping cells with inconsistent staining and poor con-
trast, which corresponds to a more realistic and challenging setting.

cells, which appears smaller in compare with the other two types.

The sensitivity of the test is mainly affected by the number of cells sampled,

the overlap among these cells, the poor contrast of the cell cytoplasm, and the

presence of mucus, blood cells, and inflammatory cells [110]. Both intra- and inter-

observer changes during the interpretation of abnormal smears contribute to the

wide variation in false-negative results [111].

The associated difficulties in the manual screening process and the promise

of early diagnosis have made the improvement of automated or semi-automated

systems that analyse images using a digital camera connected to the microscope a

critical research problem in which more robust, consistent, and quantifiable exami-

nation of the smears could increase the reliability of the diagnoses [112,113]. These

issues motivated the researchers to improve the techniques being used for both au-

tomated cell deposition and slide analysis. Cell deposition techniques purify cells

from a significant portion of blood, mucus, and other debris. Also, they reduce the

overlap between cells and provide cells that are more likely to occur in a single focal

plane, and this makes the analysis of both manual and automated slides much faster

and easier [114].

Automated slide analysis techniques improve both the sensitivity and speci-

ficity of screening, which involves two main tasks: segmentation and classification.

Segmentation mainly focuses on detecting and segmenting cells boundaries, then sep-
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arating them from the background, as well as detecting and segmenting the nuclei

from the cytoplasm within the cell regions. Automatic thresholding, morphological

operations, and active contour models appear to be the most traditional methods in

segmentation of the nuclei from isolated or partially overlapping cells [110]. Whereas

classification tasks focus on classifying individual cells present on a slide [115–119].

5.1.1 Nuclei Segmentation

Several authors have proposed methods that attempt to detect and segment the

nuclei cells from cervical cells. Bamford and Lovell [120] propose a method to seg-

ment the nucleus in a Pap smear image using a dual active contour model. They

use a Viterbi search-based dual active contour algorithm to find the nuclei bound-

ary with the minimum cost within a bounded space around the darkest point in

the image. Plissiti et al. [121] propose an automated method for the detection

and boundary determination of cervical cells nuclei. This method uses a marker-

based watershed segmentation to find the nuclei boundaries and then eliminates

the false-positive regions by using a binary classifier with shape, texture, and in-

tensity features. However, their method might be limited in its ability to handle

variations in the appearance of nuclei [122]. Fatichah et al. [123] propose a combi-

nation of Gram-Schmidt method and cluster validation algorithm based Bayesian

for nuclei segmentation on microscopic breast cancer image. Gram-Schmidt is ap-

plied to identify the cell nuclei on a microscopic breast cancer image and the cluster

validation algorithm based Bayesian method is used for separating the touching nu-

clei. Prasath et al. [124] propose unsupervised method for segmenting cell nuclei

from glioma histopathology. This method combining a nuclear staining information

obtained from color decomposition with fast variational active contours to obtain

unsupervised segmentation of nuclei in histopathological images. Xu et al. [125]

propose a Voting-based algorithms for segmenting cell nuclei in the skin histopatho-

logical images. This method, first extracts the candidate nuclei regions using an
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adaptive threshold technique, and then separates ellipse-like isolated nuclei using

two ellipticity parameters. Voting algorithm is used to detect the seeds of clustered

nuclei. Finally, the marked watershed algorithm is used to segment nuclei regions.

5.1.2 Isolated Cell Segmentation

Most of the methods in the previous section focus on the segmentation of only the

nuclei for which there is relatively higher contrast around the boundaries. However,

as the cytoplasm features have been shown to be very useful for the identification of

abnormal cells, the detection of the cytoplasm regions from isolated cervical cells is

also crucial [126]. For example, Wu et al. [127] propose a parametric fitting algorithm

for segmentation of cervical cells. This method uses a parametric cost function with

an elliptical shape assumption in order to detect the boundary of an isolated nucleus

in a cervical cell image. Yang-Mao et al. [119] propose a semi-automatic method to

segment the nucleus and cytoplasm from a cervical smear image. This method is

based on a trim-meaning filter and gradient direction enhancing for segmentation

of both the nucleus and the cytoplasm.

Tsai et al. [128] propose a method using K-means to cluster the cell images

into two classes: one for nuclei and the other for cytoplasm. Another study by Li

et al. [117] use k-means clustering with three classes to identify nucleus, cytoplasm,

and background regions. They then apply snake active contour to refine the nucleus

and cytoplasm boundaries. Harandi et al. [129] propose an automatic algorithm to

perform the segmentation of cervical cells. This method involves three steps: the

active contour algorithm to detect the cell boundaries, thresholding to determine

the nuclei of each cell, and another active contour to identify the corresponding

cytoplasm of each nucleus within connected cell groups. Yang-Mao et al. [119]

propose an edge-enhancement nucleus and cytoplast contour (EENCC) detector to

enable cutting the nucleus and cytoplast from a cervical smear cell image. This

method applies the gradient vector flow (GVF) [36] to cervical cell segmentation by
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estimating the orientation of the GVFs in the pixels near an edge. The detection

of nucleus and cytoplasm boundaries are also explored using GVF in a radiating

field [117]. Although this method provides promising results, it can analyse only

free-lying cells.

Kale et al. [116] propose a two-phase approach to cell segmentation in Pap

smear test images. The first phase consists of segmenting an image by a non-

parametric hierarchical segmentation algorithm that uses spectral and shape infor-

mation and gradient information. The second phase aims to obtain nucleus regions

and cytoplasm areas by classifying the segments resulting from the first phase based

on their spectral and shape features. Gencctav et al. [130] propose an unsupervised

approach for the segmentation and classification of cervical cells. This method in-

volves automatic thresholding to separate the cell regions from the background, a

multi-scale hierarchical segmentation algorithm to partition these regions based on

homogeneity, and a binary classifier to separate the nuclei from cytoplasm within

the cell regions. Zhang et al. [131] propose a method based on graphcuts. Their

method allows delineation of the boundary of a clump of cells and detection of over-

lapping nuclei from images of both normal and abnormal cervical cells. Instead of

providing accurate segmentation of each overlapping cell, these methods are only

capable of detecting and segmenting the whole clump of overlapping cells and their

nuclei.

5.1.3 Overlapping Cell Segmentation

Recent approaches focus on the complete segmentation of individual cytoplasms

and nuclei of overlapping cells with varying degrees of overlap among them. Beliz el

al. [132] propose a methodology based on a locally constrained watershed transform.

The results shown in that paper present limited evidence of the efficacy of the

proposed technique. In particular, it is not clear the extent of cell overlap their

methodology can successfully handle when segmenting cytoplasm and the nuclei
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of overlapping cells. Another methodology proposed is from Lu et al. [110, 133],

who propose a method that utilizes a joint optimization of multi-level set functions

constrained by the length and area of each cell and the shape of the cell. The

method first detects the cell clumps and all nuclei within those clumps, then it

involves several levels set functions for each cell within a clump, which interact

with each other using both unary (intra-cell) and pairwise (inter-cell) terms. The

unary constraints are based on contour length, edge strength, and cell shape, while

the pairwise constraint is computed based on the area of the overlapping regions.

Nosrati et al. [134] propose a continuous variational segmentation framework using

directional derivatives to segment overlapping cervical cells in Pap smear images,

incorporating a star-shape-prior with the level set method. However, these shape

priors are too simplified to approximate the real shape of the cervical cells, this

approach is only applied to the segmentation of objects with a well-defined and

consistent appearance, and defining a shape prior for overlapping cells is not a

straightforward process.

Although the method presented in Chapter 3 and Chapter 4 provided promis-

ing results in segmenting medical images, however, we can not apply them directly

to overlapping cells. This is because overlapping cells are characterised by weaker

edges. Instead, we explore another way of applying edge-based active contour using

a patch-based approach where we let an open counter evolves independently within

small patches.

This chapter proposes a framework capable of segmenting the cytoplasm of

each individual cell depicted within an image of overlapping cervical cells. The

proposed framework uses a patch-based approach where an active contour detects,

on a patch-by-path basis, the cytoplasm boundary of each overlapping cell. The

proposed framework also uses a supervised classifier to separate cell clumps from

the background. Moreover, it uses feature detection algorithm, maximally stable

extremal regions (MSER) algorithm [135], to detect the nucleus of each cell in each
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clumps. The centriod of each detected nuclei is used to define the major possible

region of each cell in the clump. Then, the framework proceeds to allocate the

cytoplasm region of each cell. The active contour within the patch deforms under

the influence of GVF forces computed based on the local edges depicted in each

patch region. This is important to reduce the computational cost and to provide

precise features instead of computing this over the whole image domain where small

edge features are neglected. The main goal of our framework is to provide fully

segmented cells with high-accuracy compared to ground truth and other methods

that also segment overlapping cervical cells [110,136].

The detection and segmentation of overlapping cells are complicated tasks

because several layers of cervical cells are present on a glass slide, which means that

cells in an upper layer can partially obscure cells lying underneath [137]. This makes

the automated detection and segmentation of overlapping cells more complicated.

The cytologist, in a manual examination, uses the depth cue that focus provides in

order to assist in the interpretation of the overlapping cells. However, the separation

of transparent layers from different fields of view (FOVs) is both computationally

intense and difficult [138], because overlapping cells are subject to poor contrast

and are located at similar focal depths. Therefore, extended depth of field (EDF)

methods propose to tackle this issue by producing a single image where all objects

are in focus [139]. This approach is more efficient than analyzing a stack of image

with overlapping cells. The proposed framework analyses a single EDF image where

all objects are in focus.

The proposed framework can be divided into two steps: an initial clump

segmentation followed by a detailed segmentation of each individual cell. The first

step consists of the following stages: (i) detecting cell clumps using a supervised

classifier; (ii) using MSER for nuclei detection; and (iii) estimating the maximum

cytoplasm region of each cell. The second stage consists of a segmentation using

patch-based parametric active contour based GVF forces [36] as the main force for
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curve deformation. GVF, in general, is a static force [36] when it is computed over

the image domain. However, in the framework, the GVF computed for each patch

which is different from that computes over the whole image, for the same patch

region. Results show that the proposed methodology for cytoplasm segmentation

leads to more accurate segmentation results compared to the current state-of-art

methods [110,136].

The rest of the chapter is organized as follows. Section 2 details the proposed

methodology. Our proposed external force is detailed in Section 3. Experimental

results for segmentation of real EDF images are presented in Section 4. Discussions

of the segmentation results is presented in Section 5. Finally, the summary is set

out in Section 6.

5.2 The Proposed Framework

For each multi-layer overlapping cervical cells volume, an image is obtained by a one-

pass EDF algorithm [140]. For each EDF image, the segmentation of overlapping

cervical cells is performed in two steps. the first step consisting of the segmentation

of clumps, nuclei detection of each clump using the maximally stable extremal re-

gions (MSER) algorithm and identify the maximum region of each within the clump.

Second step focuses on the segmentation of cytoplasm for each cell in each clump.

A diagram of the proposed framework illustrating the methodology followed by a

synthetic image of the overlapping cell is shown in Figure 5.2.

This section presents the algorithm to build the EDF images and then detail

the proposed framework for segmenting overlapping cervical cells.

5.2.1 Extended Depth of Field Images

In our proposed method, a one-pass algorithm based on the overcomplete discrete

wavelet transform is used to generate the EDF image [140]. Briefly, this algorithm

performs a wavelet transform on each image in the focal plane stack to select the
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Background extraction Maximum region  Cytoplasm segmentation 

Figure 5.2: The top row is an overview of the proposed methodology. The back-
ground extraction step aims to separate the clump regions from the background,
then to identify the maximum region of each individual cytoplasm within the clump.
The cytoplasm segmentation step aims to segment the cytoplsm of each cell within
the clump. The bottom row shows example intermediate outputs of the proposed
methodology in a synthetic image depicting overlapping cells.
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(a) (b)

Figure 5.3: (a) Image generated by MIP. (b) Image generated by EDF.

largest-magnitude wavelet coefficient at each spatial location for each scale. This

algorithm uses a simplified contextual constraint based on the maximum coefficient

amplitude in a local neighbourhood over all three orientation sub-bands and then

implements post-processing to ensure that all output pixel values are on the same

scale as those in the original image stack.

It is important to mention that Maximum Intensity Projection (MIP) algo-

rithm can perform the same task to EDF. This algorithm created a single image by

the average intensity along the axis of projection at each pixel location. However,

the information outside of the focal plane quickly becomes blurred with less defined

edges and this blurred region may fail MSER to detect the nuclei. On the other

hand, EDF generated a single image with all areas in-focus and with sharper edges.

This is illustrated in Figure 5.3.

A pre-processing step is very important for the extraction of the background

and the detection of clumps. Pre-processing here helps to reduce the search area in

the image. In this step, histogram equalisation is used on EDF image for contrast

enhancement and edge sharpening.
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(a) (b) (c)

Figure 5.4: Examples of the original extended depth field (EDF) cervical cytology
images: (a) typical cervical cytology image; (b) over-segmented super-pixel map
generated by quick shift; (c) binary image representing clump regions.

5.2.2 Background Extraction

The background extraction step aims at dividing an EDF image into cell and back-

ground regions, where cell regions correspond to the regions containing cervical cells,

or so-called clumps, and background regions correspond to the remaining, empty

area. This step reduces the search space for the subsequent stages by concentrating

on the regions containing cervical cells.

The clumps including overlapping cells or even isolated cells are detected

as follows: on an EDF image a quick shift algorithm [141] is applied to find local

maxima of a density function that takes into account gray-value similarities and

spatial proximity. The outcome of this step is a map of super-pixels QS , which are

labelled with gray values in the range [0, 1], representing the respective super-pixel.

This is shown in Figure 5.4(b). The second stage consists of running a naive Bayes

classifier on this super-pixel map QS with two classes, cell clump and background.

The connected components in the resulted image with an area smaller than the area

of an isolated cell are undesirable and consequently removed. In our images, all

areas smaller than 600 pixels are removed. The resulting binary image (see Figure

5.4 (c)) is used as a mask to indicate the clump regions, where each closed region is

a clump.
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5.2.3 Detection and Segmentation of Nuclei

Detection and segmentation of nuclei is a critical step of our algorithm because

each nucleus represents one cell. Nuclei can be characterized by relatively low gray

values, homogeneous textures, and well-defined, almost circular borders. Based

on the assumption that the nuclei do not overlap the MSER algorithm [135] is

used. The MSER algorithm uses pixel gray values and proximity to detect stably

connected components. These components are characterized by blobs that represent

the candidate nuclei. Some of these candidates are filtered out if the features of the

blob detected are larger than a selected threshold. For example, these features can

be the size of the blob or mean intensity of the blob. In the experiment, the size of

the blob is within the range ∈ [200, 600] pixels, as the majority of nucleus sizes are

located in this range.

5.2.4 Cell Segmentation

Based on our observations, the majority of cytoplasm contours are located on pixels

at the same relative distance from their associated nuclei. To segment a cell, the

maximum possible region of each cytoplasm in the clump is found based on the

orientation of the corresponding nucleus, as observed that the orientation of the

nucleus is a good estimator of the orientation of its cytoplasm. Therefore, the ge-

ometry of the detected nuclei is used to build an ellipse that represents the majority

of the cell (i.e., the maximum region of the corresponding cytoplasm). To find the

best ellipse, the contour of the detected nuclei is used as an initial ellipse and then

we set the length of its major axis to the nearest nucleus to the cell that we intend

to be segmented. The minor axis of the ellipse is then adjusted to ensure that the

orientation of the ellipse matches the orientation of the nuclei.

The maximum region of each cell is then given by

CM = QL ∈ (QL ∩ Eellipse) (5.1)
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where Eellipse is a minimum enclosing ellipse centred in the nucleis centroid c, and

QL represents regions generated by quick shift. Example of the input image and

these regions, which are illustrated in different colours, is shown in Figure 5.5 (a)

and (b). Each region in QL is labelled with a unique identifier. The outer border

of regions that overlap the region depicted by the ellipse represents the maximum

possible region of the cell [ see the black contour in Figure 5.5 (b)]. The maximum

possible region of each cell in the clump is shown in Figure 5.5 (d).

The overlapping between the clump region and CM represents the maximum

region of a cell with respect to its clump region. This is shown in Figure 5.5 (c) in

the red contour. This border refers by Line with two end points L0 and L1, where

one of these points represents possible positions for patch initialization. Figure 5.6

shows this in the blue curve.

5.2.4.1 Patch-based Deformation

An image is assumed to consist of small patches, and each observed pixel of the

image is the centre of the patch.

Let P0 be an initial square patch of size τ × τ centred on L0 or L1. This

is illustrated in Figure 5.7. Then, inside the initial patch, initiate an open curve

CP0(s) = [x(s), y(s)], s ∈ [0, 1], that is perpendicular to the line connecting the

centroid c of the nucleus and the centroid of the patch [see Figure 5.7(b)]. For each

cell, the cytoplasm segmentation can be denoted as follows:

Cell = Epatch(CP0) ∪ {Epatch(CP1), Epatch(CP2) . . . Epatch(CPM
)} (5.2)

where M represents the total number of required patches to segment the cell, and

Epatch(CPM
) is the energy function to be minimized for curve CPM

(s). The patch

P0 has the same specification of PM . However, PM is initialized based on the result

of the deformable open curve from the previous patch, where the last element from
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(a) (b)

(c) (d)

Figure 5.5: (a) Example of a synthetic cervical cytology image with one clump,
generated by Lu et al. [110]. (b) Corresponding labelled image generated by quick
shift; the white curve denotes the elliptical shape Eellipse, and the black curve de-
notes outer border of regions that overlap the region depicted by the ellipse. (c)
The result on the cervical image, where the green curve denotes the clump region
and the red curve denotes the maximum region of of the cell. (d) The maximum
region of each cell in the clump.
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L0

L1

Figure 5.6: Examples of the maximum region of overlapping cell in a clump. The
green curve denotes the clump region, the red curve denotes the maximum region
of the cell, and blue curve denoted the Line. The yellow stars denotes L0 and L1,
the possible positions for patch initialization.

the curve in the previous patch is the centre of the new patch. It is important to

note that the reason for an initial curve perpendicular to c is to provide circular

motion of patches around a cell.

The open curve that is initialized in each patch evolves to an object’s bound-

ary by minimizing the following energy function:

Epatch(CPM
) =

1

2

1∫
0

(α
∣∣C ′PM

(s)
∣∣2 + β

∣∣C ′′PM
(s)
∣∣2)ds+

1∫
0

Eext(CPM
(s))ds (5.3)

where α and β are weighting parameters that control the curve’s tension and rigidity,

respectively. The first integrand in Equation (5.3) is referred to as the internal

energy, which controls the smoothness of CPM
, while the second integrand is referred

to as the external energy, which attracts CPM
towards the object’s boundary; in this

case, to the contour segment of the cytoplasm inside each parch.

The external force in our method consists of the GVF forces [36]. These

forces are computed for each patch and change whenever the patch initializes in

a different position (i.e. the GVF is computed over the region of each initialized
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(a)

A 

c0

c

(b)

Figure 5.7: (a) Example synthetic overlapping cells; the red contour denotes overlap-
ping region, the yellow rectangle denotes patch P0, and the black rectangles denote
the following patches. (b) A close-up view of patch P0; the orange dotted line de-
notes the initial open curve, which is perpendicular to the light blue line connecting
c and c0; the green contour denotes the result of the deformable curve for this patch.
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patch, not over the image domain). Computing GVF over patches provides more

accurate gradient which helps the curve to deform smoothly to the desired edges.

This also reduces the computational cost, especially with large images.

GVF forces are derived from the diffusion of the gradient vectors of the edge

map. Let v(x, y) = [u(x, y), ν(x, y)] denote the GVF field, which is set to minimize

the following energy function:

EGV F (v) =

∫∫
µ|∇v|2 + |∇IPM

(x, y)|2|v −∇IPM
(x, y)|2dxdy (5.4)

where IPM
(x, y) is the edge map of the patch region. In the proposed method, the

Canny edge detector used to compute the edge map. The first term in Equation

(5.4) is used to smooth the vector field v, which has the main effect of increasing the

capture range of the force field, where µ is a smoothness regularization parameter.

The second term is the data fidelity term that makes v equal to the gradient vector

of the edge map (∇IPM
(x, y)), where (|∇f |) is relatively large and thus preserves

edge information.

The minimization of Epatch can be achieved by evolving the curve dynamically

as a function of parameter s and artificial time t as follows:

CPM
(s, t) =

[
αC

′′
(s, t)− βC ′′′′

(s, t)
]
−∇v (5.5)

where the first term and the second term are called the internal force, Finternal, and

the external force, Fexternal, respectively.

5.2.4.2 Termination of Patch-based Deformation

In the proposed methodology, the patch-based deformation is terminated if the angle

between the centroid of the new initiated patch Ln and the other end of the Line

,L1 is less than θL. This is illustrated in Figure 5.8. To refine the final contour that

represents the cell cytoplasm, a live-wire algorithm [142] is applied using the points

Ln and L1. The purpose of this algorithm, in general, is to find the optimal path

112



5.2 The Proposed Framework

 

L1 

𝜃𝐿  

L0 

Ln 

Figure 5.8: Synthetic overlapping cells; the red curve is the detected region of the cell
(Line), and the yellow rectangle denotes the initialized patch, the gray rectangles
denote the deformed patch and the green rectangle denotes the last initialized patch.

between a start node and a set of goal nodes.

The optimal path is defined as the minimum cumulative cost path from a

start node to a goal node, where the cumulative cost of a path is the sum of the

local costs on the path. The local cost function Lcost(Ln, L1) from the last pixel Ln

to pixel L1 is defined as:

Lcost(Ln, L1) = wCfC(L1) + wMfM (L1) + wDfD(Ln, L1) (5.6)

where the cost terms for the local 2D live-wire fC ,fM , and fD are gradient magni-

tude, gradient direction, and Canny edge detection, respectively. wC , wM , and wD

are weight constants that allow each cost term to contribute to the cost function at

different rates. The gradient magnitude cost term for any point L1 is defined as

fM (L1) = 1−

√
dL1

2

dx
+
dL1

2

dx

/
max(G) (5.7)

where max(G) represents the largest gradient magnitude in the 2D image. The live-

wire algorithm searches the minimum cost path between two points of an image, so

the gradient magnitude must be inverted such that strong edges correspond to low
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costs. The gradient direction cost term point Ln towards point L1 is defined as

fD(Ln, L1) = acos

(
dLn/dx

G(Ln)
× dL1/dx

G(L1)
+
dLn/dy

G(Ln)
× dL1/dy

G(L1)

)
/π (5.8)

where G(Ln) represents the gradient magnitude for point Ln. The pixels that define

the path of the minimum cost are then added to the Cell contour.

5.3 Materials and Experimental Setup

The dataset in this chapter was obtained from [110], contains 8 EDF images, each

image has up to 15 clumps and each clump contains varying number of cells with an

overlap coefficient in the range ∈ [0, 0.9], 0 indicate no overlap while 0.9 indicates

90% overlapping. The images in the dataset are in gray level. The specimens

were prepared using the AutoCyte PREP technology [143], and so each specimen

is around 20µm thick in the focal-dimension. Images were acquired on an Olympus

BX40 microscope with an 40x objective and a four-mega-pixel SPOT Insight camera,

with square pixels of a size of 7.4µm and a 100% fill factor. This gives an image

resolution of around 0.185µm per pixel. The 40x objective has a numerical aperture

of 0.75, which gives a depth of field of approximately 1µm. Therefore, for each FOV,

a stack of at least twenty focal plane images with a focal depth separation of 1µm

were acquired.

The edge map is computed as described using Canny edge indicator, α = 0

and β = 10 used to control the smoothness of the curve, and a value of µ = 0.2 for

the regularization parameter to compute the GVF field, as suggested in [36]. The

size of the patch is set to τ = 10. Note that, the curve deforms within each patch

for 10 iterations and θL = 20 is used to terminate patch-based deformation.

The performance of the proposed framework is compared with state-of-the-

art methods available from the literature. To the best of our knowledge, the methods

presented in [110,136] provide the best performances proposed in the field of segmen-
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tation of overlapping cervical cells. Note that the values of parameters for Nosrati’s

method and Lu’s method selected were as suggested in [110, 136]. A summary of

these approaches is as follows:

1. Nosrati et al. [136] propose a method for nuclei detection and cytoplasm seg-

mentation. For their method, nuclei detection is based on the union of the

output of MSER and a random decision forest with a star-shaped prior. Each

cytoplasm and its corresponding nucleus are represented as two signed dis-

tance maps. The energy function is optimized with respect to cytoplasm and

nuclei level-set functions, where this energy function is given by:

E(φc, φn) = λ1ER(φc, φn) + λ2ED(φc, φn) + λ3ES(φc) + λ4EO(φc, φn) +R(φ)

(5.9)

where φc and φn are two level set functions that represent cytoplasm and its

corresponding nucleus, respectively. ER is the regional term, ED is the dis-

tance prior between the cytoplasm boundary and its corresponding nucleus,

ES is the elliptical shape prior, EO is an overlap constraint that motivates

neighbouring cytoplasms to be excluded from one another, and R is the regu-

larization term that ensures a smooth boundary of the segmented cells. λ1 to

λ4 are positive weights balancing the contribution of each term in (5.9).

The regional term uses a trained random forest classifier to measure the agree-

ment of an image pixel with background, cytoplasm, and nucleus. The distance

prior term ensures that the nucleus is contained within the corresponding cy-

toplasm. The EO term limits the overlapping between two neighbouring cyto-

plasms, and the regularisation term maintains the desired shape and ensures

smooth boundaries.

2. Lu et al. [110] propose a joint optimization of multiple level set functions,
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where each function represents a cell within a clump. The energy function to

be minimized is defined as

ELu(φ) =
N∑
i=1

Eu(φi) +
N∑
i=1

∑
j∈N(i)

Eb(φi, φj) (5.10)

where Eu denotes the unary energy function defined for each level set function

(LSF) independently, Eb represents the binary function defined over pairs of

LSFs, and N(i) represents the level set functions φj such that their zero-level

set intersects the zero-level set of φi.

This method can be summarised as follows: (i) For a given cervical cytology

image quick-shift algorithm is used to compute the super-pixels map. (ii)

Running an edge detector on this super-pixel map gives a clear edge map. (iii)

A convex hull represents the clumps, which is built by running a connected

component analysis on the edge map. (iv) An unsupervised classifier classifies

the image into two region,clumps and background regions. (v) MSER detects

the nucleus in each clump. vi) A level set function for each cell in clump is

used to find the cell boundary.

5.4 Experimental Results

5.4.1 Quantitative Assessment

Nuclei Detection: As the proposed framework uses the previously proposed MSER

algorithm to detect the nuclei and does not focus on nucleus detection, therefore,

there is no comparison presented in this regard. Figure 5.9 shows an example of

detected nuclei using an MSER algorithm.

Cytoplasm Segmentation: The quantitative evaluation is based on the

performance of the proposed framework in terms of detection and segmentation

accuracy on EDF images with the total of 200 cells with overlap coefficient ∈ [0, 0.9].

The quantitative performance of individual cell cytoplasm segmentation is assessed

116



5.4 Experimental Results

(a)

(b)

Figure 5.9: Examples of the original extended depth field (EDF) cervical cytology
images: (a) typical cervical cytology image; (b) nuclei detected by MSER.
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using the average dice coefficient (DSC) [see Equation 3.17 in chapter 3]. The DSC

values above 0.7 are considered to be “good” cell segmentation [144].

Table 5.1 tabulates the quantitative comparison with the other two methods,

using the DSC values and also tabulates the pixel-based evaluation using the true-

positive (TP) rates. The false-negative (FN) rates and false-positive (FP) rates of

this comparison are tabulated in Table 5.2.

Table 5.1: Cytoplasm segmentation evaluation. The highlighted value represents
the best results, and the values in parentheses represent the standard deviation.

Method Dice (Pixel) Tp (Pixel)

Nosrati et al. 0.8600(0.0776) 0.8642(0.1023)
Lu et al. 0.8371(0.0818) 0.8702(0.1221)
Proposed 0.9140(0.0632) 0.9239(0.0711)

Table 5.2: The false positives (FP) and false negative (FN) of the segmentation
evaluation. The highlighted value represents the best results, and the values in
parentheses represent the standard deviation.

Method Fp (Pixel) Fn (Pixel)

Nosrati et al. 0.0011(0.0012) 0.1357(0.1023)
Lu et al. 0.0019(0.0016) 0.1297(0.1221)
Proposed 0.0008(0.0009) 0.0760(0.0711)

5.4.2 Qualitative Assessment

Examples of the complete segmentation results for Lu et al. method, Nosrati et

al method, and the proposed method on real EDF images are shown in Figure

5.10 which shows not only the results obtained by these methods, but also the

ground truth. Visual results from the algorithm proposed by Lu et al. show more

detected cells in comparison to the other approaches. This is mainly due to the

good nuclei-detection algorithm, which allows more cells to be analysed. However,

this method fails to segment cells with a high degree of overlap with other cells.

The method proposed by Nosrati et al. has advantages in the overlapping regions,
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regardless of the degree of overlap between cells. However, in terms of accuracy,

this method is less precise in distinguishing the cells from the background because

of the inaccurate random decision forest probability map used [110]. The results

of the proposed method verify the quantitative results presented in Table 5.1 and

Table 5.2, where the proposed framework provides high DSC values of segmenting

overlapping cells.
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Ground-truth

(a) (b)

Lu et al.

(c) (d)

Nosrati et al.

(e) (f)

Proposed Framework

(g) (h)

Figure 5.10: EDF Cervical Cytology Images. In the first row the curves denotes the
ground-truth and from the secound row to the end the curves denotes the results
obtain from each method.
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Lu et al. Nosrati et al. Proposed method
Dice=0.76587 Jaccard=0.62057Dice=0.67524 Jaccard=0.50971

(a)DSC=0.8239 (b)DSC=0.9148 (c)DSC=0.9524

Dice=0.78733 Jaccard=0.64925Dice=0.81735 Jaccard=0.69111Dice=0.78304 Jaccard=0.64344Dice=0.91824 Jaccard=0.84884Dice=0.8199 Jaccard=0.69477Dice=0.90788 Jaccard=0.8313Dice=0.80479 Jaccard=0.67334Dice=0.94253 Jaccard=0.89131Dice=0.95223 Jaccard=0.90882Dice=0.85494 Jaccard=0.74663Dice=0.91924 Jaccard=0.85055Dice=0.74535 Jaccard=0.59407Dice=0.74666 Jaccard=0.59573Dice=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Dice=0.96862 Jaccard=0.93914Dice=0.69299 Jaccard=0.53021Dice=0.53443 Jaccard=0.36466Dice=0.90866 Jaccard=0.83261Dice=0.88349 Jaccard=0.7913Dice=0.79332 Jaccard=0.65744Dice=0.79217 Jaccard=0.65586Dice=0.87129 Jaccard=0.77193Dice=0.69333 Jaccard=0.53061Dice=0.75425 Jaccard=0.60546Dice=0.88363 Jaccard=0.79152Dice=0.8501 Jaccard=0.73928Dice=0.74639 Jaccard=0.59539Dice=0.97067 Jaccard=0.94302Dice=0.88373 Jaccard=0.79169Dice=0.5133 Jaccard=0.34526Dice=0.81548 Jaccard=0.68845Dice=0.88668 Jaccard=0.79643Dice=0.81105 Jaccard=0.68216Dice=0.91539 Jaccard=0.84398Dice=0.87897 Jaccard=0.78408Dice=0.86828 Jaccard=0.76722Dice=0.90591 Jaccard=0.82801Dice=0.93185 Jaccard=0.8724Dice=0.89668 Jaccard=0.81271Dice=0.92857 Jaccard=0.86666Dice=0.86011 Jaccard=0.75455Dice=0.64188 Jaccard=0.47262Dice=0.7763 Jaccard=0.63438Dice=0.96331 Jaccard=0.92922Dice=0.98239 Jaccard=0.96539Dice=0.82989 Jaccard=0.70924Dice=0.72801 Jaccard=0.57234Dice=0.83511 Jaccard=0.7169Dice=0.91555 Jaccard=0.84425Dice=0.90344 Jaccard=0.82388Dice=0.85885 Jaccard=0.75262Dice=0.9182 Jaccard=0.84878Dice=0.65293 Jaccard=0.4847Dice=0.98386 Jaccard=0.96824Dice=0.80161 Jaccard=0.6689Dice=0.93146 Jaccard=0.87172Dice=0.76691 Jaccard=0.62195Dice=0.94605 Jaccard=0.89763Dice=0.91333 Jaccard=0.84049Dice=0.5729 Jaccard=0.40144Dice=0.96615 Jaccard=0.93452

(d)DSC=0.6828 (e)DSC=0.8082 (f)DSC=0.8769

Figure 5.11: Two example of EDF cervical cytology image. Each row represents a
case with a comparison between the proposed method and the state-of-art method.
The green contour denotes the ground truth, while the red contour denotes the
results obtained by a different method.

5.5 Discussion

This chapter presented a quantitative and qualitative assessment of a selection of

state-of-the-art methods. The framework proposed in this chapter produces robust

results to the problem of segmenting cytoplasm from overlapping cervical cells. The

methodology proposed by Lu et al. has a better nuclei-detection approach, which

gives their method an advantage in segmenting more cytoplasm than Nosrati et al.

or our proposed method. It is worth mentioning that the quantitative and qualitative

comparison based on the visual appearance of the cytoplasm segmentation in the

peoposed framework and both approaches proposed by Lu et al. and Nosrati et al.

shows that these methods produce relatively realistic results.

In some cases where the cell is in more of an oval shape than a circular shape,

the method proposed by Lu et al. fails to accurately segment the cell. For instance,

in clumps where there are two cells [ see Figure 5.11 (a)] Equation (5.10) enforces

the contour to be minimized in the overlapping area between the two cells. The
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Figure 5.12: A distance map of a clump with two cells.

distance map of the clump with two cells shown in Figure 5.12 illustrates that the

overlapping area has a small distance to each nucleus. The area representing the

small distance makes the curve deformation very slow, where the deformation speed

decreases in area near to the nuclei and overlapping regions. While the method pro-

posed by Nosrati et al. provides better result [see Figure 5.11 (b)], this is mainly due

to the elliptical-shape prior in term Es in Equation (5.9). However, the proposed

framework shows a better result regarding accuracy compared with the other meth-

ods. This is because the patch-based approach provides advantages over the other

methods. One of these advantages is that the first patch is always initialized on the

edge of the cytoplasm and the following patches are initialized inside a maximum

region of the cell to ensure segmenting the corresponding cell. Another advantage

is the circular motion of the initialized patches; this makes contour that represents

the cytoplasm in a realistic modelling of cell shapes.

The method proposed by Lu et al. also fails in other cases where the cell

nucleus is not exactly centred in the cell. This is mainly due to the binary function

represented by term Eb, where this term defines over pairs of nuclei, usually with

the nearest one. This makes the contour limited with the distance of the nearest

nucleus especially if the clump has more that two cells [see Figure 5.11 (d)]. While
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Nosrati et al.’s method again shows better visual results [see Figure 5.11 (e)], the

use of the shape prior enforces the contour to be in a circular shape. Because the

proposed framework does not rely on a particular shape, it provides better results

in both; visual and accuracy value [see Figure 5.11 (f)].

There are certain limitations worth mentioning, such as segmenting cells with

large overlap between cells, i.e., where the overlap degree is more than 60%. Another

issue is the FN detection of nuclei, where most of the nuclei that were not detected

have a blur transition to the cytoplasm or are represented by a light black spot,

which means the MSER algorithm fails to detect them. Furthermore, finding the

maximum region may fail, especially when the orientation of the nuclei is contrary

to the orientation of the corresponding cell. Thus, it is likely that the effectiveness of

the proposed method will be severely compromised. Therefore, further work should

be done to overcome these limitations. For instance, using the method proposed by

Lu et al. for nuclei detection instead of MSER to detect more cells. Also, using

region growing algorithm could be possible solution to find the maximum region of

the cell by starting from small regions around the nucleus.

5.6 Summary

This chapter presented a framework that addresses the problem of segmenting the

nucleus and cytoplasm of each individual cell in EDF images depicting overlapping

cervical cells. The proposed framework uses a patch-based approach where an active

contour detects the cytoplasm boundary of each overlapping cell. The active contour

within the patch is deformed under the influence of GVF forces computed based on

local edge features collected from the patch region. This force is computed over

each each initialized patch to reduce the computational cost and to provides precise

features instead of computing this over the whole image domain where small edge

features are neglected. The proposed framework also uses a supervised classifier and

feature detection algorithm to detect the clumps and the cells nuclei in each clump.
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The centriod of each detected nucleus is used to define the major possible region of

each cell in the clump. Experimental results showed that the proposed framework

outperforms other state-of-the-art approaches, in terms of segmentation accuracy.

The major advantage of our proposed method is that it is fully automated and is

suitable for images with up to 50% degree of cell overlap.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Although image segmentation is a fundamental problem in image analysis, it has

been difficult for traditional image segmentation methods to produce satisfying re-

sults on medical images due to several factors that affect the image segmentation

process such as: texture, image inhomogeneities, image content, high level of noise

and weak edges. Due to these factors, image segmentation remains a major concern

in the computer vision and image processing fields.

This thesis presented three different contributions, which produce robust image

segmentation results on difficult image segmentation problems. The image segmen-

tation methods in this thesis used a framework of active contour models (snakes and

level sets). This chapter summaries the contributions of the thesis and proposes fu-

ture work.

Chapter 3 proposed a novel external force for parametric snakes that combines

balloon and GVF forces. The external force uses a weighting factor to leverage

the advantages of these two forces according to local image features. In smooth
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areas with little edge information, balloon forces guide the snake to the objects

boundary, while in the presence of strong edge information GVF forces make the

snake conform to the boundary. The proposed approach is compared to snakes

using GVF forces, balloon forces and a combination of GVF and balloon forces

based on manual thresholding. The proposed method allows the snake to deform

under following conditions:

1. If the snake is located in a smooth region, balloon forces are the main acting

external forces driving the snake close to the object’s boundary (i.e. the direc-

tion of the GVF field is similar or opposite to the normal direction of growth

of the snake).

2. If the snake is located in a non-smooth region and its normal direction of

growth does not coincide with the local average direction of the GVF field.

GVF forces tend to be the main acting external forces, helping the snake

conform to the object’s boundary.

The proposed method was evaluated for segmentation of various regions in real MRI

and CT slices images. Experimental results show that the proposed external force

outperforms the other evaluated external forces, and minimizes snake leakages, while

offering the advantage of initializing the snake with a single manually selected point

inside the desired region.

Chapter 4 proposed a novel medical image segmentation method based on a

level set active contour model that provides improved boundary detection accuracy

around weak edges in medical images. The method uses a weighting factor to

leverage the advantages of incorporating local edge features into the objective energy

functional. Specifically, the method combines edge intensity information with edge

directional information collected from the adjacent region located inside and outside
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of the evolving contour. This information is then used to determine the importance

of various energy terms in an energy functional. As a consequence, the proposed

method is able to accurately drive the contour to the desired boundary even around

weak edges, thus minimizing leakages in medical images. The novelties about how

local edge information is used in the proposed method are as follows:

1. The proposed method measures the average alignment between the normal

direction of the evolving contour and the image’s gradient in the adjacent

region located inside and outside of the evolving contour. Other methods that

also measure this alignment usually do this only in the region adjacent to the

evolving contour in the direction of movement. Moreover, this measurement

is often used as an additional energy term in the energy functional.

2. The proposed method also considers the average edge intensity in the adjacent

region located inside and outside of the evolving contour. This allows us to

minimize the negative effect of weak edges on the segmentation accuracy.

3. The proposed method uses the collected local information to compute a single

value that serves as a weight to control the influence of two main forces.

This minimizes leakage in areas where weak edges exist. If the desired object

is delimited by both weak and strong edges, this weight helps minimize the

influence on weak edges if sufficient strong edges exist. As a consequence,

the evolving contour tends to converge to the desired boundary even in areas

where weak edges exit.

The performance of the proposed method was demonstrated on various regions

in real MRI and CT slices, as well as Xray images and was compared with the

performance of various edge-based and region-based methods. Experimental results

showed that the proposed method outperforms other state-of-the-art edge-based
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level-set approaches, in terms of segmentation accuracy, and is capable to converge

to the desired boundary in less iterations

Chapter 5 presented a framework that addresses the problem of segmenting

the cytoplasm of each individual cell in EDF images depicting overlapping cervical

cells. The proposed framework uses a patch-based approach where parametric active

contour detects the cytoplasm boundary of each overlapping cell. The active contour

within the patch is deformed under the influence of GVF forces computed based on

the local edges depicted in each patch region. The propose framework can be divided

into two steps:

1. The first step consists of the following stages: (i) detecting cell clumps using a

supervised classifier; (ii) using MSER for nuclei detection; and (iii) estimating

the maximum cytoplasm region of each cell.

2. The second stage consists of an initial segmentation using patch-based para-

metric active contour using GVF force [36] as the main external force for curve

deformation. GVF, in general, is a static force [36] when it is computed over

the image domain. However, in the framework, this force is computed over

each patch in order to reduce the computational cost and to provides precise

local edge information, instead of computing this over the whole image domain

where small edge features may be neglected.

The proposed framework also uses a supervised classifier and feature detection

algorithm to detect the clumps and the cells nuclei in each clump. The centroid

of each detected nucleus is used to define the major possible region of each cell in

the clump. Experimental results showed that the proposed framework outperforms

other state-of-the-art approaches, in terms of segmentation accuracy. The major

advantage of our proposed method is that it is fully automated and is suitable for
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images with up to 50% degree of cell overlap.

6.2 Future Work

Although this thesis has proposed a number of approaches for addressing some

challenges in edge-based active contours, more work is yet to be done in order to

bring the performance of active contours models to a higher level. Some future

research is listed as follows:

• One of the important directions for future work is to extend the methods in

Chapter 3 and Chapter 4 which are limited to 2D to operates on 3D images

directly, such that a surface is evolved instead of curves on individual slices

or placing a series of contours in each 2D slices of the volumetric image. The

deformation of the contours may then be controlled through a set of contours

and external forces that are placed in the Z dimension.

• The approaches proposed in this thesis are limited to edge-based information.

Incorporating different information such as boundary or region of different

nature (i.e. texture, motion) could be a possible extension to the existing

framework that can increase robustness.

• It would be interesting to investigate the possibility of adopting the weight

factor proposed in Chapter 3 and Chapter 4 into active appearance models

and active shape models.

• In the proposed framework in Chapter 5, the ellipse shape, which is used to

fined the maximum possible region of the cell, have to be in the same orienta-

tion of the nucleus to provide the appropriate maximum region. However, if

129



6.2 Future Work

the orientation of the nucleus is contrary to the orientation of the correspond-

ing cell, the maximum possible region may not include all regions belonging to

the corresponding cell, and this will provide false segmentation. This problem

can be addressed by applying Voronoi diagram. This diagram can partition

the image into regions based on a distance to points in a specific subset of the

image. In the cell case, the distance will be counted from the detected nuclei

to the ellipse. It will be very interesting to investigate the resulting regions.

Also, in the proposed framework, the parametric active contour used to deform

to the cell boundary within the patch. However, as mentioned in Chapter 2,

the level set has more advantages over snakes. Therefore, implementing level

set in each patch can be a possible extension for this work.

• As the majority of current active contours are in general slow, investigation of

a fast implicit contour is needed. Further studies must focus on the develop-

ment of the proposed methods to achieve better computation and performance.

This can be done by combining the deep learning algorithms with proposed

methods. Also, as the manual tuning of parameters severely limits the usage

of active contour models, deep learning can be use to estimate the parameters

avoid manual tuning and hence optimize segmentation results.
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