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Abstract 

 
This thesis discusses research conducted towards the development of an objective model that 
predicts punch in musical signals. Punch is a term often used by engineers and producers when 
describing a particular perceptual sensation found in produced music. Music is often 
characterised by listeners as being punchier yet the term is subjective, in terms of its meaning 
and the subsequent auditory effect on the listener.  An objective model of punch would therefore 
prove useful for both music classification purposes and as a possible further metric that could be 
employed in music production and mastering metering tools. 
 
The literature reviewed within this body of work encompasses both subjective and objective 
audio evaluation methods in addition to low-level signal extraction and measurement techniques. 
The review concludes that whilst there has been a great deal of work in the area of semantic 
description and audio quality measurement, low-level analysis with respect to the perception of 
punch remains largely unexplored.  
 
The project was completed in a number of phases each designed to investigate the perceptual 
effects resulting from manipulation of test stimuli. The rationale behind this testing was to 
establish the key low-level descriptors relating to the punch attribute with the aim of producing a 
final objective and perceptually based model. The listening tests in each phase were conducted 
according to the ITU-R BS 1534-1 recommendation.  
 
In producing an objective model for the prediction of punch, listener perception to the attribute 
shows a strong correlation to the signal onset times, octave frequency band, signal duration and 
dynamic range. The punch measure obtained using the model is named PM95, where 95 
indicates the upper percentile used in the measurement. 
 
Secondary measures were also obtained as a result of the iterative approach adopted. These are 
Inter-Band-Ratio (IBR), Transient to Steady-state Ratio (TSR) and Transient to Steady-state 
Ratio+Residual (TSR+R). These measures are useful in quantifying overall audio quality with 
respect to its dynamic range across frequency bands in addition to being a more reliable metric 
for defining the overall compression being applied to a piece of music. In addition, the latter two 
measures proposed may be useful in highlighting perceptual masking artefacts. 
 
The completed perceptual punch model was validated using the scores obtained from a large 
scale and independently conducted forced pairwise comparison test using expert listeners and a 
wide range of musical stimuli. From the results obtained, the PM95 measure showed a ‘very 
strong’ positive correlation with listener punch perception. Both r and rho coefficients (0.849 
and 0.833) being significant at the 0.01 level (2-tailed). The PM95M measure, which is the 
PM95 measure divided by the mean value of punch frames also correlated very well with the 
perceptual punch scale having both r and rho coefficients (0.707 and -0.750) being significant at 
the 0.05 level (2-tailed). 
 
A real-time implementation of the punch model (and other measures proposed in this thesis) 
could be utilised as extensions to the metrics currently being used in Music Information 
Retrieval.  
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PM95M	 –	 Punch	 Measure	 (95th	 Percentile	 /	

Mean)	

PMF	–	Probability	Mass	Function	

QMF	–	Quadrature	Mirror	Filter	

RLB	 –	 Revised	 Low	 Frequency	 B	 Weighting	

Filter	

RMS	–	Root	Mean	Square	

RT60	–	Reverb	Time	(to	decay	to	-60dB)	

SDG	–	Subjective	Difference	Grade	

SNR	–	Signal	To	Noise	Ratio	

STFT	–	Short	Time	Fourier	Transform	

THD	–	Total	Harmonic	Distortion	

TR,	 SS	 &	 R	 –	 Transient,	 Steady	 State	 and	

Residual	respectively.	

TSR	–	Transient	to	Steady	State	Ratio	

TSR+R	 –	 Transient	 to	 Steady	 State	 Ratio	 +	

Residual	

TWC	–	Temporal	Weighting	Coefficient	

VIF	–	Variance	Inflation	Factors	

WDR	–	Wideband	Dynamic	Range	



 

 

 

Chapter 1 Introduction 
 

In music production, sound-engineers and producers employ techniques to deliberately 

colour or enhance the completed piece in order to achieve what is deemed release quality 

material. What one deems as release quality is largely subjective and due to the 

proliferation of self-publication and accessibility through download, there now exists a vast 

amount of musical data that is largely uncatergorised both in terms of its overall quality and 

underlying audio and musical attributes.  

 

Whilst it is possible to include metadata in the form of short data fields to categorise 

musical data, for example, artist name, composer, year of release and in some cases, more 

subjective elements such as mood and genre the information is very limited with respect to 

its scope in either defining overall quality or contributing to its measurement. Further to 

that, the inclusion of metadata is very labour intensive and often just not done.  

 

1.1 Background to the research 
 

Recently there has been a large amount of interest in the field of Music Information 

Retrieval (MIR) in a bid to enable large scale indexing, organising and navigation of digital 

music. In tandem with this work, many of the low-level descriptors utilised in the MIR 

process are being examined to establish if any of the descriptors show a correlation with 

overall mix quality (De Man et al. 2014).   

 

Determining overall mix quality of a piece of music is a complex process; some might 

argue that it could be deemed entirely subjective. However, taking a very simple case 

where a piece of audio is directly compared against a known ‘good’ reference, it may be 

easier to establish whether the stimulus under test is good or not. The attributes that are 

compared are important in this case, thus enabling such things as genre, mood and artist to 

be completely ignored. An example of this could be the objective comparison of an 

attribute such as ‘brightness’, for many years being equated to the ‘spectral centroid’ 



 

 

 13 

objective measure (Grey & Gordon, 1978). This is a very simplistic but valid model, if you 

were looking for pieces of music that exhibited the same brightness as the reference. 

 

In order to establish a more accurate predictor of overall mix quality, a larger number of 

low-level attributes would need to be combined and/or new attributes found. In addition, 

these attributes need to be rigorously tested to see if perceptual correlation can be found. 

Due to this complexity, a ‘single’ objective metric that categorises mix quality is somewhat 

of a ‘holy grail’ within the music industry but continued research to establish new low-level 

descriptors may allow a higher resolution of music categorization to be established. 

 

1.2 Scope and aims of the thesis 
 

As outlined in the previous section, additional low-level descriptors for use in MIR and 

audio quality measurement are desirable. As the title of this thesis infers, this work presents 

research that aims to establish a new descriptor for use in music categorisation and quality 

measurement, that of punch. A number of novel objective measures are proposed and 

explored in this work that indicate a correlation with subjective scores obtained from 

listening tests in terms of both mix quality and punch perception.  

 

Through conducting the literature review it was apparent that whilst the punch semantic 

descriptor is freely used, no formal perceptual based studies of punch exist. This study will 

aim to provide both a formal definition of punch and also seek to identify measurable 

attributes that will inform an objective model of punch perception. The model proposed can 

be used as an additional search metric in MIR, a predictor in objective metering tools and as 

an additional variable in the prediction of audio quality.  

 

It is the author’s hypothesis, and one that will be proven within this thesis,  that punch can 

be described as a short period of significant change in power in a piece of music or 

performance. The magnitude of change is associated with and proportional to the signal 

dynamics that are present and thus, productions that do not possess any transient or 

dynamic attribute cannot possess punch. The onset of the transient present across octave 
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bands affects the listener perception of punch, with the lowest octave attributing the most 

punch as the onset is decreased and vice-versa. Punch is therefore related to transient 

change and the energy density (summation across frequency bands) occurring at a 

particular moment in time and duration. 

 

Further to the above hypothesis, dynamic change in particular frequency bands may 

contribute to the perception of punch perceived by the listener and the overall average 

loudness level inherently affects this at that time (Moore, 2004). Thus, by mapping the 

perception of the punch attribute to objectively measured key attributes of the signal, one 

can produce a metric that could be utilised in music production and classification. 

 

Analysis of existing measurement models found in the literature review revealed that they 

are not suitable for predicting the punch attribute. Indeed, at the time of writing there is not 

a complete model for predicting overall mix quality although research in the area is very 

active.  

 

1.3 Key objectives 

 

Based upon the previously stated hypothesis, the key objectives of each experiment are now 

outlined. The subsequent description explains the steps involved in achieving each objective. 

• To investigate the effects of dynamic range reduction with respect to listener 
perception. 

 

Signal dynamics are inherently related to the dynamic range of the material being 

measured. An important aim of this project was to establish the effects of dynamic range 

reduction from a quality point of view and also to elicit parameters relating to signal 

dynamics that could be isolated with respect to the punch attribute. 

 

Existing methods of dynamic range measurement and the effects of dynamic range 

reduction were critically analysed. Additional measures were explored which incorporate 

multiband filtering and dynamic range correlation calculations of the audio under test. 
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• To investigate salient effects of frequency change on both perceived clarity and 
punch within a recording. 

 

This study continued work outlined in the previous key objective and measures were 

explored based on those reviews. 

 

From a quality measurement perspective, this work investigated the effect of transient 

change in relation to both clarity and punch perceived by the listener. This is an important 

step in establishing the key frequency bands of interest, what effects the magnitude of 

change in signal dynamic may have and the resulting perceptual effects upon overall 

quality, punch and clarity. 

 

•  To elicit parameters that could be useful in producing an objective model of punch. 
 

It is hypothesised that punch can be described as a short period of significant change in 

power in a piece of music or performance and that dynamic change in particular frequency 

bands may contribute to the perception of punch perceived by the listener. Consequently, 

the mapping of objectively measured attributes of the signal and their correlation with 

perceived punch was explored.  

 

In order to achieve these goals, further literature was reviewed and subjective listening test 

data collected. This work investigated the manipulation of temporal and frequency based 

parameters of stimuli whilst monitoring the effects upon perceived punch by expert 

listeners. From this work, salient parameters associated with the punch attribute are 

identified which may prove useful in the development of the objective model. 

•   To investigate methods that will enable salient features to be extracted. 
 

A musical signal is a complex collection of tonal and non-tonal components. In order to 

create a perceptually motivated objective model, methods of salient feature extraction were 

investigated. The aim of this work was to establish both a reliable and relatively low 

overhead method of signal decomposition and to investigate resulting features and 

parameters that are measureable following this decomposition. 
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•   To propose and validate an objective model for the prediction of the punch 
attribute. 

 

The final goal of this thesis is to present a possible model for the objective measurement of 

punch within a musical signal. The steps in achieving this were iterative and formed from 

the body of work presented.  

 

This thesis concludes with a perceptually motivated objective model for the prediction of 

the punch attribute in a two channel audio file. The model was validated using a number of 

varied stimuli and subjective listening tests. The results of this study can be useful in 

establishing a more rigorous ‘overall mix quality measure’ in addition to being utilised in 

real-time implementation as a useful mix or mastering metering tool. Measures with 

reference to dynamic range are also proposed, some of which isolate and take into account 

specific features of the audio that are related to the perception of punch, namely the 

transient and steady state components. In order to achieve that goal, literature within the 

fields of MIR, subjective and objective assessment and signal separation were reviewed. 

All of these subject areas are interlinked and thus this body of research will serve as a 

further reference in these areas. 
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1.4 Structure of the thesis document 
 

This thesis describes the research undertaken to develop objective measurement techniques 

that relate to perceived punch in audio signals. 

 

Chapter 2 aims to introduce the reader to the wider context of this research by outlining key 

terminologies and related subject areas. Audio semantics, MIR, Loudness, Signal 

Transients and Punch are all defined in this chapter. Since subjective and objective 

assessment of audio is an important part of this thesis, this area is also covered.  

 

In addition to defining the meaning of audio dynamics within this chapter, a review of 

current methodologies relating to both dynamic range and ‘signal dynamics’ is included 

along with a review of current low-level descriptors and their relevance to this thesis. 

 

Chapter 3 contains a discussion of the first experiment that was conducted to establish the 

correlation between perceived audio quality and dynamic range. This pilot test employed a 

controlled listening test whereby stimuli that had been manipulated with respect to overall 

dynamic range were presented to listeners. The results of the experiment are discussed and 

a new measure is proposed that incorporates multiband processing. 

 

Chapter 4 represents a wider study into the multiband approach first introduced in Chapter 

3. A controlled listening test is employed using a greater number of audio stimuli and a 

greater number of expert listeners. The experiment is described and the results are 

discussed. Finally, the limitations of the experiment are considered. 

 

Chapter 5 outlines an experiment that utilised the measure described in the earlier 

experiments to profile audio stimuli with reference to listener perception of punch and 

clarity. Temporal measurements were collected and correlations are discussed with respect 

to data collected in a controlled listening test. It was concluded that the transient content 
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and dynamic range de-correlation between frequency bands could relate to higher 

subjective scores being given by the listeners when asked to judge punch and clarity. 

 

Chapter 6 continues the work outlined in the previous chapter. A novel reverse elicitation 

test was employed to establish which components of an audio signal contribute greatly to 

the perception of punch. Expert listeners were asked to create audio samples that they 

perceived as having punch using a multi-band wave shaping process. The listeners then 

graded the generated punchy audio samples in a controlled listening test. Statistical analysis 

identified correlations between Mean Subject Scores and the parameters that created the 

punchy audio samples suggesting that an algorithm could be developed to objectively 

evaluate punch in produced music. 

 

Chapter 7 describes an experiment to investigate the elements of the audio deemed to be of 

relevance in the preceding experiments. Signal separation was explored which enabled the 

transient components of the stimuli to be isolated and therefore measured independently. 

The experiment is described and the results are discussed along with some new 

measurement proposals. Finally, the limitations of the experiment are considered. 

 

Chapter 8 defines a model for the objective measurement of punch. It details the elicitation 

of the model parameters through a controlled noise burst listening test. The tests are 

described and the results are discussed. A model is then proposed and differing output 

statistics are considered. 

 

Chapter 9 contains the details of a controlled listening test that evaluates the punch model 

proposed in the preceding chapter. The model output correlation to subjective listener 

scores is evaluated alongside other existing measurement models which include the Inter-

Band-Ratio measure (IBR) proposed in earlier chapters. The results of this experiment are 

discussed along with further work and limitations. 

 

The main conclusions of this work are summarised in Chapter 10 and future work is 

identified based on this work. 
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1.5 Novelty of this work 

 

The extensive literature review undertaken throughout the body of this work indicated that 

there is no formal definition of the punch attribute. Along with the proposal of four novel 

objective measurements, this work formalises the definition of punch in terms of low-level 

features extracted from the audio under test. 

 

The punch model (PM95) presented offers the ability to measure a perceptual parameter 

that was previously only able to be described subjectively by listeners. It shows a very 

strong correlation to the perceptual attribute.  

 

The Inter-Band-Ratio (IBR) measure presented shows a stronger correlation to audio 

quality affected by dynamic range compression than existing dynamic range measures. In 

addition, the statistical output of this measure is shown have a moderate correlation to the 

perception of punch as graded by a panel of expert listeners. 

 

Transient to Steady-state Ratio (TSR) and Transient to Steady-state Ratio+Residual 

(TSR+R) measurements are also presented. These measurements indicate the perceptual 

dynamics and masking within a piece of audio. 

 

The use of signal separation within the TSR, TSR+R and PM95 measures is, to the 

knowledge of the author, a method that has not been employed elsewhere in an audio 

measurement context. This process enables the extraction and measurement of individual 

components of interest within the audio signal.  
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Chapter 2 Background review and terminologies 
 

The scope and aims of this thesis were defined in Section 1.2 which included a definition of 

the main hypothesis. The focus of the work is on the development of an objective model for 

predicting the punch attribute of a musical signal. The aim of this chapter is to therefore 

familiarise the reader with the wider context of the research, with respect to both its 

applicability and terminologies.  

 

This thesis is related to the perceptual audio measurement of music, therefore, a definition 

of music followed by an outline of subjective and objective assessment schemes are 

provided in Sections 2.1, 2.2 and 2.3 respectively. Punch is an audio semantic so to 

familiarise the reader with both, audio semantics and the punch attribute are outlined in 

Sections 2.4 and 2.5. Audio semantics are used extensively in MIR therefore Section 2.6 

defines MIR and defines some low level descriptors that can be used for information 

retreival. Loudness, being an important metric in music characterisation and production, is 

included in its own Section 2.7. 

 

Audio dynamics, in the context of this thesis, is defined in Section 2.8 and this leads into 

Section 2.9 which explores the link between dynamics, compression and the perception of 

quality. Differing methods have been proposed to measure the dynamic range within a 

piece of music and these are defined in Section 2.10. The hypothesis of this thesis declares 

that the onset will play a key role in the perception of the punch attribute, therefore a 

definition of signal transients is outlined in Section 2.11 
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2.1 Research outline 
 

In the context of this thesis, music is a musical performance or programmed sequence 

captured by a recording process and stored on a medium for later listening and enjoyment. 

Ever since the very first recordings were made we have strived to improve the quality of the 

recording and playback process (Feaster, 2008). 

 

Over the decades, recording technology has improved (in particular in the digital domain) 

to such an extent that the signal path from capture to recording could be argued to be 

virtually transparent in terms of colouration of the original signal source. Of course, there 

are slight differences due to microphone responses, the performance of the pre-amplifier 

and the signal conversion, if applicable. These differences are either compensated for or 

exploited by the audio engineer in the production stages, to form what is termed ‘produced 

music’.   

 

In general, a completed piece of music will be the sum (i.e. mix) of the product of a number 

of discrete processes and audio stems resulting in a stereo or multichannel audio file. The 

stems are formed by the recorded sound sources and the complexity of the individual 

sources is what we hear and describe as timbre. Timbre is what distinguishes them as 

different types of voices or musical instruments. 

 

Therefore, music is a complex signal, carrying lots of information to the listener. It is made 

up of many different harmonic components of varying phases and magnitudes, in addition 

to both correlated and uncorrelated components such as noise. Informational elements of 

music include lyrics, pitch, rhythm and the sonic qualities of timbre and texture.   

 

Overall quality can therefore not be attributed to a single metric or measurement; in fact, 

many of the metrics relating to audio system performance measurement are not applicable 

to the measurement of ‘overall music sound quality’. Total Harmonic Distortion (THD), for 

example, is referenced to a pure tone at the system input. Whilst it is possible to perform 
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conventional ‘system’ measurements on produced music to describe aspects of the audio 

under test, these do not correlate very well with the overall perception of quality by the 

listener (Boley et al. 2010). It is therefore important to identify new measures that are 

linked perceptually with how we hear music. This could lead to the possibility of an overall 

music sound quality score being established.  

 

2.2 Subjective assessment of audio attributes 
 

The aim of this section is to outline current methodologies used in the assessment of audio 

attributes. A literature review of subjective audio assessment methodologies was necessary 

to establish the appropriate and best practise method of evaluation of the punch attribute 

described in this thesis. Objective assessment methods and existing measurements were 

also reviewed to establish whether attributes pertaining to punch had been investigated or 

relevant measures existed. This review also forms the basis for the development of new 

methods and measurement strategies proposed in this thesis. 

 

Formal listening tests are regarded as the most reliable method for audio quality assessment 

and a number of methodologies have been established (Bech & Zacharov. 2006). The 

proliferation of such tests have, in the most part, been in response to a need to evaluate the 

quality of low bit rate CODECS (Stoll & Kozamernik, 2000;  Marston & Mason, 1994) 

used in voice over internet, streaming technologies and the MP3 format for music 

distribution.  

 

Audio is often perceptually encoded, such as in the MP3 format. Consequently, typical 

objective measures such as Signal-to-Noise ratio (SNR) may give varying and wide ranging 

results depending on and throughout the signal. However, there may in all these cases be no 

noise audible due to masking. The solution to this problem is therefore to ask listeners to 

evaluate the audio through listening tests (Bech & Zacharov, 2006). 
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Three major recommendations with regard to the subjective assessment of audio quality 

have been established. These are standardised as: 

• ITU-R (1994) BS.1116, developed primarily to evaluate small impairments in audio 
quality, 

•  ITU-R (2003) BS.1534-1, commonly referred to as MUSHRA and developed to 
evaluate intermediate impairments in audio quality and  

• ITU-T (1990) P.800, primarily used to evaluate narrowband speech quality.  
 

Generally, these testing and measurement techniques are employed to establish audio 

quality in audio systems (such as CODECs) under test with respect to an original 

‘untreated’ reference signal. The resulting index is named the subjective difference grade 

(SDG) which attempts to categorize the subjective audio quality.  

 

Subjective listening tests are also of primary importance in establishing user preference for 

a particular auditory sensation. These grades or mean subject scores (MSS) can then be 

used to formulate objective models through analysis. For example, listeners could be asked 

to score a number of stimuli with reference to a particular sensation they experience such as 

‘warmth’. The mean subject scores are collated and correlation testing with low-level 

attributes extracted from the stimuli can be performed to attempt to establish a link to this 

sensation.  

 

Conducting listening tests for evaluating audio quality can be very time consuming and 

careful experimental design is paramount in the successful extraction of useable data. The 

testing is usually context dependent and it is often the case that listeners can differ in their 

ratings. These differences can correlate with both hearing threshold levels and age and 

therefore careful screening of subjects is important.  

 

Generally, listeners with near normal hearing thresholds show the smallest individual 

variations and the closest agreement with each other (Toole, 1985). However, these types of 

test can be subject to errors through various forms of biasing (Zielinski & Rumsey, 2008) 
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and careful selection of experimental procedure, use of appropriate scales and use of anchor 

points amongst other things should be considered. 

 

Subjective tests are by nature, based on listener or subject opinion. That said, they form an 

important role in establishing scales of response or user preference to a variety of auditory 

sensations and in turn the data can be used in the calibration of objective measurement 

models.  

 

An example of subjective testing would be to ask a number of listeners to score stimuli with 

reference to a particular sensation they experience such as ‘warmth’. The Mean Subject 

Scores (MSS) are collated and correlation testing with respect to low-level attributes 

extracted from the stimuli can attempt to establish any particular link to this sensation. 

Subjective listening tests have been utilised to establish user responses in all of the 

experiments outlined in this thesis. The associated test methodologies are explained in each 

chapter as appropriate.  

 

2.3 Objective assessment of audio attributes 

 

Objective assessment of audio can offer an alternative solution to subjective testing. For 

example, where a repeatable and automatic system of measurement and classification is 

required. 

 

It can be loosely catergorised by its application. For example, where automatic quality 

measurement is a requirement (CODEC or broadcast testing) or to allow automatic 

classification to take place e.g. MIR.  Often a number of feature measurements are 

combined to form an overall measure or score to quantify the stimuli under test. 

 

The key difference between objective measurement and its subjective counterpart is that, 

should the measure be repeated using the same set of stimuli, the same output would always 

result. In general, objective models or measures are based upon rule bases or scales that 

have been derived through extensive subjective testing. 



 

 

 25 

 

It is important to this research to establish if there are any current models or feature 

measurements that may predict the perception of punch within stimuli and perhaps offer 

avenues of research that may bear fruit with respect to this attribute. 

  

Objective audio tests can be catergorised in two ways, ‘single ended’ (non-intrusive) and 

‘double ended’ (intrusive) as described in ITU-T P.563 (2004). Outlines of these models are 

shown in Figure 1 - . The former category of test does not require a reference signal in 

order to output a quality score, however the model will need to incorporate an algorithmic 

rule base of some kind in order to offer valid results, either through heuristically derived 

means or by cumulative score methods. 

 

Double-ended approaches might typically be employed if one were to be measuring the 

degradation of a particular audio process, such as the measurement of CODEC quality. The 

test stimuli can be directly compared to its unprocessed version and differences can easily 

be highlighted. Use of a single ended approach in this case would give somewhat 

meaningless results unless the rule base of the model were calibrated to that of the known 

reference. 

 

 
Figure 1 - Measurement Model Differences (Intrusive – Top, Non-intrusive – Bottom) 

 

Non-intrusive objective measurement models are difficult to develop due to the large 

number of different stimuli that need to be coped with. Their internal coefficients, that are 
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used to predict the model output variables (MOVs), need to be carefully calibrated with 

respect to the low-level feature set that is being extracted. This is usually done through 

lengthy subjective testing and evaluation with the goal of the model being able to predict an 

overall quality score based on its input stimuli alone, without influence or bias. The Mean 

Output Score (MOS) is representative of this and combines a number of MOVs in its 

derivation. 

 

Whichever objective assessment method is utilised, a regression process is necessary to 

establish the accuracy of the objective model. Ideally, the output of the model should have a 

high correlation with the corresponding subjective experiments.  

 

In order to address the need for automatic quality measurement of audio, a number of 

objective measures have been proposed. These attempt to predict the Basic Audio Quality 

(BAQ) from extracted features of the audio under test. Many of the techniques have been 

standardized as ITU-R BS.1387-1 (1998), otherwise known as PEAQ (Perceptual 

Evaluation of Audio Quality). The basic concept of making objective measurements within 

this recommendation is intrusively based methods (i.e. double ended). 

  

 

2.3.1 ITU-Recommendation BS.1387-1 (1998) 

 

ITU-R. BS.1387-1 (1998), otherwise known as PEAQ (Perceptual Evaluation of Audio 

Quality), is an example of an objective model that evaluates the audio quality differences 

caused by the presence of noise and/or distortions. Although intrusive, it is included in this 

thesis due to it utilising an artificial auditory system (ear model) either through the use of a 

filter bank or Fast Fourier Transform (FFT) and to highlight some of the low-level features 

it utilises. PEAQ combines a number of different model variables (MOVs) in order to 

compute the objective difference grade (ODG). The ODG indicates the BAQ of the stimuli 

on a continuous scale from -4 (very annoying) to 0 (imperceptible). In addition, the model 

outputs a Distortion Index (DI). The DI is a quality indicator like the ODG except for its 

higher sensitivity towards very low signal qualities. 
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The basic version of PEAQ combines 11 of the MOV’s to calculate the ODG whilst the 

advanced version combines a further 5. These are shown in Table 1 and Table 2 

respectively. The MOVs shown with subscript 'A' are based upon the filterbank model 

whilst those shown with subscript 'B' are based on the FFT model.  

 

MOV Description 

WinModDiff1B Windowed modulation difference. 
All modulation difference 
calculations relate to roughness 
and the temporal envelopes are 
derived from the auditory filter 
outputs. 

AvgModDiff1B Average modulation difference 

AvgModDiff2B Averaged modulation difference 
with emphasis on introduced 
modulations and modulation 
changes where the reference 
contains little or no modulations 

RmsNoiseLoudB RMS value of the perceived noise 
loudness. 

BandwidthRefB Bandwidth of the reference signal 

BandwidthTestB Bandwidth of the output signal of 
the device under test 

Total NMRB Logarithm of the averaged total 
noise to mask ratio. 

RelDistFramesB Relative fraction of frames for 
which at least one frequency band 
contains a Significant noise 
component 

MFPDB Maximum of the probability of 
detection after low pass filtering 

ADBB Average distorted block, the 
logarithm of the ratio of the total 
distortion to the total number of 
severely distorted frames 

EHSB Harmonic structure of the error over 
time 

 
Table 1 - PEAQ Model Output Variables - Basic 
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MOV Description 

RmsNoiseLoudAsymA Loudness of the distortion 

RmsModDiffA Changes in modulation (related to 
roughness) 

AvgLinDistA Linear distortions (frequency 
response etc.) 

Segmental NMRB Noise-to-mask ratio 

EHSB Harmonic structure of the error over 
time 

 
Table 2 - PEAQ Model Output Variables - Advanced 

 

 

The inputs for the MOV calculations are derived from either an FFT or a filter bank output 

and are: 

• The excitation patterns for both test and reference signal. 

• The spectrally adapted excitation patterns for both test and Reference Signal. 

• The specific loudness patterns for both test and Reference Signal. 

• The modulation patterns for both test and Reference Signal. 

• The error signal calculated as the spectral difference between test and Reference 
Signal (only for the FFT-based ear model). 

 

A detailed breakdown of the model is presented by Thiede et al (2000) with each MOV 

calculation, model outline and validation explained. Looking at this model, it is apparent 

that its primary function is to quantify the overall perceptual noise in the form of the ODG 

output. The perceptual noise is primarily focused on that created by a device under test 

(DUT), for example an audio codec. The model is after all, based upon auditory perceptual 

thresholds relating to audio signal compression algorithms, mp3 for instance. Therefore, its 

use as a ‘measurement of perceived audio quality’ is limited somewhat to that application.  

 

The use of both FFT based and filterbank ear models allows modelling of the human 

auditory response thus making the model perceptually based. Objective measurements 
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based on the human auditory system have existed since 1979 (Schroeder et al., 1979) and 

more recently, albeit in a much simpler implementation in the current loudness model 

specified in ITU-R BS.1770-4 (2015) as detailed in Section 2.7 of this thesis. The choice of 

the use of either the FFT and/or filterbank approach in modelling the auditory response is 

largely down to the need for real time processing. 

 

The FFT size adopted in the PEAQ model utilises a 2048 window size with Hann 

windowing. This results in 1024 spectral bins and a temporal resolution of 21ms (at 48 

kHz). A frame analysis (STFT) approach is adopted with an overlap of 50%. 

 

This thesis discusses the development of non-intrusive models. 
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2.4 Audio semantics 
 

Semantic terms are often used to describe music, whether it’s a small section of music 

being listened to during production or listening to a released song in the car whilst driving 

down the road. Audio semantics attempt to categorise or give meaning to an audio stream. 

 

As listeners, we make conscious and unconscious interpretations of what we hear based on 

the recognition of individual instruments and voices within a complex mix. Harmonic 

change, chord progression, emotional inference and melody are also often distinguishable 

to the listener. Factors such as individual listening taste, mood or hearing differences will 

have an impact on how two listeners may describe a piece of music or the underlying 

perceptual effects of that music. 

 

Completed recordings may be deemed as ‘clear’, ‘defined’, ‘punchy’ or ‘highly polished’ 

by some listeners, on the other hand they may be referred to as ‘woolly’, ‘distorted’, ‘poorly 

balanced’ or ‘muddy’ by a different set of listeners.   

 

These semantic descriptors are of course ‘subjective’. However, they are frequently used 

and recognized within the audio industry and for the vast majority of engineers these 

descriptors are used to categorise the production of a piece of music even though many of 

them have no clear and defined perceptual relevance.  

 

Artists also use these terms to describe their requirements during the recording, mixing and 

mastering stages. Obviously, if both parties hear different things but describe them using 

the same semantic term, this may cause issues. Similarly, but perhaps not as critical to the 

production process, both parties may hear the same perceptual effect but describe it with a 

different semantic term.  
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The main issue in both cases is that the semantic descriptor would not allow for a consistent 

qualitative measure to be established unless it had been rigorously tested with respect to its 

perceptual effect. 

 

Therefore, the need to research and link semantic terms to underlying feature sets is 

paramount in aiding the development of both successful automatic transcription and 

classification tools along with perceptually motivated metering and analysis systems.  

 

Automatic feature extraction would enable higher-level musical semantic representation of 

the underlying musical content (Tzanetakis, 2012). Both the features extracted, and in part 

the resulting semantic terms may form an objective descriptor of the music under test. The 

task of the researcher is to determine the correlation between musical features or 

characteristics and the semantic term that is being explored. Subjective listening tests are 

often employed to do this. Using too many parameters not related to semantic term can 

cause the situation where relevant parameters are masked under the noise of other less 

relevant ones. Conversely, use of too few parameters may cause a lower level of 

correlation. 

 

The SAFE Project (Stables et al., 2015) is an example where higher-level parameters, such 

as plug-in control parameters are retrievable based on mappings to semantic descriptors. It 

represents a sort of top down approach to enable more intuitive control of the low-level 

parameters themselves. Users of the SAFE based plugins can save their parameter sets 

along with a semantic of their choice, e.g. ‘punchy kick’. This metadata is saved 

anonymously to a server along with a time-series matrix of audio features (Bullock, 2007), 

a static parameter space vector and a selection of optional metadata tags, such as age, 

location and production experience. The latter optional metadata tags were deemed to be 

statistically significant factors in the variance of semantic terminology between different 

user groups (Stables et al., 2015). Their work is motivated by the lack of statistically 

defined transferable semantic terms. 

 

A semantically motivated gestural compressor (Wilson et al., 2015) is an example whereby 

audio semantics can greatly reduce the overall complexity of an audio processor whilst at 
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the same time offering the same timbral transformations without the need for extensive 

training. 

 

Punch is the semantic word used to describe the perceptual attribute that forms the focus of 

this body of work. A detailed description will be provided in the following section. 

 

2.5 The punch attribute 
 

The previous section covering audio semantics described the use of a wide vocabulary of 

terms to describe musical attributes with them often having perceptual relevance; for 

example, warm, bright, soft or heavy.  As ‘punch’ can be classed a semantic term, it is 

important to outline the meaning within the context of this thesis. The following section 

will cover this.   

 

Work to establish verbal descriptions and dimensions for some of these perceptual 

attributes has been extensively explored in previously published papers (Grey, 1977; 

Stepanek, 2006; Lakatos, 2000). Early work by Freed (1990) and others, focusing on the 

perception of mallet hardness and noted that whilst the musical importance of the attack 

portion of a signal is well known, most studies have focused on steady state sounds. Freed 

concluded that the mean spectral centroid (see Equation 1) is a strong predictor for the 

mallet hardness. This is one such study whereby an objective measure is linked to a listener 

perceptual attribute. 

 

A common term often used by engineers and producers when describing a particular 

perceptual sensation found in produced music is called ‘punch’. Music is often 

characterised by listeners as being punchier yet the term is entirely subjective, in terms of 

both its meaning and subsequent auditory effect on the listener. Music of differing genre, 

tempo and playback level may all be perceived as having a different level of the punch 

attribute.  
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Indeed, punch could be described as a result of a different process depending on 

application, for example, a speaker manufacturer may utilise phase alignment in order to 

achieve a punchier output whilst a vocalist may add more vocal dynamics give a punchier 

performance.  

  

If a mix engineer needs to achieve a level of punch required by an artist or client can this be 

done easily without a known reference? A mastering engineer may want to achieve an 

equal level of perceived punch between two songs without affecting any other perceptual 

attributes, creating additional nuisance artefacts or annoyance.  

 

Pederson & Zacharov (2015) describe the semantic term punch as “Specifies whether the 

strokes on drums and bass are reproduced with clout, almost as if you can feel the blow”. 

Their study which seeks to define a sound wheel (i.e. lexicon) for the characterization of 

sound quality in loudspeakers, headphones, or other sound reproduction systems, places the 

semantic term ‘punch’ within the dynamics category.  

 

Goodwin & Avendano (2004) refer to punch as a legitimate perceptual attribute and stated 

that a sound designer may design an attribute that would control low-level parameters that 

would in turn, for example, control a perceptual modification algorithm. They state that “a 

punch attribute might be established in terms of a range of sensitivity parameters for a 

transient detector and a range of intensity parameters for the intensity modifier.” The level 

of punch is, in this case, mapped to the perceptual dimension set by the sound designer, 

which in turn might not match that expected by the listener.  

 

Zaunschirm et al. (2012) also refer to ‘punchiness’ as a perceptual attribute of a mix and 

their study conducted experiments measuring perceived transient suppression, increased 

punch and effects on quality. Whilst the authors of this paper collected subject scores which 

indicated differing listener preferences for the ‘punch’ attribute, the attribute itself was 

undefined within this study, therefore what the listeners were basing their scores on was 

unclear.  
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During the literature review, very few references on measuring the perceptual attribute 

‘punch’ and indeed its definition were found other than the texts outlined above. This is 

surprising given that, as stated earlier, music is often characterised by listeners as being 

punchy or not and it is a term that is often used in audio testing. 

 

Although the works cited above don’t measure punch objectively, they do imply that the 

perception of punch is altered by the modification of the transient. Zaunschirm et al. (2012) 

state that although the perception of punch was greater in all modified cases than the hidden 

references, there was also no significant difference between the use of different transient 

detection models.  

 

As stated in Section 1.2, it is the author’s hypothesis that punch can be described as a short 

period of significant change in power in a piece of music or performance. The magnitude of 

change is associated with and proportional to the signal dynamics that are present and thus, 

in essence, productions that do not possess any transient or dynamic attribute cannot 

possess punch. The onset of the transient present across octave bands affects the listener 

perception of punch, with the lowest octave attributing the most punch as the onset is 

decreased and vice-versa. Punch is therefore related to transient change and the energy 

density (summation across frequency bands) occurring at a moment in time and duration. 

 

Further to the above hypothesis, dynamic change in particular frequency bands may 

contribute to the perception of punch perceived by the listener and the overall average 

loudness level inherently affects this at that time (Moore, 2004). Thus, by mapping the 

perception of the punch attribute to objectively measured key attributes of the signal, one 

can produce a metric that could be utilised in music production and classification. 

 

Signal dynamics are interlinked with signal loudness and therefore the latter will have a 

bearing on the perception of punch provided signal dynamics are sufficient. The sensation 

of punch may additionally have a bearing on the perception of overall signal quality. From 

a hierarchical viewpoint, punch would therefore form a lower level feature of overall signal 

quality. In terms of signal dynamics, the presence of signal transients is paramount. 
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2.6 Music information retrieval 

 

Since the rapid expansion and ever growing availability of musical downloads, music 

retrieval and classification has become a very interesting and challenging topic (Casey et 

al.,  2008). MIR can be useful in the automatic classification of such things as genre and 

also more recently in the use of quality measurement of audio. 

 

MIR involves the analysis of low-level features, or characteristics of a piece of audio. If one 

considers genre classification, this can be thought of as a top layer semantic whereby its use 

is for categorizing and labeling selections of music (Scaringella et al.,  2006). This is 

achieved though the analysis and grouping of low-level features, or characteristics. Once 

these characteristics are extracted, different classification approaches can be used to train 

the classifiers. The assumption is that the same genres of music may exhibit some similarity 

between the groups of characteristics. On a very basic level, loudness may be used to 

characterise groups of music, in this case it can be considered a high-level feature. 

 

Transformations of features such as mean and standard deviation are often used to create 

further features. Distributions of features over longer window sizes are often employed 

where shorter analysis frames are not long enough to allow any meaningful data to be 

expressed. Longer window sizes are also able to signify temporal changes during the audio 

under test. 

 

Audio features, once extracted are in a sense being used to ‘describe’ a particular perceptual 

sensation, thus the utilisation of the term Low-Level-Descriptor (LLD).  

 

A large number of LLDs have been defined and can be referred to in ISO/IEC  MPEG-

7(2001), Tzanetakis and Cook (1999) and Peeters (2004). C libraries and Matlab scripts are 

available which offer integrated sets of functions dedicated to the extraction of associated 

musical low-level features. MIRToolbox is one such library for use within the MATLAB 

environment (Lartillot & Toiviainen, 2007). 
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Some of the musical features extracted have shown a degree of perceptual relevance to 

listener opinion. In order to familiarise the reader with their relevance herein, some basic 

low-level features and their relative descriptors are now reviewed.  

 

2.6.1 Basic low-level feature examples 

 

Spectral Centroid can be described as the balancing point or centre of mass of the 

frequency spectrum. Perceptually is has a strong connection with the brightness of a sound, 

conversely it can be used to indicate relative dullness (Grey & Gordon, 1978). It is 

calculated as the weighted mean of the frequencies present in the signal, determined using 

a Fourier transform, with their magnitudes as the weights 

 

It can be calculated using  

 

𝑺𝒑𝒆𝒄𝒕𝒓𝒂𝒍	𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅 = 	
𝒇 𝒏,𝒌 𝑿(𝒏,𝒌)𝑵/𝟐9𝟏

𝒌;𝟎
𝑿(𝒏,𝒌)𝑵/𝟐9𝟏

𝒌9𝟎
        ( 1 ) 

 

 

where 𝑋(𝑛, 𝑘) represents the magnitude of the kth frequency bin of the Fourier transform of 

the nth frame. 𝑓(𝑛, 𝑘) represents the centre frequency of that bin within the frame. 

 

Spectral rolloff is defined as the Nth percentile of the power spectral distribution, 

where N is usually 85% or 95%. The rolloff point is the frequency below which Nth 

percentile of the energy in the spectrum resides.  

 

𝑺𝒑𝒆𝒄𝒕𝒓𝒂𝒍	𝑹𝒐𝒍𝒍𝒐𝒇𝒇 = 	 𝑿 𝒏, 𝒌 𝟐 = 𝟎. 𝟗𝟓 𝑿 𝒏, 𝒌 𝟐𝐍/𝟐F𝟏
𝒌G𝟎 	𝒇𝒄

𝒌G𝟎     ( 2 ) 
 

where 𝑋(𝑛, 𝑘) represents the magnitude of the kth frequency bin of the Fourier transform of 

the nth frame, 𝑓𝑐 is the spectral roll-off frequency and 𝑁 is the total number of bins relating 

to the size of the FFT. 
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This measure can be used to distinguish between voiced and unvoiced speech due to 

unvoiced speech having a higher proportion of energy contained in the high-frequency 

range of the spectrum than voiced. (Scheirer & Slaney, 1997) 

 

 

Spectral Flux is a measure of the absolute difference in the frequency distribution of two 

successive time frames. More precisely, it is usually calculated as the Euclidean distance 

between the two spectra if phase deviation is taken into account. By normalising the 

spectra, the flux calculation isn’t dependent upon overall power.  

 

It is therefore a measure of the rate of local change in the spectrum. It can be utilised for the 

purposes of onset detection. 

 

𝑺𝒑𝒆𝒄𝒕𝒓𝒂𝒍	𝑭𝒍𝒖𝒙 = 𝑿(𝒏, 𝒌) − 𝑿(𝒏 − 𝟏, 𝒌) 	
𝑵
𝟐F𝟏
𝒌G𝟎       ( 3 ) 

 

where 𝑋(𝑛, 𝑘) represents the magnitude of the kth frequency bin of the Fourier transform of 

the nth frame, 𝑁 is the total number of bins relating to the size of the FFT. 

 

 

Spectral Skewness is a measure of the skewness in the magnitude frequency spectrum. A 

symmetrical distribution of components would result in a skewness value of 0. A positive 

skew would see a long tail in magnitude components to the right of the spectrum. 

Conversely, a negative skew would see a tail to the left.  The coefficient of skewness is the 

ratio of the skewness to the standard deviation raised to the third power. It can be used to 

indicate if the spectrum is skewed towards a particular range of values.  

 

𝑺𝒑𝒆𝒄𝒕𝒓𝒂𝒍𝑺𝒌𝒆𝒘𝒏𝒆𝒔𝒔 = 	 𝝁𝟑
𝝈𝟑

        ( 4 ) 

 

where 𝜇T = 	 𝑥(𝑛) − 𝑥 TV/W
XGY 	𝑓(𝑛) and 𝜎 = 	 [ X F[ \

]
\
^;_ `(X)

X
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𝑥 𝑛 𝑎𝑛𝑑		𝑥	are the sample and sample mean respectively and 𝑓 𝑛  is the centre frequency 

of the FFT bin	𝑛. 𝑁 are the total number of bins relating to the size of the FFT. 𝜎 is the 

standard deviation. 

 

Spectral Spread is a measure of the bandwidth of the spectrum. It also gives an indication 

of how distributed the spectrum is about its centroid value, hence the inclusion of the 

centroid in the measure. A high value of spectral spread would indicate a wide range of 

power distribution whilst a small value would indicate concentration about the centroid. 

Therefore, the measure could be utilised to distinguish between noise like and tonal sounds. 

 

𝑺𝒑𝒆𝒄𝒕𝒓𝒂𝒍	𝑺𝒑𝒓𝒆𝒂𝒅	 𝒏 = 	 (𝒇 𝒌 F𝑺𝑪 𝒏 )𝟐 𝑿(𝒏,𝒌)

𝑿(𝒏,𝒌)
𝑵
𝟐9𝟏
𝒌;𝟎

𝑵/𝟐F𝟏
𝒌G𝟎       ( 5 ) 

 

 

where 𝑋(𝑛, 𝑘) represents the magnitude of the kth frequency bin of the Fourier transform of 

the nth frame, 𝑁 is the total number of bins relating to the size of the FFT. 𝑆𝐶(𝑛) represents 

the spectral centroid of the nth frame and 𝑓(𝑘) is the centre frequency of the kth frequency 

bin. 

 

RMS is a measure of the root-mean-square of the energy content within a frame.  

 

𝑹𝑴𝑺(𝒏) = 	 𝟏
𝑵

𝑿(𝒏, 𝒌	)𝟐
𝑵
𝟐
𝒌GF𝐍/𝟐          ( 6 ) 

 

It can be roughly equated to the loudness of that frame although a study Moore et al. (2003) 

suggested that loudness can be modified without any change in RMS occurring. This low-

level feature is useful for performing segmentation since changes in loudness are important 

cues for new sound events. Intensity is approximated by the RMS level (Erling, 1996) and 

can be used for mood detection. RMS values can be extracted using a sub-band approach 

whereby each sub-band intensity is assessed individually or a sum of appropriate bands is 

made. In contrast, classification algorithms must be loudness invariant. 

 
 



 

 

 39 

Crest Factor (CF), is a measure that incorporates the RMS measure and is often given 

either as a ratio value or expressed in dB (Hartmann, 1998). It is used to give an indication 

of dynamic range within the section of audio being measured.  

 

𝑪𝑭 =
𝑿𝒑𝒆𝒂𝒌
𝑿𝒓𝒎𝒔

          ( 7 ) 

 

where 𝑿𝒑𝒆𝒂𝒌 is the peak amplitude detected in the sample frame and  𝑿𝒓𝒎𝒔 is the RMS 

level measured in the audio frame. 

 
Rhythm Strength is a measure of the lowest sub-band energy content within a frame. 

 

Drums and bass are typically the most important components used to represent rhythm 

within a musical piece. These components show their properties mainly in the lowest sub-

bands. Rhythm Strength is a measure proposed by Lu et al. (2006) that utilises the lowest 

sub-band to extract an amplitude envelope (using a half Hamming window) and a canny 

estimator (to detect the rhythm difference curve). From this, the average strength of the 

instrument onset is calculated.  An average strength is assumed due to the notion that the 

majority of the signal strength will be as a result of the lowest band. Whilst this may be the 

case, additional frequency bands of the signal must be considered if timbral aspects are of 

importance. Lu et al. (2006) do not state which lowest sub-band is utilised in their 

publication. 

 

2.6.2 Additional Low-Level Descriptors (LLDs) 
 

Audio stimuli exhibit both temporal and frequency domain characteristics. These 

characteristics can be measured in different ways and combined to offer an overall 

impression or quality score to the listener. They may also be used independently to describe 

an aspect of the stimuli under test, for example, loudness. 

 

A very good example of the use of low-level descriptors in a qualitative measurement 

application is the Sound Goodness System (Oriol et al, 2015). This real-time system 

complements the tuner functionality by evaluating the sound quality of a music performer 
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in real-time. It consists of a software tool that computes a score of how well single notes are 

played with respect to a collection of reference sounds. This system employs both a 

combination of audio feature extraction and machine learning based on an annotated 

training database.   

 

Lu et al. (2006) also demonstrated that mood could be predicted using a combination of 

underlying audio features, features investigated were signal intensity (in the context of this 

study this was effectively the signal loudness) and rhythmic features such as regularity, 

tempo and bass onset strength. They found that rhythmic features dominate on ‘exuberant’ 

groups of audio.   

 

In terms of quality measurement, a number of lower level descriptors are often combined to 

form an overall qualitative score as in the Sound Goodness System. The two examples 

previously outlined indicate the possibility of utilizing low-level features for effective 

perceptual model development. 

 

A large number of descriptors have been defined ISO/IEC (2001) MPEG-7, (Tzanetakis & 

Cook, 1999) and (Peeters, 2004) and their relevant semantics have, in some cases been 

investigated and defined. MIR (see Section 2.6) relies heavily in the extraction of these 

features. Whilst a number of the measures proposed in the MPEG-7 standard are not new, 

e.g. the Spectral Centroid, the standard contributes by collecting them together for common 

use in content analysis and subsequent description of underlying audio features.  
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Whilst outlining the context and terminology within this thesis, Spectral Centroid, Spectral 

Rolloff, Spectral Skew, Spectral Spread, RMS, Rhythm Strength and Loudness were defined, 

see Subsection 2.6.1. Part 4 of the ISO/IEC (2001) MPEG-7 standard outlines other low-

level descriptors (LLD), some of which are identical to those already mentioned. Measures 

relevant to this thesis can be catergorised as follows:  

• Basic: Instantaneous waveform and power values. 

• Basic spectral: Log-frequency power spectrum and spectral features (for e.g. 
spectral centroid, spectral spread, spectral flatness). 

• Signal parameters: Fundamental frequency and harmonicity of signals. 

• Temporal Timbral: Log attack time and temporal centroid. 

• Spectral Timbral: Spectral features in a linear frequency space. 
 

These LLDs are either given as a single value for a stimuli segment, as a series or evaluated 

statistically if taken as a group. The LLDs are now summarized along with a discussion as 

to their relevance to the perception of punch. 

 

2.6.2.1 AudioWaveform Descriptor 

 

This descriptor is utilised for display purposes and is based on temporally sampled scalar 

values of the stimuli in order to represent the waveform envelope. 

 

2.6.2.2 AudioPower Descriptor 
 

This is the temporally-smoothed instantaneous power of the stimuli. It can be used to give a 

summary overview of the signal under test. This metric although useful perhaps in onset 

detection, isn’t feasible for use in the differentiation of power formed across the spectra of 

the stimuli. A more appropriate measure for this could be that detailed in 2.6.2.4 
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2.6.2.3 Silence Descriptor 

 

Utilised to signify frames where silence has been detected, or no significant audio level is 

present. Silence or low-level signals could be relevant to the overall impression of audio 

dynamics. Without silence or low signal levels, RMS levels are higher and CF is reduced.  

 

2.6.2.4 AudioSpectrumEnvelope Descriptor 

 

The AudioSpectrumEnvelope descriptor contains the logarithmic spectrum of the audio 

stimuli. The log-frequency scaling of the output serves two purposes: a) It gives a compact 

view of the spectral components contained in the stimuli b) It mirrors the logarithmic 

response of the human ear. Since the envelope is a power spectrum, the sum of all the 

spectral coefficients is equal to the power in the windowed data. 

 

It is possible therefore, through the use of envelope extraction over time, to monitor the 

literal power in the audio stimuli with respect to the components being summed and the 

time over which it is being measured. In the case where sub-band filtering of the audio is 

taking place, it is possible to extract both the overall Signal Intensity, which is the sum of 

all the FFT bins and Sub-band Intensity Ratio, which is the ratio of power within each sub-

band. The latter being of use in determining where the majority of power lies within the 

frequency spectrum. 

 

2.6.2.5 AudioSpectrumCentroid Descriptor 

 

This descriptor is identical to Spectral Centroid detailed in Subsection 2.6.1. 

 

As discussed, this measure gives an indication of the centre of gravity within the spectral 

envelope. As such it can be utilised to indicate the ‘Brightness’ of a sound. In addition, the 

ISO/IEC (2001) MPEG-7 standard proposes instrument timbre definitions and the centroid 

value plays a role in this, for example, in categorising percussive type sounds.  As such, the 

centroid could be relevant where moments of punch are perceived. 
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2.6.2.6 AudioSpectrumSpread Descriptor 
 

This descriptor is identical to Spectral Spread detailed in Subsection 2.6.1. 

 

This descriptor indicates how spread the spectrum is about the centroid. In the case where 

no spread is evident, indicated by a low spectrum spread value, the stimuli might be 

classified as pure-tonal. In the case where a large spread of spectra is detected, this would 

indicate a noise like stimuli. Transients within stimuli, particularly those that are percussive 

in nature should be revealed by a large spectrum spread value, therefore, it may have a 

fundamental link to punch perception. 

 

2.6.2.7 AudioSpectrumFlatness Descriptor 
 

This measure reflects the flatness properties of the power spectrum. For a given stimuli 

frame, it consists of a series of values, each one expressing the deviation of the signal’s 

power spectrum from a flat shape.  

 

A flat spectrum shape can correspond to a noise or an impulse signal. Therefore, in a 

similar nature to the AudioSpectrumSpread descriptor, the measure may have use in 

indicating impulses or onset/offset points within an audio signal. A measure approaching 1 

is usually indicative of a spectrum that is similar to that associated with white noise.  

 

2.6.2.8 AudioFundamentalFrequency Descriptor 
 

As the name might suggest, this measure returns the fundamental frequency of the stimuli 

under test. It may be useful to detect a particular fundamental and observe its correlation 

with  perceived punch. However, an audio mix is likely to be a combination of instruments 

and consequently many harmonics would be present in a mix. The measure would therefore 

be irrelevant when used for this purpose unless signal separation takes place. 
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2.6.2.9 AudioHarmonicity Descriptor  

 

This measure gives an indication of whether or not the audio under test is harmonic in 

nature. It is a measure of the proportion of harmonic components in the power spectrum. 

An AHD equal to 1 would indicate a purely harmonic signal whilst noise like signals are 

shown as <=0.5. 

 

2.6.2.10 LogAttackTime Descriptor 

 

The log attack time (LAT) is defined as the time it takes to reach the maximum amplitude 

of a signal from a minimum threshold. It can be used to quantify the onset of instruments. 

Its use in a complex mix is somewhat limited unless some form of signal separation takes 

place initially. This could be a useful measure if combined with the power spectrum of the 

stimuli under test in order to determine power vs. time measurement, which could correlate 

with punch. 

 

2.6.2.11 TemporalCentroid Descriptor 
 

Unlike the LAT, the temporal centroid is a measure of the centre of gravity of the onset 

time itself. This can be see an equivalent to the spectral centroid measure in that it is the 

time where the energy of the signal is most concentrated. It is possible for example to have 

two signals with the same attack time during their onset phase, however, the shape of that 

transient may be very different. This measure may be of use to determine if onset shape has 

a bearing on punch perception. 

 

2.7 Loudness 
 

Loudness is a very good example of a perceptual attribute that has been researched and 

objective measures proposed which has resulted in a new standard being adopted within the 

broadcast industry and albeit, more slowly by the wider music production industry 

(Skovenborg & Nielsen, 2004). Although it could have been included as a subsection of 
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MIR after all, it can be thought of as a characteristic that can be extracted from audio and 

used for normalisation or categorisation, it has been given its own section as it can be 

considered as a high-level descriptor rather than a low-level one. 

 

The loudness of a sound, from a perceptual viewpoint, is a measure of the effect of the 

energy content of the audio signal on the ear. It is also dependent on the frequency content 

of the audio signal itself. For example, the perceived loudness of a pure tone, say 100Hz at 

40 decibels (dB) would be perceived to be quieter to a normal hearing person than a 1kHz 

tone at 40dB.  

 

A definition of the loudness of tones has been constructed through extensive research in 

classical psychoacoustics, traditionally using stationary signals. Stationary signals are ones 

that can be described by their frequency spectrum, such as noises and tone complexes and 

are not changing with respect to pitch or volume for example. Fletcher & Munson (1933) 

proposed a set of perceptual loudness contours showing the listener response to varying 

pure tones and playback levels with reference to a 1kHz reference. The experiment is often 

referred to as loudness magnitude estimation, and in this case the ‘loudness level’ of a 

sound is defined as 'the sound pressure level of a 1 kHz tone in a plane wave and frontal 

incident that is as loud as the sound; its unit is “phon”.’ (Zwicker & Fastl 1999) 

 

A re-determination of these curves was carried out by Robinson & Dadson (1956) which 

became the basis for the widely accepted ISO 226 (1987) standard. The curves were later 

updated to form ISO 226 (2003) standard, which is referred to generically as the ‘equal-

loudness contours’. These contours were revised again in 2007 to form the ANSI S3.4 

(2007) standard. This incorporates a significantly lower sensitivity for low-frequency 

signals than the 1987 version. Salomons & Janssen (2011) provide comparative plots of 

these contours. 

 

There are two approaches that can be adopted with respect to objective loudness 

measurement; these can be described as single-band and multi-band.  
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Single-band models of loudness can be constructed based on the contours outlined above. 

For example, if envelope detection is applied to the audio under test and frequency 

weighting is applied to the signal based on the equal loudness contour, a summation of 

overall perceived loudness can be achieved. As the loudness contours vary depending on 

playback level, a weighting curve IEC 60651(1979) is chosen e.g. A or B.  

 

The 𝐿hi  measure specified in ANSI (1994) is the equivalent continuous sound level, or 

time-average sound level. The 𝐿hi corresponds to an (energy domain) average over a time 

interval T during which the sound level is measured, in dBs. When used together with 

weighting functions IEC 60651(1979), the 𝐿hi measure is often considered as a measure of 

loudness. In essence, when used in this way, the measure is a single-band model. For 

example, 𝐿hi 𝐴 	would signify that an A-weighting function had been applied during the 

measurement. For long-term loudness measurement (perhaps of the entire length of the 

stimuli), T would be the same length as the stimuli under test. For short-term loudness 

measures, it would be made a fraction of the entire length of the stimuli.  

 

The 𝐿hi measure is defined as  

 

𝑳𝒆𝒒 𝑾 = 	𝟏𝟎𝒍𝒐𝒈𝟏𝟎
𝟏
𝑻

𝒙𝒘 𝒕 𝟐

𝒙𝒓𝒆𝒇 𝒕 𝟐
𝑻
𝟎         ( 8 ) 

 

Where 𝑥p  is a frequency-weighted 𝑤 	sound level at time 𝑡  and 𝑥sh`  is the reference 

signal.  

 

Whist the ISO 226 contours are widely accepted as being relevant to ‘pure tone’ 

measurement, extra consideration must be taken into account when measuring more 

complex audio sources, such as music. One major consideration is the frequency resolution 

of the ear, known as the ‘critical bandwidth’. 

 

For example, for two tones less than one critical bandwidth apart, partial masking will 

occur, thus a more intricate algorithm, which takes this into account, is required. This 

makes the loudness summation a more complex process.  
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To counter these effects, some loudness models implement a multi-band approach, the two 

key methods are detailed in ISO 532 (1975). This initial standard stems from two proposals 

and is made up of method A (Stevens, 1957) and method B (Zwicker, 1960). Both 

approaches attempt to approximate the response of the human ear by way of auditory filter 

banks in octave and critical bands respectively. The bands are often weighted and the 

overall loudness is calculated as an average over a period of time, either based on short or 

long term windows.  

 

Compared to the method by Stevens, the Zwicker method B, includes a spreading function 

closely related to the effect of simultaneous masking. Furthermore, frequency weightings 

for both diffuse and free sound fields are included. As far as implementation and uptake, 

this model has proved more popular (Scheuren, 2014) than Stevens. The Stevens method 

has been proposed to be replaced by the newer (Moore et al, 1997) method. 

 

The principal difference between this and the Zwicker method is the use of equivalent 

rectangular bands (ERB). Like critical bands, these widen on a logarithmic frequency scale 

towards high frequencies. In the lower frequencies, the bands are narrower and more 

numerous than critical bands.  The Moore et al. method also utilises equal-loudness 

contours that are closer to the newer 2003 ISO 226 contours than those used in the Zwicker 

model which are based on the 1987 approximations. 

 

It is likely that two new standards will emerge as detailed by the International Standards 

Organisation (2016): 

 

ISO 532-1 “Methods for calculating loudness – Part 1: Zwicker method” and 

ISO 532-2 “Methods for calculating loudness – Part 2: Moore/Glasberg method” 

 

These, more complex loudness summation approaches, although modelled on the human 

auditory response, don’t always perform better than single-band methods (Skovenborg & 

Neilson, 2004; Ferguson et al., 2004). 
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Unfortunately, across all broadcast platforms, due to the long term lack of standardisation 

of both loudness levels and loudness monitoring, material proliferated with widely varying 

loudness thus causing listeners to experience undesirable changes in loudness between 

different sources, TV or radio stations and also between different programme segments 

within the same channel of TV or radio. This problem was exacerbated by what has now 

become known as the ‘loudness wars’ (Loudness Wars, n.d.)  and led to movements such as 

TurnMeUp! (2009) to promote the opposite. 

  

Audio material that is deemed fit for release has usually gone through a mastering process. 

This process is two-fold, firstly to ensure that the material fulfils certain aesthetic 

requirements and secondly to meet the technical requirements of the broadcast or delivery 

format e.g. bit rate. Loudness, is an aesthetic choice that since the mid-1980’s appears to 

have dominated in music production. Due in part to the record labels need to be the loudest 

on radio but also driven by the demand of the artist for their material to match that of their 

peers. In addition, the paradigm of loudness maximisation could also be attributed to the 

fact if two identical tracks are played back at differing loudness levels, the louder of the two 

will be perceived as better. (Vickers, 2011). 

 

During loudness maximisation, material is compressed, resulting in a reduced peak to RMS 

level ratio and thus an overall reduction in dynamic range. This peak-level based processing 

makes material perceptually louder. This loudness maximizing is often achieved by 

aggressive application of dynamics compression, which may lead to undesirable artefacts, 

as well as technical problems (Katz, 2002; Neilsen & Lund, 2000). Whilst this continued 

decrease in dynamic range occurs, it is accepted amongst audio professionals that this is 

potentially detrimental to the overall audio quality of the music. By predicting perceived 

loudness of audio material, it is possible to measure and control the loudness of the 

delivered or broadcast product thus ensuring some uniformity. In addition, effective 

loudness measurement can help in music categorization and retrieval.   

 

Many proposals and studies relating to loudness are documented and some have been 

outlined earlier. An additional aspect of loudness measurement that must also be taken into 

account, particularly within the broadcast and production environments is the simplicity of 
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implementation which usually affords real-time operation. Single-band methods are 

implicitly simpler than their multi-band counterparts and provided that the resulting 

measure is greater or equal to 95% consistent in predicting subjective loudness levels it 

could be deemed viable for use over a more accurate multi-band model.  

 

One such standard of model of loudness measurement is detailed in recommendation ITU-

R BS.1770-4 (2015). This standard is now widely accepted as the loudness measure to be 

utilised for normalisation of broadcast audio.  

 

A key benefit of this proposed loudness model is its simplicity. The algorithm is made up 

entirely of basic signal processing blocks, these relate to simple weighting filters and 

energy summation. Due to this simplicity, the loudness model can easily be implemented in 

the time-domain and run in real-time.  

 

2.7.1 ITU-Recommendation BS.1770-4 (2015) 
 

The ITU-R BS.1770-4 (2015) recommendation has been widely accepted as the loudness 

measure to be utilised for normalisation of broadcast audio. EBU-R 128 (2014) stipulates 

its implementation including specification of maximum target levels, momentary and short-

term loudness measurement. In addition, further extensions to allow the effective 

measurement of consistency in loudness ranges are given. These extensions were originally 

proposed by Skovenborg & Lund (2008).  

 
 

Figure 2 - BS.1770 Loudness Model Outline 
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The algorithm is relatively simple in nature, based around the summing of energy on each 

audio channel, this can be represented as shown in Figure 2. Made up entirely of very basic 

signal processing blocks, the algorithm is based on a simple 𝐿hi  
measurement system which 

sees the stimuli pre-processed with a revised low-frequency-B weighting filter (RLB) 

(Soulodre, 2004) and a high shelving filter which aims to mimic the effects of the listeners 

head. Together these two filters are referred to collectively as a K-weighting filter. The low 

frequency enhancement (LFE) channel is neglected in the algorithm. 

 

This loudness model can easily be implemented in the time-domain. In addition, since the 

contributions of the individual channels are summed as loudness values, rather than at the 

signal level, the algorithm is more generic and robust due to independence of inter-channel 

phase or correlation.  

Another key benefit of the algorithm is its scalability. Since the processing applied to each 

channel is identical, it is very straightforward to implement a meter that can accommodate 

any number of channels. The LFE channel is an exception to this given the lack of accuracy 

in contouring at the frequencies involved. The output of the loudness model is given in 

Loudness Units (LU), whereby one LU is equal to one dB. Therefore, in simple terms the 

model output is a weighted dB measure. 
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2.7.1.1 K-Weighting and filtering. 
 

As previously mentioned the K-Filter is made up of a revised low-frequency-B weighting 

filter (RLB) (Soulodre, 2004) and a high shelving filter, which is incorporated to mimic the 

effects of the listeners’ head. The hi-shelving filter has a corner frequency of 1kHz and a 

boost of +4dB. 

 

Overall the pre-filtering stage has the effect of attenuating the low frequencies (<100Hz), 

preserving the frequencies between 100Hz and 1kHz and boosting those above 1kHhz by 

4dB. The frequency response of the filter is shown in Figure 3. 

 

 
 

Figure 3 – Loudness K-weighted Filter 
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The algorithm is designed to output a number of metrics outlined as follows: 

 

Program Loudness – This is how loud a program is on average. The values of loudness are 

expressed in either LKFS (Loudness K-weighted Full Scale) or LUFS (Loudness Unit Full 

Scale). These are simply alternative names for the unit as the K-weighting filter is always 

applied to the audio stimuli. Both measures are given relative to digital full scale (FS) and 

one unit of LUFS is equal to one dB. The measurement and results are the same.  

 

Recommended levels for broadcast are -23 LUFS however, AES Tech Doc (2015) 

recommends levels of no more than -16LUFS for streamed and networked file playback. 

This is somewhat of a relaxation to allow musical material to be played at a higher level 

than the broadcast standard. It is understood that the ‘mastered for iTunes’ level is also 

targeted at -16 LUFS rather than the lower -23LUFS  (Lund, 2011). 

 

Loudness Range (LRA) – detailed in EBU Tech Doc (2010) is a measure first proposed by 

Skovenborg (2009). It is calculated by measuring the ITU-R (2015) BS.1770-4 loudness 

within a 3 second time window and building a histogram of these values. The LRA is 

defined as the difference between the 10th percentile and the 95th percentile on the loudness 

histogram. The measure indicates loudness variation within a program and can indicate 

when compression is required, for example, when high LRA values are measured. 

Recommended LRA is -20LU (Loudness Units) for comfortable listening conditions. 

 

Maximum True Peak Level, often abbreviated to just True Peak, indicates the maximum 

value of the audio signal waveform. The true peak should not exceed the recommended 

level of -1dBTP, where dBTP indicates reference to digital full scale i.e. 0dBFS. The ITU-

R BS.1770-4 (2015) recommendation stipulates an over sampling rate of 4 times be 

adopted in order to allow for true peak measurement to take place. 
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2.7.1.2 Gating Mechanism 

 

A gating mechanism is utilised in the loudness model in order to ignore audio that falls 

below a given threshold. The addition of a gating mechanism helps to maintain ‘overall’ 

program loudness between stimuli, particularly if they contain fade ins/outs. A two-stage 

process is adopted to perform the gating mechanism. Firstly, progressive loudness frames 

are compared to an absolute threshold of -70LKFS and frames below this level are ignored. 

From these frames an intermediate loudness is calculated. This intermediate loudness forms 

the relative threshold, which is stipulated at -10LU below the intermediate value. Finally 

the program loudness is calculated by the sum of the loudness levels above the relative 

threshold level. 

 

There are 3 different loudness outputs given by the model, these are: 

 

Momentary (M) – This corresponds to each 400ms window loudness with no gating. 

Short-term (S) – This is equivalent to the above but uses a window size of 3 seconds. 

Integrated (I) – This is also known as program loudness and is the final result of the 

summing calculation after gating. 

 

The model has been implemented in broadcast loudness meters, (AC-R128, 2012; Vis-LM, 

2012), but another desirable use is in sound quality research. For example, where a set of 

stimuli might need to be "loudness equalised" so that other (subjective) factors can be 

investigated independently of loudness (Aarts, R.M, 1992). 
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2.8 Audio dynamics 

 

The term dynamic range is often quoted in dB when describing the performance of an audio 

system. The context of measurement is an important factor to consider when the 

interpretation of the dB value is evaluated. The context can either be categorised as that of a 

system or signal.  

 

In the context of a system the measurement is used to describe the maximum range that is 

permissible, before distortion takes place (clipping), measured from the noise floor to the 

peak level. The Audio Engineering Society specification document, AES 6id (2006), 

specifies this measurement as "20 times the logarithm of the ratio of the full-scale signal to 

the root-mean-square (RMS) of the noise floor in the presence of signal, expressed in dB 

FS". This value gives an indication of the true headroom of a system and shouldn’t be 

confused with SNR (Signal to Noise Ratio), which is often measured without the presence 

of a signal and can therefore give an inaccurate system measurement due to muting circuits.  

 

When we describe the signal itself rather than the system under test, the dynamic range can 

be given as the ratio of the full-scale level of the signal to its lowest level. Given that audio 

signals under test are generally varying in level, particularly during fade ins, fade outs, 

interludes etc., an average level formed by the RMS is generally taken of a section of audio 

under test as being representative of the ‘active’ passage of music. This average level is 

then used to compute the dynamic range in conjunction with the peak level measured 

during the same passage. 

 

This measure is referred as Crest Factor (CF), and is defined by equation 7 in Section 2.6 
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Audio dynamics, within the context of this work, therefore relate to the magnitude of 

change observed within the audio stimuli defined within a specific time frame. For 

example, considering Figure 4 – , shown below, the dynamic range measured at each time 

interval will vary due to the differing RMS levels measured at each interval despite the 

peak level being the same within each. 

 

 
Figure 4 – Audio Dynamics 

 

 

It is clear to see from this that the interval within which the dynamic range measurement is 

being taken has a direct impact on the measurement obtained. Therefore, careful selection 

of the interval dependent upon the source material is required in order to obtain meaningful 

results. A further point to highlight is that when taking this type of measurement, the signal 

RMS is being taken using the full audio spectrum of the signal. This may result in a 

‘dynamic range’ measurement that may not correspond with listener perception as a result 

of particular frequency bands being more perceptually relevant than others. Consider a 

piece of audio whereby heavy compression of its high band components has taken place. 

Whilst this could have an impact on the perceived tonality of the audio, the overall quality 

perception of the audio by the listener may be less affected due to the dominance in low-
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mid frequency energy being present. The hypothesis that dynamic range within frequency 

bands plays a role in listener perception is explored in the early experiments that are carried 

out within this thesis and forms evidence to support the author's definition of punch 

outlined earlier in Section  2.5. 

 

A perceptual metric related to Crest Factor is the peak to loudness ratio or loudness crest 

factor defined by the peak amplitude of the signal divided by the loudness measured by 

ITU-R BS.1770-4 (2015). This measure can be used to quantify the level of audio dynamics 

present in the signal being measured. It has also been shown to correlate to integrative 

loudness models (Equation 8) due to decreases in peak to RMS levels that usually take 

place during audio compression processing.  

 

A number of other proposals for the measurement of signal dynamics have been published 

(Skovenborg, 2014) and their link to perceptual attributes have been explored. (De Man et 

al.,  2014;  Wilson & Fazenda, 2013)  

 

2.9 Compression, dynamics and audio quality 

 

The aim of this section is to describe the inter relationship between signal dynamics, 

compression and quality perception. Hierarchically, overall quality perception could be 

deemed higher in level than the underlying low-level parameters that are actually being 

judged by the listeners, such as punch. It is therefore good practise to begin to study the 

effect of compression on quality in the first instance. Section 2.8 introduced the reader to 

the context of audio dynamics and highlighted one form of objective measurement that can 

be employed to measure it called Crest Factor.  

 

Further methodologies adopted in the measurement of underlying audio dynamics are 

reviewed and presented in Section 2.10 and their methods are contrasted. Changes of 

listener perception of audio quality relating to the level of audio dynamics contained within 

a piece of music are also explored. This section, in addition to the previous literature 

review, formed the basis for the experimental work that follows in the later chapters.  
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Within the context of this work, compression refers to the reduction in dynamic range of a 

signal rather than the reduction in bit rate, commonly found in the encoding of low bit rate 

audio. Dynamic Range Compression (DRC) is achieved either through the manual or 

automated ‘riding’ of faders or automatically through the use of compressors or limiters. 

 

DRC is employed in music production for both practical and aesthetic reasons (Katz, 2002). 

The effects of DRC are to reduce the peak to RMS ratios of the audio signal and this could 

be for artistic effect such as to automatically control a vocal level during a performance or 

to de-emphasise attack transients of an instrument.  

 

Limiting is often used in the music mastering process. This specific form of DRC produces 

a relatively consistent output level by utilising high compression ratios for sounds above 

the compression threshold. For an entire audio file, an overall increase in RMS level, as 

result of the limiting process, can result in a perceptual loudness increase in that file. That 

said, an interesting result was observed in a study by Moore et al. (2003) which 

demonstrated that even when the RMS level is kept constant, a change in loudness 

perception can be achieved depending on the degree of dynamics compression applied. This 

could be explained by other salient features of the audio being modified as a result of the 

compression being applied, for example, signal brightness increase may occur as a 

byproduct of loudness normalisation. 

 

 “Louder is better” (Vickers, 2011), and other works (Maempel & Gawlick, 2009) suggest 

that listeners prefer increased loudness. However, underlying perceptual effects enhanced 

or created by the processing involved, may be influential upon listener preference. In the 

latter study, high bass amplitude was cited as a cause. Hjortkjaer & Walther-Hansen (2014) 

found no evidence for preference of less-compressed music and with regards to ‘perceptual’ 

attributes, they failed to find differences in perceived ‘depth’ between original and more 

compressed audio.  

 

Wilson & Fazenda (2013) found that listeners could identify reduced dynamic range as a 

determinant of reduced quality. In their study, CF was utilised as a measure of dynamic 
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range. They also identify that distortions, tempo, spectral features and emotional 

predictions show correlation with perceived audio quality. Some of these underlying 

features are clearly modified through the application of DRC. 

 

Croghan et al (2012) using the genres of ‘rock’ and ‘classical’ music found that listeners 

preferred stimuli where DRC had been applied moderately. In contrast to the ‘louder is 

better’ paradigm, they state in their study that “louder is better… to a point” 

 

It’s important when reviewing all of these studies to note that whilst the notion of dynamic 

range is often cited and used in audio experiments, its measurement is still somewhat 

poorly defined due to the measure itself having little standardisation. In the case of Crest 

Factor, values resulting from this calculation are largely dependent on the timeframe in 

which they are being measured as highlighted in Section 2.8. This timeframe, sometimes 

referred to as either micro or macro, also has no formal standardisation.  

 

2.10 Audio dynamics measurement methods 

 

There have been a number of other proposals that attempt to measure the level of audio 

dynamics within a signal and associated perceptual artefacts.  The following presents an 

overview of the approaches adopted. 

 

Loudness Range, EBU Tech Doc (2010), outlined in Subsection 2.7.1.1 can be considered a 

measurement of ‘loudness dynamics’ albeit in an integrative sense, for example if any short 

term ‘spikes’ of dynamic activity occur in the signal, these are ignored by the algorithm.  

 

The Pleasurize Music Foundation (Pleasurize, n.d) released the TT-Dynamics meter that 

calculates a different form of dynamic range. This algorithm calculates the ratio of the peak 

to the RMS, but limits the RMS to those values that occur in the top 20% of the histogram. 

The authors argue that only using the top 20% allows them to compare a variety of program 

types (genres of music, speech, etc.). 
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Ljudtekniska (2013), proposed an all-pass filtered crest factor method in his  ‘MasVis’ 

analysis tool to measure or visualise audio dynamics. The all-passed crest factor measure is 

based on applying a set of all-pass filters in parallel, and then measuring the CF of each 

filtered version of the signal. Details relating to this algorithm are not available, however, 

from studying the manual it appears the author is ‘estimating’ the crest factor of the audio 

based on peaks that are measured across the all-pass filter outputs.  For example, if there is 

a filter output that is particularly larger than the rest, it is assumed that this may be an 

indicator of the true dynamic before compression on the audio took place. The work 

suggests that for natural, unprocessed audio, crest factor may increase a little as loudness 

increases (assuming the audio is richer in spectrum and the number of sound sources 

increases). Conversely, if the audio is subjected to heavy limiting the crest factor will 

decrease as loudness is increased.  

 

As loudness is increased towards the limiting threshold, the crest factors across the 

frequency bands should also normalise and begin to correlate towards each other. 

 

Vickers (2001) proposed a measurement he called dynamic spread, which is a measure of 

the spread of time varying loudness levels. It doesn’t rely on a peak measurement but rather 

the p-norm of the signal. Vickers recommends p=1, such that the dynamic spread is just the 

mean absolute deviation of the signal. If p=2, a measure corresponding to standard 

deviation of the loudness levels is achieved.  

 

Wilson & Fazenda (2013) utilised a modified probability mass function (PMF) with zero 

mean based on the assumption that as audio is compressed, more extreme amplitude levels 

assume higher probability. This measurement was utilised to provide a feature associated 

with audible distortion.  Hard-limiting and DRC have been studied and linked to listener 

preference (Croghan et al, 2012) and since these are encompassed by PMF the measure is 

relevant in this work. They refer to this feature as ‘Gauss’ and whilst not being a direct 

measure of signal dynamics they utilise it to describe loudness, dynamic range and the 

related audible distortions in their study.  
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Deruty & Tardieu (2014) introduced a global descriptor called High Level Sample Density 

(HLSD). The measure indicates the proportion of samples that are present in the entire 

audio file that are above a -1dB Full Scale (dBFS) after normalisation. They show that 

HLSD is a good measure of the amount of brickwall limiting that has been applied to the 

audio content. Their study doesn’t attempt to correlate this measure with listener perception 

of dynamic content or quality. Instead it uses the measure to timeline and predict what type 

of processing was applied via a studio practice timeline which groups technical innovation 

and studio practices between the 1960s-1997.  

 

Tollerton (2008) proposed an algorithm he calls pfpf. This algorithm calculates ITU-R 

BS.1770-4 (2015) loudness on 3 different time scales (10ms, 200ms, 3sec) and defines 

short, medium, and long-term dynamic range respectively as the range from the 50th 

percentile to the 97.7th percentile. 

 

An experimental descriptor called ‘Density’ was proposed by Skovenborg & Lund (2008). 

It measured the variation of loudness on a microscopic timescale. Microscopic means 

window sizes that are smaller than those typically utilised for momentary loudness 

measurement in ITU-R BS.1770-4 (2015). The use of a smaller window size results in the 

output of the model tracking the more local variations of the signal known as 

microdynamics (Katz, 2002).  

 

Work on the ‘Density’ descriptor led to results being published in  ‘Measures Of 

Microdynamics’ by Skovenborg (2014) and the measurement was termed Loudness 

Dynamic Range (LDR). In this study, LDR, based on the maximum difference between a 

“fast” and a “slow” loudness level, had the strongest correlation with the listener perceived 

dynamics of stimuli consisting of music and speech when compared to other types of 

measure such Peak-to-loudness ratio (PLR) and CF. 

 

PLR is defined by the ratio of the true-peak of the signal and its loudness. This is a very 

similar measure to CF however the latter utilises the RMS of the signal in its denominator. 

Skovenborg (2014) indicated that whilst the PLR measure could be used to indicate 
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microdynamics within a signal, its robustness wasn't reliable as a result of the 'peak' of the 

signal not being typical amongst certain types of genre.  

 

The issue with estimation of dynamic range of musical signals is that the results are largely 

dependent upon the window sizes utilised during measurement. This was highlighted by 

both Skovenborg (2014) and by Boley et al (2010) in their evaluation of algorithms for 

comparing and contrasting dynamic range.  

 

In addition, whilst it may be immediately intuitive to retain as much dynamic range in 

music as possible, the listening environment must also be considered to ensure that the 

listener experience isn’t compromised. For example, airplane cabin noise may require the 

dynamic range of material to be reduced.   

 

2.11 Signal transients 
 

Music can be considered to be a collection of complex tones where a complex tone 

consisting of a number of different harmonic components with varying magnitudes and 

phases. Each tone component consists of both steady state and transient parts. Previous 

work has identified that the transient portion of a complex tone contains a great deal of 

information with respect to perceptual attributes of the source (Grey, 1977; Rasch & Rasch, 

1981).  

 

Bello et al (2005) describe transients as short-time intervals within which the signal evolves 

quickly and unpredictably. These short intervals are often associated with the percussive 

elements of a musical piece and/or other aspects of the music that possess similar 

characteristics. They tend to show up on a spectrogram as vertically aligned points of 

energy distributed along the frequency spectrum. Percussive sounds tend to have a 

concentration of this energy during the attack phase of the wave. Their excellent tutorial 

describes different techniques for onset detection in signals characterised by either changes 

in amplitude or phase of frequency components or a combination of both. 
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The transient part of the signal can be loosely defined as the time interval in which the 

signal is evolving into its steady state, transients can be present in both attack or release 

phases of a signal as shown in Figure 5. Detection of transients can be useful in such 

applications as note detection, signal enhancement, dynamic range control and musical 

transcription (Collins, 2005; Avendano & Goodwin, 2004; Walsh et al., 2011; Wang & 

Tan, 2008).  

 

 

 
Figure 5 - Audio Transient 

 

 

The onset of a sound is the time that marks the beginning of the attack and is the earliest 

time at which the transient can be detected. Vos & Rasch (1981) define the perceptual onset 

time as the time a stimulus is first perceived and it is generally different to the physical 

onset. Gordon (1987) made this observation albeit with slightly differing results. 

 

Almost all genres of music have significant transient content throughout as a result of 

differing tonal and noise onsets. Various methods of transient detection can be employed 

with varying degrees of success depending on genre and application. Some are 

psychoacoustic in nature (Collins, 2005; Klapuri, 1999) and incorporate sub-band 

approaches to mimic human hearing and detection mechanisms (Zaunschirm et al., 2012). 
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Modification of the transient portion of a sound source has been shown to modify the 

perception of the source by the listener (Collins, 2005; Goodwin & Avendano, 2004). 

Zaunschirm et al (2012) concluded that whilst the modification of transient had an effect on 

the perceptual attributes under test, the method of transient detection didn’t have a 

significant effect. 

 

Whilst the majority of literature tends to focus on the transient nature of an onset, it’s 

important to highlight that the offset of a signal is also transient in nature and therefore will 

possess similar characteristics to the onsets. The usefulness of offset detection, whilst often 

ignored, is that of note length annotation and detection. This would prove useful to 

determine the integrated loudness of burst of audio if signal duration were short.  

 

2.12 Summary 

 

In summary of this chapter, increases in loudness seen over the last decade has inevitably 

caused a reduction in dynamic range of produced music. Has our perception of both the 

subjective quality of the audio become somewhat distorted with regards to an acceptance of 

a louder product vs. a reduced dynamic range? There are numerous factors (Ronan et al., 

2014) which suggest that the ‘louder is better’ paradigm may be more to do with other 

perceptually salient features being modified by the DRC rather than the headroom loss 

itself. 

 

With this in mind and the recent move towards the use of loudness normalisation, it is 

important to continue to measure the other perceptually salient features both pre and post 

the loudness normalisation process in order to maintain both consistency and perceived 

quality. 

 

As discussed, development of the measurement of audio relating to loudness has been 

undertaken however, work on measures based on dynamic range and other underlying low-

level features and their correlation with the perception of listener quality needs to be 

extended.  Audio dynamics have no clear perceptual counterpart and no standardised way 
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of measurement. This lack of definition leads to partially wrong or even contradictory 

conclusions in several publications.  

 

It is the author’s belief that whilst loudness and signal dynamics are inextricably linked, the 

latter should be considered as a separate measure when attempting to quantify both music 

quality and as a lower level feature contributing to punch.  

 

In Section 1.2, a hypothesis that punch can be described as a short period of significant 

change in power in a piece of music or performance was proposed. The magnitude of 

change could be associated with and proportional to signal dynamics that are present and 

thus, productions that do not possess any transient or dynamic attribute cannot possess 

punch. Thus, punch is both related to transient change and the energy density at a moment 

in time and duration. These changes can be as a result of any sound source present in the 

signal, not just the drums and bass. 

 

Further to the above, dynamic change in particular frequency bands may contribute to the 

perception of punch perceived by the listener and thus, an effect will be apparent upon both 

the overall sound quality perception and level of punch. The literature review found no 

measures that incorporated such multi-band measurements except for the all-passed crest 

factor (Ljudtekniska , 2013). 

 

The current ITU-R BS.1770-4 (2015) loudness algorithm is based on an integrative 

approach thus can’t really be utilised to quantify attributes such as punch, as the key 

components relating to this perceptual measure exist in the ‘microdynamic’ scale of the 

signal.  

 

Fine time-scale approaches have been developed to measure microdynamics (Skovenborg, 

2014; Fenton et al., 2011) however these approaches still consider the signal as whole when 

calculating peak and average levels loudness levels at different resolutions. By whole, the 

complete complex mix is being considered during measurement. 

 



 

 

 65 

This work is motivated by a need to separate the signal under test into what is considered to 

be steady state, transient and residual components, allowing individual analysis of each. By 

utilising signal separation the true dynamics of the signal can be analysed whilst 

considering the relationship between each on signal perception. What is being considering 

here is the ‘transientness’ of the signal where the peaks in the signal are solely related to the 

transient component and nothing else. This has advantages over an integrated approach 

whereby ‘microdynamics’ within a signal can be considered independently of overall 

loudness or summed peak level.  

 

Automatic loudness normalisation by broadcasters may hopefully have an impact on 

lowering the proliferation of low dynamic range material being offered to the consumer 

however, there still appears to be a reluctance to embrace this in music production; the 

trend being that loudness level meters are simply being used to match loudness to ‘current’ 

released audio rather than to the proposed broadcast levels. This trend contradicts the 

artistic desire of releasing music that possesses both dynamic range and spaciousness, all of 

which can be somewhat destroyed through ‘target’ driven mastering and to some degree 

mixing.  

 

With this in mind, a metering tool that would aid the mixing and mastering engineer to 

gauge this perceptual parameter would help them to meet artist preference rather than rely 

on loudness alone. Indeed, further metering tools that are tuned to specific parameters 

within the complex musical signal may be of benefit to engineers and consumers alike.  

 

A number of experiments were conducted as part of this work and these are detailed in the 

chapters that follow. The experiments are presented in chronological order and include 

testing of key metrics previously outlined that show promise in mapping to the punch 

parameter.  

 

 

 

  



 

 

 66 

Chapter 3 Objective measurement of music quality using 
multiband dynamic range analysis 

 

The aim of this chapter is to investigate the perceptual effects of wide band dynamic range 

compression with respect to listener perceived quality. The purpose of the experiment was 

to investigate and contrast the results with a multi-band based measurement.  

 

A listening test (Fenton et al, 2009) was designed to measure the subjective preference of 

listeners to changes in dynamic range caused by the maximisation of an audio signal. The 

objective was to extract the degree of perceptual degradation that a signal maximisation 

process could cause and investigate correlation with the standard measurement of CF. In 

addition, a new measure called Inter-Band Ratio (IBR) was introduced and investigated 

which appears to show a closer correlation to listener quality perception than the wide band 

CF measure. 

 

The experiment involved playing a selection of audio stimuli to the subjects and allowing 

them to compare them against an uncompressed reference stimulus. Each subject was asked 

to compare each stimulus to the reference and grade its quality on a seven-point sliding 

scale.  

 

The reference stimulus was unprocessed whilst the audio stimuli consisted of 5 versions of 

each, with progressively reduced dynamic range (-6dB steps). The dynamic range reduction 

was achieved through the use of an L2-Maximisation plugin (Waves, 2008) with ProTools. 

The only control utilised in the maximization process was the threshold control, which was 

reduced in 6dB steps. The attack and release controls are controlled automatically within 

the plugin using a combination of look ahead compression and automatic release control 

depending on the source material.  

 

One effect that occurs when the dynamic range of a musical piece is reduced is that its 

overall perceptual loudness is increased. This is due to the RMS level of the audio 

becoming normalised towards the overall peak level of the signal and as either the make-up 

gain or playback level is increased, a perceived loudness increase is heard. If the correlation 
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between the peak and RMS levels were calculated, this correlation would approach a value 

of 1 if the peak and RMS levels evolved together. (Deruty & Tardieu, 2014). 

  

In order to avoid biasing effects caused by differences in loudness level each excerpt had its 

loudness normalised to that of the reference sample. Measurements were taken using a 

BS.1170 loudness meter and the overall gain of each stimulus was reduced until it equaled 

that of the reference signal. This process enabled the subjects to give scores based on the 

perception of quality associated with the reduction of dynamic range alone and not the 

loudness increase. Arguably, this supports the notion that the increase in quality afforded by 

a loudness increase can be obtained simply by turning the volume control up and hence the 

need for DRC is reduced.  

 

The subjects were given a training phase prior to the experiments taking place, this was to 

allow subjects to familiarise themselves with the test setup and the audio excerpts they were 

expected to listen to. This training process helps to reduce the contraction biasing that may 

occur during the testing process (Zielinski & Rumsey, 2008). 

 

The subject scores obtained from the tests were combined resulting in a Mean Subject 

Score (MSS) for each excerpt. The tests were performed using MATLAB and based upon 

an existing script developed for performing the ITU-R (2003) BS.1534-1 MUSHRA based 

tests (Vincent, 2005).  

 

3.1 Test methodology  

 

Whilst the experiment was based upon the MUSHRA recommendation it was necessary to 

modify the test to facilitate the nature of the test being performed. The scales normally 

adopted in MUSHRA tests are specified as the five interval Continuous Quality Scale 

(CQS). This scale has intervals described from top to bottom as Excellent, Good, Fair, Poor 

and Bad. The sliders used by the user on these scales have an internal numerical 

representation in the range 0-100, where 0 corresponds with the bottom of the scale (Bad) 

and 100 with the top of the scale (Excellent).  
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The MUSHRA specification, ITU-R (2003) BS.1534-1, states that at least one of the 

excerpts under test should be a hidden reference, therefore its score should correspond to 

100 when under test. This method, in conjunction with other hidden anchors is an attempt 

to gain consistent grading between subjects.  

 

Whilst this scaling and numerical representation allows for the audio excerpts under test to 

be compared to the reference, it does not allow the subject to give a subjective quality score 

greater than that of the reference.  

 

To accommodate this, the MUSHRA test was modified to incorporate a seven-interval scale 

to allow subjective scores to exceed that of the unprocessed reference. The interface is 

shown in Figure 6. In addition, the internal numerical representation range was increased to 

accommodate the larger seven-point scale, 0-140. ITU-R BS.1284-1 (2003) and ITU-T. 

P800 (1990) specifies a seven point scale called the Comparison Category Rating (CCR)  

ITU-T and this was used here. It has the advantage of allowing processing to be rated that 

either degrades or improves the quality. A score of 0 given by the subject would correspond 

to the bottom of the scale (Much Worse) and a score of 140 to the top of the scale (Much 

Better). A score of 70 would indicate that the listener though the sample was the same as 

the reference.  

 

 
Figure 6  - Modified MUSHRA interface 
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The length of the test was given consideration. The test methodology chosen enabled a 

large number (up to 15) test sounds to be evaluated alongside a single reference signal, thus 

keeping the test length to a minimum and ensuring fatigue of the listeners was not a biasing 

factor. Further to this, listeners utilise short-term memory whilst assessing music in 

qualitative tests (Koelsch & Siebel, 2005), therefore stimuli were limited to 7 seconds in 

length. 

 

The audio excerpts were played back in random order during each experiment, thus every 

experiment can be classed as double blind with multiple stimulus, hidden reference and 

anchor.  

3.1.1 Biasing 
 

During any listening experiment, the effects of biasing must be taken into account in order 

to minimise their effects (Zielinski & Rumsey, 2008). The test interface was modified so 

that it did not contain any horizontal bars to prevent any interface bias effects. However, the 

interval scale remained to help the listener understand the grading process. As mentioned 

previously, the training process helps to reduce the contraction biasing that may occur 

during the testing process. In addition, the loudness of each excerpt was normalized to play 

back at a measured level of 72dB(A) so as to prevent this from being a factor contributing 

to the scores given by each subject.  

 

3.1.2 Stimuli 
 

After much consideration, three different audio stimuli were chosen, these were:  

 

Excerpt 1 – “Acoustic Guitar” by Angus Barclay 

Excerpt 2 – “Pop Music” by Eddie Rabbitt.  

Excerpt 3 – “Dreadlock Holiday” by 10cc.  

 

The stimuli were 16bit, 44.1kHz, stereo WAV format.  
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The reason for this choice of stimuli was to allow for a varied test set, thus testing the 

perception of the dynamic range across a number of different types of music, including 

transient and harmonically rich material.  

 

The acoustic guitar was recorded by the author using an Audio Technica AT4033 large 

diaphragm condenser microphone and a Rode NT2 (Mk1) large diaphragm condenser 

microphone. No mastering (final bus compression) of the recordings took place. Pre-amps 

utilised for the recordings were Calrec (M-Series) PQ1789s.  

 

The Eddie Rabbitt stimulus was obtained from the EBU SQAM test CD (SQAM, 2005). As 

such it can be considered a standard stimulus for subjective testing. In the context of this 

study it is well suited as it contains a main vocal line, is well balanced and has not been 

subjected to any excessive DRC.  

 

Dreadlock Holiday by 10cc was chosen as it represents a produced piece of music that 

hasn’t been subjected to what could be called over compression. The song, released in July 

1978, could be considered an album that avoided the forthcoming ‘loudness wars’ that 

commenced around the mid-late 1980’s and is perhaps one that would be familiar to most 

experienced listeners.   

 

The tests took place in a critical listening room in the University of Huddersfield utilising a 

PC with a Realtek HD sound card. All the excerpts were auditioned on Sennheiser HD650 

headphones and therefore biasing effects caused by both room acoustics and background 

noise were eliminated.  
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3.1.3 Test subjects 
 

A total of 10 test subjects participated in the experiment. All were experienced listeners. 

These were selected from University staff members, engineers and music producers, and 

doctoral and final year students.  

 

The listeners were pre-screened to ensure that they were suitable to take part in such a test. 

The pre-screening involved the subjects taking part in both a hearing test and listening 

experiment to determine that they were a) sound of hearing and b) could detect impairments 

in audio excerpts that had been subjected to processing. 

 

Each subject was given a training phase in which they could play all the samples selected, 

which included the reference and anchors. This enabled the listeners to familiarise 

themselves with the audio being presented. 

 

Each subject, following the training phase, was given an explanation of the experiment and 

was told to listen to the excerpts and grade each with respect to the reference in terms of 

‘overall quality’. A hand out was also given to each subject also detailing the test and 

guidelines. 
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3.2 Discussion  
 

In total 21 audio excerpts were listened to and graded by each subject. Scores for each 

experiment were collected and collated by order of maximisation level and stimuli type.  

 
 

Figure 7 - Mean Subject Scores vs. Maximisation Level 
 

 

Figure 7 shows the MSS vs. Maximisation level. Maximisation level 1 corresponds to the 

reference (i.e. no compression applied) and maximisation is applied in steps of 6dB. The 

results suggest that quality degrades as increasing levels of maximisation are applied.  In all 

cases, the 3.5kHz low pass filtered anchor was rated as ‘worst’ quality by the panel and 

isn’t included in these plots. The whiskers on the plot show 95% confidence in intervals in 

the means scores achieved. 
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Figure 8 shows the combined MSS for each maximisation level when the differences 

between audio stimuli have been disregarded, i.e. the scores are combined. 

 

 
 

Figure 8 - Combined MSS vs. Maximisation Level 
 

A MSS of 70 represented a rating whereby the subject rated the stimuli as being ‘About the 

same’ quality to the reference.  

 

One can observe a slight increase in the MSS as the DRC level is increased upto the 12dB 

point. This appears to contradict the notion that listeners might prefer a wider dynamic 

range in music production. Indeed, it seems that the listeners preferred a level of DRC ‘up 

to a point’. Movements such as the ‘Pleasurize Music Foundation’ (Pleasurize, n.d) 

advocate the maximum use of dynamics within music production. The maximum MSS 

value of 75.29 equates to a mean 7.56% increase in perceived audio quality from the 

reference, based on the listeners’ subjective perception of quality. As one can see, the 

general trend is an almost linear reduction on MSS as the maximisation level is increased 

beyond 12dB.  Figure 7 shows that excerpt 2 is the exception to this, showing a further 

increase in quality at maximisation level of 24dB and 30dB  

 

The reference, in all cases, does not appear to be associated with maximum quality 

according to our test panel. 
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A 2-way analysis of variance test (ANOVA) was performed on the data in order to 

determine the significance of each test factor – i.e. excerpt and dynamic range reduction. 

The ANOVA results from the study (Table 3) indicated that the effect of the reduction in 

dynamic range (labelled “Rows”) is highly significant (p=0). This is a strong indication that 

the subjects consistently perceive a change in quality as the dynamic range of the samples is 

varied. In addition, the effect of the audio excerpt (labelled “Columns”) could be 

considered as being significant (p<0.05), suggesting that the particular excerpts used have 

some influence on how subjects rated the quality of perceived audio across the different 

maximisation levels. However, this marginal result, with such a low F-ratio from the 

ANOVA and combined with a significant level of interaction between excerpt and dynamic 

range (p=0.0026) make a generalisation of results somewhat difficult. 

 

 
Table 3 - 2 Way ANOVA Test 

 

 

3.3 Dynamic Range Analysis 
 

One could argue that the peak levels of each of the excerpts, prior to any maximisation 

process being applied, would dictate the overall reduction of dynamic range achieved 

during maximisation, and indeed they do. All three excerpts used contained differing peak 

signal levels, however, given the results shown in Figure 8 and the results of the ANOVA 

test, one can observe that there is some correlation between the maximisation level MSS, 

irrespective of excerpt and therefore peak level in each case. 
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3.3.1 Wideband dynamic range measurement 
 

Wideband dynamic range (WDR) is the dynamic range measured when considering the 

entire audio file and its full bandwidth. Dynamic range in this study was calculated using 

CF and the value converted into decibels. 

 

In the same way that the MSS was combined for each maximisation level, the WDR of each 

stimulus was combined to indicate a ‘mean’ dynamic range reduction taking place (Figure 

9). 

 

 
Figure 9 - Mean Dynamic Range vs. Maximisation Level 

 

Using Figure 8 and Figure 9 an optimal mean dynamic range was derived corresponding to 

a WDR of 10.51dB. 30dB maximisation corresponded to a mean WDR of 8.32dB.  With 

reference to Figure 9, showing the MSS at each maximisation level, it appeared that 

maximisation of 12dB (WDR of 10.51dB) was preferred; suggesting that compressing the 

WDR by more than this value was undesirable. Interestingly, this maximisation level is also 

shown to be preferred over 0dB and 6dB, having mean WDR values of 15.59dB and 

12.33dB respectively.    
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3.3.2 Multiband dynamic range 
 

From the results obtained, it was apparent that listeners preferred some level of dynamic 

range compression rather than none at all. However, there is a preference towards 

uncompressed when more extreme levels of maximisation are applied. This concurs with a 

later study made by Croghan et al (2012). In order to examine these preferences further the 

dynamic range across critical bands was investigated and the interaction of each band 

against the combined MSS was observed.  

 

In the study each excerpt was filtered using a 3 band linear phase FIR filter. Their 

respective cut-off frequencies are shown in Table 4. All filters were 24dB/Octave. 

 

 

Filter Type	 Lower Fc (Hz)	 Upper Fc (Hz)	

Band Pass LF 20 947 

Band Pass MF 947 3186 

Band Pass HF 3186 15447 

 
Table 4 - Three Band Filter Corner Frequencies 

 

These frequencies were chosen as they approximate to the 1st, 2nd and 3rd set of 8 Bark scale 

critical bands in the auditory system.  

 

Following this filtering process, dynamic range was measured for each band. The three 

measurements obtained across the three bands form what is referred to as Multiband 

Dynamic Range (MDR). Figure 10, Figure 11 and Figure 12 show the dynamic ranges 

within each frequency band, LF, MF and HF respectively. 

 

 



 

 

 
Figure 10 - Ex1 MDR vs. Maximisation Level 

 
Figure 11 - Ex2 MDR vs. Maximisation Level 

 

 
Figure 12 - Ex3 MDR vs. Maximisation Level
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The study considers that the general trend of frequency balance within produced music follows 

that of the response of the ear i.e. the mid to high frequencies will be balanced at a lower level 

than that of the low frequencies. As a result, it is assumed that a loss of low frequency headroom 

would be experienced prior to other bands as DRC was applied. In the previous three figures this 

can be observed by the larger downward trend present in the low-frequency band as the 

maximisation level is increased when compared to the mid and high frequency bands. 

 

Low frequency content of produced pieces of music contribute greatly to the spectral energy of 

the piece, therefore a loss in this energy could result in a perceptual loss of audio quality by the 

subject. Indeed, overall warmth perception is likely to be affected which may also contribute to a 

loss of perceptual quality. 

 

3.3.3 Inter-Band Ratio (IBR) 

 

In order to investigate and quantify the relationship between the dynamic ranges in each 

frequency band, a simple standard deviation equation was adopted to form an Inter-Band Ratio 

measure (IBR).  

 

𝑰𝑩𝑹 = 	 𝟏
𝒏F𝟏

(𝑫𝒓𝒊 − 𝑫𝒓)𝟐𝒏
𝒊G𝟏           ( 9 ) 

 

Where Dri represents the dynamic range calculated for band i. 𝐷𝑟	represents the mean dynamic 

range. 

 

The IBR measure (standard deviation of dynamic range between each band) is suggested as an 

alternative to WDR based on the measurements made in the study. By plotting the IBR measure 

(Figure 13), the study indicated that there was a trend of deviation increase up until the point of 

12dB maximisation, this was in contrast to the ever declining WDR figure. In the case of excerpt 

2 & 3, a Pearson correlation test confirmed this with correlation coefficinets of 0.89 and 0.99 

respectively when considering upto the 12dB maximisation level.  

 

Whilst the WDR measure indicates an overall reduction in dynamics is occurring during the 

maximisation process, it’s concluded that it isn’t a measure that can be utilised to indicate 

listener preference.  
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Figure 13 – Inter-Band-Ratio vs. Maximisation Level 

 

3.4 Conclusions  

 

The experiment represented a pilot study into the effects of dynamic range reduction on the 

perception and measurement of audio quality. The results suggest that a multiband approach to 

dynamic range measurement might be more effective than a wide band approach as an indicator 

of overall audio quality. Ljudtekniska (2013) later incorporated a multi-band approach that also 

focused on the CF measurement across multiple bands, albeit using all-pass filters to separate 

frequency bands but inter-band correlation wasn’t considered in his measure. 

 

Low frequency content of produced pieces of music contribute greatly to the spectral energy of 

the piece, therefore a loss in this energy could result in a perceptual loss of audio quality being 

perceived by the listener. Maempel & Gawlick (2009) suggest that listeners prefer increased 

loudness however underlying perceptual effects, enhanced or created by the processing involved, 

may be influential in listener preference. In their study, high bass amplitude was cited as a cause.  

 

As observed in this study, two of the three excerpts exhibited a reduction if LF dynamic range to 

a greater degree than other bands, as the maximisation process took place. 

 

Due to the wide variation in spectral content between pieces of produced music, in addition to 

fade-outs and fade-ins a single WDR figure is not accurate enough to quantify overall music 

quality. It may however, be utilised as a general ‘figure of merit’ score. 
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Chapter 4  Inter-Band Ratio and music quality perception. 
 

The experiment detailed in Chapter 3 identified a potential correlation between the Inter-Band 

Ratio (IBR) measure and the subjective quality of produced music. The testing was performed 

with 3 audio excerpts and a small number of listeners. In order to test the IBR measure more 

rigorously, and to establish its relationship to listener perception of music, a more comprehensive 

experiment was undertaken. This involved testing the IBR with real-world music excerpts and a 

greater number of listening subjects.  

 

It is widely accepted that the response of the human ear and therefore listener perception differs 

across the ear’s frequency range. It is therefore argued that a single wideband dynamic range 

figure would be inaccurate in reflecting the perceived audio quality of a signal, although it could 

be used to represent an overall mean ‘figure of merit’ score. This was shown to be the case in the 

previous chapter. Additionally, Croghan et al (2012), using genres of ‘rock’ and ‘classical’, 

found that listeners preferred stimuli where DRC had been applied moderately. 

 

4.1 Test Methodology 
 

Analysis was made of the dynamic range in three critical bands and the interaction of each 

against the overall MSS was examined. Each excerpt was filtered using a 3 band linear phase 

FIR filter. Three filters were used and their respective cut-off frequencies and Q settings were 

the same as utilised in Chapter 3 (see Table 4 - Three Band Filter Corner Frequencies). 

  



 

 

 81 

 

Following this filtering process, dynamic range analysis was performed. Calculations of the 

dynamic range were derived from the samples in each band as follows:  

 

𝑺𝒓𝒎𝒔 = 	 𝟏
𝒏F𝟏

(𝒙𝒊 − 𝒙)𝟐𝒏
𝒊G𝟏           ( 10 ) 

 

Where 

          

𝒙 = 	 𝟏
𝒏

𝒙𝒊𝒏
𝒊G𝟏             ( 11 ) 

 

and 𝑥yrepresents the value of sample 𝑖 between +1 and -1. 

     
𝑺𝒑𝒌 = 𝐦𝐚𝐱	(𝒙𝟏..𝒏)          ( 12 ) 
 

𝑫𝒓 = 𝟐𝟎 ∗ 𝐥𝐨𝐠	( 𝑺𝒑𝒌
𝑺𝒓𝒎𝒔

)          ( 13 ) 
 

The Inter-Band Ratio (IBR) is derived in the same way as outlined in Chapter 3 using Equation 

9. 

 

Effectively, the IBR represents the standard deviation measured between the dynamic ranges 

existing across the three bands. A low value would represent a smaller variation in dynamic 

range measured across the bands, whereas higher values would represent higher degrees of 

variation. 

 

Factors that may contribute to a low IBR score are the application of wide band hard-limiting. 

This could cause the dynamic ranges across bands to normalise and cause a perceptually less 

dynamic production. Particularly ‘dense’ sections of an arrangement in terms of them having 

similar broadband frequency content could also result in low IBR measures, for example, 

broadband noise-like signals that result in similar peak and RMS values.  

 

High IBR scores can be measured when there is a de-correlation of dynamic ranges between 

bands. This may be as a result of strong transient content being present in say the mid-range, 

whilst the dynamic of the low band may be small in comparison. 
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4.1.1 Subjective listening test 

 

This study involved 57 experienced listeners listening to and grading 5 excerpts from 

commercially available produced music. A listening test was designed to measure the subjective 

preference of listeners grading produced music of varying genre. No knowledge of the 

engineering and production techniques involved with any excerpts was made available to the 

listeners. 

 

The listeners were asked to listen to each excerpt with respect to analysing their relative punch, 

clarity, overall tone and balance. Each listener was then asked to grade each of the excerpts out 

of 10 with respect to their overall production quality (1 being low quality, 10 being the highest 

quality).   

 

The listening conditions and equipment varied between subjects however, this was deemed 

satisfactory for such a wider study. This would in fact, be how the music would be received and 

auditioned by the general population of listeners. Whilst the listening level between subjects was 

not maintained, the relative listening levels between excerpts could be assumed to be constant, 

thus the quality scores given by each of the subjects would be relative between excerpts. 

 

A hand out was given to each subject detailing the test and guidelines. 

 

4.1.2 Stimuli 
 

The five excerpts were from the following songs, each of which can be classed as contemporary 

productions. 

Excerpt 1: “The End Of The Line” by Metallica  

Excerpt 2: “Mr Brightside” by The Killers 

Excerpt 3: “Freak Like Me” by Sugababes 

Excerpt 4: “Animals” by Nickelback 

Excerpt 5: “Seldom Seen Kid” by Elbow  

 

The excerpts were 16bit, 44.1kHz, stereo WAV format and 20 Seconds in length. 
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The reason for the choice of excerpts was to allow for a varied test set, thus testing the 

perception of the dynamic range across a number of different styles of music, including transient 

and harmonically rich material. Given that all the excerpts were released on major labels, it can 

be assumed that all had been professionally mixed and mastered.  

 

Elbow were advocates of the ‘Turn It Up’ movement, therefore one can expect a greater level of 

dynamics to be present in the “Seldom Seen Kid” excerpt. 

 

4.2 Results 

 

The subjective scores obtained during the test were averaged resulting in a MSS for each 

excerpt. From this, an order of preference (ranked best quality to worst) of the excerpts was 

extracted. 

 

4.2.1 Listening test results 
 

The results of the test are shown in Figure 14 along with 95% confidence intervals. 

 
Figure 14 - Mean Subject Scores 

 

Excerpt Rank Title 

5 1st Seldom Seen Kid” by Elbow 

4 2nd “Animals” by Nickelback 

1 3rd “The End Of The Line” by 

Metallica 

2 4th “Mr Brightside” by The Killers 

3 5th “Freak Like Me” by Sugababes 

 
Table 5 – Rank Score Order of Excerpts 
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It should be noted that whilst an order of preference was extracted (Table 5), the scores given for 

the top three placed excerpts were indeed very closely grouped. Looking at the 95% confidence 

intervals shown in Figure 14, there is a high degree of overlap between the scores obtained by 

the top three placed excerpts.   

 

Reasons for this could be due to biasing factors in genre preference in addition to all excerpts 

being professionally produced and mastered, thus making their relative ranking scores group 

together.  

 

At this stage we could consider relaxing the ranking and suggest that this test has extracted the 

top three, 2nd place and last place excerpts in terms of audio quality. Indeed, if we consider the 

95% confidence intervals shown in Figure 14, there is a clear differentiation between the tiers 

identified.  

 

Considering that the excerpts are all ‘release’ quality one would expect that all the excerpts 

would achieve a relatively high MSS. However, there is clearly some differentiation between 

their perceived audio qualities reflected by the different MSS received. In order to establish 

whether the variation of preference scores achieved were due to the excerpts under test or simply 

down to chance an analysis of variance was undertaken with the following null hypothesis: 

 

H0 = There is no difference in audio quality between excerpts. 

H1 = There is a difference in audio quality between the excerpts. 
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The results of an ANOVA test for this (see Table 6) show that the F value is highly significant 

and the resultant p-value obtained is <<0.01, suggesting that the differences found in the MSS 

across the samples is more than would be expected by chance alone. 

 

The F value obtained is significantly larger than the Fcrit value therefore we can reject the null 

hypothesis with a large degree of confidence. 

 

ANOVA	       

Source of 

Variation SS Df MS F	 P-value	 F crit 

Between 

Groups 174.225 4 

43.556

1 15.1	 3.43E-11	 2.404	

Within 

Groups 807.649 280 2.8846    

       

Total 981.874 284    	  	  	

 
Table 6 - ANOVA table 

 

4.2.2 Objective results 

 

The excerpts were each analysed with respect to the IBR as detailed in Section 4.1. The results of 

the analysis are shown in Figure 15. The calculation of the IBR measure was based on the entire 

sample length. 
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The order of the excerpts, based on the largest to smallest IBR measurement, was extracted. The 

order is shown in Table 7. 

 

 

Excerpt Rank  Title 

5 1st Seldom Seen Kid” by Elbow 

1 2nd “The End Of The Line” by 

Metallica 

4 3rd “Animals’ by Nickelback 

2 4th “Mr Brightside” by The Killers 

3 5th “Freak Like Me” by Sugababes 

 
Table 7 – Rank Score Order based on IBR 

 

 

A second measurement, based on calculating the IBR based only on the Low-Mid bands was 

extracted. This is shown in Figure 15 as LMIBR. 

 

 
Figure 15 - Inter-Band Ratio Measurements 
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4.3 Discussion of results 

 

If the extracted subjective and objective rank order scores are compared (Figure 16) a large 

degree of correlation between the two can be observed. 

 

 
Figure 16 - Subjective & Objective Rank Order Comparison 

 

Running a Spearman correlation test between the subjective and objectively extracted rank 

scores a correlation coefficient of 0.9 is obtained along with a significance value of 0.037, this is 

significant at the 0.05 level (2- tailed) 

 

Killers and Sugababes were all ranked identically with placements 4th and 5th in order of quality. 

Therefore, the IBR measurement successfully identified the 2 excerpts that were graded as 

having the lowest quality subjectively by the listeners.  

 

The top three excerpt rankings based on the IBR score and the MSS differed with Metallica and 

Nickelback being reversed in order. This was the only difference in ranking score. 

 

Differences in the placement of Nickelback and Metallica shown in Figure 16 could be attributed 

to biasing due to personal preference in genre. Also, subjectively, the top three excerpts scored 

very similarly with a degree of overlap evident in the confidence intervals. The excerpts 

themselves contained variation in transient content and tempo. These factors could be affecting 

the overall rankings given by the subjects. The order of playback of excerpts was left up to the 

subjects therefore allowing continuous and multiple comparisons to be made between each 

excerpt. 

 



 

 

 88 

If one normalises both the mean subjective scores and the IBR score for each of the excerpts 

tested, the correlation between the two can be observed, see Figure 17. 

 

 
 

Figure 17 - Normalised Subjective & Objective Scores vs. Excerpt 
 

If we consider the deviation between low and mid-range only, shown on the plots as LMIBR, the 

objective quality ranking becomes more pronounced. 

 

The low and mid-range frequency bands could therefore be attributable to having a greater effect 

on the perception of quality in music production. Low and mid-range frequencies are certainly 

attributable to energy and warmth being present in a mix. Interestingly, by examining the 

dynamic range measurements made on each of the excerpts across the three bands (see Table 8), 

it can be seen that whilst the lowest placed excerpt has a greater degree of dynamic range in its 

low frequency band, its IBR score is the lowest due to its mid and high band correlation. 

 

Excerpt	 LF Dr	 MF Dr	 HF Dr	 IBR	 LMIBR	

Metallica 8.1577 14.6563 17.0584 4.6048 4.5952	

Killers 10.3824 15.2067 18.7134 4.1828	 3.4113	

Sugababes 11.7525 14.9279 17.2871 2.7773	 2.2453	

Nickelback 9.8965 15.0646 18.3508 4.2619	 3.6544	

Elbow 8.7291 15.8984 17.3616 4.6199	 5.0695	

 
Table 8 - Dynamic Range and IBR Measures 

 

With reference to Table 8,  the low frequency band dynamic range of the two lowest ranking 

excerpts is greater than that of the top three ranked excerpts. Considering the top three ranked 

excerpts, the differential between their respective low and mid-high frequency band ranges is 
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greater, resulting in a greater IBR score. Further to that, a reduced dynamic range in the low 

frequency band suggests a higher level of compression may have been applied to these 

productions.  

 

This could suggest the importance of controlling the dynamics of the low frequency bands, often 

referred to as ‘tightening’ resulting in a subjectively powerful / punchy mix. This technique, 

common to the Rock/Metal genre, would probably have been applied to Metallica & Nickelback. 

Interestingly, the Elbow sample, despite not being in the same genre, was a production that 

attempted to adhere to the ‘Turn It Up’ movement by keeping as much of the dynamic range 

intact during mastering. 

 

Low frequency content of produced pieces of music contribute greatly to the spectral energy of 

the piece, therefore a loss in this energy could result in a perceptual loss of audio quality by the 

subject. 

 

As the IBR measure is based upon frequency band correlation, it can be assumed that during fade 

ins and outs the relative measure between peak and RMS levels across all frequency bands used 

in the calculation would remain constant. Therefore, the resulting IBR score would be 

unaffected. In addition, since the IBR score is derived by measuring the correlation between 

relative dynamic ranges across frequency bands, it is unaffected by the overall playback level 

selected by the listener. Thus allowing for a qualitative measure to be made prior to 

amplification taking place. 
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4.4 Conclusions 

 

This experiment presented a wider study into the IBR model output variable. The results of the 

test indicate that the IBR measure could be effective in the assessment of audio quality. 

 

A reduction in dynamic range in a single frequency band does not necessarily result in a 

perception of low quality by the listener; rather, the relationship between the dynamic ranges in 

bands has been shown to correlate to this score.  Reduced dynamic range in the lower band  may 

have afforded an increase in perceptual warmth, punch or tightness being perceived by the 

listeners. 

 

For each excerpt a single IBR measure was extracted, this utilized a fixed window size based on 

the entire sample length.  Previous work by Skovenborg & Lund (2008) proposed a measure of 

‘consistency’ which measures the variation of loudness on a macroscopic timescale. They 

describe the application of a loudness-correction processor increasing the consistency of the 

musical material. Empirical study suggests that this is the typical approach applied to music 

during the mastering stage and often results in loss of dynamic range across the frequency range.  

 

Their measure of consistency is based upon statistical distribution of measured loudness utilising 

the ITU-R BS.1770-4 (2015) loudness algorithm as a starting point. It uses a statistical 

distribution to prevent the measure from being skewed by short but loud musical sequences 

and/or fadeouts. In order to achieve this, a smaller measurement window size is employed along 

with an overlap. The basic IBR method does not employ any method of statistical distribution or 

weighting, therefore shortcomings would be that ‘micro dynamic’ changes would be obscured by 

the averaging process.   

 

In the following chapter, an experiment was employed to investigate the use of a windowed IBR 

methodology and to investigate the possible uses of a statistical based output.  
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Chapter 5 Profiling of punch and clarity using Inter-Band Ratio 
 

The results outlined in Chapter 4 indicated that there was a potential correlation between the IBR 

measure and the listener perception of overall quality of produced music excerpts. This chapter 

details a test (Fenton & Wakefield, 2012) which extends and evaluates the IBR measure 

temporally. Clarity is considered relavant in this study as lack of clarity in music could relate to 

the inability of a listener to clearly define transient components within it. Without transients, and 

in line with the hypothesis of this thesis, punch would not exist. 

 

5.1 Clarity and punch in music production 

 

In acoustic space it is possible to objectively determine the clarity and intelligibility achievable 

as an alternative to the traditional RT60 measurement (Ballou, 2005). Measures such as early to 

late arriving sound ratio (C50) and Early Decay Time (EDT) can all be combined for this 

purpose however, if one considers a completed music production, the task becomes very difficult 

for two key reasons. 

 

Firstly, clarity in a musical extract becomes somewhat subjective in context of the production. 

For example, a classical ensemble recording may be judged on clarity by considering the 

tonality, spaciousness and localisation of each individual instrument whilst a contemporary 

heavy rock recording could be judged solely on the clarity of transients perceived by the listener 

as a result of the drum/percussive elements. Spaciousness may not be as important in the context 

of the rock recording whilst this attribute could be perceived by some as an important aspect to 

obtaining clarity in the classical example. 

 

Secondly, due to the combination of spectral components from a number of sources, it’s very 

difficult to utilise traditional acoustic measures to grade the extract. Blind source separation 

(Barry et al, 2005; Every, 2008) could be useful in determining overall clarity of individual 

instrumentation contained within a production however, this remains a complex process and 

often the sources extracted contain residual artefacts. Their use in qualitative measures is 

therefore limited. 
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In order for listeners to detect individual notes, instrument timbre and rhythm, it’s important that 

enough elements of the mix conveying this information are clearly audible. Masking is a 

phenomenon that often occurs during mix down when harmonic components of one source mask 

that of another source. Masking can occur in the temporal domain in addition to the frequency 

domain. 

 

Considering the spectral nature of the individual sound sources during mix down, it is possible to 

determine the level of masking taking place and modify the relative balance between sources to 

minimise this (Gonzalez & Reiss, 2009). In a musical context, this anti-masking process will 

allow the listener to clearly hear the individual sound sources and thus, the overall production 

could be deemed to have higher clarity. Due to the varying nature of audio, and moreover the 

harmonic content within each sound source, this process is not without its difficulties and the 

process of spectral balance is left to the skill of the engineer.  

 

A reduction in dynamic range, as a result of applying maximisation/compression techniques, has 

the effect of raising the noise floor whilst at the same time increasing the level of spectral 

components contained within a source that were previously balanced in relation to their 

counterparts. Therefore, the process can cause additional masking to occur.  This can occur 

whether the compression is being applied to individual tracks within a mix or the entire mix 

itself. This is perhaps one of the reasons lower subjective scores were given to audio samples 

that had been subjected to high compression levels in the previous studies conducted in the 

earlier experiments.  

 

In contrast, reverb tails and other sources that may be relevant to depth cues such as those mixed 

lower in the mix, could become more perceptible to the listener, therefore resulting in a 

subjectively more pleasing mix. Thus, moderate levels of compression may in fact be beneficial, 

in line with previous findings. On the other hand, Hjortkjaer & Walther-Hansen (2014) stated in 

their study that there was a weak link between perceptual depth cues and the influence of 

compression. Unfortunately, their study didn’t identify or state what depth was other than the 

subjective ability to discriminate the musical sounds.  

 

Whilst anti-masking plays an important role in determining the ability of ‘tonality of sources’ to 

be clearly defined in a music production, onset or transient detection is also key (Every, 2008). 
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Within a musical context, temporal changes in frequency component amplitudes within the piece 

allow us to detect instrumentation (Lagrange, 2009). A produced piece of music must contain 

various elements of information, which include instrumentation and transient content in order to 

convey such things as emotion, and energy in the piece.   

 

Dynamic range takes a leading role in allowing these elements to play their role in this process. 

If dynamic range is reduced, perhaps through excessive use of compression, important 

information in the piece is detrimentally affected, in particular transient information. 

 

The ability of the listener to detect transients in a piece of music is fundamental to the 

determination of instrument type, note detection and rhythm. There are a number of automatic 

methods that have been proposed and evaluated (Bello et al, 2005; Hainsworth & Macleod, 

2003) that attempt to detect onsets (and subsequent transients). These can include computation in 

the time, frequency and phase domains.  The use of these techniques is often employed in beat 

extraction to determine rhythm, instrument identification and genre classification. 

 

With respect to polyphonic music productions, where there could be a number of competing 

audio sources in the overall spectrum and thus overlapping attributes, some onsets events could 

be promoted as being more important than others (Collins, 2005) and/or wrongly identified. 

Thus, in order for highly accurate onset detection to take place, a complex algorithm is often 

required that utilises, for example, particular frequency bands for analysis of different onset 

types. Even in these cases, current onset detection algorithm performance varies when presented 

with near simultaneous events and in-distinct spectral signatures. 

 

The previous experiments conducted have shown that a reduction in dynamic range on a piece of 

music does have an impact on the overall subjective qualitative score given by listeners. Given 

that transients within a production can be affected by this dynamic range reduction, it holds true 

that their associated measurement and detection, both by the listener and by objective 

measurement may be affected. 

 

By monitoring the temporal changes in dynamic range across three key frequency bands, 

representing bass, mid and treble from a production viewpoint, it is proposed that the method 

may yield results that relate to the perception of clarity within a completed musical production.  
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Further to that, in line with the hypothesis stated in Section 1.2, dynamic change in particular 

frequency bands may contribute to the perception of punch indicated by the listener. By 

measuring the magnitude of change in dynamic range across bands and temporally, these 

changes may correlate with the punch attribute.  

 

5.2 Temporal Inter-Band Ratio  

  
By plotting the IBR measure against time, relative dynamic content across frequency bands can 

be observed and allow engineers to identify sections of audio that possess differing dynamic 

attributes. These attributes may correlate with both clarity and punch. 

 

The IBR is a standard deviation score, such that strong correlation in dynamic range across the 

bands yields a low IBR score and vice versa. When calculating the IBR score it’s also important 

to consider the dynamic range measurement itself within the time frame in which the IBR is 

measured. For example, where high dynamic range is measured across all bands this results in a 

strong correlation and therefore a low IBR score would result.  This may indicate a fast transient 

within the windowed time frame and/or a significant change in loudness level across all 

frequency bands within that time frame. On the other hand, a very low dynamic range 

measurement across all the bands will also result in a low IBR score. Low scores indicate 

correlation, therefore in the latter example this would perhaps indicate very loud or steady-state 

passages of audio. Therefore, in addition to plotting the IBR temporally, it would be useful to 

collate all the IBR frame scores and look at them statistically thus giving an indication of the 

overall underlying nature of the dynamics present in the audio. As a single point in time can’t be 

considered as having dynamic range, the windowed time frame will also have an impact on the 

measurements obtained. This is the case for both the current ITU-R BS.1770-4 (2015) loudness 

model and other integrative models such as the LDR proposed by Skovenborg (2014). 

 

Previous experiments outlined in Chapter 3 and Chapter 4  identified a correlation between the 

IBR and the subjective scores given by subjects with respect to overall quality. In those studies, 

excerpts tested were 7 seconds in length and the IBR score for each excerpt was calculated using 

a 7 second window size. 

 

If the variable nature of musical content over time is considered, it is highly likely that the IBR 

measurements would vary as different window sizes are utilised and at different points in the 
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audio under test.  As such, this work investigates this by profiling two songs using varying 

window sizes to calculate the IBR. These profiles are then compared to subjective listening test 

results where the listeners were asked to identify and map the audio with respect to their possible 

points of perceived punch and clarity. The IBR plots are also compared to ITU-R BS.1770-4 

(2015) loudness measurements obtained using a NuGen Vis-LM loudness meter (VisLM, 2012).  

 

The aim of this work was to identify trends and relationships between the dynamics contained 

within a musical signal, its temporal measure and how this relates to the perception of clarity and 

punch throughout the piece. In addition, the IBR frames are collated, which allows statistical 

analysis of the stimuli to take place. 

 

5.3 Method of testing 
 

5.3.1 Subjective testing 
 

A listening test was conducted comprising 8 expert listeners. Each listener was asked to listen to 

6 stimuli and score them along a time axis with a 400ms resolution. The listeners were given a 

timeline plot of each audio sample segmented into 400ms blocks and asked to score each block. 

The stimuli was played back using a DAW which allowed the listeners to re-audition sections as 

required. This block size used relates to the short-term window integration time defined in the 

ITU-R BS.1770-4 (2015) standard. Resolutions less than 400ms were deemed impractical with 

respect to how the listeners would enter their grades. 

 

This test allowed the users to score the audio according to their own perception. However, in 

order to ensure some consistency in scoring and allow the data to be collated and averaged, the 

listeners were given a training sheet detailing the attributes that were to be assessed within the 

audio. The points detailed on the training sheet were as follows: 

 

If the audio is clear and punchy - Give a score of 1. This can be defined if you can hear a clear 

vocal that doesn't suffer heavily from masking, clear dynamics are evident, clear drum 

hits/transients, bass notes, a point whereby dynamic movement is clearly audible. 
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If the audio is unfocussed, lacks punch and clarity - Give a score of 0. This may consist of a 

large collection of harmonics or unrelated frequency components, noise, there is evidence of 

masking, no single element is clear, no dynamics present, distinct lack of transient content. 

 

If you feel the audio at any point is neither of the above, give a score of 0.5. 

 

All scores given by the subjects were then averaged to produce a Punch/Clarity score for each 

excerpt, varying between 0 and 1. This formed the subjective data to compare to the objective 

IBR measures. 

 

The listening test took place in a professional control room environment, commonly found in 

music studios and the excerpts were auditioned on Genelec 8040 speakers at an average listening 

level of 74dB(A). The results of the listening tests were collated as an average punch/clarity 

score (P/C Average) and a profile plot was created which represented the perceived punch and 

clarity of each excerpt. 

 

5.3.2 Objective testing 

 

MATLAB was used to calculate the IBR using window sizes of 400ms, and 3s respectively. A 

relative IBR ‘threshold’ was chosen based on initial studies (Chapter 3 and Chapter 4) and IBR 

scores attained in the ‘best’ scoring excerpts, in this case 4 or more. This value was based on the 

average IBR score attained for the two highest scoring excerpts in previous tests. The threshold 

determines the point at which the IBR score is deemed large enough to relate to a significant de-

correlation in dynamics across the frequency bands tested. Choosing a lower threshold would 

mean the resultant IBR score would increase if smaller deviations were apparent across the 

bands, a larger threshold would only increase the IBR score if larger deviations were evident. 

 

Where there was a significantly low score for the IBR throughout the excerpt, this threshold was 

adjusted to accommodate the reduced dynamic correlation. 

 

The IBR values for each window size were measured against time. In addition, measurements 

were taken which detailed the short and long term loudness and loudness variation against time. 

  

For all IBR measures, a 75% window overlap was adopted unless otherwise specified. 
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An overall IBR score was calculated by taking the average of the two window size 

measurements such that:  

 

• Neither IBR above threshold then the IBR = 0 

• One of the windowed IBR scores exceeds the threshold then the IBR = 0.5 

• Both Windowed IBR scores exceed threshold then the IBR = 1 

 

From this calculation, an objective profile was produced which represented a moving window 

average based on the two IBR averages. The objective IBR scores were then compared to their 

subjective counterparts. 

 

In ‘Measures Of Microdynamics’ by Skovenborg (2014) a measurement of Loudness Dynamic 

Range (LDR) is proposed. That study utilised the maximum difference between a “fast” and a 

“slow” loudness level. This temporal IBR approach is similar with respect to the utilisation of 

two window sizes however, the key differences are summarised as: 

• LDR uses a temporally integrated loudness measure based on the entire frequency 
spectrum. 

• IBR uses a temporally integrated measure based upon dynamic range correlation across 
frequency bands.  

 

5.3.3 Stimuli 

 

2 different audio stimuli were chosen 

• Excerpt 1 – “Freak Like Me” by Sugababes  

• Excerpt 2 – “Animals” by Nickelback   
 

Both were in 16bit, 44.1kHz, stereo WAV format. 

 

The reason for this choice was to allow for a varied test set based upon the best and worst 

performing productions in the previous experiment. The Sugababes excerpt was considered to be 

the worst overall and the Nickelback excerpt as one of the best both subjectively and objectively 

based on having the highest average IBR measure. 
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The songs were broken down into three 20-second excerpts that represent key sections in the 

production: introduction, verse with drums and breakdown. In order to familiarise the reader 

with the productions the excerpts are now described.  

5.3.3.1 Sugababes excerpts 

 

 
Figure 18 - Sugababes Introduction Time Domain 

 

The Sugababes introduction (see Figure 18) commences with a sound effect from the video game 

‘Frogger’. At approximately 1.6 seconds the main synth hook from Tubeway Army’s "Are 

'Friends' Electric?" is introduced along with a low pass filtered drum track. This lasts for 

approximately 11 seconds and during this time the section is heavily processed with a form of 

sample rate reduction effect (Lo-Fi) and flanging. In addition, the main synth hook is panned 

between left and right channels. At approximately 11 seconds the main vocal introduces the first 

verse with no change to the music backing. Upon examination with a spectrogram, it was 

observed that up to the 1.6-second point there is reduced energy above 8kHz. 
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Figure 19 - Sugababes Verse with Drums Time Domain 

 

The Verse with Drums section of the Sugababes song (see Figure 19) begins with a small siren 

effect without drums and backing. The main synth, drums and bass then begin along with the 

main vocal verse. The verse continues until the 12-second point, at which time a heavy guitar riff 

is introduced, along with an additional lead synth and the chorus begins. 
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Figure 20 - Sugababes Breakdown Time Domain 

 

The Sugababes breakdown section (see Figure 20) begins with the end of the chorus before and 

at the 6 second point drops to the basic vocal and effected backing present in the intro section. 

This breakdown section continues before the song comes back in with a section identical in 

arrangement to that of the verse with drums first 12 second section. This occurs at the 16.5-

second point, where there is a significant audio cut out. 
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5.3.3.2 Nickelback excerpts 

 

 

 
Figure 21 - Nickelback Intro Time Domain 

 

The Nickelback Intro section (see Figure 21) opens with a heavy rhythm guitar four chord 

sequence, with strong low-mid frequency components. At the 2 second point a short drum fill 

occurs lasting until 3.2 seconds. The guitar riff continues including underlying hi-hat quarter 

note hits. At 8.8 seconds a significant tom fill occurs which includes a brief audio dropout. At 12 

seconds a major drum fill occurs and the guitars, bass and drums play the main hook from the 14 

second point. At 17.7 seconds a short drum fill / guitar drop out occurs before the main hook 

continues. 
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Figure 22 - Nickelback Breakdown Time Domain 

 

The Nickelback Breakdown section (see Figure 22) opens with a heavy rhythm guitar four chord 

sequence, with strong low-mid frequency components. At the 3.5 second point the production 

drops the guitars out of the mix and features the vocal and hi-hats as a breakdown. A drum fill 

occurs at 15 seconds, followed by the full drums, bass, vocal and guitar mix at the 17 second 

point. 
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Figure 23 - Nickelback Verse with Drums Time Domain 

 

Figure 23 shows the Nickelback Verse With Drums section of audio. This section of audio 

represents the section of the track that contains bass, drums and vocal up to the 16-second point, 

at which the guitars are re-introduced.  
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5.4 Results 

 

The following charts compare the punch/clarity average scores with the 75% overlap IBR scores 

for each excerpt. 

 

 

 
Figure 24 - Nickelback Intro - IBR vs. Subjective 
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Figure 25 - Nickelback Verse with Drums - IBR vs. Subjective 

 

 
Figure 26 - Nickelback Breakdown - IBR vs. Subjective 
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Figure 27 (a)/27(b) Sugababes Intro - IBR vs. Subjective 
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 Figure 28(a)/28(b) Sugababes Verse with Drums - IBR vs. Subjective 
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Figure 29(a)/29(b) - Sugababes Breakdown – IBR vs. Subjective(with and without threshold) 
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The following table presents the Pearson coefficient calculations for each of the excerpts. 

 

Excerpt Pearson Coefficient 

Nickelback – Intro 0.330 

Nickelback – Verse With Drums 0.485 

Nickelback – Breakdown 0.334 

Sugababes – Intro Figure 28a  0.118   

Figure 28b  0.354 

Sugababes – Verse With Drums Figure 29a  0.605  (400ms) 

Figure 29b  0.917 

Sugababes – Breakdown Figure 30a  -0.684   

Figure 30b   -0.240 

 
Table 9 - Pearson Correlation per Excerpt 

 

 

5.5 Discussion of results 
 

As can be seen from the Pearson tests in Table 9, there is some degree of correlation evident 

between the subjective and objective scores, these range from r=0.917 to r=0.118., However, the 

correlation varies across the different sections of the audio under test., in some cases the 

correlation also depends on choice of IBR threshold chosen. What follows is a discussion and 

analysis based on the two excerpts which have very different musical structure and perceptual 

content, i.e. that the Nickelback Intro and Sugababes Breakdown excerpts. 

 

Visual inspection of Figure 24 shows a high correlation between the IBR and subjective scores 

up to approximately 8.8 seconds at which point the two trends deviate. This error margin begins 

to decrease around the 13 second point of the audio.  

 

During the initial 8.8 second period of this excerpt the elements that are prominent are those of 

the drums and guitars at different times in a call and response pattern. Major drum fills occur 

centered around the 2, 5.2 and 8.4 second mark. These fills relate to the points at which the 

listeners have graded the audio as punchy and clear. These points also correlate well with the 

objective IBR score. Further points where the error is minimised between the two measures are 

at the 14 second point, again a point at which a major drum fill occurs 
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Significant errors begin to occur at 8.8 seconds where there is a major tom fill and an audio drop 

out. This could explain the de-correlation in subjective and objective scores within this period 

and the overall weak Pearson coefficient of 0.330.  The tom fill and audio drop out is seen by the 

algorithm as a highly transient event and therefore a high IBR score is calculated whilst the loss 

of audio could be considered by the listeners as lacking both punch and clarity. Measurement of 

the excerpt loudness at this point indicated a loudness range increase of approximately 14dB, this 

lasts for around 3 seconds which relates to the point at which the error margin begins to 

decrease. This period of de-correlation is caused by a period of low-level audio and this issue 

may be overcome by making use of a gate in the same way as used in ITU-R BS.1770-4 (2015) 

loudness model. 

 

 

Whilst the IBR score indicates transient behaviour is occurring during the 8.8-13.2 second 

period, this is graded with a low score by the listeners. The IBR 400ms plot for this excerpt (see 

Figure 30) shows the 400ms IBR score falling below the threshold value of 4 during this time 

period. The calculated IBR compared to the subjective measures is based on a 75% overlap 

window and also incorporates the 3-second IBR score. This suggests that in order to increase the 

accuracy of the IBR score, one might consider a calculation based solely on the 400ms 

windowed IBR, a smaller window size or a weighting factor being applied to the smaller window 

size measure. This confirms that the window size used in the measure does impact on the 

resulting IBR score. A smaller window size being able to track finer time scale changes as one 

might expect. 
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Figure 30 - Nickelback Intro IBR (400ms and 3s Window Sizes) 

 

With reference to  Figure 28 (a), this technique was applied to the Sugababes Verse With Drums 

excerpt as can be seen and the trends begin to map more closely. 

 

Overall, when comparing all six of the Nickelback and Sugababes excerpts, it was noted that 

despite the Nickelback excerpts having the lowest overall loudness ranges they possessed on 

average, higher instances of dynamic content, indicated by higher IBR scores than that of the 

Sugababes excerpt.  

 

The Nickelback excerpts regularly exceed the threshold whilst the Sugababes excerpts don’t. The 

associated loudness plot of the Nickelback Intro excerpt indicates that the audio measured is well 

in excess of the proposed -23 LUFS loudness level. Of interest, is that despite the Nickleback 

samples indicating a smaller average loudness variation, they still possess enough dynamic 

fluctuation to assert a high IBR score, which suggests frequency band de-correlation is present. 

 

The Sugababes excerpts, whilst not having the reduced loudness range of the Nickelback tracks 

do not exhibit the same frequency band de-correlation, hence the lower average IBR scores 

obtained. 

 



 

 

 112 

The nature of the subjective test was non-comparative i.e. the listeners were asked to grade each 

excerpt separately. Therefore, it’s likely that the listeners were grading ‘punch and clarity’ by 

comparing points in time of the audio they were listening to for that particular grading phase. 

The original threshold grading of 4 was perhaps inappropriately chosen as it represents a 

comparative value that originally distinguished overall between good and bad quality excerpts in 

previous experiments. 

 

Table 9 shows that with a Pearson coefficient of -0.684, the Sugababes Breakdown excerpt was 

the excerpt with a strong negative correlation. With reference to Figure 29 (a), the IBR measure 

rises from zero and becomes closer to the subjective scores. This corresponds to the point at 

which the vocal line is prominent in the mix. This time period has a high IBR score both in the 

3s and 400ms window time frame due to varying dynamics in the mix i.e. de-correlation in the 

low, mid and high frequency bands. 

 

The listeners appear to grade the excerpt differently, giving higher scores to the sections of audio 

outside this region. This could be due to them gauging drums, bass and synth as punchy and a 

single vocal as neither punchy or clear. This could be the cause of the negative correlation of -

0.684. A point to raise here is that whilst there is clearly dynamic content within the piece 

signified by the IBR scores, there is a drop in loudness level by approximately 13.5dB, which 

could also correspond to the listener perception of punch and clarity. This might suggest that a 

combination of both a loudness and dynamics measure could improve the accuracy of the punch 

and clarity score.  

 

By varying the threshold used in the IBR calculation, it is possible to profile the excerpts with a 

greater dynamic sensitivity. Figure 27 (b), Figure 28 (b) & Figure 29 (b) show an IBR profile that 

has been calculated using threshold values of 2, 3.5 and 2.85 respectively. Looking at Table 9, 

the Pearson coefficients indicate that in most cases, a change in IBR threshold improves the 

trend correlation. The Sugababes - Verse With Drums excerpt shows an improvement from 

0.605 to 0.917 which could be considered highly correlated. Having said that, as can be seen in 

Figure 28, as the IBR threshold is lowered resulting in an overall higher correlation score, the 

resulting plot can track, by visual inspection, the general trend of the P/C scores. In addition, 

although some correlation improvement is seen between Figure 29 (a) and Figure 29 (b) the 

correlation is still negative, albeit visually, the objective and subjective plots look more alike.  
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5.6 IBR statistical output 

 

The IBR measure, along with suitable metering ballistics, may prove more useful in offering a 

real time indicator of the dynamic nature of the material, for example, to indicate elements of the 

material that is changing. A more useful application of the IBR measure could be to evaluate the 

measure statistically with respect to time, for example, in a histogram. The histogram can be 

analysed, giving statistical data relating to the stimuli under test allowing overall trends to be 

observed and compared. Trends such as the overall ‘correlation’, or mean IBR between bands 

may offer an insight into how the measure may correlate with attributes of the stimuli perceived 

by the listener.  

 
Figure 31 - IBR Histogram - Nickelback Intro vs. Sugababes Intro 

 

The histogram shown in Figure 31 represents the data extracted from the Nickelback Intro and 

Sugababes Intro excerpts. It shows the magnitudes of a particular IBR frame, quantised into 0.1 

intervals, and its frequency within the entire music sample. By examining the data in this way, 

maximum, minimum, median, standard and deviation measures can be extracted.  

 

It can been seen in Figure 31 that the Sugababes excerpt (shown as the dotted line) has a high 

number of IBR frames around its IBR mean of 2.5233. In fact, the distribution of IBR frames for 

the Sugababes excerpt is also normally distributed about this mean (which was confirmed by a 
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Kolmogorov-Smirnov test). The Nickelback intro excerpt on the other hand, is somewhat 

bimodal in its frame distribution. Whilst it has an overall IBR mean of 2.7351, there are a larger 

number of frames below the IBR value of 2 if compared to the Sugababes excerpt. This suggests 

that overall the Nickelback Intro excerpt has a higher number of frames that exhibit a higher 

correlation of dynamic range between the frequency bands employed in the IBR measure. In 

addition to this, there is a greater spread of higher value IBR frames within it. The reasons for 

this could be the transient nature of the Nickelback Intro excerpt with its staccato guitar, drums 

and dropouts. These parts all contain strong transients therefore it’s likely that there is strong 

correlation between bands if measured at their peak, especially when combined with hard 

limiting as you might find in this style of production. The spread of frame values could be as a 

result of the differing dynamics evident in the sample. Contrast that with the somewhat 

uncorrelated and distorted Sugababes Intro excerpt that doesn’t have particularly strong 

transients within it. 

 

 
Figure 32 - IBR Percentile Nickelback Intro vs. Sugababes Intro 

 

This data can also be shown in the form of a percentile plot (see Figure 32) which gives an 

effective insight into the underlying trend of the music with respect to the IBR metric. In Figure 

32 clear differences in IBR distributions are evident. The Nickelback Intro, above the 55 

percentile exhibits a higher number of larger IBR frame measures. These larger IBR frame 

measures could be as a result of the somewhat sparse arrangement employed in the sample, for 

example guitar intro followed by drum fill, followed by guitars and drums and as mentioned 
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previously, the perceptual dynamic this affords. The measures obtained below this point show a 

general trend of being less than that of the Sugababes Intro sample but only marginally. These 

lower IBR frames could be a result of the correlation between frequency bands due to the hard 

limiting or compression that could have taken place in the mastering process. In a similar way to 

the ‘Loudness Range’ measure (Skovenborg, 2012), upper and lower percentiles could be 

ignored therefore resulting in an IBR_diff  measure being extracted based on this data. 

 

If for example the difference between the 1st and 95th percentile is calculated, Nickelback Intro, 

in this case, would exhibit the largest IBR_diff with a figure of 4.8305 whilst the Sugababes 

Intro has a figure of 3.6027. 

 

 

 
Figure 33 - IBR Percentile Nickelback vs. Sugababes 

 

Figure 33 shown above details all 6 excerpts measured and their relative percentile distributions 

of IBR measures. Overall, it can be seen that all the Nickelback excerpts have a higher IBR_diff 

than their Sugababe counterparts, measured between the 1st and 95th percentile. For Nickelback 

Intro, Breakdown and Verse With Drums the values are 4.8305, 5.4614 and 5.0134 respectively. 

This shows clear differentiation between the dynamic content (or contour) measured at the three 

different points in the song with the introduction being the most contrasting. The Sugababes 

excerpts all show a very similar trend with respect to dynamic contour with IBR_diff values of 
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3.6027, 3.9546 and 3.6311 for the Intro, Breakdown and Verse With Drums respectively. This 

corresponds with the somewhat less dynamic differences evident throughout the Sugababes song 

if compared with the Nickelback song.  

 
5.7 Conclusions 

 

This experiment presented the temporal IBR as a measure to quantify audio quality with respect 

to punch and clarity. The results indicate that despite a musical piece having a smaller loudness 

range, it is the transient content and dynamic range de-correlation between frequency bands that 

could relate to higher subjective scores being given by the listeners.  

 

A degree of correlation was observed between subjective test scores and the objective IBR 

descriptor suggesting it could be used as an additional measure to describe punch and clarity 

with a piece of music. Limitations of the measure were identified which highlight that further 

consideration is required with regards to the choice of threshold adopted based on the range of 

dynamics detected within the musical extract and the possible inclusion of a gate as utilised in 

some loudness algorithms. 

 

The IBR statistical output, both in terms of percentile and histogram representation, is an 

improvement on the integrative-based method proposed in previous experiments. With reference 

to Experiment 2 in Chapter 4, the statistical IBR output affords more insight into the underlying 

dynamic contour of the sample under test than an overall dynamic range based measure. It also 

shows a clearer differentiation between the best and worst subjectively scoring excerpts used in 

this experiment. 
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Chapter 6 Elicitation and grading of punch in music 
 

 

The experiment conducted in Chapter 5 investigated the relevance of dynamic range and 

associated correlation of this measure between frequency bands, with the listeners being asked to 

grade excerpts in terms of perceived punch and clarity. It was concluded that the transient 

content and dynamic range de-correlation between frequency bands could relate to higher 

subjective scores by listeners when judging punch and clarity.  

 

Whilst it’s apparent from this study that listener perception of punch and clarity is related to the 

presence of dynamics, it’s important to establish which components of the audio signal 

contribute greatest to this and establish if other low-level parameters play a role. Therefore, a 

reverse elicitation method was utilised. 

 

The experiment is outlined in detail in the following sections. 

 

6.1 Method of testing 
 

As discussed in Section 2.5 the term punch is a subjective term, which is often used to 

characterise music or sound sources that exhibit a sense of dynamic power or weight to the 

listener. A reverse elicitation experiment was conducted in order to establish low-level 

characteristics of a signal deemed as ‘punchy’ by expert listeners. In this experiment, expert 

listeners were asked to create audio samples that they perceived as having punch using a multi-

band wave shaping process. They then graded the generated punchy audio samples in a 

controlled listening test.  

 

The samples created were then analysed with respect to various low-level features such as 

Spectral Centroid, Log Attack Time, Signal Intensity, Intensity Ratio, Rhythm Strength, Spectral 

Flux and Spectral Spread. 
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6.1.1 Elicitation exercise 

 

Twelve expert listeners took part in the initial elicitation exercise where they were asked to 

create audio samples by modifying a sound source using a multi-band wave shaping interface.  

 

A synthesised kick drum was chosen as the sound source for two key reasons. Firstly, the 

spectral and temporal components of the synthesised sound source could be carefully controlled, 

also the resulting kick sample did not suffer from room coloration. Secondly, due to the transient 

nature of a kick drum and its frequency range, it is often an instrument that’s used to add 

‘weight’ or ‘punchiness’ to music production and it contains a strong transient component that 

can be measured.  

 
Figure 34 - Test Interface Wave Shaper 

 

The kick drum source was synthesised using a T Bridge oscillator type model found in the TR-

909 drum machine. It was then fed through a 3-band linear phase filter, with respective cut-off 

frequencies and Q settings chosen to be the same as in the experiment described in Chapter 3 

(see Table 4). Each sub-band was then fed into a temporal shaper, the interface of which is 

shown in Figure 34 with the Pr1, Pr2 and Pr3 sections having 4 control knobs for each shaper.  

 

The test interface, shown in Figure 34 was intentionally left unlabelled and was merely a 

collection of control knobs in a random arrangement. Despite the knobs being in groups of 4, 

their functionality was also assigned randomly, therefore any pre-conceptions of typical audio 

wave shaping controls or production preference biasing effects were avoided. The listeners were 

asked to modify the sound source until they felt the audio exhibited an increased sensation of 

punch. They could continue modifying controls as long as they wanted until they thought they 

had achieved maximum punch. The exercise took place in a soundproofed control room using 
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headphones to eliminate room colouration and speaker influences. Playback levels were set to 

76dB(A). This playback level was aligned utilising the measurement of the RMS signal level and 

the headphone sensitivity of 112dB/1VRMS. 

 

 
Figure 35 - Example Waveshape Setting 

 

Figure 35 shows the relationship of the knobs to the waveshaping settings in an un-randomised 

order. From left to right, the knobs controlled attack time, peak level, peak-hold time and finally 

release time respectively. This detail was not shown to the listeners. 

 

During the wave shaping process, the experts were asked to maintain the loudness levels 

between the processed and unprocessed signals at all times. This was achieved by the use of 

Make-Up gain control marked MU adjust on the interface. The level was monitored using a 

NuGen Audio Loudness Meter (VisLM, 2012) and was set to a level of -32 LUFS.  

  

In order to achieve a compression like response, the reciprocal of the wave shaper output was 

used to shape the respective sub-band. The rationale behind wave shaping by envelope rather 

than modelling of a specific audio compressor was to reduce the number of experimental 

variables and prevent ‘equipment signatures’ being considered during the process by the 

listeners.  

 

Each listener was asked to process two separate instances of the sound source. The difference 

between the two was the inclusion of an instantaneous attack in the first source. The reason for 

this was to investigate the effect of batter head or beater change. In total 24 samples were 

created, 1 by every listener for each of the two sound sources. Each listener confirmed that when 

they referenced the processed sample with the original sound source, additional punch was 

perceived. All samples, including the sources were 44.1kHz, 16 bit, mono WAV format. 
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6.1.2 Subjective testing 

 

Eleven expert listeners took part in a controlled subjective listening test. They were asked to 

grade the ‘punchiness’ of the audio samples created during the stimuli elicitation exercise. The 

listening test took place in a sound proof control room using headphones to eliminate room 

coloration and the playback level was fixed at 76dB(A). This playback level was aligned 

utilising the measurement of the RMS signal level and the headphone sensitivity of 

112dB/1VRMS. 

 

A modified MUSHRA test formed the basis of the listening test. The test being modified to 

allow the listeners to rate the samples as either less punchy, more or the same as the hidden 

reference, in this case the unprocessed sample. The scale was continuous and ranged from 0 to 

140, with samples rated the same as the reference being scored as 70. A hidden anchor was 

utilised which was a 3.5kHz hi-pass filtered version of the reference. A section of the modified 

MUSHRA interface is shown in Figure 36, the full interface consisted of all 14 samples visible 

across the screen, consisting of the 12 listener created samples, hidden reference and anchor. The 

experiment was undertaken based on source 1 and then repeated with source 2. 

 

 
Figure 36 - Modified MUSHRA Interface 

 

Following the analysis detailed in ITU-R BS.1534-1 (2003), the individual scores were collated 

and a Mean Punch Score (MPS) profile for each sample was obtained along with 95% 

confidence intervals, for both experiments. In addition, the listeners were asked to describe what 
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they perceived the punch attribute to be, and these were collected as a set of verbal punch 

descriptors.  

 

6.1.3 Objective measurement 
 

A number of extracted parameters were analysed using the best and worst samples based on the 

normalised MPS achieved. The choice of parameter was guided by both the interpretation of the 

verbal descriptors given by the listeners and a choice of low-level audio descriptors described in 

the MPEG7 standard (MPEG 7). The signals were analysed using a combination of MATLAB 

scripts using an 1024-point STFT with a variable step size and Sonic Visualiser (Cannam et al., 

2010). 

 

Parameters measured were Spectral Centroid, Log Attack Time, Signal Intensity, Intensity Ratio, 

Rhythm Strength, Spectral Flux and Spectral Spread. A description of these measures can be 

found in Subsection 2.6.1 

 

6.2 Subjective listening test results 

 

Figure 37 and Figure 38 show the normalised MPS along with 95% confidence intervals. The x-

axis shows each wave-shaped file. File 1 (F1) is the unprocessed reference. Three listeners failed 

to identify the reference and therefore their results were not utilised. File 14 (F14) was the 

hidden reference and was identified by all listeners with a grading of 0, this file is omitted on the 

graphs. 

 
Figure 37 - Source 1 (Instantaneous Attack) - MPS vs. File 
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Figure 38 - Source 2  - MPS vs. File 

 

6.2.1 Verbal punch descriptors 
 

Each listener was asked to describe the sensation of punch and what they were making their 

choices based on. The following is a list of the descriptors collected.  

 

“Thud, Weight, Fast Attack, Thump, Gated Feel, Energy Burst, Hard, Dense, Focussed, Tight, 

Narrow, Defined” 

 

6.2.2 Statistical analysis 
 

A Repeated Measure ANOVA was performed on the subjective data set. The results showed that 

the samples had a significant effect on the results (p < 0.01, F = 26.703). The source itself was 

found to be insignificant (p = 0.676, F = 0.190). 

 

Multiple linear regression analysis of the high-level control settings chosen by the expert 

listeners was carried out, choosing the Mean Punch Score as a dependent variable and the three 

band control settings as independent variables. The reason for this analysis was to establish the 

key temporal parameters that could have the majority of the effect on the perceived punch 

attribute. Initial analysis showed that the make-up gain parameter had a large and incremental 

effect on the punch score albeit with a large standard error based on its model coefficient.  
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The make-up gain was utilised to re-normalise loudness levels after the other parameters had 

been modified. It was therefore deemed unnecessary to include it in the regression analysis in 

order to obtain correlation coefficients for the parameters of interest.  

 

Firstly, the Pearson correlation coefficient for each parameter was calculated using SPSS 

considering each parameter independently. The output of this analysis is shown in Table 10. In 

addition, the relative p-value is shown for each which gives an indication of statistical 

significance rather than correlation by chance alone.  

 

 

 Source 1 – Instant Attack Source 2 

Parameter Pearson Sig(1-tailed) Pearson Sig(1-tailed) 

LF Attack -.339 .045 -.439 .067	

LF Release .360 .035 .509 .038	

LF Peak Level .307 .063 .238 .217	

LF Peak Hold  .071 .364 .140 .324	

MF Attack -.414 .018 -.401 .087	

MF Release .245 .113 .325 .139	

MF Peak Level -.048 .407 -.197 .259	

MF Peak Hold .032 .439 .333 .133	

HF Attack -.287 .077 -.448 .062	

HF Release .324 .053 .239 .216	

HF Peak Level -.559 .001 -.663 .010	

HF Peak Hold .027 .447 .160 .300	

 
Table 10 – Pearson Correlation of Wave-shaper Parameters to Punch Score 

 

Dark grey highlights p-value significance level of 0.05, whilst light grey indicates a relaxed p-

value of 0.10. Considering the correlation levels specified by Evans (1996) along with 0.05 

significance level the LF Release was shown to have a weak positive correlation r=.360, p<.05 

(1-tailed) for source 1 and a moderate correlation r=.509, p<.05 (1-tailed) for source 2 

respectively. If taken in isolation, the respective r2 parameter could therefore account for 

approximately 13% and 26% of the variation in punch score for source 1 and 2 respectively.   

 

In the case of source 1, LF Attack was significant but again with only a weak negative 

correlation r=-.339, P<0.05. Looking at the same parameter for source 2, there is a stronger 

correlation however at this sample size it is not deemed to be significant. MF Attack shows a 

moderate negative correlation with a high significance level r=-.414, P<.018 (1-tailed) for source 

1.  
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The HF Peak Level parameter showed a moderate to strong correlation across samples 1 and 2 

cases and both could be deemed significant. As the HF Peak Level is reduced an increase in 

punch is observed. In the wave shaper model, this is valid as the actual level reduction is the 

reciprocal of this value.  

 

If the significance level is relaxed to 10%, the attack parameter across all three bands can be seen 

to have a correlation to the punch attribute; the significant parameters are shown in light grey. 

The negative relationship between the attack parameters and the punch attribute indicates that an 

increase in punch is observed when attack times are reduced. Conversely, a decrease in release 

times results in a decrease in perceived punch.    

 

The Pearson coefficients begin to indicate possible relationships between the perceived punch 

attribute and the underlying audio with respect to the wave shaping that has been employed. 

However, the coefficients shown are being considered independently and it’s clear that no single 

parameter has an overriding impact or indeed shows very strong correlation to the perceived 

punch attribute. Multiple linear regression was conducted and analysis results were dismissed 

due to a high degree of multi-collinearity (correlation between the parameters). This was 

indicated by the variance inflation factors of the parameters (VIF) having values > 1. A cause of 

this could be that two or more parameters have an equal effect on the variance of the punch score 

and/or some listeners may have been modifying a combination of parameters to achieve a level 

of punch equal to that if they had chosen a single parameter. 
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6.3 Objective measurement results 

 

The subjective experimental results were examined and through post statistical analysis of the 

data best and worst samples were identified with respect to the punch scores obtained. The 

naming conventions used in the objective feature measurement results relate to the subjective test 

results files as follows. 

 

Referring to Figure 37: 

• F1: Reference 1 

• F10: Source 1 – Best 

• F3: Source 1 – Worst 
 

Referring to Figure 38: 

• F1: Reference 2 

• F10: Source 2 – Best 

• F6: Source 2 - Worst 
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The following plots show the temporal values extracted for source 1. Values extracted for source 

2 showed similar trends. To aid in the interpretation of these plots the best, 2nd place and worst 

are plotted as red, blue and magenta respectively and the reference is shown as the dotted black 

line. In addition, only the initial 40ms or 20ms of the analysis is shown. This is due to the fact 

that after this point in time the signal to noise ratio became too low to warrant any useful 

measure. 

 

 

 
Figure 39 –Spectral Centroid of Source 1 Kick Drums vs. Time 
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Figure 40 –Spectral Flux of Source 1 Kick Drums vs. Time 

 

 
Figure 41 –Spectral Skewness of Source 1 Kick Drums vs. Time 
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Figure 42 –Spectral Spread of Source 1 Kick Drums vs. Time 

 

6.4 Discussion of results 

 

With reference to Subsection 6.2.2 detailing the statistical analysis made on the wave shaping 

parameters, it’s evident that there are some parameters that show a degree of significance with 

respect to the subjective punch scores, namely the LF Attack and Release times, the MF and HF 

Attack times and the HF Peak Level parameter. However, as previously discussed, the majority 

of parameters exhibit correlation with one another with respect to modelling of the punch score. 

As such, if a measure or prediction of the punch score is to be made based on the effects of the 

parameters highlighted, it would be beneficial to elicit the perceptual change based on the 

parameter in isolation.  

 

Figure 37 and Figure 38 show the mean punch scores for each sample for the two sources. With 

reference to these scores (for both sources) the highest score was obtained by F10 with an MPS 

of 107.07 and 114.2 respectively. 

 

Due to the ranking nature of the MUSHRA test, it is possible to rearrange the data as shown in 

Figure 43 and Figure 44. The samples are shown in rank order from left to right with the highest 

first for each source tested, e.g.  F10 has the highest rank score in each plot whilst F3 and F6 

have the lowest in each respective plot. 
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Figure 43 - Source 1 - Rank Scored 

 

 
Figure 44 - Source 2 - Rank Scored 
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Sample Spectral Centroid (Hz) 

Source 1 – Best 1263.11 

Source  2 – Best 1242.91 

Source 2 – Worst 1089.4 

Reference 1 809.54 

Reference 2 726.79 

Source 1 – Worst 575.14 

 
Table 11 - Spectral Centroid (1024-point FFT) 

 

Table 11 shows the Spectral Centroid for the reference sources and best and worst samples for 

each experiment. One can observe that the highest MPS ranking sample achieved a spectral 

centroid value of 1263.11 Hz, contrasting with 575.14 Hz in the worst case sample. With 

reference to a typical percussive instrument timbre (MPEG 7), a spectral centroid of 

approximately 1217.34 Hz would be expected. When comparing MPS for each sample, the top 

two samples in each experiment  have centroid measures around this figure.  

 

The spectral centroid measures in Table 11 were obtained by analysing the full temporal 

response of the kick samples and averaging the data. An additional analysis was run to measure 

the spectral centroid at the point of maximum intensity within the onset period. A value of 41.9 

Hz was obtained and was typical amongst all samples. This suggests that the majority of onset 

power is centered at this frequency, which is closely related to the 47Hz tuning of the kick 

sample. As the samples were produced using a simple T-Bridge arrangement, which is 

fundamentally a modulated sine wave without any complex modelling of the membrane, beater, 

drum shell or dampening, the spectral centroid measure outlined above would be expected. 

Further testing to establish variation in punch perception upon modification of the centroid at the 

point of maximum onset could be beneficial. If the spectrum of the onset was made more 

complex, one might expect the maximum onset centroid to change. 

 

Figure 39 shows the spectral centroid measurements made on source 1 reference and samples 

with respect to time. The best scoring sample is shown to have a higher centroid value than all of 

the other samples throughout the sample timeframe except for falling below the centroid for the 

3rd ranking sample, in the final 5ms. The lowest scoring sample shows a general trend of having 

a lower centroid value throughout its timeframe. Looking at Figure 43, which shows the 

extracted rank scores, there is clear differential between the best, worst and 2nd place samples. 
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This ranking is also evident in Figure 39 between these samples taking the centroid as a metric.  

Inspection of both Figure 37 and Figure 43 shows the remainder of the samples have a high 

degree of overlap in their respective MPS values. Likewise, the temporal spectral centroid 

measures obtained for these samples show a clustering of centroid value. This suggests, in these 

cases, that the centroid measure shows some correlation with the mean punch scores obtained. 

 

 

Subband (Hz) Ratio 

1 (0-344) 0.643 

2 (345-689) 0.067 

3 (690 – 1378) 0.071 

4 (1379-2756) 0.067 

5 (2757-5512) 0.055 

6 (5513 – 11025) 0.046 

7 (11026 – 22050) 0.042 

 
Table 12 - Intensity Ratio of Source 1 reference  

 

Subband (Hz) Ratio 

1 (0-947) 0.736 

2 (948-3186) 0.1206 

3 (3187– 22050) 0.1434 

 
Table 13 - Intensity Ratio of Source 1 reference Using Wave-shaper Bands 

 

 

Intensity ratio is an indication of which frequency bands constitute the majority of a signal's 

power. From the Intensity Ratio measures taken, the first sub-band had the highest value for all 

of the samples. Typical values measured exhibited a pattern similar to the experiment 1 reference 

sample shown in Table 13. As the samples were synthesised with a fundamental tuning of 47Hz, 

this pattern might be expected. Given the majority of power exists within the low band of the 

samples under test, it could be possible that this band has a higher weighting contribution to the 

punch scores given by the listeners. When the signal energy ratios were examined using the 

bandwidths used in the wave shaper, typically there was equal mid and high frequency energy 

present in all of the samples tested. Table 13 shows how the energy is distributed for the 

reference in experiment 1 within the bands allocated for the wave shaper. 
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Sample Rhythm Strength 

Source 2 – Best 5200 

Source  1 – Best 4970 

Source 1 – Worst 4800 

Reference 1 4790 

Reference 2 4670 

Source 2 – Worst 4230 

Table 14 - Rhythm Strength 
 

 

Table 14 shows the rhythm strength measured for the references and best and worst sample for 

each source. Both the best MPS samples measurements were greater than both the reference 

samples and worst MPS rated samples. Rhythm strength is effectively the sum of the magnitudes 

of the lowest sub-band power spectrum of the signal, a more detailed overview of this measure 

can be found in Subsection 2.6.1. This could be intuitively linked to the rating of the perceived 

punch of the sample however, the spectral centroid measures suggest that features other than 

those associated with the lowest sub-band dictate the level of punch perceived.  

 
The log attack times measured for the source 1 best, worst and reference samples are -0.856, -

1.092 and -1.468. This measure is based on the logarithm of the detected onset time in seconds. 

The intensity over time for these three samples are shown in Figure 45. The smaller the log 

attack time corresponded with the shorter onsets of intensity shown. 

 

 
Figure 45 -Signal Intensity vs. Time 
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The best scoring sample has a longer onset but larger rhythm strength than the other two. Hence, 

it has more spectral energy in the onset portion of the sample. A shorter onset time is often 

associated with a punchy signal however the results suggest that the overall intensity contained 

within the onset shows a stronger relationship. 

 

If one examines Figure 45 it can also be seen that the best scoring sample has a much larger 

intensity throughout the timeframe observed. This results in a reduced crest factor as the RMS 

level of the overall signal is larger. Crest factors for the best, worst and reference in this plot are 

8.358, 10.559 and 12.428 respectively. With reference to the MPS obtained, the reference scored 

better than the worst case sample with source 1, thus suggesting that crest factor alone may not 

correlate well with punch perception.  

 

Figure 40, showing the spectral flux measure over time for source 1, indicates that there is more 

flux in the best scoring sample than the worst during the initial 9ms. However, there isn’t a 

significant correlation between the flux measure of the other samples and the MPS rankings 

obtained. This could be due to the MPS rankings having a high degree of confidence interval 

overlap within the best and worst sample boundaries. Inspection of the plot does show that the 

spectral flux is effective in signifying the periods during which the audio signal is evolving but 

in the worst sample, this is less evident.  

 

Looking at the temporal measures of spectral skewness, Figure 41, there is a clear differential 

between the best and worst ranking punch samples. The best-ranked sample shows a lower 

skewness value than the worst ranked sample in addition to it possessing a more uniform 

horizontal trajectory with respect to time. This lower skewness values indicate biasing towards 

the low frequency ranges of the magnitude spectrum. 

 

Figure 42 shows the spectral spread measure with respect to time. Again, there is a clear 

differential between the best and worst ranking samples. Spectral spread indicates how 

distributed the spectrum is about its centroid value. The best scoring sample has a highest 

spectral spread measure up to the 18ms point, this suggests that the onset in this case has a wider 

distribution of frequencies about the centroid. Typical of percussive sounds, the onset portion of 

the signal is noise-like, as such it has a wide distribution of signals within it and (taken in 
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isolation) and is less tonal. Comparing the other samples to the best scoring, their onsets could be 

considered as being less noise like, perceptually being voted as having less punchy.  

 

The spectral centroid measures shown in Table 11 indicate significant variation between the 

samples tested. Given the initial sample creation exercise involved only temporal wave shaping 

and no direct modification of frequency spectrum (i.e. use of equalisation) took place, the 

resulting change in centroid (and other spectral attributes measured) was a direct result of the 

envelopes used. This is expected, as the temporal modification results in harmonic distortion and 

therefore additional frequency components appearing in the frequency domain. 

 

6.5 Conclusions 
 

The experiment suggests that there is a possible correlation between the perceived punch 

attribute and the measure of rhythm strength, however, the measure is deemed not resolute 

enough with respect to the frequency bands it employs. The crest factor of the signal does not 

correlate well with the punch perceived. Additional experimentation is required to establish 

which sub-bands play a more dominant role with respect to onset strength and the perceptual link 

to punch. As it stands the rhythm strength measure is considered not resolute enough.  

Subsection 6.2.2 indicated statistically that the attack and release times used in the wave shaper 

did have a bearing on the punch perceived by the listeners but unfortunately linear regression 

was unable to establish effective coefficients due to multi-collinearity being present.  

 

The results confirmed the author’s belief that rather than any one particular control setting being 

responsible for punch modification, a number of low-level features must be attributable. The 

important factor lies in not the process involved in audio modification but the inter-relationship 

between the controls resulting in the final signal. As such, further elicitation based on low-level 

feature modification is required. 

 

As was shown, a high centroid value and greater spectral spread indicated some correlation with 

punch perception. Moments within a musical piece that exhibit greater spectral spread would 

generally correspond with percussive type components; these in turn would correspond with 

moments of punch perceived within the signal. Higher centroid values could be an indication of 

the culmination of energy present at the onset itself. It is therefore assumed that onsets within 

sub-bands and cross-band summation of energy within these onsets could be a useful predictor in 
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punch perception.  In the case of the samples used in this experiment (kick drum), the overall 

spectral centroid is important in establishing the timbre at least lies within the boundaries 

expected of a percussive instrument.  

 

Other low-level features identified that showed a degree of correlation with the punch attribute 

were attack and release times, spectral skew and rhythm strength. 

 

The attack time and release times were separated into frequency bands chosen in the wave 

shaper, it would be beneficial to analyse the perceptual changes at a higher resolution in respect 

of number of bands tested, and indeed test each independently. Further to that, subsequent 

objective measures were taken based on both the full bandwidth and temporal response of the 

signal. Due to the correlation shown in attack and release times with the punch attribute, there 

are advantages in instigating signal separation prior to performing these measures. Signal 

separation in this context is the separation of the attack and release portions of a piece of audio 

from the somewhat steady state or harmonic portion (sustain portion). The rationale behind this 

was first mentioned in Section 1.2 as follows: 

 

“...The onset of the transient present across octave bands affects the listener perception of punch, 

with the lowest octave attributing the most punch as the onset is decreased and vice-versa. Punch 

is therefore related to transient change and the energy density (summation across frequency 

bands) occurring at a particular moment in time and duration."  

 

The following chapter presents a hybrid multi-resolution technique for the signal separation of a 

mixed musical signal (and subsequent measurement of attributes contained within it). 
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Chapter 7 Hybrid multiresolution analysis of punch in music 
 

 

Decomposing music into simpler percussive, harmonic and noise components could enable a 

more detailed and focused measurement of signal attributes. For example, extraction of the 

percussive elements within a complex mix would enable the independent analysis of objective 

measures with respect to perceptual attributes, such as punch. 

 

A hybrid multi-resolution technique that initially decomposed the musical signal using a 

quadrature mirror filter bank (QMF) before applying a short time Fourier transform (STFT) to 

each band was explored. QMF filters were chosen as their symmetry allows for perfect 

reconstruction of the audio during playback. By adopting this technique, it is possible to segment 

the signal energy into discrete bands and tune the STFT window size based on the frequency 

range of interest. The adoption of a hybrid system offers advantages over a single transform 

method. One advantage is a high degree of resolution can be achieved in both the time and 

frequency domains, this is explained later in Section 7.4.  

 

Following the initial transform process, transient, steady state and residual components (TSR) 

are extracted. The method of separation uses iterative median filtering to achieve a high degree 

of separation into the TSR components. Median filtering is a technique utilized in image 

processing for edge detection and has been shown to give good results with low computational 

overhead when used for TSR separation.  

 

Each of the components is then analysed using well-established spectral and time based 

measurements, e.g. spectral centroid. In addition, new measurements are investigated which 

explore the relationship between each component.  
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7.1 Sines, transients and residuals 

 

Music can be considered to be a collection of complex components each with differing harmonic 

and non- harmonic attributes. These components can be categorized as a steady state, transient 

and residual.  

 

The transient portion of a complex tone contains a great deal of information with respect to 

perceptual attributes of the source (Rasch & Rasch, 1981; Collins, 2005). In addition, given the 

transient information is inherently related to defined moments of change in a piece of music, this 

information is paramount in determining a punch measure. The experiment described in Chapter 

5 also reinforces these points. 

 

The transient part of the signal can be loosely defined as the initial time interval in which the 

signal is evolving into its steady state. The transient definition within the context of this thesis is 

defined in Section 2.11 

 

Detection of transients can be useful in such applications as note detection, signal enhancement, 

dynamic range control and musical transcription (Avendano & Goodwin, 2004; Walsh et al., 

2011; Wang & Tan, 2008; Zaunschirm et al., 2012). Various methods of transient detection can 

be employed with varying degrees of success depending on genre and application (Avendano & 

Goodwin, 2004; Zaunschirm et al., 2012).  

 

Almost all genres of music have significant transient content throughout as a result of differing 

tone onsets. Onsets can be considered to have differing onset rates, e.g. drums would result in 

fast onset times whilst a bowed instrument such as a violin may have slower onset times. Despite 

having a slow onset, it can still be considered as having a transient characteristic initially.  

 

Generally, transient information can be considered as the non-stationary components of a signal. 

Non- stationary being defined as a component that has a degree of magnitude or phase change 

within a particular time frame. Once transients have been detected, they can be enhanced or 

removed from the signal. The latter would result in the steady state and residual part of the signal 

remaining. This separation process is discussed in Subsection 7.4.2 
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The steady state components of the signal are usually related to pitched instrumentation. It’s 

shown in Section 7.6 that analysis of this information independently can reveal parameters such 

as note length, scale and magnitude.  

 

Residual components can be classified as neither steady-state nor transient. Consider noise 

within a signal, having both a random distribution of magnitude and phase within a time frame. 

The residual components relate therefore to the noise floor of the signal under test. Much in the 

same way that images can be de- noised, it’s possible to de-noise audio signals resulting in the 

potential for increased clarity and to improve perceived audio in audio compression algorithms.  

 

7.2 Source separation 
 

To precisely discriminate between transient, steady-state and residual components is not an easy 

task. Much work has been performed in this area and as such, excellent reviews and tutorials on 

the subject are available (Bello et al, 2005; Daudet, 2005). Considered opinion is that for sharp 

onset transients, the results of extraction are largely independent of the method chosen. It 

therefore makes sense to utilise methods that have minimum processing and latency load when 

considering audio metering applications.  

 

The focus of this thesis is the modeling of the punch attribute, with a view towards its use in 

audio metering therefore, the more complex soft onset detection was not considered.  

 

7.3 Fast onset detection method 
 

Fitzgerald (2010) proposed an efficient method of transient and steady state separation that 

utilised median filtering. This approach, inspired by Ono et al. (2008) considers that transient 

components will be broadband in nature with highly concentrated energy in time, whereas 

steady- state sources are taken as discrete narrow-band components with smooth magnitude 

temporal behavior. These components can be seen in spectrogram as vertical and horizontal 

ridges, respectively.  

 

Further investigation utilising this method was performed Iragaray et al. (2013). Their work 

incorporated the use of a Wiener filter stage and a Stochastic Spectrum Estimation (SSE) method 
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proposed by Laurenti et al. (2007) which replaces the median filtering stage of the above with an 

alternative non-linear filter.  

 

Through evaluation of the differing approaches with respect to relative performance and keeping 

in mind the need for simplicity, Fitzgerald’s approach was adopted to detect fast onsets. 

However, the separation algorithm was modified to reduce spill between components. This 

modification, proposed by Driedger et al. (2014) incorporated separation factors which allow for 

the tightening or reduction of steady- state or transient bleed.  

 

7.4 Implemented analysis model 

 

The chosen analysis model was implemented using MATLAB and is shown in Figure 46. It 

incorporates a filter bank in its first stage, which decomposes the signal into sub-bands. The 

advantages of this approach are that the subsequent processing can be tuned to the bandwidth of 

each sub-band (i.e. allow variable time and frequency resolution as required) and the sub-bands 

can be psychoacoustically tuned to the auditory response.  

 

 
Figure 46 - Analysis Model 

 

The choice of sub-band filtering was based on various factors, processing speed, possible 

reconstruction of the signal with minimal artefacts and also time alignment of resulting data.  

 

Initially, stationary packet based wavelet decomposition was investigated (Learned & Willsky, 

1995). The decomposition resulted in sub bands that were aligned in time and signal 

reconstruction was possible with no artefacts. However, this approach is highly redundant given 
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that each resultant packet contains all components between 0 and Fs, where Fs is the sample rate 

of the signal under test.  If one considers a full packet wavelet tree at the lowest level of 

decomposition, each packet contains equal bandwidth components of Fs/L+1, where L is the 

level of decomposition. Given that the bandwidth of interest varies at each decomposition level, 

it makes sense to employ down sampling at each level thus reducing the data storage 

requirements whilst also increasing the frequency resolution at the lowest scale.  

 

Utilising a full packet tree does have some advantages for signal classification (Learned & 

Willsky, 1995) for example an energy map of wavelet packets can be computed resulting in a 

feature set of a particular sound. This feature set can then be compared against a library of 

known sets resulting in identification or classification of the signal itself. This approach could be 

adopted, for example, in the case of a bass drum to detect not only whether a ‘hard beater’ or  

‘soft beater’ had been used, but also the type and size of kick drum used during recordings. 

 

For this work, a full packet tree decomposition was deemed unnecessary. As a model based on 

the auditory response requires lower resolution at higher frequencies, sub-bands could be chosen 

to reflect this.  A critically sampled constant-Q filterbank of quadrature mirror filters (QMF) was 

employed to implement the filtering process. QMF filters are pairs of matched but reciprocal 

filters that are symmetrical about 0.5π. By being matched they allow for perfect reconstruction 

should the original audio be required. Down-sampling by a factor of 2 is employed after each 

QMF filter stage, thus reducing data redundancy. To keep processing overhead to a minimum, 3 

level decomposition into 4 bands took place as shown in Figure 47. 

 
Figure 47 - Filterbank of Cascaded QMF Filters 
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This filtering results in four sub-bands, as shown in Table 15. 

 

 

Sub band Frequency Band (kHz) 

SB3 11.025-22.05 

SB2 5.5123- 11.025 

SB1 2.756 – 5.5123 

SB0 0 – 2.756 

Table 15 - Measurement Frequency Bands 

 
Each sub-band is then processed to give a time-frequency representation computed using the 

Short-Term Fourier Transform: 

        ( 14 ) 
 

with t Î [0:T-1] and kÎ [0:N]. k represents the number of bins N/2, where N is the DFT frame 

size. w(n) is a hann window and H is the hop size. The hop size was chosen to enable a 50% 

overlap. 

 

 

7.4.1 Multiresolution analysis 

 

Due to the down-sampling nature of the QMF filterbank, the STFT window size is actually self-

optimising with respect to the separation process. As explained in Section 7.1, strong percussive 

onsets tend to spread across the spectrum in a broadband nature, this spread tends to narrow in 

time in the upper frequency bands as the frequency components decay quicker. In order to 

capture this information in time, a shorter STFT analysis window is required. On the contrary, 

with respect to the low frequencies, these evolve much more slowly over time and require longer 

STFT analysis windows.  

 

If one keeps the STFT frame size fixed, due to the signal down sampling, we are in fact able to 

analyse the signal on a multi-resolution basis in time. Thus, we achieve a system that has good 

time resolution in the upper sub-bands and good frequency resolution in the lower sub-bands, 

which is conducive to a psychoacoustic model. 

 

€ 

S (t,k) = w(n)
n=−∞

∞

∑ s(n + tH)e− jωkn /N
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The signal under test had sample rate of 44.1kHz. The chosen frame size was N=256. This 

resulted in fast computation and a hop size equating to 2.9ms. As outlined earlier, the same N 

frame size was adopted for each sub band, resulting in a hop sizes equating to 5.8ms and 11.6ms 

respectively. The lower 2 bands having the same hop size. The number of bins allocated for each 

frequency remains fixed relating to the frame size and is therefore 128. The resulting frequency 

resolutions for each of the four bands are 43Hz, 21Hz, 11Hz and 11Hz. The resulting STFT 

coefficients are then re-combined into an overall multi-resolution data block, a waterfall example 

of which is shown in Figure 48, before being passed through the median filters. 

 

 

Figure 48 - Multiresolution STFT of 'Animal' WAV. 
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7.4.2 Separation of components 

 

After the multi-resolution data block is produced it is fed into the component extraction  block 

shown in Figure 46. Median filtering takes place within this block. The median filter operates by 

replacing a given sample in the block by the median of the sample values in a window around 

the sample. If the window size used is odd, the original sample is simply the middle value of the 

sorted window of samples. If the window size is even, the sample value is obtained by the mean 

of the two values in the middle of the window. Median filters used in this fashion suppress 

impulse noises whilst enhancing the steady-state and transient components. The window size 

used in this experiment was chosen as 13, which empirically proved to offer the best separation. 

 

Median filtering performed across the time axis results in a steady-state enhanced data block, in 

addition transient outliers are suppressed. Likewise, filtering across the frequency axis tends 

towards suppressing the steady state components and enhances the transients.  

 

This results in two median filtered STFT data blocks, St & Sss representing the transient and 

steady-state components respectively. These data blocks are then used to produce two binary 

masks utilising steady state and transient thresholds defined as bt and bss. Following the 

proposal outlined by Driedger et al. (2014), separation factors of 3 and 2.5 were chosen for bt 

and bss respectively. These gave good separation when tested on a variety of sources. 

 

The mask equations are defined as follows: 

 

                      ( 15 ) 

                      ( 16 ) 
 

Where t and k are the time and kth frequency bin respectively.  Separation is achieved by 

applying the masks to the overall	multi-resolution	 data	 block	which	 results	 in	 two	 separate	

transient	and	steady	state	data	blocks:  

 

                       ( 17 ) 

                         ( 18 ) 
 

€ 

Mss (t,k) = (Sss (t ,k) /St (t ,k) + e) > βss

€ 

Mtr (t,k) = (St (t ,k) /Sss (t,k) + e) ≥ βt

€ 

TR(t,k) = S(t,k) *Mtr (t,k)

€ 

SS(t,k) = S(t,k) *Mss(t,k)
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In addition, the method also enables the extraction of the residual components. The mask of 

which is defined as: 

 

                      ( 19 ) 
 
The residual components are then extracted as: 

 

                        ( 20 ) 
  

€ 

Rm (t,k) =1− [Mtr (t,k) |Mss(t,k)]

€ 

R(t,k) = Rm * S(t,k)
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An example of a separated file is shown in Figure 49 (a) and Figure 49 (b) which shows the 

transient and steady-state components respectively. The audio source formed the multi-resolution 

data block shown in Figure 48. The residual isn't shown as the resolution required in an image is 

insufficient. 

 

 

  
 

Figure 49(a) Transient (b) Steady State Median Filtering 
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7.5 Analysis parameters 

 

As outlined in Section 2.10 common metering tools used during the mixing and mastering 

consider the signal as a whole. Whilst being accurate for measures such as absolute peak level 

and overall RMS, a subsequent calculation of dynamic range (whatever the integration window 

size) is likely to be somewhat meaningless other than allowing a ‘loudness driven’ metric for 

target mixing or mastering. This is due to the RMS calculation used being the sum of all the 

signal components, those being the transient, steady state and residual. 

 

The primary use of integration in dynamic range measures is to stabilise variations caused by the 

individual component parts of the signal. This is fine as a representation of ‘overall’ or ‘macro’ 

dynamics, but does nothing to represent the true nature of the audio with respect to 

microdynamic activity and listener perception. For example, during moments of true dynamic 

activity, one would expect a measure based only on the components that relate solely to this 

activity. such as the drums, or other onsets in the signal. Currently, dynamic range meters would 

utilise the steady state components of the signal in either the RMS or loudness calculations. 

 

Through the use of component separation, it’s possible to measure elements within the complex 

musical signal either individually or grouped. The hypothesis being that this approach will give a 

more accurate objective representation of listener perception. In this analysis, the overall frame 

intensity of each component is calculated as a summation of each frequency bin for every STFT 

hop. Following this summation, each intensity block can then used as a separate or group 

measurement. The energy summation results in Transient (TR), Steady-state (SS) and Residual 

(R) intensity components. 

 

A proposed measure of interest is the Transient to Steady State ratio (TSR). Considering the 

hypothesis outlined in Section 1.2 and Chapter 6 that punch perception is related to transient 

change at a particular moment in time in addition to the overall loudness at that time, this 

measure considers all three.  

 

Should the steady state component intensity be significant at the timeframe of measurement, the 

transient components will inevitably be somewhat masked by the steady state components 

resulting in overall punch perception being affected. Conversely, should there be minimal steady 
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state component, the transient component has the potential to increase punch perception and 

itself, will not be masked. 

 

In addition, it should be possible to measure the steady state signal without the detected transient 

components, thus determining the potential for masking. 

 

The measure is given as: 

 
𝑻𝑺𝑹(𝒕) 	= 	𝟏𝟎 ∗ 𝒍𝒐𝒈[𝑻𝑹(𝒕)	/	𝑺𝑺(𝒕)]         ( 21 ) 
 

where TR & SS are the sum of the k magnitude bins at time t of the transient and steady state 

components respectively. The measure is expressed in dB. An additional parameter can also be 

measured which takes into account the residual component, as follows: 

 
        
[𝑻𝑺𝑹 + 𝑹](𝒕) = 𝟏𝟎 ∗ 𝒍𝒐𝒈[𝑻𝑹(𝒕)/[𝑺𝑺(𝒕)|𝑹(𝒕)]]        ( 22 ) 
 

This parameter can be likened to a dynamic range measurement in the presence of a signal i.e. 

with no noise-gating present. The level of noise or residual component is expected to affect the 

punch perception in addition to clarity within a complex mix. 

 

Further to these parameters, spectral centroid measures were taken on a frame by frame basis of 

the transient and steady state components. Equation 23 shows the transient component centroid 

measure, where f(n) is the bin centre frequency. Steady state version is calculated in the same 

way: 

 

                       ( 23 ) 
 

Considering the spectral centroid of a complex mix of components, one would expect the 

measure to vary wildly and thus its use is somewhat limited for audio classification or 

mix/mastering purposes. It’s expected that focusing the measure on isolated components may 

yield a more useful metric.  

  

€ 

SCtr(t,k) =
f (n)TR(n,k)

n=−∞

∞
∑

TR(n,k)
n=−∞

∞
∑
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All the measures utilised are summarised in Table 16 

 

Parameter Description 

TR Transient Component Intensity 

SS Steady-state Component 

Intensity 

R Residual Component Intensity 

TSR Transient to Steady State Ratio 

(dB) 

TSR+R Transient to Steady State Ratio 

plus Residual (dB) 

SCtr  Spectral centroid of transient 

frame (Hz) 

SCss Spectral centroid of steady state 

frame (Hz) 

 
Table 16 - Measurements Performed 

 

A raised-cosine (Half Hanning) filter can be applied to the resulting measures which further 

approximates to the integration present in the auditory response. A window size of 

approximately 100ms was chosen for this. Plots in Section 7.6 that have this filter applied are 

shown as ‘Smoothed’.  

  



 

 

 149 

 

7.6 Results and discussion 

 

The sound sample under test was a 44.1kHz WAV file of the Def Leppard’s song “Animal”. The 

sample was converted to mono and normalised prior to measurement. The opening bars of the 

song were the point of measure. 

 

 

 

 
Figure 50(a) TSR and 50(b) TSR+R vs. Time 
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Figure 51 - Transient Intensity Summation vs. Time 

  



 

 

 151 

 

 

 

 

 

Figure 52 - Spectral Centroid (a) Transient (b) Steady-state and (c) Overall 
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With reference to Figure 50 showing the transient to steady state component ratio with and 

without the presence of the residual, one can see that the measure of dynamics is greatly 

increased. In the case of the non-residual calculation the maximum peaks average around -5 to -

10 dB and in some case rise above the 0dB point whereas when the residual is considered the 

associated levels fall to between -13 to -22 dB. In addition to this, a small kink is evident at the 

start of the trace when the residual is included. This suggests that there is residual component 

energy fluctuation at the beginning of the sample.  

 

The dynamics of the signal are clearly visible resulting from the presence of the intensity peaks 

within the extracted transient components. Of note is the addition of peaks present at 75 block 

intervals. These are as a result of the small intensity peaks in Figure 51 at the corresponding 

points in time. These peaks are due to a palm-muted guitar adding an additional percussive 

element to the arrangement. Ordinarily, this would not be visible when using standard integration 

based metering but their inclusion in the arrangement does add an additional punch element that 

should be considered. 

 

The difference between the TSR and TSR+R measures is simply the inclusion of the residual 

components in the ratio calculation. As such, in a track with little in the way of bleed or 

excessive reverberation, the two measures would be very similar. In the case of a poorly mixed 

track where excessive noise is present, whether as a result of the recording process or amp hiss, 

the measures would give differing results. The TSR+R measure could therefore be used as a 

qualitative measure.  

 

With the residual extracted, it should be possible to effectively de-noise a piece of audio much in 

the same way that an image is processed. By examining the residual and suppressing elements 

that may constitute unwanted noisy components a noise free signal could be recomposed. 

However, the residual may contain important information that can’t be discounted completely, 

for example, the median filtering approach adopted tends to leave some of the lower level 

transient tails within the residual. An addition to the model could be employed to re-assign these 

tails to the transient component block. In addition, distortion may have been added to certain 

instruments to enhance timbre, these artefacts may well appear in the residual component and 

therefore may be deemed ‘important’ as far adding to the overall texture of a music track. 
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If the mix were such that the steady state components were made much louder, thus masking the 

transient elements somewhat, the peaks shown in Figure 50(a) & (b) would be expected to 

reduced accordingly.  In the case of a piece of music without a strong percussive element, the 

transient components will be a result of the note onsets of other instrumentation provided they 

possess spectral spread.  

 

For a track, where the sound sources had been mixed effectively with minimal masking there 

should be good transient intensity which will result in a high TSR being achieved, accurately 

representing greater perceived punch.  

 

With respect to Figure 51 which shows the intensity of the transient (TR) component over time, 

each peak corresponds with either a kick, snare or palm muted guitar chord. If this measure were 

utilised for onset detection for drum transcription, the latter palm muted onset could be removed 

simply by the introduction of an ‘onset detection threshold’. 

 

By utilising the spectral centroid of the transient component, which is shown in Figure 52 (a), 

fluctuation in peaks correspond to the nature of the audio under test, namely, the pattern 

KSKSKSK, where K and S represent Kick and Snare respectively. Therefore, unlike the centroid 

measure of the entire signal, Figure 52 (c), the measure could be useful in discriminating 

between percussive sources now that the centroid is independent of the steady state and residual 

colouration. The spectral centroid measure of the steady state component, Figure 52 (b), reveals 

the ascending nature of the frequency components resulting from the pitch bending guitar part 

present on every quarter note. Again, this is in contrast to the centroid measure of the entire mix, 

which reveals very little. 

 

Due to a sub-band approach being adopted it is possible to tune the size of the median filters 

further to enhance the source separation. As each band has different time and frequency 

resolution at the sub band level, different values of median filter length should lead to more 

optimal separation. For example, it was noted with the model adopted, that the median filter 

applied across the vertical (frequency axis), tended to favour the higher frequencies rather than 

the lower ones, a larger median filter length improved this. In Dreiger et al (2014), different filter 

sizes in addition to DFT frame sizes were explored and this should prove very useful in 

progressing this research.  
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The inclusion of a soft onset detection mechanism should yield additional components that could 

be included within the transient data block, however, whether slower onsets would exhibit any 

correlation to punch perception requires more analysis. The use of the both phase deviation and 

weighted phase algorithms were explored and whilst effective in detecting the softer transients, 

they were too susceptible to noise such as that introduced by distorted guitars. A model utilising 

the Euclidian distance may be more useful in this respect.  

 

The model utilises 4 sub-bands. A more elaborate and natural extension to this could be the 

implementation of a full auditory filterbank as proposed by Klapuri (1999) whereby TSR 

analysis could take place close to that of a natural hearing response. Octave band filtering may 

also yield interesting results, other alternatives could be the use of the Mel frequency-scale and 

Mel Frequency Cepstral Coefficients (MFCC). 

 

7.7 Conclusion  
 

A hybrid multi-resolution model has been proposed that decomposes a complex musical signal 

into its transient, steady state and residual components. This allows the transient portion of the 

musical signal to be analysed independently from or in relation to the other components.  The 

measures proposed are Transient to Steady-state Ratio (TSR) and Transient to Steady-state Ratio 

+ Residual (TSR+R). The signals used in testing were complex audio (polyphonic) musical 

works consisting of drums, bass and guitars. The method was successful in achieving source 

decomposition and the associated measures have been shown to have possible implementation in 

both mixing/mastering and also audio transcription and retrieval. The method explored enables 

the possibility to perceptually weight the transient and steady state frequency bands and 

considering that lower spectral centroid components may perceptually exhibit more punch to the 

listener, the TSR measure could be weighted accordingly. 

 

There is a need to expand the methodology further to incorporate more frequency bands and also 

to explore the perceptual relevance of onset times detected in each with the punch attribute. The 

following chapter expands this work by examining the onset time and frequency components of 

the signal across octave bands. The purpose of which is to extract perceptual weightings that 

could be utilised in a measurement model. An objective model is then proposed which utilises 

the weightings obtained from this analysis.  
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Chapter 8 Towards a perceptual model of punch 
 

This chapter presents a perceptual model for the measurement of ‘punch’ in musical signals. The 

model combines signal separation and low-level feature measurement to produce a perceptually 

weighted ‘punch’ score. The parameters explored were the onset time and frequency components 

of the signal across octave bands. The ‘punch’ score was determined by a weighted sum of these 

parameters using coefficients derived through a large scale listening test. The chapter concludes 

by evaluating the perceptual model using a small number of commercially released musical 

extracts. 

 

Analysis of the results from Chapter 6, indicated the need to measure the effect of onset time 

independently with respect to listener perception of punch. Independently in this case means 

across each octave frequency band and in isolation. By doing so, it's possible to map the 

associated change in punch perception with respect to onset time and the octave frequency and 

derive weightings for each band. In order to facilitate this, a noise burst test was undertaken.  

 

Pink noise bursts were chosen as the stimuli to facilitate equal energy per octave and a spectrum 

that is roughly similar to that of a musical signal. The noise was divided into octave bands to 

roughly correspond with the logarithmic hearing response. 

 

8.1 Noise burst listening test 

 

The controlled listening was test undertaken by 11 expert listeners. The test involved each 

listener listening to and grading the perceived punch of 45 shaped pink noise bursts. Each score 

was collated and a mean punch score for each onset at each octave frequency was calculated.  

 

The 45 samples were all 100ms in length, 16 bit and presented in mono. The samples were 

constructed from 9 octave band limited pink noise bursts shaped by five onset times of 0ms, 

5ms, 10ms, 20ms and 60ms. The number of onsets times were limited in order to reduce the 

testing time. All the samples had a fixed offset time of 40ms to help negate any offset effects. 

They were also loudness normalised using a two-stage filtering/gain algorithm, as described in 

Section 8.2. 
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The 100ms duration of the bursts was chosen as it closely approximated to the mean length 

measured on a collection of kick and snare drum samples. Their lengths being typical of these 

transient sources found in music. The onsets times were also chosen based on signal 

measurement data and to allow both a variation within the 100ms timeframe and the facilitation 

of a 40ms offset. 

 

8.2 Loudness normalisation 
 

In order to present the noise burst samples at equal loudness to the listeners, the samples were 

pre-processed with both spectral and temporal weighting coefficients. The spectral weighting 

curve was based upon that set out in recommendation ITU-R BS.1770-4 (2015). Modifications to 

the curve were adopted, namely the gain of the pre-filter was modified to 10dB as opposed to 

4dB and the corner frequency of the shelf was adjusted to 1kHz rather than 1.6kHz. 

 

 
Figure 53 -Spectral Weighting Filter (and inverse as dotted )  

 

 

Figure 53 shows the spectral weighting filters. The inverse filter shown as the dotted line was 

used to pre-process the noise bursts prior to the temporal weighting being applied. These 

modifications were based on recommendations made by Pestana et al. (2013) and through the 

author’s perceptual observations and testing.  
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The filter specified in recommendation ITU-R 468-4 (1986) was also tested however it was 

found that the 2kHz-8kHz octave bands were perceptually significantly louder on playback than 

the lower bands. 

 

Studies have shown that temporal effects, particularly for signals of less that 100ms in duration, 

must also be accounted for in order to weight the loudness appropriately (Watson & Gengel, 

1969; Verhey & Kollmeier, 2002; Rasch & Rasch, 1981; Zwicker & Fastl, 1999; Moore, 2003). 

  

As such, a temporal weighting coefficient (TWC) was derived using both the centre frequency of 

the octave band (Fc) and the signal duration (t).  The process is shown in Figure 55. The octave 

band filters are shown in Figure 54. Calculation of Tau (𝜏) is first derived and this is then used to 

derive the weighting coefficient for each octave.  

 
𝝉 = [−𝟎. 𝟎𝟑𝟐	 ∗ 	𝒍𝒏(𝑭𝒄)] + 𝟎. 𝟑𝟎𝟗𝟓                       ( 24 ) 

 
𝑻𝑾𝑪	 = 	 [𝟏 − 𝜺F𝒕/𝝉]F𝟏                        ( 25 ) 
 

 
Figure 54 - Octave Band Filter responses 
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Figure 55 - Loudness Compensator 

 

 

An informal listening test took place prior to the main test to briefly evaluate the effectiveness of 

the loudness normalisation algorithm. Of the 11 participants that took part, 7 agreed that the 

loudness of the pulses were presented at roughly equal loudness. The remaining 4 suggested that 

the differences they were hearing were primarily as a result of timbral differences rather than 

loudness. Adjustments proposed were recorded but not utilised in the main testing as the 

majority of changes proposed were of a magnitude of 2dB or less.   

 

Each octave band pulse was measured at the listening position using an SPL meter without 

weighting. The SPL measured was 76dB. 
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Following the informal loudness evaluation, the 45 shaped noise burst were presented using a 

test interface created using HULTI-Gen test suite for Max (Gribben & Lee, 2015). Figure 56 

shows the test interface. Each sample was played in a random order and each participant was 

asked to rank the perceived punch against a 1kHz band reference burst. The reference had a 0ms 

onset and 40ms offset. Scores were collected using a 100 point scale with 50 and -50 

corresponding to the extremely punchier and extremely less punchier limits respectively. A 

single stimulus experimental interface was preferred over a multiple stimulus due to the number 

of samples involved. 

 

 
Figure 56 - Test Interface - Punch Perception Test 

  



 

 

 160 

 

 

8.3 Noise burst test results 
 

The results in Figure 57 show the noise burst listening test results. The plot represents the punch 

scores obtained at each octave band and onset. The ‘0’ point on the y-axis indicates the noise 

burst was perceived to have the same punch level as that of the 1kHz noise burst. A positive 

value indicates increased punch, negative indicates less. All result plots indicate a maximum and 

minimum punch scale limit of 1 and -1 respectively. 

 
Figure 57 - Mean Punch Scores vs. Octave Band per Onset 

 
Figure 58 - Punch Score 0ms Onset Noise Burst 
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Figure 59 - Punch Score 5ms Onset Noise Burst 

 
Figure 60 - Punch Score 10ms Onset Noise Burst 

 
Figure 61 - Punch Score 20ms Onset Noise Burst 

 
Figure 62 - Punch Score 60ms Onset Noise Burst 
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8.4 Test analysis and model parameters 

 

Initial analysis of the results shown in Figure 57 indicated that the mean punch score was related 

to both the noise burst centre frequency and onset however there appears to be a pivot point 

around the 1kHz reference band whereby the 2kHz and 4kHz bands have an upward trend. 

Figure 58 through Figure 62 show the results in box plot format showing the distributional 

characteristics of the punch scores as well as the levels. 

 

With reference to the inter-quartile ranges, the greatest degree of variation of punch scores can 

be seen in the 2kHz, 4kHz and 8kHz bands. Again this trend, in addition to the upward trends 

shown in Figure 57 suggest a greater difference of opinion as to whether the upper bands have a 

greater punch perception than the 1kHz reference. 

 

Upon interviewing the participants after the experiment, it was found that whilst the upper bands 

were not necessarily more punchy than the reference, in some cases some had been scored higher 

as a result of their timbral weight or presence. This is particularly relevant to the 4kHz band. 

 

The results obtained, combined with the comments made by listeners in the informal loudness 

test, suggest that even with the modifications employed to the hi-shelving gain (Pestana et al, 

2013) of the weighting filter, there is still some discrepancy in the 2k to 4kHz region. Some 

listeners perhaps judging punch directly by perceived loudness level or other timbral attribute. 

This might also warrant the filter within the current ITU-R BS.1770-4 (2015) loudness standard 

to be re-visited. The variance observed above the 1kHz reference could suggest that listeners 

may not even consider punch as relevant to these stimuli. 

 

Multiple linear regression techniques were applied to the results of the noise burst experiment in 

order to derive model parameters. Due to the pivot point around 1kHz a model utilising only the 

64Hz to 1kHz centre frequencies was employed. The dependent variable in the regression 

analysis was the Punch Score based on the mean of the listener test results and the independent 

variables were Band and Onset. 
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R R2 Adjusted R2 Std. Error of 

Estimation 

.952 .906 .898 .09321 

 
Table 17 - Summary For Punch Score Model 

 

 

SS df 

Mean 

Squ F Sig 

Regression 
1.846 2 .923 106.22	 .000	

Residual 
.191 22 .009   

Total 
2.037 24    

 
Table 18 – ANOVA Summary For Punch Score Model 

 

The Sum of Squares of the residuals is the total deviation of the response values to that of the 

model prediction values, a value of .191 (see Table 18) shows a very tight fit of the model to the 

data. The resultant coefficient of determination shown in 

Table 17, (denoted by R2) is derived from the sum of squares and further indicates that the model 

is a good fit. The adjusted R2 value is not adversely affected by the low number of data points 

(11 expert listeners and 5 bands used). The standard error predicted by the model is also very 

small. The effect of the regression is statistically significant, thus the effect on the punch scores 

is mainly predictable through variation of the independent variables rather than chance. 

 
 

Unstandard 

Coefficients 

Standard 

Coefficients   

 

B 

Standard 

Error Beta T	 Sig	

Const 
.954 .059  16.185	 .000	

Band 
-.171 .013 -.845 -12.941	 .000	

Onset 
-.088 .013 -.438 -6.706	 .000	

 
Table 19 – Coefficients For Punch Score Model 
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Table 19, showing the raw coefficient score (partial regression coefficient scores B), indicate that 

the Band would have both the largest effect and be detrimental to the punch score as it is 

increased. This trend can be observed in Figure 58 through to Figure 62. The effect of the Onset 

is somewhat smaller, again having a detrimental effect as it is increased. One might expect, and 

indeed it can be observed particularly from Figure 62, that the longer onsets have more of an 

impact in the upper bands with respect to a lowering of the punch score. 

 

The resultant estimated linear regression equation is as follows:  

 
𝑬𝒔𝒕𝑷𝒖𝒏𝒄𝒉	 =	. 𝟗𝟓𝟒 − 𝟎. 𝟏𝟕𝟏𝑩𝒂𝒏𝒅 − 𝟎. 𝟎𝟖𝟖𝑶𝒏𝒔𝒆𝒕       ( 26 ) 
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Figure 63 - Model vs. Subjective Results 
 

Figure 63 shows the model output compared to the subjective results obtained. The results show 

that the subjective scores have a general trend of punch decrease as the octave band increases. In 

addition to that, as the onsets are increased within each band, there is a general trend of 

decreasing punch. 60ms onset across all bands shows the lowest level of punch. 0ms onset shows 

the most level of punch in bands 1, 4 and 5 and in the case where 5ms is deemed to have greater 

punch (in bands 2 & 3) the punch mean punch scores given by the listeners is very marginal in 

difference. This is reflected by the box plots shown in Figure 58 and Figure 59 respectively. It 

was deemed appropriate to implement a linear model in the first instance however; non-linear 

modelling could offer the possibility of higher correlation to the subject scores.  
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8.5 Punch model implementation 

 

The derived linear regression equation was incorporated into a punch model. The model employs 

a multi-stage approach as shown in Figure 64. Firstly, the complex musical signal is separated 

into its component transient, steady state and residual components. This technique allows the 

transient portion of the musical signal to be analysed independently of the other components 

which has significant advantages over approaches that consider the whole signal in its mixed 

state.  

 

The separation process outlined in Chapter 7 offered both good time and frequency resolution by 

employing a quadrature mirror filter bank (QMF) and applying a short time Fourier transform 

(STFT) across each sub-band. Whilst this offered good results in terms of time/frequency the 

implementation is somewhat processor intensive in that it requires very high order FIR filters in 

its implementation. A decision was made to implement the separation stage utilising STFT and 

median filtering alone thus reducing processor overhead and evaluating the model performance 

with a view to moving towards a real-time implementation.  

 

 
 

Figure 64 - Punch Model Diagram 
 

The transient component is fed into a spectral weighting filter, as described in Section 8.2, 

followed by an octave band filter to separate the signal into loudness weighted bands. Each band 

is fed into a side-chain onset detection stage which extracts onsets and their relative times within 

each band. Each band is used to produce a punch coefficient based on Equation 26 and the onsets 
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detected within it. Finally, the punch coefficients across bands are summed together to provide 

an overall punch indicator.  

 

The summing process is based on the block based momentary loudness model as specified in 

ITU-R (2015) BS.1770-4. However a smaller block size of 100ms with a 50% overlap was 

incorporated to lower the level of signal integration taking place and also to allow for suitable 

alignment with the onset detection data (shown as Temporal Data in Figure 64). 

 

The model was implemented using MATLAB. The onset detection data was created through the 

utilisation of the MIRonsets function provided in MIR Toolbox (Lartillot & Toiviainen, 2007).  

 

8.6 Model output 
 

The following plots represent the model output with respect to varying input stimuli. 

 

 
Figure 65 - Measurement of Noise Bursts (Progressive Octave Bands) 100ms Block Size 
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Figure 66 - Measurement of Noise Bursts (Weighted Progressive Octave Bands) 100ms Block Size 

 

 
Figure 67 - Measurement of Noise Bursts using standard 400ms Momentary Loudness Model 
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Figure 68 - Measurement of Full Scale & Full Spectrum Noise Burst using the punch model 

 

Figure 65 and Figure 66 show the output of the model when presented with the test stimuli used 

in the subjective tests, these are the octave spaced progressively increasing centre frequency 

noise bursts with 0ms onsets. Figure 65 simply shows the output without weightings being 

applied and Figure 66 is with weighting applied. This is to allow comparison with the standard 

momentary loudness model output shown in Figure 67. 

  

Comparing Figure 65 and Figure 67, the outputs of the models are very similar. However, due to 

the smaller integration window used in the punch model, the output is able to clearly 

differentiate the individual noise bursts and associated level. Figure 66 is showing the output of 

the model with weightings enabled and consideration of the first 5 bands being summed. As the 

noise burst centre frequency is increased, the output of the model drops due to the weightings 

employed, this is as expected when compared to Figure 65. 

 

The 0dB point on the figures represents full scale, similar to that of the standard loudness model. 

That is, if the input stimulus is a full scale digital broad band pink noise burst, the output of the 

model would be -3dB. This is shown in Figure 68. 
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Figure 69, Figure 70 and Figure 71 compare the output of punch model with a standard 

momentary loudness model using the opening bars Michael Jackson - ‘Billie Jean’. The opening 

bars consist of kick and snare followed by the introduction of bass and synth melody. 

 

 
Figure 69 - Measurement Of Billy Jean Sample, using standard 400ms Momentary Loudness model 

 
Figure 70 - Measurement Of Billy Jean Sample, using 100ms Punch Model (weighted) 
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Figure 71 - Measurement Of Billy Jean Sample, using 100ms punch model (weighted with onsets) 

 

 

Using loudness as a metric as shown in Figure 69, it can be seen that there is little that can be 

obtained from his plot in terms of signal dynamic. Comparing this to the model output, Figure 

70, the signal dynamic with respect to the transient components is clearly visible. More punch is 

evident at approximately the 0.7 second point continuing at 1 second intervals starting from 0s,  

 

Figure 71is the output of the model with the onsets active, i.e. the transients are being considered 

along with their relative rise times. The punch output is much more resolute in identifying the 

underlying dynamic of the music, with smaller punch peaks being associated with the closed hi-

hat and shaker denoted as HS. K & S indicate kick and snare respectively. It can be seen that in 

some cases the peak level of punch is affected, this is to be expected, as the algorithm is no 

longer simply summing overall energy within a frame, only weighted energy associated with 

onsets is summed. In addition, where an onset is not detected within a frame, the frame is 

ignored from the energy summation therefore resulting in sharper tangents being visible in the 

plot.  
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8.7 Statistical output 

 

Figure 70 and Figure 71 model outputs, along with suitable metering ballistics, may prove more 

useful in offering a real time indicator of punch to an engineer. A more useful application of the 

model output might be for evaluating the punch scores over a period of time, for example in a 

histogram. A similar approach was adopted with the IBR measure, detailed in Section 5.6. The 

output variables obtained from the histogram can be analysed, giving statistical data relating to 

the stimuli under test. 

 

The histogram shown in Figure 72 Figure 72 represents the data extracted from the Billy Jean 

sample with the onsets active. It shows the frequency of particular punch frame magnitudes 

within the section of music under test. By examining the data in this way, maximum, minimum, 

median and standard deviation measures can be extracted.  

 

This data can be shown in the form of a percentile plot, Figure 73, giving an effective insight 

into the underlying ‘punchiness’ of the music being measured. 

 

 

Figure 72 - Histogram of punch scores detected in Billy Jean Sample. 
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Figure 73 - Percentile plot of punch scores detected in Billy Jean Sample. 

 

With reference to Figure 73, it can be observed that punch frames of -20dB or more only occur 

10% of the time. Conversely, punch frames of -20dB or less occur 90% of the time. Similarly to 

the current loudness range metering algorithm, ITU-R BS.1770-4 (2015), and its ‘Loudness 

Range’ measure, upper and lower percentiles could be ignored therefore resulting in a ‘punch 

range’ measure being extracted. In addition, a peak punch to average may be of use to indicate 

dynamic variability between audio stimuli. The punch model naming conventions proposed are 

shown in Table 20. 

 

Model 

Abbreviation 
Description 

PM Punch Model 

Raw Score 

PMx Punch Model 

Range Using xth 

Percentile 

PMxM Punch Model 

Range Using xth 

Percentile, 

divided by the 

Mean  

Table 20 – Punch Model Naming and Description 
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Figure 74 - Histogram plot of punch scores detected in Rage Against The Machine sample. 

 

 

 
Figure 75 - Percentile plot of punch scores detected in Rage Against The Machine sample. 

 

Figure 74 and Figure 75 show the model outputs for an excerpt from “Take the power back” by  

Rage Against The Machine . In the author’s opinion, perceptually this track is punchier than 

Billy Jean. Examining the model output in Figure 75 it can be seen that 30% of the frames 

detected were -27dB or more, this contrasts with the Billy Jean sample whereby 30% of the 

frames detected had a range of -49dB or more. To put these outputs in perspective, Figure 76 and 

Figure 77 show the output of an ambient track consisting of synth drones and very little 

percussive element. No frames are detected that exceed -32dB and the high concentration of 

frames around the -40dB point indicates a low punch score with very little deviation. 



 

 

 175 

 

 

Figure 76 - Percentile plot of punch scores detected in the ambient sample. 
 

 

 

Figure 77 - Percentile plot of punch scores detected in ambient sample. 
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8.8 Conclusions 

 

The model is based around the perceptual weighting of the transient components of an audio 

signal utilising the onsets detected within octave bands to produce an objective punch output. 

The raw punch score measure is defined as PM, the statistical variants are PMx and PMxM, 

where x is the upper percentile used in the derivation. The output, in its raw form, shows a 

correlation with the sensation of punch however the model requires validation with a controlled 

listening test and a large and varied array of input stimuli.  

 

Comparison of the model to other objective models associated with dynamics and punch will 

now be investigated along with differing statistical variants. CF, IBR, PLR and LDR are 

included in this testing. This work is undertaken in Chapter 9. 
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Chapter 9 Validation of the punch model 
 

A listening test was conducted to measure the perceived punch of a set of musical stimuli of 

differing genres in order to evaluate the validity of the punch model proposed in Chapter 8. The 

results of the listening test were then compared to the model output. The goal was to quantify the 

perceived punch of each stimulus as an attribute of the sound itself thus forming a varied test set 

that had been perceptually graded. The use of differing genres was to test the validity of the 

output regardless of genre.  The validation test involved the following stages, subjective test and 

score collation, objective measurement of the stimuli and correlation analysis of various model 

output variables with respect to the subjective punch scale scores. 

 

Two punch model outputs were compared against the subjective data in order to evaluate the 

effectiveness of each, these were PM95 and PM95M. Other objective measures were included to 

evaluate their correlation against the same derived punch scale. The measures were CF, PLR, 

IBR, IBR_diff and LDR. 

 

9.1 Overview of the objective measures 

 

The following outlines the objective measures compared in the validation test.  

 

PM95 - This is the punch model output indicating the punch range across the stimuli based on 

the lowest and 95th percentile of punch frames measured. The PM95M is the PM95 value divided 

by the mean punch frame value. 

 

Crest factor (CF) – This indicates the peak to average ratio of the signal. The ‘peak’ is the 

maximum amplitude level and the ‘average’ is the RMS value (Hartmann, 1998). 

 

Peak-to-loudness ratio (PLR) is similar to CF, except overall loudness level is used instead of its 

RMS value (ITU-R (2015) BS.1770-4). 
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Loudness Dynamic Range (LDR) is a measure of microdynamics within a signal. It has been 

shown to be more robust in this sense that the CF and PLR measures (Skovenborg, 2014). The 

LDR measure utilised in this testing was based around a 3 second ‘slow’ and 50ms ‘fast’ 

window size and 95% percentile. This corresponds with the settings giving the most correlation 

to ‘microdynamic’ perception.  

 

IBR is a measure of dynamic range correlation between frequency bands, the measure was 

introduced in the early stages of this work in Chapter 3, Chapter 4 and Chapter 5. Section 5.6 

described a method of representing the IBR measured frames in statistical format and a measure 

was proposed that looks at the range of IBR frames within the entire audio excerpt. Hyper-

compression in music tends to result in lower IBR scores than uncompressed music. It was 

concluded in Section 5.6 that the IBR measure shows a stronger correlation to punch/audio 

quality than a broadband dynamic range measure. The measure utilised in this testing is the 

IBR_diff, which is the range measured between the 1st and 95thPercentile. 

 

9.2 Experimental design and listening conditions 

 

A forced pairwise comparison test was adopted which presented randomised pairs of stimuli to 

the listeners. The listeners simply had to select the stimuli they thought exhibited the most 

punch.  12 stimuli were utilised and 11 expert listeners took part in the test. Each listener made a 

total of 66 comparisons as they compared each stimuli to every other. 

 

This comparison test was chosen over a typical ranking test to reduce biasing and to allow each 

stimuli to be compared equally. If a straight ranking test had been adopted, then the listeners may 

have been tempted simply to rank an artist or genre with a preconception of it having the most or 

least punch. Forced choice was chosen as it was deemed appropriate to reduce the measurement 

variance of the subjective data for later comparison. 

 

The listeners were given the opportunity to listen to the stimuli prior to the test and were 

instructed not to base their choices on melody, genre, personal taste or arrangement. This 

enabled them to adjust to the listening environment and also gauge the range of stimuli they were 

going to rate. This was an important part of the training phase such that the listener was aware of 

the full suite of stimuli that was going to be used during testing. 
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If they rated A as more punchy that B in the pairwise test, then A was awarded a vote of 1 and B 

was awarded a vote of 0. As this was a forced test, A equals B was not allowed. 

 

Playback was in a near-field setup of Genelec speakers in an ITU-R listening room. The listening 

level was set and measured to be 76dB(A) and each listener stated this was a general listening 

level that they were used to. 

 

9.3 Stimuli 

 

The stimuli consisted of 12 excerpts of commercially available music; these are detailed in Table 

21. The duration of each was 7s. All sounds were down-mixed to mono, to suppress any spatial 

effects. Each sound was then loudness normalized according to ITU-R BS.1770-4 (2015) 

standard, such that the overall loudness of the stimuli would be equal on playback. The level 

chosen was -23LU. The stimuli were chosen from various genres in order not to bias the test 

with respect to any particular arrangement or preference. 
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FILE / ID ARTIST COMMENTS GENRE 

Allegro C’ 
Brio / 9 

Beethoven Strong 
Transients 
Sparse, Large 
Dynamics 

Classical 

Animals / 5 Nickleback Strong 
Transients, 
Heavy Guitars, 
Vocal 

Rock 

Beatbox / 6 Roni Size Vocal 
Beatboxing No 
Kick/Snare. 

Drum & Bass 

Bonfire / 2 Knife Party Drums, Vocal 
Samples, Bass, 
Synths 

Dubstep 

Frozen 
Kingdom / 
12 

Weldroid Ambient Electronica 

If / 7 Destiny’s 
Child 

Rich Vocal 
Harmonies, 
Strings, Piano, 
Sparce 
Percussion 

R&B 

Mad World 
/ 4 

Tears For 
Fears 

Drums, 
Percussion, 
Synth, Bass, 
(Bridge) 

Alternative 

Pharaohs / 
10 

Tears For 
Fears 

Soft Drums, 
Strong Piano, 
Vocal Sample, 
Synths 

Alternative 

Sheep May 
Safely 
Graze / 11 

Bach No percussion, 
No Strong 
Transients. 

Classical 

Sympathy 
For The 
Devil / 8 

The Rolling 
Stones 

Shaker, Vocals, 
Bass & Guitar, 
Percussion 

Rock 

The Real 
Slim Shady 
/ 1 

Eminem Drums, Rap, 
Bass, Synth 

Hip-Hop 

Titanium  / 
3 

David Guetta 
feat. Sia 

Drums, Loud, 
Vocals, Synth, 
Pumping 

Pop 

 
 Table 21 - Stimuli Used in The Model Validation Test 

 

 

During the training phase, all listeners were asked to confirm that the stimuli were perceived to 

be playing back at the same loudness levels. All listeners confirmed this to be the case.  
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9.4 Subjective test results 

 

Table 22 shows the raw ranking scores collected from the pairwise test. The table shows the 

number of times a particular stimulus was chosen as having more punch than another. For 

example, 9 listeners voted that file ID 1 had more punch than file ID 5. From this data, rank 

score and empirical probability scores were extracted. Using this data, a scaled response was 

derived using a Bradley-Terry-Luce model (Bradley & Terry, 1952; Luce, 1959). A Matlab 

script OptiPt.m (Wickelmaier et al. 2004) was utilised to derive the scaled response coefficients.  

 

For ease of interpretation, the table has been arranged in the extracted rank order of preference, 

i.e. file ID 1 received the most punch votes and file ID 12 received the least. File ID 1 in this 

case is Eminem. 

ID 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 7 6 10 9 10 10 11 11 11 11 11 

2 4 0 9 8 8 11 10 11 11 11 11 11 

3 5 2 0 7 7 9 7 10 11 11 11 11 

4 1 3 4 0 5 7 8 11 10 11 11 11 

5 2 3 4 6 0 6 8 10 9 11 11 11 

6 1 0 2 4 5 0 7 10 9 11 8 11 

7 1 1 4 3 3 4 0 5 7 9 10 11 

8 0 0 1 0 1 1 6 0 7 11 9 11 

9 0 0 0 1 2 2 4 4 0 8 10 11 

10 0 0 0 0 0 0 2 0 3 0 6 10 

11 0 0 0 0 0 3 1 2 1 5 0 10 

12 0 0 0 0 0 0 0 0 0 1 1 0 

 
Table 22 - Forced-pairwise Test Scores 
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9.5 Rank score and between sample significance testing 

 

Whilst it’s possible to rank the stimuli with respect to the number of votes received, it’s 

important to also establish if the ranking is statistically significant, for example, is the number of 

subjects that preferred file ID 1 over file ID 2 significantly different to the number of subjects 

that preferred file ID 2 over file ID 1. To establish this, if we assume a null hypothesis that the 

listeners were voting randomly, i.e. they could not establish a difference between stimuli, a 

sample probability threshold of 50% can be assumed. Thus, the alternative hypothesis is if a 

stimulus is consistently chosen as having more punch a sample probability (Psig) of >50% will 

be achieved. How much higher above the chance level of 50% can be established through the 

choice of z-score and consideration of both the population and the assumed chance population 

percentage (Harris & Holland, 2009). The relationship between Psig and the sample probability 

threshold can be summarised in equation 27 as follows: 

 

         
( 27 ) 

 

where Pu = assumed sample probability threshold and n = sample size, in this case 50% and 11 

respectively. 

 

The z-score in this case was chosen as 1.64, this corresponds to a standard significance level of 

5%, p=0.05, one-tailed. The resulting 𝑃𝑠𝑖𝑔 probability of 75.22% is relatively high due to the 

low number of subjects involved in the testing. Using this probability and comparing it against 

the relative votes each stimuli received, significant differences can be identified between 

samples. For cases where a stimulus is significantly rated as being punchier than another, the 

votes have been shaded dark grey in Table 22. Those shaded as light grey are significant based 

upon a p=0.10, one tailed z-score. Inspection of Table 22 reveals that there is a general 

agreement between the original extracted ranking and the significant difference probabilities. For 

example file ID 1 is voted as significantly different to all other samples except 2 and 3. In these 

cases, whilst file ID 1 has received the most votes, it cannot be stated with 95% confidence that 

it has more punch than file ID 2. On the other hand, we can state that file ID 12 has the least 

votes and statistically is the least punchy stimuli compared to all others. The goal in this analysis 

was to extract a punch scale for the stimuli used in the test. Given that in some cases it could be 

Psig = 1.64 * Pu(100−Pu)
n

+ Pu + 0.5
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possible to have the same level of punch perceived between some stimuli, it’s possible to remove 

some of the stimuli utilised in the creation of the scaled output parameters. This process will be 

detailed in the next Section 9.6. 

 

Whilst the pairwise data can give an indicator of rank score and also between stimuli 

significance, it’s difficult to establish an interval scale of preference that can be used to compare 

to the punch model output. For example, whilst one stimuli may be ranked in 1st place, how 

close it is ranked to the second place stimuli? By establishing an interval based scale, it's 

possible to link this directly to the punch model output and run a correlation test to establish its 

effectiveness at punch prediction. 

 

9.6 Bradley-Terry-Luce model 
 

The Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952; Luce, 1959) is an established 

approach that states, given certain testable conditions, preference probabilities may be related to 

scale values in the following fashion: 

 

            ( 28 ) 

 

Where 𝑃𝑎𝑏 denotes the probability that stimuli 𝑎 will be preferred over stimuli 𝑏, or on this case 

is punchier. 𝑣 𝑎  and 𝑣(𝑏) are the number of votes that each stimuli received. A Matlab script 

OptiPt.m (Wickelmaier et al. 2004) was utilised to derive the scaled response coefficients based 

on the pairwise data and the output of this is shown in Figure 78. This figure shown is based on 

all of the stimuli tested and shows the 95% confidence intervals calculated from the covariance 

matrix returned by the function. In some cases, the confidence intervals are very tight and 

therefore show significant agreement between listeners on particular stimuli and its relative 

score. These BTL scale coefficients for each stimuli correspond with extracted ranking based on 

probability therefore the coefficient value relates to the inter sample significance testing results 

as described in Section 9.5. A good example of this would be file ID 10 and 11 in that whilst 

they are deemed to be less punchy than all the other stimuli except 12, they not significantly 

different from each other, therefore with respect to ranking they lie very close to each other on 

the BTL scale with small intervals. Likewise, the intervals for file ID 1 and 2 are larger, thus 

Pab = v(a)
v(a)+v(b)
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showing a larger variance in BTL coefficient value, this shows that there isn't 95% or more 

confidence that they are vastly different in terms of perceived punch. 

 
Figure 78 - BTL Model output based on pairwise comparison data. 

 
Figure 79 - BTL Model output based on ‘significant’ pairwise comparison data. 

 

 

Samples that are deemed to be significantly different have no confidence interval overlap. Where 

there is overlap, these samples are given roughly the same score by the BTL model as such, it’s 

possible to remove these stimuli from the model fit. Figure 79 shows the model output after the 

removal of file IDs 2, 5 and 11.   
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File ID 11 was also removed as it was seemed the same as File ID 10 in terms of the significance 

testing and in term of BTL coefficient score, was also very close to that of File ID 10. This 

derives an interval scale that can be tested against the objective punch model.  

 

The testable conditions for a BTL model fit are those of transivity and goodness of fit. The 

former can be established by looking at the raw data scores in Table 22.	

ID 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 7 6 10 9 10 10 11 11 11 11 11 

2 4 0 9 8 8 11 10 11 11 11 11 11 

3 5 2 0 7 7 9 7 10 11 11 11 11 

4 1 3 4 0 5 7 8 11 10 11 11 11 

5 2 3 4 6 0 6 8 10 9 11 11 11 

6 1 0 2 4 5 0 7 10 9 11 8 11 

7 1 1 4 3 3 4 0 5 7 9 10 11 

8 0 0 1 0 1 1 6 0 7 11 9 11 

9 0 0 0 1 2 2 4 4 0 8 10 11 

10 0 0 0 0 0 0 2 0 3 0 6 10 

11 0 0 0 0 0 3 1 2 1 5 0 10 

12 0 0 0 0 0 0 0 0 0 1 1 0 

 

The general rule of transivity is described as: 

 

𝑰𝒇	𝑨 ≥ 𝑩	𝒂𝒏𝒅	𝑩 ≥ 𝑪	𝒕𝒉𝒆𝒏	𝑨 ≥ 𝑪          ( 29 ) 
 

 

Examination of the raw data shows that transivity is not violated when considering the total votes 

received by each stimulus. The goodness of fit statistic returned by OptiPt.m as a 𝜒W (chi 

squared) statistic was within bounds of the lower and upper critical values of the chi square 

distribution, p=0.05, therefore the BTL model can account for the data. 
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9.7 Model output correlation analysis 

 

As described earlier, different punch model outputs were analysed to establish relative 

correlation performance with the subjective BTL model output (i.e. the perceptual punch scale). 

SPSS was utilised to do this analysis. Through an approach detailed in Section 8.7, the statistical 

output of the punch model was utilised and a punch range measure was investigated. In the 

statistical punch model, upper and lower bounds of the punch frame distribution form the punch 

range, similar to that found in the loudness range measure, albeit without any gating mechanism. 

The lower bound percentile point chosen was the 1st percentile, the upper bound was determined 

by comparison of various values with respect to the relative correlation score achieved.  

 

The upper bound point that resulted in the highest correlation score was the 95th percentile 

measure (PM95). In addition, a measure also showing a high degree of correlation was the 95th 

percentile / mean measure (PM95M). The latter could be considered to be a ratio derivation as 

found in dynamic range type calculations. Other computational measures were compared against 

the punch scale data to compare performance in mapping to the punch attribute. As each of the 

measures chosen offer differing units of measurement (SI), for example, dB, LU or ratio score, 

correlation analysis was utilised in order to disregard these differences and see how well each 

mapped to the perceptual punch scale output parameters. For each of the tested objective 

measures, Table 23 shows the Pearson correlation coefficient (r) and the rank correlation 

(Spearman’s rho) between each measure and the punch scale.  
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If the underlying distribution of the two variables being considered is not a bivariate normal 

distribution, or if there is a non-linear relationship between the variables, the Pearson correlation 

(r) might not provide an accurate measure of their association. The non-parametric rank 

correlation (rho) is more robust in that it considers rank order, thus outliers are generally not 

going to affect the overall correlation statistic. Ideally, both coefficients would be close to each 

other. 

 

Measure Corr(r) Corr(rho) 

CF -.351 -.483 

PLR .010 -.083 

LDR  .442 .333 

IBR_diff .706* .650 

PM95 .849** .833** 

PM95M .770* -.750* 

 
Table 23 - Correlations of the tested measures with the perceptual punch scale 
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In addition, and in order to show possible correlations between measures, a correlation matrix as 

shown in Figure 80, was produced.  

 

Figure 80 - Correlation matrix of all tested measures 
 

 

 

This matrix includes r2 values where significance is prevalent. In Table 23 and Figure 80, * and 

** signifies correlation is significant at the 0.05 and 0.01 level (2-tailed) respectively. 

 

From the results obtained, the PM95 measure showed a ‘very strong’ positive correlation with 

punch perception. Both r and rho coefficients (0.849 and 0.833) being significant at the 0.01 

level (2-tailed). The PM95M measure, which is the PM95 measure divided by the mean value of 

punch frames also correlated very well with the perceptual punch scale. 

 

The PLR and CF measures showed the least correlation with punch perception. One might 

assume that a reduced CF or PLR may correlate well with punch due to the use of compression 
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in music production attempting to maximise loudness and possibly punch in the process. In the 

stimuli tested, with the loudness having been normalised between stimuli, punch perception did 

not correlate with the measures. Only the CF measure showed a ‘weak’ negative correlation with 

an r coefficient of -.351. This reinforces the conclusion stated in Chapter 6 that the use of 

compression from a stem perspective, e.g. on a kick or snare drum with a view of increasing 

punch is more likely to correlate to the temporal envelope modification that occurs as part of the 

process rather than changes in dynamic range.  

 

The IBR_diff measure showed a ‘strong’ correlation with punch perception, albeit less than the 

PM95 and PM95M measures. An r coefficient of .706 was observed with a p-value of 0.034 (2 

tailed). This measure is based upon the relationship between dynamic ranges measured across 

frequency bands. Causes of correlation between bands could be caused by application of 

compression during mastering, noise like stimuli or stimuli with no percussive based content. 

Higher IBR_diff values corresponded with higher perception of punch in stimuli tested.   

 

The LDR measure, a measure of loudness dynamic range, is proposed as a measure of 

microdynamics (Skovenborg, 2014). Whilst it isn’t a measure of how the underlying dynamic 

content is perceived it was included to ascertain any correlation with the punch attribute. An r 

coefficient of .442 indicates ‘moderate’ correlation strength. This correlation could be an 

indicator of the 'dynamic' content contained within the stimuli which is in turn linked to the 

punch level. Stimuli with little dynamic content are likely to have a low punch score, however, 

even with high dynamic content (in which case LDR would return a high level) this may not 

always result in high levels of punch, an example of this would be a series of hi-hat hits. 

 

It can be seen in Figure 80 that the LDR has a ‘strong’ correlation with PLR, with an r2 

coefficient of 0.49 significance being less than the 0.05 level (2-tailed). This similarity can be 

explained due to the method employed in the LDR algorithm. The measure is based on deriving 

the maximum difference between a ‘fast’ and a ‘slow’ loudness levels. The peak utilised in the 

PLR measure may roughly correspond to the ‘fast’ loudness level calculated, whilst the average 

loudness will be that of the ‘slow’ loudness integration employed. If for example, the ‘fast’ 

integration window were made to be 1 sample in length, it’s likely that the LDR/PLR correlation 

coefficient would approach 1. 
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Both punch output models and the LDR measure implement an integrative process in the form of 

windowing, the LDR measure tested uses 3s ‘slow’ and 50ms ‘fast’ windows whilst the punch 

model employs 100ms in its frame calculations. With reference to the LDR algorithm, one might 

expect larger LDR values as a result of a decrease in the length of the ‘fast’ window size, 

particularly in perceptually dynamic material. Indeed, this was the case with the stimuli tested 

when compared to the use of a 100ms window size in the LDR model.  

 

The LDR algorithm is also based upon the ITU-R BS.1770-4 (2015) model of loudness 

measurement and given that it is a maximal difference type measure, it also has parallels with the 

PM95M measurement. The PM95M measurement utilises the 95% percentile punch frame level 

along with the ‘mean’ of the punch frames to formulate its output. One could say this is 

equivalent to somewhat of a ‘peak’ to ‘rms’ punch frame measure (or ‘fast’ to ‘slow’ ratio). The 

PM95M model employs frequency weighting in its algorithm (see Chapter 8) unlike the LDR 

that utilises the K-weighting of the loudness model only. 

 

In general, higher values of LDR did correspond with higher levels of punch perception. As an 

indicator of ‘microdynamics’ within stimuli, one might expect this to be the case, for example if 

drums or percussion are present or not. This was certainly the case with the stimuli tested, 

whereby ‘Beatbox by Roni Size’ was measured with the highest LDR value. This particular 

stimulus was noted by the listeners as being the most dynamic. The PM95 and PM95M models 

on the other hand showed a stronger correlation to the punch perceived in the stimuli tested than 

the LDR measure, this may be due to the combination of both onset detection and frequency 

band weighting employed.  
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9.8 Model validation conclusion 

 

The punch model outlined in Chapter 8 was evaluated against subjective scores obtained through 

a forced pairwise comparison test. 12 stimuli were utilised and 11 expert listeners took part in the 

test. Each listener made a total of 66 comparisons. 

 

For comparison four additional types of objective measures relating to signal dynamics and 

loudness perception were evaluated against the same derived punch scale. The PLR and CF 

measures showed the least correlation whilst the PM95 and PM95M model outputs showed the 

best correlations. 

 

From the results obtained, the PM95 measure can be consider to have a ‘very strong’ positive 

correlation to the punch scale.  

 

The IBR_diff measure showed a ‘strong’ correlation with punch perception, albeit less than the 

PM95 and PM95M measures.  

 

The LDR measure correlated well with dynamic levels perceived in the stimuli and correlation to 

the punch attribute was ‘moderate’. This yields the possibility of using a combination of the 

LDR and PM95 models to give both an indication of underlying dynamics and the ‘punchiness’ 

of those dynamics. 

 

The model proposed yields the possibility to perceptually weight the transient components of an 

audio signal. In doing so, output relative to the perception of punch in the signal is possible. The 

model could be of use in both mixing and mastering as well as audio transcription and retrieval. 
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Chapter 10 Conclusions and future work 
 
This aim of the thesis was to explore new measures with respect to audio dynamics and develop 

an objective model that predicts punch in musical signals. The literature review revealed that 

whilst there has been a great deal of work in the area of semantic description low-level analysis 

with respect to the perception of punch remained largely unexplored.  

 

In light of this, the work was iterative and a number of methods were investigated which 

included multi-resolution signal separation, analysis of statistical model outputs, sub-band 

filtering and detailed low-level feature extraction. In total, four new measures have been 

proposed within this body of work along with a formalisation of the punch attribute with respect 

to low-level features of the audio under test. 

 

This final chapter will highlight the conclusions drawn from this work and the measurements 

proposed. The main findings based on experimentation with each measure are shown as bullet 

points. Finally, possible future work will be discussed. 

 

10.1 Main research findings 
 

• The punch model (PM95) presented offers the ability to measure a perceptual parameter 

that was previously only able to be described subjectively by listeners. It shows a very 

strong correlation to the perceptual attribute.  

 

• The attack onsets of the audio across all octave bands affects the punch perceived by the 

listener. However; greater weight is evident in the lower octaves and there is little 

variance between 0ms and 5ms onset times. 

 

• The total energy summation of the onsets, across the 2nd, 3rd, 4th, 5th and 6th octave 

bands, shows a very strong correlation to the punch perceived by the listener. 

 

• The current loudness model K-filter should be re-visited to address anomalies in its 

weightings around and above the 1kHz range.  
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• Additional parameters identified showing a degree of correlation with the punch attribute 

when taken in isolation were spectral skew, spectral spread and rhythm strength. 

 

• With respect to dynamic range compression, no singular control setting is responsible for 

punch modification. The important factor lies not in the process involved in audio 

modification but rather the final signal and low-level features that result.  

 

• The Inter-Band-Ratio (IBR) measure presented shows a stronger correlation to perception 

of audio quality than existing dynamic range measures. In addition, the statistical output 

of this measure is shown have a moderate correlation to the perception of punch as 

graded by a panel of expert listeners. 

 

• A reduction in overall dynamic range of a piece of audio does not necessarily result in a 

perception of low overall audio quality by the listener when compared to the 

uncompressed version. Rather, the relationship between the dynamic ranges across 

frequency bands has been shown to correlate to this score.  As such, the proposed IBR 

measure is more effective than the CF measure when used to assess audio quality with 

respect to audio dynamics.  

 

• Transient content and dynamic range de-correlation between frequency bands relate to 

higher subjective scores being given by the listeners with respect to grading of punch and 

clarity. 

  

• The statistical IBR output, both in terms of percentile and histogram representation is an 

improvement on the integrative-based method. It affords more insight into the underlying 

dynamic contour of the sample under test than current dynamic range based measures and 

shows a moderate correlation to the punch attribute. 
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• The Transient to Steady-state Ratio (TSR) and Transient to Steady-state Ratio+Residual 

(TSR+R) measurements presented can be utilised to indicate the perceptual dynamics and 

possible masking artefacts present within a piece of audio. 

 

• The separation of an audio signal into its transient, steady-state and residual components 

enables new measures that are perceptually relevant to punch perception. For example, 

TSR and TSR+R offer the possibility of a ‘rhythm to background’ measurement. 

 

• For a track, where the sound sources had been mixed effectively with minimal masking, 

there should be good transient intensity which will result in a high TSR being achieved.  

 

• The method of separation explored enables the possibility to perceptually weight the 

transient and steady state frequency bands. 

 

• The TSR+R measure, by incorporating the residual components in the ratio calculation, 

can be used to indicate the presence of noise in a track. It could therefore be used to 

indicate perceived clarity or quality differences. 

 

 

In formalising the definition of punch the following is proposed: 

 

• Punch can be described as a short period of significant change in power in a piece of 

music or performance. The magnitude of change is associated and proportional to the 

signal dynamics that are present and thus, productions that do not possess any transient 

or dynamic attributes cannot possess punch. The onset of the transient present across 

octave bands affects the listener perception of punch, with the lowest octave attributing 

the most punch as the onset is decreased and vice-versa. Punch is therefore related to 

transient change and the energy density (summation across frequency bands) occurring 

at a moment in time and duration.   
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10.2 Further work 

 

Further work has been identified which may prove beneficial should this work be continued. 

This is summarised as follows: 

 

• In order to investigate the effect on both processing speed and possible improvement in 

correlation to listener perception, further testing of the PM95 punch model could be 

applied with differing window sizes and percentile parameters  

 

• Temporal weightings could be applied in the PM95 model. Whilst these were applied to 

the noise burst stimuli, signal duration of the detected onsets wasn't incorporated into the 

P95M model that has been described.  

 

• Additional noise burst testing would be beneficial to explore the perception of pink noise 

burst above the 1kHz octave band. These bands are currently omitted in the model. 

Indeed, exploration into noise burst perception would be beneficial to the wider research 

community particularly in relation to the current ITU-R BS.1770-4 (2015) loudness 

model. 

 

• The inclusion of a ‘steady state’ component into the PM95 model would enable the 

transient to steady state ratio relevance to be evaluated. Currently, poorly mixed audio 

may still give the same objective punch output as well mixed audio as the transient to 

steady state ratios are ignored. 

  

• The TSR and TSR+R measures could be tested with respect to establish if they correlate 

with listener perceived clarity amongst other quality based features. 

 

• The IBR measure could be extended to include more perceptually relevant frequency 

bands 

 

• A real-time implementation of the punch model (and other measures outlined in this 

thesis) could be possible. 
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